WO2013172352A1 - 4,4"-ジヒドロキシ-m-ターフェニル類の製造方法 - Google Patents

4,4"-ジヒドロキシ-m-ターフェニル類の製造方法 Download PDF

Info

Publication number
WO2013172352A1
WO2013172352A1 PCT/JP2013/063445 JP2013063445W WO2013172352A1 WO 2013172352 A1 WO2013172352 A1 WO 2013172352A1 JP 2013063445 W JP2013063445 W JP 2013063445W WO 2013172352 A1 WO2013172352 A1 WO 2013172352A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
hydroxyphenyl
reaction
bis
group
Prior art date
Application number
PCT/JP2013/063445
Other languages
English (en)
French (fr)
Inventor
一仁 芦田
祐樹 橋本
智也 山本
緒旺 路
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Priority to US14/401,098 priority Critical patent/US9102596B2/en
Priority to CN201380025064.0A priority patent/CN104379545B/zh
Priority to JP2014515641A priority patent/JP6181048B2/ja
Priority to EP13790098.1A priority patent/EP2851359B1/en
Publication of WO2013172352A1 publication Critical patent/WO2013172352A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/06Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by conversion of non-aromatic six-membered rings or of such rings formed in situ into aromatic six-membered rings, e.g. by dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
    • C07C37/52Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms by splitting polyaromatic compounds, e.g. polyphenolalkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the present invention relates to a process for producing 4,4 "-dihydroxy-m-terphenyls. More specifically, the present invention relates to synthetic resin raw materials such as polyester, polycarbonate, polyurethane, display elements, photoresist raw materials such as semiconductors, and the like. 4,4 "-dihydroxy-m-terphenyls, which are expected to be useful for the above-mentioned applications, are prepared from 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one and phenols as raw materials.
  • Step (B) and Step (C) in sequence or Step (D) and Step (C) in sequence to industrially implement 4,4 "-dihydroxy-m-terphenyls
  • the present invention relates to a production method that can be obtained by an easy method.
  • Patent Document 2 a method in which 2- (4-bromophenoxy) tetrahydro-2H-pyran and 1,3-dibromobenzene are subjected to Grignard reaction and then deprotected (Patent Document 2), 4-methoxyphenylboronic acid and 1,3-diphenyl
  • Patent Document 3 A method of synthesizing 4,4 ′′ -dihydroxy-m-terphenyl is disclosed by reacting diiodobenzene and then deprotecting (Patent Document 3).
  • Patent Document 3 a special and expensive raw material such as an organometallic compound is used, and a Grignard reaction is performed. Therefore, the manufacturing cost is very high and it is difficult to implement industrially.
  • Patent Document 4 a method for producing dihydroxy-p-terphenyls from trisphenols (Patent Document 4) is also known, but a method for producing trisphenols from unsaturated ketones and dihydroxy-m-terphenyls There is no description of any manufacturing method.
  • An object of the present invention is to provide a novel production method capable of obtaining 4,4 "-dihydroxy-m-terphenyls by an industrially easy method.
  • Step A 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one and phenols as starting materials and reacting them
  • Step B the obtained 1,1,3-tris (hydroxyphenyl) cyclohexane (hereinafter sometimes referred to as 1,1,3-trisphenols) is subjected to a decomposition reaction (Step B)
  • step C The resulting bis (4-hydroxyphenyl) cyclohexene is then subjected to a dehydrogenation reaction (step C), which includes three reaction steps in sequence, or 2-cyclohexen-1-one or 3-hydroxycyclohexane-1 Starting from ones and phenols and reacting them (step D), then the resulting bis (4-hydroxyphenyl) cyclohexenes
  • step C the desired 4,4 "-dihydroxy-m-terphenyls can be obtained in an industrially easy manner by sequentially including two reaction steps in the hydrogen reaction (step C
  • R 2 s When the 3-position is not substituted and m is 2 or more, R 2 s may be the same or different and are not substituted on the same carbon atom, and R 2 and m in the general formula (1)
  • General formula (2) R 2 and m may be the same or different.
  • each R 1 independently represents an alkyl group, an alkoxy group, an aromatic hydrocarbon group, a halogen atom or a hydroxyl group
  • n represents 0 or an integer of 1 to 4, and when n is 2 or more, 1 may be the same or different.
  • each of R 1 and n is independently the same as that of general formula (3), and R 2 and m are the same
  • the method for producing 4,4 "-dihydroxy-m-terphenyls according to the present invention uses industrially readily available raw materials, does not require special and expensive raw materials such as organometallic compounds, and is discarded or incinerated. In this case, organic halogen compounds that may cause environmental pollution are not required, and by selecting raw materials, reaction conditions, and / or treatment methods after the reaction, the objectives can be obtained under industrially easy reaction conditions. 4,4 "-dihydroxy-m-terphenyls can be obtained in high yield.
  • each R 2 independently represents an alkyl group, an alkoxy group, an aromatic hydrocarbon group, or a halogen atom
  • m represents each independently 0 or an integer of 1 to 4, and m is 1 or more.
  • R 2 is not substituted at the 3-position, and when m is 2 or more, R 2 s may be the same or different and are not substituted on the same carbon atom, and R in the general formula (1) 2 and m may be the same as or different from R 2 and m in the general formula (2).) 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one represented by the formula:
  • each R 2 is independently an alkyl group, Represents an alkoxy group, an aromatic hydrocarbon group, or a halogen atom, and each m independently represents 0 or an integer of 1 to 4, and when m is 1 or more, R 2 is not substituted at the 3-position; In the case of 2 or more, each R 2 may be the same or different and is not substituted on the same carbon atom.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 5 to 12 carbon atoms.
  • More preferable alkyl groups are linear or branched alkyl groups having 1 to 8 carbon atoms, and cycloalkyl groups having 5 to 6 carbon atoms, and particularly preferable alkyl groups are linear chains having 1 to 4 carbon atoms. And branched chain alkyl groups. Specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group and the like.
  • Examples of the cycloalkyl group having 5 to 12 carbon atoms include a cyclohexyl group, a cyclopentyl group, and a cycloheptyl group.
  • the alkyl group may be substituted with a halogen atom, an alkoxy group, a phenyl group, an oxygen atom (cyclic ether group), or the like, as long as the effects of the present invention are not hindered.
  • a halogen atom an alkoxy group
  • a phenyl group an oxygen atom (cyclic ether group), or the like
  • Specific examples include a benzyl group, a methoxyethyl group, and a 3-chloropropyl group.
  • the alkoxy group is preferably a linear or branched alkoxy group having 1 to 12 carbon atoms or a cycloalkoxy group having 5 to 12 carbon atoms. More preferred alkoxy groups are linear or branched alkoxy groups having 1 to 8 carbon atoms, and cycloalkoxy groups having 5 to 6 carbon atoms, and particularly preferred alkoxy groups are linear chains having 1 to 4 carbon atoms. And branched alkoxy groups, and specific examples thereof include methoxy group, ethoxy group, n-propoxy group, n-butoxy group, t-butoxy group and the like.
  • Examples of the cycloalkoxy group having 5 to 12 carbon atoms include a cyclopentyloxy group and a cyclohexyloxy group.
  • the said alkoxy group may be substituted by the halogen atom, the alkoxy group, the phenyl group, etc., and does not need to be substituted.
  • Specific examples include 2-phenylethoxy group, methoxyethoxy group, 2-chloroethoxy group and the like.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms. Examples thereof include a phenyl group, a phenyloxy group, and a 1-naphthyl group.
  • the aromatic hydrocarbon group may be substituted with an alkyl group, an alkoxy group, a phenyl group, a halogen atom, or the like, as long as the effect of the present invention is not hindered.
  • Specific examples include 4-methylphenyl group and 4-chlorophenyl group.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. can be mentioned, for example.
  • each m independently represents 0 or an integer of 1 to 4, preferably 0 or 1 to 3, more preferably 0 or 1 to 2, particularly preferably 0.
  • R 2 may be the same or different.
  • the substituent represented by R 2 is preferably the 4-position or / and 5-position as the substitution position, and the 2-position Is preferably free of substituents.
  • 2-cyclohexen-1-ones include, for example, 2-cyclohexen-1-one, 6-methyl-2-cyclohexen-1-one, 6-fluoro-2-cyclohexen-1-one, 2-methyl-2-cyclohexen-1-one, 2-methoxy-2- Cyclohexen-1-one, 2-chloro-2-cyclohexen-1-one, 4-methyl-2-cyclohexen-1-one, 4-ethyl-2-cyclohexen-1-one, 4-isopropyl-2-cyclohexene- 1-one, 4-t-butyl-2-cyclohexen-1-one, 4-cyclohexyl-2-cyclohexen-1-one, 4-phenyl-2-cyclohexen-1-one, 4-phenylmethyl-2-cyclohexene -1-one, 5-methyl-2-cyclohexen-1-one, 5-ethyl-2-cyclohexen-1-one, 5-isopropyl 2-cycl
  • Such 2-cyclohexen-1-ones include, for example, a method of isomerizing 2-alkylidenecycloalkanone in the presence of an acid catalyst and a platinum catalyst (Japanese Patent Publication No. 58-42175), 2- (1- (Hydroxylalkyl) cycloalkanone by dehydration isomerization in the presence of an acid catalyst or the like (Japanese Patent Laid-Open No. 56-147740, etc.), a method of cyclocondensing a dicarbonyl compound (Japanese Patent Laid-Open No. 10-130192, etc.) It can be easily obtained by a known method such as
  • the substituent represented by R 2 is preferably the 4-position or / and 5-position as the substitution position, and the 2-position Is preferably free of substituents. Accordingly, specific examples of the 3-hydroxycyclohexane-1-one include 3-hydroxycyclohexane-1-one, 6-methyl-3-hydroxycyclohexane-1-one, and 6-fluoro-3-hydroxycyclohexane.
  • Such 3-hydroxycyclohexane-1-ones can be easily obtained by a known method such as a method of ring hydrogenating a polyhydroxyalkylphenol in the presence of a hydrogenation catalyst or the like (Japanese Patent Laid-Open No. 11-60534). Can get to.
  • phenols represented by the general formula (3) are further used as starting materials.
  • each R 1 independently represents an alkyl group, an alkoxy group, an aromatic hydrocarbon group, a halogen atom or a hydroxyl group
  • n represents 0 or an integer of 1 to 4
  • n represents 0 or an integer of 1 to 4
  • n represents 0 or an integer of 1 to 4.
  • each R 1 may be the same or different.
  • preferred ranges, and preferred examples of the alkyl group, alkoxy group, aromatic hydrocarbon group, and halogen atom include alkyl groups, alkoxy groups, and aromatic groups represented by R 2 in formula (1) or formula (2).
  • Specific examples, preferred ranges, and preferred examples of the hydrocarbon group and halogen atom are the same.
  • the substituent which may be substituted with the alkyl group, alkoxy group and aromatic hydrocarbon group which are R 1 and the specific examples thereof are the same as the substituent and the specific examples described for R 2 within a range not impairing the effects of the present application. And there may be no substituent.
  • N is preferably 0 or 1 to 3, more preferably 0 or 1 to 2, and particularly preferably 0.
  • each R 1 may be the same or different.
  • the substituent represented by R 1 is not substituted at the para position of the hydroxyl group.
  • the substitution position is preferably the ortho position of the hydroxyl group, more preferably no substituent R 1 in at least one or both of the meta positions of the hydroxyl group, and particularly preferably no substituent in both.
  • the substituent at the meta position of the hydroxyl group is preferably a methyl group or a methoxy group. Accordingly, preferred phenols are represented by the following general formula (7).
  • R 3 and R 5 represent a hydrogen atom, an alkyl group, an alkoxy group, an aromatic hydrocarbon group or a halogen atom
  • R 4 represents a hydrogen atom, an alkyl group, an alkoxy group, an aromatic hydrocarbon group or a halogen atom. Or represents a hydroxyl group.
  • R 3 and R 5 represent a hydrogen atom, an alkyl group, an alkoxy group, an aromatic hydrocarbon group or a halogen atom
  • R 4 represents a hydrogen atom, an alkyl group, an alkoxy group or an aromatic hydrocarbon.
  • Specific examples, preferred ranges, and preferred examples in which R 3 , R 4 , and R 5 are an alkyl group, an alkoxy group, an aromatic hydrocarbon group, or a halogen atom are represented by R 2 .
  • Specific examples, preferred ranges and preferred examples of the alkyl group, alkoxy group, aromatic hydrocarbon group or halogen atom are the same.
  • R 3 , R 4 or R 5 and the specific examples thereof are the substituents described for R 2 within a range not impairing the effects of the present application. Or the specific example thereof, and may not be replaced.
  • R 3 and R 4 are preferably not a tertiary alkyl group, and when one is a tertiary alkyl group, the other is more preferably a hydrogen atom, a primary alkyl group or a secondary alkyl group.
  • R 3, R 4 is an aromatic hydrocarbon group, who only one of R 3 or R 4 is an aromatic hydrocarbon group is preferred.
  • R 5 is not a hydrogen atom That is, an alkyl group, an alkoxy group, an aromatic hydrocarbon group or a halogen atom is preferable, an alkyl group or an alkoxy group is more preferable, and a methyl group or a methoxy group is particularly preferable.
  • Phenol for example, Phenol, catechol, o-cresol, m-cresol, 2-ethylphenol, 2,5-xylenol, 2,6-xylenol, 2,3,6-trimethylphenol, 2-cyclohexylphenol, 2-cyclopentylphenol, 2- Phenylphenol, 2-n-propylphenol, 2-isopropylphenol, 3-isopropylphenol, 2,6-diisopropylphenol, 2-t-butylphenol, 2-t-butyl-6-methylphenol, 2-sec-butylphenol, Examples include 2-isobutylphenol, 2-chlorophenol, 2-methoxyphenol, 5-methyl-2-t-butylphenol, and 5-methyl-2-cyclohexylphenol.
  • step (A) is represented by the following general formula (5) by reacting 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one with a phenol in the presence of a catalyst. To obtain 1,1,3-trisphenols.
  • R 1 and n are each independently the same as that of general formula (3)
  • R 2 and m are the same as those of general formula (1) or general formula (2), and the substitution position is fixed).
  • the substitution position of the hydroxyphenyl group which is not performed is the para position or the ortho position of the hydroxy group.
  • R 1 and n are the same as those in the general formula (3)
  • R 2 and m are the same as those in the general formula (1) or the general formula (2).
  • R 2 is not substituted with a carbon atom of a cyclohexane ring substituted with a hydroxyphenyl group. When m is 2 or more, R 2 is not substituted with the same carbon atom.
  • a preferred substitution position of R 2 is the 4-position and / or 5-position of the cyclohexane-1,1,3-triyl group (1,1,3-cyclohexane ring).
  • the bonding position of the hydroxyphenyl group (one of the two hydroxyphenyl groups bonded to the carbon atom at the 1-position of the cyclohexane ring) whose bonding position is not fixed to the cyclohexane ring is a hydroxyl group substituted with a phenyl group Is ortho or para.
  • the bonding position is in the ortho position, at least one of the ortho positions of the hydroxyl group in the other hydroxyphenyl group is preferably unsubstituted.
  • 1,1,3-trisphenols all hydroxyphenyl groups preferably have a carbon atom in the para position relative to the hydroxyl group bonded to the cyclohexane ring, and the substitution position of R 1 is ortho to the hydroxyl group.
  • Preferred 1,1,3-trisphenols are represented by the following general formula (8) or general formula (9). (Wherein R 2 and m are the same as those in general formula (1) or general formula (2), and R 3 and R 4 are each independently the same as that in general formula (7).) Therefore, specific examples of 1,1,3-trisphenols include 1,1,3-tris (4-hydroxyphenyl) cyclohexane and 1,1,3-tris (3-methyl-4-hydroxyphenyl).
  • step (A) 1,1,3-trisphenols are reacted in one step by reacting 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one with phenols in the presence of a catalyst. It can be obtained by the reaction step.
  • the reaction for obtaining 1,1,3-trisphenol by the reaction of phenol with 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one is represented by the following reaction formula (1).
  • two or more types of phenols of the general formula (3) are reacted simultaneously or sequentially, three hydroxyphenyl group substituents, substitution positions and / or the same number of trisphenols and the same trisphenol are mixed. And generate.
  • the phenols represented by the general formula (3) and the 2-cyclohexen-1-ones represented by the general formula (1) or the 3-hydroxycycline represented by the general formula (2) are preferably in the range of 3 to 50 moles, more preferably 5 to 5 times the 2-cyclohexen-1-ones or 3-hydroxycyclohexane-1-ones. It is used in a range of 30 mole times, particularly preferably 8 to 20 mole times, but is not limited thereto.
  • the catalyst is preferably an acid catalyst.
  • the present invention is not limited to this.
  • the acid catalyst include gaseous, liquid and solid acid catalysts such as a proton acid catalyst and a Lewis acid catalyst.
  • gaseous, liquid and solid acid catalysts such as a proton acid catalyst and a Lewis acid catalyst.
  • the acid catalyst include gaseous, liquid and solid acid catalysts such as a proton acid catalyst and a Lewis acid catalyst.
  • the acid catalyst include gaseous, liquid and solid acid catalysts such as a proton acid catalyst and a Lewis acid catalyst.
  • hydrogen chloride gas inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid and sulfuric anhydride
  • organic acids such as P-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid and trichloroacetic acid
  • aluminum chloride chloride
  • metal halides such as iron, heteropolyacids such as phosphotungstic acid and silico
  • hydrochloric acid or hydrogen chloride gas is particularly preferred.
  • the amount of the acid catalyst used is not particularly limited. The preferred amount used varies depending on the catalyst, so it cannot be generally stated. For example, in the case of 35% hydrochloric acid, it is preferable to 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one. Is used in a range of 0.1 to 3 mol times, more preferably 0.2 to 1.0 mol times, particularly preferably 0.3 to 0.6 mol times.
  • a promoter can be used to accelerate the reaction.
  • the reaction proceeds without using a cocatalyst, it is preferable to use a cocatalyst from the viewpoint of reaction yield and reaction rate.
  • the cocatalyst is preferably a compound having a mercapto group or a polymer compound.
  • alkyl mercaptans such as methyl mercaptan, ethyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, mercaptoacetic acid, ⁇ -mercaptopropion, etc.
  • Examples thereof include mercaptan carboxylic acids such as acids, cation exchange resins having mercapto groups, and organic polymer siloxanes.
  • methyl mercaptan When methyl mercaptan is used, it may be used as an aqueous sodium salt solution.
  • the amount of the cocatalyst used is not particularly limited, and it cannot be generally stated because the appropriate amount varies depending on the reaction conditions and types.
  • alkyl mercaptan is used, the amount used is 2-cyclohexen-1-one. Is preferably 0.5 to 50 mol%, more preferably 2 to 30 mol%, and particularly preferably 4 to 20 mol% with respect to the group or 3-hydroxycyclohexan-1-one.
  • the reaction temperature is preferably 0 to 80 ° C., more preferably 10 to 60 ° C., particularly preferably 15 to 50 ° C. Under such reaction conditions, the reaction is preferably completed within about 80 hours after all the raw materials have been added to the reaction system.
  • a reaction solvent may or may not be used, but it is preferably used when the raw materials and the catalyst are not sufficiently mixed because the melting point of phenols is high.
  • the raw material phenols are liquid when they are reacted, they themselves become solvents, so other solvents may not necessarily be used.
  • the type and addition amount of the solvent are not particularly limited as long as the effects of the present application are not impaired.
  • preferable reaction solvents include water, methanol, ethanol, and 1-propanol.
  • reaction solvent is preferably used in a range of 0.1 to 20 moles per 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one.
  • the method for adding the reaction material is not particularly limited.
  • the raw material, the catalyst, and, if necessary, the cocatalyst and the reaction solvent may be charged all at once into the reaction vessel, and then heated to the reaction temperature in an inert gas atmosphere and the reaction may be performed with stirring.
  • the raw material ketone 2-cyclohexen-1-one or 3-hydroxycyclohexane-1 is charged in an inert gas atmosphere in a reaction vessel charged with the raw material phenols, an acid catalyst and, if necessary, a cocatalyst and a reaction solvent.
  • -A mixture of ones or their raw material ketone and phenol or solvent may be added successively at the reaction temperature. The latter method is preferable from the viewpoint of reaction yield.
  • a reaction vessel is charged with a predetermined amount of phenols, an acid catalyst and, if necessary, a co-catalyst and a reaction solvent, and heated to a predetermined reaction temperature while stirring under a nitrogen stream.
  • phenols phenols
  • an acid catalyst if necessary, a co-catalyst and a reaction solvent
  • a reaction temperature while stirring under a nitrogen stream.
  • 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one is sequentially added thereto.
  • 3-hydroxycyclohexane-1-one is used as a raw material ketone in the reaction, details of the reaction are unknown.
  • 3-hydroxycyclohexane-1-one is Since 2-cyclohexen-1-one is produced in the presence of an acid, 1,1,3-tris (hydroxyphenyl) cycloalkanes are produced via 2-cycloalkene-1-ones during the reaction. There seems to be a possibility.
  • the 1,1,3-trisphenols in the next step (B) are decomposed without separating the product 1,1,3-trisphenols from the obtained reaction completion liquid. It can also be used as a raw material for the step of obtaining bis (4-hydroxyphenyl) cyclohexenes represented by the following general formula (6) by reaction. However, it is preferable to remove 1,1,3-trisphenols with an appropriate degree of purity. In that case, after completion of the reaction, a known isolation or purification method may be applied as appropriate, and post-treatment such as neutralization and washing with water may be performed.
  • an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous ammonia solution is added to the reaction completion solution to neutralize the acid catalyst.
  • a solvent such as an aromatic hydrocarbon or aliphatic ketone that separates from water is added, and the oil layer obtained by separating and removing the aqueous layer is cooled, crystallized or precipitated, and then filtered.
  • crude crystals or solids of 1,1,3-trisphenols can be obtained.
  • the oil layer obtained by separating and removing the aqueous layer if necessary, after adding water again, stirring and washing with water, and then repeating the operation of separating and removing the aqueous layer one or more times, The obtained oil layer is cooled, crystallized or precipitated, and then filtered to obtain crude crystals or solids of trisphenols.
  • the oil layer obtained by separating and removing the aqueous layer described above was distilled to distill off the solvent and unreacted phenols, and then the remaining liquid was dissolved in an appropriate solvent to obtain a solution obtained.
  • the residue obtained by distillation may be cooled to obtain a crude product. it can.
  • some 1,1,3-trisphenols may be obtained as an adduct crystal (adduct crystal) with the solvent used or the raw material phenols.
  • crystallization, solid, or a crude product can be refine
  • a raw material for the next step (B) it is preferable to use 1,1,3-trisphenols obtained by crystallization or precipitation as described above and then filtration.
  • step (B) following the step (A) is represented by the following general formula (6) by decomposing the 1,1,3-trisphenols obtained in the step (A). To obtain bis (4-hydroxyphenyl) cyclohexenes.
  • step (D) 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one and phenol are reacted in the presence of a catalyst, and the reaction is represented by the following general formula (6).
  • bis (4-hydroxyphenyl) cyclohexene is obtained.
  • R 1 and n are each independently the same as that of general formula (3), R 2 and m are the same as those of general formula (1) or general formula (2), and
  • the bonding position of the 4-hydroxyphenyl group to which is not fixed is the 3-position or 5-position of the cyclohexene ring.
  • bis (4-hydroxyphenyl) cyclohexenes are specifically represented by 1,3-bis (4-hydroxyphenyl) cyclohexenes represented by the following general formula (10) or the following general formula (11). 1,5-bis (4-hydroxyphenyl) cyclohexenes.
  • each of R 1 and n is independently the same as that of general formula (3), and R 2 and m are the same as those of general formula (1) or general formula (2).
  • each of R 1 and n is independently the same as that of general formula (3), and R 2 and m are the same as those of general formula (1) or general formula (2).
  • the preferred substitution position of R 1 is the same as that of the general formula (3), and the preferred substitution position of R 2 is the 4-position, 5-position or 1-cyclohexene of the central 1-cyclohexene-1,3-diyl group. In the case of the 3-position and 4-position of the -1,5-diyl group and m is 2 or more, two R 2 are not substituted on the same carbon atom of the cyclohexene-diyl group.
  • Preferred 1,3- or 1,5-bis (4-hydroxyphenyl) cyclohexenes are represented by the following general formula (12) or general formula (13).
  • R 2 and m are the same as those in general formula (1) or general formula (2), and R 3 , R 4 and R 5 are each independently the same as that in general formula (7).
  • R 2 and m are the same as those in general formula (1) or general formula (2), and R 3 , R 4 and R 5 are each independently the same as that in general formula (7).
  • step (B) 1,1,3-trisphenols are decomposed to produce bis (4-hydroxyphenyl) cyclohexenes.
  • the reaction formula (2) is illustrated below.
  • the bis (4-hydroxyphenyl) cyclohexenes represented by the general formula (6) produced in this reaction are usually 1,3-bis (4-hydroxyphenyl) cyclohexenes represented by the general formula (10).
  • the decomposition reaction of the 1,1,3-trisphenols represented by the general formula (5) may be performed in the absence of a catalyst, but is preferably performed in the presence of an acid catalyst or a basic catalyst. Is called. More preferably, it is carried out in the presence of a basic catalyst.
  • the basic catalyst is not particularly limited, but examples thereof include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, and carbonates.
  • Alkali metal bicarbonates such as sodium hydrogen and potassium hydrogen carbonate, alkali metal phenoxides such as sodium phenoxide and potassium phenoxide, alkaline catalysts such as alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide and barium hydroxide Can be mentioned.
  • sodium hydroxide or potassium hydroxide is particularly preferably used.
  • the alkali catalyst is preferably 0.01 to 50 mol, more preferably 0.1 to 20 mol, relative to 100 mol of 1,1,3-trisphenol. Used in a range.
  • the use form of the alkali catalyst is not particularly limited, but is preferably used as an aqueous solution of 10 to 50% by weight from the viewpoint of easy preparation operation.
  • the decomposition reaction of the 1,1,3-trisphenols described above is because the 1,1,3-trisphenols as the starting material and the product bis (4-hydroxyphenyl) cyclohexenes have a high melting point or the reaction
  • the uniformity of the raw material and catalyst in the reaction vessel is impaired at the decomposition reaction temperature due to reasons such as high liquid viscosity, in order to improve it, and in order to prevent thermal polymerization of the produced target product.
  • a reaction solvent is not particularly limited as long as it is inert at the decomposition reaction temperature and does not distill from the reaction mixture.
  • Polyethylene glycols polypropylene glycols such as tripropylene glycol and tetrapropylene glycol, polyhydric alcohols such as glycerin, “Therm S” (manufactured by Nippon Steel Chemical Co., Ltd.) and “SK-OIL” (Manufactured by Soken Chemical Co., Ltd.) is used.
  • a solvent is preferably used in the range of 5 to 150 parts by weight, more preferably 20 to 100 parts by weight, with respect to 100 parts by weight of the 1,1,3-trisphenols used.
  • the decomposition reaction of 1,1,3-trisphenols is preferably carried out at a temperature in the range of 150 to 250 ° C., more preferably in the range of 160 to 200 ° C. This is because when the decomposition reaction temperature is too low, the reaction rate is too slow, while when the decomposition reaction temperature is too high, undesirable side reactions increase.
  • the reaction pressure for the decomposition reaction is not particularly limited, but is preferably a pressure range from normal pressure to reduced pressure since the pressure at which the reaction can be performed while distilling the phenols produced is preferable. The range is 101.32 kPa, more preferably 1 to 10 kPa.
  • the decomposition reaction is preferably performed in an inert atmosphere such as under a nitrogen stream.
  • 1,1,3-trisphenols are preferably subjected to a decomposition reaction for about 1 to 10 hours.
  • the end point of the decomposition reaction can be, for example, the point in time when the phenols produced by the decomposition reaction are no longer distilled.
  • the decomposition reaction of 1,1,3-trisphenols is carried out, for example, by charging a reaction vessel with a solvent such as 1,1,3-trisphenols, an alkali catalyst and tetraethylene glycol, and an inert atmosphere.
  • the reaction is carried out by distilling off the phenols produced by the decomposition reaction at a temperature of 160 to 200 ° C. and a pressure of 1 to 10 kPa for about 3 to 6 hours.
  • 1,1,3-trisphenols bis (4-hydroxyphenyl) cyclohexenes can be obtained in a reaction yield of about 90% under preferable conditions. it can.
  • an alkali catalyst is used for the decomposition reaction after completion of the decomposition reaction in step (B)
  • an alkali aqueous solution is neutralized by adding an aqueous solution of an acid such as acetic acid to the obtained reaction mixture, and the resulting hydrous oily oil
  • the mixture may be used as it is as a raw material for the next step (C) without purification such as crystallization and filtration. If necessary, the reaction product is separated and purified, and then used as a step. You may use for the raw material of (C). For example, water and an organic solvent that separates from water, such as methyl isobutyl ketone, and water are added to the water-containing oily mixture and stirred.
  • the crystallization solvent is preferably an aromatic hydrocarbon solvent such as toluene or xylene, an aliphatic saturated hydrocarbon solvent such as n-hexane or n-heptane, an aliphatic ketone solvent such as methyl isobutyl ketone, cyclohexane or cycloheptane. And alicyclic saturated hydrocarbon solvents such as these, or mixed solvents thereof.
  • step (B) bis (4-hydroxyphenyl) cyclohexene represented by the general formula (6) obtained by decomposing the 1,1,3-trisphenols represented by the general formula (5) are usually obtained as a mixture of isomers of the 1,3-substituent represented by the general formula (10) and the 1,5-substituent represented by the general formula (11).
  • the molar ratio of the resulting isomer mixture is not limited to a specific one depending on the raw material 1,1,3-trisphenols and reaction conditions, but for example, cyclohexen-1-one 2 If there is no substituent at the 6-position, the isomer molar ratio of the 1,3-substituted product to the 1,5-substituted product is usually in the range of about 1 to about 0.6 to 1.5.
  • step (C) since the obtained 1,3-substituted product represented by the general formula (10) and the 1,5-substituted product represented by the general formula (11) have asymmetric carbon atoms, There are optical isomers such as enantiomers, usually a mixture of optical isomers, both of which are used as effective raw materials in the step (C).
  • step (D) 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one and phenol are reacted in the presence of a catalyst, and the reaction is performed once without apparently passing through trisphenol.
  • step (D) 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one and phenol are reacted in the presence of a catalyst, and the reaction is performed once without apparently passing through trisphenol.
  • step (D) 2-cyclohexen-1-one or 3-hydroxycyclohexane-1-one and phenol are reacted in the presence of a catalyst, and the reaction is performed once without apparently passing through tris
  • the bis (4-hydroxyphenyl) cyclohexenes obtained are also represented by the general formula (10) or the general formula (11).
  • Bis (4-hydroxyphenyl) cyclohexenes in which R 5 is not a hydrogen atom, that is, an alkyl group, an alkoxy group, an aromatic hydrocarbon group or a halogen atom are preferred, and bis (4-hydroxyphenyl) cyclohexenes in which R 5 is an alkyl group or an alkoxy group.
  • Hydroxyphenyl) cyclohexenes are more preferable, and bis (4-hydroxyphenyl) cyclohexenes in which R 5 is a methyl group or a methoxy group are particularly preferable.
  • specific examples such as raw material molar ratio, reaction temperature, catalyst, catalyst usage, promoter, promoter usage, reaction solvent, reaction solvent usage, raw material charging method, etc.
  • the preferable range and preferable amount are the same as those described in the step (A).
  • finish of reaction, the isolation method of a compound, and the purification method may be a well-known method, and are the same as those demonstrated at the process (A).
  • the step (C) subsequent to the step (B) or the step (D) is the 1,3- or 1,5-bis (4) obtained in the step (B) or the step (D).
  • This is a step of dehydrogenating (4-hydroxyphenyl) cyclohexenes to obtain 4,4 ′′ -dihydroxy-m-terphenyls represented by the following general formula (4), which is an object of the production method of the present invention.
  • each of R 1 and n is independently the same as that of general formula (3), and R 2 and m are the same as those of general formula (1) or general formula (2).
  • preferred 4,4 ′′ -dihydroxy-m-terphenyls are represented by the following general formula (14).
  • R 3 and R 4 are not tertiary alkyl groups, and when one is a tertiary alkyl group, the other is a hydrogen atom, a primary alkyl group or a secondary alkyl group.
  • the substitution position of R 2 is preferably the 4-position or / and 5-position of the 1,3-phenylene group.
  • step (A), step (B), and step (C) are sequentially performed, 4,4 ′′ -dihydroxy-m-terphenyls in which R 5 is a hydrogen atom in general formula (14) are preferable.
  • step (D) and the step (C) are sequentially performed, 4,5 ′′ -dihydroxy-m-terphenyls in which R 5 is not a hydrogen atom in the general formula (14) are preferable, and R 5 is an alkyl group, More preferably, it is an alkoxy group, and R 5 is more preferably a methyl group or a methoxy group.
  • the 4,4 ′′ -dihydroxy-m-terphenyls obtained by the production method of the present invention include 2-cyclohexen-1-ones represented by the above general formula (1) or a general formula as the raw material.
  • 2-cyclohexane-1-one represented by (2) and the phenol represented by the general formula (3) specifically, for example, 4,4 "-dihydroxy-m-terphenyl, 3,3" -dimethyl-4,4 "-dihydroxy-m-terphenyl, 3,3" -diethyl-4,4 "-dihydroxy-m-terphenyl, 3,3 "-diisopropyl-4,4" -dihydroxy-m-terphenyl, 3,3 "-dimethoxy-4,4" -dihydroxy-m-terphenyl, 3,3 "-di-t-butyl-4 , 4 "-dihydroxy-m-terphenyl, 3,3" -di-sec-butyl-4,4 "--dihydroxy-m-
  • step (C) the bis (4-hydroxyphenyl) cyclohexene obtained in step (B) or step (D) is subjected to a dehydrogenation reaction.
  • a method for dehydrogenating the cyclohexene ring to form a benzene ring is not particularly limited, and a conventionally known reaction method can be appropriately used. However, a method of dehydrogenating this in the presence of a dehydrogenation catalyst is preferred. This is illustrated by reaction formula (4) below.
  • a conventionally known dehydrogenation catalyst can be used.
  • Raney nickel, reduced nickel, nickel supported catalyst such as nickel catalyst, Raney cobalt, reduced cobalt, cobalt supported catalyst such as cobalt supported catalyst, Raney copper and other copper catalyst, palladium oxide, palladium black, palladium catalyst such as palladium / carbon, Platinum catalysts such as platinum black, platinum / carbon, rhodium catalyst, chromium catalyst, copper chromium catalyst, etc. are used.
  • a platinum group catalyst such as palladium is particularly preferable, and a palladium catalyst is particularly preferably used.
  • Such a dehydrogenation catalyst is preferably used in the range of 0.1 to 20 parts by weight, more preferably 0.2 to 10 parts by weight with respect to 100 parts by weight of bis (4-hydroxyphenyl) cyclohexenes. It is done.
  • a hydrogen acceptor may or may not coexist.
  • 1,4-bis (4-hydroxyphenyl) cyclohexanes are by-produced when 4,4 ′′ -dihydroxy-m-terphenyls are produced.
  • a reaction using a dehydrogenation catalyst in the presence of a hydrogen acceptor is preferred.
  • a hydrogen acceptor is not particularly limited, but for example, styrenes such as ⁇ -methylstyrene, nitrobenzene, methyl isobutyl ketone, phenol and the like are preferably used.
  • the reaction temperature for the dehydrogenation reaction is preferably in the range of 100 to 250 ° C, more preferably in the range of 130 to 200 ° C.
  • the dehydrogenation reaction can be performed in the gas phase, it is preferably performed in a solution state from the viewpoint of operability, and in that case, it is preferable to use a reaction solvent.
  • a reaction solvent include aliphatic alcohol solvents such as ethylene glycol, 2-propanol and 2-butanol, aliphatic ketone solvents such as methyl isobutyl ketone, acetone and diisopropyl ketone, and aromatic carbonization such as toluene, xylene and ethylbenzene.
  • a hydrogen solvent etc. can be mentioned.
  • the reaction is preferably performed under normal pressure. Under such reaction conditions, the dehydrogenation reaction is preferably completed in about 3 to 10 hours.
  • the bis (4-hydroxyphenyl) cyclohexene obtained through the step (A) and then the step (B) or the step (D) is subjected to the dehydrogenation reaction of the step (C),
  • the catalyst is separated from the resulting reaction mixture according to a conventional method, and then subjected to 4, 4 "-dihydroxy-m-terphenyls which are the object of the present invention by a method such as crystallization filtration.
  • a crude product can be obtained.
  • 1,3-bis (3-methyl (2H, 4H-benzo [3,4-e] 1,3-oxazin-6-yl)) benzene or the like is obtained by reacting with methylamine and formaldehyde, These can be used as a raw material for a resin. Further, by reacting with epichlorohydrin, 4,4 "-di (glycidyloxy) -m-terphenyl and the like can be obtained, and an epoxy resin can be obtained using these as raw materials. Moreover, 4,4 "-dihydroxy-3,3", 5,5 "-tetrahydroxymethyl-m-terphenyl, etc. can be obtained by reacting with formaldehyde. Further, these compounds are reacted with methanol.
  • Example 1 [Synthesis of 4,4 "-dihydroxy-m-terphenyl] Step (A): (Synthesis of 1,1,3-tris (4-hydroxyphenyl) cyclohexane) 1412 g of phenol, 78.2 g of 35% hydrochloric acid, 15.2 g of dodecyl mercaptan, and 144 g of methanol were charged into a 3 liter four-necked flask, and while maintaining the liquid temperature at 30 to 32 ° C.
  • a thermometer a condenser and a stirring blade
  • a 1.3% aqueous solution of sodium hydroxide was added, and the temperature was raised to 170 ° C. with stirring while reducing the pressure to 10 kPa. went. After completion of the reaction, the reaction mixture was cooled to 100 ° C.
  • Example 2 [Synthesis of 4,4 "-dihydroxy-m-terphenyl] A four-necked flask containing 90 g of 1,1,3-tris (4-hydroxyphenyl) cyclohexane obtained in step (A) of Example 1, 45 g of tetraethylene glycol, 45 g of methanol, and 6.3 g of a 16% aqueous sodium hydroxide solution The liquid temperature was raised to 170 ° C. while reducing the pressure to 10 kPa with stirring, and the reaction was continued with stirring for 9 hours while distilling phenol produced at the same temperature.
  • the reaction mixture was cooled and then neutralized by adding acetic acid, and then water and methyl isobutyl ketone were added and stirred and washed with water [step (B)].
  • the concentration of the mixture of 1,3-bis (4-hydroxyphenyl) -1-cyclohexene and 1,5-bis (4-hydroxyphenyl) -1-cyclohexene in the oil layer should be 17%. It adjusted by concentration etc. 79.6 g of the solution, 14.8 g of ⁇ -methylstyrene, and 0.8 g of 5% palladium carbon were charged into an autoclave and stirred at 150 ° C. for 6 hours.
  • An adduct crystal of 1,1,3-tris (3-methyl-4-hydroxyphenyl) cyclohexane obtained in step (A) of Example 3 was placed in a four-necked flask equipped with a thermometer, a condenser and a stirring blade. 236.8 g, tetraethylene glycol 50.3 g, and 16% sodium hydroxide aqueous solution 12.5 g were charged. Time went. After completion of the reaction, the reaction mixture was cooled and neutralized by adding acetic acid.
  • Methyl isobutyl ketone and water were added and stirred, washed with water, and the aqueous layer was separated and removed.
  • Methyl isobutyl ketone was distilled off from the resulting oil layer to obtain 30.4 g of a distillation residue having a purity of 85.1% (high performance liquid chromatography method).
  • To 5 g of the residue 2.5 g of 1-octanol was dissolved, and 10 g of cyclohexane was added to crystallize and filter to obtain 3,3 "-dimethyl-4,4 having a purity of 96.3% (high performance liquid chromatography method).
  • 2.7 g of adduct crystal (cyclohexane adduct) of “-dihydroxy-m-terphenyl” was obtained.
  • the flask was charged and the temperature of the solution was raised to 41 ° C. under a nitrogen atmosphere, and then blown until the system was saturated with hydrogen chloride gas.
  • a thermometer was used to obtain 61.3 g of 1,1,3-tris (3-phenyl-4-hydroxyphenyl) cyclohexane obtained in step (A), 7.4 g of tetraethylene glycol, and 1.3 g of a 16% aqueous sodium hydroxide solution.
  • Methyl isobutyl ketone is distilled off from the obtained oil layer, and 1,3-bis (3-phenyl-4-hydroxyphenyl) -1-cyclohexene (compound E) and 1,5-bis (3-phenyl-4-hydroxy) are removed.
  • 37.8 g (purity 59.4%, high performance liquid chromatography method) of a mixture of phenyl) -1-cyclohexene (compound F) was obtained as a distillation residue.
  • a portion was separated and purified by liquid chromatography, and the obtained high-purity product was subjected to proton NMR analysis and molecular weight measurement to confirm that it was the desired product.
  • aqueous sodium hydroxide solution was added for neutralization.
  • Methyl isobutyl ketone was added thereto, the temperature was raised to 60 ° C., and the precipitated crystals were dissolved, and then the aqueous layer was separated and removed.
  • Water was added to the obtained oil layer and stirred, and then a water washing operation for separating and removing the aqueous layer by standing was performed twice.
  • the solvent was removed from the oil layer washed with water by concentration under reduced pressure to precipitate crystals, and after cooling, filtered to obtain crude crystals.
  • the crystal was mainly composed of a peak component having a slightly longer retention time among the same molecular weight peak components as those of the two detected objects.
  • Methyl isobutyl ketone is added to the obtained crude crystal to dissolve it, and the cooled crystal is separated by filtration and dried to obtain 17.7 g of white crystal having a purity of 98.7% (high performance liquid chromatography method). It was. As a result of analyzing the white crystals by NMR, it was 1,5-bis (2,5-dimethyl-4-hydroxyphenyl) -1-cyclohexene. Molecular weight: 323 (M + H) + (liquid chromatography mass spectrometry) Melting point: 247 ° C. (differential scanning calorimetry) 1 H-NMR (400 MHz) measurement (solvent: DMSO-d6): see Table 10
  • Example 6 Charge 19.6 g of phenol and 4.0 g of P-toluenesulfonic acid monohydrate to a 100 ml test tube, raise the liquid temperature to 50 ° C., and then intermittently add 2.1 g of 2-cyclohexen-1-one over 2 hours. After the addition, the mixture was reacted at 50 ° C. for 68 hours. Analysis of the reaction solution confirmed the formation of 1,1,3-tris (4-hydroxyphenyl) cyclohexane. Thereafter, the mixture was further stirred at 100 ° C. for 6 hours and at 150 ° C. for 5 hours. The reaction solution was analyzed by high performance liquid chromatography (calibration curve method). As a result, it was found that 4,4 ′′ -dihydroxy-m-terphenyl was 20% and 1,3-bis (4-hydroxyphenyl) cyclohexane was 46%. Was included in the rate.

Abstract

本発明によれば、2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類と、フェノール類を原料とする、4,4"-ジヒドロキシ-m-ターフェニル類の製造方法が提供される。

Description

4,4"-ジヒドロキシ-m-ターフェニル類の製造方法
 本発明は、4,4"-ジヒドロキシ-m-ターフェニル類の製造方法に関する。さらに詳しくは、本発明は、ポリエステル、ポリカーボネート、ポリウレタン等の合成樹脂原料、表示素子、半導体等のフォトレジスト原料等の用途に有用性が期待できる4,4"-ジヒドロキシ-m-ターフェニル類を、2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類を原料とし、工程(A)、工程(B)、工程(C)の3つの工程を順次経るか又は工程(D)、工程(C)を順次経て、4,4"-ジヒドロキシ-m-ターフェニル類を工業的に実施容易な方法で得ることのできる製造方法に関する。
 従来、4,4"-ジヒドロキシ-m-ターフェニル類の製造方法としては、例えば、1,3-シクロヘキサンジオンとフェノールより合成した1,1,3,3-テトラキス(4-ヒドロキシフェニル)-シクロヘキサンを分解脱水素反応させることにより、4,4"-ジヒドロキシ-m-ターフェニルを合成する方法が開示されている(特許文献1)。しかし、この方法では、原料テトラキスフェノールの収率が極めて低いか、又は、まったく合成できない。
 また、2-(4-ブロモフェノキシ)テトラヒドロ-2H-ピランと1,3-ジブロモベンゼンをグリニャール反応させて、次いで脱保護する方法(特許文献2)、4-メトキシフェニルボロン酸と1,3-ジヨードベンゼンを反応させて、次いで脱保護する方法(特許文献3)により、それぞれ4,4"-ジヒドロキシ-m-ターフェニルを合成する方法が開示されている。
 しかしながら、これらの方法によれば、有機金属化合物等の特殊で高価な原料を用いると共に、グリニヤール反応等を行うために、製造費用が非常に高く、工業的には実施し難いものである。
 また一方、トリスフェノール類からのジヒドロキシ-p-ターフェニル類の製造方法(特許文献4)も知られているが、不飽和ケトンからのトリスフェノール類の製造方法やジヒドロキシ-m-ターフェニル類の製造方法については何ら記載されていない。
特開平1-168632号公報 米国特許出願公開2006/0030683号明細書 国際公開第2010/131600号 特開2002-234856号公報
 本発明は、4,4"-ジヒドロキシ-m-ターフェニル類を工業的に実施容易な方法で得ることのできる新規な製造方法を提供することを課題とする。
 本発明者らは、上述の課題解決のために鋭意検討した結果、2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類とを出発原料とし、これらを反応させ(工程A)、得られた1,1,3-トリス(ヒドロキシフェニル)シクロヘキサン類(以下、場合により1,1,3-トリスフェノール類と称呼する。)を分解反応に付し(工程B)、次いで、得られたビス(4-ヒドロキシフェニル)シクロヘキセン類を脱水素反応に付す(工程C)、3つの反応工程を順次含むか、又は2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類とを出発原料にし、これらを反応させ(工程D)、次いで、得られたビス(4-ヒドロキシフェニル)シクロヘキセン類を脱水素反応に付す(工程C)、2つの反応工程を順次含むことにより、目的とする4,4"-ジヒドロキシ-m-ターフェニル類を工業的に実施容易な方法で得ることができることを見出し、本発明を完成した。
 即ち、本発明によると、下記一般式(1)で表される2-シクロヘキセン-1-オン類又は下記一般式(2)で表される3-ヒドロキシシクロヘキサン-1-オン類と下記一般式(3)で表されるフェノール類を原料とし、下記の工程(A)、工程(B)、工程(C)を順次行うか、又は下記工程(D)、工程(C)を順次行うことを特徴とする下記一般式(4)で表される4,4"-ジヒドロキシ-m-ターフェニル類の製造方法が提供される。
Figure JPOXMLDOC01-appb-I000006
(式中、R2は各々独立してアルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子を表し、mは各々独立して0又は1~4の整数を示し、mが1以上の場合、3位に置換せず、mが2以上の場合、R2は各々同一でも異なっていてもよく、同一の炭素原子に2つ置換しない。また、一般式(1)のR2及びmと一般式(2)R2及びmは、それぞれ同じでもよく異なっていてもよい。)
Figure JPOXMLDOC01-appb-I000007
(式中、R1は各々独立してアルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子又は水酸基を表し、nは0又は1~4の整数を示し、nが2以上の場合、R1は各々同一でも異なっていてもよい。)
工程(A):2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類を触媒の存在下に反応させて下記一般式(5)で表される1,1,3-トリスフェノール類を得る工程
工程(B):1,1,3-トリスフェノール類を分解反応させて下記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類を得る工程
工程(C):ビス(4-ヒドロキシフェニル)シクロヘキセン類を脱水素して4,4"-ジヒドロキシ-m-ターフェニル類を得る工程
工程(D):2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類を触媒の存在下に反応させて下記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類を得る工程
Figure JPOXMLDOC01-appb-I000008
(式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じである。)
Figure JPOXMLDOC01-appb-I000009
(式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じである。)
Figure JPOXMLDOC01-appb-I000010
(式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じであり、結合位置が固定されていない4-ヒドロキシフェニル基の結合位置はシクロヘキセン環の3位又は5位である。)
 本発明による4,4"-ジヒドロキシ-m-ターフェニル類の製造方法は、工業的に入手容易な原料を用い、有機金属化合物等の特殊で高価な原料が必要でなく、さらに、廃棄又は焼却した場合に環境汚染の懸念のある有機ハロゲン化合物を特に必要としない。さらに原料、反応条件又は/及び反応後の処理方法を選択することにより、工業的に実施容易な反応条件下において目的とする4,4"-ジヒドロキシ-m-ターフェニル類を高収率で得ることができる。
 以下、本発明の4,4"-ジヒドロキシ-m-ターフェニル類の製造方法について詳細に説明する。
 本発明の4,4"-ジヒドロキシ-m-ターフェニル類の製造方法によれば、出発原料として
Figure JPOXMLDOC01-appb-I000011
(式中、R2は各々独立してアルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子を表し、mは各々独立して0又は1~4の整数を示し、mが1以上の場合、R2は3位には置換せず、mが2以上の場合、R2は各々同一でも異なっていてもよく、同一の炭素原子に2つ置換しない。また、一般式(1)のR2及びmと一般式(2)のR2及びmは、それぞれ同じでもよく異なっていてもよい。)
で表される2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類が用いられる。
 上記一般式(1)で表される2-シクロヘキセン-1-オン類又は上記一般式(2)で表される3-ヒドロキシシクロヘキサン-1-オン類において、R2は各々独立してアルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子を表し、mは各々独立して0又は1~4の整数を示し、mが1以上の場合、R2は3位には置換せず、mが2以上の場合、R2は各々同一でも異なっていてもよく、同一の炭素原子に2つ置換しない。
 上記アルキル基としては、好ましくは炭素原子数1~12の直鎖状もしくは分岐鎖状のアルキル基、又は炭素原子数5~12のシクロアルキル基を挙げることができる。
 より好ましいアルキル基は炭素原子数1~8の直鎖状、分岐鎖状のアルキル基、炭素原子数5~6のシクロアルキル基であり、特に好ましいアルキル基は炭素原子数1~4の直鎖状、分岐鎖状のアルキル基である。これらの具体例としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基等を挙げることができる。また上記炭素原子数5~12のシクロアルキル基としては、例えばシクロヘキシル基、シクロペンチル基、シクロへプチル基等を挙げることができる。
 また、本発明の効果を妨げない範囲において、上記アルキル基にハロゲン原子、アルコキシ基、フェニル基、酸素原子(環状エーテル基)等が置換していてもよく、また、置換していなくてもよい。具体的には例えば、ベンジル基、メトキシエチル基、3-クロロプロピル基等が挙げられる。
 上記アルコキシ基としては、好ましくは炭素原子数1~12の直鎖状もしくは分岐鎖状のアルコキシ基、又は炭素原子数5~12のシクロアルコキシ基を挙げることができる。
 より好ましいアルコシキ基は炭素原子数1~8の直鎖状、分岐鎖状のアルコキシ基、炭素原子数5~6のシクロアルコキシ基であり、特に好ましいアルコキシ基は炭素原子数1~4の直鎖状、分岐鎖状のアルコキシ基であり、これらの具体例としてはメトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、t-ブトキシ基等を挙げることができる。また上記炭素原子数5~12のシクロアルコキシ基としては、例えばシクロペンチルオキシ基、シクロヘキシルオキシ基等を挙げることができる。また、本発明の効果を妨げない範囲において、上記アルコキシ基にハロゲン原子、アルコキシ基、フェニル基等が置換していてもよく、また置換していなくてもよい。具体的には例えば、2-フェニルエトキシ基、メトキシエトキシ基、2-クロロエトキシ基等が挙げられる。
 また、上記芳香族炭化水素基としては、好ましくは炭素原子数6~12の芳香族炭化水素基を挙げることができる。例えば、フェニル基、フェニルオキシ基、1-ナフチル基等を挙げることができる。
 また、本発明の効果を妨げない範囲において、上記芳香族炭化水素基にアルキル基、アルコキシ基、フェニル基、ハロゲン原子等が置換していてもよく、また置換していなくてもよい。具体的には4-メチルフェニル基、4-クロロフェニル基等が挙げられる。
 上記ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等を挙げることができる。
 また、上記mは各々独立して0又は1~4の整数を示し、好ましくは0又は1~3であり、より好ましくは0又は1~2であり、特に好ましくは0である。mが2以上の場合、R2は各々同一でも異なっていてもよい。
 また、一般式(1)で表される2-シクロヘキセン-1-オン類において、R2で表される置換基は、置換位置としては4位又は/及び5位が好ましく、また、2位には置換基がないことが好ましい。
 従って、上記2-シクロヘキセン-1-オン類としては、具体的には例えば、
2-シクロヘキセン-1-オン、6-メチル-2-シクロヘキセン-1-オン、6-フルオロ-2-シクロヘキセン-1-オン、2-メチル-2-シクロヘキセン-1-オン、2-メトキシ-2-シクロヘキセン-1-オン、2-クロロ-2-シクロヘキセン-1-オン、4-メチル-2-シクロヘキセン-1-オン、4-エチル-2-シクロヘキセン-1-オン、4-イソプロピル-2-シクロヘキセン-1-オン、4-t-ブチル-2-シクロヘキセン-1-オン、4-シクロヘキシル-2-シクロヘキセン-1-オン、4-フェニル-2-シクロヘキセン-1-オン、4-フェニルメチル-2-シクロヘキセン-1-オン、5-メチル-2-シクロヘキセン-1-オン、5-エチル-2-シクロヘキセン-1-オン、5-イソプロピル-2-シクロヘキセン-1-オン、5-t-ブチル-2-シクロヘキセン-1-オン、5-n-ブチル-2-シクロヘキセン-1-オン、5-フェニル-2-シクロヘキセン-1-オン、2,6-ジメチル-2-シクロヘキセン-1-オン、4,5-ジメチル-2-シクロヘキセン-1-オン、5-イソプロピル-2-メチル-2-シクロヘキセン-1-オン、2-イソプロピル-5-メチル-2-シクロヘキセン-1-オン、2,5,6-トリメチル-2-シクロヘキセン-1-オン等が挙げられる。
 このような2-シクロヘキセン-1-オン類は、例えば2-アルキリデンシクロアルカノンを酸触媒、白金触媒の存在下に異性化する方法(特公昭58-42175号公報等)、2-(1-ヒドロキシルアルキル)シクロアルカノンを酸触媒等の存在下に脱水異性化する方法(特開昭56-147740号公報等)、ジカルボニル化合物を環化縮合する方法(特開平10-130192号公報等)等の公知の方法で容易に得ることができる。
 また上記一般式(2)で表される3-ヒドロキシシクロヘキサン-1-オン類においてR2で表される置換基は、置換位置としては4位又は/及び5位が好ましく、また、2位には置換基がないことが好ましい。
 従って、上記3-ヒドロキシシクロヘキサン-1-オン類としては、具体的には例えば3-ヒドロキシシクロヘキサン-1-オン、6-メチル-3-ヒドロキシシクロヘキサン-1-オン、6-フルオロ-3-ヒドロキシシクロヘキサン-1-オン、2-メチル-3-ヒドロキシシクロヘキサン-1-オン、2-エチル-3-ヒドロキシシクロヘキサン-1-オン、2-メトキシ-3-ヒドロキシシクロヘキサン-1-オン、2-クロロ-3-ヒドロキシシクロヘキサン-1-オン、4-メチル-3-ヒドロキシシクロヘキサン-1-オン、4-エチル-3-ヒドロキシシクロヘキサン-1-オン、4-イソプロピル-3-ヒドロキシシクロヘキサン-1-オン、4-t-ブチル-3-ヒドロキシシクロヘキサン-1-オン、4-シクロヘキシル-3-ヒドロキシシクロヘキサン-1-オン、4-フェニル-3-ヒドロキシシクロヘキサン-1-オン、4-フェニルメチル-3-ヒドロキシシクロヘキサン-1-オン、5-メチル-3-ヒドロキシシクロヘキサン-1-オン、5-エチル-3-ヒドロキシシクロヘキサン-1-オン、5-イソプロピル-3-ヒドロキシシクロヘキサン-1-オン、5-t-ブチル-3-ヒドロキシシクロヘキサン-1-オン、5-n-ブチル-3-ヒドロキシシクロヘキサン-1-オン、5-フェニル-3-ヒドロキシシクロヘキサン-1-オン、2,6-ジメチル-3-ヒドロキシシクロヘキサン-1-オン、4,5-ジメチル-3-ヒドロキシシクロヘキサン-1-オン、5-イソプロピル-2-メチル-3-ヒドロキシシクロヘキサン-1-オン、2-イソプロピル-5-メチル-3-ヒドロキシシクロヘキサン-1-オン、2,5,6-トリメチル-3-ヒドロキシシクロヘキサン-1-オン等が挙げられる。
 このような3-ヒドロキシシクロヘキサン-1-オン類は、例えば多価ヒドロキシアルキルフェノールを水素化触媒等の存在下に環水素化する方法(特開平11-60534号公報等)等の公知の方法で容易に得ることができる。
 本発明の4,4"-ジヒドロキシ-m-ターフェニル類の製造方法においては、さらに出発原料として一般式(3)で表されるフェノール類が用いられる。
Figure JPOXMLDOC01-appb-I000012
(式中、R1は各々独立してアルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子又は水酸基を表し、nは0又は1~4の整数を示し、nが2以上の場合、R1は各々同一でも異なっていてもよい。)
 上記一般式(3)で表されるフェノール類において、R1は各々独立してアルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子又は水酸基を表し、nは0又は1~4の整数を示し、nが2以上の場合、R1は各々同一でも異なっていてもよい。
 上記アルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子の具体例、好ましい範囲、好ましい例としては、一般式(1)又は一般式(2)のR2のアルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子の具体例、好ましい範囲、好ましい例と同じである。また、R1であるアルキル基、アルコキシ基、芳香族炭化水素基に置換してもよい置換基やその具体例も本願効果を損なわない範囲においてR2で説明した置換基やその具体例と同じであり、置換基がなくてもよい。また、nは、好ましくは0又は1~3であり、より好ましくは0又は1~2であり、特に好ましくは0である。nが2以上の場合、R1は各々同一でも異なっていてもよい。
 また、R1で表される置換基は、水酸基のパラ位には置換しない。置換位置としては水酸基のオルソ位が好ましく、また、水酸基のメタ位の少なくとも一つ又は両方に置換基R1がないことがより好ましく、両方に置換基がないことが特に好ましい。
 また、水酸基のメタ位の置換基はメチル基、又はメトキシ基が好ましい。
 従って、好ましいフェノール類としては、下記一般式(7)で表される。
Figure JPOXMLDOC01-appb-I000013
(式中、R3、R5は水素原子、アルキル基、アルコキシ基、芳香族炭化水素基又はハロゲン原子を表し、R4は水素原子、アルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子又は水酸基を表す。)
 上記一般式(7)において、R3、R5は水素原子、アルキル基、アルコキシ
基、芳香族炭化水素基又はハロゲン原子を表し、R4は水素原子、アルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子又は水酸基を表し、R3、R4、R5がアルキル基、アルコキシ基、芳香族炭化水素基又はハロゲン原子である場合の具体例、好ましい範囲、好ましい例は、R2で説明したアルキル基、アルコキシ基、芳香族炭化水素基又はハロゲン原子の具体例、好ましい範囲、好ましい例と同じである。また、R3、R4又はR5であるアルキル基、アルコキシ基、芳香族炭化水素基に置換してもよい置換基やその具体例も本願効果を損なわない範囲においてR2で説明した置換基やその具体例と同じであり、置換しなくてもよい。
 また、R3、R4は共に3級アルキル基でないことが好ましく、一方が3級アルキル基の場合もう一方は水素原子、1級アルキル基又は2級アルキル基であることがより好ましい。
 また、R3、R4が芳香族炭化水素基である場合、R3又はR4のどちらか一方のみが芳香族炭化水素基である方が好ましい。
 また、収率の観点から工程(A)の原料とする場合には、R5が水素原子であることが好まししく、工程(D)の原料とする場合には、R5は水素原子でないこと、即ち、アルキル基、アルコキシ基、芳香族炭化水素基又はハロゲン原子であることが好ましく、アルキル基又はアルコキシ基であることがより好ましく、メチル基、メトキシ基であることが特に好ましい。
 従って、フェノール類としては、具体的には例えば、
フェノール、カテコール、o-クレゾール、m-クレゾール、2-エチルフェノール、2,5-キシレノール、2,6-キシレノール、2,3,6-トリメチルフェノール、2-シクロヘキシルフェノール、2-シクロペンチルフェノール、2-フェニルフェノール、2-n-プロピルフェノール、2-イソプロピルフェノール、3-イソプロピルフェノール、2,6-ジイソプロピルフェノール、2-t-ブチルフェノール、2-t-ブチル-6-メチルフェノール、2-sec-ブチルフェノール、2-イソブチルフェノール、2-クロロフェノール、2-メトキシフェノール、5-メチル-2-t-ブチルフェノール、5-メチル-2-シクロへキシルフェノール等が挙げられる。
 本発明の4,4"-ジヒドロキシ-m-ターフェニル類の製造方法においては、上記一般式(1)で表される2-シクロヘキセン-1-オン類又は上記一般式(2)で表される3-ヒドロキシシクロヘキサン-1-オン類と上記一般式(3)で表されるフェノール類を出発原料とし、工程(A):2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類を触媒の存在下に反応させて下記一般式(5)で表される1,1,3-トリスフェノール類を得る工程、工程(B):1,1,3-トリスフェノール類を分解反応させて下記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類を得る工程、工程(C):ビス(4-ヒドロキシフェニル)シクロヘキセン類を脱水素して4,4"-ジヒドロキシ-m-ターフェニル類を得る工程を順次行うこと、又は、工程(D):2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類を触媒の存在下に反応させて前記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類を得る工程と上記工程(C)を順次に行うことにより目的物である4,4"-ジヒドロキシ-m-ターフェニル類を得ることができる。
 本発明の製造方法において、工程(A)は2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類を触媒の存在下に反応させて下記一般式(5)で表される1,1,3-トリスフェノール類を得る工程である。
Figure JPOXMLDOC01-appb-I000014
(式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じであり、置換位置が固定されていないヒドロキシフェニル基の置換位置はヒドロキシ基のパラ位又はオルソ位である。)
 上記一般式(5)において、R1、nは一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じである。また、R2はヒドロキシフェニル基の置換したシクロヘキサン環の炭素原子には置換せず、mが2以上の場合、R2は同一の炭素原子に置換しない。R2の好ましい置換位置は、シクロヘキサン-1,1,3-トリイル基(1,1,3-シクロヘキサン環)の4位又は/及び5位である。
 また、式中、結合位置が固定されていないヒドロキシフェニル基(シクロヘキサン環の1位の炭素原子と結合する2つのヒドロキシフェニル基の一方)のシクロヘキサン環への結合位置は、フェニル基に置換した水酸基に対してオルソ位又はパラ位である。
 結合位置がオルソ位の場合は、他のヒドロキシフェニル基において水酸基のオルソ位の少なくともひとつが無置換であることが好ましい。
 また、1,1,3-トリスフェノール類として、全てのヒドロキシフェニル基はその水酸基に対するパラ位の炭素原子がシクロヘキサン環に結合することが好ましく、R1の置換位置は水酸基に対してオルソ位であることが好ましい。
 好ましい1,1,3-トリスフェノール類としては、下記一般式(8)又は一般式(9)で表される。
Figure JPOXMLDOC01-appb-I000015
(式中、R2、mは一般式(1)又は一般式(2)のそれと同じであり、R3及びR4は各々独立して一般式(7)のそれと同じである。)
 従って、1,1,3-トリスフェノール類としては具体的には例えば
1,1,3-トリス(4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-エチル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-イソプロピル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-n-プロピル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-tert-ブチル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-sec-ブチル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-クロロ-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3,5-ジイソプロピル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-フェニル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3,4-ジヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(3-イソプロピル-5-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-6-メチルシクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-2-メチルシクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-2-メトキシシクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-4-フェニルシクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-4-シクロヘキシルシクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-5-メチルシクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-5-t-ブチルシクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-5-フェニルシクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-2-メチル-5-イソプロピルシクロヘキサン、1,1,3-トリス(4-ヒドロキシフェニル)-2,5,6-トリメチルシクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)-1-(2-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(3-メチル-4-ヒドロキシフェニル)-1-(3-メチル-2-ヒドロキシフェニル)シクロヘキサン等が挙げられる。
 工程(A)においては、2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類を触媒の存在下に反応させることにより1,1,3-トリスフェノール類を一段階の反応工程で得ることができる。
 例えば、フェノールと2-シクロヘキセン-1-オン又は3-ヒドロキシシクロヘキサン-1-オンとの反応により1,1,3-トリスフェノールを得る反応は下記の反応式(1)で示される。
Figure JPOXMLDOC01-appb-I000016
 一般式(3)のフェノール類を2種類以上同時に又は順次反応させた場合には、3つのヒドロキシフェニル基の置換基、置換位置及び/又は置換数が同一でないトリスフェノール及び同一のトリスフェノールが混在して生成する。
 本発明の製造方法において、一般式(3)で表されるフェノール類と一般式(1)で表される2-シクロヘキセン-1-オン類又は一般式(2)で表される3-ヒドロキシシクヘキサン-1-オン類との反応に際し、フェノール類は2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類に対し、好ましくは3~50モル倍の範囲、より好ましくは5~30モル倍、特に好ましくは8~20モル倍の範囲で用いられるが、これに限定されるものではない。
 本発明の製造方法において、上記触媒としては、酸触媒が好ましい。しかしこれに限定されるものではない。
 酸触媒としては例えばプロトン酸触媒、ルイス酸触媒等の気体状、液体状及び固体状酸触媒が挙げられる。
 具体的には例えば、塩化水素ガス、塩酸、硫酸、リン酸、無水硫酸等の無機酸、P-トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸又はトリクロロ酢酸等の有機酸、塩化アルミウム、塩化鉄等のハロゲン化金属類又はリンタングステン酸もしくはケイタングステン酸等のヘテロポリ酸又は陽イオン交換樹脂等の固体酸等が挙げられる。
 前記触媒のうち、特に好ましいのは塩酸又は塩化水素ガスである。
 酸触媒の使用量は、特に限定されるものではない。好ましい使用量は触媒により適量が異なるので一概には言えないが、例えば35%塩酸の場合、2-シクロへキセン-1-オン類又は3-ヒドロキシシクロへキサン-1-オン類に対し、好ましくは0.1~3モル倍、より好ましくは0.2~1.0モル倍、特に好ましくは0.3~0.6モル倍の範囲で用いられる。
 さらに本発明の製造方法においては、反応を促進するために助触媒を用いることができる。助触媒は使用しなくても反応は進行するものの、反応収率及び反応速度の観点から、助触媒を使用する方が好ましい。
 助触媒としては、メルカプト基を有する化合物乃至高分子化合物が好ましく、具体的には例えばメチルメルカプタン、エチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン等のアルキルメルカプタン類やメルカプト酢酸、β-メルカプトプロピオン酸等のメルカプタンカルボン酸、メルカプト基を有する陽イオン交換樹脂又は有機高分子シロキサン等が挙げられる。
 なお、メチルメルカプタンを使用する場合は、ナトリウム塩水溶液として使用してもよい。助触媒の使用量は、特に限定されるものではなく、反応条件や種類により適量が異なるので一概には言えないが、例えばアルキルメルカプタンを用いる場合、使用量は2-シクロへキセン-1-オン類又は3-ヒドロキシシクロへキサン-1-オン類に対し、好ましくは0.5~50モル%、より好ましくは2~30モル%、特に好ましくは4~20モル%の範囲である。
 反応温度は、好ましくは、0~80℃、より好ましくは10~60℃、特に好ましくは15~50℃の範囲で行われる。
 このような反応条件においては、反応は、原料を全て反応系内に添加した後、好ましくは80時間程度以内で完結する。
 反応に際し、反応溶媒は用いてもよく、また用いなくてもよいが、フェノール類の融点が高い等の理由で原料や触媒が十分に混合しない場合には、用いた方が好ましい。
 例えば、原料フェノール類が、反応させる際に液状であればそれ自体溶媒となるので、必ずしも他に溶媒を用いなくてもよい。
 反応溶媒を用いる場合、本願効果を阻害しない範囲であれば、溶媒の種類及び添加量に特に限定はないが、好ましい反応溶媒としては、具体的には例えば、水、メタノール、エタノール、1-プロパノール又は2-プロパノール等の低級脂肪族アルコール類、トルエン、キシレン等の芳香族炭化水素類、テトラヒドロフラン、ジオキソラン等のエーテル類、ヘキサン、ヘプタン、シクロヘキサン等の飽和脂肪族炭化水素類、又はこれらの混合溶剤が挙げられる。
 反応溶媒は、2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類に対し、好ましくは0.1~20モル倍の範囲で用いられる。
 反応に際し、反応材料の添加方法については、特に限定はない。例えば、原料、触媒、及び必要に応じて、助触媒や反応溶媒を一括して反応容器に仕込み、その後、不活性ガス雰囲気において反応温度まで昇温し、撹拌下に反応を行ってもよい。或いはまた、原料フェノール類、酸触媒及び必要に応じて、助触媒、反応溶媒を仕込んだ反応容器に、不活性ガス雰囲気において原料ケトンの2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類或いはそれらの原料ケトンとフェノール類や溶媒との混合液を反応温度下において逐次添加してもよい。反応収率の観点からは後者の方法が好ましい。
 好ましい態様によれば、例えば、反応容器に所定量のフェノール類、酸触媒及び必要に応じて、助触媒、反応溶媒を仕込み、窒素気流下に撹拌しながら、所定の反応温度まで昇温した後、そこに2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類を逐次添加していく方法が挙げられる。
 本発明の製造方法において、反応に際し、原料ケトン類として、3-ヒドロキシシクロヘキサン-1-オン類を用いた場合、その反応の詳細は不明であるが、例えば3-ヒドロキシシクロヘキサン-1-オンは、酸存在下で2-シクロヘキセン-1-オンを生成するので、反応中、2-シクロアルケン-1-オン類を経由して1,1,3-トリス(ヒドロキシフェニル)シクロアルカン類が生成している可能性もあると思われる。
 反応終了後、得られた反応終了液から生成物の1,1,3-トリスフェノール類を分離せずに反応混合物のまま、次工程(B)の1,1,3-トリスフェノール類を分解反応させて下記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類を得る工程の原料として用いることもできる。
 しかしながら1,1,3-トリスフェノール類を適宜の程度の純度で取り出すことが好ましい。その場合、反応終了後、公知の単離乃至精製方法を適宜適用し、中和、水洗等の後処理を行ってもよい。
 例えば、反応終了液に水酸化ナトリウム水溶液、アンモニア水溶液等のアルカリ水溶液を加えて、酸触媒を中和する。
 その後、必要に応じて水と分離する芳香族炭化水素や脂肪族ケトン等の溶媒を加え、水層を分離除去して得られた油層を、冷却して晶析又は沈殿させた後に、濾過することにより1,1,3-トリスフェノール類の粗製結晶、又は固体を得ることができる。
 また、前記水層を分離除去して得られた油層は、必要に応じて、再度、水を加え撹拌して水洗した後、水層を分離除去する操作を1回乃至複数回繰り返した後、得られた油層を冷却して晶析又は沈殿させた後に、濾過することによりトリスフェノール類の粗製結晶、又は固体を得ることもできる。また、前記した水層を分離除去して得られた油層は、これを蒸留して溶媒と未反応フェノール類を留去した後、その残液を適宜の溶媒に溶解させて、得られた溶液を冷却して晶析又は沈殿させた後、濾過してもよく、また、トリスフェノール類の結晶化が困難な場合には、蒸留して得られた残渣を冷却して粗製物として得ることもできる。上記晶析工程においては、1,1,3-トリスフェノール類によっては使用する溶媒や原料フェノール類との付加物結晶(アダクト結晶)として得られる場合もある。また得られた結晶、固体又は粗製物は必要に応じて晶析等の公知の精製方法を用いて高純度化し、これを次工程の原料に使用することができる。
 次工程(B)の原料としては、このように晶析又は沈殿させた後、濾別して得られた1,1,3-トリスフェノール類を用いるのが好ましい。
 本発明の製造方法において、前記工程(A)に続く工程(B)は、工程(A)において得られた1,1,3-トリスフェノール類を分解反応させて下記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類を得る工程である。また工程(D)は、2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類を触媒の存在下に反応させて反応1回で下記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類を得る工程である。
Figure JPOXMLDOC01-appb-I000017
(式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じであり、また、結合位置が固定されていない4-ヒドロキシフェニル基の結合位置はシクロヘキセン環の3位又は5位である。)
 従って、ビス(4-ヒドロキシフェニル)シクロヘキセン類は具体的には下記一般式(10)で表される1,3-ビス(4-ヒドロキシフェニル)シクロヘキセン類又は下記一般式(11)で表される1,5-ビス(4-ヒドロキシフェニル)シクロヘキセン類である。
Figure JPOXMLDOC01-appb-I000018
(式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じである。)
Figure JPOXMLDOC01-appb-I000019
(式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じである。)
 また、R1の好ましい置換位置は一般式(3)のそれと同じであり、R2の好ましい置換位置は、中心の1-シクロヘキセン-1,3-ジイル基の4位、5位又は1-シクロヘキセン-1,5-ジイル基の3位、4位であり、mが2以上の場合、シクロヘキセン-ジイル基の同じ炭素原子にR2は2つ置換しない。
 好ましい1,3-又は1,5-ビス(4-ヒドロキシフェニル)シクロヘキセン類としては、下記一般式(12)又は一般式(13)で表される。
Figure JPOXMLDOC01-appb-I000020
(式中、R2、mは一般式(1)又は一般式(2)のそれと同じであり、R3、R4及びR5は各々独立して一般式(7)のそれと同じである。)
Figure JPOXMLDOC01-appb-I000021
(式中、R2、mは一般式(1)又は一般式(2)のそれと同じであり、R3、R4及びR5は各々独立して一般式(7)のそれと同じである。)
 従って、1,3-ビス(4-ヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(4-ヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(3-メチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(3-メチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(3-t-ブチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(3-t-ブチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(2,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(2,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(2-メチル-5-t-ブチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(2-メチル-5-t-ブチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(2-メチル-5-シクロへキシル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(2-メチル-5-シクロへキシル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(2,3,5-トリメチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(2,3,5-トリメチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(3,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(3,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(3-フェニル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(3-フェニル-4-ヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(3,4-ジヒドロキシフェニル)-1-シクロヘキセン、1,5-ビス(3,4-ジヒドロキシフェニル)-1-シクロヘキセン、1,3-ビス(4-ヒドロキシフェニル)-5-メチル-1-シクロヘキセン、1,5-ビス(4-ヒドロキシフェニル)-3-メチル-1-シクロヘキセン、1,3-ビス(4-ヒドロキシフェニル)-4-メチル-1-シクロヘキセン、1,5-ビス(4-ヒドロキシフェニル)-4-メチル-1-シクロヘキセン、1,3-ビス(4-ヒドロキシフェニル)-2-メチル-1-シクロヘキセン、1,5-ビス(4-ヒドロキシフェニル)-6-メチル-1-シクロヘキセン等が挙げられる。
 工程(B)においては、1,1,3-トリスフェノール類を分解反応させて、ビス(4-ヒドロキシフェニル)シクロヘキセン類を生成させる。
 下記に反応式(2)で例示する。この反応では生成する前記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類は通常、上記一般式(10)で表される1,3-ビス(4-ヒドロキシフェニル)シクロヘキセン類及び一般式(11)で表される1,5-ビス(4-ヒドロキシフェニル)シクロヘキセン類の異性体混合物として得られる。
Figure JPOXMLDOC01-appb-I000022
 前記一般式(5)で表される1,1,3-トリスフェノール類の分解反応は、触媒の不存在下に行ってもよいが、好ましくは、酸触媒又は塩基性触媒の存在下に行われる。より好ましくは塩基性触媒の存在下に行われる。塩基性触媒としては、特に、限定されるものではないが、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩、ナトリウムフェノキシド、カリウムフェノキシド等のアルカリ金属フェノキシド、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物等のアルカリ触媒を挙げることができる。これらのなかでは、特に、水酸化ナトリウム又は水酸化カリウムが好ましく用いられる。
 このように、アルカリ触媒を用いる場合は、アルカリ触媒は、1,1,3-トリスフェノール100モルに対して、好ましくは、0.01~50モル、より好ましくは、0.1~20モルの範囲で用いられる。アルカリ触媒の使用形態は、特に制限はないが、仕込み操作が容易である点から、好ましくは、10~50重量%の水溶液として用いられる。
 上記1,1,3-トリスフェノール類の分解反応は、上記出発原料である1,1,3-トリスフェノール類や生成物であるビス(4-ヒドロキシフェニル)シクロヘキセン類の融点が高い、或いは反応液粘度が高い等の理由により、分解反応温度において反応容器内の原料や触媒の均一性が損なわれる場合、その改善を図るため、さらには、生成した目的物の熱重合を防止するために、好ましくは、反応溶媒の存在下に行われる。
 反応溶媒としては、分解反応温度において不活性であり、しかも、反応混合物から留出しない溶媒であれば、特に限定されるものではないが、例えば、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール等のポリエチレングリコール類、トリプロピレングリコール、テトラプロピレングリコール等のポリプロピレングリコール類、グリセリン等の多価アルコール類、市販の有機熱媒体である「サームエス」(新日鉄化学(株)製)や「SK-OIL」(綜研化学(株)製)が用いられる。
 このような溶媒は、用いる1,1,3-トリスフェノール類100重量部に対して、好ましくは、5~150重量部、より好ましくは、20~100重量部の範囲で用いられる。
 1,1,3-トリスフェノール類の分解反応は、好ましくは、150~250℃の範囲、より好ましくは、160~200℃の範囲の温度で行われる。分解反応温度が低すぎるときは、反応速度が遅すぎ、他方、分解反応温度が高すぎるときは、望ましくない副反応が多くなるからである。また、分解反応の反応圧力は、特に、限定されるものではないが、生成するフェノール類を留出させながら反応できる圧力が好ましいため常圧乃至減圧下の範囲が好ましく、例えば、0.13~101.32kPaの範囲、より好ましくは、1~10kPaの範囲である。また、分解反応は、好ましくは窒素気流下等の不活性雰囲気中において行われる。
 このような反応条件において、1,1,3-トリスフェノール類は、好ましくは1~10時間程度の分解反応に供される。分解反応は、例えば、分解反応によって生成するフェノール類の留出がなくなった時点をその終点とすることができる。
 好ましい態様によれば、1,1,3-トリスフェノール類の分解反応は、例えば、反応容器に1,1,3-トリスフェノール類とアルカリ触媒とテトラエチレングリコール等の溶媒を仕込み、不活性雰囲気中、温度160~200℃、圧力1~10kPaで3~6時間程度、分解反応によって生成したフェノール類を留去しながら、撹拌することによって行われる。
 このようにして、1,1,3-トリスフェノール類を分解反応させることによって、ビス(4-ヒドロキシフェニル)シクロヘキセン類を、好ましい条件であれば、90%程度の反応収率にて得ることができる。
 工程(B)の分解反応の終了後、分解反応にアルカリ触媒を用いた場合には、得られた反応混合物に酢酸等の酸の水溶液を加えてアルカリを中和し、得られた含水油状の混合物を晶析、濾過等の精製を施すことなく、そのまま、次の工程(C)の原料に用いてもよく、また、必要に応じて、反応生成物を分離、精製した後、これを工程(C)の原料に使用してもよい。
 例えば、上記含水油状の混合物にメチルイソブチルケトン等の水と分離する有機溶媒と水を加え撹拌し、上記中和によって生成した塩と分解反応に用いた溶媒(例えば、テトラエチレングリコール)とを水層に抽出して水層と共に分離除去し、得られた油層を必要に応じて1回乃至複数回水洗する。その後、得られた油層から上記有機溶媒(例えば、メチルイソブチルケトン)や分解生成したフェノール類等の低沸点物を蒸留等にて留去する。この後、このようにして得られた蒸留残渣を次工程(C)の脱水素反応の原料に用いてもよく、さらに晶析溶媒を加えて、晶析させ、精製した精製品としてから、次工程(C)の脱水素反応の原料に使用してもよい。前記晶析溶媒としては好ましくは例えばトルエン、キシレン等の芳香族炭化水素溶媒、n-ヘキサン、n-ヘプタン等の脂肪族飽和炭化水素溶媒、メチルイソブチルケトン等の脂肪族ケトン溶媒、シクロヘキサン、シクロヘプタン等の脂環式飽和炭化水素溶媒、又はこれらの混合溶媒等が挙げられる。
 工程(B)において、前記一般式(5)で表される1,1,3-トリスフェノール類を分解反応させて得られる前記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類は通常、前記一般式(10)で表される1,3-置換体及び一般式(11)で表される1,5-置換体の異性体混合物として得られる。
 得られる異性体混合物のモル比としては、原料の1,1,3-トリスフェノール類や反応条件等によりその比率は特定のものに限定されるものではないが、例えばシクロヘキセン-1-オンの2位や6位に置換基なければ、通常、1,3-置換体と1,5-置換体の異性体モル比は1前後乃至0.6~1.5程度の範囲で得られる。
 また、得られた前記一般式(10)で表される1,3-置換体や一般式(11)で表される1,5-置換体は不斉炭素原子を有しているので、それぞれに鏡像異性体等の光学異性体が存在し、通常光学異性体の混合物であり、どちらも工程(C)の有効な原料として用いられる。
 工程(D)においては、2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類とを触媒の存在下に反応させて見かけ上トリスフェノールを経由せずに反応1回で下記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類を得る工程である。
 下記に反応式(3)で例示する。
Figure JPOXMLDOC01-appb-I000023
 収率の観点から前記一般式(7)においてR5が水素原子でないフェノール類が好ましく、従って、得られるビス(4-ヒドロキシフェニル)シクロヘキセン類についても一般式(10)又は一般式(11)においてR5が水素原子でない、即ちアルキル基、アルコキシ基、芳香族炭化水素基又はハロゲン原子であるビス(4-ヒドロキシフェニル)シクロヘキセン類が好ましく、R5がアルキル基又はアルコキシ基であるビス(4-ヒドロキシフェニル)シクロヘキセン類がより好ましく、R5がメチル基、メトキシ基であるビス(4-ヒドロキシフェニル)シクロヘキセン類が特に好ましい。
 工程(D)の反応において、原料のモル比、反応温度、触媒、触媒の使用量、助触媒、助触媒の使用量、反応溶媒、反応溶媒の使用量、原料の仕込み方法等の具体例、好ましい範囲や好ましい量については、工程(A)で説明したそれらと同じである。
 また、反応終了後の反応液の処理方法、化合物の単離方法及び精製方法も公知の方法でよく、工程(A)で説明したそれらと同じである。
 本発明の製造方法において、前記工程(B)又は工程(D)に続く工程(C)は、工程(B)又は工程(D)において得られた1,3-又は1,5-ビス(4-ヒドロキシフェニル)シクロヘキセン類を脱水素し本発明の製造方法の目的物である下記一般式(4)で表される4,4"-ジヒドロキシ-m-ターフェニル類を得る工程である。
Figure JPOXMLDOC01-appb-I000024
(式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じである。)
 また、好ましい4,4”-ジヒドロキシ-m-ターフェニル類は下記一般式(14)で表される。
Figure JPOXMLDOC01-appb-I000025
(式中、R2、mは一般式(1)又は一般式(2)のそれと同じであり、R3、R4及びR5は各々独立して一般式(7)のそれと同じである。)
 一般式(14)においてR3とR4は共に3級アルキル基でないことが好ましく、一方が3級アルキル基の場合はもう一方は水素原子、1級アルキル基又は2級アルキル基であることが好ましく、R2の置換位置は1,3-フェニレン基の4位又は/及び5位が好ましい。
 また、工程(A)、工程(B)、工程(C)を順次経た場合は、一般式(14)においてR5が水素原子である4,4”-ジヒドロキシ-m-ターフェニル類が好ましい。一方、工程(D)、工程(C)を順次経た場合は、一般式(14)においてR5が水素原子でない4,4”-ジヒドロキシ-m-ターフェニル類が好ましく、R5がアルキル基、アルコキシ基であることがより好ましく、R5がメチル基、メトキシ基であることがさらに好ましい。
 従って、本発明の製造方法で得られる4,4"-ジヒドロキシ-m-ターフェニル類としては、その原料である前記一般式(1)で表される2-シクロヘキセン-1-オン類又は一般式(2)で表される3-ヒドロキシシクロヘキサン-1-オン類と前記一般式(3)で表されるにフェノール類に対応して、具体的には例えば、
4,4"-ジヒドロキシ-m-ターフェニル、3,3"-ジメチル-4,4"-ジヒドロキシ-m-ターフェニル、3,3"-ジエチル-4,4"-ジヒドロキシ-m-ターフェニル、3,3"-ジイソプロピル-4,4"-ジヒドロキシ-m-ターフェニル、3,3"-ジメトキシ-4,4"-ジヒドロキシ-m-ターフェニル、3,3"-ジ-t-ブチル-4,4"-ジヒドロキシ-m-ターフェニル、3,3"-ジ-sec-ブチル-4,4"-ジヒドロキシ-m-ターフェニル、3,3"-ジクロロ-4,4"-ジヒドロキシ-m-ターフェニル、3,3",5,5"-テトラメチル-4,4"-ジヒドロキシ-m-ターフェニル、3,3"-ジ-t-ブチル-5,5"-ジメチル-4,4"-ジヒドロキシ-m-ターフェニル、3,3",5,5"-テトライソプロピル-4,4"-ジヒドロキシ-m-ターフェニル、3,3"-ジイソプロピル-5,5"-ジメチル-4,4"-ジヒドロキシ-m-ターフェニル、3,3",4,4"-テトラヒドロキシ-m-ターフェニル、3,3"-ジシクロヘキシル-4,4"-ジヒドロキシ-m-ターフェニル、1,3-ビス(4-ヒドロキシフェニル)-2-メチルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-2-メトキシベンゼン、1,3-ビス(4-ヒドロキシフェニル)-2-フェニルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-4-メチルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-4-フェニルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-4-シクロヘキシルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-5-メチルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-5-t-ブチルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-5-フェニルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-2-メチル-5-イソプロピルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-2,5,6-トリメチルベンゼン、2,2",3,3",5,5"-ヘキサメチル-4,4"-ジヒドロキシ-m-ターフェニル、3,3”-ジフェニル-4,4”-ジヒドロキシ-m-ターフェニル、2,2”,5,5”-テトラメチル-4,4”-ジヒドロキシ-m-ターフェニル、2,2”-ジメチル-5,5”-ジ-t-ブチル-4,4”-ジヒドロキシ-m-ターフェニル、2,2”-ジメチル-5,5”-ジシクロヘキシル-4,4”-ジヒドロキシ-m-ターフェニル等が挙げられる。
 工程(C)においては、工程(B)又は工程(D)で得られたビス(4-ヒドロキシフェニル)シクロヘキセン類を、脱水素反応に付す。シクロヘキセン環を脱水素し、ベンゼン環とする方法は特に制限されず従来公知の反応方法を適宜用いることができる。しかしながら脱水素触媒の存在下に、これを脱水素する方法が好ましい。
下記に反応式(4)で例示する。
Figure JPOXMLDOC01-appb-I000026
 脱水素触媒としては、従来より知られている脱水素触媒を用いることができる。例えば、ラネーニッケル、還元ニッケル、ニッケル担持触媒等のニッケル触媒、ラネーコバルト、還元コバルト、コバルト担持触媒等のコバルト触媒、ラネー銅等の銅触媒、酸化パラジウム、パラジウム黒、パラジウム/カーボン等のパラジウム触媒、プラチナ黒、プラチナ/カーボン等のプラチナ触媒、ロジウム触媒、クロム触媒、銅クロム触媒等が用いられる。これらのなかでは、特に、パラジウム等の白金族触媒が好ましく、特に、パラジウム触媒が好ましく用いられる。
 このような脱水素触媒は、ビス(4-ヒドロキシフェニル)シクロヘキセン類100重量部に対して、好ましくは、0.1~20重量部、より好ましくは、0.2~10重量部の範囲で用いられる。
 この脱水素反応においては、水素受容体を共存させても、させなくてもよい。水素受容体を用いずに不均化反応させる場合、4,4"-ジヒドロキシ-m-ターフェニル類を生成させると、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン類が副生する。高純度の目的物を得たい場合には、水素受容体存在下での脱水素触媒による反応が好ましい。
 このような水素受容体としては、特に、限定されるものではないが、例えば、α-メチルスチレン等のスチレン類、ニトロベンゼン、メチルイソブチルケトン、フェノール等が好ましく用いられる。また、脱水素反応の反応温度は、好ましくは、100~250℃の範囲であり、より好ましくは、130~200℃の範囲である。
 脱水素反応は、気相においても行うことができるが、操作性の点から、溶液状態で行うのが好ましく、その際、反応溶媒を用いるのが好ましい。このような反応溶媒としては、エチレングリコール、2-プロパノール、2-ブタノール等の脂肪族アルコール溶媒、メチルイソブチルケトン、アセトン、ジイソプロピルケトン等の脂肪族ケトン溶媒、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素溶媒等を挙げることができる。また、反応は、好ましくは、常圧下で行われる。このような反応条件において、脱水素反応は、好ましくは、3~10時間程度で終了する。
 このようにして、工程(A)次いで工程(B)を経るか、又は工程(D)を経て得られたビス(4-ヒドロキシフェニル)シクロヘキセン類を工程(C)の脱水素反応に付し、その反応終了後、得られた反応混合物から、常法に従って、触媒を分離した後、晶析濾過等の方法にて、本発明の目的物である4、4"-ジヒドロキシ-m-ターフェニル類の粗製品を得ることができ、これを、さらに必要に応じて、再度、晶析濾過等の方法にて精製すれば、高純度品を得ることができる。
 本発明によれば、このようにして、前記一般式(1)で表される2-シクロヘキセン-1-オン類又は一般式(2)で表される3-ヒドロキシシクロヘキサン-1-オン類と前記一般式(3)で表されるフェノール類を出発原料として、好ましくは目的とする4,4"-ジヒドロキシ-m-ターフェニル類を約40%又はそれ以上の収率にて得ることができる。
 また、上記のようにして得られた本願化合物について、その用途やフェノール性水酸基を置換する等の公知の方法によって得られる誘導体についても具体的に説明する。
 例えば、本願化合物と2-(3-オキセタニル)ブチルトシレートと反応させることにより、1,3-ビス{4-[2-(3-オキセタニル)]ブトキシフェニル}ベンゼン等が得られ、これらを原料にオキセタン樹脂を得ることができる。
 また、1,2-ナフトキノンジアジド-5-スルホン酸クロリドと反応させることにより、1,3-ビス{4-[(6-ジアゾ-5-オキソナフチル)スルホニルオキシ]フェニル}ベンゼン等が得られ、これらは感光性組成物に用いることができる。
 また、メチルアミン及びホルムアルデヒドと反応させることにより1,3-ビス(3-メチル(2H,4H-ベンゾ[3,4-e]1,3-オキサジン-6-イル))ベンゼン等が得られ、これらを原料に樹脂とすることができる。
 また、エピクロロヒドリンと反応させることにより、4,4"-ジ(グリシジルオキシ)-m-ターフェニル等が得られ、これらを原料にエポキシ樹脂を得ることができる。
 また、ホルムアルデヒドと反応させることにより4,4"-ジヒドロキシ-3,3",5,5"-テトラヒドロキシメチル-m-ターフェニル等を得ることができる。さらに、これらの化合物をメタノールと反応させることで4,4"-ジヒドロキシ-3,3" ,5,5"-テトラメトキシメチル-m-ターフェニル等を得ることができ、各種用途で架橋材等として用いることができる。
 また、エチレンカーボネートと反応させることにより、4,4"-ジ(2-ヒドロキシエトキシ)-m-ターフェニル等が得られ、これらをポリエステルやポリカーボネート等の樹脂原料に用いることができる。
 その他用途として本願化合物は、フェノール性水酸基を複数有しているので、シアネート樹脂、ポリカーボネート、ポリエステル、ノボラック、レゾール等の樹脂原料、エポキシ樹脂の硬化剤、その他i線レジスト添加剤、酸化防止剤としての利用も期待できる。
 以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例にのみ制限されるものではない。
実施例1
[4,4"-ジヒドロキシ-m-ターフェニルの合成]
工程(A):(1,1,3-トリス(4-ヒドロキシフェニル)シクロヘキサンの合成)
 フェノール1412g、35%塩酸78.2g、ドデシルメルカプタン15.2g、メタノール144gを3リットル容量4つ口フラスコに仕込み、窒素雰囲気下で液温を30~32℃に保ちながら、2-シクロヘキセン-1-オン144gを10時間で滴下し、滴下終了後、30℃で46時間撹拌した。反応終了後、水酸化ナトリウム水溶液を加え中和した後、昇温してメタノールを留去した。その後、水層を分離除去して得られた油層に水とメチルイソブチルケトンを加え撹拌して水洗し、水層を分離除去した。得られた油層からメチルイソブチルケトンと未反応のフェノールを減圧下で留出させ除去した。残渣にトルエンを加えて析出した結晶を室温で濾別し、乾燥して、純度95%(高速液体クロマトグラフィー分析法)の1,1,3-トリス(4-ヒドロキシフェニル)シクロヘキサンの粗製結晶を得た。
 この粗製結晶をメチルイソブチルケトンに溶解し、水を加えて水洗後、水層を分離した。得られた油層を濃縮後、残渣にトルエンを加えて析出した結晶を室温で濾別し、乾燥して、純度99.4%(高速液体クロマトグラフィー分析法)の1,1,3-トリス(4-ヒドロキシフェニル)シクロヘキサン223.2gを得た。
  収率:42%(2-シクロヘキセン-1-オンに対する収率)
  分子量:359(M-H)-(液体クロマトグラフィー質量分析法)
  融点:202℃(示差走査熱量測定法)
  1H‐NMR(400MHz)測定(溶媒:DMSO-d6):表1参照
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-T000028
工程(B):(1,3-ビス(4-ヒドロキシフェニル)-1-シクロヘキセン及び1,5-ビス(4-ヒドロキシフェニル)-1-シクロヘキセンの合成)
 温度計、冷却器及び撹拌翼を取り付けた4つ口フラスコに工程(A)で得られた1,1,3-トリス(4-ヒドロキシフェニル)シクロヘキサン18.0gとテトラエチレングリコール9.0g、16%水酸化ナトリウム水溶液1.3gを仕込み、10kPaに減圧しながら撹拌下に170℃まで昇温した後、撹拌下に減圧下で生成したフェノールを留出させながら同温度でさらに9時間分解反応を行った。反応終了後、100℃に冷却してから酢酸を加えて中和した。さらにメチルイソブチルケトンと水を加えて撹拌した後、水層を分離した。得られた油層に水を加えて撹拌し、水層を分離する水洗操作を3回実施した。その後、水洗された油層から溶媒を蒸留して除去した後、トルエン18gを加えて晶析、濾過して、乾燥し、純度91%(高速液体クロマトグラフィー分析法)の1,3-ビス(4-ヒドロキシフェニル)-1-シクロヘキセン(A)及び1,5-ビス(4-ヒドロキシフェニル)-1-シクロヘキセン(B)の混合物6g(高速液体クロマトグラフィー分析法による比率:A/B=49/51)を得た。
 この混合物の一部を液体クロマトグラフィーにて分取して精製し、純度98%(高速液体クロマトグラフィー法)の1,3-ビス(4-ヒドロキシフェニル)-1-シクロヘキセン(A)及び1,5-ビス(4-ヒドロキシフェニル)-1-シクロヘキセン(B)の混合物(高速液体クロマトグラフィー分析法による比率:A/B=50/50)を得て、これについてNMR、分子量、融点を測定した。
  分子量:265(M-H)-(液体クロマトグラフィー質量分析法)
  融点:159℃(示差走査熱量測定法)
  1H‐NMR(400MHz)測定(溶媒:CD3OD):表2参照
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-T000030
工程(C):(4,4"-ジヒドロキシ-m-ターフェニルの合成)
 工程(B)で得られた純度91%の1,3-ビス(4-ヒドロキシフェニル)-1-シクロヘキセン及び1,5-ビス(4-ヒドロキシフェニル)-1-シクロヘキセンの混合物2.6gとメチルイソブチルケトン15.6g、α-メチルスチレン3.5g、5%パラジウムカーボン0.2gをオートクレーブに仕込み、150℃で6時間撹拌した。反応終了後、反応液をろ過して5%パラジウムカーボンを除去し濾液を濃縮した。残渣を酢酸エチル3.2gに溶解後、シクロヘキサン7.5gを加えて析出した結晶を濾別、乾燥させて純度99%(高速液体クロマトグラフィー分析法)の4,4"-ジヒドロキシ-m-ターフェニル1.9gを得た。
  収率:33%(対トリスフェノール)
  分子量:261(M-H)-(液体クロマトグラフィー質量分析法)
  融点:183℃( 示差走査熱量測定法 )
  1H‐NMR(400MHz)測定(溶媒:DMSO―d6):表3参照
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-T000032
実施例2
[4,4"-ジヒドロキシ-m-ターフェニルの合成]
 実施例1の工程(A)で得られた1,1,3-トリス(4-ヒドロキシフェニル)シクロヘキサン90gとテトラエチレングリコール45g、メタノール45g、16%水酸化ナトリウム水溶液6.3gを4つ口フラスコに仕込み、撹拌下10kPaに減圧しながら液温を170℃まで昇温し、さらに同温度で生成するフェノールを留出させながら9時間撹拌して反応した。反応終了後、冷却してから酢酸を加えて中和後、水とメチルイソブチルケトンを加えて撹拌して水洗した[工程(B)]。
 水層を分離後、油層の1,3-ビス(4-ヒドロキシフェニル)-1-シクロヘキセン及び1,5-ビス(4-ヒドロキシフェニル)-1-シクロヘキセンの混合物の濃度が17%になるように濃縮等により調整した。その溶液79.6gとα-メチルスチレン14.8g、5%パラジウムカーボン0.8gをオートクレーブに仕込み、150℃で6時間撹拌した。反応後、反応液をろ過して5%パラジウムカーボンを除去し、メチルイソブチルケトンを留去後、トルエン40gを加えて析出した結晶を濾別、乾燥させて純度97%(高速液体クロマトグラフィー法)の4,4"-ジヒドロキシ-m-ターフェニル6.9gを得た[工程(C)]。
  収率:53%(対トリスフェノール)
実施例3
[3,3"-ジメチル-4,4"-ジヒドロキシ-m-ターフェニルの合成]
工程(A):(1,1,3-トリス(3-メチル-4-ヒドロキシフェニル)シクロヘキサンの合成)
 オルソクレゾール1513.4g、35%塩酸73g、ドデシルメルカプタン14.2g、メタノール134.4gを3リットル容量4つ口フラスコに仕込み、窒素雰囲気下に、液温を30~32℃に保ちながら、2-シクロヘキセン-1-オン134.5gを3.5時間で滴下し、滴下終了後、30~32℃で22時間撹拌した。反応終了後、水酸化ナトリウム水溶液を加え中和した後、昇温してメタノールを留去した。その後、水層を分離除去して得られた油層にメチルイソブチルケトンと水を加え撹拌して水洗し、水層を分離除去した。得られた油層からメチルイソブチルケトンと未反応のオルソクレゾールを減圧下で留出させ除去した。残渣を1-オクタノールに溶解後、シクロヘキサンを加えて晶析し、析出したアダクト結晶を室温で濾別し、乾燥して1,1,3-トリス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサンのアダクト結晶522.5gを得た。この結晶について、ガスクロマトグラフィー分析による溶媒量は16%であり、高速液体クロマトグラフィー分析による純度は99.2%(溶媒除く)であった。
  収率:77.9%(2-シクロヘキセン-1-オンに対する収率)
  分子量:401(M-H)-(液体クロマトグラフィー質量分析法)
  1H‐NMR(400MHz)測定(溶媒:CDCl3):表4参照
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-T000034
工程(B):(1,3-ビス(3-メチル-4-ヒドロキシフェニル)-1-シクロヘキセン及び1,5-ビス(3-メチル-4-ヒドロキシフェニル)-1-シクロヘキセンの合成)
 温度計、冷却器及び撹拌翼を備えた4つ口フラスコに、実施例3の工程(A)で得られた1,1,3-トリス(3-メチル-4-ヒドロキシフェニル)シクロヘキサンのアダクト結晶236.8g、テトラエチレングリコール50.3g、16%水酸化ナトリウム水溶液12.5gを仕込み、液温を190℃まで昇温した後、減圧下で生成するオルソクレゾールを留出させながら分解反応を2時間行った。反応終了後、冷却してから酢酸を加えて中和し、メチルイソブチルケトンと水を加えて撹拌して水洗を行ない、水層を分離除去した。得られた油層からメチルイソブチルケトンを留去させ、その蒸留残渣として純度86.8%(高速液体クロマトグラフィー法)の1,3-ビス(3-メチル-4-ヒドロキシフェニル)-1-シクロヘキセン(C)及び1,5-ビス(3-メチル-4-ヒドロキシフェニル)-1-シクロヘキセン(D)の混合物(高速液体クロマトグラフィー分析法による比率:C/D=56/44)132.3gを得た。
 この混合物の一部を液体クロマトグラフィーにて分取して精製し、純度96.8%(高速液体クロマトグラフィー法)の1,3-ビス(3-メチル-4-ヒドロキシフェニル)-1-シクロヘキセン(C)及び1,5-ビス(3-メチル-4-ヒドロキシフェニル)-1-シクロヘキセン(D)の混合物(高速液体クロマトグラフィー分析法による比率:C/D=59/41)を得て、これについてNMRを測定した。
 分子量:293(M-H)-(液体クロマトグラフィー質量分析法)
 1H‐NMR(400MHz)測定(溶媒:CDCl3):表5参照
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-T000036
工程(C):(3,3"-ジメチル-4,4"-ジヒドロキシ-m-ターフェニルの合成)
 実施例3の工程(B)で得られた混合物35.3g、エチレングリコール17.7g、α-メチルスチレン35.5g、5%パラジウムカーボン2.2gを200ml容量4つ口フラスコに仕込み、液温145~146℃で4時間反応した。反応終了液からパラジウムカーボンを除去後、メチルイソブチルケトンと水を加え水洗を行ない、水層を分離除去した。得られた油層からメチルイソブチルケトンを留去させ、純度85.1%(高速液体クロマトグラフィー法)の蒸留残渣30.4gを得た。この残渣5gに1-オクタノール2.5gを加え溶解後、シクロヘキサン10gを加えて晶析、濾過することにより純度96.3%(高速液体クロマトグラフィー法)の3,3"-ジメチル-4,4"-ジヒドロキシ-m-ターフェニルのアダクト結晶(シクロヘキサン付加物)2.7gを得た。
 この結晶を液体クロマトグラフィーにて分取して精製し、純度99.9%(高速液体クロマトグラフィー法)の3,3"-ジメチル-4,4"-ジヒドロキシ-m-ターフェニルを得て、NMR、融点の測定を行った。
  分子量:289(M-H)-(液体クロマトグラフィー質量分析法)
  融点:138.2℃(示差走査熱量測定法)
  1H‐NMR(400MHz)測定(溶媒:CDCl3):表6参照

Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-T000038
実施例4
[3,3”-ジフェニル-4,4”-ジヒドロキシ-m-ターフェニルの合成]
工程(A):1,1,3-トリス(3-フェニル-4-ヒドロキシフェニル)シクロヘキサンの合成
 2-フェニルフェノール177.0g、ドデシルメルカプタン1.0g、メタノール17.7gを500ml容量の4つ口フラスコに仕込み、窒素雰囲気下で液温を41℃まで昇温した後、系内が塩化水素ガスで飽和するまで吹き込んだ。内温を41℃に保ちながら、これに2-シクロヘキセン-1-オン20.0gを撹拌下4時間かけて滴下し、滴下終了後、塩化水素ガスを吹き込みながら41℃で19時間撹拌した。反応終了後、16%水酸化ナトリウム水溶液を加え中和した後、昇温して水層を分離除去した。その後、トルエン及び水を加え撹拌して水洗し、水層を分離して得られた油層からトルエンと未反応の2-フェニルフェノールを減圧下で留出させ、純度48.0%(高速液体クロマトグラフィー法)の1,1,3-トリス(3-フェニル-4-ヒドロキシフェニル)シクロヘキサン95.2gを得た。
 一部を液体クロマトグラフィーにて分取して精製し、得られた高純度品をプロトンNMR分析及び分子量測定を行ない、目的物であることを確認した。
  分子量:587(M-H)-(液体クロマトグラフィー質量分析法)
  1H‐NMR(400MHz)測定(溶媒:DMSO‐d6):表7参照
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-T000040
工程(B):1,3-ビス(3-フェニル-4-ヒドロキシフェニル)-1-シクロヘキセン及び1,5-ビス(3-フェニル-4-ヒドロキシフェニル)-1-シクロヘキセンの合成
 実施例4の工程(A)で得られた1,1,3-トリス(3-フェニル-4-ヒドロキシフェニル)シクロヘキサン61.3g、テトラエチレングリコール7.4g、16%水酸化ナトリウム水溶液1.3gを温度計、冷却器及び撹拌翼を取り付けた200ml容量4つ口フラスコに仕込み、液温を200℃まで昇温した後、減圧下で2-フェニルフェノールを反応系外に留出させながら分解反応を3時間行なった。反応終了後、冷却してから酢酸を加えて中和し、メチルイソブチルケトンと水を加えて撹拌して溶解させ、水層を分離除去した。得られた油層からメチルイソブチルケトンを留去させ、1,3-ビス(3-フェニル-4-ヒドロキシフェニル)-1-シクロヘキセン(化合物E)と1,5-ビス(3-フェニル-4-ヒドロキシフェニル)-1-シクロヘキセン(化合物F)の混合物37.8g(純度59.4%、高速液体クロマトグラフィー法)を蒸留残渣として得た。
 一部を液体クロマトグラフィーにて分取して精製し、得られた高純度品をプロトンNMR分析及び分子量測定を行ない、目的物であることを確認した。
  分子量:417(M-H)-(液体クロマトグラフィー質量分析法)
  1H‐NMR(400MHz)測定(溶媒:CDCl3):表8参照
Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-T000042
工程(C):3,3”-ジフェニル-4,4”-ジヒドロキシ-m-ターフェニルの合成
 実施例4の工程(B)で得られた混合物12.6g、メチルイソブチルケトン37.8g、α-メチルスチレン7.8g、5%パラジウムカーボン5.22gをオートクレーブに仕込み、140~150℃で4.5時間反応した。反応終了液からパラジウムカーボンを除去後、得られた油層からメチルイソブチルケトンを留去させ、残渣として目的物9.2g(純度77.4%、高速液体クロマトグラフィー法)を得た。
 この残渣を用いて分取液体クロマトグラフィーにて精製を行ない、3,3”-ジフェニル-4,4”-ジヒドロキシ-m-ターフェニル(純度99.1%、高速液体クロマトグラフィー法)を得た。
  分子量:413(M-H)-(液体クロマトグラフィー質量分析法)
  融点:確認できず(示差走査熱量測定法)
  1H‐NMR(400MHz)測定(溶媒:DMSO-d6):表9参照
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-T000044
実施例5
[2,2”,5,5”-テトラメチル-4,4”-ジヒドロキシ-m-ターフェニルの合成]
 工程(D):1,3-ビス(2,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセン及び1,5-ビス(2,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセンの合成
 2,5-キシレノール229.4g、ドデシルメルカプタン1.03g、メタノール102.0gを温度計及び撹拌機を備えた1リットル容量の4つ口フラスコに仕込み、窒素雰囲気下で液温を39℃まで昇温した後、系内が塩化水素ガスで飽和するまで吹き込んだ。内温を39~41℃に維持しつつ、これに2-シクロヘキセン-1-オン20.0g、2,5-キシレノール25.6g、メタノール25.6gの混合液を撹拌下2時間で滴下し、滴下終了後、塩化水素ガスを吹き込みながら39~41℃で27時間撹拌した。反応途中で反応液の一部を採取して高速液体クロマトグラフ質量分析計で分析した結果、保持時間が近いところに目的物と同じ分子量のピークが2つ検出された。反応終了後、水酸化ナトリウム水溶液を加え中和した。これにメチルイソブチルケトンを加え60℃に昇温して析出していた結晶を溶解後、水層を分離除去した。得られた油層に水を加えて撹拌後、静置して水層を分離除去する水洗操作を2回実施した。水洗した油層から減圧下濃縮により溶媒を除去して結晶を析出させ、冷却後に濾過して粗製結晶を得た。結晶は、前記2つの検出された目的物と同じ分子量ピーク成分の内、保持時間が僅かに長い方のピーク成分が主成分であった。得られた粗製結晶にメチルイソブチルケトンを加えて溶解させて、冷却して析出した結晶を濾別し乾燥することで純度98.7%(高速液体クロマトグラフィー法)の白色結晶17.7gを得た。この白色結晶をNMRで分析した結果、1,5-ビス(2,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセンであった。
  分子量:323(M+H)+(液体クロマトグラフィー質量分析法)
  融点:247℃(示差走査熱量測定法)
  1H‐NMR(400MHz)測定(溶媒:DMSO-d6):表10参照
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-T000046
 また、上記反応途中で採取した一部の反応液から目的物の分子量を有する2つの成分ピークをクロマトグラフィーによって分取し、2成分の混合物を得た。これをNMRで分析した結果、1,3-ビス(2,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセンと1,5-ビス(2,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセンの混合物であることがわかった。
 分子量:323(M+H)+
 1H-NMR(400MHz)測定(溶媒:DMSO-d6):表11参照
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-T000048
工程(C):2,2”,5,5”-テトラメチル-4,4”-ジヒドロキシ-m-ターフェニルの合成
 実施例5の工程(D)で得られた純度98.7%の1,5-ビス(2,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセン3.0g、メチルイソブチルケトン30g、α-メチルスチレン3.0g、5%パラジウムカーボン0.63gをオートクレーブに仕込み、150℃に昇温して同温度で46.5時間撹拌して反応した。昇温後、18時間後と34時間後にそれぞれ5%パラジウムカーボン0.63gを追加した。さらに190℃に昇温して同温度で6時間撹拌して反応した後、パラジウムカーボンを濾別し、得られた濾液を濃縮した。得られた残渣をメチルイソブチルケトンに溶解し、晶析して、濾過、乾燥することによって純度94.5%(高速液体クロマトグラフィー法)の2,2”,5,5”-テトラメチル-4,4”-ジヒドロキシ-m-ターフェニル1.4gを得た。
 収率:46.3%(1,5-ビス(2,5-ジメチル-4-ヒドロキシフェニル)-1-シクロヘキセンに対する収率)
 分子量:317(M-H)-(液体クロマトグラフィー質量分析法)
 融点:238.3℃(示差走査熱量測定法)
 1H‐NMR(400MHz)測定(溶媒:DMSO-d6):表12参照
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-T000050
実施例6
 フェノール19.6g、P-トルエンスルホン酸一水和物4.0gを100ml試験管に仕込み、液温を50℃に昇温した後、2-シクロヘキセン-1-オン2.1gを2時間で間欠添加し、添加終了後、50℃で68時間反応させた。反応液を分析したところ1,1,3-トリス(4-ヒドロキシフェニル)シクロヘキサンの生成が確認できた。
 その後、さらに100℃で6時間、150℃で5時間撹拌した。
 反応終了液を高速液体クロマトグラフィーで分析(検量線法)した結果、4,4”-ジヒドロキシ-m-ターフェニルが20%、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサンが46%の収率で含まれていた。
参考例 上記の実施例における工程(A)の原料として、以下の通り3-ヒドロキシシクロヘキサン-1-オン類を採用することも可能である。
[1,1,3-トリス(4-ヒドロキシフェニル)シクロヘキサンの合成 ]
 フェノール41.6g、35%塩酸3.2gとドデシルメルカプタン0.5gを200ml容量4つ口フラスコに仕込み、窒素雰囲気下で40℃に昇温した後、3-ヒドロキシシクロヘキサン-1-オン10.7gを3時間で滴下し、滴下終了後、40℃で79時間、撹拌して反応させた。反応終了液を高速液体クロマトグラフィーで分析した結果、1,1,3-トリス(4-ヒドロキシフェニル)シクロヘキサンの組成値(面積百分率/フェノールを除く)は61%であった。なお、この組成値から計算した収率は59%(対 3-ヒドロキシシクロヘキサン-1-オン)となる。
 反応終了後、反応液から液体クロマトグラフィーにより主生成物を分取し、これをNMR及び液体クロマトグラフィー質量分析法により分析した結果、目的物の1,1,3-トリス(4-ヒドロキシフェニル)シクロへキサンであることが確認できた。

Claims (1)

  1.   下記一般式(1)で表される2-シクロヘキセン-1-オン類又は下記一般式(2)で表される3-ヒドロキシシクロヘキサン-1-オン類と下記一般式(3)で表されるフェノール類を原料とし、下記の工程(A)、工程(B)、工程(C)を順次行うか、又は工程(D)、工程(C)を順次行うことを特徴とする下記一般式(4)で表される4,4"-ジヒドロキシ-m-ターフェニル類の製造方法。
    Figure JPOXMLDOC01-appb-I000001
    (式中、R2は各々独立してアルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子を表し、mは0又は1~4の整数を示し、mが1以上の場合、3位に置換せず、mが2以上の場合、R2は各々同一でも異なっていてもよく、同一の炭素原子に2つ置換しない。また、一般式(1)のR2及びmと一般式(2)のR2及びmは、それぞれ同じでもよく異なっていてもよい。)
    Figure JPOXMLDOC01-appb-I000002
    (式中、R1は各々独立してアルキル基、アルコキシ基、芳香族炭化水素基、ハロゲン原子又は水酸基を表し、nは0又は1~4の整数を示し、nが2以上の場合、R1は各々同一でも異なっていてもよい。)

    工程(A):2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類を触媒の存在下に反応させて下記一般式(5)で表される1,1,3-トリスフェノール類を得る工程
    工程(B):1,1,3-トリスフェノール類を分解反応させて下記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類を得る工程
    工程(C):ビス(4-ヒドロキシフェニル)シクロヘキセン類を脱水素して4,4"-ジヒドロキシ-m-ターフェニル類を得る工程
    工程(D):2-シクロヘキセン-1-オン類又は3-ヒドロキシシクロヘキサン-1-オン類とフェノール類を触媒の存在下に反応させて下記一般式(6)で表されるビス(4-ヒドロキシフェニル)シクロヘキセン類を得る工程
    Figure JPOXMLDOC01-appb-I000003
    (式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じである。)
    Figure JPOXMLDOC01-appb-I000004
    (式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じである。)
    Figure JPOXMLDOC01-appb-I000005
    (式中、R1、nは各々独立して一般式(3)のそれと同じであり、R2、mは一般式(1)又は一般式(2)のそれと同じであり、結合位置が固定されていない4-ヒドロキシフェニル基の結合位置はシクロヘキセン環の3位又は5位である。)
PCT/JP2013/063445 2012-05-14 2013-05-14 4,4"-ジヒドロキシ-m-ターフェニル類の製造方法 WO2013172352A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/401,098 US9102596B2 (en) 2012-05-14 2013-05-14 Method of manufacturing 4,4″-dihydroxy-m-terphenyl
CN201380025064.0A CN104379545B (zh) 2012-05-14 2013-05-14 4,4”-二羟基-间三联苯类的制造方法
JP2014515641A JP6181048B2 (ja) 2012-05-14 2013-05-14 4,4”−ジヒドロキシ−m−ターフェニル類の製造方法
EP13790098.1A EP2851359B1 (en) 2012-05-14 2013-05-14 Method for producing 4,4''-dihydroxy-m-terphenyls

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-110294 2012-05-14
JP2012110294 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172352A1 true WO2013172352A1 (ja) 2013-11-21

Family

ID=49583757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063445 WO2013172352A1 (ja) 2012-05-14 2013-05-14 4,4"-ジヒドロキシ-m-ターフェニル類の製造方法

Country Status (5)

Country Link
US (1) US9102596B2 (ja)
EP (1) EP2851359B1 (ja)
JP (1) JP6181048B2 (ja)
CN (1) CN104379545B (ja)
WO (1) WO2013172352A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256494A (ja) * 2012-05-14 2013-12-26 Honshu Chem Ind Co Ltd 1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン類の製造方法
JP2019189761A (ja) * 2018-04-25 2019-10-31 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JPWO2019031178A1 (ja) * 2017-08-08 2020-07-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6250453B2 (ja) * 2013-03-28 2017-12-20 本州化学工業株式会社 トリスフェノール化合物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147740A (en) 1980-01-18 1981-11-16 Int Flavors & Fragrances Inc Manufacture of methyldihydrojasmonate and homologue
JPS5842175B2 (ja) 1975-09-22 1983-09-17 ソダコウリヨウ カブシキガイシヤ 2− アルキル−シクロペンテノンノ セイゾウホウ
JPH01168632A (ja) 1987-12-25 1989-07-04 Mitsui Toatsu Chem Inc 4,4”−ジヒドロキシターフェニルの製造方法
JPH10130192A (ja) 1996-10-31 1998-05-19 Mitsui Chem Inc 2−シクロアルケン−1−オン類の製造方法
JPH1160534A (ja) 1997-08-20 1999-03-02 Honshu Chem Ind Co Ltd ヒドロキシシクロヘキサノン類の製造方法
JP2002234856A (ja) 2001-02-08 2002-08-23 Honshu Chem Ind Co Ltd 4,4”−ジヒドロキシ−p−ターフェニル類の製造方法
US20060030683A1 (en) 2004-08-06 2006-02-09 General Electric Company Polyethersulfone compositions
WO2010131600A1 (ja) 2009-05-11 2010-11-18 チッソ株式会社 重合性化合物およびそれを含む液晶組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862128A (ja) * 1981-10-12 1983-04-13 Mitsui Petrochem Ind Ltd p−フエニルフエノ−ル類またはそのエ−テルの製造方法
US4873374A (en) * 1987-04-14 1989-10-10 Mitsui Toatsu Chemicals, Incorporated Preparation process of 4,4'-biphenol, precursor of same and preparation process of precursor
JPH0819032B2 (ja) * 1987-11-20 1996-02-28 三井東圧化学株式会社 2−(4−ヒドロキシフェニル)−シクロヘキサノンの製造方法
DE60233211D1 (ja) * 2001-02-08 2009-09-17 Honshu Chemical Ind
JP4336501B2 (ja) * 2003-01-28 2009-09-30 本州化学工業株式会社 新規な4,4”−ジアルコキシターフェニル類

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842175B2 (ja) 1975-09-22 1983-09-17 ソダコウリヨウ カブシキガイシヤ 2− アルキル−シクロペンテノンノ セイゾウホウ
JPS56147740A (en) 1980-01-18 1981-11-16 Int Flavors & Fragrances Inc Manufacture of methyldihydrojasmonate and homologue
JPH01168632A (ja) 1987-12-25 1989-07-04 Mitsui Toatsu Chem Inc 4,4”−ジヒドロキシターフェニルの製造方法
JPH10130192A (ja) 1996-10-31 1998-05-19 Mitsui Chem Inc 2−シクロアルケン−1−オン類の製造方法
JPH1160534A (ja) 1997-08-20 1999-03-02 Honshu Chem Ind Co Ltd ヒドロキシシクロヘキサノン類の製造方法
JP2002234856A (ja) 2001-02-08 2002-08-23 Honshu Chem Ind Co Ltd 4,4”−ジヒドロキシ−p−ターフェニル類の製造方法
US20060030683A1 (en) 2004-08-06 2006-02-09 General Electric Company Polyethersulfone compositions
WO2010131600A1 (ja) 2009-05-11 2010-11-18 チッソ株式会社 重合性化合物およびそれを含む液晶組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHARLES C. ET AL.: "Condensation of cyclohexene oxide, 1,2- dichlorocyclohexane and 3,4-dichlorohexane with anisole", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 66, 1944, pages 628 - 631, XP055176737 *
JAYARAM R. TAGAT ET AL.: "Synthetic inhibitors of interleukin-6 II: 3,5-diaryl pyridines and meta-terphenyls", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 5, no. 18, 1995, pages 2143 - 2146, XP004135321 *
See also references of EP2851359A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256494A (ja) * 2012-05-14 2013-12-26 Honshu Chem Ind Co Ltd 1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン類の製造方法
JPWO2019031178A1 (ja) * 2017-08-08 2020-07-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP7052797B2 (ja) 2017-08-08 2022-04-12 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP2019189761A (ja) * 2018-04-25 2019-10-31 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP7026887B2 (ja) 2018-04-25 2022-03-01 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤

Also Published As

Publication number Publication date
EP2851359A4 (en) 2016-01-06
EP2851359A1 (en) 2015-03-25
US20150158800A1 (en) 2015-06-11
EP2851359B1 (en) 2017-03-29
JP6181048B2 (ja) 2017-08-16
CN104379545B (zh) 2016-08-24
JPWO2013172352A1 (ja) 2016-01-12
CN104379545A (zh) 2015-02-25
US9102596B2 (en) 2015-08-11

Similar Documents

Publication Publication Date Title
JP6181048B2 (ja) 4,4”−ジヒドロキシ−m−ターフェニル類の製造方法
EP1375461B1 (en) Diphenol and process for producing the same
WO2011030835A1 (ja) 新規なトリスフェノール化合物
JP4041655B2 (ja) 4,4”−ジヒドロキシ−p−ターフェニル類の製造方法
JP6205349B2 (ja) 新規なビス(4−ヒドロキシフェニル)シクロヘキセン類
JP6071739B2 (ja) 1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン類の製造方法
JP6068204B2 (ja) 新規なトリスフェノール化合物
JP6138115B2 (ja) トリスフェノール類の製造方法
CA1267159A (en) Process for the preparation of 4,4'-biphenol
JP4041661B2 (ja) 4−(4’−(4”−ヒドロキシフェニル)シクロヘキシル)−1−ヒドロキシベンゼン類の製造方法
US7321054B2 (en) Method of producing poly(ortho-methylphenol)
JP4438465B2 (ja) テトラキス(4−ヒドロキシフェニル)エタン化合物の製造方法
JPH01168634A (ja) ビス(4−ヒドロキシフェニル)−シクロヘキサンの製造方法
JP4246427B2 (ja) 新規な4,4”−ジヒドロキシ−p−ターフェニル類
JP4693332B2 (ja) 新規な4−置換フェニルフェノール類
JP5762977B2 (ja) 新規な多核ポリ(フェノール)類
JP4757282B2 (ja) 4,4”−ジヒドロキシ−p−ターフェニル類
JP2009035495A (ja) ビス(4−オキソシクロヘキシル)化合物及びそれから誘導されるテトラキスフェノール化合物
JP4022388B2 (ja) 新規な4−置換シクロヘキシリデンビスフェノール類
JP4022387B2 (ja) 新規な4−置換シクロヘキシリデンビスフェノール類
JP2019026627A (ja) 新規なビスフェノール化合物
JP2008088179A (ja) 非対称アルキリデン多価フェノール類とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515641

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14401098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013790098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013790098

Country of ref document: EP