WO2013168606A1 - アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器 - Google Patents
アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器 Download PDFInfo
- Publication number
- WO2013168606A1 WO2013168606A1 PCT/JP2013/062396 JP2013062396W WO2013168606A1 WO 2013168606 A1 WO2013168606 A1 WO 2013168606A1 JP 2013062396 W JP2013062396 W JP 2013062396W WO 2013168606 A1 WO2013168606 A1 WO 2013168606A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- alloy foil
- mass
- cold rolling
- foil
- Prior art date
Links
- 239000011888 foil Substances 0.000 title claims abstract description 203
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 195
- 239000005022 packaging material Substances 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000003814 drug Substances 0.000 title description 6
- 229940079593 drug Drugs 0.000 title description 2
- 239000013078 crystal Substances 0.000 claims abstract description 57
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 77
- 238000000137 annealing Methods 0.000 claims description 66
- 238000005096 rolling process Methods 0.000 claims description 48
- 238000005097 cold rolling Methods 0.000 claims description 47
- 238000005098 hot rolling Methods 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 23
- 238000000265 homogenisation Methods 0.000 claims description 18
- 238000009512 pharmaceutical packaging Methods 0.000 claims description 15
- 229920003002 synthetic resin Polymers 0.000 claims description 11
- 239000000057 synthetic resin Substances 0.000 claims description 11
- 239000012793 heat-sealing layer Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 238000000465 moulding Methods 0.000 description 50
- 238000012360 testing method Methods 0.000 description 16
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- -1 polypropylene Polymers 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000004806 packaging method and process Methods 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002313 adhesive film Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910018084 Al-Fe Inorganic materials 0.000 description 2
- 229910018192 Al—Fe Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000010731 rolling oil Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D75/00—Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
- B65D75/28—Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
- B65D75/30—Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
- B65D75/32—Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding one or both sheets or blanks being recessed to accommodate contents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D83/00—Containers or packages with special means for dispensing contents
- B65D83/04—Containers or packages with special means for dispensing contents for dispensing annular, disc-shaped, or spherical or like small articles, e.g. tablets or pills
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/117—Inorganic material
- H01M50/119—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/126—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
- H01M50/129—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an aluminum alloy foil having high formability, a method for producing the same, a molded package material, a secondary battery, and a pharmaceutical packaging container.
- PTP press-through package
- a container which is known as a molded package material for packaging pharmaceutical products
- PTP press-through package
- the container is required to be deep drawn, and in a normal strip package, a plastic film, for example, a resin film such as polypropylene is used as the container.
- a resin film such as polypropylene
- tablets with contents that require water vapor barrier properties during storage are often used as composites in which an aluminum foil and a resin film having high barrier properties are bonded to one or both sides.
- there are various forms and sizes of pharmaceuticals and it has become necessary to form a package for packaging them more deeply than before.
- a material having a composite structure in which a resin film is bonded to both surfaces of an aluminum alloy foil is also used for an exterior material, which is a molded package material of a secondary battery, in order to impart water vapor barrier properties.
- secondary batteries such as sheet-like thin lithium-ion secondary batteries have come in handy as a driving source for electronic devices such as mobile communication devices, notebook computers, headphone stereos, and camcorders. Secondary batteries are required to have a charge capacity or high output that can withstand long-term use. For this reason, the structure of the element composed of battery electrodes and separators has become complicated and multilayered, and molding under severe conditions such as deeper recess molding has been required.
- the packaging body 1 for molding is generally laminated with a heat sealing layer 9 on one side of the exterior material body 8 and laminated with a synthetic resin film 10 on the other side. It is the mode which was done.
- the package 1 is formed so that a central portion thereof is a concave portion and a peripheral portion thereof is a flat portion in order to accommodate a laminated body such as the positive electrode current collector 2. Therefore, it is necessary to adopt a material having good moldability for the exterior material body 8, the heat sealing layer 9, and the synthetic resin film 10.
- a metal foil particularly an aluminum alloy foil, which is difficult to permeate moisture and air and has excellent formability, is preferably used so as not to adversely affect the quality of the contents.
- the aluminum alloy foil a composition defined in JIS 1100, 3003, 8079 or 8021 is mainly used.
- an aluminum foil having a thickness of 20 to 60 ⁇ m and an elongation of 0%, 45 °, and 90 ° in the rolling direction of 11% or more is proposed as the exterior material body 8 (Patent Document 1).
- the exterior material body 8 is an aluminum alloy excellent in corrosion resistance containing 0.8 to 2.0% Fe, 0.02 to 0.05% Cu, and 0.03 to 0.1% Si.
- a foil has been proposed. (Patent Document 2).
- the elongation values in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction are set to 11% or more in order to improve the formability.
- the value of 0.2% proof stress is large with respect to the strength, and the inflow resistance of the material from the flange portion increases at the time of rectangular tube drawing, so the molding height cannot be improved.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide an aluminum alloy foil having good formability to solve the above problems, a method for producing the same, a molded package material, a secondary battery, and a pharmaceutical packaging container. To do.
- the present inventor examined aluminum alloy foil used as a molding and packaging material, and aluminum alloy foil, molded packaging material, secondary battery, and pharmaceutical packaging container obtained by regulating the components to an appropriate range are particularly excellent.
- the ingot homogenization temperature and the intermediate annealing temperature the cold rolling rate from the hot rolling to before the intermediate annealing and the final foil after the intermediate annealing
- the inventors have found that the above-described excellent aluminum alloy foil can be stably and reliably obtained by controlling the cold rolling rate until the thickness is increased, and have reached the present invention.
- Fe 0.8 to 2.0 mass%, Si: 0.05 to 0.2 mass%, Cu: 0.0025 to 0.2 mass%, the balance being Al and inevitable
- An aluminum alloy foil having a diameter of 7 to 20 ⁇ m is provided. According to this aluminum alloy foil, since the Cube orientation density, the R orientation density, and the average crystal grain size in the composition and surface crystal orientation of the aluminum alloy foil satisfy specific conditions, the aluminum alloy foil having good formability Is obtained.
- the aluminum alloy foil further includes TS ⁇ (45 ⁇ direction) in the tensile strength TS and 0.2% proof stress YS in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction of the aluminum alloy foil.
- TS / YS is 200 N / mm 2 or more
- the absolute value of the difference between TS ⁇ (TS / YS) in the 0 degree direction and 45 degree direction is 30 N / mm 2 or less
- the absolute value of the difference of direction TS ⁇ (TS / YS) is preferably 30 N / mm 2 or less.
- the aluminum alloy foil of the present invention improves the ultimate deformability of the aluminum alloy foil, and can suppress the occurrence of microcracks and the like at the initial stage of rectangular tube drawing. Can be improved.
- the molding height can be improved.
- a molded package material provided with the aluminum alloy foil.
- this molded packaging material since the aluminum alloy foil having the above-mentioned good moldability is used, it is possible to increase the molding height, and as a molded packaging material such as a secondary battery exterior material. Deep concave molding can be performed. As a result, the amount that can be stored in the molding recess is increased, and the capacity can be further increased.
- the present invention it is preferable to provide a secondary battery using the above-described molded package material.
- the molded packaging material having the above-mentioned deep recess molding is used, the filling amount of the battery material such as an electrode material that can be stored in the molding recess of the secondary battery exterior material increases.
- the battery capacity can be further increased, which contributes to the enhancement of the performance of the secondary battery.
- a pharmaceutical packaging container using the molded packaging material described above.
- the molded packaging material having the above-described deep recess molding is used, it can be stored in the molding recess of the pharmaceutical packaging container, so that the amount of medicine storage and the degree of freedom of shape selection are further increased. Can be improved.
- a method for producing the above aluminum alloy foil wherein Fe: 0.8 to 2.0 mass%, Si: 0.05 to 0.2 mass%, Cu: 0.0025 to 0.00.
- a step of performing cold rolling a step of performing cold rolling at a cold rolling rate from 80% to 93% from the intermediate annealing to the final foil thickness, and a final annealing after the cold rolling. And obtaining the aluminum alloy foil Including, a method is provided.
- this aluminum alloy foil in order to process an aluminum alloy ingot of a specific composition in a specific process, (1) Average crystal grain size of aluminum alloy foil, (2) Crystal orientation density on the surface of aluminum alloy foil, (3) Strength balance of 0 degree, 45 degree, 90 degree direction with respect to rolling direction All the above (1)-(3) can be satisfied, and an aluminum alloy foil having high formability can be obtained reliably. it can.
- the aluminum alloy foil of the present invention is required to have high formability such as a lithium ion secondary battery and a pharmaceutical packaging container because the average crystal grain size and the predetermined orientation density of the aluminum alloy are optimally controlled.
- An aluminum alloy foil suitable for a molded package material can be provided.
- the content of Fe contained in the aluminum alloy foil is 0.8 to 2.0 mass%.
- both the tensile strength TS and the 0.2% proof stress YS decrease, so the value of TS ⁇ (TS / YS) in the 45 degree direction with respect to the rolling direction decreases.
- the formability of the aluminum alloy foil is reduced.
- the Fe content exceeds 2.0 mass%, a huge intermetallic compound is likely to be formed at the time of casting, and it tends to be a starting point of cracking at the time of the rectangular tube drawing test, so that the formability is lowered.
- the Fe content is more preferably 1.1 mass% or more and 1.6 mass% or less from the viewpoint of strength.
- the Fe content is, for example, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1 .8, 1.9, 2.0 mass%, and may be in a range between any two values of the numerical values exemplified here.
- the content of Si contained in the aluminum alloy foil is 0.05 to 0.2 mass%.
- the Si content is less than 0.05 mass%, the tensile strength TS and the 0.2% proof stress YS decrease, so the value of TS ⁇ (TS / YS) in the 45 ° direction with respect to the rolling direction decreases. , The moldability is reduced.
- high-purity metal (Al) is used, which is not economically preferable.
- the Si content exceeds 0.2 mass%, the crystallized material size in the aluminum alloy foil increases, and the number of crystallized materials decreases.
- the content of Si is particularly preferably 0.06 mass% or more and 0.1 mass% or less from the viewpoint of strength and average crystal grain size.
- the Si content is, for example, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0 .15, 0.16, 0.17, 0.18, 0.19, 0.20 mass%, and may be within a range between any two values of the numerical values exemplified here.
- the content of Cu contained in the aluminum alloy foil is 0.0025 to 0.2 mass%.
- the strength of the aluminum alloy foil is improved.
- the Cu content is less than 0.0025 mass%, the tensile strength TS and the 0.2% proof stress YS are reduced, and the value of TS ⁇ (TS / YS) in the 45 degree direction with respect to the rolling direction is reduced.
- the formability of the aluminum alloy foil is reduced.
- the Cu content exceeds 0.2 mass%, the Cube orientation density on the surface of the aluminum alloy foil is lowered, so that the formability of the aluminum alloy foil is lowered.
- the content of Cu is particularly preferably 0.005 mass% or more and 0.05 mass% or less from the viewpoint of strength and crystal orientation of the aluminum alloy foil surface.
- the Cu content is, for example, 0.0025, 0.0100, 0.0150, 0.0200, 0.0250, 0.0300, 0.0350, 0.0400, 0.0500, 0.0600, 0 0.0700, 0.0800, 0.0900, 0.1000, 0.1100, 0.1200, 0.1300, 0.1400, 0.1500, 0.1600, 0.1700, 0.1800, 0.1900 0.2000 mass%, and may be within a range between any two values illustrated here.
- the inevitable impurities contained in the aluminum alloy foil are individually 0.05 mass% or less, and the total is 0.15 mass% or less.
- inevitable impurities such as Ti, Mn, Mg, Zn and the like individually exceed 0.05 mass% and the total amount is 0.15 mass%, curing during rolling is large, and breakage during rolling tends to occur.
- the average crystal grain diameter after the last annealing in aluminum alloy foil is 7 micrometers or more and 20 micrometers or less. Preferably, they are 10 micrometers or more and 18 micrometers or less.
- This average crystal grain size is, for example, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ⁇ m, and between any two of the numerical values exemplified here It may be within the range.
- the average crystal grain diameter in aluminum alloy foil can be measured by a well-known method, for example, can be measured using a cutting method.
- the cutting method is a method of counting the number of crystal grains in a certain line segment and obtaining a size obtained by dividing the line segment by the number.
- the average crystal grain size of the aluminum alloy foil after the final annealing is greatly affected by the amount of added elements and various conditions during production. In particular, it is greatly affected by the amount of Fe and Si to be added, the cold rolling rate from the intermediate annealing to the final foil thickness, and the final annealing conditions. In order to obtain the above average grain size, it is necessary to appropriately adjust the amounts of these additive elements and the production conditions. If the average grain size of the aluminum alloy foil is less than 7 ⁇ m, the increase in 0.2% proof stress YS is larger than the tensile strength TS. The value of YS) decreases and the formability of the aluminum alloy foil decreases.
- the average crystal grain size of the aluminum alloy foil exceeds 20 ⁇ m, since the number of crystal grains occupying in the cross-sectional direction of the plate thickness is small, the localization of deformation is likely to occur, and the formability of the aluminum alloy foil is lowered. .
- the aluminum alloy foil has a Cube orientation density on the foil surface of 5 or more and an R orientation density of 50 or less after the final annealing. More preferably, after the final annealing, the Cube orientation density on the foil surface is 7 or more and the R orientation density is 30 or less.
- the numerical values of the Cube orientation density and the R orientation density all represent multiples of the random crystal orientation density.
- the Cube orientation was ⁇ 001 ⁇ ⁇ 100> as the representative orientation, and the R orientation was ⁇ 123 ⁇ ⁇ 634> as the representative orientation.
- the crystal orientation density on the surface of the aluminum alloy foil was measured by measuring incomplete pole figures of ⁇ 100 ⁇ , ⁇ 110 ⁇ , and ⁇ 111 ⁇ , and conducting a three-dimensional crystal orientation analysis (ODF) based on these. .
- ODF three-dimensional crystal orientation analysis
- the data obtained by measuring a sample having a random crystal orientation made from aluminum powder is used as a standardized file for analysis of ⁇ 100 ⁇ , ⁇ 110 ⁇ , ⁇ 111 ⁇ pole figures.
- various orientation densities were obtained as multiples of the sample having a random orientation.
- the crystal orientation density is all based on three-dimensional crystal orientation analysis (ODF).
- Cube orientation density on the surface of the aluminum alloy foil is less than 5 and the R orientation density exceeds 50, minute cracks and the like are likely to be formed in the shoulder at the initial stage of rectangular tube drawing. Sex is reduced.
- Cube orientation density is, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26. 27, 28, 29, 30 or more, and may be within a range between any two of the numerical values exemplified here.
- the R orientation density is, for example, 50, 45, 40, 35, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or less, where It may be within a range between any two of the exemplified numerical values.
- the shoulder portion is formed by the overhang forming.
- the shoulder radius R is small, such as a lithium ion secondary battery that requires a high battery capacity
- the shoulder is locally deformed and has defects such as microcracks. Since it becomes easy, it often leads to breakage starting from this defect. That is, in the initial stage of the rectangular tube drawing forming the shoulder portion, it is important to improve the molding height to reduce the occurrence of microcracks and the like that are formed during the stretch molding.
- the ultimate deformability of the aluminum alloy foil is improved, resulting in a large strain on the aluminum alloy foil surface such as local overhang forming.
- the deformation process there is an effect of making it difficult to cause plastic instability as typified by constriction.
- the value of (TS / YS) is the ratio of 0.2% proof stress YS to tensile strength TS, and the inventor has more regions where uniform deformation is obtained as this value is larger than a predetermined value. It has been found that the material into the flange portion can easily flow in at the time of cylinder drawing, and that the higher the tensile strength TS, the better the fracture resistance. That is, it is preferable that the mechanical properties desired for the aluminum alloy foil used in the present embodiment is a material having a high tensile strength TS and a low 0.2% proof stress YS within an optimized range.
- TS ⁇ (TS / YS) which is a value obtained by multiplying the value of (TS / YS) by the tensile strength TS corresponding to the fracture resistance, has a very high correlation with the molding height in this embodiment, It can be used as one of indexes indicating formability in a square tube drawing test.
- the aluminum alloy foil has a tensile strength TS of 0, 45, and 90 degrees in the rolling direction and a 0.2% proof stress YS.
- TS ⁇ (TS / YS) in the 45 degree direction with respect to the rolling direction It is preferable that the value satisfies 200 N / mm 2 or more. More preferably, it is 210 N / mm 2 or more.
- the value of TS ⁇ (TS / YS) in the 45 degree direction with respect to the rolling direction is, for example, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 215, 220, 230, 240, 250 N / mm 2 , and may be within a range between any two values illustrated here.
- TS ⁇ (TS / YS) in the 45 ° direction with respect to the rolling direction in the aluminum alloy foil of this embodiment is less than 200 N / mm 2 , it is difficult to improve the formability of the aluminum alloy foil.
- the corner flanges at the four corners are deformed by shrinkage flanges, so that the material flows in. Resistance increases and material does not flow easily.
- the material in the 45-degree direction with respect to the rolling direction is less likely to flow into the 0-degree direction and the 90-degree direction with respect to the rolling direction corresponding to the straight-side direction and the short-side direction. It is effective to increase the amount of material inflow in the 45 degree direction with respect to the rolling direction.
- the aluminum alloy foil has an absolute value of a difference between TS ⁇ (TS / YS) in the 0 ° direction and 45 ° direction with respect to the rolling direction, and TS ⁇ (TS in the 45 ° direction and 90 ° direction with respect to the rolling direction.
- / YS preferably has an absolute value of 30 N / mm 2 or less. More preferably, it is 10 N / mm 2 or less.
- the absolute value of is, for example, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 , 1, 0 N / mm 2 , and is one of the numerical values exemplified here It may be within a range between the two values.
- the material is less likely to flow into the corner flange, so the amount of material flowing in the 45 degree direction with respect to the rolling direction is particularly increased, while the material flows in as much as possible in the 0 degree direction and 90 degree direction with respect to the rolling direction. It is preferred that there is no difference in absolute value in quantity.
- the elongation of the aluminum alloy foil can be adjusted as appropriate by changing the average crystal grain size, strength, and the like.
- the elongation values in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction in the aluminum alloy foil are all 17% or more because the formability of the aluminum alloy foil becomes good. More preferably, the elongation values in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction are all 20% or more.
- the thickness of the aluminum alloy foil is arbitrary, and can be appropriately adjusted according to the application, molding conditions, etc., but is generally preferably 10 to 100 ⁇ m.
- the thickness of the aluminum alloy foil exceeds 100 ⁇ m, the thickness of the entire package becomes too thick, and it is difficult to reduce the size of the resulting molded package, which is not preferable.
- the aluminum alloy foil is composed of Fe: 0.8 to 2.0 mass%, Si: 0.05 to 0.2 mass%, Cu: 0.0025 to 0.2 mass. % Of the aluminum alloy ingot containing Al and inevitable impurities, and a step of homogenizing and holding at 500 ° C. or more and 620 ° C. or less for 1 hour or more, and after the homogenization holding, hot rolling and cooling
- a step of performing cold rolling in step a step of performing cold rolling at a cold rolling rate of 80% or more and 93% or less from the intermediate annealing to the final foil thickness, and after the cold rolling Final annealing and aluminum It is produced by obtaining a gold leaf.
- the manufacturing method of the aluminum alloy foil in this embodiment is demonstrated in detail.
- the aluminum alloy foil manufacturing method preferably obtains an ingot by a semi-continuous casting method after melting the aluminum alloy having the above composition. Thereafter, the aluminum alloy ingot is homogenized. This homogenization treatment is held at 500 ° C. or higher and 620 ° C. or lower for 1 hour or longer. Hot rolling is started after this homogenization treatment. In the homogenization treatment, the effect of reducing the Fe solid solution amount can be expected by increasing the size of the Fe-based precipitates and sparsely distributing them.
- the Fe-based precipitates are not sufficiently coarsened, so the amount of Fe solid solution is high and there are many fine Fe-based precipitates.
- 0.2% proof stress is high, and the tensile strength TS in the 45 degree direction with respect to the rolling direction and the 0.2% proof stress YS have a TS ⁇ (TS / YS) value of less than 200 N / mm 2 , and the aluminum alloy foil This is not preferable because the moldability of the resin deteriorates. Further, it is not sufficient for sufficiently eliminating the segregation formed during casting existing in the ingot.
- the homogenization temperature is preferably 550 ° C. or higher and 620 ° C. or lower, more preferably 580 ° C. or higher and 615 ° C. or lower.
- the temperature of the homogenization treatment is, for example, 550, 560, 570, 580, 590, 600, 610, 615, 620 ° C., even if it is within the range between any two values illustrated here. Good.
- the holding time for homogenization is preferably 2 hours or more, and more preferably 5 hours or more.
- the homogenization holding time is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 hours or more, It may be within a range between any two values.
- the aluminum alloy ingot may be cooled to 400 ° C. or more and 500 ° C. or less and then hot rolling may be started. By carrying out this cooling, the 0.2% proof stress of the aluminum alloy foil can be reduced by reducing the Fe solid solution amount while growing the size of the Al—Fe based precipitate.
- the starting temperature of hot rolling is less than 400 ° C.
- the amount of fine Al—Fe-based precipitates increases so much that the 0.2% proof stress is improved, and the tensile strength TS in the 45 ° direction with respect to the rolling direction is At 0.2% proof stress YS, the value of TS ⁇ (TS / YS) is less than 200 N / mm 2, which is not preferable because the formability of the aluminum alloy foil is lowered.
- the hot rolling start temperature exceeds 500 ° C.
- the amount of Fe dissolved in the aluminum alloy foil increases, so the 0.2% proof stress increases, and the tensile strength in the 45 ° direction with respect to the rolling direction.
- the hot rolling start temperature is more preferably 400 ° C. or higher and 450 ° C. or lower.
- the hot rolling start temperature is, for example, 400, 410, 425, 450, 475, or 500 ° C., and may be within a range between any two values illustrated here.
- the hot rolling finish temperature is preferably 250 to 400 ° C. From the viewpoint that it is necessary to recrystallize the aluminum alloy sheet after hot rolling more reliably, it is recommended that the temperature is more preferably 300 ° C. or more and 400 ° C. or less.
- the end temperature of hot rolling is, for example, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400 ° C., and the numerical values exemplified here It may be within a range between any two values.
- cold rolling is performed on the obtained aluminum alloy sheet. This cold rolling can be performed by a known method and is not particularly limited.
- intermediate annealing is required to be performed at 300 ° C. or more and 450 ° C. or less during the cold rolling of the aluminum alloy plate.
- the temperature of the intermediate annealing is preferably 320 ° C. or more and 400 ° C. or less from the viewpoint of recrystallizing the aluminum alloy plate and improving the rollability.
- the temperature of the intermediate annealing is, for example, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450 ° C., and any of the numerical values exemplified here Or within a range between the two values.
- the temperature of the intermediate annealing is less than 300 ° C.
- the crystal grains of the aluminum alloy foil are likely to be coarsened at the time of final annealing, which may hinder the uniformity of deformation and reduce the molding height.
- the temperature of the intermediate annealing exceeds 450 ° C.
- the amount of solid solution of Fe increases, so that the 0.2% proof stress increases. Therefore, the tensile strength TS in the 45 degree direction with respect to the rolling direction is 0.2%
- the value of TS ⁇ (TS / YS) is less than 200 N / mm 2, which is not preferable because the formability of the obtained aluminum alloy foil is lowered.
- the purpose is to improve the rollability by recrystallizing the aluminum alloy sheet by carrying out the intermediate annealing.
- the time for performing the intermediate annealing is not particularly limited, but is preferably 1 hour or longer for recrystallization. More preferably, it is 4 hours or more.
- the duration of the intermediate annealing is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 hours or more, and any of the numerical values exemplified here Or within a range between the two values.
- the intermediate annealing is not performed during the cold rolling process, the cold rolling rate from the hot rolling to the final foil thickness increases, so in the crystal orientation in the aluminum alloy foil after the final annealing, the desired Cube orientation density and R orientation density are not obtained, and the formability of the aluminum alloy foil is lowered.
- the aluminum alloy foil production method is such that the cold rolling rate from the hot rolling to the intermediate annealing is 85% or less with respect to the aluminum alloy sheet obtained by the hot rolling. Inter-rolling is performed.
- the cold rolling ratio after the hot rolling to before the intermediate annealing exceeds 85% and the cold rolling is performed, in the recrystallized texture of the aluminum alloy foil after the final annealing, the desired Cube orientation density and R orientation This is not preferable because the density cannot be obtained and the ultimate deformability is lowered.
- plastic instability such as constriction may occur, and the formability of the aluminum alloy foil may be reduced.
- the cold rolling rate from after hot rolling to before intermediate annealing is, for example, 50, 55, 60, 65, 70, 75, 80, 85% or less, and any two values of the numerical values exemplified here It may be within the range between.
- the aluminum alloy foil manufacturing method performs cold rolling at a cold rolling rate of 80% or more and 93% or less from the intermediate annealing to the final foil thickness.
- the cold rolling rate from the intermediate annealing to the final foil thickness is the average grain size of the aluminum alloy foil after the final annealing, the crystal orientation of the aluminum alloy foil surface, the strength in the 0 degree, 45 degree, 90 degree direction with respect to the rolling direction. Affects balance. If the cold rolling rate is less than 80%, the crystal grains of the aluminum alloy foil after the final annealing are increased, and the formability of the aluminum alloy foil is deteriorated.
- the rolling direction in the aluminum alloy foil is greater than the 45 degree direction and 90 degree direction.
- the cold rolling rate from the intermediate annealing to the final foil thickness is, for example, 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88. 0.0, 89.0, 90.0, 91.0, 92.0, 93.0%, and may be within a range between any two values of the numerical values exemplified here.
- the final annealing conditions are preferably 200 to 400 ° C. for 5 hours or longer from the viewpoint of completely volatilizing the rolling oil while completely recrystallizing. More preferably, it is at 250 to 350 ° C. for 20 hours or longer.
- the final annealing temperature is, for example, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400 ° C. It may be within a range between any two values of the numerical values exemplified here.
- the final annealing time is, for example, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 hours or more, It may be within a range between any two values.
- the desired foil may not be obtained because it is not completely recrystallized. Moreover, when the temperature of final annealing exceeds 400 degreeC, since the crystal
- the aluminum alloy foil of this embodiment is formed and packaged. When the body material is used, the adhesiveness between the aluminum alloy foil and the resin film to be laminated may be easily lowered.
- the temperature increase rate at the time of final annealing is not particularly limited, it is desirable to carry out at 50 ° C./hr or less. If the temperature increase rate during final annealing exceeds 50 ° C / hr, some of the crystal grains become coarse, and thus uneven deformation is likely to occur during rectangular tube drawing, and the formability of the aluminum alloy foil is reduced. There is a case.
- the rate of temperature increase during the final annealing is preferably 40 ° C./hr or less from the viewpoint of the average crystal grain size of the aluminum alloy foil.
- the temperature increase rate at the time of final annealing is, for example, 50, 45, 40, 35, 30, 25, 20, 15, 10 ° C./hr or less, and a range between any two values of the numerical values exemplified here. It may be within.
- the aluminum alloy foil in this embodiment can be suitably used as a molded package material.
- the molded packaging material refers to a material obtained by molding the aluminum alloy foil of the present embodiment for various packaging such as for secondary batteries and for PTP. Examples thereof include pharmaceuticals and lithium ion secondary battery materials (including electrode materials, separators, electrolytic solutions, etc.).
- the molded package material in the present embodiment uses the aluminum alloy foil in the present embodiment
- the molded package material can be suitably used for an exterior material that is a molded package material of a secondary battery or a pharmaceutical packaging container.
- an exterior material that is a molded package material of a secondary battery or a pharmaceutical packaging container.
- the molded packaging material in the present embodiment will be described in detail with reference to the drawings.
- the following embodiments of the molded package material are examples and are not limited.
- FIG. 1 is a schematic cross-sectional view showing an example of the internal structure of a sheet-like thin lithium ion secondary battery.
- FIG. 2 is a schematic cross-sectional view showing a general example of an exterior material for a secondary battery.
- the molded package material 1 in the present embodiment may be composed of a single layer of the aluminum alloy foil 8 in the present embodiment or a plurality of layers including the aluminum alloy foil 8 in the present embodiment, and is not particularly limited. In the case of a plurality of layers, it is necessary to provide at least an aluminum alloy foil as a constituent element.
- FIG. 2 it is possible to exemplify what is laminated in the order of synthetic resin film 10, aluminum alloy foil 8, and heat sealing layer 9, but the laminated structure is particularly limited. is not.
- the synthetic resin film 10 is used to improve the moldability of the molded packaging material 1, to protect the aluminum alloy foil 8 that is the main material of the packaging body, or to enable printing. 8 is laminated and adhered to one side.
- a polyester film, a nylon film, or the like is used as such a synthetic resin film 10.
- the molded packaging material 1 of the present embodiment can be used as a secondary battery or a pharmaceutical packaging container.
- the molded packaging material 1 of the present embodiment is used as a secondary battery exterior material. It can be used for use. In this case, since it is necessary to perform heat generation and heat dissipation treatment of various battery members housed in the exterior material, it is preferable to use a heat-resistant polyester film as the synthetic resin film 10.
- the heat sealing layer 9 is for sealing the end 7 of the package.
- a conventionally known heat-sealable synthetic resin can be used.
- any material may be used as long as it has excellent adhesion to the aluminum alloy foil 8 used in the present embodiment and can protect the contents.
- an unstretched polypropylene film, a biaxially stretched polypropylene film, and a maleic acid-modified polyolefin. Is preferably used.
- the material is not particularly limited as long as the aluminum alloy foil 8 of the present embodiment is used. There is no particular limitation as long as the aptitude is satisfied.
- an unstretched polypropylene film is placed on one surface of an aluminum alloy foil 8 through an adhesive film, and after pressure bonding, the aluminum alloy foil 8 and the unstretched polypropylene film are adhered, An adhesive is applied to the other surface of the aluminum alloy foil 8, and a synthetic resin film 10 can be placed thereon and pasted.
- the pressure bonding between the aluminum alloy foil 8 and the polypropylene film is generally performed under heating.
- the heating conditions are not particularly limited, but are about 160 to 240 ° C.
- the pressure bonding conditions are not particularly limited, but the pressure is 0.5 to 2 kg / cm 2 and the time is about 0.5 to 3 seconds.
- the adhesive for the synthetic resin film 10 conventionally known ones are used, for example, urethane adhesives.
- the molded package material in the present embodiment can be molded by a known method, and the molding method is not particularly limited, but can be suitably used particularly for deep drawing.
- a package material obtained by cutting the molded package material 1 into a desired size is obtained.
- the packaging material is deep-drawn so that the central portion becomes a concave portion and the peripheral portion becomes a flat portion, and the heat sealing layer 9 side becomes an inner surface.
- the concave portions are opposed to each other, and the heat sealing layers 9 in the peripheral portion are bonded to each other to be bonded.
- a secondary battery is manufactured by storing the positive electrode current collector 2, the positive electrode 3, the separator 4, the negative electrode 5, and the negative electrode current collector 6 in the center and further impregnating with an electrolyte.
- the lead wire extending from the secondary battery body can be taken out to the outside, and the bag mouth can be heat-sealed again.
- the secondary battery in the present embodiment since the molded packaging material 1 including the aluminum alloy foil 8 having the above-described good formability is used, the deep drawing becomes more favorable, such as making the concave portion deeper than before. Since the secondary battery exterior material having a large capacity can be formed, it is possible to obtain a secondary battery with a charge capacity or high output that can withstand long-term use.
- the method described above can be adopted as a molding method even when a pharmaceutical packaging container is obtained using the molded packaging material 1 in the present embodiment.
- medicines tablettes, etc.
- the pharmaceutical packaging container of the present invention can be produced by a known method, and the production method is not particularly limited.
- this pharmaceutical packaging container since the molded packaging material 1 provided with the aluminum alloy foil 8 having good moldability is used, it becomes possible to perform deep drawing under severe conditions such as corner drawing. The packaging material 1 can be reduced. Further, according to this pharmaceutical packaging container, since the average crystal grain size of the aluminum alloy foil is small, non-uniform deformation hardly occurs at the time of deep drawing, and there are few cracks at the corners of the molded body, so that water vapor from the outside However, it is difficult to penetrate into the molded packaging material 1 and is excellent in long-term quality controllability such as tablets of contents that require a water vapor barrier property during storage.
- the molded package material 1 is used for a secondary battery or a pharmaceutical package, but is not particularly limited and may be used for other packaging applications.
- it can also be used as a molded battery material for primary batteries, not secondary batteries.
- deep drawing such as making the recesses deeper than before becomes better, and an outer packaging material for a primary battery with a large amount of accommodation can be formed, so a primary battery with a charging capacity or high output that can withstand long-term use Can be obtained.
- An aluminum ingot having the composition described in Table 1 was prepared, and subjected to the homogenization treatment, cooling, hot rolling, cold rolling, foil rolling and final annealing described in Table 1, and an aluminum alloy foil having a thickness of 40 ⁇ m Got.
- the tensile strength TS, 0.2% proof stress YS and elongation at 0 °, 45 ° and 90 ° with respect to the rolling direction of the obtained aluminum alloy foil were measured, and the result of calculating the value of TS ⁇ (TS / YS) was calculated. It is shown in Table 2.
- Table 2 shows the average crystal grain size of the aluminum alloy foil and the crystal orientation density on the surface of the aluminum alloy foil.
- a laminate composite material simulating an actual battery outer packaging material was made as a prototype, and the results of a rectangular tube drawing test are also shown in Table 2.
- the tensile strength TS of the aluminum alloy foil is a strip-shaped sample piece having a width of 10 mm, a distance between chucks of 50 mm, and a tensile speed of 10 mm / min.
- a tensile test was performed at a speed of 5 mm, the maximum load applied to the strip-shaped sample piece was measured, and the stress divided by the cross-sectional area of the original sample was calculated as the tensile strength.
- the 0.2% proof stress YS crosses the above curve by drawing a parallel line from the permanent strain value of 0.2% from this straight line in the elastic region indicated by the straight line at the initial rise of the load-elongation curve diagram. That is, the value of the point corresponding to the yield point of the steel material or the like was obtained.
- the elongation is [(L-50) / 50] ⁇ 100, where L (mm) is the distance between chucks when the strip-shaped sample piece is broken by the same measurement method as in the case of tensile strength. It
- each aluminum alloy foil obtained in the experimental example was coated with an organosol consisting of 15 parts by weight of maleic anhydride-modified polypropylene having an average particle size of 6-8 ⁇ m and 85 parts by weight of toluene, and dried at 200 ° C. for 20 seconds.
- An adhesive film having a thickness of 2 ⁇ m was obtained.
- a 40 ⁇ m thick polypropylene film was pressure-bonded to the surface of the adhesive film under pressure bonding conditions of a temperature of 200 ° C., a pressure of 2 kg / cm 2 and a time of 1 second.
- the molded packaging material was cut into a size of 120 mm ⁇ 100 mm and used as a sample for a square tube drawing test.
- a punch having a length of 60 mm, a width of 40 mm, a shoulder R, and a corner R of 1.5 mm, a rectangular tube drawing test was performed at a wrinkle suppressing force of 300 kgf.
- the molding height is increased from 1.0 mm to 0.5 mm, and the above-mentioned square tube drawing molding test is performed at each molding height 5 times. The maximum molding height at which no pinholes or cracks occur in all 5 times.
- the results are shown in Table 2. Further, the average crystal grain size of the aluminum alloy foil was measured as follows.
- Each aluminum alloy foil obtained was electropolished at a voltage of 20 V using a 20 volume% perchloric acid + 80 volume% ethanol mixed solution of 5 ° C. or less, washed with water, dried, and then 50 volume% of 25 ° C. or less.
- An anodized film was formed at a voltage of 20 V in a mixed solution of phosphoric acid + 47% by volume methanol + 3% by volume hydrofluoric acid, and then polarized with an optical microscope, the crystal grains were observed and photographed. From the photograph taken, the average crystal grain size was measured by a cutting method.
- the cutting method is a method of counting the number of crystal grains in a certain line segment and obtaining a size obtained by dividing the line segment by the number. Each average grain size is shown in Table 2.
- the Cube azimuth has ⁇ 001 ⁇ ⁇ 100> as the representative azimuth
- the R azimuth has ⁇ 123 ⁇ ⁇ 634> as the representative azimuth. Since there is usually an azimuth dispersion having a certain angle around the azimuth, in this experimental example, the maximum azimuth density in the 15 ° rotation range around the azimuth is taken, did.
- the aluminum alloy foils according to Experimental Examples 1 to 21, 28, 29, and 31 are controlled in the average crystal grain size and the orientation density of the aluminum alloy foil. Compared to such aluminum alloy foils 22 to 27, 30, and 32 to 39, the molding height of the square tube drawing test is large, indicating that the moldability is excellent. Therefore, the molded packaging material obtained using the aluminum alloy foils according to Experimental Examples 1 to 21, 28, 29, and 31 can be satisfactorily deep-drawn and package a relatively thick content. It turns out that it is suitable for. Further, the aluminum alloy foils according to Experimental Examples 1 to 21 are further optimally controlled in the strength balance in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction. It is larger and shows excellent moldability.
- the aluminum alloy foils according to Experimental Examples 1 to 21 are treated with the aluminum alloy foils 22 to 39 according to the Experimental Examples in order to treat the aluminum alloy ingot with a specific composition in a specific process.
- the molding height of the rectangular tube drawing molding test is large, indicating that the moldability is excellent. Therefore, the molded packaging material obtained using the aluminum alloy foils according to Experimental Examples 1 to 21 can be satisfactorily formed by deep drawing and is suitable for packaging a relatively thick content. I understand.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Wrappers (AREA)
- Metal Rolling (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
さらに、特許文献1のアルミニウム合金箔では、成形性を向上させるために圧延方向に対する0度、45度、90度方向の伸び値を11%以上にするものであるが、上記各圧延方向に対する引張強さに対して0.2%耐力の値が大きく、角筒絞り成形時にフランジ部からの材料の流入抵抗が増大するために、成形高さを向上させることができない。
このアルミニウム合金箔によれば、アルミニウム合金箔の組成と表面の結晶方位における、Cube方位密度およびR方位密度と平均結晶粒径が特定の条件を満たすので、良好な成形性を有したアルミニウム合金箔が得られる。
このような規定により、本発明のアルミニウム合金箔は、アルミニウム合金箔の極限変形能が向上し、角筒絞り成形初期での微小クラック等の発生を抑制することができるために、成形高さを向上させることができる。また、角筒絞り成形時にフランジ部からの材料の流入抵抗が減少するために、成形高さを向上させることができる。
(1)アルミニウム合金箔の平均結晶粒径、
(2)アルミニウム合金箔表面の結晶方位密度、
(3)圧延方向に対する0度、45度、90度方向の強度バランス
上記(1)-(3)の全てを満足することが出来、高い成形性を有したアルミニウム合金箔を確実に得ることができる。
本実施形態において、アルミニウム合金箔に含まれるFeの含有量は、0.8~2.0mass%である。Feの含有量が0.8mass%未満になると、引張強さTS及び0.2%耐力YSが共に低下するので、上記圧延方向に対する45度方向のTS×(TS/YS)の値が小さくなり、アルミニウム合金箔の成形性が低下する。また、Feの含有量が2.0mass%を超えると、鋳造時に巨大な金属間化合物が形成され易くなり、角筒絞り試験時における割れの起点となり易くなるので成形性が低下する。Feの含有量は、特に1.1mass%以上、1.6mass%以下が強度の観点からより好ましい。このFeの含有量は、例えば、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0mass%であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
本実施形態において、アルミニウム合金箔における最終焼鈍後の平均結晶粒径は7μm以上、20μm以下である。好ましくは、10μm以上、18μm以下である。この平均結晶粒径は、例えば、7、8、9、10、11、12、13、14、15、16、17、18、19、20μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
なお、アルミニウム合金箔における平均結晶粒径は、公知の方法で測定することができ、例えば、切断法を用いて測定することができる。切断法は、ある線分内に何個結晶粒があるかを数え、線分をその個数で除した大きさを求める方法である。
なお、Cube方位密度及びR方位密度の数値は全てランダム結晶方位密度に対する倍数を表す。
角筒絞り成形時において、コーナーフランジ部では材料が流入しにくくなるので、圧延方向に対する45度方向への材料流入量を特に増加させつつ、圧延方向に対する0度方向や90度方向ともできるだけ材料流入量に絶対値の差がないことが好ましい。
そのためには、圧延方向に対する0度方向と45度方向、圧延方向に対する45度方向と90度方向の材料流入量の差の絶対値をできるだけ小さくすることが、アルミニウム合金箔の成形性向上に大きな効果がある。圧延方向に対する0度方向と45度方向のTS×(TS/YS)の差の絶対値および、圧延方向に対する45度方向と圧延方向に対する90度方向のTS×(TS/YS)の差の絶対値がそれぞれ30N/mm2を超えると、角筒絞り成形時におけるフランジ部への材料流入バランスが悪くなるためにアルミニウム合金箔の成形性が低下する場合がある。
本実施形態における、アルミニウム合金箔は、Fe:0.8~2.0mass%、Si:0.05~0.2mass%、Cu:0.0025~0.2mass%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金鋳塊を500℃以上、620℃以下で1時間以上の均質化保持をする工程と、該均質化保持後に、熱間圧延および冷間圧延を施す工程と、該冷間圧延の途中で、300℃以上450℃以下で保持する中間焼鈍を施す工程と、該熱間圧延後から中間焼鈍前までの冷間圧延率を85%以下で冷間圧延を実施する工程と、該中間焼鈍後から最終箔厚にするまでの冷間圧延率を80%以上、93%以下で、冷間圧延を実施する工程と、該冷間圧延後に最終焼鈍を施して上記アルミニウム合金箔を得る工程によって製造される。以下、本実施形態におけるアルミニウム合金箔の製造方法について詳細に説明する。
また均質化の保持時間については、2時間以上が好ましく、より好ましいのは、5時間以上である。また均質化の保持時間は、例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15時間以上であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
中間焼鈍の温度が300℃未満では、最終焼鈍時に、アルミニウム合金箔の結晶粒が粗大化し易くなり、変形の均一性が阻害され、成形高さを低下させることがあるために好ましくない。
また、中間焼鈍の温度が450℃を超えると、Fe固溶量が増加するために、0.2%耐力が増加するため、上記圧延方向に対する45度方向の引張強さTSと0.2%耐力YSにおいて、TS×(TS/YS)の値が200N/mm2未満となり、得られるアルミニウム合金箔の成形性が低下するため好ましくない。
また、冷間圧延の工程中に中間焼鈍を実施しない場合、熱間圧延後から最終箔厚にするまでの冷間圧延率が大きくなるので、最終焼鈍後のアルミニウム合金箔における結晶方位において、所望のCube方位密度とR方位密度が得られずアルミニウム合金箔の成形性が低下するため好ましくない。
本実施形態におけるアルミニウム合金箔は、成形包装体材料として好適に用いることができる。本明細書でいう成形包装体材料とは、本実施形態のアルミニウム合金箔を、例えば、二次電池用、PTP用等の各種包装用に成形加工したものをいい、包装されるものとしては、医薬品、リチウムイオン二次電池材料(電極材、セパレータ、電解液等を含む。)等が挙げられる。
以下、本実施形態おける成形包装体材料について図面を用いて詳細に説明する。以下の成形包装体材料おける実施形態は、例示であって、限定されない。
本実施形態における成形包装体材料1は、本実施形態におけるアルミニウム合金箔8単体又は本実施形態におけるアルミニウム合金箔8を含む複数層からなるものであってもよく、特に制限されるものではないが、複数層とする場合には、少なくとも構成要素としてアルミニウム合金箔を構成として備えていることが必要である。具体的には、図2に示されるように、合成樹脂製フィルム10、アルミニウム合金箔8、熱封緘層9の順に積層されてなるものを例示することができるが積層構造は特に制限されるものではない。
また、アルミニウム合金箔の平均結晶粒径を以下のようにして測定した。得られた各アルミニウム合金箔を、5℃以下の20容量%過塩素酸+80容量%エタノール混合溶液を用い、電圧20Vで電解研磨を行った後、水洗、乾燥後、25℃以下の50容量%燐酸+47容量%メタノール+3容量%弗化水素酸の混合溶液中で、電圧20Vで陽極酸化皮膜を形成させた後、光学顕微鏡で偏光をかけて、結晶粒を観察し、写真に撮影した。撮影された写真から、切断法にて、平均結晶粒径を測定した。切断法は、ある線分内に何個結晶粒があるかを数え、線分をその個数で除した大きさを求める方法である。各平均結晶粒径を表2に示した。
ここで、Cube方位は{001}<100>を代表方位とし、R方位は{123}<634>を代表方位とした。なお、通常は上記方位を中心に一定角度を持つ方位分散が存在するため、本実験例では、上記方位まわり15°回転範囲の中にある最大方位密度をとり、それぞれ上記方位密度の代表値とした。
実験例23では、添加Si量が多いので、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
実験例24では、添加Fe量が少ないので、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
実験例25では、添加Fe量が多いので、結晶粒が微細であるために、45度方向におけるTS×(TS/YS)の値が低い上に、R方位密度が高くなり、成形高さが向上しなかった。
実験例26では、添加Cu量が少ないので、45度方向におけるTS×(TS/YS)の値が低くフランジ部の材料が流入しにくいために、成形高さが向上しなかった。
実験例27では、添加Cu量が多いので、アルミニウム合金箔表面のCube方位密度が低いために、成形高さが向上しなかった。
実験例28では、均質化処理温度が低いので、45度方向におけるTS×(TS/YS)の値が低く、角筒絞り試験時におけるフランジ部の材料が流入しにくいために、成形高さの向上が少なかった。
実験例29では、均質化処理時の保持時間が短いので、45度方向におけるTS×(TS/YS)の値が低く、角筒絞り試験時におけるフランジ部の材料が流入しにくいために、成形高さの向上が少なかった。
実験例30では、中間焼鈍温度が低いので、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
実験例31では、中間焼鈍温度が高いので、45度方向におけるTS×(TS/YS)の値が低く、角筒絞り試験時におけるフランジ部の材料が流入しにくいために、成形高さの向上が少なかった。
実験例32では、中間焼鈍を実施していないので、結晶粒が微細であるために、45度方向におけるTS×(TS/YS)の値が低く、Cube方位密度が少なくR方位密度が高くなり、さらに0度方向と45度方向のTS×(TS/YS)の差、 45度方向と90度方向のTS×(TS/YS)の差も大きくなったので、成形高さが向上しなかった。
実験例33では、熱間圧延後から中間焼鈍前までの冷間圧延率が大きいので、アルミニウム合金箔表面のCube方位密度が少なく、角筒絞り試験の初期に微小なクラックが発生したので、成形高さが向上しなかった。
実験例34では、中間焼鈍後から最終箔厚にするまでの冷間圧延率が少ないので、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
実験例35では、中間焼鈍後から最終箔厚にするまでの冷間圧延率が大きいので、45度方向におけるTS×(TS/YS)の値が低い上に、Cube方位密度が少なくR方位密度が高くなり、さらに0度方向と45度方向のTS×(TS/YS)の差が大きくなったので、成形高さが向上しなかった。
実験例36では、45度方向におけるTS×(TS/YS)の値が低く、アルミニウム合金箔が再結晶しないために、成形高さが低下した。
実験例37では、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
実験例38では、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
実験例39では、45度方向におけるTS×(TS/YS)の値が低く、アルミニウム合金箔が再結晶しないために、成形高さが低下した。
2 正極集電体
3 正極
4 隔離材(セパレーター)
5 負極
6 負極集電体
7 外装材の端部
8 外装材本体(アルミニウム合金箔)
9 熱封緘層
10 合成樹脂製フィルム
Claims (7)
- Fe:0.8~2.0mass%、Si:0.05~0.2mass%、Cu:0.0025~0.2mass%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金箔であり、
前記アルミニウム合金箔は、前記アルミニウム合金箔表面の結晶方位における、Cube方位密度が5以上で、R方位密度が50以下であり、
前記アルミニウム合金箔の平均結晶粒径は、7~20μmである、
アルミニウム合金箔。 - 前記アルミニウム合金箔は、前記アルミニウム合金箔における圧延方向に対する0度、45度、90度方向のそれぞれの引張強さTSと0.2%耐力YSにおいて、
45度方向におけるTS×(TS/YS)の値が200N/mm2以上であり、
0度方向と45度方向のTS×(TS/YS)の差の絶対値が30N/mm2以下であり、
45度方向と90度方向のTS×(TS/YS)の差の絶対値が30N/mm2以下である、
請求項1記載のアルミニウム合金箔。 - 請求項1または請求項2に記載のアルミニウム合金箔を備える成形包装体材料。
- 前記アルミニウム合金箔の一方の側に積層されてなる合成樹脂製フィルムと、
前記アルミニウム合金箔の他方の側に積層されてなる熱封緘層と、
をさらに備える、請求項3に記載の成形包装体材料。 - 請求項4に記載の成形包装体材料を用いる二次電池。
- 請求項4に記載の成形包装体材料を用いる医薬品包装容器。
- 請求項1または請求項2に記載のアルミニウム合金箔の製造方法であって、
Fe:0.8~2.0mass%、Si:0.05~0.2mass%、Cu:0.0025~0.2mass%、残部がAl及び不可避的不純物から成るアルミニウム合金鋳塊を500℃以上、620℃以下で1時間以上の均質化保持をする工程と、
該均質化保持後に、熱間圧延および冷間圧延を施す工程と、
該冷間圧延の途中で、300℃以上450℃以下で保持する中間焼鈍を施す工程と、
該熱間圧延後から該中間焼鈍前までの冷間圧延率を85%以下で冷間圧延を実施する工程と、
該中間焼鈍後から最終箔厚にするまでの冷間圧延率を80%以上93%以下で冷間圧延を実施する工程と、
該冷間圧延後に最終焼鈍を施して前記アルミニウム合金箔を得る工程と、
を含む、方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147034609A KR102090529B1 (ko) | 2012-05-11 | 2013-04-26 | 알루미늄 합금호일 및 그 제조 방법, 성형 포장체 재료, 이차전지, 의약품 포장 용기 |
JP2014514684A JP6381441B2 (ja) | 2012-05-11 | 2013-04-26 | アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器 |
CN201380021238.6A CN104364401B (zh) | 2012-05-11 | 2013-04-26 | 铝合金箔及其制造方法、成形包装体材料、二次电池、医药品包装容器 |
HK15105151.7A HK1204661A1 (en) | 2012-05-11 | 2015-05-29 | Aluminum alloy foil and method for producing same, molded packaging material, secondary cell, and medical drug container |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-109923 | 2012-05-11 | ||
JP2012109923 | 2012-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013168606A1 true WO2013168606A1 (ja) | 2013-11-14 |
Family
ID=49550651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/062396 WO2013168606A1 (ja) | 2012-05-11 | 2013-04-26 | アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器 |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP6381441B2 (ja) |
KR (1) | KR102090529B1 (ja) |
CN (1) | CN104364401B (ja) |
HK (1) | HK1204661A1 (ja) |
TW (1) | TWI564400B (ja) |
WO (1) | WO2013168606A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5976158B1 (ja) * | 2015-04-16 | 2016-08-23 | 三菱アルミニウム株式会社 | Ptp用アルミニウム箔及びその製造方法 |
JP2017115225A (ja) * | 2015-12-25 | 2017-06-29 | 株式会社神戸製鋼所 | アルミニウム合金硬質箔 |
JP2018115376A (ja) * | 2017-01-19 | 2018-07-26 | 株式会社神戸製鋼所 | 成形用アルミニウム合金軟質箔 |
JP2020007629A (ja) * | 2018-07-12 | 2020-01-16 | 東洋アルミニウム株式会社 | アルミニウム合金箔及びその製造方法 |
KR20200027918A (ko) | 2017-07-06 | 2020-03-13 | 미츠비시 알루미늄 컴파니 리미티드 | 알루미늄 합금박 및 알루미늄 합금박의 제조 방법 |
WO2020137394A1 (ja) * | 2018-12-26 | 2020-07-02 | 三菱アルミニウム株式会社 | アルミニウム合金箔およびアルミニウム合金箔の製造方法 |
WO2021079979A1 (ja) * | 2019-10-23 | 2021-04-29 | 三菱アルミニウム株式会社 | アルミニウム合金箔およびその製造方法 |
CN113782878A (zh) * | 2020-06-09 | 2021-12-10 | 株式会社Lg化学 | 袋膜、袋型电池壳体、和袋型二次电池 |
JP2022031681A (ja) * | 2016-12-28 | 2022-02-22 | 大日本印刷株式会社 | 電池用包装材料用アルミニウム合金箔、電池用包装材料、及び電池 |
JP2022047475A (ja) * | 2020-09-11 | 2022-03-24 | 中▲ロ▼材料応用研究院有限公司 | アルミニウム箔、その製造方法及び用途 |
WO2022138620A1 (ja) * | 2020-12-25 | 2022-06-30 | Maアルミニウム株式会社 | アルミニウム合金箔 |
JP2022103056A (ja) * | 2020-12-25 | 2022-07-07 | 三菱アルミニウム株式会社 | アルミニウム合金箔 |
JPWO2022185876A1 (ja) * | 2021-03-05 | 2022-09-09 | ||
WO2022224615A1 (ja) | 2021-04-22 | 2022-10-27 | Maアルミニウム株式会社 | アルミニウム合金箔 |
US11566311B2 (en) | 2017-07-06 | 2023-01-31 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy foil, and method for producing aluminum alloy foil |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109075268B (zh) * | 2016-04-14 | 2021-04-30 | 大日本印刷株式会社 | 电池用包装材料、其制造方法、电池用包装材料的成型时的不良判定方法、铝合金箔 |
CN106311747B (zh) * | 2016-08-23 | 2018-03-27 | 江苏中基复合材料股份有限公司 | 锂离子电池软包装铝塑膜用铝箔及其生产工艺 |
CN114865176B (zh) * | 2017-09-28 | 2024-06-04 | 大日本印刷株式会社 | 电池用包装材料、其制造方法、电池和铝合金箔 |
CN112848577A (zh) * | 2019-11-27 | 2021-05-28 | 无锡恩捷新材料科技有限公司 | 一种高冲深电池装置用外包装材料及电池 |
CN215955368U (zh) * | 2020-04-14 | 2022-03-04 | 株式会社Lg化学 | 袋型电池壳体和袋型二次电池 |
CN113059884A (zh) * | 2021-03-17 | 2021-07-02 | 上海恩捷新材料科技有限公司 | 一种电池元件用高成型且耐久性优异的外包装材料及电池 |
CN113927973A (zh) * | 2021-09-30 | 2022-01-14 | 江西睿捷新材料科技有限公司 | 一种高冲深电池装置用外包装材料 |
CN113789461B (zh) * | 2021-11-15 | 2022-03-29 | 山东宏桥新型材料有限公司 | 一种电池铝合金箔及其制备方法、电池集流体 |
CN114045416A (zh) * | 2021-11-20 | 2022-02-15 | 中铝瑞闽股份有限公司 | 一种电池软包铝塑膜基层用铝箔坯料及其制备方法 |
CN114592145B (zh) * | 2022-01-27 | 2022-11-22 | 晟通科技集团有限公司 | 铝钛箔的生产方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007308805A (ja) * | 2002-05-07 | 2007-11-29 | Nippon Foil Mfg Co Ltd | アルミニウム合金箔及びその製造方法 |
JP2012052158A (ja) * | 2010-08-31 | 2012-03-15 | Toyo Aluminium Kk | アルミニウム箔と容器 |
WO2012036181A1 (ja) * | 2010-09-16 | 2012-03-22 | 古河スカイ株式会社 | 成形包装体材料 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005163077A (ja) | 2003-12-01 | 2005-06-23 | Mitsubishi Alum Co Ltd | 包装材用高成形性アルミニウム箔及びその製造方法 |
JP4799903B2 (ja) | 2005-05-09 | 2011-10-26 | 住友軽金属工業株式会社 | 耐食性と強度に優れたアルミニウム合金箔およびその製造方法 |
CN100453672C (zh) * | 2007-06-11 | 2009-01-21 | 江苏常铝铝业股份有限公司 | 包装用铝合金箔材及其制造方法 |
EP2192202B2 (de) * | 2008-11-21 | 2022-01-12 | Speira GmbH | Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit |
-
2013
- 2013-04-26 KR KR1020147034609A patent/KR102090529B1/ko active IP Right Grant
- 2013-04-26 CN CN201380021238.6A patent/CN104364401B/zh active Active
- 2013-04-26 JP JP2014514684A patent/JP6381441B2/ja active Active
- 2013-04-26 WO PCT/JP2013/062396 patent/WO2013168606A1/ja active Application Filing
- 2013-05-09 TW TW102116475A patent/TWI564400B/zh active
-
2015
- 2015-05-29 HK HK15105151.7A patent/HK1204661A1/xx unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007308805A (ja) * | 2002-05-07 | 2007-11-29 | Nippon Foil Mfg Co Ltd | アルミニウム合金箔及びその製造方法 |
JP2012052158A (ja) * | 2010-08-31 | 2012-03-15 | Toyo Aluminium Kk | アルミニウム箔と容器 |
WO2012036181A1 (ja) * | 2010-09-16 | 2012-03-22 | 古河スカイ株式会社 | 成形包装体材料 |
Non-Patent Citations (1)
Title |
---|
MASASHI SAKAGUCHI: "Relationship between tensile properties and recrystallized structures of Al-1.2%Fe-Si alloy foils", JOURNAL OF JAPAN INSTITUTE OF LIGHT METALS, vol. 38, no. 2, 1988, pages 84 - 90 * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5976158B1 (ja) * | 2015-04-16 | 2016-08-23 | 三菱アルミニウム株式会社 | Ptp用アルミニウム箔及びその製造方法 |
JP2016204683A (ja) * | 2015-04-16 | 2016-12-08 | 三菱アルミニウム株式会社 | Ptp用アルミニウム箔及びその製造方法 |
JP2017115225A (ja) * | 2015-12-25 | 2017-06-29 | 株式会社神戸製鋼所 | アルミニウム合金硬質箔 |
US11258123B2 (en) * | 2016-12-28 | 2022-02-22 | Dai Nippon Printing Co., Ltd. | Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery |
JP7414114B2 (ja) | 2016-12-28 | 2024-01-16 | 大日本印刷株式会社 | 電池用包装材料用アルミニウム合金箔、電池用包装材料、及び電池 |
JP2023018087A (ja) * | 2016-12-28 | 2023-02-07 | 大日本印刷株式会社 | 電池用包装材料用アルミニウム合金箔、電池用包装材料、及び電池 |
US11820104B2 (en) | 2016-12-28 | 2023-11-21 | Dai Nippon Printing Co., Ltd. | Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery |
JP2022031681A (ja) * | 2016-12-28 | 2022-02-22 | 大日本印刷株式会社 | 電池用包装材料用アルミニウム合金箔、電池用包装材料、及び電池 |
JP7184142B2 (ja) | 2016-12-28 | 2022-12-06 | 大日本印刷株式会社 | 電池用包装材料用アルミニウム合金箔、電池用包装材料、及び電池 |
JP2018115376A (ja) * | 2017-01-19 | 2018-07-26 | 株式会社神戸製鋼所 | 成形用アルミニウム合金軟質箔 |
US11268171B2 (en) | 2017-07-06 | 2022-03-08 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy foil, and method for producing aluminum alloy foil |
KR20200027918A (ko) | 2017-07-06 | 2020-03-13 | 미츠비시 알루미늄 컴파니 리미티드 | 알루미늄 합금박 및 알루미늄 합금박의 제조 방법 |
US11566311B2 (en) | 2017-07-06 | 2023-01-31 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy foil, and method for producing aluminum alloy foil |
WO2020013234A1 (ja) * | 2018-07-12 | 2020-01-16 | 東洋アルミニウム株式会社 | アルミニウム合金箔及びその製造方法 |
JP7128676B2 (ja) | 2018-07-12 | 2022-08-31 | 東洋アルミニウム株式会社 | アルミニウム合金箔及びその製造方法 |
JP2020007629A (ja) * | 2018-07-12 | 2020-01-16 | 東洋アルミニウム株式会社 | アルミニウム合金箔及びその製造方法 |
JP6754025B1 (ja) * | 2018-12-26 | 2020-09-09 | 三菱アルミニウム株式会社 | アルミニウム合金箔およびアルミニウム合金箔の製造方法 |
KR102501356B1 (ko) | 2018-12-26 | 2023-02-17 | 엠에이 알루미늄 가부시키가이샤 | 알루미늄 합금박 및 알루미늄 합금박의 제조 방법 |
KR20210060589A (ko) | 2018-12-26 | 2021-05-26 | 미츠비시 알루미늄 컴파니 리미티드 | 알루미늄 합금박 및 알루미늄 합금박의 제조 방법 |
JP2021075778A (ja) * | 2018-12-26 | 2021-05-20 | 三菱アルミニウム株式会社 | 電池用の包材用アルミニウム合金箔 |
WO2020137394A1 (ja) * | 2018-12-26 | 2020-07-02 | 三菱アルミニウム株式会社 | アルミニウム合金箔およびアルミニウム合金箔の製造方法 |
JP2021066927A (ja) * | 2019-10-23 | 2021-04-30 | 三菱アルミニウム株式会社 | アルミニウム合金箔 |
WO2021079979A1 (ja) * | 2019-10-23 | 2021-04-29 | 三菱アルミニウム株式会社 | アルミニウム合金箔およびその製造方法 |
CN113782878A (zh) * | 2020-06-09 | 2021-12-10 | 株式会社Lg化学 | 袋膜、袋型电池壳体、和袋型二次电池 |
JP2022047475A (ja) * | 2020-09-11 | 2022-03-24 | 中▲ロ▼材料応用研究院有限公司 | アルミニウム箔、その製造方法及び用途 |
JP7280304B2 (ja) | 2020-09-11 | 2023-05-23 | 中▲ロ▼材料応用研究院有限公司 | アルミニウム箔、その製造方法及び用途 |
JP7303274B2 (ja) | 2020-12-25 | 2023-07-04 | Maアルミニウム株式会社 | アルミニウム合金箔 |
EP4269639A4 (en) * | 2020-12-25 | 2024-02-14 | MA Aluminum Corporation | ALUMINUM ALLOY FOIL |
JP2022103056A (ja) * | 2020-12-25 | 2022-07-07 | 三菱アルミニウム株式会社 | アルミニウム合金箔 |
US12031198B2 (en) | 2020-12-25 | 2024-07-09 | Ma Aluminum Corporation | Aluminum alloy foil |
WO2022138620A1 (ja) * | 2020-12-25 | 2022-06-30 | Maアルミニウム株式会社 | アルミニウム合金箔 |
JPWO2022185876A1 (ja) * | 2021-03-05 | 2022-09-09 | ||
WO2022185876A1 (ja) * | 2021-03-05 | 2022-09-09 | Maアルミニウム株式会社 | アルミニウム合金箔およびその製造方法 |
JP7334374B2 (ja) | 2021-03-05 | 2023-08-28 | Maアルミニウム株式会社 | アルミニウム合金箔およびその製造方法 |
JPWO2022224615A1 (ja) * | 2021-04-22 | 2022-10-27 | ||
WO2022224615A1 (ja) | 2021-04-22 | 2022-10-27 | Maアルミニウム株式会社 | アルミニウム合金箔 |
EP4253583A4 (en) * | 2021-04-22 | 2024-02-14 | MA Aluminum Corporation | ALUMINUM ALLOY SHEET |
US20230392239A1 (en) * | 2021-04-22 | 2023-12-07 | Ma Aluminum Corporation | Aluminum alloy foil |
US12012648B2 (en) | 2021-04-22 | 2024-06-18 | Ma Aluminum Corporation | Aluminum alloy foil |
JP7376749B2 (ja) | 2021-04-22 | 2023-11-08 | Maアルミニウム株式会社 | アルミニウム合金箔 |
Also Published As
Publication number | Publication date |
---|---|
TWI564400B (zh) | 2017-01-01 |
CN104364401B (zh) | 2017-03-15 |
KR102090529B1 (ko) | 2020-03-18 |
JPWO2013168606A1 (ja) | 2016-01-07 |
TW201402832A (zh) | 2014-01-16 |
HK1204661A1 (en) | 2015-11-27 |
CN104364401A (zh) | 2015-02-18 |
JP6381441B2 (ja) | 2018-08-29 |
KR20150008474A (ko) | 2015-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6381441B2 (ja) | アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器 | |
JP6322577B2 (ja) | アルミニウム合金箔及びその製造方法 | |
JP5841537B2 (ja) | 成形包装体材料 | |
JP6058363B2 (ja) | アルミニウム合金箔、成形包装体材料、電池、医薬品包装容器、及びアルミニウム合金箔の製造方法 | |
CN103223753B (zh) | 成形用包装材料和锂二次电池 | |
CN104254624B (zh) | 电极集电体用铝合金箔、其制造方法以及锂离子二次电池 | |
CN103270182A (zh) | 电极集电体用铝合金箔及其制造方法 | |
JP6220773B2 (ja) | 電極集電体用アルミニウム合金箔の製造方法 | |
KR20230145964A (ko) | 파우치 필름 적층체, 파우치 형 전지 케이스 및 파우치 형 이차 전지 | |
CN103262317A (zh) | 电极集电体用铝合金箔及其制造方法 | |
JP6719880B2 (ja) | 蓄電デバイスの外装材用シーラントフィルム、蓄電デバイス用外装材、蓄電デバイス及び蓄電デバイス外装材のシーラントフィルム用樹脂組成物の製造方法 | |
WO2021023027A1 (zh) | 金属锂带、预补锂极片、预补锂方法、二次电池、二次电池的制备方法及装置 | |
JP2001176459A (ja) | 二次電池用外装材料及びその製造方法 | |
CN116323035A (zh) | 铝合金箔及其制造方法 | |
JPH11176397A (ja) | 電池及び製造方法 | |
WO2023277100A1 (ja) | 蓄電デバイス、及び、蓄電デバイスの製造方法 | |
WO2023135818A1 (ja) | 集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法 | |
JP2023137528A (ja) | アルミニウム合金箔、構成体及び包装材料 | |
WO2020175327A1 (ja) | アルミニウム合金箔およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13787549 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014514684 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147034609 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13787549 Country of ref document: EP Kind code of ref document: A1 |