WO2013168606A1 - アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器 - Google Patents

アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器 Download PDF

Info

Publication number
WO2013168606A1
WO2013168606A1 PCT/JP2013/062396 JP2013062396W WO2013168606A1 WO 2013168606 A1 WO2013168606 A1 WO 2013168606A1 JP 2013062396 W JP2013062396 W JP 2013062396W WO 2013168606 A1 WO2013168606 A1 WO 2013168606A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy foil
mass
cold rolling
foil
Prior art date
Application number
PCT/JP2013/062396
Other languages
English (en)
French (fr)
Inventor
雅和 石
鈴木 覚
Original Assignee
古河スカイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河スカイ株式会社 filed Critical 古河スカイ株式会社
Priority to KR1020147034609A priority Critical patent/KR102090529B1/ko
Priority to JP2014514684A priority patent/JP6381441B2/ja
Priority to CN201380021238.6A priority patent/CN104364401B/zh
Publication of WO2013168606A1 publication Critical patent/WO2013168606A1/ja
Priority to HK15105151.7A priority patent/HK1204661A1/xx

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/28Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
    • B65D75/30Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
    • B65D75/32Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding one or both sheets or blanks being recessed to accommodate contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/04Containers or packages with special means for dispensing contents for dispensing annular, disc-shaped, or spherical or like small articles, e.g. tablets or pills
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum alloy foil having high formability, a method for producing the same, a molded package material, a secondary battery, and a pharmaceutical packaging container.
  • PTP press-through package
  • a container which is known as a molded package material for packaging pharmaceutical products
  • PTP press-through package
  • the container is required to be deep drawn, and in a normal strip package, a plastic film, for example, a resin film such as polypropylene is used as the container.
  • a resin film such as polypropylene
  • tablets with contents that require water vapor barrier properties during storage are often used as composites in which an aluminum foil and a resin film having high barrier properties are bonded to one or both sides.
  • there are various forms and sizes of pharmaceuticals and it has become necessary to form a package for packaging them more deeply than before.
  • a material having a composite structure in which a resin film is bonded to both surfaces of an aluminum alloy foil is also used for an exterior material, which is a molded package material of a secondary battery, in order to impart water vapor barrier properties.
  • secondary batteries such as sheet-like thin lithium-ion secondary batteries have come in handy as a driving source for electronic devices such as mobile communication devices, notebook computers, headphone stereos, and camcorders. Secondary batteries are required to have a charge capacity or high output that can withstand long-term use. For this reason, the structure of the element composed of battery electrodes and separators has become complicated and multilayered, and molding under severe conditions such as deeper recess molding has been required.
  • the packaging body 1 for molding is generally laminated with a heat sealing layer 9 on one side of the exterior material body 8 and laminated with a synthetic resin film 10 on the other side. It is the mode which was done.
  • the package 1 is formed so that a central portion thereof is a concave portion and a peripheral portion thereof is a flat portion in order to accommodate a laminated body such as the positive electrode current collector 2. Therefore, it is necessary to adopt a material having good moldability for the exterior material body 8, the heat sealing layer 9, and the synthetic resin film 10.
  • a metal foil particularly an aluminum alloy foil, which is difficult to permeate moisture and air and has excellent formability, is preferably used so as not to adversely affect the quality of the contents.
  • the aluminum alloy foil a composition defined in JIS 1100, 3003, 8079 or 8021 is mainly used.
  • an aluminum foil having a thickness of 20 to 60 ⁇ m and an elongation of 0%, 45 °, and 90 ° in the rolling direction of 11% or more is proposed as the exterior material body 8 (Patent Document 1).
  • the exterior material body 8 is an aluminum alloy excellent in corrosion resistance containing 0.8 to 2.0% Fe, 0.02 to 0.05% Cu, and 0.03 to 0.1% Si.
  • a foil has been proposed. (Patent Document 2).
  • the elongation values in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction are set to 11% or more in order to improve the formability.
  • the value of 0.2% proof stress is large with respect to the strength, and the inflow resistance of the material from the flange portion increases at the time of rectangular tube drawing, so the molding height cannot be improved.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an aluminum alloy foil having good formability to solve the above problems, a method for producing the same, a molded package material, a secondary battery, and a pharmaceutical packaging container. To do.
  • the present inventor examined aluminum alloy foil used as a molding and packaging material, and aluminum alloy foil, molded packaging material, secondary battery, and pharmaceutical packaging container obtained by regulating the components to an appropriate range are particularly excellent.
  • the ingot homogenization temperature and the intermediate annealing temperature the cold rolling rate from the hot rolling to before the intermediate annealing and the final foil after the intermediate annealing
  • the inventors have found that the above-described excellent aluminum alloy foil can be stably and reliably obtained by controlling the cold rolling rate until the thickness is increased, and have reached the present invention.
  • Fe 0.8 to 2.0 mass%, Si: 0.05 to 0.2 mass%, Cu: 0.0025 to 0.2 mass%, the balance being Al and inevitable
  • An aluminum alloy foil having a diameter of 7 to 20 ⁇ m is provided. According to this aluminum alloy foil, since the Cube orientation density, the R orientation density, and the average crystal grain size in the composition and surface crystal orientation of the aluminum alloy foil satisfy specific conditions, the aluminum alloy foil having good formability Is obtained.
  • the aluminum alloy foil further includes TS ⁇ (45 ⁇ direction) in the tensile strength TS and 0.2% proof stress YS in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction of the aluminum alloy foil.
  • TS / YS is 200 N / mm 2 or more
  • the absolute value of the difference between TS ⁇ (TS / YS) in the 0 degree direction and 45 degree direction is 30 N / mm 2 or less
  • the absolute value of the difference of direction TS ⁇ (TS / YS) is preferably 30 N / mm 2 or less.
  • the aluminum alloy foil of the present invention improves the ultimate deformability of the aluminum alloy foil, and can suppress the occurrence of microcracks and the like at the initial stage of rectangular tube drawing. Can be improved.
  • the molding height can be improved.
  • a molded package material provided with the aluminum alloy foil.
  • this molded packaging material since the aluminum alloy foil having the above-mentioned good moldability is used, it is possible to increase the molding height, and as a molded packaging material such as a secondary battery exterior material. Deep concave molding can be performed. As a result, the amount that can be stored in the molding recess is increased, and the capacity can be further increased.
  • the present invention it is preferable to provide a secondary battery using the above-described molded package material.
  • the molded packaging material having the above-mentioned deep recess molding is used, the filling amount of the battery material such as an electrode material that can be stored in the molding recess of the secondary battery exterior material increases.
  • the battery capacity can be further increased, which contributes to the enhancement of the performance of the secondary battery.
  • a pharmaceutical packaging container using the molded packaging material described above.
  • the molded packaging material having the above-described deep recess molding is used, it can be stored in the molding recess of the pharmaceutical packaging container, so that the amount of medicine storage and the degree of freedom of shape selection are further increased. Can be improved.
  • a method for producing the above aluminum alloy foil wherein Fe: 0.8 to 2.0 mass%, Si: 0.05 to 0.2 mass%, Cu: 0.0025 to 0.00.
  • a step of performing cold rolling a step of performing cold rolling at a cold rolling rate from 80% to 93% from the intermediate annealing to the final foil thickness, and a final annealing after the cold rolling. And obtaining the aluminum alloy foil Including, a method is provided.
  • this aluminum alloy foil in order to process an aluminum alloy ingot of a specific composition in a specific process, (1) Average crystal grain size of aluminum alloy foil, (2) Crystal orientation density on the surface of aluminum alloy foil, (3) Strength balance of 0 degree, 45 degree, 90 degree direction with respect to rolling direction All the above (1)-(3) can be satisfied, and an aluminum alloy foil having high formability can be obtained reliably. it can.
  • the aluminum alloy foil of the present invention is required to have high formability such as a lithium ion secondary battery and a pharmaceutical packaging container because the average crystal grain size and the predetermined orientation density of the aluminum alloy are optimally controlled.
  • An aluminum alloy foil suitable for a molded package material can be provided.
  • the content of Fe contained in the aluminum alloy foil is 0.8 to 2.0 mass%.
  • both the tensile strength TS and the 0.2% proof stress YS decrease, so the value of TS ⁇ (TS / YS) in the 45 degree direction with respect to the rolling direction decreases.
  • the formability of the aluminum alloy foil is reduced.
  • the Fe content exceeds 2.0 mass%, a huge intermetallic compound is likely to be formed at the time of casting, and it tends to be a starting point of cracking at the time of the rectangular tube drawing test, so that the formability is lowered.
  • the Fe content is more preferably 1.1 mass% or more and 1.6 mass% or less from the viewpoint of strength.
  • the Fe content is, for example, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1 .8, 1.9, 2.0 mass%, and may be in a range between any two values of the numerical values exemplified here.
  • the content of Si contained in the aluminum alloy foil is 0.05 to 0.2 mass%.
  • the Si content is less than 0.05 mass%, the tensile strength TS and the 0.2% proof stress YS decrease, so the value of TS ⁇ (TS / YS) in the 45 ° direction with respect to the rolling direction decreases. , The moldability is reduced.
  • high-purity metal (Al) is used, which is not economically preferable.
  • the Si content exceeds 0.2 mass%, the crystallized material size in the aluminum alloy foil increases, and the number of crystallized materials decreases.
  • the content of Si is particularly preferably 0.06 mass% or more and 0.1 mass% or less from the viewpoint of strength and average crystal grain size.
  • the Si content is, for example, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0 .15, 0.16, 0.17, 0.18, 0.19, 0.20 mass%, and may be within a range between any two values of the numerical values exemplified here.
  • the content of Cu contained in the aluminum alloy foil is 0.0025 to 0.2 mass%.
  • the strength of the aluminum alloy foil is improved.
  • the Cu content is less than 0.0025 mass%, the tensile strength TS and the 0.2% proof stress YS are reduced, and the value of TS ⁇ (TS / YS) in the 45 degree direction with respect to the rolling direction is reduced.
  • the formability of the aluminum alloy foil is reduced.
  • the Cu content exceeds 0.2 mass%, the Cube orientation density on the surface of the aluminum alloy foil is lowered, so that the formability of the aluminum alloy foil is lowered.
  • the content of Cu is particularly preferably 0.005 mass% or more and 0.05 mass% or less from the viewpoint of strength and crystal orientation of the aluminum alloy foil surface.
  • the Cu content is, for example, 0.0025, 0.0100, 0.0150, 0.0200, 0.0250, 0.0300, 0.0350, 0.0400, 0.0500, 0.0600, 0 0.0700, 0.0800, 0.0900, 0.1000, 0.1100, 0.1200, 0.1300, 0.1400, 0.1500, 0.1600, 0.1700, 0.1800, 0.1900 0.2000 mass%, and may be within a range between any two values illustrated here.
  • the inevitable impurities contained in the aluminum alloy foil are individually 0.05 mass% or less, and the total is 0.15 mass% or less.
  • inevitable impurities such as Ti, Mn, Mg, Zn and the like individually exceed 0.05 mass% and the total amount is 0.15 mass%, curing during rolling is large, and breakage during rolling tends to occur.
  • the average crystal grain diameter after the last annealing in aluminum alloy foil is 7 micrometers or more and 20 micrometers or less. Preferably, they are 10 micrometers or more and 18 micrometers or less.
  • This average crystal grain size is, for example, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ⁇ m, and between any two of the numerical values exemplified here It may be within the range.
  • the average crystal grain diameter in aluminum alloy foil can be measured by a well-known method, for example, can be measured using a cutting method.
  • the cutting method is a method of counting the number of crystal grains in a certain line segment and obtaining a size obtained by dividing the line segment by the number.
  • the average crystal grain size of the aluminum alloy foil after the final annealing is greatly affected by the amount of added elements and various conditions during production. In particular, it is greatly affected by the amount of Fe and Si to be added, the cold rolling rate from the intermediate annealing to the final foil thickness, and the final annealing conditions. In order to obtain the above average grain size, it is necessary to appropriately adjust the amounts of these additive elements and the production conditions. If the average grain size of the aluminum alloy foil is less than 7 ⁇ m, the increase in 0.2% proof stress YS is larger than the tensile strength TS. The value of YS) decreases and the formability of the aluminum alloy foil decreases.
  • the average crystal grain size of the aluminum alloy foil exceeds 20 ⁇ m, since the number of crystal grains occupying in the cross-sectional direction of the plate thickness is small, the localization of deformation is likely to occur, and the formability of the aluminum alloy foil is lowered. .
  • the aluminum alloy foil has a Cube orientation density on the foil surface of 5 or more and an R orientation density of 50 or less after the final annealing. More preferably, after the final annealing, the Cube orientation density on the foil surface is 7 or more and the R orientation density is 30 or less.
  • the numerical values of the Cube orientation density and the R orientation density all represent multiples of the random crystal orientation density.
  • the Cube orientation was ⁇ 001 ⁇ ⁇ 100> as the representative orientation, and the R orientation was ⁇ 123 ⁇ ⁇ 634> as the representative orientation.
  • the crystal orientation density on the surface of the aluminum alloy foil was measured by measuring incomplete pole figures of ⁇ 100 ⁇ , ⁇ 110 ⁇ , and ⁇ 111 ⁇ , and conducting a three-dimensional crystal orientation analysis (ODF) based on these. .
  • ODF three-dimensional crystal orientation analysis
  • the data obtained by measuring a sample having a random crystal orientation made from aluminum powder is used as a standardized file for analysis of ⁇ 100 ⁇ , ⁇ 110 ⁇ , ⁇ 111 ⁇ pole figures.
  • various orientation densities were obtained as multiples of the sample having a random orientation.
  • the crystal orientation density is all based on three-dimensional crystal orientation analysis (ODF).
  • Cube orientation density on the surface of the aluminum alloy foil is less than 5 and the R orientation density exceeds 50, minute cracks and the like are likely to be formed in the shoulder at the initial stage of rectangular tube drawing. Sex is reduced.
  • Cube orientation density is, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26. 27, 28, 29, 30 or more, and may be within a range between any two of the numerical values exemplified here.
  • the R orientation density is, for example, 50, 45, 40, 35, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or less, where It may be within a range between any two of the exemplified numerical values.
  • the shoulder portion is formed by the overhang forming.
  • the shoulder radius R is small, such as a lithium ion secondary battery that requires a high battery capacity
  • the shoulder is locally deformed and has defects such as microcracks. Since it becomes easy, it often leads to breakage starting from this defect. That is, in the initial stage of the rectangular tube drawing forming the shoulder portion, it is important to improve the molding height to reduce the occurrence of microcracks and the like that are formed during the stretch molding.
  • the ultimate deformability of the aluminum alloy foil is improved, resulting in a large strain on the aluminum alloy foil surface such as local overhang forming.
  • the deformation process there is an effect of making it difficult to cause plastic instability as typified by constriction.
  • the value of (TS / YS) is the ratio of 0.2% proof stress YS to tensile strength TS, and the inventor has more regions where uniform deformation is obtained as this value is larger than a predetermined value. It has been found that the material into the flange portion can easily flow in at the time of cylinder drawing, and that the higher the tensile strength TS, the better the fracture resistance. That is, it is preferable that the mechanical properties desired for the aluminum alloy foil used in the present embodiment is a material having a high tensile strength TS and a low 0.2% proof stress YS within an optimized range.
  • TS ⁇ (TS / YS) which is a value obtained by multiplying the value of (TS / YS) by the tensile strength TS corresponding to the fracture resistance, has a very high correlation with the molding height in this embodiment, It can be used as one of indexes indicating formability in a square tube drawing test.
  • the aluminum alloy foil has a tensile strength TS of 0, 45, and 90 degrees in the rolling direction and a 0.2% proof stress YS.
  • TS ⁇ (TS / YS) in the 45 degree direction with respect to the rolling direction It is preferable that the value satisfies 200 N / mm 2 or more. More preferably, it is 210 N / mm 2 or more.
  • the value of TS ⁇ (TS / YS) in the 45 degree direction with respect to the rolling direction is, for example, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 215, 220, 230, 240, 250 N / mm 2 , and may be within a range between any two values illustrated here.
  • TS ⁇ (TS / YS) in the 45 ° direction with respect to the rolling direction in the aluminum alloy foil of this embodiment is less than 200 N / mm 2 , it is difficult to improve the formability of the aluminum alloy foil.
  • the corner flanges at the four corners are deformed by shrinkage flanges, so that the material flows in. Resistance increases and material does not flow easily.
  • the material in the 45-degree direction with respect to the rolling direction is less likely to flow into the 0-degree direction and the 90-degree direction with respect to the rolling direction corresponding to the straight-side direction and the short-side direction. It is effective to increase the amount of material inflow in the 45 degree direction with respect to the rolling direction.
  • the aluminum alloy foil has an absolute value of a difference between TS ⁇ (TS / YS) in the 0 ° direction and 45 ° direction with respect to the rolling direction, and TS ⁇ (TS in the 45 ° direction and 90 ° direction with respect to the rolling direction.
  • / YS preferably has an absolute value of 30 N / mm 2 or less. More preferably, it is 10 N / mm 2 or less.
  • the absolute value of is, for example, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 , 1, 0 N / mm 2 , and is one of the numerical values exemplified here It may be within a range between the two values.
  • the material is less likely to flow into the corner flange, so the amount of material flowing in the 45 degree direction with respect to the rolling direction is particularly increased, while the material flows in as much as possible in the 0 degree direction and 90 degree direction with respect to the rolling direction. It is preferred that there is no difference in absolute value in quantity.
  • the elongation of the aluminum alloy foil can be adjusted as appropriate by changing the average crystal grain size, strength, and the like.
  • the elongation values in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction in the aluminum alloy foil are all 17% or more because the formability of the aluminum alloy foil becomes good. More preferably, the elongation values in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction are all 20% or more.
  • the thickness of the aluminum alloy foil is arbitrary, and can be appropriately adjusted according to the application, molding conditions, etc., but is generally preferably 10 to 100 ⁇ m.
  • the thickness of the aluminum alloy foil exceeds 100 ⁇ m, the thickness of the entire package becomes too thick, and it is difficult to reduce the size of the resulting molded package, which is not preferable.
  • the aluminum alloy foil is composed of Fe: 0.8 to 2.0 mass%, Si: 0.05 to 0.2 mass%, Cu: 0.0025 to 0.2 mass. % Of the aluminum alloy ingot containing Al and inevitable impurities, and a step of homogenizing and holding at 500 ° C. or more and 620 ° C. or less for 1 hour or more, and after the homogenization holding, hot rolling and cooling
  • a step of performing cold rolling in step a step of performing cold rolling at a cold rolling rate of 80% or more and 93% or less from the intermediate annealing to the final foil thickness, and after the cold rolling Final annealing and aluminum It is produced by obtaining a gold leaf.
  • the manufacturing method of the aluminum alloy foil in this embodiment is demonstrated in detail.
  • the aluminum alloy foil manufacturing method preferably obtains an ingot by a semi-continuous casting method after melting the aluminum alloy having the above composition. Thereafter, the aluminum alloy ingot is homogenized. This homogenization treatment is held at 500 ° C. or higher and 620 ° C. or lower for 1 hour or longer. Hot rolling is started after this homogenization treatment. In the homogenization treatment, the effect of reducing the Fe solid solution amount can be expected by increasing the size of the Fe-based precipitates and sparsely distributing them.
  • the Fe-based precipitates are not sufficiently coarsened, so the amount of Fe solid solution is high and there are many fine Fe-based precipitates.
  • 0.2% proof stress is high, and the tensile strength TS in the 45 degree direction with respect to the rolling direction and the 0.2% proof stress YS have a TS ⁇ (TS / YS) value of less than 200 N / mm 2 , and the aluminum alloy foil This is not preferable because the moldability of the resin deteriorates. Further, it is not sufficient for sufficiently eliminating the segregation formed during casting existing in the ingot.
  • the homogenization temperature is preferably 550 ° C. or higher and 620 ° C. or lower, more preferably 580 ° C. or higher and 615 ° C. or lower.
  • the temperature of the homogenization treatment is, for example, 550, 560, 570, 580, 590, 600, 610, 615, 620 ° C., even if it is within the range between any two values illustrated here. Good.
  • the holding time for homogenization is preferably 2 hours or more, and more preferably 5 hours or more.
  • the homogenization holding time is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 hours or more, It may be within a range between any two values.
  • the aluminum alloy ingot may be cooled to 400 ° C. or more and 500 ° C. or less and then hot rolling may be started. By carrying out this cooling, the 0.2% proof stress of the aluminum alloy foil can be reduced by reducing the Fe solid solution amount while growing the size of the Al—Fe based precipitate.
  • the starting temperature of hot rolling is less than 400 ° C.
  • the amount of fine Al—Fe-based precipitates increases so much that the 0.2% proof stress is improved, and the tensile strength TS in the 45 ° direction with respect to the rolling direction is At 0.2% proof stress YS, the value of TS ⁇ (TS / YS) is less than 200 N / mm 2, which is not preferable because the formability of the aluminum alloy foil is lowered.
  • the hot rolling start temperature exceeds 500 ° C.
  • the amount of Fe dissolved in the aluminum alloy foil increases, so the 0.2% proof stress increases, and the tensile strength in the 45 ° direction with respect to the rolling direction.
  • the hot rolling start temperature is more preferably 400 ° C. or higher and 450 ° C. or lower.
  • the hot rolling start temperature is, for example, 400, 410, 425, 450, 475, or 500 ° C., and may be within a range between any two values illustrated here.
  • the hot rolling finish temperature is preferably 250 to 400 ° C. From the viewpoint that it is necessary to recrystallize the aluminum alloy sheet after hot rolling more reliably, it is recommended that the temperature is more preferably 300 ° C. or more and 400 ° C. or less.
  • the end temperature of hot rolling is, for example, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400 ° C., and the numerical values exemplified here It may be within a range between any two values.
  • cold rolling is performed on the obtained aluminum alloy sheet. This cold rolling can be performed by a known method and is not particularly limited.
  • intermediate annealing is required to be performed at 300 ° C. or more and 450 ° C. or less during the cold rolling of the aluminum alloy plate.
  • the temperature of the intermediate annealing is preferably 320 ° C. or more and 400 ° C. or less from the viewpoint of recrystallizing the aluminum alloy plate and improving the rollability.
  • the temperature of the intermediate annealing is, for example, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450 ° C., and any of the numerical values exemplified here Or within a range between the two values.
  • the temperature of the intermediate annealing is less than 300 ° C.
  • the crystal grains of the aluminum alloy foil are likely to be coarsened at the time of final annealing, which may hinder the uniformity of deformation and reduce the molding height.
  • the temperature of the intermediate annealing exceeds 450 ° C.
  • the amount of solid solution of Fe increases, so that the 0.2% proof stress increases. Therefore, the tensile strength TS in the 45 degree direction with respect to the rolling direction is 0.2%
  • the value of TS ⁇ (TS / YS) is less than 200 N / mm 2, which is not preferable because the formability of the obtained aluminum alloy foil is lowered.
  • the purpose is to improve the rollability by recrystallizing the aluminum alloy sheet by carrying out the intermediate annealing.
  • the time for performing the intermediate annealing is not particularly limited, but is preferably 1 hour or longer for recrystallization. More preferably, it is 4 hours or more.
  • the duration of the intermediate annealing is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 hours or more, and any of the numerical values exemplified here Or within a range between the two values.
  • the intermediate annealing is not performed during the cold rolling process, the cold rolling rate from the hot rolling to the final foil thickness increases, so in the crystal orientation in the aluminum alloy foil after the final annealing, the desired Cube orientation density and R orientation density are not obtained, and the formability of the aluminum alloy foil is lowered.
  • the aluminum alloy foil production method is such that the cold rolling rate from the hot rolling to the intermediate annealing is 85% or less with respect to the aluminum alloy sheet obtained by the hot rolling. Inter-rolling is performed.
  • the cold rolling ratio after the hot rolling to before the intermediate annealing exceeds 85% and the cold rolling is performed, in the recrystallized texture of the aluminum alloy foil after the final annealing, the desired Cube orientation density and R orientation This is not preferable because the density cannot be obtained and the ultimate deformability is lowered.
  • plastic instability such as constriction may occur, and the formability of the aluminum alloy foil may be reduced.
  • the cold rolling rate from after hot rolling to before intermediate annealing is, for example, 50, 55, 60, 65, 70, 75, 80, 85% or less, and any two values of the numerical values exemplified here It may be within the range between.
  • the aluminum alloy foil manufacturing method performs cold rolling at a cold rolling rate of 80% or more and 93% or less from the intermediate annealing to the final foil thickness.
  • the cold rolling rate from the intermediate annealing to the final foil thickness is the average grain size of the aluminum alloy foil after the final annealing, the crystal orientation of the aluminum alloy foil surface, the strength in the 0 degree, 45 degree, 90 degree direction with respect to the rolling direction. Affects balance. If the cold rolling rate is less than 80%, the crystal grains of the aluminum alloy foil after the final annealing are increased, and the formability of the aluminum alloy foil is deteriorated.
  • the rolling direction in the aluminum alloy foil is greater than the 45 degree direction and 90 degree direction.
  • the cold rolling rate from the intermediate annealing to the final foil thickness is, for example, 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88. 0.0, 89.0, 90.0, 91.0, 92.0, 93.0%, and may be within a range between any two values of the numerical values exemplified here.
  • the final annealing conditions are preferably 200 to 400 ° C. for 5 hours or longer from the viewpoint of completely volatilizing the rolling oil while completely recrystallizing. More preferably, it is at 250 to 350 ° C. for 20 hours or longer.
  • the final annealing temperature is, for example, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400 ° C. It may be within a range between any two values of the numerical values exemplified here.
  • the final annealing time is, for example, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 hours or more, It may be within a range between any two values.
  • the desired foil may not be obtained because it is not completely recrystallized. Moreover, when the temperature of final annealing exceeds 400 degreeC, since the crystal
  • the aluminum alloy foil of this embodiment is formed and packaged. When the body material is used, the adhesiveness between the aluminum alloy foil and the resin film to be laminated may be easily lowered.
  • the temperature increase rate at the time of final annealing is not particularly limited, it is desirable to carry out at 50 ° C./hr or less. If the temperature increase rate during final annealing exceeds 50 ° C / hr, some of the crystal grains become coarse, and thus uneven deformation is likely to occur during rectangular tube drawing, and the formability of the aluminum alloy foil is reduced. There is a case.
  • the rate of temperature increase during the final annealing is preferably 40 ° C./hr or less from the viewpoint of the average crystal grain size of the aluminum alloy foil.
  • the temperature increase rate at the time of final annealing is, for example, 50, 45, 40, 35, 30, 25, 20, 15, 10 ° C./hr or less, and a range between any two values of the numerical values exemplified here. It may be within.
  • the aluminum alloy foil in this embodiment can be suitably used as a molded package material.
  • the molded packaging material refers to a material obtained by molding the aluminum alloy foil of the present embodiment for various packaging such as for secondary batteries and for PTP. Examples thereof include pharmaceuticals and lithium ion secondary battery materials (including electrode materials, separators, electrolytic solutions, etc.).
  • the molded package material in the present embodiment uses the aluminum alloy foil in the present embodiment
  • the molded package material can be suitably used for an exterior material that is a molded package material of a secondary battery or a pharmaceutical packaging container.
  • an exterior material that is a molded package material of a secondary battery or a pharmaceutical packaging container.
  • the molded packaging material in the present embodiment will be described in detail with reference to the drawings.
  • the following embodiments of the molded package material are examples and are not limited.
  • FIG. 1 is a schematic cross-sectional view showing an example of the internal structure of a sheet-like thin lithium ion secondary battery.
  • FIG. 2 is a schematic cross-sectional view showing a general example of an exterior material for a secondary battery.
  • the molded package material 1 in the present embodiment may be composed of a single layer of the aluminum alloy foil 8 in the present embodiment or a plurality of layers including the aluminum alloy foil 8 in the present embodiment, and is not particularly limited. In the case of a plurality of layers, it is necessary to provide at least an aluminum alloy foil as a constituent element.
  • FIG. 2 it is possible to exemplify what is laminated in the order of synthetic resin film 10, aluminum alloy foil 8, and heat sealing layer 9, but the laminated structure is particularly limited. is not.
  • the synthetic resin film 10 is used to improve the moldability of the molded packaging material 1, to protect the aluminum alloy foil 8 that is the main material of the packaging body, or to enable printing. 8 is laminated and adhered to one side.
  • a polyester film, a nylon film, or the like is used as such a synthetic resin film 10.
  • the molded packaging material 1 of the present embodiment can be used as a secondary battery or a pharmaceutical packaging container.
  • the molded packaging material 1 of the present embodiment is used as a secondary battery exterior material. It can be used for use. In this case, since it is necessary to perform heat generation and heat dissipation treatment of various battery members housed in the exterior material, it is preferable to use a heat-resistant polyester film as the synthetic resin film 10.
  • the heat sealing layer 9 is for sealing the end 7 of the package.
  • a conventionally known heat-sealable synthetic resin can be used.
  • any material may be used as long as it has excellent adhesion to the aluminum alloy foil 8 used in the present embodiment and can protect the contents.
  • an unstretched polypropylene film, a biaxially stretched polypropylene film, and a maleic acid-modified polyolefin. Is preferably used.
  • the material is not particularly limited as long as the aluminum alloy foil 8 of the present embodiment is used. There is no particular limitation as long as the aptitude is satisfied.
  • an unstretched polypropylene film is placed on one surface of an aluminum alloy foil 8 through an adhesive film, and after pressure bonding, the aluminum alloy foil 8 and the unstretched polypropylene film are adhered, An adhesive is applied to the other surface of the aluminum alloy foil 8, and a synthetic resin film 10 can be placed thereon and pasted.
  • the pressure bonding between the aluminum alloy foil 8 and the polypropylene film is generally performed under heating.
  • the heating conditions are not particularly limited, but are about 160 to 240 ° C.
  • the pressure bonding conditions are not particularly limited, but the pressure is 0.5 to 2 kg / cm 2 and the time is about 0.5 to 3 seconds.
  • the adhesive for the synthetic resin film 10 conventionally known ones are used, for example, urethane adhesives.
  • the molded package material in the present embodiment can be molded by a known method, and the molding method is not particularly limited, but can be suitably used particularly for deep drawing.
  • a package material obtained by cutting the molded package material 1 into a desired size is obtained.
  • the packaging material is deep-drawn so that the central portion becomes a concave portion and the peripheral portion becomes a flat portion, and the heat sealing layer 9 side becomes an inner surface.
  • the concave portions are opposed to each other, and the heat sealing layers 9 in the peripheral portion are bonded to each other to be bonded.
  • a secondary battery is manufactured by storing the positive electrode current collector 2, the positive electrode 3, the separator 4, the negative electrode 5, and the negative electrode current collector 6 in the center and further impregnating with an electrolyte.
  • the lead wire extending from the secondary battery body can be taken out to the outside, and the bag mouth can be heat-sealed again.
  • the secondary battery in the present embodiment since the molded packaging material 1 including the aluminum alloy foil 8 having the above-described good formability is used, the deep drawing becomes more favorable, such as making the concave portion deeper than before. Since the secondary battery exterior material having a large capacity can be formed, it is possible to obtain a secondary battery with a charge capacity or high output that can withstand long-term use.
  • the method described above can be adopted as a molding method even when a pharmaceutical packaging container is obtained using the molded packaging material 1 in the present embodiment.
  • medicines tablettes, etc.
  • the pharmaceutical packaging container of the present invention can be produced by a known method, and the production method is not particularly limited.
  • this pharmaceutical packaging container since the molded packaging material 1 provided with the aluminum alloy foil 8 having good moldability is used, it becomes possible to perform deep drawing under severe conditions such as corner drawing. The packaging material 1 can be reduced. Further, according to this pharmaceutical packaging container, since the average crystal grain size of the aluminum alloy foil is small, non-uniform deformation hardly occurs at the time of deep drawing, and there are few cracks at the corners of the molded body, so that water vapor from the outside However, it is difficult to penetrate into the molded packaging material 1 and is excellent in long-term quality controllability such as tablets of contents that require a water vapor barrier property during storage.
  • the molded package material 1 is used for a secondary battery or a pharmaceutical package, but is not particularly limited and may be used for other packaging applications.
  • it can also be used as a molded battery material for primary batteries, not secondary batteries.
  • deep drawing such as making the recesses deeper than before becomes better, and an outer packaging material for a primary battery with a large amount of accommodation can be formed, so a primary battery with a charging capacity or high output that can withstand long-term use Can be obtained.
  • An aluminum ingot having the composition described in Table 1 was prepared, and subjected to the homogenization treatment, cooling, hot rolling, cold rolling, foil rolling and final annealing described in Table 1, and an aluminum alloy foil having a thickness of 40 ⁇ m Got.
  • the tensile strength TS, 0.2% proof stress YS and elongation at 0 °, 45 ° and 90 ° with respect to the rolling direction of the obtained aluminum alloy foil were measured, and the result of calculating the value of TS ⁇ (TS / YS) was calculated. It is shown in Table 2.
  • Table 2 shows the average crystal grain size of the aluminum alloy foil and the crystal orientation density on the surface of the aluminum alloy foil.
  • a laminate composite material simulating an actual battery outer packaging material was made as a prototype, and the results of a rectangular tube drawing test are also shown in Table 2.
  • the tensile strength TS of the aluminum alloy foil is a strip-shaped sample piece having a width of 10 mm, a distance between chucks of 50 mm, and a tensile speed of 10 mm / min.
  • a tensile test was performed at a speed of 5 mm, the maximum load applied to the strip-shaped sample piece was measured, and the stress divided by the cross-sectional area of the original sample was calculated as the tensile strength.
  • the 0.2% proof stress YS crosses the above curve by drawing a parallel line from the permanent strain value of 0.2% from this straight line in the elastic region indicated by the straight line at the initial rise of the load-elongation curve diagram. That is, the value of the point corresponding to the yield point of the steel material or the like was obtained.
  • the elongation is [(L-50) / 50] ⁇ 100, where L (mm) is the distance between chucks when the strip-shaped sample piece is broken by the same measurement method as in the case of tensile strength. It
  • each aluminum alloy foil obtained in the experimental example was coated with an organosol consisting of 15 parts by weight of maleic anhydride-modified polypropylene having an average particle size of 6-8 ⁇ m and 85 parts by weight of toluene, and dried at 200 ° C. for 20 seconds.
  • An adhesive film having a thickness of 2 ⁇ m was obtained.
  • a 40 ⁇ m thick polypropylene film was pressure-bonded to the surface of the adhesive film under pressure bonding conditions of a temperature of 200 ° C., a pressure of 2 kg / cm 2 and a time of 1 second.
  • the molded packaging material was cut into a size of 120 mm ⁇ 100 mm and used as a sample for a square tube drawing test.
  • a punch having a length of 60 mm, a width of 40 mm, a shoulder R, and a corner R of 1.5 mm, a rectangular tube drawing test was performed at a wrinkle suppressing force of 300 kgf.
  • the molding height is increased from 1.0 mm to 0.5 mm, and the above-mentioned square tube drawing molding test is performed at each molding height 5 times. The maximum molding height at which no pinholes or cracks occur in all 5 times.
  • the results are shown in Table 2. Further, the average crystal grain size of the aluminum alloy foil was measured as follows.
  • Each aluminum alloy foil obtained was electropolished at a voltage of 20 V using a 20 volume% perchloric acid + 80 volume% ethanol mixed solution of 5 ° C. or less, washed with water, dried, and then 50 volume% of 25 ° C. or less.
  • An anodized film was formed at a voltage of 20 V in a mixed solution of phosphoric acid + 47% by volume methanol + 3% by volume hydrofluoric acid, and then polarized with an optical microscope, the crystal grains were observed and photographed. From the photograph taken, the average crystal grain size was measured by a cutting method.
  • the cutting method is a method of counting the number of crystal grains in a certain line segment and obtaining a size obtained by dividing the line segment by the number. Each average grain size is shown in Table 2.
  • the Cube azimuth has ⁇ 001 ⁇ ⁇ 100> as the representative azimuth
  • the R azimuth has ⁇ 123 ⁇ ⁇ 634> as the representative azimuth. Since there is usually an azimuth dispersion having a certain angle around the azimuth, in this experimental example, the maximum azimuth density in the 15 ° rotation range around the azimuth is taken, did.
  • the aluminum alloy foils according to Experimental Examples 1 to 21, 28, 29, and 31 are controlled in the average crystal grain size and the orientation density of the aluminum alloy foil. Compared to such aluminum alloy foils 22 to 27, 30, and 32 to 39, the molding height of the square tube drawing test is large, indicating that the moldability is excellent. Therefore, the molded packaging material obtained using the aluminum alloy foils according to Experimental Examples 1 to 21, 28, 29, and 31 can be satisfactorily deep-drawn and package a relatively thick content. It turns out that it is suitable for. Further, the aluminum alloy foils according to Experimental Examples 1 to 21 are further optimally controlled in the strength balance in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction. It is larger and shows excellent moldability.
  • the aluminum alloy foils according to Experimental Examples 1 to 21 are treated with the aluminum alloy foils 22 to 39 according to the Experimental Examples in order to treat the aluminum alloy ingot with a specific composition in a specific process.
  • the molding height of the rectangular tube drawing molding test is large, indicating that the moldability is excellent. Therefore, the molded packaging material obtained using the aluminum alloy foils according to Experimental Examples 1 to 21 can be satisfactorily formed by deep drawing and is suitable for packaging a relatively thick content. I understand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Wrappers (AREA)
  • Metal Rolling (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 良好な成形性を有するアルミニウム合金箔を提供する。 Fe:0.8~2.0mass%、Si:0.05~0.2mass%、Cu:0.0025~0.2mass%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金箔であり、上記アルミニウム合金箔は、アルミニウム合金箔表面の結晶方位における、Cube方位密度が5以上で、R方位密度が50以下であり、上記アルミニウム合金箔の平均結晶粒径は7~20μmである、アルミニウム合金箔を提供する。

Description

アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器
 本発明は、高い成形性を有したアルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器に関するものである。
 医薬品を包装する成形包装体材料として知られるPTP(プレススルーパッケージ)は、容器と蓋材との組み合わせにより、包装する形態をとる場合が多い。容器は深絞り成形が要求され、通常のストリップ包装体では、容器はプラスティックフィルム、例えば、ポリプロピレンなどの樹脂フィルムを成形したものが用いられる。特に、保管する際に水蒸気バリヤー性が要求される内容物の錠剤等には、バリヤー性の高いアルミニウム箔と樹脂フィルムを片面もしくは両面に貼合した複合体として使用する場合も多い。近年、医薬品は様々な形態や大きさのものがあり、これを包装する包装体もそれらの形態に合せ、今までより深く成形する必要が出てきた。
 一方、二次電池の成形包装体材料である外装材にも、水蒸気バリヤー性を付与させるために、アルミニウム合金箔の両面に樹脂フィルムを貼合した複合体の構成を持つ材料が用いられる。近年、シート状で薄型のリチウムイオン二次電池等の二次電池は、移動体通信機器、ノートブック型パソコン、ヘッドフォンステレオ、カムコーダー等のエレクトロニクス機器の小型軽量化に伴い、その駆動源として重宝されており、二次電池には、長時間の使用に耐える充電容量あるいは高出力が要求されている。そのため電池の電極、セパレーターで構成される素子の構造が複雑化・多層化したものとなり、より深い凹部成形等の苛酷な条件での成形が要求されるようになってきた。
 特に、シート状で薄型のリチウムイオン二次電池の外装材には、成形凹部の四隅における肩部とコーナー部の半径Rをより小さくさせて、成形高さをより深くさせる角筒絞り成形が行われている。その結果、成形凹部内に格納することができる電極材の充填量が増えて、より電池容量を高めることができる。現在、リチウムイオン二次電池の外装材にはより高い成形性が求められ、外装材を構成するアルミニウム合金箔にも高い成形性が要求されている。
 成形用の包装体1は、一般的に、図2に示すように、外装材本体8の片面には熱封緘層9が積層貼合され、他面には合成樹脂製フィルム10が積層貼合された態様となっている。包装体1は、図1に示すように、正極集電体2等の積層体を収納するために、その中央部が凹部となり、周辺部が平坦部となるように成形されている。従って、外装材本体8、熱封緘層9及び合成樹脂製フィルム10は、成形性の良好なものを採用する必要がある。
 従来、外装材本体8としては、内容物の品質に悪影響を与えないように、水分や空気等が透過しにくく、成形性に優れた金属箔、特にアルミニウム合金箔が好適に用いられている。当該アルミニウム合金箔としては、主にJIS1100、3003、8079または8021で規定された組成等が用いられている。
 例えば、外装材本体8として、厚さが20~60μmで、圧延方向に対する0度、45度、90度方向の伸びが全て11%以上であるアルミニウム箔が提案されている(特許文献1)。また、同じく外装材本体8として、Feを0.8~2.0%、Cuを0.02~0.05%、Siを0.03~0.1%を含有した耐食性に優れたアルミニウム合金箔が提案されている。(特許文献2)。
特開2005-163077号公報 特許4799903号公報
 しかしながら、上記文献記載の従来技術では、最近のPTPやリチウムイオン二次電池等に使用される外装材のように高い成形高さが要求される特性を十分に満足することは困難であった。
 第一に、特許文献1のアルミニウム合金箔では、深い凹部を形成させるような苛酷な角筒絞り成形を行うと、成形凹部の肩部周辺に亀裂やピンホールが生じるということがあった。つまり、アルミニウム合金箔に比較的浅い凹部の成形加工を施す場合は問題がないが、内容物の容量を増加させるためにアルミニウム合金箔を用いて包装体の中央部に深い凹部を成形すると、外装材本体の特に凹部と平坦部との境界部で亀裂等が生じやすくなり、水分や空気等が透過しやすく、内容物の品質に悪影響を与える包装体となってしまうという欠点があった。特に、二次電池外装材用途として使用する場合では、水分や空気が透過すると、電池内部の電解液との反応で弗化水素酸が生成され、電池内部が腐食され易い環境となってしまう。
 さらに、特許文献1のアルミニウム合金箔では、成形性を向上させるために圧延方向に対する0度、45度、90度方向の伸び値を11%以上にするものであるが、上記各圧延方向に対する引張強さに対して0.2%耐力の値が大きく、角筒絞り成形時にフランジ部からの材料の流入抵抗が増大するために、成形高さを向上させることができない。
 第二に、特許文献2のアルミニウム合金箔では、耐食性と強度向上のために合金成分や金属間化合物の個数を制御しているが、これらの物性のみを制御するだけでは成形性を向上させるのに十分ではない。
 本発明は上記事情に鑑みてなされたものであり、上記課題を解決する良好な成形性を有するアルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器の提供を目的とする。
 本発明者は、成形包装材料として使用されるアルミニウム合金箔について検討したところ、成分を適切な範囲に規制して得られるアルミニウム合金箔、成形包装体材料、二次電池、医薬品包装容器が特に優れていることを知見し、更に上記アルミニウム合金箔の製造工程において鋳塊の均質化処理温度及び中間焼鈍温度、さらに熱間圧延後から中間焼鈍前までの冷間圧延率及び中間焼鈍後から最終箔厚にするまでの冷間圧延率を制御することで、上記優れたアルミニウム合金箔を安定かつ確実に得ることを見出し、本発明に至った。
 すなわち、本発明によれば、Fe:0.8~2.0mass%、Si:0.05~0.2mass%、Cu:0.0025~0.2mass%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金箔であり、上記アルミニウム合金箔は、上記アルミニウム合金箔表面の結晶方位における、Cube方位密度が5以上で、R方位密度が50以下であり、上記アルミニウム合金箔の平均結晶粒径は、7~20μmである、アルミニウム合金箔が提供される。
 このアルミニウム合金箔によれば、アルミニウム合金箔の組成と表面の結晶方位における、Cube方位密度およびR方位密度と平均結晶粒径が特定の条件を満たすので、良好な成形性を有したアルミニウム合金箔が得られる。
 特に、上記アルミニウム合金箔は、更に、上記アルミニウム合金箔における圧延方向に対する0度、45度、90度方向のそれぞれの引張強さTSと0.2%耐力YSにおいて、45度方向におけるTS×(TS/YS)の値が200N/mm以上であり、0度方向と45度方向のTS×(TS/YS)の差の絶対値が30N/mm以下であり、45度方向と90度方向のTS×(TS/YS)の差の絶対値が30N/mm以下であることが好ましい。
 このような規定により、本発明のアルミニウム合金箔は、アルミニウム合金箔の極限変形能が向上し、角筒絞り成形初期での微小クラック等の発生を抑制することができるために、成形高さを向上させることができる。また、角筒絞り成形時にフランジ部からの材料の流入抵抗が減少するために、成形高さを向上させることができる。
 また、本発明によれば、上記のアルミニウム合金箔を備える成形包装体材料が提供されることが好ましい。この成形包装体材料によれば、上記の良好な成形性を有したアルミニウム合金箔を用いるため、成形高さを高くすることが可能となり、二次電池用外装材等の成形包装体材料としてより深い凹部成形をすることができる。その結果、成形凹部内に格納することができる量が増えて、より容量を高めることができる。
 また、本発明によれば、上記の成形包装体材料を用いる二次電池が提供されることが好ましい。この二次電池によれば、上記の深い凹部成形を有した成形包装体材料を用いるため、二次電池外装材の成形凹部内に格納することができる電極材等の電池材の充填量が増えて、より電池容量を高めることができる等、二次電池の高性能化に寄与できる。
 また、本発明によれば、上記の成形包装体材料を用いる医薬品包装容器が提供されることが好ましい。この医薬品包装容器によれば、上記の深い凹部成形を有した成形包装体材料を用いるため、医薬品包装容器の成形凹部内に格納することができるので医薬品の格納量や形状選択の自由度を更に向上させることができる。
 また、本発明によれば、上記のアルミニウム合金箔の製造方法であって、Fe:0.8~2.0mass%、Si:0.05~0.2mass%、Cu:0.0025~0.2mass%、残部がAl及び不可避的不純物から成るアルミニウム合金鋳塊を500℃以上620℃以下で1時間以上の均質化保持をする工程と、該均質化保持後に、熱間圧延および冷間圧延を施す工程と、該冷間圧延の途中で、300℃以上450℃以下で保持する中間焼鈍を施す工程と、該熱間圧延後から該中間焼鈍前までの冷間圧延率を85%以下で冷間圧延を実施する工程と、該中間焼鈍後から最終箔厚にするまでの冷間圧延率を80%以上93%以下で冷間圧延を実施する工程と、該冷間圧延後に最終焼鈍を施して前記アルミニウム合金箔を得る工程と、を含む、方法が提供される。
 このアルミニウム合金箔の製造方法によれば、特定の組成のアルミニウム合金鋳塊を特定の工程で処理するため、
 (1)アルミニウム合金箔の平均結晶粒径、
 (2)アルミニウム合金箔表面の結晶方位密度、
 (3)圧延方向に対する0度、45度、90度方向の強度バランス
 上記(1)-(3)の全てを満足することが出来、高い成形性を有したアルミニウム合金箔を確実に得ることができる。
 本発明のアルミニウム合金箔は、平均結晶粒径、アルミニウム合金の所定の方位密度が最適に制御されているために、リチウムイオン二次電池や医薬品包装容器等のように高い成形性が要求される成形包装体材料に適したアルミニウム合金箔を提供することが出来る。
シート状で薄型のリチウムイオン二次電池の内部構造の一例を示した模式的断面図である。 二次電池の外装材の一般例を示した模式的断面図である。
(1)アルミニウム合金箔の組成
 本実施形態において、アルミニウム合金箔に含まれるFeの含有量は、0.8~2.0mass%である。Feの含有量が0.8mass%未満になると、引張強さTS及び0.2%耐力YSが共に低下するので、上記圧延方向に対する45度方向のTS×(TS/YS)の値が小さくなり、アルミニウム合金箔の成形性が低下する。また、Feの含有量が2.0mass%を超えると、鋳造時に巨大な金属間化合物が形成され易くなり、角筒絞り試験時における割れの起点となり易くなるので成形性が低下する。Feの含有量は、特に1.1mass%以上、1.6mass%以下が強度の観点からより好ましい。このFeの含有量は、例えば、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0mass%であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 本実施形態において、アルミニウム合金箔に含まれるSiの含有量は、0.05~0.2mass%である。Siの含有量が0.05mass%未満になると、引張強さTS及び0.2%耐力YSが低下するために、上記圧延方向に対する45度方向のTS×(TS/YS)の値が小さくなり、成形性が低下する。また、高純度の地金(Al)を使用することにもなり経済的にも好ましくない。一方、Siの含有量が0.2mass%を超えると、アルミニウム合金箔中の晶出物サイズが大きくなり、晶出物の個数が減少する。その結果、最終焼鈍後の平均結晶粒径が大きくなるために、成形時に不均一な成形が起こり易くなり、アルミニウム合金箔の成形性が低下する。Siの含有量は、特に0.06mass%以上、0.1mass%以下が強度と平均結晶粒径の観点から好ましい。このSiの含有量は、例えば、0.05、0.06、0.07、0.08、0.09、0.10、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20mass%であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 本実施形態において、アルミニウム合金箔に含まれるCuの含有量は、0.0025~0.2mass%である。Cuは添加することで、アルミニウム合金箔の強度を向上させる。Cuの含有量が0.0025mass%未満であると、引張強さTSと0.2%耐力YSがそれぞれ低くなり、上記圧延方向に対する45度方向のTS×(TS/YS)の値が小さくなり、アルミニウム合金箔の成形性が低下する。また、Cuの含有量が0.2mass%を超えると、アルミニウム合金箔表面のCube方位密度が低下するために、アルミニウム合金箔の成形性が低下する。Cuの含有量は、特に0.005mass%以上、0.05mass%以下が強度とアルミニウム合金箔表面の結晶方位の観点から好ましい。このCuの含有量は、例えば、0.0025、0.0100、0.0150、0.0200、0.0250、0.0300、0.0350、0.0400、0.0500、0.0600、0.0700、0.0800、0.0900、0.1000、0.1100、0.1200、0.1300、0.1400、0.1500、0.1600、0.1700、0.1800、0.1900、0.2000mass%であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 本実施形態において、アルミニウム合金箔に含まれる不可避的不純物は、個々に0.05mass%以下、合計で0.15mass%以下である。特にTi、Mn、Mg、Zn等などの不可避的不純物が、個々に0.05mass%、及び合計で0.15mass%を超えると、圧延時の硬化が大きく、圧延中の切れが生じ易くなる。
(2)アルミニウム合金箔の物性
 本実施形態において、アルミニウム合金箔における最終焼鈍後の平均結晶粒径は7μm以上、20μm以下である。好ましくは、10μm以上、18μm以下である。この平均結晶粒径は、例えば、7、8、9、10、11、12、13、14、15、16、17、18、19、20μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 なお、アルミニウム合金箔における平均結晶粒径は、公知の方法で測定することができ、例えば、切断法を用いて測定することができる。切断法は、ある線分内に何個結晶粒があるかを数え、線分をその個数で除した大きさを求める方法である。
 最終焼鈍後におけるアルミニウム合金箔の平均結晶粒径は、添加する元素量や製造時の各種条件の影響を大きく受ける。特に、添加するFeとSiの量、中間焼鈍後から最終箔厚までの冷間圧延率及び最終焼鈍条件の影響を大きく受ける。上記記載の平均結晶粒径を得るためには、これらの添加元素量及び製造条件を適宜調整する必要がある。7μm未満ではアルミニウム合金箔の平均結晶粒径が細かすぎるために、引張強さTSよりも0.2%耐力YSの増加量が大きくなるために、圧延方向に対する45度方向のTS×(TS/YS)の値が減少し、アルミニウム合金箔の成形性が低下する。一方、アルミニウム合金箔の平均結晶粒径が20μmを超えると、板厚断面方向に占める結晶粒の個数が少ないために、変形の局在化が起こり易くなり、アルミニウム合金箔の成形性が低下する。
 本実施形態において、アルミニウム合金箔は、最終焼鈍後に箔表面のCube方位密度が5以上で、R方位密度が50以下である。より好ましくは、最終焼鈍後に箔表面のCube方位密度が7以上で、R方位密度が30以下である。
 なお、Cube方位密度及びR方位密度の数値は全てランダム結晶方位密度に対する倍数を表す。
 Cube方位は{001}<100>を代表方位とし、R方位は{123}<634>を代表方位とした。アルミニウム合金箔表面の結晶方位密度の測定には、{100}、{110}、{111}の不完全極点図を測定し、これらを元に三次元結晶方位解析(ODF)を行なって調べた。またこれらの解析においては、アルミニウム粉末から作られたランダム結晶方位を有する試料を測定して得たデータを{100}、{110}、{111}極点図の解析の際に使う規格化ファイルとし、これによりランダム方位を有する試料に対する倍数として各種方位密度を求めた。なお本発明において、結晶方位密度は全て三次元結晶方位解析(ODF)に基づくものである。
 アルミニウム合金箔表面におけるCube方位密度が5未満、及びR方位密度が50を超えると、角筒絞り成形時の初期に微小なクラック等が肩部に形成され易くなるために、アルミニウム合金箔の成形性が低下する。Cube方位密度は、例えば、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30以上であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、R方位密度は、例えば、50、45、40、35、30、25、20、15、10、9、8、7、6、5、4、3、2、1以下であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 本実施形態のアルミニウム合金箔は、角筒絞り成形の初期において、フランジ部からの材料の流入が殆ど無く、張出し成形によって肩部が形成される。特に、高い電池容量が要求されるリチウムイオン二次電池のように、肩部の半径Rが小さく成形される場合において、肩部には局部的に大変形になり、微小クラック等の欠陥が生じ易くなるので、この欠陥を起点として破断に至る事が多くなる。すなわち、肩部を形成する角筒絞り成形の初期においては、張出し成形時に形成される微小クラック等の発生を低減させることが、成形高さの向上に重要である。
 アルミニウム合金箔表面上におけるCube方位密度とR方位密度双方とを最適化することにより、アルミニウム合金箔の極限変形能が向上するために、局部張出し成形のようなアルミニウム合金箔表面に大きな歪みが生じる変形加工において、くびれに代表されるような塑性不安定を生じにくくさせる効果がある。その結果、肩部が形成される角筒絞り成形初期での微小クラック等の発生を抑制することができるために、成形高さを向上させることができる。
 ここで、TS×(TS/YS)の式の意義について述べる。(TS/YS)の値は、引張強さTSに対する0.2%耐力YSの比であり、本発明者は、この値が所定の値より大きいほど均一な変形が得られる領域が多く、角筒絞り成形時にはフランジ部への材料が流入し易くなり、引張強さTSは高ければ高いほど、耐破断性が向上することを見出した。すなわち、本実施形態に使用されるアルミニウム合金箔へ望まれる機械的特性としては、適正化された範囲で引張強さTSが高く、0.2%耐力YSが低い材料であることが好ましい。この(TS/YS)の値に耐破断力に対応する引張強さTSを掛け合わせた値であるTS×(TS/YS)は、本実施形態における成形高さとの相関関係が非常に高く、角筒絞り成形試験における成形性を示す指標の一つとして用いることが出来る。アルミニウム合金箔における圧延方向に対する0度、45度、90度方向の中でも、角筒絞り成形時におけるコーナーフランジ部において、材料の流入がしにくい圧延方向に対する45度方向のTS×(TS/YS)が高ければ高いほど、アルミニウム合金箔の成形高さが良好となる。
 本実施形態において、アルミニウム合金箔は、圧延方向に対する0度、45度、90度方向の引張強さTSと0.2%耐力YSにおいて、圧延方向に対する45度方向のTS×(TS/YS)の値が200N/mm以上を満たすことが好ましい。より好ましくは、210N/mm以上である。圧延方向に対する45度方向のTS×(TS/YS)の値は、例えば、200、201、202、203、204、205、206、207、208、209、210、215、220、230、240、250N/mmであり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 本実施形態のアルミニウム合金箔おける圧延方向に対する45度方向のTS×(TS/YS)の値が200N/mm未満では、アルミニウム合金箔の成形性を向上させることが難しい。本実施形態のように板厚が薄い成形包装材料の角筒絞り成形試験においては、成形高さが高くなるに連れて、4隅のコーナーフランジ部では、縮みフランジ変形となるために材料の流入抵抗が大きくなり、材料が流入しにくくなる。特に、角筒絞り成形時におけるコーナーフランジ部では、直辺方向や短辺方向に当たる圧延方向に対する0度方向や90度方向に対して、圧延方向に対する45度方向の材料が流入しにくくなるので、圧延方向に対する45度方向の材料流入量を増加させることが有効である。
 なお、本実施形態におけるアルミニウム合金箔の圧延方向に対する0度、45度、90度方向の引張強さTSと0.2%耐力YSに関する測定については、公知の方法を用いることができる。
 本実施形態において、アルミニウム合金箔は、圧延方向に対する0度方向と45度方向のTS×(TS/YS)の差の絶対値および、圧延方向に対する45度方向と90度方向のTS×(TS/YS)の差の絶対値がそれぞれ30N/mm以下を満たすことが好ましい。より好ましくは、10N/mm以下である。本実施形態のアルミニウム合金箔おける圧延方向に対する0度方向と45度方向のTS×(TS/YS)の差の絶対値または、45度方向と90度方向のTS×(TS/YS)の差の絶対値は、例えば、30、25、20、15、10、9、8、7、6、5、4、3、2、1、0N/mmであり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 角筒絞り成形時において、コーナーフランジ部では材料が流入しにくくなるので、圧延方向に対する45度方向への材料流入量を特に増加させつつ、圧延方向に対する0度方向や90度方向ともできるだけ材料流入量に絶対値の差がないことが好ましい。
 そのためには、圧延方向に対する0度方向と45度方向、圧延方向に対する45度方向と90度方向の材料流入量の差の絶対値をできるだけ小さくすることが、アルミニウム合金箔の成形性向上に大きな効果がある。圧延方向に対する0度方向と45度方向のTS×(TS/YS)の差の絶対値および、圧延方向に対する45度方向と圧延方向に対する90度方向のTS×(TS/YS)の差の絶対値がそれぞれ30N/mmを超えると、角筒絞り成形時におけるフランジ部への材料流入バランスが悪くなるためにアルミニウム合金箔の成形性が低下する場合がある。
 本実施形態において、アルミニウム合金箔の伸びは、平均結晶粒径や強度等を変化させることで適宜調整でき、高い値であるほどアルミニウム合金箔の成形性も良好となる。具体的には、アルミニウム合金箔における圧延方向に対する0度、45度、90度方向の伸び値が全て17%以上であるとアルミニウム合金箔の成形性が良好になるので好ましい。より好ましくは、圧延方向に対する0度、45度、90度方向の伸び値が全て20%以上である。
 本実施形態において、アルミニウム合金箔の厚さは任意であり、用途や成形条件等に応じて適宜調整し得るが、一般的には10~100μmであることが好ましい。厚さが10μm未満のアルミニウム合金箔を製造する場合、ピンホールの発生や圧延時の切れ等が発生し易くなり、生産効率が低下し易くなる。また、アルミニウム合金箔の厚さが100μmを超えると、包装体全体の厚さが厚くなりすぎて、得られる成形包装体の小型化が図りにくくなるため、好ましくない。
(3)アルミニウム合金箔の製造方法
 本実施形態における、アルミニウム合金箔は、Fe:0.8~2.0mass%、Si:0.05~0.2mass%、Cu:0.0025~0.2mass%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金鋳塊を500℃以上、620℃以下で1時間以上の均質化保持をする工程と、該均質化保持後に、熱間圧延および冷間圧延を施す工程と、該冷間圧延の途中で、300℃以上450℃以下で保持する中間焼鈍を施す工程と、該熱間圧延後から中間焼鈍前までの冷間圧延率を85%以下で冷間圧延を実施する工程と、該中間焼鈍後から最終箔厚にするまでの冷間圧延率を80%以上、93%以下で、冷間圧延を実施する工程と、該冷間圧延後に最終焼鈍を施して上記アルミニウム合金箔を得る工程によって製造される。以下、本実施形態におけるアルミニウム合金箔の製造方法について詳細に説明する。
 本実施形態における、アルミニウム合金箔の製造方法は、上記組成を有するアルミニウム合金を溶解後、半連続鋳造法により鋳塊を得るのが好ましい。その後、アルミニウム合金鋳塊に対して、均質化処理を行う。この均質化処理は、500℃以上、620℃以下で1時間以上で保持する。この均質化処理後に熱間圧延を開始する。均質化処理では、Fe系析出物のサイズを大きくした上に疎に分布させて、Fe固溶量を低下させる効果が期待できる。
 均質化処理の条件が500℃未満及び、1時間未満の保持時間の場合では、Fe系析出物が十分に粗大化しないため、Fe固溶量が高く、微細なFe系の析出物も多いために0.2%耐力が高くなり、圧延方向に対する45度方向の引張強さTSと0.2%耐力YSにおいて、TS×(TS/YS)の値が200N/mm未満となり、アルミニウム合金箔の成形性が低下するために好ましくない。また、鋳塊内に存在している鋳造時に形成された偏析を十分に解消させるにも不十分である。
 均質化処理の温度が、620℃を超えると、局部的に鋳塊が溶融することがあり、製造上好ましくない。また、鋳造時に混入した極僅かの水素ガスが表面に出て材料表面に膨れを生じさせ易くなるため好ましくない。Fe系析出物のサイズを大きくさせて疎に分布させるための観点より、均質化処理温度については、550℃以上、620℃以下が好ましく、より好ましくは、580℃以上、615℃以下である。均質化処理の温度は、例えば、550、560、570、580、590、600、610、615、620℃であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 また均質化の保持時間については、2時間以上が好ましく、より好ましいのは、5時間以上である。また均質化の保持時間は、例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15時間以上であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 上記均質化処理後には、アルミニウム合金鋳塊を400℃以上、500℃以下まで冷却してから熱間圧延を開始しても良い。この冷却の実施により、Al-Fe系析出物のサイズを成長させながらFe固溶量を低下させることによって、アルミニウム合金箔の0.2%耐力を低下させることができる。熱間圧延の開始温度が400℃未満では、微細なAl-Fe系析出物の析出量が多くなりすぎて0.2%耐力が向上し、上記圧延方向に対する45度方向の引張強さTSと0.2%耐力YSにおいて、TS×(TS/YS)の値が200N/mm未満となりアルミニウム合金箔の成形性が低下するために好ましくない。熱間圧延の開始温度が500℃を超えると、アルミニウム合金箔に固溶しているFe量が増加するために、0.2%耐力が高くなり、上記圧延方向に対する45度方向の引張強さTSと0.2%耐力YSにおいて、TS×(TS/YS)の値が200N/mm未満となり、アルミニウム合金箔の成形性が低下するために好ましくない。熱間圧延の開始温度は、Fe系析出物のサイズを成長させるための観点より、より好ましくは400℃以上、450℃以下である。熱間圧延の開始温度は、例えば、400、410、425、450、475、500℃であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 熱間圧延時には、アルミニウム合金板をできるだけ再結晶させることが望ましいので、熱間圧延の終了温度は、250~400℃が好ましい。より確実に熱間圧延後のアルミニウム合金板を再結晶させることが必要な観点から、より好ましくは300℃以上、400℃以下であることが推奨される。熱間圧延の終了温度は、例えば、250、260、270、280、290、300、310、320、330、340、350、360、370、380、390、400℃であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。さらに、上記熱間圧延後には、得られたアルミニウム合金板に対して冷間圧延を実施する。この冷間圧延は公知の方法で行うことができ、特には制限されない。
 本実施形態における、アルミニウム合金箔の製造方法は、アルミニウム合金板に対して上記冷間圧延の途中において、中間焼鈍を300℃以上450℃以下で行うことが必要である。中間焼鈍の温度は、アルミニウム合金板を再結晶させて圧延性を向上させる観点より、好ましくは320℃以上、400℃以下である。中間焼鈍の温度は、例えば、300、310、320、330、340、350、360、370、380、390、400、410、420、430、440、450℃であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 中間焼鈍の温度が300℃未満では、最終焼鈍時に、アルミニウム合金箔の結晶粒が粗大化し易くなり、変形の均一性が阻害され、成形高さを低下させることがあるために好ましくない。
 また、中間焼鈍の温度が450℃を超えると、Fe固溶量が増加するために、0.2%耐力が増加するため、上記圧延方向に対する45度方向の引張強さTSと0.2%耐力YSにおいて、TS×(TS/YS)の値が200N/mm未満となり、得られるアルミニウム合金箔の成形性が低下するため好ましくない。
 中間焼鈍を実施することにより、アルミニウム合金板を再結晶させることで圧延性を向上させることが目的である。中間焼鈍の実施時間は特に限定されないが、再結晶させるために1時間以上が好ましい。より好ましいのは、4時間以上である。中間焼鈍の実施時間は、例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15時間以上であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 また、冷間圧延の工程中に中間焼鈍を実施しない場合、熱間圧延後から最終箔厚にするまでの冷間圧延率が大きくなるので、最終焼鈍後のアルミニウム合金箔における結晶方位において、所望のCube方位密度とR方位密度が得られずアルミニウム合金箔の成形性が低下するため好ましくない。
 本実施形態における、アルミニウム合金箔の製造方法は、上記熱間圧延によって得られたアルミニウム合金板に対して、上記熱間圧延後から上記中間焼鈍前までの冷間圧延率を85%以下で冷間圧延を実施する。熱間圧延後から中間焼鈍前までの冷間圧延率が85%を超えて、冷間圧延を実施すると、最終焼鈍後のアルミニウム合金箔の再結晶集合組織において、所望のCube方位密度とR方位密度が得られず、極限変形能が低下するため好ましくない。例えば、局部張出し成形のようなアルミニウム合金箔表面に大きな歪みが生じる変形加工において、くびれに代表されるような塑性不安定が生じ、アルミニウム合金箔の成形性が低下する場合がある。熱間圧延終了板厚や中間焼鈍実施後から最終箔厚にするまでの冷間圧延率との兼ね合いもあるが、熱間圧延後から中間焼鈍前までの冷間圧延率を低下させることが重要である。熱間圧延後から中間焼鈍前までの冷間圧延率は、例えば、50、55、60、65、70、75、80、85%以下であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 本実施形態における、アルミニウム合金箔の製造方法は、上記中間焼鈍後から最終箔厚までの冷間圧延率を80%以上、93%以下で冷間圧延を実施する。中間焼鈍後から最終箔厚までの冷間圧延率は、最終焼鈍後のアルミニウム合金箔の平均結晶粒径、アルミニウム合金箔表面の結晶方位、圧延方向に対する0度、45度、90度方向の強度バランスに影響を与える。上記冷間圧延率が80%未満では、最終焼鈍後のアルミニウム合金箔の結晶粒が大きくなり、アルミニウム合金箔の成形性が低下するため好ましくない。一方、上記冷間圧延率が93%を超えると、最終焼鈍後の平均結晶粒径が微細化されるために、0.2%耐力YSの増加量に影響をもたらし、アルミニウム合金箔における圧延方向に対する45度方向のTS×(TS/YS)の値が小さくなるためにアルミニウム合金箔の成形性が低下するため好ましくない。さらに、中間焼鈍後から最終箔厚までの冷間圧延率が増加することで、最終焼鈍後のアルミニウム合金箔表面の所望のCube方位密度とR方位密度を得るために、アルミニウム合金箔における圧延方向に対する0度、45度、90度の強度バランスにおいて、圧延方向に対する0度方向の強度が45度方向や90度方向よりも大きくなる。その結果、圧延方向に対する0度方向のTS×(TS/YS)の値のみが大きくなり、圧延方向に対する0度方向と45度方向のTS×(TS/YS)の差が大きくなるためにアルミニウム合金箔の成形性が低下するため好ましくない。中間焼鈍後から最終箔厚までの冷間圧延率は、例えば、80.0、81.0、82.0、83.0、84.0、85.0、86.0、87.0、88.0、89.0、90.0、91.0、92.0、93.0%であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 冷間圧延の終了後には、最終焼鈍を実施しアルミニウム合金箔を完全な軟質箔とすることが好ましい。最終焼鈍の条件は、完全に再結晶させつつ、圧延油を完全に揮発させる観点から200~400℃で5時間以上が好ましい。より好ましいのは、250~350℃で20時間以上である。最終焼鈍の温度は、例えば、200、210、220、230、240、250、260、270、280、290、300、310、320、330、340、350、360、370、380、390、400℃であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。最終焼鈍の時間は、例えば、5、10、20、30、40、50、60、70、80、90、100、110、120、130、140、150時間以上であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 最終焼鈍の温度が200℃未満では、完全に再結晶しないために所望の箔を得ることができない場合がある。また、最終焼鈍の温度が400℃を超えると、焼鈍中に結晶が粗大化するためにアルミニウム合金箔の成形性が低下する場合があるために好ましくない。最終焼鈍時における保持時間が5時間未満では、箔圧延時の圧延油が十分に揮発しないために、箔の表面の濡れ性が低下する場合があり、特に本実施形態のアルミニウム合金箔を成形包装体材料とする場合、アルミニウム合金箔とラミネートする樹脂フィルムとの密着性が低下し易くなる場合がある。
 最終焼鈍時の昇温速度は、特に限定しないが、50℃/hr以下で実施することが望ましい。最終焼鈍時の昇温速度が50℃/hrを超えると、結晶粒の一部が粗大化するために、角筒絞り成形時に不均一な変形が起こり易くなり、アルミニウム合金箔の成形性が低下する場合がある。最終焼鈍時の昇温速度は、アルミニウム合金箔の平均結晶粒径のサイズの観点より、好ましくは、40℃/hr以下である。最終焼鈍時の昇温速度は、例えば、50、45、40、35、30、25、20、15、10℃/hr以下であり、ここで例示した数値の何れか2つの値の間の範囲内であってもよい。
 <成形包装体材料>
 本実施形態におけるアルミニウム合金箔は、成形包装体材料として好適に用いることができる。本明細書でいう成形包装体材料とは、本実施形態のアルミニウム合金箔を、例えば、二次電池用、PTP用等の各種包装用に成形加工したものをいい、包装されるものとしては、医薬品、リチウムイオン二次電池材料(電極材、セパレータ、電解液等を含む。)等が挙げられる。
 本実施形態における成形包装体材料は、本実施形態におけるアルミニウム合金箔を用いているので、二次電池や医薬品包装容器の成形包装体材料である外装材に好適に用いることができ、二次電池としての高性能化や医薬品の使用の自由度向上に寄与することができる。
 以下、本実施形態おける成形包装体材料について図面を用いて詳細に説明する。以下の成形包装体材料おける実施形態は、例示であって、限定されない。
 図1は、シート状で薄型のリチウムイオン二次電池の内部構造の一例を示した模式的断面図である。また、図2は、二次電池の外装材の一般例を示した模式的断面図である。
 本実施形態における成形包装体材料1は、本実施形態におけるアルミニウム合金箔8単体又は本実施形態におけるアルミニウム合金箔8を含む複数層からなるものであってもよく、特に制限されるものではないが、複数層とする場合には、少なくとも構成要素としてアルミニウム合金箔を構成として備えていることが必要である。具体的には、図2に示されるように、合成樹脂製フィルム10、アルミニウム合金箔8、熱封緘層9の順に積層されてなるものを例示することができるが積層構造は特に制限されるものではない。
 合成樹脂製フィルム10は、成形包装体材料1の成形性をより高めるため、或いは包装体の本体主要材料であるアルミニウム合金箔8を保護するため、或いは印刷を可能にするために、アルミニウム合金箔8の片面に積層貼着されるものである。このような合成樹脂製フィルム10としては、ポリエステルフィルムやナイロンフィルム等が用いられる。本実施形態の成形包装体材料1は、二次電池や医薬品包装容器として用いることができ、特に、二次電池とする場合には、本実施形態の成形包装体材料1を二次電池外装材用として用いることができる。この場合は外装材内に収容する種々の電池部材の発熱や放熱処理等を行う必要があることから、合成樹脂製フィルム10としては耐熱性ポリエステルフィルムを用いるのが好ましい。
 熱封緘層9は、包装体の端部7を封緘するためのものである。熱封緘層9としては、従来公知の熱融着性合成樹脂を用いることができる。特に、本実施形態で用いるアルミニウム合金箔8との貼着性に優れており、内容物を保護できるものであれば何でも良く、例えば、無延伸ポリプロピレンフィルム、二軸延伸ポリプロピレンフィルムやマレイン酸変性ポリオレフィンを用いるのが好ましい。
 本実施形態における成形包装体材料1を複数層とする場合には、本実施形態のアルミニウム合金箔8を用いるものであれば特に制限されるものではなく、成形性、接着性等、内容物の適性を満足するものであれば特に限定するものではない。例えば、常法に従ってアルミニウム合金箔8の片面に、無延伸ポリプロピレンフィルムを、接着性皮膜を介して載せ、圧着して、該アルミニウム合金箔8と該無延伸ポリプロピレンフィルムとを貼着した後、該アルミニウム合金箔8の他面に、接着剤塗布し、この上に合成樹脂製フィルム10を載せて貼着することができる。
 上記のアルミニウム合金箔8とポリプロピレンフィルムとの圧着は、一般的に加熱下で行われる。加熱条件は、特に限定しないが、160~240℃程度である。また、圧着条件は、特に限定しないが、圧力0.5~2kg/cmであり、時間0.5~3秒程度である。
 また、合成樹脂製フィルム10の接着剤としては、従来公知のものが用いられ、例えば、ウレタン系接着剤等が用いられる。
 本実施形態における成形包装体材料は、公知の方法で成形することができ、成形方法は特に制限されるものではないが、特に深絞り成形に好適に使用することができる。ここで、本実施形態に係る成形包装体材料1を用いて、包装体を得る方法の一例としては、成形包装体材料1を所望の大きさに裁断して所望の形状にした包装材を得、この包装材に、中央部が凹部となり周辺部が平坦部となるように、且つ、熱封緘層9側が内面となるように、深絞り成形を施す。深絞り成形を施した包装材2枚を用いて、凹部同士が対向するようにし、且つ、周辺部の熱封緘層9同士が当接するようにして接着する。そして、一部を残し、他の周辺部を熱封緘して、包装体を得る。二次電池外装材用であれば、中央部に正極集電体2、正極3、隔離材4、負極5、負極集電体6を収納し更に電解質で含浸させることで二次電池を製造することができさらに、二次電池本体から延びているリード線を外部に出すようにして、袋の口を再度、熱封緘する等、公知の方法に従って製造することができる。
 本実施形態における二次電池によれば、上記の良好な成形性を有したアルミニウム合金箔8を備える成形包装体材料1を用いるため、凹部を従来より深くする等のより深絞り成形の良好となり、収容量の多い二次電池用外装材を形成できるので、長時間の使用に耐える充電容量あるいは高出力な二次電池を得ることができる。
 本実施形態における成形包装体材料1を用いて、医薬品包装容器を得る場合にも成形方法は、上述した方法を採用できる。例えば、PTP用であれば、薬(錠剤、カプセルなど)を収納して医薬品包装容器として用いることができる。本発明の医薬品包装容器は公知の方法で製造でき、製造方法は特に制限されるものではない。
 この医薬品包装容器によれば、上記の良好な成形性を有したアルミニウム合金箔8を備える成形包装体材料1を用いるため、角絞り成形等の苛酷な条件での深絞り成形が可能となり、成形包装体材料1の低減化が図れる。また、この医薬品包装容器によれば、アルミニウム合金箔の平均結晶粒径が小さいので、深絞り成形時に不均一な変形が起こり難く、成形体のコーナー部での割れも少ないため、外部からの水蒸気が成形包装体材料1内に侵入しにくくなり、保管する際に水蒸気バリヤー性が要求される内容物の錠剤等の長期の品質管理性にも優れている。
 以上、本発明の説明を行ったが、本発明の要旨を逸脱しない限り、上記以外の様々な構成を採用することもできる。
 例えば、上記実施形態では二次電池用又は医薬品包装用の成形包装体材料1としたが、特に限定する趣旨ではなく、他の包装用途に用いてもよい。たとえば、二次電池ではなく、一次電池の成形包装体材料に用いることもできる。このようにすれば、凹部を従来より深くする等のより深絞り成形が良好となり、収容量の多い一次電池用外装材を形成できるので、長時間の使用に耐える充電容量あるいは高出力な一次電池を得ることができる。
 以下、本発明を実験例で示しさらに説明するが、本発明はこれら実験例に限定されるものではない。
 表1に記載した組成を持つアルミニウム鋳塊を準備し、表1に記載した均質化処理、冷却、熱間圧延、冷間圧延、箔圧延及び最終焼鈍を施して、厚さ40μmのアルミニウム合金箔を得た。得られたアルミニウム合金箔の圧延方向に対する0度、45度、90度における引張強さTS、0.2%耐力YS及び伸びを測定し、TS×(TS/YS)の値を算出した結果を表2に示した。さらにアルミニウム合金箔の平均結晶粒径とアルミニウム合金箔表面の結晶方位密度も同様に表2に示した。また実際の電池外装材を模擬したラミネート複合材を試作し、角筒絞り成形試験の結果も表2に示した。
 アルミニウム合金箔の引張強さTSは、巾10mmの短冊状試料片を用い、チャック間距離50mmで、引張速度10mm/min.の速度で引張試験を行い、短冊状試料片にかかる最大荷重を測定し、元の試料の断面積で除した応力を引張強さとして計算した。また、0.2%耐力YSは、荷重-伸び曲線図の初期の立ち上がりのほぼ直線で示される弾性域内のこの直線から0.2%の永久歪みの値から平行線を引き、上記曲線と交わった点、すなわち鋼材料などの降伏点に相当する点の値を求めた。また、伸びは、引張強さの場合と同様の測定方法で、短冊状試料片が破断したときのチャック間距離をL(mm)としたとき、〔(L-50)/50〕×100で算出されるものである。
 次に、実験例に係るアルミニウム合金箔を用いた成形包装体材料の深絞り性がどの程度であるかを試験するために、以下の実験を行った。実験例で得られた各アルミニウム合金箔の片面に、平均粒径6~8μmの無水マレイン酸変性ポリプロピレン15重量部とトルエン85重量部よりなるオルガノゾルを塗布し、200℃で20秒間の条件で乾燥し、厚さ2μmの接着性皮膜を得た。次に、厚さ40μmのポリプロピレンフィルムを、温度200℃、圧力2kg/cm、時間1秒間の圧着条件で、接着性皮膜表面に圧着して貼着した。最後に、アルミニウム合金箔の他面(押出フィルムが貼着されていない面)に、厚さ25μmの2軸延伸ナイロンを、ウレタン系接着剤を介して貼着して成形包装体材料を得た。
 上記成形包装材料から、120mm×100mmの大きさで切断し、角筒絞り成形試験のサンプルとした。長さ60mm、幅40mm、肩R及びコーナーRが1.5mmのポンチを用い、しわ抑え力を300kgfにて、角筒絞り成形試験を実施した。成形高さは1.0mmから0.5mm刻みで高くし、各成形高さにて5回の上記角筒絞り成形試験を行い、5回全てでピンホールやワレが発生しなかった最大成形高さを、表2に示した。
 また、アルミニウム合金箔の平均結晶粒径を以下のようにして測定した。得られた各アルミニウム合金箔を、5℃以下の20容量%過塩素酸+80容量%エタノール混合溶液を用い、電圧20Vで電解研磨を行った後、水洗、乾燥後、25℃以下の50容量%燐酸+47容量%メタノール+3容量%弗化水素酸の混合溶液中で、電圧20Vで陽極酸化皮膜を形成させた後、光学顕微鏡で偏光をかけて、結晶粒を観察し、写真に撮影した。撮影された写真から、切断法にて、平均結晶粒径を測定した。切断法は、ある線分内に何個結晶粒があるかを数え、線分をその個数で除した大きさを求める方法である。各平均結晶粒径を表2に示した。
 アルミニウム合金箔表面の結晶方位密度の測定には、X線回折装置を用い、X線回折のシェルツ反射法により、{100}、{110}、{111}の不完全極点図を測定し、これらを元に三次元結晶方位解析(ODF)を行なって調べた。またこれらの解析においては、アルミニウム粉末から作られたランダム結晶方位を有する試料を測定して得たデータを{100}、{110}、{111}極点図の解析の際に使う規格化ファイルとし、これによりランダム方位を有する試料に対する倍数として各種方位密度を求めた。なお本実験例において、結晶方位密度は全て三次元結晶方位解析(ODF)に基づくものである。
 ここで、Cube方位は{001}<100>を代表方位とし、R方位は{123}<634>を代表方位とした。なお、通常は上記方位を中心に一定角度を持つ方位分散が存在するため、本実験例では、上記方位まわり15°回転範囲の中にある最大方位密度をとり、それぞれ上記方位密度の代表値とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上の結果から明らかなように、実験例1~21、28、29、及び31に係るアルミニウム合金箔は、平均結晶粒径、アルミニウム合金箔の方位密度が制御されているために、実験例に係るアルミニウム合金箔22~27、30、32~39に比べて、角筒絞り成形試験の成形高さが大きく、成形性に優れていることを示している。従って、実験例1~21、28、29、及び31に係るアルミニウム合金箔を用いて得られた成形包装体材料は、深絞り成形が良好に行え、厚さの比較的厚い内容物を包装するのに適していることが分かる。また、実験例1~21に係るアルミニウム合金箔は、さらに、圧延方向に対する0度、45度、90度方向の強度バランスが最適に制御されているので、角筒絞り成形試験の成形高さがより大きく、成形性に優れていることを示している。一方、実験例22~27、30、32~39に係るアルミニウム合金箔は、角筒絞り成形試験の成形高さが低く、成形性が良好でないことが明らかである。従って、実験例22~27、30、32~39に係るアルミニウム合金箔を用いて得られた成形包装体材料は、深絞り成形が良好に行えず、厚さの比較的厚い内容物を包装するのに適していないことが分かる。
 また、以上の結果から明らかなように、特定の組成のアルミニウム合金鋳塊を特定の工程で処理するため、実験例1~21に係るアルミニウム合金箔は、実験例に係るアルミニウム合金箔22~39に比べて、角筒絞り成形試験の成形高さが大きく、成形性に優れていることを示している。従って、実験例1~21に係るアルミニウム合金箔を用いて得られた成形包装体材料は、深絞り成形が良好に行え、厚さの比較的厚い内容物を包装するのに適していることが分かる。
 実験例22では、添加Si量が少ないので、45度方向におけるTS×(TS/YS)の値が低く、角筒絞り試験時におけるフランジ部の材料が流入しにくいために、成形高さが向上しなかった。
 実験例23では、添加Si量が多いので、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
 実験例24では、添加Fe量が少ないので、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
 実験例25では、添加Fe量が多いので、結晶粒が微細であるために、45度方向におけるTS×(TS/YS)の値が低い上に、R方位密度が高くなり、成形高さが向上しなかった。
 実験例26では、添加Cu量が少ないので、45度方向におけるTS×(TS/YS)の値が低くフランジ部の材料が流入しにくいために、成形高さが向上しなかった。
 実験例27では、添加Cu量が多いので、アルミニウム合金箔表面のCube方位密度が低いために、成形高さが向上しなかった。
 実験例28では、均質化処理温度が低いので、45度方向におけるTS×(TS/YS)の値が低く、角筒絞り試験時におけるフランジ部の材料が流入しにくいために、成形高さの向上が少なかった。
 実験例29では、均質化処理時の保持時間が短いので、45度方向におけるTS×(TS/YS)の値が低く、角筒絞り試験時におけるフランジ部の材料が流入しにくいために、成形高さの向上が少なかった。
 実験例30では、中間焼鈍温度が低いので、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
 実験例31では、中間焼鈍温度が高いので、45度方向におけるTS×(TS/YS)の値が低く、角筒絞り試験時におけるフランジ部の材料が流入しにくいために、成形高さの向上が少なかった。
 実験例32では、中間焼鈍を実施していないので、結晶粒が微細であるために、45度方向におけるTS×(TS/YS)の値が低く、Cube方位密度が少なくR方位密度が高くなり、さらに0度方向と45度方向のTS×(TS/YS)の差、 45度方向と90度方向のTS×(TS/YS)の差も大きくなったので、成形高さが向上しなかった。
 実験例33では、熱間圧延後から中間焼鈍前までの冷間圧延率が大きいので、アルミニウム合金箔表面のCube方位密度が少なく、角筒絞り試験の初期に微小なクラックが発生したので、成形高さが向上しなかった。
 実験例34では、中間焼鈍後から最終箔厚にするまでの冷間圧延率が少ないので、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
 実験例35では、中間焼鈍後から最終箔厚にするまでの冷間圧延率が大きいので、45度方向におけるTS×(TS/YS)の値が低い上に、Cube方位密度が少なくR方位密度が高くなり、さらに0度方向と45度方向のTS×(TS/YS)の差が大きくなったので、成形高さが向上しなかった。
 実験例36では、45度方向におけるTS×(TS/YS)の値が低く、アルミニウム合金箔が再結晶しないために、成形高さが低下した。
 実験例37では、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
 実験例38では、45度方向におけるTS×(TS/YS)の値が低い上に、平均結晶粒径も大きくなり、成形高さが向上しなかった。
 実験例39では、45度方向におけるTS×(TS/YS)の値が低く、アルミニウム合金箔が再結晶しないために、成形高さが低下した。
1 外装材(成形包装体材料)
2 正極集電体
3 正極
4 隔離材(セパレーター)
5 負極
6 負極集電体
7 外装材の端部
8 外装材本体(アルミニウム合金箔)
9 熱封緘層
10 合成樹脂製フィルム

Claims (7)

  1. Fe:0.8~2.0mass%、Si:0.05~0.2mass%、Cu:0.0025~0.2mass%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金箔であり、
    前記アルミニウム合金箔は、前記アルミニウム合金箔表面の結晶方位における、Cube方位密度が5以上で、R方位密度が50以下であり、
    前記アルミニウム合金箔の平均結晶粒径は、7~20μmである、
    アルミニウム合金箔。
  2. 前記アルミニウム合金箔は、前記アルミニウム合金箔における圧延方向に対する0度、45度、90度方向のそれぞれの引張強さTSと0.2%耐力YSにおいて、
    45度方向におけるTS×(TS/YS)の値が200N/mm以上であり、
    0度方向と45度方向のTS×(TS/YS)の差の絶対値が30N/mm以下であり、
    45度方向と90度方向のTS×(TS/YS)の差の絶対値が30N/mm以下である、
    請求項1記載のアルミニウム合金箔。
  3. 請求項1または請求項2に記載のアルミニウム合金箔を備える成形包装体材料。
  4. 前記アルミニウム合金箔の一方の側に積層されてなる合成樹脂製フィルムと、
    前記アルミニウム合金箔の他方の側に積層されてなる熱封緘層と、
    をさらに備える、請求項3に記載の成形包装体材料。
  5. 請求項4に記載の成形包装体材料を用いる二次電池。
  6. 請求項4に記載の成形包装体材料を用いる医薬品包装容器。
  7. 請求項1または請求項2に記載のアルミニウム合金箔の製造方法であって、
    Fe:0.8~2.0mass%、Si:0.05~0.2mass%、Cu:0.0025~0.2mass%、残部がAl及び不可避的不純物から成るアルミニウム合金鋳塊を500℃以上、620℃以下で1時間以上の均質化保持をする工程と、
    該均質化保持後に、熱間圧延および冷間圧延を施す工程と、
    該冷間圧延の途中で、300℃以上450℃以下で保持する中間焼鈍を施す工程と、
    該熱間圧延後から該中間焼鈍前までの冷間圧延率を85%以下で冷間圧延を実施する工程と、
    該中間焼鈍後から最終箔厚にするまでの冷間圧延率を80%以上93%以下で冷間圧延を実施する工程と、
    該冷間圧延後に最終焼鈍を施して前記アルミニウム合金箔を得る工程と、
    を含む、方法。
PCT/JP2013/062396 2012-05-11 2013-04-26 アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器 WO2013168606A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147034609A KR102090529B1 (ko) 2012-05-11 2013-04-26 알루미늄 합금호일 및 그 제조 방법, 성형 포장체 재료, 이차전지, 의약품 포장 용기
JP2014514684A JP6381441B2 (ja) 2012-05-11 2013-04-26 アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器
CN201380021238.6A CN104364401B (zh) 2012-05-11 2013-04-26 铝合金箔及其制造方法、成形包装体材料、二次电池、医药品包装容器
HK15105151.7A HK1204661A1 (en) 2012-05-11 2015-05-29 Aluminum alloy foil and method for producing same, molded packaging material, secondary cell, and medical drug container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-109923 2012-05-11
JP2012109923 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013168606A1 true WO2013168606A1 (ja) 2013-11-14

Family

ID=49550651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062396 WO2013168606A1 (ja) 2012-05-11 2013-04-26 アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器

Country Status (6)

Country Link
JP (1) JP6381441B2 (ja)
KR (1) KR102090529B1 (ja)
CN (1) CN104364401B (ja)
HK (1) HK1204661A1 (ja)
TW (1) TWI564400B (ja)
WO (1) WO2013168606A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976158B1 (ja) * 2015-04-16 2016-08-23 三菱アルミニウム株式会社 Ptp用アルミニウム箔及びその製造方法
JP2017115225A (ja) * 2015-12-25 2017-06-29 株式会社神戸製鋼所 アルミニウム合金硬質箔
JP2018115376A (ja) * 2017-01-19 2018-07-26 株式会社神戸製鋼所 成形用アルミニウム合金軟質箔
JP2020007629A (ja) * 2018-07-12 2020-01-16 東洋アルミニウム株式会社 アルミニウム合金箔及びその製造方法
KR20200027918A (ko) 2017-07-06 2020-03-13 미츠비시 알루미늄 컴파니 리미티드 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
WO2020137394A1 (ja) * 2018-12-26 2020-07-02 三菱アルミニウム株式会社 アルミニウム合金箔およびアルミニウム合金箔の製造方法
WO2021079979A1 (ja) * 2019-10-23 2021-04-29 三菱アルミニウム株式会社 アルミニウム合金箔およびその製造方法
CN113782878A (zh) * 2020-06-09 2021-12-10 株式会社Lg化学 袋膜、袋型电池壳体、和袋型二次电池
JP2022031681A (ja) * 2016-12-28 2022-02-22 大日本印刷株式会社 電池用包装材料用アルミニウム合金箔、電池用包装材料、及び電池
JP2022047475A (ja) * 2020-09-11 2022-03-24 中▲ロ▼材料応用研究院有限公司 アルミニウム箔、その製造方法及び用途
WO2022138620A1 (ja) * 2020-12-25 2022-06-30 Maアルミニウム株式会社 アルミニウム合金箔
JP2022103056A (ja) * 2020-12-25 2022-07-07 三菱アルミニウム株式会社 アルミニウム合金箔
JPWO2022185876A1 (ja) * 2021-03-05 2022-09-09
WO2022224615A1 (ja) 2021-04-22 2022-10-27 Maアルミニウム株式会社 アルミニウム合金箔
US11566311B2 (en) 2017-07-06 2023-01-31 Mitsubishi Aluminum Co., Ltd. Aluminum alloy foil, and method for producing aluminum alloy foil

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075268B (zh) * 2016-04-14 2021-04-30 大日本印刷株式会社 电池用包装材料、其制造方法、电池用包装材料的成型时的不良判定方法、铝合金箔
CN106311747B (zh) * 2016-08-23 2018-03-27 江苏中基复合材料股份有限公司 锂离子电池软包装铝塑膜用铝箔及其生产工艺
CN114865176B (zh) * 2017-09-28 2024-06-04 大日本印刷株式会社 电池用包装材料、其制造方法、电池和铝合金箔
CN112848577A (zh) * 2019-11-27 2021-05-28 无锡恩捷新材料科技有限公司 一种高冲深电池装置用外包装材料及电池
CN215955368U (zh) * 2020-04-14 2022-03-04 株式会社Lg化学 袋型电池壳体和袋型二次电池
CN113059884A (zh) * 2021-03-17 2021-07-02 上海恩捷新材料科技有限公司 一种电池元件用高成型且耐久性优异的外包装材料及电池
CN113927973A (zh) * 2021-09-30 2022-01-14 江西睿捷新材料科技有限公司 一种高冲深电池装置用外包装材料
CN113789461B (zh) * 2021-11-15 2022-03-29 山东宏桥新型材料有限公司 一种电池铝合金箔及其制备方法、电池集流体
CN114045416A (zh) * 2021-11-20 2022-02-15 中铝瑞闽股份有限公司 一种电池软包铝塑膜基层用铝箔坯料及其制备方法
CN114592145B (zh) * 2022-01-27 2022-11-22 晟通科技集团有限公司 铝钛箔的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308805A (ja) * 2002-05-07 2007-11-29 Nippon Foil Mfg Co Ltd アルミニウム合金箔及びその製造方法
JP2012052158A (ja) * 2010-08-31 2012-03-15 Toyo Aluminium Kk アルミニウム箔と容器
WO2012036181A1 (ja) * 2010-09-16 2012-03-22 古河スカイ株式会社 成形包装体材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163077A (ja) 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd 包装材用高成形性アルミニウム箔及びその製造方法
JP4799903B2 (ja) 2005-05-09 2011-10-26 住友軽金属工業株式会社 耐食性と強度に優れたアルミニウム合金箔およびその製造方法
CN100453672C (zh) * 2007-06-11 2009-01-21 江苏常铝铝业股份有限公司 包装用铝合金箔材及其制造方法
EP2192202B2 (de) * 2008-11-21 2022-01-12 Speira GmbH Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308805A (ja) * 2002-05-07 2007-11-29 Nippon Foil Mfg Co Ltd アルミニウム合金箔及びその製造方法
JP2012052158A (ja) * 2010-08-31 2012-03-15 Toyo Aluminium Kk アルミニウム箔と容器
WO2012036181A1 (ja) * 2010-09-16 2012-03-22 古河スカイ株式会社 成形包装体材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASASHI SAKAGUCHI: "Relationship between tensile properties and recrystallized structures of Al-1.2%Fe-Si alloy foils", JOURNAL OF JAPAN INSTITUTE OF LIGHT METALS, vol. 38, no. 2, 1988, pages 84 - 90 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976158B1 (ja) * 2015-04-16 2016-08-23 三菱アルミニウム株式会社 Ptp用アルミニウム箔及びその製造方法
JP2016204683A (ja) * 2015-04-16 2016-12-08 三菱アルミニウム株式会社 Ptp用アルミニウム箔及びその製造方法
JP2017115225A (ja) * 2015-12-25 2017-06-29 株式会社神戸製鋼所 アルミニウム合金硬質箔
US11258123B2 (en) * 2016-12-28 2022-02-22 Dai Nippon Printing Co., Ltd. Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery
JP7414114B2 (ja) 2016-12-28 2024-01-16 大日本印刷株式会社 電池用包装材料用アルミニウム合金箔、電池用包装材料、及び電池
JP2023018087A (ja) * 2016-12-28 2023-02-07 大日本印刷株式会社 電池用包装材料用アルミニウム合金箔、電池用包装材料、及び電池
US11820104B2 (en) 2016-12-28 2023-11-21 Dai Nippon Printing Co., Ltd. Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery
JP2022031681A (ja) * 2016-12-28 2022-02-22 大日本印刷株式会社 電池用包装材料用アルミニウム合金箔、電池用包装材料、及び電池
JP7184142B2 (ja) 2016-12-28 2022-12-06 大日本印刷株式会社 電池用包装材料用アルミニウム合金箔、電池用包装材料、及び電池
JP2018115376A (ja) * 2017-01-19 2018-07-26 株式会社神戸製鋼所 成形用アルミニウム合金軟質箔
US11268171B2 (en) 2017-07-06 2022-03-08 Mitsubishi Aluminum Co., Ltd. Aluminum alloy foil, and method for producing aluminum alloy foil
KR20200027918A (ko) 2017-07-06 2020-03-13 미츠비시 알루미늄 컴파니 리미티드 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
US11566311B2 (en) 2017-07-06 2023-01-31 Mitsubishi Aluminum Co., Ltd. Aluminum alloy foil, and method for producing aluminum alloy foil
WO2020013234A1 (ja) * 2018-07-12 2020-01-16 東洋アルミニウム株式会社 アルミニウム合金箔及びその製造方法
JP7128676B2 (ja) 2018-07-12 2022-08-31 東洋アルミニウム株式会社 アルミニウム合金箔及びその製造方法
JP2020007629A (ja) * 2018-07-12 2020-01-16 東洋アルミニウム株式会社 アルミニウム合金箔及びその製造方法
JP6754025B1 (ja) * 2018-12-26 2020-09-09 三菱アルミニウム株式会社 アルミニウム合金箔およびアルミニウム合金箔の製造方法
KR102501356B1 (ko) 2018-12-26 2023-02-17 엠에이 알루미늄 가부시키가이샤 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
KR20210060589A (ko) 2018-12-26 2021-05-26 미츠비시 알루미늄 컴파니 리미티드 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
JP2021075778A (ja) * 2018-12-26 2021-05-20 三菱アルミニウム株式会社 電池用の包材用アルミニウム合金箔
WO2020137394A1 (ja) * 2018-12-26 2020-07-02 三菱アルミニウム株式会社 アルミニウム合金箔およびアルミニウム合金箔の製造方法
JP2021066927A (ja) * 2019-10-23 2021-04-30 三菱アルミニウム株式会社 アルミニウム合金箔
WO2021079979A1 (ja) * 2019-10-23 2021-04-29 三菱アルミニウム株式会社 アルミニウム合金箔およびその製造方法
CN113782878A (zh) * 2020-06-09 2021-12-10 株式会社Lg化学 袋膜、袋型电池壳体、和袋型二次电池
JP2022047475A (ja) * 2020-09-11 2022-03-24 中▲ロ▼材料応用研究院有限公司 アルミニウム箔、その製造方法及び用途
JP7280304B2 (ja) 2020-09-11 2023-05-23 中▲ロ▼材料応用研究院有限公司 アルミニウム箔、その製造方法及び用途
JP7303274B2 (ja) 2020-12-25 2023-07-04 Maアルミニウム株式会社 アルミニウム合金箔
EP4269639A4 (en) * 2020-12-25 2024-02-14 MA Aluminum Corporation ALUMINUM ALLOY FOIL
JP2022103056A (ja) * 2020-12-25 2022-07-07 三菱アルミニウム株式会社 アルミニウム合金箔
US12031198B2 (en) 2020-12-25 2024-07-09 Ma Aluminum Corporation Aluminum alloy foil
WO2022138620A1 (ja) * 2020-12-25 2022-06-30 Maアルミニウム株式会社 アルミニウム合金箔
JPWO2022185876A1 (ja) * 2021-03-05 2022-09-09
WO2022185876A1 (ja) * 2021-03-05 2022-09-09 Maアルミニウム株式会社 アルミニウム合金箔およびその製造方法
JP7334374B2 (ja) 2021-03-05 2023-08-28 Maアルミニウム株式会社 アルミニウム合金箔およびその製造方法
JPWO2022224615A1 (ja) * 2021-04-22 2022-10-27
WO2022224615A1 (ja) 2021-04-22 2022-10-27 Maアルミニウム株式会社 アルミニウム合金箔
EP4253583A4 (en) * 2021-04-22 2024-02-14 MA Aluminum Corporation ALUMINUM ALLOY SHEET
US20230392239A1 (en) * 2021-04-22 2023-12-07 Ma Aluminum Corporation Aluminum alloy foil
US12012648B2 (en) 2021-04-22 2024-06-18 Ma Aluminum Corporation Aluminum alloy foil
JP7376749B2 (ja) 2021-04-22 2023-11-08 Maアルミニウム株式会社 アルミニウム合金箔

Also Published As

Publication number Publication date
TWI564400B (zh) 2017-01-01
CN104364401B (zh) 2017-03-15
KR102090529B1 (ko) 2020-03-18
JPWO2013168606A1 (ja) 2016-01-07
TW201402832A (zh) 2014-01-16
HK1204661A1 (en) 2015-11-27
CN104364401A (zh) 2015-02-18
JP6381441B2 (ja) 2018-08-29
KR20150008474A (ko) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6381441B2 (ja) アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器
JP6322577B2 (ja) アルミニウム合金箔及びその製造方法
JP5841537B2 (ja) 成形包装体材料
JP6058363B2 (ja) アルミニウム合金箔、成形包装体材料、電池、医薬品包装容器、及びアルミニウム合金箔の製造方法
CN103223753B (zh) 成形用包装材料和锂二次电池
CN104254624B (zh) 电极集电体用铝合金箔、其制造方法以及锂离子二次电池
CN103270182A (zh) 电极集电体用铝合金箔及其制造方法
JP6220773B2 (ja) 電極集電体用アルミニウム合金箔の製造方法
KR20230145964A (ko) 파우치 필름 적층체, 파우치 형 전지 케이스 및 파우치 형 이차 전지
CN103262317A (zh) 电极集电体用铝合金箔及其制造方法
JP6719880B2 (ja) 蓄電デバイスの外装材用シーラントフィルム、蓄電デバイス用外装材、蓄電デバイス及び蓄電デバイス外装材のシーラントフィルム用樹脂組成物の製造方法
WO2021023027A1 (zh) 金属锂带、预补锂极片、预补锂方法、二次电池、二次电池的制备方法及装置
JP2001176459A (ja) 二次電池用外装材料及びその製造方法
CN116323035A (zh) 铝合金箔及其制造方法
JPH11176397A (ja) 電池及び製造方法
WO2023277100A1 (ja) 蓄電デバイス、及び、蓄電デバイスの製造方法
WO2023135818A1 (ja) 集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法
JP2023137528A (ja) アルミニウム合金箔、構成体及び包装材料
WO2020175327A1 (ja) アルミニウム合金箔およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514684

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147034609

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13787549

Country of ref document: EP

Kind code of ref document: A1