WO2022224615A1 - アルミニウム合金箔 - Google Patents

アルミニウム合金箔 Download PDF

Info

Publication number
WO2022224615A1
WO2022224615A1 PCT/JP2022/010809 JP2022010809W WO2022224615A1 WO 2022224615 A1 WO2022224615 A1 WO 2022224615A1 JP 2022010809 W JP2022010809 W JP 2022010809W WO 2022224615 A1 WO2022224615 A1 WO 2022224615A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass
aluminum alloy
alloy foil
density
Prior art date
Application number
PCT/JP2022/010809
Other languages
English (en)
French (fr)
Inventor
貴史 鈴木
祺 崔
Original Assignee
Maアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maアルミニウム株式会社 filed Critical Maアルミニウム株式会社
Priority to EP22791396.9A priority Critical patent/EP4253583A4/en
Priority to US18/259,333 priority patent/US20230392239A1/en
Priority to JP2023516327A priority patent/JP7376749B2/ja
Publication of WO2022224615A1 publication Critical patent/WO2022224615A1/ja
Priority to JP2023182816A priority patent/JP2023182829A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Aluminum alloy foils which are used as packaging materials for foods and lithium ion batteries, are required to have high elongation because they are formed with large deformation by press molding or the like.
  • soft foils of JIS A1000 series alloys such as 1N30 and JIS A8000 series alloys such as 8079 and 8021 have been used as materials having high elongation.
  • Aluminum alloy foil is not deformed in one direction, but is often deformed in multiple directions by so-called stretch forming.
  • high elongation in the direction of 45° and elongation in the direction of 90° with respect to the rolling direction are required.
  • Patent Document 1 attempts to obtain high moldability by specifying the average crystal grain size to be 7 to 20 ⁇ m. Further, in Patent Document 2, it is attempted to obtain high moldability by specifying a very fine grain size of 12 ⁇ m or less. Furthermore, Patent Document 3 specifies a fine crystal grain structure with an average crystal grain size of 7.0 to 12.0 ⁇ m.
  • Patent Documents 1 to 3 described above elongation characteristics are not sufficient, and the balance between strength and elongation is not good.
  • the present invention has been made against the background of the above circumstances, and one of the objects thereof is to provide an aluminum alloy foil that has good workability and high formability.
  • the aluminum alloy foil according to the first aspect has Fe: 1.2% by mass or more and 1.8% by mass or less, Si: 0.05% by mass or more and 0.15% by mass or less, Cu: 0.005% by mass or more and 0 .10% by mass or less and Mn: 0.01% by mass or less, the balance being Al and inevitable impurities, the average crystal grain size of the aluminum alloy foil is 20 to 30 ⁇ m, and the maximum crystal Grain size/average crystal grain size ⁇ 3.0, Cube orientation density is 5 or more, Cu orientation density is 20 or less, and R orientation density is 15 or less.
  • the aluminum alloy foil according to the second aspect is the aluminum alloy foil of the first aspect, and in the crystal orientation analysis per unit area by backscattered electron diffraction (EBSD), the large tilt angle grain boundary of 15 ° or more with an orientation difference
  • EBSD backscattered electron diffraction
  • the ratio of the length of (HAGB) to the length of a low angle grain boundary (LAGB) having a misorientation of 2° or more and less than 15° satisfies HAGB length/LAGB length>2.0.
  • An aluminum alloy foil according to a third aspect is the aluminum alloy foil of the first or second aspect, wherein the number density of Al—Fe intermetallic compounds having an equivalent circle diameter of 1.0 to 3.0 ⁇ m is 6 .0 ⁇ 10 3 pieces/mm 2 or less, and the number density of the Al—Fe-based intermetallic compounds having an equivalent circle diameter of 0.1 ⁇ m or more and less than 1.0 ⁇ m is 1.0 ⁇ 10 4 pieces/mm 2 or more. It is characterized by
  • An aluminum alloy foil according to a fourth aspect is the aluminum alloy foil according to any one of the first to third aspects, and has elongation in each direction of 0°, 45°, and 90° with respect to the rolling direction. 20% or more and a tensile strength of 90 MPa or more.
  • an aluminum alloy foil that has high elongation properties, good workability, and high formability.
  • Fe 1.2% by mass or more and 1.8% by mass or less Fe crystallizes as an Al-Fe intermetallic compound during casting, and if the size of the intermetallic compound is large, it becomes a recrystallization site during annealing. It has the effect of refining crystal grains. If the Fe content is less than 1.2% by mass, the distribution density of coarse intermetallic compounds becomes low, the effect of refining is low, and the final crystal grain size distribution becomes uneven.
  • the Fe content exceeds 1.8% by mass, the effect of refining the crystal grains is saturated or reduced, and the size of the Al-Fe intermetallic compound generated during casting becomes very large, and the elongation of the foil is reduced. , formability, and rollability are deteriorated.
  • a particularly preferable range of the Fe content is 1.4% by mass at the lower limit and 1.6% by mass at the upper limit.
  • Si 0.05 mass % or more and 0.15 mass % or less Si forms an intermetallic compound with Fe. If the Si content exceeds 0.15% by mass, coarse intermetallic compounds are formed, which deteriorate the rollability and elongation properties, and further reduce the uniformity of recrystallized grain size after final annealing. I have concerns. If the Si content is less than 0.05% by mass, precipitation of Fe is suppressed, the amount of dissolved Fe increases, and the rate of continuous recrystallization increases during intermediate annealing and final annealing. When the rate of continuous recrystallization increases, the Cu orientation develops even after recrystallization, and the grain size uniformity decreases. For the above reasons, it is preferable to set the lower limit of the Si content to 0.07% and the upper limit to 0.13%.
  • Cu 0.005% by mass or more and 0.10% by mass or less
  • Cu is an element that increases the strength of the aluminum foil and reduces the elongation.
  • it has the effect of suppressing excessive work softening during cold rolling reported for Al--Fe alloys. If the Cu content is less than 0.005% by mass, the effect of suppressing work softening is reduced. If the Cu content exceeds 0.10% by mass, the material becomes hard and elongation and moldability are clearly lowered.
  • the lower limit of the Cu content is 0.008% and the upper limit is 0.08% or less.
  • Mn dissolves in the aluminum matrix or forms a very fine compound, and acts to suppress recrystallization of aluminum. If the content of Mn is very small, suppression of work softening can be expected as with Cu. On the other hand, if the amount of Mn added is large, the recrystallization during intermediate annealing and final annealing is delayed, making it difficult to obtain fine and uniform crystal grains, and excessive growth of Cu orientation and R orientation. Invite. Therefore, the content of Mn is restricted to 0.01% or less. More preferably, the upper limit of the Mn content is 0.005%.
  • Soft aluminum foil has finer crystal grains, so it is possible to suppress roughening of the foil surface when deformed, and high elongation and accompanying high formability can be expected.
  • the crystal grains become too fine, the material becomes hard and the n value (work hardening index) decreases, which may adversely affect the elongation.
  • fine recrystallized grains in Al--Fe alloys are often obtained by continuous recrystallization, in which case the Cu orientation density becomes very high even after final annealing, and the grain size becomes non-uniform. For this reason, there is a concern that the moldability may deteriorate.
  • the average crystal grain size is less than 20 ⁇ m, there is concern about the adverse effects due to the above-described refinement of the crystal grains. If the average crystal grain size exceeds 30 ⁇ m, the surface of the foil will be roughened during molding, which will lead to deterioration in moldability.
  • the average grain size is preferably 20 ⁇ m or more and 25 ⁇ m or less.
  • the n value (work hardening index) is not limited, it is preferably 0.23 or more.
  • the ratio (maximum crystal grain size/average crystal grain size) is preferably 2.5 or less.
  • the Cube orientation density is 5 or more, the Cu orientation density is 20 or less, and the R orientation density is 15 or less.
  • the Cube orientation density is less than 5, the Cu orientation density exceeds 20, and the R orientation density also exceeds 15, remarkable anisotropy occurs in the elongation of the foil, and the elongation in the direction of 45 ° with respect to the rolling direction increases. , and conversely, the elongation values in the 0° direction and the 90° direction with respect to the rolling direction are lowered. If the elongation is anisotropic, uniform deformation cannot be achieved during molding, resulting in poor moldability.
  • the Cube orientation density is preferably greater than 6, the Cu orientation density is preferably less than 18, and the R orientation density is preferably less than 14.
  • Texture is a factor affected by various factors during manufacturing. Among them, the following matters are particularly important for achieving the texture of the product of the present invention.
  • (1) Excessive development of Cu orientation immediately before final annealing, that is, after final cold rolling, and (2) Increasing the proportion of discontinuous recrystallization in recrystallization during final annealing.
  • the factors satisfying (1) is that the final cold rolling reduction from intermediate annealing to the final thickness should not be too high. Basically, the higher the cold rolling rate, the higher the Cu orientation density.
  • Recrystallization behavior can be broadly classified into continuous recrystallization and discontinuous recrystallization.
  • rate of continuous recrystallization is large, the texture after cold rolling is considerably maintained even after the final annealing, and as a result, the Cu orientation density tends to be high and the Cube orientation density tends to be low.
  • the amount of solid solution of Fe can be reduced as much as possible by optimizing the conditions for homogenization and intermediate annealing to promote the precipitation of Fe.
  • HAGB (large angle grain boundary) length / LAGB (small angle grain boundary) length >2.0
  • the ratio of the length of HAGB to the length of LAGB in the total grain boundaries changes depending on the recrystallization behavior during annealing. A high proportion of LAGB after the final anneal is often seen with a high proportion of continuous recrystallization. Even if the average crystal grain size is fine, when HAGB length/LAGB length ⁇ 2.0, local deformation tends to occur and elongation decreases. It is desirable that HAGB length/LAGB length>2.0, which can be expected to improve moldability.
  • a grain boundary is defined as a grain boundary having a misorientation of 5° or more obtained by EBSD. If the orientation difference is 5° or more, LAGB and HAGB are mixed, and it is unclear whether the recrystallized grains surrounded by HAGB are really fine.
  • the HAGB length/LAGB length is preferably 3.0 or more.
  • HAGB large angle grain boundary
  • LAGB small angle grain boundary
  • This grain size is said to act as a nucleation site during crystallization, and the dense distribution of intermetallic compounds with such a grain size makes it easier to obtain fine recrystallized grains during annealing. If the particle size is less than 1.0 ⁇ m, it is difficult to work effectively as a nucleation site during recrystallization. If the particle size exceeds 3.0 ⁇ m, it tends to lead to the occurrence of pinholes and a decrease in elongation.
  • the distribution density (number density) of the Al—Fe intermetallic compound having a particle diameter of 1.0 ⁇ m or more and 3.0 ⁇ m or less is preferably 6.0 ⁇ 10 3 pieces/mm 2 or less.
  • the particle density (number density) of the above intermetallic compound is set to 2.0 ⁇ 10 3 /mm 2 or more. is desirable.
  • the particle diameter is indicated by an equivalent circle diameter.
  • the density of the above intermetallic compound is determined mainly by the amount of Si and Fe added and the conditions of homogenization treatment. It is important to perform the homogenization treatment under appropriate conditions while selecting appropriate amounts of Fe and Si.
  • the amount of Fe is small, the number density decreases, and conversely, when the amount of Fe is too large, the number density exceeds the upper limit.
  • the amount of Fe is extremely large, the intermetallic compound is significantly coarsened, increasing the risk of forming a coarse intermetallic compound that greatly exceeds 3.0 ⁇ m.
  • the amount of Si is small, the number density of fine intermetallic compounds of 1.0 ⁇ m or less increases, and when the amount of Si is too large, the intermetallic compounds become coarse.
  • the homogenization temperature is low, the number density of intermetallic compounds of 1.0 ⁇ m or more tends to be low, and conversely, when the homogenization temperature is high, the number density of intermetallic compounds of 1.0 ⁇ m or more increases.
  • ⁇ Number density of Al—Fe-based intermetallic compound with particle diameter (equivalent circle diameter) of 0.1 ⁇ m or more and less than 1.0 ⁇ m: 1.0 ⁇ 10 4 /mm 2 or more Particle diameter of 0.1 ⁇ m or more and less than 1.0 ⁇ m is a size that is generally said to be difficult to become a nucleus for recrystallization, but results suggest that it has a large effect on grain refinement and recrystallization behavior.
  • fine compounds with a particle size of less than 1.0 ⁇ m exist to some extent. It has been confirmed that it suppresses the decrease in length. There is also a possibility that it promotes division of crystal grains (grain subdivision mechanism) during cold rolling. Therefore, the number density of the Al—Fe intermetallic compound having a particle size within the above range is preferably within the above range.
  • the amount of Si and Fe added and the conditions of homogenization treatment are important. If Fe and Si are too much, the density of the fine compound will decrease. Also, the same problem occurs if the homogenization temperature is too high.
  • Elongation Elongation in each direction of 0°, 45°, and 90° with respect to the rolling direction is 20% or more
  • Strength Tensile strength in each direction of 0°, 45°, and 90° with respect to the rolling direction is 90 MPa or more
  • the elongation of the foil is important to have high formability, and in particular, the direction parallel to the rolling direction is 0 °, 0 °, 45 °, and 90 °, which is the normal direction to the rolling direction It is important that the elongation is high at If the elongation in the direction of 0°, the elongation in the direction of 45°, and the elongation in the direction of 90° with respect to the rolling direction are all 20% or more, high formability can be expected.
  • the tensile strength in the direction of 0°, the tensile strength in the direction of 45°, and the tensile strength in the direction of 90° with respect to the rolling direction are all 90 MPa or more, problems are unlikely to occur even when used as a packaging material.
  • the elongation in each direction of 0°, 45°, and 90° with respect to the rolling direction is preferably 21.0% or more, and the tensile strength in each direction of 0°, 45°, and 90° with respect to the rolling direction
  • the strength is preferably 95 MPa or higher.
  • a method for producing an aluminum alloy foil according to one embodiment of the present invention will be described.
  • Fe 1.2% by mass or more and 1.8% by mass or less
  • Si 0.05% by mass or more and 0.15% by mass or less
  • Cu 0.005% by mass or more and 0.10% by mass or less
  • Mn 0.1% by mass or less. 01% by mass or less, with the balance being Al and unavoidable impurities, to produce an aluminum alloy ingot.
  • the method for producing the ingot is not particularly limited, and a conventional method such as semi-continuous casting can be used.
  • the obtained ingot is homogenized by holding at 480 to 540° C. for 6 hours or longer.
  • hot rolling is performed, and in the hot rolling, the rolling finishing temperature is set to 230°C or higher and lower than 300°C.
  • cold rolling is performed multiple times, and intermediate annealing is performed one or more times during the cold rolling.
  • the cold rolling reduction from the start of cold rolling to intermediate annealing is more than 70% and not more than 87%.
  • the temperature is 300°C to 400°C.
  • the intermediate annealing time is preferably 3 hours or longer. If the intermediate annealing time is less than 3 hours, the material may not soften sufficiently when the annealing temperature is low. Since long-term annealing exceeding 10 hours is economically unfavorable, the intermediate annealing time is preferably 10 hours or less.
  • Cold rolling after the final intermediate annealing corresponds to final cold rolling, and the final cold rolling reduction at that time is set to 90% or more and less than 95%.
  • the final thickness of the foil is not particularly limited, but can be, for example, 10 ⁇ m to 40 ⁇ m.
  • final annealing is performed at a temperature of 250 to 350° C. for 10 hours or more.
  • - Homogenization treatment held at 480 to 540°C for 6 hours or more It is desirable to subject the obtained ingot to homogenization treatment by holding it at 480 to 540°C for 6 hours or more. If the temperature is less than 480° C., Fe precipitation is less and the growth of intermetallic compounds becomes insufficient. On the other hand, when it exceeds 540° C., the growth of intermetallic compounds is remarkable, and the density of fine intermetallic compounds having a particle size of 0.1 ⁇ m or more and less than 1 ⁇ m is greatly reduced. In such a homogenization treatment at around 500° C., a long heat treatment is required in order to deposit fine intermetallic compounds at a high density, and at least 6 hours or more must be ensured. If the time is less than 6 hours, precipitation will not be sufficient and the density of fine intermetallic compounds will decrease.
  • the homogenization temperature is preferably above 500°C and below 530°C.
  • finishing temperature of 230°C or more and less than 300°C
  • the hot-rolled sheet has a uniform fiber structure.
  • the finish temperature of hot rolling is preferably 230° C. or higher and 280° C. or lower.
  • Intermediate annealing softens the hardened material by repeating cold rolling to restore the rollability, and promotes the precipitation of Fe to reduce the amount of dissolved Fe. If the temperature is lower than 300°C, there is a risk that the recrystallization will not be completed and the grain structure will become uneven. At high temperatures exceeding 400° C., coarsening of recrystallized grains occurs, and the final grain size also increases. Furthermore, at high temperatures, the amount of precipitated Fe decreases and the amount of dissolved Fe increases. If the amount of dissolved Fe is large, discontinuous recrystallization during the final annealing is suppressed, and the ratio of low-angle grain boundaries increases.
  • the intermediate annealing temperature is preferably less than 380°C.
  • the holding time of the intermediate annealing is desirably 3 hours or more. If the time is less than 3 hours, the recrystallization may be incomplete and the precipitation of Fe may be insufficient.
  • the upper limit is not particularly defined, it is preferably 15 hours or less, preferably 10 hours or less, in consideration of productivity.
  • the cold rolling rate from the start of cold rolling to intermediate annealing is more than 70% and 87% or less
  • the recrystallization behavior of Al-Fe alloys is greatly affected by the cold rolling rate up to heat treatment. As the rolling reduction increases, the recrystallized grains after annealing become finer, but the development of the Cube orientation as a texture is suppressed, while the Cu orientation and the R orientation tend to develop.
  • Cold rolling is started after hot rolling, and intermediate annealing is performed at a plate thickness on the way to the final thickness. can be done.
  • the texture is within the specified range, but on the other hand, the recrystallized grains during intermediate annealing become large, resulting in the final annealing. There is a concern that subsequent crystal grains will coarsen.
  • the cold rolling rate from the start of cold rolling to intermediate annealing exceeds 87%, the Cube orientation density after final annealing decreases, and the Cu orientation and R orientation densities remarkably increase.
  • Final cold rolling reduction 90% or more and less than 95%
  • the recrystallization rate also increases, LAGB with a misorientation of less than 15° increases, and the HAGB length/LAGB length decreases.
  • the final cold rolling reduction is 95% or more, the development of Cu orientation during cold rolling is remarkable, and the Cu orientation density is significantly increased even after final annealing.
  • the final cold rolling reduction is preferably 92% or more and less than 95%.
  • Final annealing 250 to 350°C for 10 hours or more Final annealing is performed after the final cold rolling to completely soften the foil. At a temperature of less than 250° C. or a holding time of less than 10 hours, softening may be insufficient. If the temperature exceeds 350° C., problems such as deformation of the foil and deterioration of economic efficiency arise.
  • the upper limit of the retention time is preferably less than 100 hours from the viewpoint of economy.
  • the obtained aluminum alloy foil has an average crystal grain size of 20 to 30 ⁇ m, and a maximum crystal grain size/average crystal grain size ⁇ 3.0.
  • the aluminum alloy foil preferably has a Cube density of 5 or more, a Cu orientation density of 20 or less, and an R orientation density of 15 or less. Moreover, it is preferable to satisfy HAGB length/LAGB length>2.0.
  • Aluminum foil has an excellent balance between excellent elongation properties and strength. Therefore, the tensile strength in each direction of 0°, 45°, and 90° is 90 MPa or more, and the balance between the elongation in the three directions and the strength can be maintained well.
  • the density of the intermetallic compound satisfies the following regulations.
  • Al-Fe with a particle size of 1.0 to 3.0 ⁇ m and a number density of 6.0 ⁇ 10 3 /mm 2 or less, and an Al-Fe particle size of 0.1 ⁇ m or more and less than 1.0 ⁇ m
  • the number density of the system intermetallic compound is 1.0 ⁇ 10 4 /mm 2 or more.
  • Aluminum alloy foil can be deformed by press molding, etc., and can be suitably used as a packaging material for foods and lithium-ion batteries.
  • the use of the aluminum alloy foil is not limited to the above, and it can be used for appropriate uses.
  • An aluminum alloy ingot having the composition shown in Table 1 (the balance being Al and unavoidable impurities) was produced by a semi-continuous casting method. After that, for the obtained ingot, the manufacturing conditions shown in Table 2 (conditions for homogenization treatment, finish temperature of hot rolling, plate thickness at intermediate annealing, cold rolling rate until intermediate annealing, intermediate annealing conditions , final cold rolling rate), homogenization, hot rolling, cold rolling, intermediate annealing, cold rolling again, and final annealing were performed to produce an aluminum alloy foil. The final annealing conditions were 300° C. ⁇ 20 hours. The thickness of the foil was 40 ⁇ m.
  • the following properties were measured and evaluated for the obtained aluminum alloy foil. ⁇ Tensile strength and elongation Both were measured by a tensile test.
  • the tensile test conforms to JIS Z2241, and a JIS No. 5 test piece is taken from the sample so that the elongation in each direction of 0, 45, and 90° with respect to the rolling direction can be measured, and a universal tensile tester (Shimadzu Corporation) (manufactured by AGS-X 10 kN) at a tensile speed of 2 mm/min. Calculation of the elongation rate is as follows.
  • HAGB length/LAGB length The foil surface was electropolished. Next, the crystal orientation is analyzed with an SEM-EBSD device, and a large-angle grain boundary (HAGB) with a misorientation between crystal grains of 15° or more and a small-angle grain boundary (LAGB) with a misorientation of 2° or more and less than 15° are identified. Observed. Three visual fields with a visual field size of 45 ⁇ 90 ⁇ m were measured at a magnification of 1000 times, the lengths of HAGB and LAGB in the visual field were determined, and the ratio of HAGB length/LAGB length was calculated.
  • HAGB large-angle grain boundary
  • LAGB small-angle grain boundary
  • the forming height was evaluated by a rectangular cylinder forming test.
  • the wrinkle suppressing force was 10 kN
  • the punch rising speed (forming speed) was set to 1
  • mineral oil was applied as a lubricant to one side of the foil (the side hit by the punch).
  • a punch rising from the bottom of the device hits the foil and the foil is formed.
  • the maximum rise height of the punch that can be formed without cracks or pinholes in three consecutive formings is the limit forming height of the material. It was defined as height (mm).
  • the height of the punch was changed at intervals of 0.5 mm. In the case of the product of the present invention, when the molding height was 8.0 mm or more, the moldability was judged to be good (accepted).
  • Al-Fe intermetallic compounds with a particle diameter (equivalent circle diameter) of 0.1 ⁇ m or more and less than 1.0 ⁇ m 10 fields of view observed at a magnification of 10000 times were imaged with ImageJ, an open source image analysis software. was analyzed and its number density was calculated. The particle size of the intermetallic compound was obtained from the equivalent circle diameter using image analysis software ImageJ.
  • ⁇ 001 ⁇ 100> is the typical Cube orientation
  • ⁇ 112 ⁇ 111> is the typical Cu orientation
  • ⁇ 123 ⁇ 634> is the typical R orientation.
  • ODF three-dimensional orientation distribution function
  • the examples satisfied the requirements of this embodiment, and good properties were obtained in terms of elongation, tensile strength, and limit overhang height.
  • the tensile strength was 90 MPa or more in each direction of 0°, 45°, and 90° with respect to the rolling direction.
  • the comparative examples did not satisfy any one or more of the requirements of the present embodiment, and good characteristics were not obtained.
  • Comparative Example 12 since the Si content was less than the lower limit of the range of the present embodiment, coarsening and unevenness of crystal grains occurred, and a sufficient molding height was not obtained.
  • the aluminum alloy foil of this embodiment is suitably applied as a packaging material for foods and lithium ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

このアルミニウム合金箔は、Fe:1.2質量%以上1.8質量%以下、Si:0.05質量%以上0.15質量%以下、Cu:0.005質量%以上0.10質量%以下、及びMn:0.01質量%以下を含有し、残部がAl及び不可避不純物からなり、平均結晶粒径が20~30μmであり、最大結晶粒径/平均結晶粒径≦3.0であり、Cube方位密度が5以上、Cu方位密度が20以下、R方位密度が15以下である。

Description

アルミニウム合金箔
 この発明は、成形性に優れるアルミニウム合金箔に関する。
 本願は、2021年4月22日に、日本に出願された特願2021-072792号に基づき優先権を主張し、その内容をここに援用する。
 食品やリチウムイオン電池等の包材に用いられるアルミニウム合金箔は、プレス成形等によって大きな変形が加えられて成形されるため、高い伸びを有していることが求められる。従来、高い伸びを有する材料としては、例えば1N30等と称されるJIS A1000系合金や8079、8021等のJIS A8000系合金の軟質箔が用いられている。
 アルミニウム合金箔は一方向に変形されず、いわゆる張り出し成形が行われて複数の方向において変形が行われることが多いため、伸び特性については、一般的に伸び値として用いられる圧延方向の伸びだけでなく、圧延方向に対して45°方向の伸び、90°方向の伸びも高いことが求められている。
 このような要請に対し、従来は、高い伸びを有するアルミニウム合金箔を実現するために合金内の結晶粒を制御することが提案されている。
 例えば、特許文献1では、平均結晶粒径を7~20μmに規定することで高い成形性を得ようとしている。
 また、特許文献2では、結晶粒径を12μm以下という非常に微細な値に規定することで高い成形性を得ようとしている。
 さらに、特許文献3では、平均結晶粒径が7.0~12.0μmの微細な結晶粒組織を規定している。
 しかし、前記した特許文献1~3では伸び特性が十分でなく、強度と伸びのバランスもよくない。
国際公開2013/168606号公報 特開2014-47372号公報 特開2018-115376号公報
 本発明は、上記事情を背景としてなされたものであり、加工性が良好で且つ高い成形性を有するアルミニウム合金箔を提供する事を目的の一つとしている。
 第1の態様に係るアルミニウム合金箔は、Fe:1.2質量%以上1.8質量%以下、Si:0.05質量%以上0.15質量%以下、Cu:0.005質量%以上0.10質量%以下、及びMn:0.01質量%以下を含有し、残部がAl及び不可避不純物からなる組成を有し、前記アルミニウム合金箔の平均結晶粒径が20~30μmであり、最大結晶粒径/平均結晶粒径≦3.0であり、Cube方位密度が5以上、Cu方位密度が20以下、そしてR方位密度が15以下であることを特徴とする。
 第2の態様に係るアルミニウム合金箔は、第1の態様のアルミニウム合金箔であって、後方散乱電子回折(EBSD)による単位面積当たりの結晶方位解析において、方位差15°以上の大傾角粒界(HAGB)の長さと、方位差2°以上15°未満の小傾角粒界(LAGB)の長さの比がHAGB長/LAGB長>2.0を満たすことを特徴とする。
 第3の態様に係るアルミニウム合金箔は、第1又は第2の態様のアルミニウム合金箔であって、円相当径が1.0~3.0μmのAl-Fe系金属間化合物の数密度が6.0×10個/mm以下であり、円相当径が0.1μm以上1.0μm未満のAl-Fe系金属間化合物の数密度が1.0×10個/mm以上であることを特徴とする。
 第4の態様に係るアルミニウム合金箔は、第1~第3の態様のいずれかのアルミニウム合金箔であって、圧延方向に対して、0°、45°、90°の各方向において、伸びが20%以上、且つ引張強さが90MPa以上であることを特徴とする。
 本発明の態様によれば、高い伸び特性を有し、加工性が良好で且つ高い成形性を有するアルミニウム合金箔を得ることができる。
本発明の実施例における限界成形高さ試験で用いる角型ポンチの平面形状を示す図である。
 以下、本発明の一実施形態に係るアルミニウム合金箔について説明する。
・Fe:1.2質量%以上1.8質量%以下
 Feは、鋳造時にAl-Fe系金属間化合物として晶出し、金属間化合物のサイズが大きい場合は焼鈍時に再結晶のサイトとなって再結晶粒を微細化する効果がある。Feの含有量が1.2質量%未満では、粗大な金属間化合物の分布密度が低くなり、その微細化の効果が低く、最終的な結晶粒径分布も不均一となる。Feの含有量が1.8質量%超では、結晶粒を微細化する効果が飽和もしくは低下し、さらに鋳造時に生成されるAl-Fe系金属間化合物のサイズが非常に大きくなり、箔の伸びや成形性、そして圧延性が低下する。Feの含有量の特に好ましい範囲は、下限で1.4質量%、上限で1.6質量%である。
・Si:0.05質量%以上0.15質量%以下
 SiはFeと共に金属間化合物を形成する。Siの含有量が0.15質量%を超えると、粗大な金属間化合物が生成し、これにより圧延性、伸び特性が低下し、さらには最終焼鈍後の再結晶粒サイズの均一性が低下する懸念がある。Siの含有量が0.05質量%未満では、Feの析出が抑制され、固溶Fe量が多くなり中間焼鈍や最終焼鈍時に連続再結晶の割合が多くなる。連続再結晶の割合が増えると、再結晶後でもCu方位が発達し、また結晶粒サイズの均一性も低下する。以上の理由で、Siの含有量の下限は0.07%、上限は0.13%とするのが好ましい。
・Cu:0.005質量%以上0.10質量%以下
 Cuはアルミニウム箔の強度を増加させ、伸びを低下させる元素である。一方ではAl-Fe系合金で報告されている冷間圧延中の過度な加工軟化を抑制する効果がある。Cuの含有量が0.005質量%未満の場合、加工軟化を抑制する効果が低くなる。Cuの含有量が0.10質量%を超えると、材料が硬くなり伸びや成形性が明瞭に低下する。好ましくは、Cuの含有量の下限が0.008%、上限が0.08%以下である。
・Mn:0.01質量%以下
 Mnはアルミニウム母相中に固溶するか、あるいは非常に微細な化合物を形成し、アルミニウムの再結晶を抑制する働きがある。Mnの含有量が微量であれば、Cuと同様に加工軟化の抑制が期待できる。これに対してMnの添加量が多いと、中間焼鈍、及び最終焼鈍時の再結晶を遅延させ、微細で均一な結晶粒を得る事が困難となり、またCu方位やR方位の過度な発達を招く。その為、Mnの含有量を0.01%以下に規制する。より好ましくは、Mnの含有量の上限が0.005%である。
・平均結晶粒径20~30μm
 軟質アルミニウム箔は結晶粒が微細になる事で、変形した際の箔表面の肌荒れを抑制する事が出来、高い伸びとそれに伴う高い成形性が期待できる。しかし結晶粒が微細になりすぎると、材料が硬くなり、またn値(加工硬化指数)が低下する事で逆に伸びが低下する懸念がある。またAl-Fe系合金における微細な再結晶粒は連続再結晶で得られる場合が多く、その場合は最終焼鈍後でもCu方位密度が非常に高くなり、また結晶粒サイズも不均一化する。この為、成形性が低下する懸念がある。平均結晶粒径が20μm未満では、前述の結晶粒が微細化することによる悪影響が懸念される。平均結晶粒径が30μmを超えると、成形時に箔表面に肌荒れを生じ、この事が成形性低下をもたらす。
 平均結晶粒径は、好ましくは20μm以上25μm以下である。
 なお、n値(加工硬化指数)が限定されるものではないが、0.23以上が望ましい。
・最大結晶粒径/平均結晶粒径≦3.0
 平均結晶粒径が同じであっても、結晶粒の粒径分布(粒度分布)が不均一である場合、局所的な変形を生じ易くなり箔の伸びや成形性は低下する。その為、平均結晶粒径だけでなく最大結晶粒径/平均結晶粒径≦3.0とすることで、高い成形性を得る事が出来る。
 上記比(最大結晶粒径/平均結晶粒径)はさらに、2.5以下とするのが望ましい。
・集合組織としてCube方位密度5以上、Cu方位密度20以下、そしてR方位密度15以下
 集合組織は箔の伸びに大きな影響を及ぼす。Cube方位密度が5未満、Cu方位密度20を超え、且つR方位密度も15を超えると、箔の伸びに顕著な異方性が生じ、圧延方向に対して45°方向の伸びは上昇するが、逆に圧延方向に対して0°方向と、90°方向の伸び値が低下してしまう。伸びに異方性が生じると、成形時に均一な変形が出来ず成形性が低下する。その為Cube方位密度5以上、Cu方位密度20以下、そしてR方位密度15以下に保つことで、3方向の伸びのバランスを保つ事が出来る。
 Cube方位密度は、好ましくは6超であり、Cu方位密度は、好ましくは18未満であり、R方位密度は、好ましくは14未満である。
 集合組織は製造中の様々な要素が影響するファクターである。その中でも本発明品の集合組織を達成するには、以下の事項が特に重要となる。
(1)最終焼鈍直前、つまり最終冷間圧延後にCu方位を過度に発達させない事、及び(2)最終焼鈍時の再結晶における不連続再結晶の割合を高める事。
 例えば(1)を満たす要素の一つとして、中間焼鈍から最終厚みまでの最終冷間圧延率を高くしすぎない事が挙げられる。基本的には冷間圧延率が高いほど、Cu方位密度は増加する。(2)については、アルミマトリックスに対するFeの固溶量を下げる事、及び(1)と相反するが最終冷間圧延率をある程度高く設定する事が望ましい。再結晶挙動は大きく分けて連続再結晶と不連続再結晶に大別される。連続再結晶の割合が大きいと、冷間圧延後の集合組織が最終焼鈍後もかなり維持されることになり、結果的にCu方位密度が高くCube方位密度が低い傾向になる。Feの固溶量を出来るだけ下げるには、均質化処理や中間焼鈍の条件を最適化し、Feの析出を促すことで達成できる。
・「HAGB(大角粒界)長さ/LAGB(小角粒界)長さ>2.0」
 Al-Fe系合金に限った事ではないが、焼鈍時の再結晶挙動によっては総結晶粒界に占めるHAGBの長さとLAGBの長さの比率が変化する。最終焼鈍後にLAGBの割合が多い場合は、連続再結晶の割合が高い場合に良く見られる。たとえ平均結晶粒径が微細であったとしても、HAGB長/LAGB長≦2.0の場合は、局所的な変形を生じやすくなり伸びが低下する。HAGB長/LAGB長>2.0とするのが望ましく、これにより成形性向上が期待できる。
 例えば、特許文献2では、結晶粒界はEBSDで得られた方位差5°以上の方位差を有する粒界と定義されている。方位差が5°以上という事は、LAGBとHAGBが混在しており、HAGBで囲まれた再結晶粒が本当に微細であるかどうかは不明確となる。
 HAGB長/LAGB長は、好ましくは3.0以上である。
 HAGB(大角粒界)長さ/LAGB(小角粒界)長さの比率を2.0超とするには、最終焼鈍時の再結晶における不連続再結晶の割合を高める事が特に重要となる。つまり均質化処理や中間焼鈍で十分にFeを析出させ、アルミマトリックスに対するFeの固溶量を下げつつ、ある程度高い最終冷間圧延率を設定する事が重要である。
・粒子径(円相当径)1.0μm以上3.0μm以下のAl-Fe系金属間化合物の数密度:6.0×10個/mm以下
 1.0μm以上とは、一般的に再結晶時に核生成サイトとして作用すると言われている粒径であり、このような粒子径の金属間化合物が高密度に分布する事で焼鈍時に微細な再結晶粒を得やすくなる。粒子径が1.0μm未満の場合は、再結晶時に核生成サイトとして有効に働きにくい。粒子径が3.0μmを超えると、ピンホール発生や伸びの低下につながり易くなる。ただし、このような粗大な化合物が高密度に存在する場合、成形時のピンホールの起点ともなり成形性を悪化させる原因となる。そのため粒子径が1.0μm以上3.0μm以下のAl-Fe系金属間化合物の分布密度(数密度)は6.0×10個/mm以下とすることが好ましい。
 ただし、上記した金属間化合物は、粒子密度(数密度)が極端に低くなると、結晶粒の粗大化につながるため、粒子密度(数密度)は2.0×10個/mm以上とするのが望ましい。
 なお、粒子径は円相当径で示される。
 上記金属間化合物の密度は主にSiとFeの添加量、そして均質化処理の条件で決定される。適切なFeとSiの量を選択しつつ、適切な条件の均質化処理を行う事が重要である。Fe量が少ない場合は数密度が低下し、逆にFe量が多すぎると数密度が上限値を超える。またFe量が極端に多い場合には、金属間化合物の顕著な粗大化を招き、3.0μmを大きく超える粗大な金属間化合物が生成するリスクが高まる。またSi量が少ない場合は、1.0μm以下の微細な金属間化合物の数密度が増加し、逆にSi量が多すぎる場合は、金属間化合物の粗大化を招く。均質化処理温度が低い場合は、1.0μm以上の金属間化合物の数密度が低くなりやすく、逆に均質化処理温度が高いと、1.0μm以上の金属間化合物の数密度が増加する。
・粒子径(円相当径)0.1μm以上1.0μm未満のAl-Fe系金属間化合物の数密度:1.0×10個/mm以上
 0.1μm以上1.0μm未満の粒子径は、一般には再結晶の核となりにくいと言われているサイズだが、結晶粒の微細化及び再結晶挙動に大きな影響を与えていると示唆される結果が得られている。詳細なメカニズムは未だ明らかでないが、粒子径1.0~3.0μmの粗大な金属間化合物に加え、1.0μm未満の微細な化合物がある程度存在する事で、最終焼鈍後のHAGB長/LAGB長の低下を抑制することが確認されている。冷間圧延中の結晶粒の分断(Grain subdivision機構)を促進している可能性もある。このため上記範囲の粒子径を有するAl-Fe系金属間化合物の数密度は、上記範囲とするのが好ましい。
 上記数密度を調整するには、SiとFeの添加量、そして均質化処理の条件が重要となる。FeやSiが多すぎる場合には、微細な化合物の密度が低下してしまう。また均質化処理温度が高すぎても同様となる。
・伸び:圧延方向に対して、0°、45°、90°の各方向における伸びが20%以上、強度:圧延方向に対して、0°、45°、90°の各方向における引張強さが90MPa以上
 高い成形性を有するには箔の伸びが重要であり、特に圧延方向に平行な方向を0°として、0°、45°、そして圧延方向の法線方向である90°の各方向で伸びが高いことが重要である。圧延方向に対して、0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも20%以上であれば、高い成形性が期待できる。また箔が包材として用いられる場合には、シワやき裂等を抑制する為にある程度の強度を有する事が必要である。圧延方向に対して、0°方向の引張強さ、45°方向の引張強さ、90°方向の引張強さがいずれも90MPa以上であれば、包材として利用した際にも不具合を生じにくい。
 圧延方向に対して、0°、45°、90°の各方向における伸びは、好ましくは21.0%以上であり、圧延方向に対して、0°、45°、90°の各方向における引張強さは、好ましくは95MPa以上である。
 本発明の一実施形態のアルミニウム合金箔の製造方法について説明する。
 Fe:1.2質量%以上1.8質量%以下、Si:0.05質量%以上0.15質量%以下、Cu:0.005質量%以上0.10質量%以下、及びMn:0.01質量%以下を含有し、残部がAl及び不可避不純物からなる組成に調製してアルミニウム合金鋳塊を製造する。鋳塊の製造方法は特に限定されず、半連続鋳造などの常法により行うことが可能である。
 得られた鋳塊に対しては、480~540℃で6時間以上保持する均質化処理を行う。
 均質化処理後、熱間圧延を行い、熱間圧延では、圧延仕上がり温度を230℃以上300℃未満に設定する。その後、複数回冷間圧延を行い、冷間圧延の途中で1回以上の中間焼鈍を行う。冷間圧延の開始から中間焼鈍までの冷間圧延率は70%超え87%以下である。中間焼鈍では、温度を300℃~400℃とする。中間焼鈍の時間は3時間以上が好ましい。中間焼鈍の時間が3時間未満では、焼鈍温度が低温の場合に材料の軟化が不十分になる可能性がある。なお、10時間超の長時間焼鈍は経済的に好ましくないので、中間焼鈍の時間は10時間以下が好ましい。
 最後の中間焼鈍以降の冷間圧延は最終冷間圧延に相当し、その際の最終冷間圧延率を90%以上95%未満とする。箔の最終厚さは特に限定されないが、例えば10μm~40μmとすることができる。そして最終冷間圧延後に250~350℃の温度で10時間以上の最終焼鈍を行う。
・均質化処理:480~540℃で6時間以上保持
 得られた鋳塊に対しては、480~540℃で6時間以上保持する均質化処理を行うのが望ましい。480℃未満では、Fe析出が少なく、また金属間化合物の成長が不十分となる。一方、540℃超では、金属間化合物の成長が著しく、粒子径0.1μm以上1μm未満の微細な金属間化合物の密度が大きく低下してしまう。このような500℃付近の均質化処理において、微細な金属間化合物を高密度に析出させるには、長時間の熱処理が必要であり、最低6時間以上は確保する必要がある。6時間未満では、析出が十分でなく、微細な金属間化合物の密度が低下してしまう。
 均質化処理の温度は、好ましくは500℃超530℃未満である。
・熱間圧延:仕上がり温度230℃以上300℃未満
 熱間圧延においては仕上がり温度を300℃未満とし、再結晶を抑制する事が望ましい。熱間圧延仕上がり温度を300℃未満とする事で、熱間圧延板は均一なファイバー組織となる。このように熱間圧延後の再結晶を抑制する事で、その後の中間焼鈍での板厚までに蓄積されるひずみ量が大きくなり、中間焼鈍時に粒径の均一な再結晶粒組織を得る事が出来る。この事は最終的な結晶粒径の均一性にも繋がる。300℃を超えると、熱間圧延板の一部で再結晶を生じ、ファイバー組織と再結晶粒組織が混在する事になり、中間焼鈍時の再結晶粒径が不均一化し、それはそのまま最終的な結晶粒径の不均一化に繋がる。230℃未満で仕上げるには、熱間圧延中の温度も極めて低温となる為、板のサイドにクラックが発生し生産性が大幅に低下する懸念がある。
 熱間圧延の仕上がり温度は、好ましくは230℃以上280℃以下である。
・中間焼鈍:300℃~400℃
 中間焼鈍は、冷間圧延を繰り返す事で硬化した材料を軟化させ圧延性を回復させ、またFeの析出を促進し固溶Fe量を低下させる。300℃未満では、再結晶が完了せず結晶粒組織が不均一になるリスクがある。また400℃を超える高温では、再結晶粒の粗大化を生じ、最終的な結晶粒サイズも大きくなる。さらに高温では、Feの析出量が低下し、固溶Fe量が多くなる。固溶Fe量が多いと、最終焼鈍時の不連続再結晶が抑制され、小傾角粒界の割合が多くなる。その為、中間焼鈍温度は380℃未満が望ましい。中間焼鈍の保持時間は3時間以上が望ましい。3時間未満では、再結晶が不完全となり、またFeの析出も不十分となる恐れがある。上限は特に定めないが、生産性を踏まえると15時間以下が望ましく、10時間以下が好ましい。
・冷間圧延の開始から中間焼鈍までの冷間圧延率が70%超え87%以下
 Al-Fe合金の再結晶挙動には熱処理までの冷間圧延率も大きく影響する。圧延率が高い程、焼鈍後の再結晶粒は微細になるが、集合組織としてCube方位の発達は抑制され、一方でCu方位とR方位は発達しやすくなる。熱間圧延後に冷間圧延を開始し、最終厚みまでの途中の板厚で中間焼鈍を行う事で、最終焼鈍後のCube方位の発達を促し、またCu方位とR方位の発達を抑制する事が出来る。冷間圧延の開始から中間焼鈍までの冷間圧延率が70%以下の場合、集合組織は規定範囲内となるが、一方で、中間焼鈍時の再結晶粒が大きくなり、結果的に最終焼鈍後の結晶粒が粗大化する懸念がある。一方、冷間圧延の開始から中間焼鈍までの冷間圧延率が87%を超えると、最終焼鈍後のCube方位密度が低下し、Cu方位とR方位密度が顕著に大きくなる。
・最終冷間圧延率:90%以上95%未満
 中間焼鈍後から最終厚みまでの最終冷間圧延率が高い程、材料に蓄積されるひずみ量が多くなり、最終焼鈍後の再結晶粒が微細化され、同時にCu方位の発達が顕著になる。逆に最終冷間圧延率が低すぎる場合は、再結晶粒の粗大化や不均一化の原因となる。具体的には最終冷間圧延率を90%以上95%未満に制御する事が望ましい。最終冷間圧延率が90%未満では、蓄積ひずみ量の低下により、最終焼鈍後の結晶粒サイズの粗大化や不均一化を招く。またその場合、再結晶の割合も増え、方位差15°未満のLAGBが増加しHAGB長/LAGB長が小さくなる。一方、最終冷間圧延率が95%以上であると、冷間圧延におけるCu方位の発達が顕著になり、最終焼鈍後でもCu方位密度が顕著に大きくなる。
 最終冷間圧延率は、好ましくは92%以上95%未満である。
・最終焼鈍:250~350℃で10時間以上
 最終冷間圧延後に最終焼鈍を行ない、箔を完全に軟化させる。250℃未満の温度や10時間未満の保持時間では、軟化が不十分な場合が生じる。350℃を超えると、箔の変形や経済性の低下などが問題となる。保持時間の上限は、経済性などの観点から100時間未満が好ましい。
 得られたアルミニウム合金箔は、平均結晶粒径が20~30μmであり、最大結晶粒径/平均結晶粒径≦3.0である。
 アルミニウム合金箔は、Cube密度が5以上、Cu方位密度20以下、R方位密度15以下であるのが好ましい。またHAGB長/LAGB長>2.0を満たすことが好ましい。
 アルミニウム箔は、優れた伸び特性と強度のバランスに優れており、例えば、圧延方向に対して、0°、45°、90°の各方向における伸びが20%以上であり、かつ圧延方向に対して、0°、45°、90°の各方向における引張強さが90MPa以上となり、3方向の伸びと強度のバランスをよりよく保つことができる。
 なお、アルミニウム合金箔においては、金属間化合物の密度が以下の規定を満たしていることが望ましい。
・粒子径1.0~3.0μmのAl-Fe系金属間化合物の数密度が6.0×10個/mm以下であり、粒子径0.1μm以上1.0μm未満のAl-Fe系金属間化合物の数密度が1.0×10個/mm以上である。
 アルミニウム合金箔は、プレス成形等によって変形を行うことができ、食品やリチウムイオン電池の包材などとして好適に用いることができる。なお、本実施形態としては、アルミニウム合金箔の用途が上記に限定されるものではなく、適宜の用途に利用することができる。
 表1に示す組成(残部がAlと不可避不純物)を有するアルミニウム合金の鋳塊を半連続鋳造法により作製した。その後、得られた鋳塊に対して、表2に示す製造条件(均質化処理の条件、熱間圧延の仕上がり温度、中間焼鈍時の板厚、中間焼鈍までの冷間圧延率、中間焼鈍条件、最終冷間圧延率)により、均質化処理、熱間圧延、冷間圧延、中間焼鈍、再度の冷間圧延、最終焼鈍を行い、アルミニウム合金箔を製造した。最終焼鈍の条件は300℃×20時間とした。
 箔の厚さは40μmとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られたアルミニウム合金箔に対し、以下の特性の測定および評価を行った。
・引張強度、伸び
 いずれも引張試験にて測定した。引張試験は、JIS Z2241に準拠し、圧延方向に対して0、45、90°の各方向の伸びを測定できるように、JIS5号試験片を試料から採取し、万能引張試験機(島津製作所社製 AGS-X 10kN)で引張り速度2mm/minにて試験を行った。
 伸び率の算出について以下の通りである。まず試験前に試験片長手中央に試験片垂直方向に2本の線を標点距離である50mm間隔でマークした。試験後にアルミニウム合金箔の破断面をつき合わせてマーク間距離を測定し、そこから標点距離(50mm)を引いた伸び量(mm)を、標点間距離(50mm)で除して伸び率(%)を求めた。
・結晶粒径
 各アルミニウム合金箔を20体積%過塩素酸+80体積%エタノール混合溶液に浸漬し、電圧20Vで電解研磨を行った。次いで、水洗し、5体積%ホウフッ化水素酸水溶液中で電圧30Vで陽極酸化皮膜を生成させた。次いで、偏光光学顕微鏡にて結晶粒の観察と撮影を実施した。平均結晶粒径は結晶粒写真から切断法にて測定した。詳細には、200倍の倍率でサイズ267×356μmの写真を3枚撮影し、各写真に縦3本、横3本の直線を引き、直線上に存在する結晶粒数をカウントし、直線長さを結晶粒の数で割る事で平均結晶粒径を算出した。また1個の結晶粒の輪郭で切り取られる直線の長さのうち、最大の長さを最大結晶粒径とした。
・HAGB長/LAGB長
 箔表面を電解研磨した。次いで、SEM-EBSD装置にて結晶方位の解析を行い、結晶粒間の方位差が15°以上の大角粒界(HAGB)と、方位差2°以上15°未満の小角粒界(LAGB)を観察した。1000倍の倍率で視野サイズ45×90μmを3視野測定し、視野内のHAGBとLAGBの長さを求め、HAGB長/LAGB長の比を算出した。
・限界成形高さ
 成形高さは角筒成形試験にて評価した。試験は万能薄板成形試験器(ERICHSEN社製 モデル142/20)にて行い、厚さ30μmのアルミ箔を図1に示す形状を有する角型ポンチ(一辺の長さL=37mm、角部の面取り径R=4.5mm)を用いて行った。試験条件として、シワ抑え力は10kN、ポンチの上昇速度(成形速度)の目盛は1とし、そして箔の片面(ポンチが当たる面)に鉱物油を潤滑剤として塗布した。箔に対し装置の下部から上昇するポンチが当たり、箔が成形されるが、3回連続成形した際に割れやピンホールがなく成形できた最大のポンチの上昇高さをその材料の限界成形高さ(mm)と規定した。ポンチの高さは0.5mm間隔で変化させた。本発明品においては成形高さ8.0mm以上の場合を成形性が良好である(合格)とした。
・金属間化合物の数密度
 箔の平行断面(RD-ND面)をCP(Cross section polisher)にて切断し、電界放出型走査電子顕微鏡(FE-SEM:Carl Zeiss社製 NVision40)にて金属間化合物を観察した。「粒子径(円相当径)が1.0μm以上3.0μm以下のAl-Fe系金属間化合物」については、2000倍の倍率にて観察した5視野を画像解析し、その数密度を算出した。「粒子径(円相当径)が0.1μm以上~1.0μm未満のAl-Fe系金属間化合物」については、10000倍の倍率にて観察した10視野をオープンソースの画像解析ソフトImageJで画像解析し、その数密度を算出した。金属間化合物の粒子径は画像解析ソフトImageJで円相当径により求めた。
・結晶方位密度
 Cube方位は{001}<100>を代表方位とし、Cu方位は{112}<111>を代表方位とし、R方位は{123}<634>を代表方位とした。
 それぞれの方位密度はX線回折法において、{200}、{220}、{111}の不完全極点図を測定し、その結果を用いて3次元方位分布関数(ODF;Orientation Distribution Function)を計算し、評価を行った。
 上記各測定結果は表3,4に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3,4に示すように、実施例は、本実施形態の要件を満たしており、伸び、引張強さ、および限界張出高さにおいて良好な特性が得られた。圧延方向に対して0°、45°、90°の各方向において、引張強さは90MPa以上であった。これに対して、比較例は、本実施形態の要件のいずれか一つ以上を満たしておらず、良好な特性が得られなかった。
 比較例12では、Si量が本実施形態の範囲の下限未満であったため、結晶粒の粗大化と不均一化が生じ、十分な成形高さが得られなかった。
 比較例13では、Si量が本実施形態の範囲の上限を超えていたため、結晶粒の粗大化が生じ、かつ粒子径1.0~3.0μmの金属間化合物の数密度が増加した。これにより、十分な成形高さが得られなかった。
 本実施形態のアルミニウム合金箔は、食品やリチウムイオン電池の包材として好適に適用される。
 D 一辺の長さ
 R 面取り径

Claims (4)

  1.  Fe:1.2質量%以上1.8質量%以下、Si:0.05質量%以上0.15質量%以下、Cu:0.005質量%以上0.10質量%以下、及びMn:0.01質量%以下を含有し、残部がAl及び不可避不純物からなる組成を有するアルミニウム合金箔であり、
     前記アルミニウム合金箔の平均結晶粒径が20~30μmであり、最大結晶粒径/平均結晶粒径≦3.0であり、Cube方位密度が5以上、Cu方位密度が20以下、R方位密度が15以下であることを特徴とするアルミニウム合金箔。
  2.  後方散乱電子回折(EBSD)による単位面積当たりの結晶方位解析において、方位差15°以上の大傾角粒界(HAGB)の長さと、方位差2°以上15°未満の小傾角粒界(LAGB)の長さの比がHAGB長/LAGB長>2.0を満たすことを特徴とする請求項1に記載のアルミニウム合金箔。
  3.  円相当径が1.0~3.0μmのAl-Fe系金属間化合物の数密度が6.0×10個/mm以下であり、円相当径が0.1μm以上1.0μm未満のAl-Fe系金属間化合物の数密度が1.0×10個/mm以上であることを特徴とする請求項1または2に記載のアルミニウム合金箔。
  4.  圧延方向に対して、0°、45°、90°の各方向において、伸びが20%以上、且つ引張強さが90MPa以上であることを特徴とする請求項1~3のいずれか1項に記載のアルミニウム合金箔。
PCT/JP2022/010809 2021-04-22 2022-03-11 アルミニウム合金箔 WO2022224615A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22791396.9A EP4253583A4 (en) 2021-04-22 2022-03-11 ALUMINUM ALLOY SHEET
US18/259,333 US20230392239A1 (en) 2021-04-22 2022-03-11 Aluminum alloy foil
JP2023516327A JP7376749B2 (ja) 2021-04-22 2022-03-11 アルミニウム合金箔
JP2023182816A JP2023182829A (ja) 2021-04-22 2023-10-24 アルミニウム合金製電池包材箔

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021072792 2021-04-22
JP2021-072792 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022224615A1 true WO2022224615A1 (ja) 2022-10-27

Family

ID=83722850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010809 WO2022224615A1 (ja) 2021-04-22 2022-03-11 アルミニウム合金箔

Country Status (4)

Country Link
US (1) US20230392239A1 (ja)
EP (1) EP4253583A4 (ja)
JP (2) JP7376749B2 (ja)
WO (1) WO2022224615A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022103056A (ja) * 2020-12-25 2022-07-07 三菱アルミニウム株式会社 アルミニウム合金箔

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168606A1 (ja) 2012-05-11 2013-11-14 古河スカイ株式会社 アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器
WO2014021170A1 (ja) * 2012-08-01 2014-02-06 古河スカイ株式会社 アルミニウム合金箔及びその製造方法
JP2014047372A (ja) 2012-08-30 2014-03-17 Uacj Corp ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔
JP2018115376A (ja) 2017-01-19 2018-07-26 株式会社神戸製鋼所 成形用アルミニウム合金軟質箔
JP2019014940A (ja) * 2017-07-06 2019-01-31 三菱アルミニウム株式会社 アルミニウム合金箔およびアルミニウム合金箔の製造方法
WO2020137394A1 (ja) * 2018-12-26 2020-07-02 三菱アルミニウム株式会社 アルミニウム合金箔およびアルミニウム合金箔の製造方法
WO2021079979A1 (ja) * 2019-10-23 2021-04-29 三菱アルミニウム株式会社 アルミニウム合金箔およびその製造方法
JP2021072792A (ja) 2014-10-01 2021-05-13 プラント ヘルス ケア インコーポレイテッド 過敏感反応エリシターペプチド及びその使用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168606A1 (ja) 2012-05-11 2013-11-14 古河スカイ株式会社 アルミニウム合金箔及びその製造方法、成形包装体材料、二次電池、医薬品包装容器
WO2014021170A1 (ja) * 2012-08-01 2014-02-06 古河スカイ株式会社 アルミニウム合金箔及びその製造方法
JP2014047372A (ja) 2012-08-30 2014-03-17 Uacj Corp ラミネート後の成形性に優れたアルミニウム合金箔とその製造方法、および該アルミニウム合金箔を用いたラミネート箔
JP2021072792A (ja) 2014-10-01 2021-05-13 プラント ヘルス ケア インコーポレイテッド 過敏感反応エリシターペプチド及びその使用
JP2018115376A (ja) 2017-01-19 2018-07-26 株式会社神戸製鋼所 成形用アルミニウム合金軟質箔
JP2019014940A (ja) * 2017-07-06 2019-01-31 三菱アルミニウム株式会社 アルミニウム合金箔およびアルミニウム合金箔の製造方法
WO2020137394A1 (ja) * 2018-12-26 2020-07-02 三菱アルミニウム株式会社 アルミニウム合金箔およびアルミニウム合金箔の製造方法
WO2021079979A1 (ja) * 2019-10-23 2021-04-29 三菱アルミニウム株式会社 アルミニウム合金箔およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4253583A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022103056A (ja) * 2020-12-25 2022-07-07 三菱アルミニウム株式会社 アルミニウム合金箔
JP7303274B2 (ja) 2020-12-25 2023-07-04 Maアルミニウム株式会社 アルミニウム合金箔

Also Published As

Publication number Publication date
EP4253583A4 (en) 2024-02-14
JP2023182829A (ja) 2023-12-26
JPWO2022224615A1 (ja) 2022-10-27
JP7376749B2 (ja) 2023-11-08
US20230392239A1 (en) 2023-12-07
EP4253583A1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
KR102501356B1 (ko) 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
WO2021079979A1 (ja) アルミニウム合金箔およびその製造方法
KR102454648B1 (ko) 알루미늄 합금박 및 알루미늄 합금박의 제조 방법
CN110832091B (zh) 铝合金箔以及铝合金箔的制造方法
JP5113318B2 (ja) 成形加工用アルミニウム合金板およびその製造方法
JP2023182829A (ja) アルミニウム合金製電池包材箔
JP7265895B2 (ja) 成形用アルミニウム合金箔
JP2021095605A (ja) 成形用アルミニウム合金箔およびその製造方法
JP5415016B2 (ja) 成形加工用アルミニウム合金板およびその製造方法
JP7303274B2 (ja) アルミニウム合金箔
JP2019044270A (ja) アルミニウム合金箔およびアルミニウム合金箔の製造方法
WO2022138620A1 (ja) アルミニウム合金箔
JP2024024624A (ja) アルミニウム合金箔およびその製造方法
JP2019044271A (ja) アルミニウム合金箔およびアルミニウム合金箔の製造方法
JP2023091992A (ja) アルミニウム合金箔
JP2024028131A (ja) アルミニウム合金箔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516327

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022791396

Country of ref document: EP

Effective date: 20230628

NENP Non-entry into the national phase

Ref country code: DE