WO2013161614A1 - 酵素処理工程を含むレクチンを用いた抗原検出方法 - Google Patents

酵素処理工程を含むレクチンを用いた抗原検出方法 Download PDF

Info

Publication number
WO2013161614A1
WO2013161614A1 PCT/JP2013/061203 JP2013061203W WO2013161614A1 WO 2013161614 A1 WO2013161614 A1 WO 2013161614A1 JP 2013061203 W JP2013061203 W JP 2013061203W WO 2013161614 A1 WO2013161614 A1 WO 2013161614A1
Authority
WO
WIPO (PCT)
Prior art keywords
lectin
antigen
sugar chain
sugar
specific
Prior art date
Application number
PCT/JP2013/061203
Other languages
English (en)
French (fr)
Inventor
智典 金子
陽一 井出
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP13780782.2A priority Critical patent/EP2843412B1/en
Priority to US14/396,646 priority patent/US10527615B2/en
Priority to JP2013537964A priority patent/JP5413544B1/ja
Publication of WO2013161614A1 publication Critical patent/WO2013161614A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/415Assays involving biological materials from specific organisms or of a specific nature from plants
    • G01N2333/42Lectins, e.g. concanavalin, phytohaemagglutinin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4724Lectins

Definitions

  • the present invention relates to an antigen detection method using a lectin. More specifically, the present invention relates to a highly sensitive and low noise antigen detection method using a lectin including a step of subjecting a specimen to an enzyme treatment.
  • Proteins which are the main players responsible for vital functions of living organisms, to function in an orderly manner in the cellular society.
  • Most proteins in the body are modified by sugar chains, and the sugar chains added to the proteins are virus infection, protozoan parasitism, infection, toxin binding, hormone binding, fertilization, developmental differentiation, protein stability In recent years, it has become clear that it plays an important role in various life phenomena such as cancer cell metastasis and apoptosis.
  • liver cancer based on ⁇ -fetoprotein (AFP) sugar chain fraction measurement as disclosed in Patent Document 1 and Non-Patent Document 1 is known.
  • PSA prostate specific antigen
  • CEA carcinoembryonic antigen
  • proteins having the ability to specifically recognize, bind and crosslink sugar chains called lectins are widely used. This is because antibodies against sugar chains are very difficult to produce and difficult to obtain.
  • Lectins are inexpensive and can be obtained in large quantities, have excellent protein stability, and can be stored for a long time.
  • lectins have problems such as lower binding activity and lower specificity than antibodies.
  • N-acetylgalactosamine is known as the main linking sugar chain in nodafuji lectin (WFA), but it reacts nonspecifically when galactose residues are present in the reaction system by binding slightly to galactose. It will end up.
  • this method is effective when the target protein has been purified to some extent, but a large amount of contaminants such as blood proteins and urine used as specimens in normal disease diagnosis, such as glycoproteins and glycolipids other than the measurement target.
  • contaminants such as blood proteins and urine used as specimens in normal disease diagnosis, such as glycoproteins and glycolipids other than the measurement target.
  • the concentration of the target protein in the serum is extremely high (about several ⁇ g / mL), and is used only for serum diagnosis and the like.
  • Patent Document 3 a blocking agent that suppresses the adsorption of serum contaminants to the surface of the support on which the antibody is immobilized (Patent Document 3), and an absorbent that adsorbs nonspecific substances in advance. Addition (Patent Documents 4 and 5) and investigation of a cleaning solution (Patent Document 3) that can efficiently remove molecules adsorbed on a support have been carried out.
  • bovine serum albumin (BSA), casein, and the like are known as blocking agents, and there are also those using synthetic polymer materials.
  • Absorbers of non-specific substances are molecules that can be removed from the reaction system by binding molecules that inhibit antigen-antibody reactions and molecules that cause noise, such as glycosaminoglycans and heparins, A sugar chain complex or the like may be used.
  • the cleaning liquid the composition of the liquid has been studied, and an example in which the effects of salt strength and various surfactants are examined has been reported (Patent Document 3).
  • JP-A-61-292062 International Publication WO2010 / 090264 JP 2010-127827 JP 2009-53195 JP 2010-60293 A
  • the present invention relates to a method for detecting an antigen capable of improving the detection sensitivity and quantification of a sugar chain on a target antigen by a lectin by a simple technique (simple configuration) in an antigen detection system using a lectin, and It is to provide a detection kit.
  • a high background (noise) factor in a measurement system using lectin is that lectin used for detection has a certain range in sugar chain recognizability. Therefore, even if a known treatment method using a blocking agent or the like is used, a certain amount of glycoprotein other than the detection target, which is nonspecifically bound to a support, a molecule (such as an antibody) that binds to an antigen, etc. It has been found that it also binds to glycolipids.
  • the present inventors have found that a reduction in background and an increase in sensitivity can be obtained by cleaving at least one sugar chain other than the target sugar chain with a hydrolase,
  • the present invention has been completed. That is, in one aspect of the present invention, in order to achieve at least one of the above problems, the present invention includes the following matters.
  • a method for detecting an antigen having a specific sugar chain in a specimen using a lectin that binds to a plurality of types of sugar chains including a specific sugar chain A first step of contacting the lectin with a specimen; A second step of contacting a specimen with a sugar hydrolase capable of cleaving at least one sugar chain capable of binding the lectin and excluding the specific sugar chain from the plurality of sugar chains;
  • An antigen detection method comprising: a fourth step of detecting the antigen bound to the lectin after the first step and the second step.
  • a reagent containing a lectin that binds to a plurality of types of sugar chains containing a specific sugar chain [2] a reagent containing a lectin that binds to a plurality of types of sugar chains containing a specific sugar chain; A reagent containing a sugar hydrolase capable of cleaving at least one kind of sugar chain, wherein the specific sugar chain is excluded from the plurality of kinds of sugar chains and the lectin can be bound; A kit for detecting an antigen having a specific sugar chain, comprising a reagent containing a molecule that binds to an antigen having the specific sugar chain.
  • the lectin that binds to a plurality of types of sugar chains including a specific sugar chain excludes the specific sugar chain (46c) and the specific sugar chain, and the sugar chain (46d) to which the lectin can bind. Recognizes both sugar chains.
  • a specific sugar chain (46c) is N-acetyl-D-galactosamine (GalNAc)
  • GalNAc N-acetyl-D-galactosamine
  • a specific sugar chain is excluded, and a sugar chain to which a lectin can be bound (46d) Corresponds to galactose (Gal).
  • a detection system for an antigen using a lectin in a detection system for an antigen using a lectin, an increase in the background of the measurement system is suppressed by a simple technique (simple configuration), and the detection sensitivity and quantification of sugar chains on the target antigen by the lectin are detected. It is possible to provide a method for detecting an antigen and a detection kit capable of improving the sensitivity.
  • FIG. 1 is a conceptual diagram showing an example of a background generation mechanism (FIG. 1a) in antigen detection by a lectin and a background reduction and sensitivity increase means (FIG. 1b) according to the present invention.
  • FIG. 2 is a conceptual diagram showing an embodiment of the method of the present invention, in which a hydrolase and a lectin are brought into contact with a specimen, and then the specimen is brought into contact with a support on which an antibody is immobilized.
  • FIG. 3 is a conceptual diagram showing an embodiment of the method of the present invention in which a hydrolase is brought into contact with a specimen, and then the specimen is brought into contact with a support on which an antibody is immobilized, and then brought into contact with a lectin. .
  • FIG. 1 is a conceptual diagram showing an example of a background generation mechanism (FIG. 1a) in antigen detection by a lectin and a background reduction and sensitivity increase means (FIG. 1b) according to the present invention.
  • FIG. 2
  • FIG. 4 is a conceptual diagram showing an embodiment of the method of the present invention in which a specimen is brought into contact with a support on which an antibody is immobilized, a hydrolase is brought into contact with the specimen, and then brought into contact with a lectin.
  • FIG. 5 is a schematic view schematically showing an outline of a quantitative measurement apparatus for explaining a specific analyte quantitative measurement method of the present invention.
  • FIG. 6 is a partially enlarged view of the quantitative measurement device of FIG.
  • FIG. 7 is an enlarged schematic view schematically showing the sensor unit 38 after feeding the detection target antigen (analyte) 46.
  • FIG. 8 is an enlarged schematic view schematically showing the sensor unit 38 after feeding the fluorescently labeled lectin 48.
  • lectin means a protein that specifically recognizes and binds to a specific sugar chain.
  • antiigen means a molecule that can be recognized and bound by a lectin, including a protein (glycan protein) or lipid (glycolipid) having a sugar chain recognized by the lectin.
  • the “detection method” in the present specification naturally includes not only a qualitative measurement method but also a quantitative measurement method (quantitative method).
  • Lectins and hydrolases used in the present invention a specimen containing a lectin, a label, a hydrolase, a molecule that binds to an antigen, and an antigen to be detected (analyte) is used. Furthermore, a support for immobilizing molecules that bind to an antigen can be used. Each element will be described in detail below.
  • lectin used in the method of the present invention a lectin that binds to a plurality of types of sugar chains including a specific sugar chain of the antigen to be detected is used.
  • lectins examples include lectins belonging to various molecular families obtained from animals, plants, fungi, bacteria, viruses, etc., that is, “R-type lectin” related to ricin B chain found in all living worlds including bacteria; “Calnexin calreticulin”, which exists in general and is involved in glycoprotein folding, is widely present in multicellular animals, and is a calcium-requiring "C-type that contains many representative lectins such as” selectin "and” collectin " "Lectin”; "Galectin” widely distributed in the animal kingdom and exhibiting specificity for galactose; “Legidae lectin” that forms a large family in the plant legumes, and “Lectin” that is structurally similar to this and is involved in transport in animal cells Type lectin "; mannose 6-phosphate binding” P type lectin "involved in intracellular transport of lysosomal enzymes; glycosaminoglyce Binding to acidic sugar chain, including emissions "
  • lectins examples include ACA (sennin clectin), BPL (purple bean lectin), ConA (Tatama bean lectin), DBA (Horsegram lectin), DSA (Drosophila saga lectin), ECA (Deigo bean lectin) , EEL (Spindle Tree lectin), GNA (Yukinohana lectin), GSL I (Glyphonia bean lectin), GSL II (Glyphonia bean lectin), HHL (Amaryllis lectin), Jacarin (Jack fruit lectin), LBA (Lima bean) Lectin), LCA (lens bean lectin), LEL (tomato lectin), LTL (lotus bean lectin), MPA (American pelvis lectin), NPA (trumpet lectin), PHA- (Bean bean lectin), PHA-L (kidney bean lectin), PNA (peanut lectin), PSA (s
  • a label is used to detect the lectin bound to an antigen having a specific sugar chain.
  • the label is bound to the lectin and used as a labeled lectin.
  • a label known to those skilled in the art such as a fluorescent dye, an enzyme / coenzyme, a chemiluminescent substance, and a radioactive substance, can be used.
  • fluorescent dyes examples include fluorescein family fluorescent dyes (Integrated DNA Technologies), polyhalofluorescein family fluorescent dyes (Applied Biosystems Japan), and hexachlorofluorescein family fluorescent dyes (Applied Biosystems Japan). ), Coumarin Family Fluorescent Dye (Invitrogen), Rhodamine Family Fluorescent Dye (GE Healthcare Biosciences), Cyanine Family Fluorescent Dye, Indian Carbocyanine Family Fluorescent Dye , Oxazine family fluorescent dyes, thiazine family fluorescent dyes, squaraine family fluorescent dyes, chelated lanthanide family fluorescent dyes, BODIPY® family fluorescent dyes (in vitro Gen), naphthalenesulfonic acid family fluorescent dye, pyrene family fluorescent dye, triphenylmethane family fluorescent dye, AlexaAFluor (registered trademark) dye series (Invitrogen Corporation) and other organic fluorescent dyes Is mentioned.
  • rare earth complex fluorescent dyes such as Eu and Tb (for example, ATBTA-Eu 3+ ), blue fluorescent protein (BFP), cyan fluorescent protein (CFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP),
  • BFP blue fluorescent protein
  • CFP cyan fluorescent protein
  • GFP green fluorescent protein
  • YFP yellow fluorescent protein
  • fluorescent dyes include fluorescent proteins typified by red fluorescent protein (DsRed) or Allophycocyanin (APC; LyoFlogen (registered trademark)), and fluorescent fine particles such as latex and silica.
  • the maximum fluorescence wavelength is set in the near-infrared region, such as Cy5 and Alexa Fluor 647. It is desirable to use a fluorescent dye having the same.
  • the radioactive substance a radioisotope (such as 32 P, 14 C, 125 I , 3 H, 131 I) can be mentioned.
  • a sugar hydrolyzate capable of cleaving at least one sugar chain that is capable of binding the lectin and excluding the specific sugar chain from the plurality of kinds of sugar chains.
  • the hydrolase is not particularly limited as long as it has the enzyme activity, and examples thereof include sugar hydrolase classified as EC 3.2.1 in the enzyme classification of the International Enzyme Committee. More specifically, galactosidase, mannosidase, fucosidase and the like are preferable.
  • the galactosidase that can be used in the present invention is not particularly limited as long as it can cleave the ⁇ 1-4 and / or ⁇ 1-3 bond of galactose.
  • Glycoproteins or glycolipids in serum include those with a galactose residue at the non-reducing end.
  • detect ⁇ -N-acetylgalactosamine residues with lectins such as TJA-II, WFA, and SBA In this case, noise is generated and sensitivity is lowered.
  • the detection sensitivity of N-acetylgalactosamine in serum is improved by cleaving the ⁇ 1-4 and / or ⁇ 1-3 bond of galactose.
  • Galactose binding includes ⁇ 1-3, ⁇ 1-3, ⁇ 1-4, etc., but the galactosidase that can be used in the present invention may cleave only ⁇ 1-4 bonds. It may be one that breaks the bond.
  • Mammals also have galactosidase, but research on galactosidase derived from plants, bacteria, and pathogens is ongoing.
  • galactosidase galactosidase derived from Bacteroides fragilis, Xanthomonas manihotis, HCV is known.
  • galactosidase derived from Bacteroides fragilis can be mentioned as a galactosidase capable of cleaving the ⁇ 1-4 bond of galactose.
  • Mannosidase The mannosidase that can be used in the present invention is not particularly limited as long as it can cleave the ⁇ 1-2, ⁇ 1-3 and / or ⁇ 1-6 bond of mannose. Mannosidases are also present in mammals, but research on mannosidases from plants, bacteria, and yeast is advancing. As mannosidase, mannosidase derived from red bean, Xanthomonas manihotis, and African maimai (Achatina fulica) is known.
  • fucosidase The fucosidase that can be used in the present invention is not particularly limited as long as it can cleave the ⁇ 1-6 bond of fucose.
  • Fucosidases are widely present in animals including mammals, plants, bacteria, yeasts, and the like. For example, fucosidases derived from almonds, bovine kidney, Elizabethkingia miricola, and Xanthomonas manihotis are known.
  • ligands The molecule that binds to the antigen of the present invention (hereinafter also referred to as “ligand”) is one that specifically recognizes and binds to the detection target antigen (analyte) and does not interfere with sugar chain recognition by lectins.
  • ligand antibodies, aptamers, synthetic peptides and the like can be used. Among these, antibodies are preferably used in the present invention.
  • antibody is used to mean not only a complete antibody but also any antibody fragment or derivative.
  • Fab, Fab ′ 2 , CDR humanized antibody
  • multifunctional antibody multifunctional antibody
  • single antibody single antibody
  • Various antibodies such as chain antibodies (ScFv) are included.
  • the antigen to be detected (hereinafter also referred to as “analyte”) is a molecule or molecular fragment that has a specific sugar chain that is recognized by a lectin and that can be specifically recognized and bound by a molecule that binds to the antigen. I just need it.
  • molecule or “molecular fragment” include, for example, nucleic acids (DNA, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acid), which may be single-stranded or double-stranded), Or nucleosides, nucleotides and their modified molecules); proteins (polypeptides, oligopeptides, etc.); amino acids (including modified amino acids); carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.); lipids; or modifications thereof Examples thereof include molecules and complexes. Among these, proteins (glycoproteins) and lipids (glycolipids) are preferable as the analyte, and proteins (glycoproteins) are more preferable.
  • nucleic acids DNA, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acid), which may be single-stranded or double-stranded), Or nucleosides,
  • cancer antigen / tumor marker examples include cancer antigen / tumor marker, signal transmitter, hormone and the like. More specifically, for example, cancer antigens / tumor markers such as PSA, AFP, and CEA can be preferably exemplified.
  • the test sample used in the detection method of the present invention is a specimen containing the detection target antigen (analyte).
  • the specimen containing an analyte includes a specimen that may contain an analyte in addition to a specimen that actually contains the analyte.
  • Examples of the analyte containing an analyte include a biological sample or a biological sample containing an analyte, or a biological sample or a biological sample that may contain an analyte.
  • biological samples and biological samples include blood, serum, plasma, urine, spinal fluid, saliva, cells, tissues, or organs, or preparations thereof (for example, biopsy specimens).
  • the test sample used in the detection method of the present invention is preferably blood, serum or plasma.
  • Liquid samples such as blood, serum, plasma, urine, spinal fluid and saliva can be used after diluted with an appropriate buffer.
  • a solid sample such as a cell, tissue, or organ is homogenized with an appropriate buffer that is about 2 to 10 times the volume of the solid sample, and the suspension or its supernatant is diluted as it is or further diluted. Can be used.
  • an antigen having a specific sugar chain (antigen to be detected), a lectin that binds to a plurality of types of sugar chains containing a specific sugar chain, and the specific sugar chain among the plurality of types of sugar chains
  • Table 1 shows specific examples of combinations of sugar hydrolases that are capable of cleaving at least one sugar chain that can bind to the lectin.
  • the detection target antigens such as cancer antigens / tumor markers, glycoproteins and glycolipids other than the detection target antigens that are likely to be included in the sample, and the types of sugar chains each has A lectin that easily binds to the sugar chain of the former and a sugar hydrolase that cleaves the sugar chain of the latter that the lectin may simultaneously bind can be appropriately selected and used in combination.
  • an antibody when using an antibody as a molecule
  • an antigen specific antibody when human PSA is used as an antigen, an anti-human PSA antibody may be used.
  • a support on which a molecule that binds to an antigen is immobilized can be used.
  • the support include insoluble polysaccharides such as agarose and cellulose, synthetic resins such as silicon resin, polystyrene resin, polyacrylamide resin, nylon resin, and polycarbonate resin, and insoluble supports such as glass. .
  • These supports are used in the form of beads (mainly spherical), plates (mainly planar) and the like.
  • the beads a column filled with magnetic beads, resin beads, or the like can be used.
  • a multiwell plate 96-well multiwell plate or the like
  • a biosensor chip, or the like can be used.
  • the support is also called a solid phase
  • a planar support such as a plate is also called a substrate.
  • the binding between the molecule that binds to the antigen and the support can be performed by a commonly used method such as chemical bonding or physical adsorption. All of these supports can be used commercially.
  • binding of a molecule that binds to an antigen to a support is referred to as solid phase, and a support that is bonded to a molecule that binds to an antigen is also referred to as a solid phase.
  • the detection method of the present invention is a method for detecting an antigen having a specific sugar chain in a specimen using a lectin that binds to a plurality of types of sugar chains including the specific sugar chain, and includes the following steps: .
  • a first step of contacting the lectin with a specimen (“lectin binding step”), (2) a second step of contacting a sample with a sugar hydrolase capable of cleaving at least one sugar chain capable of binding to the lectin, excluding the specific sugar chain among the plurality of kinds of sugar chains (“ Sugar chain cleavage step "), and (4) A fourth step (“detection step”) for detecting the antigen bound to the lectin, which is performed after the first step and the second step.
  • the detection method of the present invention can further include the following steps. (3) A third step (“antigen capturing step”) performed before the fourth step, wherein the specimen is brought into contact with a support on which a molecule that binds to the antigen is immobilized.
  • FIG. 2 is a conceptual diagram corresponding to the order of the above (4)
  • FIG. 3 is the order of the above (8)
  • a lectin that binds to a plurality of types of sugar chains including a specific sugar chain excludes the specific sugar chain (46c) and the specific sugar chain, and is a sugar chain (46d) to which the lectin can bind. ) Recognize both sugar chains.
  • a specific sugar chain is N-acetyl-D-galactosamine (GalNAc), a specific sugar chain is excluded, and a sugar chain to which a lectin can be bound (46d) Corresponds to galactose (Gal).
  • an antibody labeled with a donor fluorescent substance of a FRET (Fluorescence Resonance Energy Transfer) reagent as a molecule that binds to an antigen is used as a labeled body that labels a lectin.
  • FRET Fluorescence Resonance Energy Transfer
  • a method using an acceptor phosphor of a FRET reagent can be mentioned.
  • glycoproteins or glycolipids other than the detection target bind nonspecifically to the molecule (antibody) that binds to the antigen, causing an increase in background. Therefore, it is possible to reduce the increased background by the detection method of the present invention including the first step, the second step, and the fourth step, and the effects of the present invention can be obtained.
  • the step of the present invention preferably includes a third step (antigen capturing step) from the viewpoint of increasing detection sensitivity.
  • the order of performing the second step (sugar chain cleaving step) in all steps includes (A) performing the second step on the support after performing the third step (antigen capturing step), and (B) It can be roughly divided into other cases (the sugar chain cleavage step is performed before the antigen capturing step or the antigen capturing step is not performed).
  • the specimen is first contacted with a support on which molecules (antibodies, etc.) that bind to the antigen are immobilized (immobilized).
  • Serum glycoproteins and glycolipids are adsorbed nonspecifically on the support in contact with the specimen.
  • an enzyme capable of cleaving sugar chains other than a specific sugar chain non-specifically bound glycoproteins or glycolipids other than specific sugar chains on the support and antigen-binding molecules are added. Can be cleaved and removed. Thereby, the high background at the time of adding a lectin is suppressed.
  • a sample that may contain an analyte is not diluted or diluted with an appropriate buffer, and an enzyme capable of cleaving a sugar chain other than a specific sugar chain is added to the sample. .
  • an enzyme capable of cleaving a sugar chain other than a specific sugar chain is added to the sample.
  • the second step is preferably performed before the first step (lectin binding step). This is because when the lectin cleaves its sugar chain after binding, the cleavage efficiency decreases and the background increases due to steric hindrance and the like.
  • the method of the present invention can be performed in combination with a conventional background suppression method, and a higher background suppression effect can be expected by combining.
  • the first step is a step of binding a lectin that binds to a plurality of types of sugar chains including a specific sugar chain to an antigen having the specific sugar chain.
  • the amount of lectin used here, the concentration in the reaction solution, the reaction time, and the reaction conditions may be appropriately adjusted depending on the lectin used.
  • Second step sucgar chain cleavage step
  • a sugar hydrolase that removes the specific sugar chain from the plurality of sugar chains and that can cleave at least one sugar chain to which the lectin can bind is brought into contact with the specimen.
  • This is a step of cleaving at least one sugar chain excluding a specific sugar chain. What is necessary is just to adjust suitably the quantity of the sugar hydrolase used here, the density
  • the ⁇ 1-4 bond of serum glycoprotein and glycolipid galactose can be cleaved by using 2 to 1000 mU, preferably 20 to 100 mU of galactosidase.
  • the treatment (reaction) time of galactosidase is usually 10 minutes to 24 hours, preferably 30 minutes to 1 hour.
  • the reaction temperature is preferably 25 ° C. to 40 ° C.
  • mannosidase derived from red bean the binding of mannose of serum glycoprotein and glycolipid can be cleaved by using 2 to 1000 mU, preferably 20 to 100 mU of mannosidase.
  • the mannosidase treatment (reaction) time is usually 10 minutes to 24 hours, preferably 30 minutes to 1 hour.
  • the reaction temperature is preferably 25 ° C. to 40 ° C.
  • Third step is a step of binding an antigen having a specific sugar chain to a molecule that binds to the antigen immobilized on a support (substrate or the like). Reaction conditions such as reaction time and reaction temperature may be appropriately adjusted according to the antigen used and the molecule that binds to the antigen.
  • the fourth step is a step of detecting a lectin by measuring a label bound to the lectin, and further detecting a detection target antigen bound to the lectin.
  • the detection method used in the detection step of the present invention is not particularly limited as long as the label can be measured, and can be performed by a method known to those skilled in the art suitable for each labeling substance.
  • a method known to those skilled in the art suitable for each labeling substance For example, when detecting a lectin labeled with a radioactive substance, it can be detected by liquid scintillation or RIA.
  • detecting a lectin labeled with a fluorescent dye it can be detected with a luminometer, an SPFS measuring instrument or the like.
  • detecting a lectin labeled with an enzyme add a substrate corresponding to the labeled enzyme, and then detect the chemical change of the substrate by the enzyme, for example, color development, fluorescence, chemiluminescence, etc. Can do.
  • SPFS Surface Plasmon-field enhanced fluorescence spectroscopy
  • ATR total reflection attenuation
  • the evanescent wave transmitted through the metal thin film is several tens of times due to resonance with the surface plasmon. It is a method of efficiently exciting a phosphor for labeling an analyte (analyte) captured in the vicinity of a metal thin film and measuring the fluorescence signal by utilizing the fact that it is enhanced several hundred times. Since such SPFS is extremely sensitive compared to a general fluorescent labeling method, it can be quantified even when only a very small amount of analyte is present in the sample.
  • the measurement member for SPFS is generally used for forming a sandwich-type immune complex, a sensor chip on which a field (measurement region) for performing fluorescence measurement by SPFS is formed and a sandwich-type immune complex is formed.
  • a structure in which various solutions used can be held on the measurement area and laminated with members for constructing channels or wells. Take.
  • the sensor chip basically includes a transparent support for introducing excitation light into the back surface of the metal thin film, a metal thin film for generating surface plasmon resonance formed on the transparent support, and the metal thin film. Including a reaction layer for capturing the analyte on the sensor surface, and if necessary, the phosphor formed between the metal thin film and the reaction layer is too close to the metal thin film. A spacer layer may be included to prevent the metal quenching of fluorescence caused by.
  • the part where the reaction layer is formed corresponds to the measurement region.
  • a reaction layer may be formed over the entire bottom surface of the flow path or the well to be a measurement region, or a reaction layer may be formed only on a part of the bottom surface (with a desired patterning if necessary) to be a measurement region.
  • the area of the measurement region can be adjusted in consideration of the irradiation area of excitation light generally irradiated as laser light. For example, if the spot diameter of excitation light is about 1 mm ⁇ , the assay area is usually designed to have an area of at least several mm square.
  • a “flow cell” with holes to form the channel is loaded on the sensor chip.
  • a measurement member is constructed by loading a “top plate” with a liquid feed inlet and a liquid feed outlet at a position corresponding to the hole of the flow cell and fixing them in close contact with each other. To do.
  • the sensor chip surface at a position corresponding to the hole of the flow cell forms the bottom surface of the flow path, and a measurement region is formed there.
  • various liquids can be fed into the flow channel from the liquid feed inlet and discharged from the liquid feed outlet using a liquid feeding means including a pump and a tube.
  • reciprocating and circulating liquid feeding can also be performed.
  • Conditions such as the feeding speed and feeding (circulation) time are as follows: the amount of the sample, the concentration of the analyte in the sample, the size of the flow channel or well, the mode of the reaction layer (the density of the immobilized ligand, etc.), the pump It can be adjusted as appropriate in consideration of performance and the like.
  • the SPFS system is a “well type” that stores various solutions in a space wider than the flow path
  • a “well member” having a through-hole for forming a well is formed on the sensor chip.
  • a measuring member is constructed by loading and fixing.
  • various liquids can be added to the well and removed using, for example, a pipette-shaped member.
  • the flow cell can be made of, for example, a sheet-like polydimethylsiloxane (PDMS).
  • the top plate is made of a material having transparency so that fluorescence emitted from the measurement region can be measured, and can be made of, for example, plate-shaped polymethyl methacrylate (PMMA).
  • PMMA plate-shaped polymethyl methacrylate
  • the flow cell and the top plate can be made of plastic having a desired shape by molding or photolithography.
  • a means for fixing the flow cell or well member in close contact with the sensor chip is not particularly limited.
  • the pressure may be physically applied from above and below, and if necessary, a transparent support.
  • Adhesives having the same optical refractive index, matching oil, transparent adhesive sheets, and the like may be used.
  • the measuring method according to the present invention can be carried out using a general SPFS measuring apparatus.
  • the SPFS measuring device basically has an SPFS measuring member that can be attached and detached, and a light source and excitation for irradiating excitation light (preferably laser light) of an appropriate wavelength according to the phosphor to be used.
  • a prism for making light incident on the back surface of the metal thin film of the sensor chip at a predetermined angle (when the transparent support uses a sensor chip having a flat substrate shape), receiving the light reflected by the metal thin film and measuring its intensity
  • Light receiver, lens for condensing fluorescence emitted from the phosphor, detector for measuring the intensity of the fluorescence, excitation light and only light having a predetermined wavelength is transmitted from the fluorescence and cut the other light It is equipped with various filters for doing so.
  • JP 2010-145272 JP 2011-80935, JP 2008-102117, and JP 3562912 can be referred to.
  • FIG. 5 is a schematic diagram schematically showing an outline of the quantitative measurement device for explaining the method for quantitative measurement of an analyte of the present invention
  • FIG. 6 is a partially enlarged view of the quantitative measurement device of FIG. .
  • the quantitative measurement apparatus 10 of the present invention includes a prism-shaped dielectric member 12 having a substantially trapezoidal vertical cross-sectional shape, and a metal formed on a horizontal upper surface 12 a of the dielectric member 12.
  • a sensor chip 16 having a film 14 is provided, and the sensor chip 16 is loaded in a sensor chip loading unit 18 of the quantitative measurement apparatus 10.
  • a light source 20 is disposed on one side surface 12 b below the dielectric member 12, and incident light 22 from the light source 20 is below the dielectric member 12. Then, the light enters the side surface 12 b of the dielectric member 12 and is irradiated through the dielectric member 12 toward the metal film 14 formed on the upper surface 12 a of the dielectric member 12.
  • a polarizing filter for converting the laser light emitted from the light source 20 into P-polarized light that efficiently generates surface plasmons on the metal film 14 can be provided between the light source 20 and the dielectric member 12. .
  • a light receiving means 26 that receives the metal film reflected light 24 in which the incident light 22 is reflected by the metal film 14 is provided on the other side surface 12 c below the dielectric member 12. ing.
  • the light source 20 is provided with an incident angle adjusting means (not shown) that can appropriately change the incident angle ⁇ 1 of the incident light 22 irradiated from the light source 20 with respect to the metal film 14.
  • the light receiving means 26 is also provided with a movable means (not shown), and even when the reflection angle of the metal film reflected light 24 changes, the metal film reflected light 24 is reliably received in synchronization with the light source 20. Is configured to do.
  • the sensor chip 16, the light source 20, and the light receiving means 26 constitute an SPR measurement unit 28 that performs SPR measurement of the quantitative measurement device 10 of the present invention. Further, above the sensor chip 16, there is provided a light detection means 32 for receiving the fluorescence 30 emitted by exciting a fluorescent substance as will be described later.
  • a cut filter or a condensing lens can be provided between the sensor chip 16 and the light detection means 32.
  • the sensor chip 16, the light source 20, and the light detection means 32 constitute an SPFS measurement unit 34 that performs SPFS measurement of the quantitative measurement device 10 of the present invention.
  • the light receiving means 26 and the light detecting means 32 are respectively connected to the quantitative calculation means 40, and the light amount of the metal film reflected light 24 received by the light receiving means 26 and the light amount of the fluorescence 30 received by the light detecting means 32. Are transmitted to the quantitative calculation means 40.
  • the flow path 36 is formed on the upper surface 14 a of the metal film 14.
  • a sensor unit 38 in which a molecule (ligand) that specifically binds to a detection target antigen (analyte) is immobilized is provided in a part of the flow path 36.
  • the detection kit of the present invention is used for the detection method of the present invention.
  • the detection kit of the present invention comprises: (1) a reagent containing a lectin that binds to a plurality of types of sugar chains including a specific sugar chain; (2) a reagent containing a sugar hydrolase capable of cleaving at least one kind of sugar chain, wherein the specific sugar chain is excluded from the plurality of kinds of sugar chains and to which the lectin can bind; and (3) A reagent comprising a molecule that binds to an antigen having the specific sugar chain; including.
  • the detection kit of the present invention further includes: (4) Instructions for use in which the detection method according to the present invention is described as instructions, and / or (5) a lectin labeling reagent may be included.
  • the instruction manual (4) included in the kit is an instruction manual in which any of the detection methods according to the present invention is described as an instruction in order to carry out the method of the present invention.
  • the specific mode of the instruction manual may be any as long as it can appropriately transmit the above information. For example, it may be printed on a piece of paper, packaging of a kit, a label of a component of the kit, or may be recorded in a computer-readable medium such as a diskette or CD.
  • the lectin labeling reagent (5) included in the kit is a reagent used for labeling the lectin, and usually contains a label and a reagent that binds the lectin and the label.
  • the method of the present invention can be used for disease diagnosis.
  • the detection target antigen analyte
  • prostate cancer can be diagnosed from the amount of PSA in a patient-derived biological sample quantified by the detection method of the present invention.
  • the analyte is AFP
  • hepatocellular carcinoma can be diagnosed
  • CEA cancer mainly in the digestive tract
  • the SPFS measuring device was made and used as a measuring device.
  • the SPFS measurement device has the same configuration as the quantitative measurement device 10.
  • a laser diode (LD) capable of irradiating light with a wavelength of 635 nm is used as the light source 20, and a neutral density filter is used as an optical filter between the light source 20 and the dielectric member 12. (Neutral density filter) was provided so that the photon amount could be adjusted.
  • the dielectric member 12 a 60-degree prism manufactured by Sigma Kogyo Co., Ltd. is used, and a sensor chip 16 is configured by fixing a plasmon excitation sensor, which will be described later, to the upper portion of the dielectric member 12. .
  • an objective lens was provided as a condensing lens on the upper part of the sensor chip 16, and a photomultiplier tube (PMT) was used as the light detection means 32.
  • PMT photomultiplier tube
  • a glass transparent flat substrate (S-LAL 10 manufactured by OHARA INC.) Having a refractive index of 1.72 and a thickness of 1 mm was plasma-cleaned, and a chromium thin film was formed on one surface of this substrate by a sputtering method. Thereafter, a gold thin film was further formed on the surface by a sputtering method.
  • the chromium thin film had a thickness of 1 to 3 nm, and the gold thin film had a thickness of 44 to 52 nm.
  • the substrate on which the gold thin film was formed in this way was immersed in an ethanol solution containing 1 mM 10-carboxy-1-decanethiol for 24 hours or more to form a SAM film on the surface of the gold thin film.
  • the substrate was removed from this solution, washed with ethanol and isopropanol, and then dried using an air gun.
  • the PDMS sheet (flow path 36) and the plasmon excitation sensor were fixed with screws using pressure from the upper part of the PDMS sheet outside the flow path.
  • PBS phosphate buffered saline
  • NHS N-hydroxysuccinimide
  • WSC water-soluble carbodiimide
  • suction prevention process in a flow path was performed by circulating and feeding the phosphate buffered saline (PBS) containing 1 weight% bovine serum albumin (BSA) for 30 minutes.
  • PBS phosphate buffered saline
  • BSA bovine serum albumin
  • Preparation Example 2 [Anti-AFP antibody-immobilized SAM membrane (substrate)] An anti-AFP antibody solid phase was prepared in the same manner as in Preparation Example 1, except that an anti-AFP monoclonal antibody (1D5, 2.5 mg / mL, manufactured by Nippon Medical Laboratory) was used instead of the anti-PSA antibody. A modified SAM membrane was prepared.
  • Fluorescently labeled LCA lectin was prepared using a fluorescent material labeling kit. A fluorescence-labeled LCA lectin was obtained in the same manner as in Preparation Example 1, except that LCA lectin (L-1040, Vector) was used as the lectin.
  • PSA free pool human sera normal human pool sera, Kojin Bio Inc.
  • various PSA free pool sera with LNCaP human prostate cancer cell culture culture supernatant added to a PSA concentration of 50 pg / mL
  • PSA concentration 50 pg / mL
  • serum obtained by purchasing normal human pool serum from Kojin Bio and confirming by ELISA that the PSA concentration is 0.01 ng / mL or less was used.
  • Bacteroides fragilis-derived galactosidase was added to 0.1 mL of the measurement sample to a final concentration of 50 mU and reacted at 37 ° C. for 1 hour.
  • 0.1 mL of a solution of WFA lectin labeled with Alexa Fluor 647 dissolved in phosphate buffered saline (PBS) so as to be 1 ⁇ g / mL
  • PBS phosphate buffered saline
  • the reaction was carried out for 1 hour.
  • 0.1 mL of a measurement sample subjected to galactosidase treatment and lectin reaction was added to the flow path, and the solution was circulated for 20 minutes at a flow rate of 200 ⁇ L / min.
  • FIG. 8 shows an enlarged schematic view schematically showing the sensor part after feeding the labeled lectin.
  • the results of preparing and measuring measurement samples by the above method are shown in Table 2 below.
  • the results in Table 2 are actually measured values.
  • the signal value of PSA-added serum is shown as PSA-derived signal value + background signal value.
  • the measurement sample subjected to the galactosidase treatment confirmed that the value (background) of the PSA free pool serum was reduced to about 3/5 compared with the untreated sample.
  • the average value of the S / N ratio (signal value of PSA-added serum / corresponding PSA-free serum signal) of 5 specimens was 2.02 for the untreated sample, whereas it was 2 for the galactosidase-treated sample. It was revealed that the detection sensitivity increased.
  • Example 2 Measurement of PSA in serum samples (2)
  • Each sample was enzymatically treated with galactosidase, then reacted with a substrate on which an anti-PSA antibody was immobilized (Preparation Example 1), and then contacted with a fluorescently labeled WFA lectin (Preparation Example 1).
  • the details were as follows.
  • TBS containing 0.05% by weight of Tween 20 TBS containing 0.05% by weight of Tween 20 (TBS-T) was fed and washed for 5 minutes.
  • 0.1 mL of WFA lectin solution labeled with Alexa Fluor 647 dissolved in phosphate buffered saline (PBS) so as to be 1 ⁇ g / mL
  • PBS phosphate buffered saline
  • the flow rate was 200 ⁇ L / For 5 minutes.
  • TBS containing 0.05% by weight of Tween 20 (TBS-T) was fed and washed for 5 minutes.
  • SPFS measurement was performed with a quantitative measurement apparatus. The measurement sample was also prepared in the process excluding the galactosidase treatment, and SPFS measurement was performed.
  • the results of measuring the measurement sample by the above method are shown in Table 3 below.
  • the results in Table 3 are actually measured values.
  • the signal value of PSA-added serum is shown as PSA-derived signal value + background signal value.
  • the measurement sample subjected to the galactosidase treatment was confirmed to have a signal value (background) of the PSA free pool serum decreased to about 1/3 compared to the untreated sample.
  • the average value of the S / N ratio (signal value of PSA-added serum / corresponding PSA-free serum signal) of 5 specimens was 2.64 in the untreated sample, whereas it was 5 in the galactosidase-treated sample. It became clear that the detection sensitivity increased.
  • TBS (TBS-T) containing 0.05% by weight of Tween 20 was fed and washed at a flow rate of 200 ⁇ L / min for 5 minutes.
  • 0.1 mL of WFA lectin solution labeled with Alexa Fluor 647 dissolved in phosphate buffered saline (PBS) so as to be 1 ⁇ g / mL
  • PBS phosphate buffered saline
  • TBS (TBS-T) containing 0.05% by weight of Tween 20 was fed and washed at a flow rate of 200 ⁇ L / min for 5 minutes.
  • SPFS measurement was performed with a quantitative measurement apparatus. SPFS measurement was also carried out in the process excluding galactosidase treatment.
  • the results are shown in Table 4.
  • the results in Table 4 are actually measured values.
  • the signal value of PSA-added serum is shown as PSA-derived signal value + background signal value.
  • the average value of the S / N ratio (signal value of PSA-added serum / corresponding PSA-free serum signal) of 5 specimens was 3.50 for the untreated sample, whereas it was 12 for the galactosidase-treated sample. It was revealed that the detection sensitivity increased.
  • the non-specific binding signal due to the serum component generated in the measurement system can be suppressed by cleaving galactose on the serum glycoprotein. It was confirmed that the sensitivity to specifically detect the GalNAc sugar chain structure was improved.
  • Example 2 the treatment with the enzyme was performed on an antibody-immobilized substrate that was targeted to some extent rather than acting in a solution containing a large amount of serum protein. It was confirmed that the effect was higher.
  • Examples 4 to 6 are shown below.
  • five types of AFP free pool sera were used as negative control samples, and each AFP free pool sera was used as a positive target sample, and control L for Mutus Wako AFP-L3 (trade name, Wako Pure Chemical Industries Ltd.)
  • As the AFP free pool human serum serum obtained by purchasing normal human pool serum from Kojin Bio and confirming that the AFP concentration was 0.01 ng / mL or less by ELISA was used.
  • Example 4 Measurement of AFP in serum samples (1)
  • Each sample was treated with mannosidase and then contacted with a fluorescently labeled LCA lectin (Production Example 2), and then reacted with a substrate on which an anti-AFP antibody was immobilized (Preparation Example 2).
  • Example 1 instead of galactosidase, mannosidase derived from red bean (GKX-5010, Prozyme), fluorescently labeled LCA lectin (Preparation Example 2) instead of fluorescently labeled WFA lectin (Preparation Example 2), The same procedure as in Example 1 was performed except that the substrate (Preparation Example 2) on which the anti-AFP antibody was immobilized was used instead of the substrate (Preparation Example 1) on which the anti-PSA antibody was immobilized.
  • the substrate (Preparation Example 2) on which the anti-AFP antibody was immobilized was used instead of the substrate (Preparation Example 1) on which the anti-PSA antibody was immobilized.
  • the results of preparing and measuring measurement samples by the above method are shown in Table 5 below.
  • the results in Table 5 are actually measured values.
  • the signal value of the AFP-added serum is shown as AFP-derived signal value + background signal value.
  • the average value of the S / N ratio (signal value of the serum with AFP-L3 added / signal value of the corresponding AFP-free serum) of the five specimens was 4.18 in the untreated sample, whereas the sample treated with galactosidase Then, it increased to 5.14, and it became clear that the detection sensitivity increased.
  • Example 5 Measurement of AFP in serum samples (2)
  • Each sample was treated with mannosidase, reacted with a substrate on which an anti-AFP antibody was immobilized (Preparation Example 2), and then contacted with a fluorescently labeled LCA lectin (Preparation Example 2).
  • Example 2 instead of galactosidase, mannosidase derived from red bean (GKX-5010, Prozyme), fluorescently labeled LCA lectin (Preparation Example 2) instead of fluorescently labeled WFA lectin (Preparation Example 2), The same procedure as in Example 2 was performed except that the substrate (Preparation Example 2) on which the anti-AFP antibody was immobilized was used in place of the substrate on which the anti-PSA antibody was immobilized (Preparation Example 1).
  • the results of measuring the measurement sample by the above method are shown in Table 6 below.
  • the results in Table 6 are actually measured values.
  • the signal value of the AFP-added serum is shown as AFP-derived signal value + background signal value.
  • the average value of the S / N ratio (signal value of the serum with AFP-L3 added / signal value of the corresponding AFP-free serum) of the five specimens was 6.43 for the untreated sample, whereas the galactosidase-treated sample was Then, it increased to 11.84, and it became clear that the detection sensitivity increased.
  • Example 2 Each specimen was reacted with a substrate on which an anti-AFP antibody was immobilized (Preparation Example 2), then treated with mannosidase, and then contacted with a fluorescently labeled LCA lectin (Preparation Example 2). More specifically, in Example 3, instead of galactosidase, mannosidase derived from red bean (GKX-5010, Prozyme), fluorescently labeled LCA lectin (Preparation Example 2) instead of fluorescently labeled WFA lectin (Preparation Example 2), The same procedure as in Example 3 was performed except that the substrate (Preparation Example 2) on which the anti-AFP antibody was immobilized was used in place of the substrate on which the anti-PSA antibody was immobilized (Preparation Example 1).
  • the results are shown in Table 7 below.
  • the results in Table 7 are actually measured values.
  • the signal value of the AFP-added serum is shown as AFP-derived signal value + background signal value.
  • the average value of the S / N ratio (signal value of the serum with AFP-L3 added / signal value of the corresponding AFP-free serum) of the five specimens was 8.11 for the untreated sample, whereas the galactosidase-treated sample was Then, it increased to 19.31, and it became clear that the detection sensitivity increased.
  • the nonspecific binding signal due to the serum component generated in the measurement system can be suppressed by cleaving mannose on the serum glycoprotein, and on the AFP. It was confirmed that the sensitivity for specifically detecting the fucose sugar chain structure was improved.
  • Example 5 the treatment with the enzyme was performed on an antibody-immobilized substrate that was targeted to some extent rather than acting in a solution containing a large amount of serum protein. It was confirmed that the effect was higher.
  • the aspect of circulating and feeding various solutions is described as an example, but it is not always necessary to circulate, the aspect of continuing to feed in one direction, the aspect of reciprocating in both directions, Alternatively, various changes can be made without departing from the object of the present invention, such as a mode in which a predetermined amount of solution is fed and then retained for a predetermined time.
  • Quantitative measurement apparatus Dielectric material 12a Upper surface 12b Side surface 12c Side surface 14 Metal film 14a Upper surface 16 Sensor chip 18 Sensor chip loading part 20 Light source 22 Incident light 24 Metal film reflected light 26 Light receiving means 28 SPR measurement part 30 Fluorescence 32 Light detection means 34 SPFS measurement unit 36 Fine channel 38 Sensor unit 40 Quantitative calculation means 44 Molecules (ligands) binding to antigen 46 Target antigen (analyte) 46a Antigen with specific sugar chain 46b Sugar chain that excludes specific sugar chain and lectin does not bind 46c Specific sugar chain 46d Sugar chain that excludes specific sugar chain and can bind lectin 48 Fluorescently labeled lectin (probe) 50 Serum nonspecifically adsorbed glycoprotein in serum 50a Protein having sugar chain 51 Serum nonspecifically adsorbed glycoprotein obtained by cleaving the terminal sugar chain with enzyme 52 Nonspecifically adsorbed glycolipid in serum 52a Lipid having sugar chain 53 Terminal sugar Non-specifically adsorbed glycolipid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 レクチンを用いた糖鎖の検出系において、簡便な手法(簡易な構成)により、レクチンによる対象抗原上の糖鎖の検出感度および定量性を向上させることができる抗原の検出方法、ならびに検出キットを提供する。 本発明の抗原の検出方法は、特定の糖鎖を含む複数種の糖鎖と結合するレクチンを用いて、検体中の前記特定の糖鎖を有する抗原を検出する方法であって、前記レクチンを検体に接触させる第1工程と、前記複数種の糖鎖のうち前記特定の糖鎖を除く、かつ、前記レクチンが結合可能な、少なくとも1種の糖鎖を切断可能な糖加水分解酵素を、検体に接触させる第2工程と、前記第1工程および第2工程の後に、前記レクチンと結合した前記抗原を検出する第4工程とを有する抗原の検出方法である。

Description

酵素処理工程を含むレクチンを用いた抗原検出方法
 本発明は、レクチンを用いた抗原検出方法に関する。より詳しくは、検体を酵素処理する工程を含む、レクチンを用いた高感度・低ノイズである抗原検出方法に関する。
 生体の生命機能を担う主役であるタンパク質が、細胞社会の中において秩序正しく機能を発揮するためには、糖鎖修飾をはじめとする翻訳後修飾が極めて重要な役割を担っている。生体内の殆どのタンパク質は糖鎖による修飾を受けており、タンパク質に付加した糖鎖がウイルスの感染、原虫の寄生、感染、毒素の結合、ホルモンの結合、受精、発生分化、タンパク質の安定性、がん細胞転移、アポトーシスなど、生命現象の様々な場で重要な役割を果たしていることが近年次々と明らかになってきた。
 同じアミノ酸配列のタンパク質(同一名称のタンパク質)であっても、修飾されている糖鎖は多種多様であり、タンパク質を産生する細胞の状態によってその糖鎖構造は異なることが知られている。
 このような糖鎖の変化と疾病との関係性についても明らかになってきており、例えば、特許文献1、非特許文献1に開示されるようなαフェトプロテイン(AFP)糖鎖分画測定による肝癌の鑑別方法、特許文献2に開示されるような前立腺特異抗原(PSA)糖鎖分画測定による前立腺癌の鑑別方法、非特許文献2、3に開示されるような癌胎児性抗原(CEA)糖鎖分画測定による腺癌の鑑別方法などに応用されている。
 糖タンパク質上の糖鎖の特異的検出にはレクチンと呼ばれる糖鎖を特異的に認識・結合・架橋する能力を持つタンパク質が広く利用されている。それは、糖鎖に対する抗体が非常に作製しにくく入手が困難であるためである。
 レクチンは安価で大量に入手が可能であり、またタンパク質の安定性にも優れており長期間保存も可能である。しかし、レクチンは抗体よりも結合活性が低い、特異性が低いなどの問題がある。
 例えば、ノダフジレクチン(WFA)ではメインの結合糖鎖としてN-アセチルガラクトサミンが知られているが、わずかにガラクトースとも結合することで、反応系内にガラクトース残基が存在すると非特異的に反応してしまうことになる。
 このような特徴を持つレクチンを用いて、特定のタンパク質上の糖鎖を簡便に定量解析する方法として、タンパク質に対する抗体とレクチンを用いたサンドイッチアッセイがある。
 しかし、この手法は対象タンパク質がある程度精製されている場合には有効であるが、通常の疾病診断において検体として用いられる血液や尿等の、測定対象以外の糖タンパク質や糖脂質といった夾雑物が大量に含まれる系では感度、定量性において著しく性能が落ち解析が非常に困難であった。そのため対象たんぱくの血清中の含有濃度が著しく高い(数μg/mL程度)限られた項目でしか、血清診断等に利用されていない。
 夾雑物の影響を低減するための施策として、抗体を固定化した支持体表面への血清夾雑物の吸着を抑制するブロッキング剤の検討(特許文献3)、非特異物質をあらかじめ吸着させる吸収剤の添加(特許文献4、5)、支持体に吸着してしまった分子を効率よく除去できる洗浄液の検討(特許文献3)が行われている。
 ここで、ブロッキング剤としては、ウシ血清アルブミン(BSA)、カゼイン等が知られており、そのほかには合成高分子材料を用いたものもある。非特異物質の吸収剤は、抗原抗体反応を阻害する分子やノイズの原因となる分子を結合させて反応系の中から取り除くことができる分子であり、グリコサミノグリカン、ヘパリン等、高分子、糖鎖複合体などが用いられることがある。洗浄液としては液の組成検討が行われており、塩強度、各種界面活性剤の効果を検討している例も報告されている(特許文献3)。
 しかし、これらバックグラウンド低減施策では、検出レクチンを用いた定量解析では劇的な効果が認められる例は極めて少なく、また対象に適したブロッキング剤の探索のため、検討に非常に工数がかかることも問題である。
特開昭61-292062号公報 国際公開WO2010/090264号公報 特開2010-127827号公報 特開2009-53195号公報 特開2010-60293号公報
Sugar Chains of Human Cord Serum α-Fetoprotein: Characteristics of N-linked Sugar Chains of Glycoproteins Produced in Human Liver and Hepatocellular Carcinomas, K. Yamashita et al., Cancer Res., 53, 1 (1993) Carbohydrate Structures of Nonspecific Cross-reacting Antigen-2, a Glycoprotein Purified from Meconium as an Antigen Cross-reacting with Anticarcinoembryonic Antigen Antibody, K. Yamashita et al., Biol. Chem., 264, 17873 (1989) Structural Studies of the Carbohydrate Moieties of Carcinoembryonic Antigens, K. Yamashita et al., Cancer Res., 47, 3451 (1987)
 本発明は、レクチンを用いた抗原の検出系において、簡便な手法(簡易な構成)により、レクチンによる対象抗原上の糖鎖の検出感度および定量性を向上させることができる抗原の検出方法、ならびに検出キットを提供することである。
 本発明者らは、前記問題を解決するために鋭意検討した結果、レクチンを用いた測定系における高いバックグラウンド(ノイズ)の要因は、検出に用いるレクチンが糖鎖認識性にある程度幅を持っているために、ブロッキング剤等による公知の処理方法を用いたとしても一定量発生する、支持体、抗原に結合する分子(抗体等)等に非特異的に結合した、検出対象以外の糖タンパク質や糖脂質にも結合してしまうことにあることを見出した。この新たな知見に基づき、本発明者らは目的とする糖鎖を除く少なくとも1種の糖鎖を加水分解酵素で切断することにより、バックグラウンドの低減および感度の上昇が得られることを見出し、本発明を完成させるに至った。すなわち、本発明の一側面では、上記の課題のうち少なくとも一つを実現するために、本発明は以下の事項を包含する。
 [1]特定の糖鎖を含む複数種の糖鎖と結合するレクチンを用いて、検体中の前記特定の糖鎖を有する抗原を検出する方法であって、
 前記レクチンを検体に接触させる第1工程と、
 前記複数種の糖鎖のうち前記特定の糖鎖を除く、かつ、前記レクチンが結合可能な、少なくとも1種の糖鎖を切断可能な糖加水分解酵素を、検体に接触させる第2工程と、
 前記第1工程および第2工程の後に、前記レクチンと結合した前記抗原を検出する第4工程と
を有する抗原の検出方法。
 [2]特定の糖鎖を含む複数種の糖鎖と結合するレクチンを含む試薬と、
 前記複数種の糖鎖のうち前記特定の糖鎖を除く、かつ、前記レクチンが結合可能な、少なくとも1種の糖鎖を切断可能な糖加水分解酵素を含む試薬と、
 前記特定の糖鎖を有する抗原と結合する分子を含む試薬と
を含む特定の糖鎖を有する抗原の検出用キット。
 本発明の課題を解決するための手段の概念図の一例を図1に示す。なお、図中において、特定の糖鎖を含む複数種の糖鎖と結合するレクチンは、特定の糖鎖(46c)および特定の糖鎖を除く、かつ、レクチンが結合可能な糖鎖(46d)の両方の糖鎖を認識する。例えば、PSA抗原では、WFAレクチンを用いる場合、特定の糖鎖(46c)がN-アセチル-D-ガラクトサミン(GalNAc)、特定の糖鎖を除く、かつ、レクチンが結合可能な糖鎖(46d)がガラクトース(Gal)にあたる。
 本発明によれば、レクチンを用いた抗原の検出系において、簡便な手法(簡易な構成)により、測定系のバックグラウンドの上昇を抑え、レクチンによる対象抗原上の糖鎖の検出感度および定量性を向上させることができる抗原の検出方法、ならびに検出キットを提供することができる。
 また、サンドイッチアッセイ系で酵素を試薬に含有させるだけで上記効果が得られるため、簡便な手法(簡易な構成)であり、診断シーンでの適用にも有効である。
図1は、レクチンによる抗原検出におけるバックグラウンド発生メカニズム(図1a)および本発明のバックグラウンドの低減および感度上昇手段(図1b)の一例を示した概念図である。 図2は、検体に加水分解酵素およびレクチンを接触させた後、検体を抗体が固相化された支持体と接触させる、本発明の方法の一形態を示した概念図である。 図3は、検体に加水分解酵素を接触させた後、検体を抗体が固相化された支持体と接触させ、その後レクチンと接触させる、本発明の方法の一形態を示した概念図である。 図4は、検体を抗体が固相化された支持体と接触させ、検体に加水分解酵素を接触させ、その後レクチンと接触させる、本発明の方法の一形態を示した概念図である。 図5は、本発明の特定のアナライトの定量測定方法を説明する定量測定装置の概略を模式的に示す概略図である。 図6は、図5の定量測定装置の部分拡大図である。 図7は、検出対象抗原(アナライト)46を送液した後のセンサ部38を模式的に表す拡大模式図である。 図8は、蛍光標識化レクチン48を送液した後のセンサ部38を模式的に表す拡大模式図である。
 以下、本発明の検出方法、検出用キットについて説明する。
 なお、本明細書において「レクチン」とは、特定の糖鎖を特異的に認識して結合するタンパク質を意味する。本明細書において「抗原」とは、レクチンによって認識される糖鎖を有する、タンパク(糖鎖タンパク)または脂質(糖鎖脂質)等を含む、レクチンにより認識および結合され得る分子を意味する。本明細書における「検出方法」は、定性的測定方法のみならず、定量的測定方法(定量方法)を当然に含む。
 ≪本発明に用いられるレクチン・加水分解酵素等≫
 本発明の方法には、レクチン、標識体、加水分解酵素、抗原に結合する分子、検出対象抗原(アナライト)を含む検体を用いる。また、さらに抗原に結合する分子を固定化するための支持体を用いることができる。以下各要素について詳細に説明する。
 <レクチン>
 本発明の方法に用いるレクチンとしては、検出しようとする抗原が有する特定の糖鎖を含む複数種の糖鎖と結合するレクチンを用いる。
 前記レクチンとしては、動植物,真菌,細菌,ウイルスなどから得られる様々な分子家系に属するレクチン、すなわち、細菌を含むすべての生物界で見出されるリシンB鎖関連の「R型レクチン」;真核生物全般に存在し糖タンパク質のフォールディングに関与する「カルネキシン・カルレティキュリン」,多細胞動物に広く存在し、「セレクチン」,「コレクチン」等代表的なレクチンを多く含むカルシウム要求性の「C型レクチン」;動物界に広く分布しガラクトースに特異性を示す「ガレクチン」;植物豆科で大きな家系を形成する「豆科レクチン」およびこれと構造類似性を有し動物細胞内輸送に関わる「L型レクチン」;リソソーム酵素の細胞内輸送に関わるマンノース6-リン酸結合性の「P型レクチン」;グリコサミノグリカンをはじめとする酸性糖鎖に結合する「アネキシン」;免疫グロブリン超家系に属し「シグレック」を含む「I型レクチン」などが挙げられる。
 その他のレクチンとしては、ACA(センニンコクレクチン),BPL(ムラサキモクワンジュレクチン),ConA(タチナタマメレクチン),DBA(Horsegramレクチン),DSA(ヨウシュチョウセンアサガオレクチン),ECA(デイゴマメレクチン),EEL(Spindle Treeレクチン),GNA(ユキノハナレクチン),GSL I(グリフォニアマメレクチン),GSL II(グリフォニアマメレクチン),HHL(アマリリスレクチン),ジャカリン(ジャックフルーツレクチン),LBA(リママメレクチン),LCA(レンズマメレクチン),LEL(トマトレクチン),LTL(ロータスマメレクチン),MPA(アメリカハリグワレクチン),NPA(ラッパズイセンレクチン),PHA-E(インゲンマメレクチン),PHA-L(インゲンマメレクチン),PNA(ピーナッツレクチン),PSA(エンドウレクチン),PTL-I(シカクマメレクチン),PTL-II(シカクマメレクチン),PWM(ヨウシュヤマゴボウレクチン)RCA120(ヒママメレクチン),SBA(ダイズレクチン),SJA(エンジュレクチン),SNA(セイヨウニワトコレクチン),SSA(ニホンニワトコレクチン),STL(ジャガイモレクチン),TJA-I(キカラスウリレクチン),TJA-II(キカラスウリレクチン),UDA(Common Stinging Nettleレクチン),UEA I(ハリエニシダレクチン),VFA(ソラマメレクチン),VVA(ヘアリーベッチレクチン),WFA(ノダフジレクチン),WGA(パンコムギレクチン)などを挙げることができる。
 <標識体>
 本発明の方法においては、特定の糖鎖を有する抗原に結合した前記レクチンを検出するために、標識体を用いる。標識体はレクチンと結合させ、標識化レクチンとして用いる。
 標識体としては、蛍光色素、酵素・補酵素、化学発光物質、放射性物質等の当業者に公知の標識体を用いることができる。
 蛍光色素としては、例えば、フルオレセイン・ファミリーの蛍光色素(Integrated DNA Technologies社)、ポリハロフルオレセイン・ファミリーの蛍光色素(アプライドバイオシステムズジャパン(株))、ヘキサクロロフルオレセイン・ファミリーの蛍光色素(アプライドバイオシステムズジャパン(株))、クマリン・ファミリーの蛍光色素(インビトロジェン(株))、ローダミン・ファミリーの蛍光色素(GEヘルスケア バイオサイエンス(株))、シアニン・ファミリーの蛍光色素、インドカルボシアニン・ファミリーの蛍光色素、オキサジン・ファミリーの蛍光色素、チアジン・ファミリーの蛍光色素、スクアライン・ファミリーの蛍光色素、キレート化ランタニド・ファミリーの蛍光色素、BODIPY(登録商標)・ファミリーの蛍光色素(インビトロジェン(株))、ナフタレンスルホン酸・ファミリーの蛍光色素、ピレン・ファミリーの蛍光色素、トリフェニルメタン・ファミリーの蛍光色素、Alexa Fluor(登録商標)色素シリーズ(インビトロジェン(株))等の有機蛍光色素が挙げられる。
 また、Eu、Tb等の希土類錯体系の蛍光色素(例えばATBTA-Eu3+)、青色蛍光タンパク質(BFP)、シアン蛍光タンパク質(CFP)、緑色蛍光タンパク質(GFP)、黄色蛍光タンパク質(YFP)、赤色蛍光タンパク質(DsRed)またはAllophycocyanin(APC;LyoFlogen(登録商標))等に代表される蛍光タンパク質、ラテックスやシリカなどの蛍光微粒子等も、蛍光色素として挙げられる。
 なお、血液検体に由来する試料を分析に供する場合は、血液中の血球成分由来の鉄による吸光の影響を最小限に抑えるため、Cy5やAlexa Fluor 647など、近赤外領域に最大蛍光波長を有する蛍光色素を用いることが望ましい。
 放射性物質としては、ラジオアイソトープ(32P、14C、125I、3H、131Iなど)が挙げられる。
 <加水分解酵素>
 本発明の方法に用いる加水分解酵素としては、前記複数種の糖鎖のうち前記特定の糖鎖を除く、かつ、前記レクチンが結合可能な、少なくとも1種の糖鎖を切断可能な糖加水分解酵素を用いる。前記加水分解酵素としては、前記酵素活性を有するものであれば特に限定されないが、例えば、国際酵素委員会の酵素分類におけるE.C.3.2.1に分類される糖加水分解酵素が挙げられ、より具体的には、ガラクトシダーゼ、マンノシダーゼ、フコシダーゼ等が好適に挙げられる。
 〔ガラクトシダーゼ〕
 本発明に用いることのできるガラクトシダーゼは、ガラクトースのβ1-4および/またはβ1-3結合を切断することができるものであるならば、特に限定されることはない。血清中の糖タンパク質あるいは糖脂質は非還元末端にガラクトース残基を有するものが含まれており、例えば、TJA-II、WFA、SBA等のレクチンにてβ-N-アセチルガラクトサミン残基を検出しようとした場合にノイズとなり感度低下につながるが、ガラクトースのβ1-4および/またはβ1-3結合を切断することで血清中のN-アセチルガラクトサミンの検出感度が向上することになる。ガラクトースの結合にはα1-3,β1-3,β1-4等があるが、本発明に用いることのできるガラクトシダーゼはβ1-4結合のみを切断するものでもよく、β1-4を含むいくつかの結合を切断するものでもよい。
 哺乳動物もガラクトシダーゼを有しているが、植物、細菌、および病原虫由来のガラクトシダーゼの研究が進んでいる。ガラクトシダーゼとしては、Bacteroides fragilis、Xanthomonas manihotis、HCV由来のガラクトシダーゼが知られているが、これらのうちガラクトースのβ1-4結合を切断することができるガラクトシダーゼとして、Bacteroides fragilis由来のガラクトシダーゼを挙げることができる。
 〔マンノシダーゼ〕
 本発明に用いることのできるマンノシダーゼは、マンノースのα1-2、α1-3および/またはα1-6結合を切断することができるものであるならば、特に限定されることはない。マンノシダーゼは哺乳類にも存在するが、植物、細菌、および酵母由来のマンノシダーゼの研究が進んでいる。マンノシダーゼとしては、タチナタマメ、Xanthomonas manihotis、アフリカマイマイ(Achatina fulica)由来のマンノシダーゼが知られている。
 〔フコシダーゼ〕
 本発明に用いることのできるフコシダーゼは、フコースのα1-6結合を切断することができるものであるならば、特に限定されることはない。フコシダーゼは哺乳類を含む動物、植物、細菌、酵母等に広く存在するが、例えば、アーモンド、ウシ腎臓、Elizabethkingia miricola、Xanthomonas manihotis由来のフコシダーゼが知られている。
 <抗原と結合する分子(リガンド)>
 本発明の抗原と結合する分子(以下「リガンド」ともいう。)としては、検出対象抗原(アナライト)を特異的に認識して結合し、かつ、レクチンによる糖鎖認識を妨げないものであれば特に限定されないが、例えば、抗体、アプタマー、合成ペプチド等を用いることができる。これらのうちでも、本発明においては、抗体が好適に用いられる。
 なお、本発明において「抗体」は、完全抗体のみならず任意の抗体断片または誘導体を含む意味で用いられ、完全抗体に加え、Fab、Fab'2、CDR、ヒト化抗体、多機能抗体、単鎖抗体(ScFv)等の各種抗体を含む。
 <検出対象抗原(アナライト)>
 検出対象抗原(以下「アナライト」ともいう。)としては、レクチンにより認識される特定の糖鎖を有し、かつ、抗原に結合する分子により特異的に認識され結合し得る分子または分子断片であればよい。
 このような「分子」または「分子断片」としては、例えば、核酸(一本鎖であっても二本鎖であってもよいDNA,RNA,ポリヌクレオチド,オリゴヌクレオチド,PNA(ペプチド核酸)等,またはヌクレオシド,ヌクレオチドおよびそれらの修飾分子);タンパク質(ポリペプチド,オリゴペプチド等);アミノ酸(修飾アミノ酸も含む。);糖質(オリゴ糖,多糖類,糖鎖等);脂質;またはこれらの修飾分子、複合体などを挙げることができる。これらの中でも、アナライトとしてタンパク質(糖タンパク質)および脂質(糖脂質)が好ましく、タンパク質(糖タンパク質)がより好ましい。
 タンパク質としては、例えば、がん抗原/腫瘍マーカー、シグナル伝達物質、ホルモンなどを挙げることができる。より具体的には、例えば、PSA、AFP、CEAなどのがん抗原/腫瘍マーカーを好適に挙げることができる。
 <検出対象抗原(アナライト)を含む検体>
 本発明の検出方法に用いる被検試料は、前記検出対象抗原(アナライト)を含む検体である。アナライトを含む検体には、アナライトを現実に含む検体に加え、アナライトを含む可能性がある検体も包含される。アナライトを含む検体としては、アナライトを含む生体試料もしくは生体由来試料、またはアナライトを含む可能性のある生体試料もしくは生体由来試料を挙げることができる。生体試料および生体由来試料としては例えば血液、血清、血漿、尿、髄液、唾液、細胞、組織、もしくは器官、またはそれらの調製物(例えば、生検標本)等を挙げることができる。本発明の検出方法に用いる被検試料としては、血液、血清または血漿が好ましい。
 前記血液、血清、血漿、尿、髄液、唾液などの液性の試料は、適当な緩衝液により希釈して使用することができる。また、細胞、組織、または器官などの固形の試料は、固形の試料の体積の2~10倍程度の適当な緩衝液でホモジェナイズして、懸濁液またはその上清を、そのまま、またはさらに希釈して使用することができる。
 <検出対象抗原、レクチン、加水分解酵素の組合せ>
 上記本発明に係る、特定の糖鎖を有する抗原(検出対象抗原)、特定の糖鎖を含む複数種の糖鎖と結合するレクチン、および、前記複数種の糖鎖のうち前記特定の糖鎖を除く、かつ、前記レクチンが結合可能な、少なくとも1種の糖鎖を切断可能な糖加水分解酵素の組合せの具体例を表1に示した。
 表1に示す以外にも、がん抗原/腫瘍マーカーなどの検出対象抗原、試料中にそれとともに含まれやすい検出対象抗原以外の糖タンパク質や糖脂質、それぞれが有する糖鎖の種類を考慮しながら、前者が有する糖鎖に結合しやすいレクチンや、そのレクチンが同時に結合するおそれのある後者が有する糖鎖を切断する糖加水分解酵素を適宜選択し、組み合わせて用いることが可能である。
 なお、抗原と結合する分子として抗体を用いる場合、抗体は各抗原特異的抗体を用いることが適切である。例えば、ヒトPSAを抗原とする場合には、抗ヒトPSA抗体を用いればよい。
Figure JPOXMLDOC01-appb-T000001
 <支持体>
 本発明の検出方法においては、抗原に結合する分子を固定化する支持体を用いることができる。支持体としては、例えば、アガロース、セルロースなどの不溶性の多糖類、シリコン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、ナイロン樹脂、ポリカーボネイト樹脂などの合成樹脂や、ガラスなどの不溶性の支持体を挙げることができる。これらの支持体は、ビーズ(主として球状)、プレート(主として平面状)などの形状で用いられる。ビーズとしては磁気ビーズ、樹脂ビーズ等が充填されたカラムなどが使用できる。プレートの場合、マルチウェルプレート(96穴マルチウェルプレート等)、バイオセンサーチップなどが使用できる。なお、支持体は固相体とも称され、プレート等の平面状の支持体を基板ともいう。
 抗原と結合する分子と支持体との結合は、化学結合や物理的な吸着などの通常用いられる方法により行うことができる。これらの支持体はすべて市販のものが好適に使用できる。
 なお、抗原と結合する分子を支持体と結合させることを固相化といい、抗原と結合する分子と結合した支持体を固相化体ともいう。
 ≪本発明の検出方法≫
 <検出方法に含まれる工程>
 本発明の検出方法は、特定の糖鎖を含む複数種の糖鎖と結合するレクチンを用いて、検体中の前記特定の糖鎖を有する抗原を検出する方法であって、以下の工程を含む。
 (1)前記レクチンを検体に接触させる第1工程(「レクチン結合工程」)、
 (2)前記複数種の糖鎖のうち前記特定の糖鎖を除く、前記レクチンが結合可能な少なくとも1種の糖鎖を切断可能な糖加水分解酵素を、検体に接触させる第2工程(「糖鎖切断工程」)、および、
 (4)前記第1工程および第2工程の後に行われる、前記レクチンと結合した前記抗原を検出する第4工程(「検出工程」)。
 本発明の検出方法は、さらに以下の工程を含むことができる。
 (3)前記第4工程の前に行われる、前記抗原と結合する分子が固定化された支持体に検体を接触させる第3工程(「抗原捕捉工程」)。
 <工程が実施される順番(工程順)>
 本発明の方法における前記工程の実施の順番は、検出工程(第4工程)が最後に行われるものであればよい。また、レクチン結合工程(第1工程)および糖鎖切断工程(第2工程)は、同時に行うこともできる。具体的には、以下のような工程の実施順を好ましく挙げることができる。なお、「第1工程+第2工程」は第1工程と第2工程を同時に行うことを表し、「→」はその左側の工程を実施後、右側の工程を実施することを意味する。例えば、「(第1工程+第2工程)→第3工程→第4工程」は、第1工程と第2工程を同時に行った後に、第3工程を行い、その後さらに第4工程を行うことを表す。
 (本発明の工程順)
 (1)(第1工程+第2工程)→第4工程
 (2)第1工程→第2工程→第4工程
 (3)第2工程→第1工程→第4工程
 (4)(第1工程+第2工程)→第3工程→第4工程
 (5)第1工程→第2工程→第3工程→第4工程
 (6)第2工程→第1工程→第3工程→第4工程
 (7)第1工程→第3工程→第2工程→第4工程
 (8)第2工程→第3工程→第1工程→第4工程
 (9)第3工程→(第1工程+第2工程)→第4工程
 (10)第3工程→第1工程→第2工程→第4工程
 (11)第3工程→第2工程→第1工程→第4工程
 図2~図4にこれらの工程順の一部について概念図を示した。図2は上記(4)、図3は上記(8)、図4は上記(11)の工程順に相当する概念図である。なお、各図中において、特定の糖鎖を含む複数種の糖鎖と結合するレクチンは、特定の糖鎖(46c)および特定の糖鎖を除く、かつ、レクチンが結合可能な糖鎖(46d)の両方の糖鎖を認識する。例えば、PSA抗原では、WFAレクチンを用いる場合、特定の糖鎖(46c)がN-アセチル-D-ガラクトサミン(GalNAc)、特定の糖鎖を除く、かつ、レクチンが結合可能な糖鎖(46d)がガラクトース(Gal)にあたる。
 第3工程を含まない本発明の工程の実施方法としては、例えば、抗原に結合する分子として、FRET(Fluorescence Resonance Energy Transfer)試薬のドナー蛍光体を標識した抗体を、レクチンを標識する標識体としてFRET試薬のアクセプター蛍光体を用いる方法があげられる。この場合、抗原に結合する分子(抗体)に検出対象以外の糖タンパク質や糖脂質が非特異的に結合し、バックグラウンド上昇の原因となる。したがって、第1工程、第2工程および第4工程を含む本発明の検出方法により、上昇したバックグラウンドを低減させることが可能であり、本発明の効果を得ることができる。
 本発明の工程としては、第3工程(抗原捕捉工程)を含むことが、検出感度上昇の観点から好ましい。
 全工程中における第2工程(糖鎖切断工程)の実施の順番としては、(A)第3工程(抗原捕捉工程)を実施後に、支持体上で第2工程を行う場合と、(B)それ以外の場合(抗原捕捉工程の前に糖鎖切断工程を行う、または、抗原捕捉工程を実施しない。)に大きく分けることができる。
 (A)では検体を、抗原と結合する分子(抗体等)が固相化(固定化)されている支持体と先に接触させる。検体を接触させた支持体には、非特異的に血清糖タンパク質や糖脂質が吸着している。これに、特定の糖鎖以外の糖鎖を切断することができる酵素を添加することで、支持体および抗原と結合する分子上の非特異的に結合した糖タンパク質や糖脂質から特定糖鎖以外の糖鎖を切断除去することができる。これにより、レクチンを添加した際の高いバックグラウンドは抑制される。
 (B)ではアナライトを含む可能性のある試料を希釈せずに、または適当な緩衝液で希釈し、そしてその試料に特定の糖鎖以外の糖鎖を切断することができる酵素を添加する。これにより、抗原が含まれる検体中の他のタンパク質からノイズ成分となる糖鎖を除去することができ、特異性および感度が向上する。
 多量の夾雑物中で酵素処理を行う(B)に比べ、支持体および抗原と結合する分子に吸着した夾雑物のみを処理する(A)のほうがノイズ除去の効果が高く、より好ましい。
 また、第2工程(糖鎖切断工程)は、第1工程(レクチン結合工程)の前に行う方が、好ましい。これは、レクチンが結合後にその糖鎖を切断する場合、立体障害等のために、切断効率が落ち、バックグラウンドが上昇するためである。
 本発明の方法は、従来のバックグラウンド抑制方法と組み合わせて行うこともでき、組合せることでより高いバックグラウンド抑制効果が期待できる。
 <各工程の詳細>
 以下に各工程の詳細について説明する。
 〔1.第1工程(レクチン結合工程)〕
 第1工程は、特定の糖鎖を含む複数種の糖鎖と結合するレクチンを、特定の糖鎖を有する抗原に結合させる工程である。ここで用いるレクチンの量、反応液中の濃度、反応時間、反応条件は、用いるレクチンによって適宜調整すればよい。
 〔2.第2工程(糖鎖切断工程)〕
 第2工程は、前記複数種の糖鎖のうち前記特定の糖鎖を除く、かつ、前記レクチンが結合可能な少なくとも1種の糖鎖を切断可能な糖加水分解酵素を検体に接触させ、前記特定の糖鎖を除く少なくとも1種の糖鎖を切断する工程である。ここで用いる糖加水分解酵素の量、反応液中の濃度、反応時間、反応条件は、用いる糖加水分解酵素によって適宜調整すればよい。
 例えば、Bacteroides fragilis由来のガラクトシダーゼを用いる場合、2~1000mU、好ましくは20~100mUのガラクトシダーゼを用いることにより、血清糖タンパク質、糖脂質のガラクトースのβ1-4結合を切断することができる。
 ガラクトシダーゼの処理(反応)時間は、通常、10分~24時間であり、好ましくは、30分~1時間が好ましい。また、反応温度は、25℃~40℃が好ましい。
 また、例えば、タチナタマメ由来のマンノシダーゼを用いる場合、2~1000mU、好ましくは20~100mUのマンノシダーゼを用いることにより、血清糖タンパク質、糖脂質のマンノースの結合を切断することができる。
 マンノシダーゼの処理(反応)時間は、通常、10分~24時間であり、30分~1時間が好ましい。また、反応温度は25℃~40℃が好ましい。
 〔3.第3工程(抗原捕捉工程)〕
 第3工程は、特定の糖鎖を有する抗原を、支持体(基板等)に固定化された、抗原と結合する分子と結合させる工程である。反応時間、反応温度等の反応条件は、用いる抗原および抗原と結合する分子に応じて、適宜調整すればよい。
 〔4.第4工程(検出工程)〕
 第4工程は、レクチンに結合した標識体を測定することによってレクチンを検出し、さらにレクチンが結合した検出対象抗原を検出する工程である。
 (測定方法)
 本発明の検出工程において用いられる検出方法としては、上記標識体を測定できるものであれば、特に限定されず、それぞれの標識物質に適した当業者に公知の方法により行うことができる。例えば、放射性物質により標識されたレクチンを検出する場合には、液体シンチレーションやRIA法により検出することができる。蛍光色素により標識されたレクチンを検出する場合には、ルミノメーター、SPFS測定器等により検出することができる。酵素で標識されたレクチンを検出する場合は、標識された酵素に対応した基質を加えた後に、酵素による基質の化学的変化、例えば、発色、蛍光、化学発光等を測定することにより検出することができる。
 〔表面プラズモン励起増強蛍光分光(Surface Plasmon-field enhanced fluorescence spectroscopy:SPFS)法〕
 本発明の検出方法に用いる測定法として、SPFSが好適に用いられる。SPFSは、誘電体部材上に形成された金属薄膜に全反射減衰(ATR)が生じる角度で励起光を照射したときに、金属薄膜を透過したエバネッセント波が表面プラズモンとの共鳴により数十倍~数百倍に増強されることを利用して、金属薄膜近傍に捕捉されたアナライト(分析対象物)を標識する蛍光体を効率的に励起させ、その蛍光シグナルを測定する方法である。このようなSPFSは、一般的な蛍光標識法などに比べて極めて感度が高いため、サンプル中にアナライトがごく微量しか存在しない場合であってもそれを定量することができる。
 <SPFS用測定部材>
 SPFS用測定部材は、一般的に、サンドイッチ型免疫複合体を形成してSPFSによる蛍光測定を行うための場(測定領域)が形成されているセンサチップと、サンドイッチ型免疫複合体の形成などに用いられる各種の溶液(アナライトを含む試料、標識リガンド溶液、その他の反応試薬等)を測定領域上に保持することのできる、流路またはウェルを構築するための部材とを積層化した構成をとる。
 センサチップは、基本的に、金属薄膜の裏面に励起光を導入するための透明支持体と、当該透明支持体上に形成された、表面プラズモン共鳴を発生させるための金属薄膜と、当該金属薄膜上に形成された、アナライトをセンサ表面に捕捉するための反応層とを含み、さらに必要に応じて、金属薄膜と反応層の間に形成された、蛍光体が金属薄膜に近接しすぎることにより起こる蛍光の金属消光を防止するためのスペーサ層を含んでいてもよい。
 反応層が形成されている部位が測定領域に相当する。流路またはウェルの底面全域に反応層を形成して測定領域としてもよいし、底面の一部のみに(必要であれば所望のパターニングで)反応層を形成して測定領域としてもよい。測定領域の面積は、一般的にレーザー光として照射される励起光の照射面積を考慮しながら調整することができる。たとえば、励起光のスポット径が1mmφ程度であれば、上記アッセイエリアは通常、少なくとも数mm四方の面積を有するものとなるよう設計される。
 SPFSのシステムを、密閉流路を通じて各種の溶液を送液する「流路型」とする場合、センサチップの上に、流路を形成するための穴のあいた「フローセル」を積載し、必要に応じてさらにその上に、上記フローセルの穴に対応する位置に送液導入口および送液排出口のあいた「天板」を積載し、これらを密着させて固定するようにして、測定部材を構築する。上記フローセルの穴に対応する位置のセンサチップ表面が、流路の底面をなし、そこに測定領域が形成される。流路型の場合、たとえばポンプやチューブを含む送液手段を用いて、各種の液体を送液導入口から流路内に送液して送液排出口から排出することができ、必要に応じて往復型、循環型の送液を行うこともできる。送液速度や送液(循環)時間などの条件は、試料の量や試料中のアナライトの濃度、流路ないしウェルのサイズや反応層の態様(固相化リガンドの密度等)、ポンプの性能等を考慮しながら、適宜調整することができる。
 一方、SPFSのシステムを、上記流路よりも広い空間に各種の溶液を貯留させる「ウェル型」とする場合、センサチップの上に、ウェルを形成するための貫通孔を有する「ウェル部材」を積載して固定することにより測定部材を構築する。ウェル型の場合、たとえばピペット状の部材を用いて、各種の液体をウェルに添加し、除去することができる。
 上記フローセルは、たとえばシート状のポリジメチルシロキサン(PDMS)製とすることができる。上記天板は、測定領域から発せられる蛍光を測定できるよう透明性を有する材料で作製され、たとえばプレート状のポリメタクリル酸メチル(PMMA)製とすることができる。あるいは、フローセルおよび天板を、成形加工やフォトリソグラフィにより所望の形状にしたプラスチック製とすることも可能である。
 センサチップ上にフローセルまたはウェル部材を密着させて固定する手段は特に限定されるものではなく、一般的には物理的に上下から圧力をかけるようにすればよく、必要であれば、透明支持体と同じ光屈折率を有する接着剤、マッチングオイル、透明粘着シートなどを用いてもよい。
 <SPFS用測定装置>
 本発明に係る測定法は、一般的なSPFS用測定装置を使用して実施することができる。SPFS用測定装置は、基本的に、SPFS用測定部材が着脱可能となっており、使用する蛍光体に応じた適切な波長の励起光(好適にはレーザー光)を照射するための光源、励起光をセンサチップの金属薄膜の裏面に所定の角度で入射させるためのプリズム(透明支持体が平面基板状のセンサチップを使用する場合)、金属薄膜で反射した光を受光しその強度を測定する受光器、蛍光体から発せられる蛍光を集光するためのレンズおよびその蛍光の強度を測定するための検出器、励起光および蛍光から所定の波長を有する光のみを透過させそれ以外の光をカットするための各種のフィルタなどを備える。
 より具体的な態様は、例えば、特開2010―145272号公報、特開2011-80935号公報、特開2008-102117号公報、特許第3562912号公報など、各種の文献を参照することができる。
 以下、より詳細なSPFS用測定装置の構成例について説明する。
1.定量測定装置の構成
 図5は、本発明のアナライトの定量測定方法を説明する定量測定装置の概略を模式的に示す概略図、図6は、図5の定量測定装置の部分拡大図である。
 図5、6に示すように、本発明の定量測定装置10は、鉛直断面形状が略台形であるプリズム形状の誘電体部材12と、この誘電体部材12の水平な上面12aに形成された金属膜14とを有するセンサチップ16を備えており、このセンサチップ16は、定量測定装置10のセンサチップ装填部18に装填されている。
 また、誘電体部材12の下方の一方の側面12bの側には、図5に示すように、光源20が配置されており、この光源20からの入射光22が、誘電体部材12の外側下方から、誘電体部材12の側面12bに入射して、誘電体部材12を介して、誘電体部材12の上面12aに形成された金属膜14に向かって照射されるようになっている。
 また、光源20と誘電体部材12との間には、光源20から照射されるレーザー光を、金属膜14上で表面プラズモンを効率よく発生させるP偏光とするための偏光フィルタを設けることもできる。
 また、誘電体部材12の下方の他方の側面12cの側には、図5に示すように、入射光22が金属膜14によって反射された金属膜反射光24を受光する受光手段26が備えられている。
 なお、光源20には、光源20から照射される入射光22の、金属膜14に対する入射角α1を適宜変更可能とする入射角調整手段(図示せず)が備えられている。一方で、受光手段26にも、図示しない可動手段が備えられており、金属膜反射光24の反射角が変わった場合にも、光源20と同期して、確実に金属膜反射光24を受光するように構成されている。
 なお、センサチップ16、光源20、受光手段26によって、本発明の定量測定装置10のSPR測定を行うSPR測定部28が構成されている。
 また、センサチップ16の上方には、後述するような蛍光物質が励起されて発光した蛍光30を受光するための光検出手段32が備えられている。
 なお、センサチップ16と、光検出手段32との間には、例えば、カットフィルタや集光レンズなどを設けることもできる。
 なお、センサチップ16、光源20、光検出手段32によって、本発明の定量測定装置10のSPFS測定を行うSPFS測定部34が構成されている。
 また、受光手段26および光検出手段32は、それぞれ、定量演算手段40に接続されており、受光手段26によって受光した金属膜反射光24の光量と、光検出手段32によって受光した蛍光30の光量とが、定量演算手段40に送信されるように構成されている。
 また、本実施例のセンサチップ16では、金属膜14の上面14aに流路36が形成されている。この流路36の一部には、検出対象抗原(アナライト)と特異的に結合する分子(リガンド)が固相化されたセンサ部38が設けられている。
 ≪検出用キット≫
 本発明の検出用キットは、上記本発明の検出方法に使用されるものである。本発明の検出用キットは、
 (1)特定の糖鎖を含む複数種の糖鎖と結合するレクチンを含む試薬、
 (2)前記複数種の糖鎖のうち前記特定の糖鎖を除く、かつ、前記レクチンが結合可能な、少なくとも1種の糖鎖を切断可能な糖加水分解酵素を含む試薬、および
 (3)前記特定の糖鎖を有する抗原と結合する分子を含む試薬、
を含む。
 また、本発明の検出用キットは、さらに、
 (4)本発明に係る検出方法が指示として記載された使用説明書、および/または
 (5)レクチン標識化試薬
を含んでいてもよい。
 キットに含まれる使用説明書(4)は、本発明の方法を実施するために、本発明に係る検出方法のいずれかが、指示として記載された使用説明書である。使用説明書の具体的態様は上記情報を適切に伝達できるものであればよい。例えば、紙片、キットの包装、キットの構成物のラベル等に印刷されているものでよく、ディスケット、CD等コンピューターで読み取り可能な媒体中に記録されているものでもよい。
 キットに含まれるレクチン標識化試薬(5)は、レクチンを標識化する際に用いる試薬であり、標識体と、レクチンと標識体を結合させる試薬を通常含むものである。
 ≪応用例≫
 本発明の方法は、疾病の診断に用いることができる。例えば、検出対象抗原(アナライト)がPSAの場合、本発明の検出方法により定量された、患者由来の生体試料中のPSA量から、前立腺癌の診断をすることが可能である。他にも、アナライトがAFPの場合は肝細胞癌を、CEAの場合は消化管を中心とした癌の診断をすることが可能である。
 以下に実施例を示し本発明の詳細な説明を行うが、本発明はこれにより限定されるものではない。
 (定量測定装置の構成)
 以下の実施例においては、測定装置として、上記SPFS測定装置を自作して使用した。当該SPFS測定装置は、上記定量測定装置10と同様の構成である。
 なお、上記構成のうち、光源20として、波長635nmの光を照射することができるレーザーダイオード(LD)を用いており、光源20と誘電体部材12との間には、光学フィルタとして減光フィルタ(中性濃度フィルタ)を設けてフォトン量を調整できるようにした。
 また、誘電体部材12としては、シグマ光機(株)製の60度プリズムを用い、この誘電体部材12の上部に、後述する、プラズモン励起センサを固定することによって、センサチップ16を構成する。
 また、センサチップ16の上部には、集光レンズとして対物レンズを備え、光検出手段32としては、光電子増倍管(PMT)を用いた。
 (プラズモン励起センサの作製)
 屈折率1.72、厚さ1mmのガラス製の透明平面基板((株)オハラ製のS-LAL 10)をプラズマ洗浄し、この基板の片面にクロム薄膜をスパッタリング法によって形成した。その後、その表面にさらに金薄膜をスパッタリング法によって形成した。クロム薄膜の厚さは1~3nm、金薄膜の厚さは44~52nmであった。
 このようにして金薄膜が形成された基板を、10-カルボキシ-1-デカンチオールを1mM含むエタノール溶液に24時間以上浸漬し、金薄膜の表面にSAM膜を形成した。基板をこの溶液から取り出し、エタノールおよびイソプロパノールで洗浄した後、エアガンを用いて乾燥させた。
 高さ0.5mmの流路となる溝を有し、溝の両端に貫通穴を有するポリジメチルシロキサン(PDMS)製シートを、SAM膜の表面が流路の内側となるように溝をSAM膜に対向させて基板上に配置し、流路の外側のPDMS製シート上部から圧着して、ビスでPDMS製シート(流路36)とプラズモン励起センサとを固定した。
 (抗体の固相化)
 [調製例1]
 〔抗PSA抗体固相化SAM膜(基板)〕
 上記のとおりプラズモン励起センサを接続した外部流路に、超純水を10分間、その後、リン酸緩衝生理食塩水(PBS)を20分間、ペリスタポンプによって、室温(25℃)、流速500μL/分の条件で循環送液させ、プラズモン励起センサの表面を平衡化した。
 続いて、N-ヒドロキシコハク酸イミド(NHS)を50mMと、水溶性カルボジイミド(WSC)を100mMとを含むリン酸緩衝生理食塩水(PBS)を5mL送液し、20分間循環させた後、抗PSAモノクローナル抗体(No.79、2.5mg/mL、ミクリ免疫研究所製)溶液2.5mLを30分間循環送液することで、SAM膜上に当該抗体を固相化し、抗PSA抗体固相化SAM膜を調製した。
 なお、1重量%牛血清アルブミン(BSA)を含むリン酸緩衝生理食塩水(PBS)を30分間循環送液することによって、流路内の非特異吸着防止処理を行った。
 各種プール血清サンプルを送液する前のセンサ部38には、図7に示すように、上記のような抗体(リガンド44)が形成された状態となっている。
 [調製例2]
 〔抗AFP抗体固相化SAM膜(基板)〕
 抗PSA抗体の代わりに、抗AFPモノクローナル抗体(1D5、2.5mg/mL、(株)日本医学臨床検査研究所製)を用いた他は、調製例1と同様にして、抗AFP抗体固相化SAM膜を調製した。
 (標識レクチンの作製)
 [作製例1]
 〔蛍光標識WFAレクチン〕
 蛍光標識WFAレクチンを、蛍光物質ラベリングキット「Alexa Fluor(商標名)647タンパク質ラベリングキット」(インビトロジェン社製)を利用して作製した。WFAレクチン(L-1350、Vector社)100μg相当と、0.1M重炭酸ナトリウムと、Alexa Fluor 647 reactive dyeとを混合し、室温で1時間反応させた後、ゲル濾過クロマトグラフィーおよび限外濾過を行い、標識に利用されなかったAlexa Fluor 647 reactive dyeを取り除いて、蛍光標識WFAレクチンを得た。その後、吸光度を測定し標識レクチン濃度を定量した。
 [作製例2]
 〔蛍光標識LCAレクチン〕
 蛍光標識LCAレクチンを、蛍光物質ラベリングキットを利用して作製した。レクチンとして、LCAレクチン(L-1040、Vector社)を用いた他は、作製例1と同様にして蛍光標識LCAレクチンを得た。
 <血清検体中のPSAの測定>
 [実施例1]
 (血清検体中のPSAの測定(1))
 各検体をガラクトシダーゼで酵素処理した後、蛍光標識WFAレクチン(作製例1)と接触させ、その後、抗PSA抗体を固相化した基板(調製例1)と反応させた。より詳しくは以下の通りに行った。
 5種のPSAフリープールヒト血清(正常ヒトプール血清、コージンバイオ社)および、各種PSAフリープール血清にLNCaP(ヒト前立腺癌細胞培養株)培養上清をPSA濃度50pg/mLとなるように添加した血清サンプル5つの合計10サンプルを作製し、PBSにて2倍希釈することで測定サンプルとした。なお、前記PSAフリープールヒト血清としては、コージンバイオ社から正常ヒトプール血清を購入し、PSA濃度が0.01ng/mL以下であることをELISAにて確認した血清を用いた。
 測定サンプル0.1mLにBacteroides fragilis由来のガラクトシダーゼを終濃度50mUになるように添加し、37℃で1時間反応させた。次に、蛍光標識プローブ48として、Alexa Fluor 647で標識したWFAレクチンの溶液(1μg/mLとなるようにリン酸緩衝生理食塩水(PBS)に溶解したもの)を0.1mL添加し、室温で1時間反応させた。ガラクトシダーゼ処理、レクチン反応を行った測定サンプルを流路に0.1mL添加し、流速200μL/分にて20分間循環送液させた。続いて、Tween20を0.05重量%含有するTBS(TBS-T)を送液して、5分間洗浄した。その後、定量測定装置によって、SPFS測定を行った。ガラクトシダーゼ処理を除いた工程で測定サンプルの調製も実施し、同様にSPFS測定を実施した。なお、図8に、標識化レクチンを送液した後のセンサ部を模式的に表す拡大模式図を示した。
 測定サンプルを上記方法により調製・測定した結果を以下の表2に示す。表2の結果は実測値である。PSA添加血清のシグナル値はPSA由来のシグナル値+バックグラウンドのシグナル値として示されている。
Figure JPOXMLDOC01-appb-T000002
 ガラクトシダーゼ処理を行った測定サンプルは、未処理サンプルと比較して、PSAフリープール血清の値(バックグラウンド)が3/5程度に低下していることを確認した。
 また、5検体のS/N比(PSA添加血清のシグナル値/対応するPSAフリー血清のシグナル値)の平均値は、未処理サンプルが2.02であったのに対し、ガラクトシダーゼ処理サンプルでは2.41に上昇し、検出感度が上昇することが明らかとなった。
 [実施例2]
 (血清検体中のPSAの測定(2))
 各検体をガラクトシダーゼで酵素処理した後、抗PSA抗体を固相化した基板(調製例1)と反応させ、その後、蛍光標識WFAレクチン(作製例1)と接触させた。より詳しくは以下の通りに行った。
 5種のPSAフリープール血清および、各種PSAフリープール血清にLNCaP培養上清をPSA濃度50pg/mLとなるように添加した血清サンプル5つの合計10サンプルを作製し、PBSにて2倍希釈することで測定サンプルとした。測定サンプルにBacteroides fragilis由来のガラクトシダーゼを終濃度50mUになるように添加し、37℃で1時間反応させた。ガラクトシダーゼ処理を行った測定サンプルを流路に0.1mL添加し、流速200μL/分にて20分間循環送液させた。続いて、Tween20を0.05重量%含有するTBS(TBS-T)を送液して、5分間洗浄した。反応後、蛍光標識プローブ48として、Alexa Fluor 647を標識したWFAレクチン溶液(1μg/mLとなるようにリン酸緩衝生理食塩水(PBS)に溶解したもの)を0.1mL添加し、流速200μL/分にて5分間送液した。再びTween20を0.05重量%含有するTBS(TBS-T)を送液して、5分間洗浄した。その後、定量測定装置によって、SPFS測定を行った。ガラクトシダーゼ処理を除いた工程で測定サンプルの調製も実施し、SPFS測定を実施した。
 測定サンプルを上記方法により測定した結果を以下の表3に示す。表3の結果は実測値である。PSA添加血清のシグナル値はPSA由来のシグナル値+バックグラウンドのシグナル値として示されている。
Figure JPOXMLDOC01-appb-T000003
 ガラクトシダーゼ処理を行った測定サンプルは、未処理サンプルと比較して、PSAフリープール血清のシグナル値(バックグラウンド)が1/3程度に低下していることを確認した。
 また、5検体のS/N比(PSA添加血清のシグナル値/対応するPSAフリー血清のシグナル値)の平均値は、未処理サンプルが2.64であったのに対し、ガラクトシダーゼ処理サンプルでは5.51に上昇し、検出感度が上昇することが明らかとなった。
[実施例3]
 (血清検体中のPSAの測定(3))
 次に、基板上で酵素処理を行う手法についても方法を説明する。
 各検体を抗PSA抗体を固相化した基板(調製例1)と反応させた後、ガラクトシダーゼで酵素処理し、その後、蛍光標識WFAレクチン(作製例1)と接触させた。より詳しくは以下の通りに行った。
 5種のPSAフリープール血清および、各種PSAフリープール血清にLNCaP培養上清をPSA濃度50pg/mLとなるように添加した血清サンプル5つの合計10サンプルを作製し、PBSにて2倍希釈することで測定サンプルとした。各種プール血清サンプル溶液10種を、流路に0.1mL添加し、20分間循環送液させた。続いて、Bacteroides fragilis由来のガラクトシダーゼを50mUを含有する溶液あるいはPBS(-)を0.1mL添加し、20分間循環送液させた。その後、Tween20を0.05重量%含有するTBS(TBS-T)を送液して流速200μL/分にて、5分間洗浄した。洗浄後、蛍光標識プローブ48として、Alexa Fluor 647を標識したWFAレクチン溶液(1μg/mLとなるようにリン酸緩衝生理食塩水(PBS)に溶解したもの)を0.1mL添加し、流速200μL/分にて5分間送液した。その後、Tween20を0.05重量%含有するTBS(TBS-T)を送液して流速200μL/分にて、5分間洗浄した。その後、定量測定装置によって、SPFS測定を行った。ガラクトシダーゼ処理を除いた工程でもSPFS測定を実施した。
 結果を表4に示す。表4の結果は実測値である。PSA添加血清のシグナル値はPSA由来のシグナル値+バックグラウンドのシグナル値として示されている。
Figure JPOXMLDOC01-appb-T000004
 基板上にてガラクトシダーゼ処理を行った測定検体は、未処理検体と比較して、PSAフリープール血清の値(バックグラウンド)が1/4程度に低下していることを確認した。
 また、5検体のS/N比(PSA添加血清のシグナル値/対応するPSAフリー血清のシグナル値)の平均値は、未処理サンプルが3.50であったのに対し、ガラクトシダーゼ処理サンプルでは12.99に上昇し、検出感度が上昇することが明らかとなった。
 以上、実施例1~3において示されたように、測定系に生じていた血清成分による非特異結合シグナルは血清糖タンパク質上のガラクトースを切断することで抑制することが可能であり、PSA上のGalNAc糖鎖構造を特異的に検出する感度が向上することが確認できた。
 また、実施例2と実施例3を比較した結果、酵素による処理は血清タンパク質が大量に含まれている溶液中で作用させるよりも、ある程度対象を絞った抗体固定化基板上にて処理が行われた方が、効果が高いことが確認できた。
 <血清検体中のAFPの測定>
 以上、実施例1~3では、PSAを検出対象として試験を実施したが、同様の試験を、AFPを検出対象として実施した。以下に実施例4~6として示す。実施例4~6においては、陰性対照検体として5種のAFPフリープール血清を、陽性対象検体として当該各AFPフリープール血清に、ミュータスワコーAFP-L3用コントロールL(商品名、和光純薬株式会社製、L3=20%、AFP濃度200ng/mL)をAFP濃度1.0ng/mLとなるように添加した血清サンプル5つの合計10サンプルを作製して用いた。なお、前記AFPフリープールヒト血清としては、コージンバイオ社から正常ヒトプール血清を購入し、ELISAにてAFP濃度が0.01ng/mL以下であることを確認した血清を用いた。
 [実施例4]
 (血清検体中のAFPの測定(1))
 各検体をマンノシダーゼで酵素処理した後、蛍光標識LCAレクチン(作製例2)と接触させ、その後、抗AFP抗体を固相化した基板(調製例2)と反応させた。
 より詳しくは、実施例1において、ガラクトシダーゼに代えてタチナタマメ由来のマンノシダーゼ(GKX-5010、Prozyme社)を、蛍光標識WFAレクチン(作製例1)に代えて蛍光標識LCAレクチン(作製例2)を、抗PSA抗体を固相化した基板(調製例1)に代えて抗AFP抗体を固相化した基板(調製例2)を用いた他は、実施例1と同様に行った。
 測定サンプルを上記方法により調製・測定した結果を以下の表5に示す。表5の結果は実測値である。AFP添加血清のシグナル値はAFP由来のシグナル値+バックグラウンドのシグナル値として示されている。
Figure JPOXMLDOC01-appb-T000005
 マンノシダーゼ処理を行った測定サンプルはほぼすべての未処理サンプルよりAFPフリープール血清の値(バックグラウンド)が3/4程度に低下していることを確認した。その時のAFP-L3添加血清を測定した場合の値はほとんど差がないことも確認できた。
 また、5検体のS/N比(AFP-L3添加血清のシグナル値/対応するAFPフリー血清のシグナル値)の平均値は、未処理サンプルが4.18であったのに対し、ガラクトシダーゼ処理サンプルでは5.14に上昇し、検出感度が上昇することが明らかとなった。
 [実施例5]
 (血清検体中のAFPの測定(2))
 各検体をマンノシダーゼで酵素処理した後、抗AFP抗体を固相化した基板(調製例2)と反応させ、その後、蛍光標識LCAレクチン(作製例2)と接触させた。
 より詳しくは、実施例2において、ガラクトシダーゼに代えてタチナタマメ由来のマンノシダーゼ(GKX-5010、Prozyme社)を、蛍光標識WFAレクチン(作製例1)に代えて蛍光標識LCAレクチン(作製例2)を、抗PSA抗体を固相化した基板(調製例1)に代えて抗AFP抗体を固相化した基板(調製例2)を用いた他は、実施例2と同様に行った。
 測定サンプルを上記方法により測定した結果を以下の表6に示す。表6の結果は実測値である。AFP添加血清のシグナル値はAFP由来のシグナル値+バックグラウンドのシグナル値として示されている。
Figure JPOXMLDOC01-appb-T000006
 マンノシダーゼ処理を行った測定サンプルはほぼすべての未処理サンプルよりAFPフリープール血清の値(バックグラウンド)が1/2程度に低下していることを確認した。その時のAFP-L3添加血清を測定した場合の値はほとんど差がないことも確認できた。
 また、5検体のS/N比(AFP-L3添加血清のシグナル値/対応するAFPフリー血清のシグナル値)の平均値は、未処理サンプルが6.43であったのに対し、ガラクトシダーゼ処理サンプルでは11.84に上昇し、検出感度が上昇することが明らかとなった。
 [実施例6]
 (血清検体中のAFPの測定(3))
 次に、基板上で酵素処理を行う手法についても方法を説明する。
 各検体を抗AFP抗体を固相化した基板(調製例2)と反応させた後、マンノシダーゼで酵素処理し、その後、蛍光標識LCAレクチン(作製例2)と接触させた。
 より詳しくは、実施例3において、ガラクトシダーゼに代えてタチナタマメ由来のマンノシダーゼ(GKX-5010、Prozyme社)を、蛍光標識WFAレクチン(作製例1)に代えて蛍光標識LCAレクチン(作製例2)を、抗PSA抗体を固相化した基板(調製例1)に代えて抗AFP抗体を固相化した基板(調製例2)を用いた他は、実施例3と同様に行った。
 結果を以下の表7に示す。表7の結果は実測値である。AFP添加血清のシグナル値はAFP由来のシグナル値+バックグラウンドのシグナル値として示されている。
Figure JPOXMLDOC01-appb-T000007
 基板上にてマンノシダーゼ処理を行った測定サンプルはほぼすべての未処理サンプルよりAFPフリープール血清の値(バックグラウンド)が2/5程度に低下していることを確認した。
 また、5検体のS/N比(AFP-L3添加血清のシグナル値/対応するAFPフリー血清のシグナル値)の平均値は、未処理サンプルが8.11であったのに対し、ガラクトシダーゼ処理サンプルでは19.31に上昇し、検出感度が上昇することが明らかとなった。
 以上、実施例4~6において示されたように、測定系に生じていた血清成分による非特異結合シグナルは血清糖タンパク質上のマンノースを切断することで抑制することが可能であり、AFP上のフコース糖鎖構造を特異的に検出する感度が向上することが確認できた。
 また、実施例5と実施例6を比較した結果、酵素による処理は血清タンパク質が大量に含まれている溶液中で作用させるよりも、ある程度対象を絞った抗体固定化基板上にて処理が行われた方が、効果が高いことが確認できた。
 上記実施例では、SPFS測定装置において、各種溶液を循環送液する態様を例として説明したが、必ずしも循環させる必要はなく、一方向に送液し続ける態様や、両方向に往復送液する態様、あるいは、所定量の溶液を送液した後、所定時間滞留させる態様など、本発明の目的を逸脱しない範囲で種々の変更が可能である。
10   定量測定装置
12   誘電体部材
 12a  上面
 12b  側面
 12c  側面
14   金属膜
 14a  上面
16   センサチップ
18   センサチップ装填部
20   光源
22   入射光
24   金属膜反射光
26   受光手段
28   SPR測定部
30   蛍光
32   光検出手段
34   SPFS測定部
36   微細流路
38   センサ部
40   定量演算手段
44   抗原に結合する分子(リガンド)
46   検出対象抗原(アナライト)
 46a  特定の糖鎖を有する抗原
 46b  特定の糖鎖を除く、かつ、レクチンが結合しない糖鎖
 46c  特定の糖鎖
 46d  特定の糖鎖を除く、かつ、レクチンが結合可能な糖鎖
48   蛍光標識レクチン(プローブ)
50   血清中の血清非特異吸着糖タンパク質
 50a  糖鎖を有するタンパク質
51   末端糖鎖を酵素で切断された血清非特異吸着糖タンパク質
52   血清中の非特異吸着糖脂質
 52a  糖鎖を有する脂質
53   末端糖鎖を酵素で切断された非特異吸着糖脂質
60   特定の糖鎖を含む複数種の糖鎖と結合するレクチン
61   標識体
70   糖加水分解酵素
80   支持体
81   反応系

Claims (15)

  1.  特定の糖鎖を含む複数種の糖鎖と結合するレクチンを用いて、検体中の前記特定の糖鎖を有する抗原を検出する方法であって、
     前記レクチンを検体に接触させる第1工程と、
     前記複数種の糖鎖のうち前記特定の糖鎖を除く、かつ、前記レクチンが結合可能な、少なくとも1種の糖鎖を切断可能な糖加水分解酵素を、検体に接触させる第2工程と、
     前記第1工程および第2工程の後に、前記レクチンと結合した前記抗原を検出する第4工程と
    を有する抗原の検出方法。
  2.  前記第4工程の前に、さらに、前記抗原と結合する分子が固定化された支持体に検体を接触させる第3工程を有する、請求項1に記載の抗原の検出方法。
  3.  前記第3工程を、前記第1工程および前記第2工程の前に行う、請求項2に記載の抗原の検出方法。
  4.  前記第1工程および前記第2工程を、前記第3工程の前に行う、請求項2に記載の抗原の検出方法。
  5.  前記第1工程と前記第2工程を同時に行う、請求項1~4のいずれか一項に記載の抗原の検出方法。
  6.  前記第1工程を、前記第2工程の前に行う、請求項1~4のいずれか一項に記載の抗原の検出方法。
  7.  前記第2工程を、前記第1工程の前に行う、請求項1~4のいずれか一項に記載の抗原の検出方法。
  8.  前記第3工程を、前記第1工程の後かつ前記第2工程の前に行う、請求項2に記載の抗原の検出方法。
  9.  前記第3工程を、前記第2工程の後かつ前記第1工程の前に行う、請求項2に記載の抗原の検出方法。
  10.  前記抗原が前立腺特異抗原(prostate specific antigen, PSA)であり、前記レクチンがノダフジレクチン(WFA)であり、前記糖加水分解酵素がガラクトシダーゼである、請求項1~9のいずれか一項に記載の抗原の検出方法。
  11.  前記抗原が前立腺特異抗原(prostate specific antigen, PSA)であり、前記レクチンがダイズレクチン(SBA)であり、前記糖加水分解酵素がガラクトシダーゼである、請求項1~9のいずれか一項に記載の抗原の検出方法。
  12.  前記抗原が前立腺特異抗原(prostate specific antigen, PSA)であり、前記レクチンがキカラスウリレクチン(TJA-II)であり、前記糖加水分解酵素がフコシダーゼである、請求項1~9のいずれか一項に記載の抗原の検出方法。
  13.  前記抗原がα-フェトプロテイン(AFP)であり、前記レクチンがレンズマメレクチン(LCA)であり、前記糖加水分解酵素がマンノシダーゼである、請求項1~9のいずれか一項に記載の抗原の検出方法。
  14.  前記抗原が癌胎児性抗原(CEA)であり、前記レクチンがキカラスウリレクチン(TJA-I)であり、前記糖加水分解酵素がガラクトシダーゼである、請求項1~9のいずれか一項に記載の抗原の検出方法。
  15.  特定の糖鎖を含む複数種の糖鎖と結合するレクチンを含む試薬と、
     前記複数種の糖鎖のうち前記特定の糖鎖を除く、かつ、前記レクチンが結合可能な、少なくとも1種の糖鎖を切断可能な糖加水分解酵素を含む試薬と、
     前記特定の糖鎖を有する抗原と結合する分子を含む試薬と
    を含む特定の糖鎖を有する抗原の検出用キット。
PCT/JP2013/061203 2012-04-27 2013-04-15 酵素処理工程を含むレクチンを用いた抗原検出方法 WO2013161614A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13780782.2A EP2843412B1 (en) 2012-04-27 2013-04-15 Antigen detection method which uses lectin and comprises enzyme treatment step
US14/396,646 US10527615B2 (en) 2012-04-27 2013-04-15 Antigen detection method which uses lectin and comprises enzyme treatment step
JP2013537964A JP5413544B1 (ja) 2012-04-27 2013-04-15 酵素処理工程を含むレクチンを用いた抗原検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-102947 2012-04-27
JP2012102947 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161614A1 true WO2013161614A1 (ja) 2013-10-31

Family

ID=49482938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061203 WO2013161614A1 (ja) 2012-04-27 2013-04-15 酵素処理工程を含むレクチンを用いた抗原検出方法

Country Status (4)

Country Link
US (1) US10527615B2 (ja)
EP (1) EP2843412B1 (ja)
JP (1) JP5413544B1 (ja)
WO (1) WO2013161614A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101328A1 (ja) * 2016-11-29 2018-06-07 コニカミノルタ株式会社 診療補助情報の取得方法
WO2018101327A1 (ja) * 2016-11-29 2018-06-07 コニカミノルタ株式会社 検体中の特定のpsaの含有量に基づく、前立腺癌のグリーソンスコアの推定方法、病理病期分類の推定方法、および補助情報の取得方法
JPWO2017056844A1 (ja) * 2015-09-28 2018-07-12 コニカミノルタ株式会社 前立腺癌の病理組織診断結果(グリーソンスコア)の推定方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161614A1 (ja) 2012-04-27 2013-10-31 コニカミノルタ株式会社 酵素処理工程を含むレクチンを用いた抗原検出方法
JP6323463B2 (ja) 2013-12-27 2018-05-16 コニカミノルタ株式会社 診断用情報の分析方法およびそのためのキット
EP3088896B1 (en) 2013-12-27 2019-11-06 Konica Minolta, Inc. Method for analyzing information for diagnosis and kit therefor
WO2015194350A1 (ja) * 2014-06-20 2015-12-23 コニカミノルタ株式会社 標識化レクチンを用いるサンドイッチ型アッセイおよびそのためのキット
CN104914248B (zh) * 2015-07-08 2016-09-14 河南省农业科学院 快速检测大豆凝集素的胶体金免疫层析试纸及制备方法
WO2019189870A1 (ja) * 2018-03-30 2019-10-03 積水メディカル株式会社 抗原の処理方法。
CN110760492A (zh) * 2018-07-25 2020-02-07 复旦大学 一种岩藻糖苷酶及其在制备孟买型红细胞中的应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292062A (ja) 1985-06-06 1986-12-22 Hidematsu Hirai α−フェトプロテインの分画検出試薬キットおよび分画検出方法
JPH07191027A (ja) * 1993-11-16 1995-07-28 Wako Pure Chem Ind Ltd 糖蛋白質の分別測定法
JP3562912B2 (ja) 1996-09-04 2004-09-08 富士写真フイルム株式会社 表面プラズモンセンサー
JP2008102117A (ja) 2006-09-21 2008-05-01 Fujifilm Corp 表面プラズモン増強蛍光センサおよび蛍光検出方法
JP2009053195A (ja) 2007-08-28 2009-03-12 Ortho Clinical Diagnostics Inc イムノアッセイにおける非特異結合を低減するためのグリコサミノグリカンの使用
JP2010060293A (ja) 2008-09-01 2010-03-18 Fujirebio Inc 免疫測定法
JP2010127827A (ja) 2008-11-28 2010-06-10 Abbott Japan Co Ltd 非特異的相互作用抑制剤及びその診断測定系への応用
JP2010145272A (ja) 2008-12-19 2010-07-01 Konica Minolta Holdings Inc プラズモン励起センサを用いたアッセイ法
WO2010090264A1 (ja) 2009-02-04 2010-08-12 国立大学法人東京工業大学 Psaの分析方法、及び前記分析方法を用いた前立腺癌と前立腺肥大症との鑑別方法
JP2011080935A (ja) 2009-10-09 2011-04-21 Konica Minolta Holdings Inc 測定方法及び表面プラズモン増強蛍光測定装置
JP2012255736A (ja) * 2011-06-10 2012-12-27 J-Oil Mills Inc 糖タンパク質の検出方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399464A3 (en) 1989-05-24 1992-03-25 Eiji Ishikawa Assay method for a substance with a specific sugar chain
JPH04130274A (ja) 1990-09-20 1992-05-01 Kyoto Ikagaku Kenkyusho:Kk 糖蛋白の分析,検出方法
EP0653640B1 (en) 1993-11-16 2000-01-19 Wako Pure Chemical Industries Ltd Process for separating and measuring glycoprotein
AT403961B (de) 1995-03-17 1998-07-27 Avl Verbrennungskraft Messtech Optochemisches messsystem mit einem fluoreszenzsensor
JP2001255325A (ja) 2000-03-07 2001-09-21 Internatl Reagents Corp 免疫学的測定法及び試薬
CN1455680A (zh) 2000-09-11 2003-11-12 达纳-法伯癌症协会有限公司 Muc1胞外域和癌症治疗组合物及方法
AU2003299730B2 (en) 2002-12-20 2009-04-02 Momenta Pharmaceuticals, Inc. Glycan markers for diagnosing and monitoring disease
JP4374447B2 (ja) 2003-12-25 2009-12-02 独立行政法人産業技術総合研究所 タンパク質と糖鎖との相互作用を分析する方法
EP1563851A1 (en) 2004-02-17 2005-08-17 Yissum Research Development Company of the Hebrew University of Jerusalem Antibody linked cationic emulsions as drug delivery system
US20080293147A1 (en) * 2004-08-27 2008-11-27 Masayuki Machida Method of Detecting Structural Change in Target Sugar Chain
JP2006112834A (ja) 2004-10-12 2006-04-27 Abbott Japan Co Ltd 安定性の向上した還元試薬を用いた免疫学的測定法
EP1808442B1 (en) 2006-01-13 2011-05-11 Institut Pasteur Enzymatic large-scale synthesis of mucin glyconjugates, and immunogenic applications thereof
GB2437727B (en) 2006-05-04 2011-04-20 Univ Open Aptamers directed to MUC1
IL182956A0 (en) * 2007-05-03 2008-01-20 Yeda Res & Dev Glycan modified soluble receptors and binding proteins and their use
EP2037274A1 (de) * 2007-09-11 2009-03-18 GALAB Technologies GmbH Lektinbasierter Glykan-Assay
JP2011529184A (ja) * 2008-07-25 2011-12-01 ザ・ジョンズ・ホプキンス・ユニバーシティ Psa糖鎖付加パターンを用いる前立腺癌の検出
KR101805927B1 (ko) 2008-12-25 2017-12-06 유니바사루 바이오 리사치 가부시키가이샤 검체의 전처리 방법, 및 생체 관련 물질의 측정 방법
CN104634974B (zh) 2009-03-05 2017-08-08 独立行政法人产业技术综合研究所 肝内胆管癌的检出、辨别方法
JPWO2010123073A1 (ja) 2009-04-24 2012-10-25 コニカミノルタホールディングス株式会社 刺激応答性ポリマーを有するプラズモン励起センサを用いたアッセイ法
JP5652393B2 (ja) 2009-05-22 2015-01-14 コニカミノルタ株式会社 Spfs−lpfs系による測定方法に供するプラズモン励起センサおよびアッセイ法
CN104374919B (zh) 2009-07-14 2017-01-18 独立行政法人产业技术综合研究所 糖蛋白的测定方法、试剂及糖链标记物
US9285368B2 (en) 2009-10-30 2016-03-15 Tokyo Institute Of Technology Method for analyzing PSA, and a method for distinguishing prostate cancer from prostatic hypertrophy using that method for analyzing PSA
JP5443156B2 (ja) 2009-12-28 2014-03-19 公益財団法人野口研究所 前立腺癌を判定する方法
AU2011237669B2 (en) 2010-04-06 2016-09-08 Caris Life Sciences Switzerland Holdings Gmbh Circulating biomarkers for disease
JP5916017B2 (ja) 2010-04-28 2016-05-11 塩野義製薬株式会社 新規なmuc1抗体
EP2400304A1 (en) * 2010-06-22 2011-12-28 Centro de Investigación Cooperativa En Biomateriales ( CIC biomaGUNE) Method for the characterization of intermolecular interactions
EP2722670A4 (en) 2011-06-16 2015-01-14 Lsip Llc METHOD OF ANALYZING MUCIN 1 BY USING A PROBE CAPABLE OF BINDING TO A 3'-SULFONE CORE CHAIN 1, AND METHOD OF DETECTION OR MONITORING BREAST CANCER
EP2738556B1 (en) * 2011-07-28 2019-11-06 Konica Minolta, Inc. Method for measuring amount of analyte and device for spfs
JP5726038B2 (ja) 2011-09-30 2015-05-27 コニカミノルタ株式会社 表面プラズモン励起増強蛍光分光法を用いた前立腺特異抗原の定量方法
ITPD20110323A1 (it) 2011-10-12 2013-04-13 Xeptagen S P A Metodo per diagnosticare la presenza di cancro alla prostata
US8658166B2 (en) 2011-11-08 2014-02-25 Caldera Health Limited Methods and materials for the diagnosis of prostate cancers
WO2013161614A1 (ja) 2012-04-27 2013-10-31 コニカミノルタ株式会社 酵素処理工程を含むレクチンを用いた抗原検出方法
JP5991032B2 (ja) 2012-06-07 2016-09-14 コニカミノルタ株式会社 レクチンを用いたアナライトの検出方法
JP5979683B2 (ja) 2012-08-10 2016-08-24 国立研究開発法人産業技術総合研究所 糖鎖アイソフォーム検出方法及び糖鎖アイソフォーム検出装置
JPWO2014087802A1 (ja) 2012-12-05 2017-01-05 コニカミノルタ株式会社 表面プラズモン励起増強蛍光分光法(spfs)を用いた免疫測定法における夾雑物由来の非特異的シグナルの抑制方法
US9874558B2 (en) 2012-12-28 2018-01-23 Konica Minolt, Inc. Immunoassay method less affected by impurities
JP6323463B2 (ja) 2013-12-27 2018-05-16 コニカミノルタ株式会社 診断用情報の分析方法およびそのためのキット
WO2015194350A1 (ja) * 2014-06-20 2015-12-23 コニカミノルタ株式会社 標識化レクチンを用いるサンドイッチ型アッセイおよびそのためのキット

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292062A (ja) 1985-06-06 1986-12-22 Hidematsu Hirai α−フェトプロテインの分画検出試薬キットおよび分画検出方法
JPH07191027A (ja) * 1993-11-16 1995-07-28 Wako Pure Chem Ind Ltd 糖蛋白質の分別測定法
JP3562912B2 (ja) 1996-09-04 2004-09-08 富士写真フイルム株式会社 表面プラズモンセンサー
JP2008102117A (ja) 2006-09-21 2008-05-01 Fujifilm Corp 表面プラズモン増強蛍光センサおよび蛍光検出方法
JP2009053195A (ja) 2007-08-28 2009-03-12 Ortho Clinical Diagnostics Inc イムノアッセイにおける非特異結合を低減するためのグリコサミノグリカンの使用
JP2010060293A (ja) 2008-09-01 2010-03-18 Fujirebio Inc 免疫測定法
JP2010127827A (ja) 2008-11-28 2010-06-10 Abbott Japan Co Ltd 非特異的相互作用抑制剤及びその診断測定系への応用
JP2010145272A (ja) 2008-12-19 2010-07-01 Konica Minolta Holdings Inc プラズモン励起センサを用いたアッセイ法
WO2010090264A1 (ja) 2009-02-04 2010-08-12 国立大学法人東京工業大学 Psaの分析方法、及び前記分析方法を用いた前立腺癌と前立腺肥大症との鑑別方法
JP2011080935A (ja) 2009-10-09 2011-04-21 Konica Minolta Holdings Inc 測定方法及び表面プラズモン増強蛍光測定装置
JP2012255736A (ja) * 2011-06-10 2012-12-27 J-Oil Mills Inc 糖タンパク質の検出方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
K. YAMASHITA ET AL.: "Carbohydrate Structures of Nonspecific Cross-reacting Antigen-2, a Glycoprotein Purified from Meconium as an Antigen Cross-reacting with Anticarcinoembryonic Antigen Antibody", BIOL. CHEM., vol. 264, 1989, pages 17873, XP000985428
K. YAMASHITA ET AL.: "Structural Studies of the Carbohydrate Moieties of Carcinoembryonic Antigens", CANCER RES., vol. 47, 1987, pages 3451
K. YAMASHITA ET AL.: "Sugar Chains of Human Cord Serum a-Fetoprotein: Characteristics of N-linked Sugar Chains of Glycoproteins Produced in Human Liver and Hepatocellular Carcinomas", CANCER RES., vol. 53, 1993, pages 1
See also references of EP2843412A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017056844A1 (ja) * 2015-09-28 2018-07-12 コニカミノルタ株式会社 前立腺癌の病理組織診断結果(グリーソンスコア)の推定方法
US20180348223A1 (en) * 2015-09-28 2018-12-06 Konica Minolta, Inc. Method for estimating pathological tissue diagnosis result (gleason score) of prostate cancer
US11105807B2 (en) * 2015-09-28 2021-08-31 Konica Minolta, Inc. Method for estimating pathological tissue diagnosis result (Gleason score) of prostate cancer
WO2018101328A1 (ja) * 2016-11-29 2018-06-07 コニカミノルタ株式会社 診療補助情報の取得方法
WO2018101327A1 (ja) * 2016-11-29 2018-06-07 コニカミノルタ株式会社 検体中の特定のpsaの含有量に基づく、前立腺癌のグリーソンスコアの推定方法、病理病期分類の推定方法、および補助情報の取得方法
JPWO2018101327A1 (ja) * 2016-11-29 2019-10-24 コニカミノルタ株式会社 検体中の特定のpsaの含有量に基づく、前立腺癌のグリーソンスコアの推定方法、病理病期分類の推定方法、および補助情報の取得方法
JPWO2018101328A1 (ja) * 2016-11-29 2019-10-24 コニカミノルタ株式会社 診療補助情報の取得方法
US11137403B2 (en) 2016-11-29 2021-10-05 Konica Minolta, Inc. Method for estimating Gleason score of prostate cancer, method for estimating pathological stage, and method for acquiring supplementary information, all on the basis of specific PSA content in specimen
JP7075596B2 (ja) 2016-11-29 2022-05-26 大塚製薬株式会社 検体中の特定のpsaの含有量に基づく、前立腺癌のグリーソンスコアの推定方法、病理病期分類の推定方法、および補助情報の取得方法

Also Published As

Publication number Publication date
US10527615B2 (en) 2020-01-07
EP2843412A4 (en) 2015-09-30
US20150140571A1 (en) 2015-05-21
JP5413544B1 (ja) 2014-02-12
EP2843412A1 (en) 2015-03-04
EP2843412B1 (en) 2018-01-03
JPWO2013161614A1 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5413544B1 (ja) 酵素処理工程を含むレクチンを用いた抗原検出方法
US10697959B2 (en) Sandwich assay using labeled lectin and kit therefor
JP6260541B2 (ja) 夾雑物の影響を低減する免疫測定法
JP6809546B2 (ja) 表面プラズモン励起増強蛍光分光法(spfs)を用いた免疫測定法における夾雑物由来の非特異的シグナルの抑制方法
EP2738556B1 (en) Method for measuring amount of analyte and device for spfs
JP5991032B2 (ja) レクチンを用いたアナライトの検出方法
JP2013076666A (ja) 表面プラズモン励起増強蛍光分光法を用いた前立腺特異抗原の定量方法
JP6323463B2 (ja) 診断用情報の分析方法およびそのためのキット
JP6414078B2 (ja) 診断用情報の分析方法およびそのためのキット
JP2013145139A (ja) Spfs(表面プラズモン励起増強蛍光分光法)を用いたミオグロビンの免疫学的測定法
JP2012032282A (ja) プラズモン励起センサチップおよびこれを用いたプラズモン励起センサ、並びにアナライトの検出方法
EP3358352B1 (en) Method for estimating pathological tissue diagnosis result (gleason score) of prostate cancer
EP2607888A1 (en) Spfs sensor equipped with non-specific adsorption type purification mechanism
JP7539369B2 (ja) 病態情報生成方法、病態情報生成システム、he4糖鎖分析キット及びhe4
JP5565125B2 (ja) Spfs(表面プラズモン励起増強蛍光分光法)またはそれを利用した測定方法ならびにそれらの測定方法用の表面プラズモン共鳴センサ
US20230021481A1 (en) Standard substance for psa quantification, preparation method therefor, standard solution for psa quantification, and psa quantification method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013537964

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14396646

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013780782

Country of ref document: EP