WO2013161507A1 - 2層フレキシブル配線用基板及びフレキシブル配線板並びにそれらの製造方法 - Google Patents

2層フレキシブル配線用基板及びフレキシブル配線板並びにそれらの製造方法 Download PDF

Info

Publication number
WO2013161507A1
WO2013161507A1 PCT/JP2013/059363 JP2013059363W WO2013161507A1 WO 2013161507 A1 WO2013161507 A1 WO 2013161507A1 JP 2013059363 W JP2013059363 W JP 2013059363W WO 2013161507 A1 WO2013161507 A1 WO 2013161507A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper
flexible wiring
wiring board
electroplating
Prior art date
Application number
PCT/JP2013/059363
Other languages
English (en)
French (fr)
Inventor
宏 竹之内
雅司 野口
政士 鴻上
宏樹 秦
富雄 島村
芳英 西山
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2014512436A priority Critical patent/JP6083433B2/ja
Priority to KR1020147032650A priority patent/KR101669745B1/ko
Priority to CN201380021656.5A priority patent/CN104247576B/zh
Priority to TW102114635A priority patent/TWI522019B/zh
Publication of WO2013161507A1 publication Critical patent/WO2013161507A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer, layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path

Definitions

  • the present invention relates to a two-layer flexible wiring board and a flexible wiring board in which a part of a copper layer is deposited by a copper electroplating method to improve folding resistance, a method for manufacturing the two-layer flexible wiring board, and a flexible wiring board It relates to a manufacturing method.
  • a flexible wiring board is widely used for a portion requiring refraction or bending of an electronic device such as a read / write head of a hard disk or a printer head, or a refraction wiring in a liquid crystal display, taking advantage of its flexibility.
  • a method for wiring a flexible wiring board (copper-clad laminated board, also referred to as FCCL: Flexible Copper Clad Lamination) in which a copper layer and a resin layer are laminated using a subtractive method or the like. Is used.
  • This subtractive method is a method of removing unnecessary portions by chemically etching the copper layer of the flexible wiring board. That is, a resist is provided on the surface of the copper layer of the flexible wiring board to be left as the conductor wiring, and unnecessary portions of the copper layer are selectively removed through chemical etching treatment and water washing with an etching solution corresponding to copper. Thus, the conductor wiring is formed.
  • the flexible wiring board can be classified into a three-layer FCCL board (hereinafter referred to as a three-layer FCCL) and a two-layer FCCL board (referred to as a two-layer FCCL).
  • the three-layer FCCL has a structure (copper foil / adhesive layer / resin film) in which an electrolytic copper foil or a rolled copper foil is bonded to a base (insulating layer) resin film.
  • the two-layer FCCL has a structure (copper layer or copper foil / resin film) in which a copper layer or copper foil and a resin film substrate are laminated.
  • FCCL commonly known as a metalizing substrate
  • FCCL commonly referred to as a cast substrate
  • FCCL commonly referred to as a laminate substrate
  • a resin film is laminated on a copper foil.
  • FCCL which is formed by sequentially plating the base metal layer and the copper layer on the surface of the metalizing substrate, ie, the resin film, can reduce the thickness of the copper layer and has high smoothness at the interface between the polyimide film and the copper layer.
  • the thickness of the copper layer of the metalizing board can be freely controlled by dry plating and electroplating, whereas the thickness of the cast board, laminate board or three-layer FCCL is limited by the copper foil used. Will be.
  • MIT refraction resistance test (Folding Endurance Test) standardized by JIS C-5016-1994 or ASTM D2176 is industrially used. In this test, evaluation is performed based on the number of refractions until the circuit pattern formed on the test piece breaks, and the greater the number of refractions, the better the folding resistance.
  • the substrate for two-layer flexible wiring targeted by the present invention is a plating substrate in which a metal layer composed of a seed layer and a copper plating layer formed on at least one surface of a resin film base material without an adhesive is sequentially formed.
  • a metal layer composed of a seed layer and a copper plating layer formed on at least one surface of a resin film base material without an adhesive is sequentially formed.
  • the present inventors diligently studied the folding resistance of a copper layer formed on a polyimide resin layer by a plating method, and as a result, the change in crystal orientation before and after the folding resistance was tested. The influence on the results was confirmed, and the present invention was achieved.
  • a first invention of the present invention is a two-layer flexible wiring board having a laminated structure in which a base metal layer made of a nickel alloy is provided on the surface of a polyimide film without an adhesive, and a copper layer is provided on the surface of the base metal layer.
  • the difference d [(200) / (111) in the crystal orientation ratio [(200) / (111)] of the copper layer obtained before and after the folding resistance test specified in JIS C-5016-1994 ] Is 0.03 or more.
  • the thickness of the copper layer is 5 ⁇ m to 12 ⁇ m
  • the crystal orientation index in the (111) plane of the copper layer is 1.2 or more
  • the surface roughness is 0.2 ⁇ m or less in terms of arithmetic average roughness Ra.
  • the copper layer is composed of a copper thin film layer formed on the surface of the base metal layer and a copper electroplating layer formed on the surface of the copper thin film layer.
  • the copper electroplating layer is formed by copper electroplating with a periodic reverse current that periodically performs a short-time potential reversal within a thickness range of 10% or more of the film thickness from the surface in the direction of the polyimide film. It is characterized by being.
  • a flexible wiring board in which a base metal layer made of a nickel alloy is provided on the surface of a polyimide film without using an adhesive, and a wiring having a laminated structure including a copper layer on the surface of the base metal layer.
  • the crystal orientation degree index in the (111) plane of the copper layer is 1.2 or more
  • the surface roughness is 0.2 ⁇ m or less in terms of arithmetic average roughness Ra.
  • the copper electroplating layer is formed by copper electroplating with a periodic reverse current that periodically reverses the potential within a thickness range of 10% or more of the thickness of the copper electroplating layer from the surface to the polyimide film. It is characterized by being.
  • 3rd invention of this invention is a manufacturing method of the board
  • 4th invention of this invention is a manufacturing method of the flexible wiring board of 2nd invention, Comprising: The base metal layer which consists of a nickel alloy formed into a film by the dry-plating method without interposing an adhesive agent on the surface of a polyimide film And a copper thin film layer and a copper formed by forming a copper thin film layer by dry plating on the surface of the base metal layer and forming a copper electroplated layer by electroplating on the surface of the copper thin film layer.
  • a multilayer structure composed of a base metal layer and a copper layer of a two-layer flexible wiring board having a multilayer structure with a copper layer composed of an electroplating layer is formed on the wiring by a subtractive method, and the copper electroplating layer Periodic Rev periodically reverses the potential for a short time in the thickness range of 10% or more of the thickness of the copper electroplating layer from the surface of the copper electroplating layer to the polyimide film direction. Characterized in that it is intended to be formed by copper electroplating method according rse current.
  • a metal layer and an alloy layer such as Ni, Cr, Cu, etc. are formed on the polyimide film surface by vapor deposition or sputtering as in the present invention, and then electroplating or electroless plating.
  • the difference in crystal orientation ratio [(200) / (111)] obtained before and after the MIT bending resistance test (JIS C-5016-1994) is 0.03 or more.
  • the two-layer flexible wiring board of the present invention has a laminated structure in which a base metal layer and a copper layer are sequentially laminated on at least one surface of a polyimide film without using an adhesive, and the copper layer includes a copper thin film layer and a copper thin film layer. It is comprised by the copper electroplating layer.
  • FIG. 1 is a schematic view showing a cross section of a substrate 6 for a two-layer flexible wiring manufactured by a metalining method.
  • a polyimide film is used for the resin film substrate 1, and the base metal layer 2, the copper thin film layer 3, and the copper electroplating layer 4 are sequentially formed and laminated on at least one surface of the polyimide film from the polyimide film side.
  • the copper thin film layer 3 and the copper electroplating layer 4 constitute a copper layer 5.
  • the resin film substrate to be used in addition to the polyimide film, a polyamide film, a polyester film, a polytetrafluoroethylene film, a polyphenylene sulfide film, a polyethylene naphthalate film, a liquid crystal polymer film, or the like can be used.
  • a polyimide film is preferable from the viewpoint of mechanical strength, heat resistance, and electrical insulation.
  • the above resin film substrate having a film thickness of 12.5 to 75 ⁇ m can be preferably used.
  • the base metal layer 2 ensures reliability such as adhesion and heat resistance between the resin film substrate and a metal layer such as copper. Therefore, the material of the base metal layer is any one selected from nickel, chromium, or an alloy thereof, but a nickel / chromium alloy is suitable in consideration of adhesion strength and ease of etching during wiring production. ing.
  • the composition of the nickel-chromium alloy is desirably 15% by weight or more and 22% by weight or less of chromium, and improvement in corrosion resistance and migration resistance can be expected.
  • nickel / chromium alloy of 20% by weight chromium is distributed as a nichrome alloy and is easily available as a sputtering target for the magnetron sputtering method.
  • chromium, vanadium, titanium, molybdenum, cobalt, or the like may be added to the alloy containing nickel.
  • a plurality of nickel-chromium alloy thin films having different chromium concentrations may be laminated to form a base metal layer having a nickel-chromium alloy concentration gradient.
  • the film thickness of the base metal layer is desirably 3 nm to 50 nm.
  • the film thickness of the underlying metal layer is less than 3 nm, the adhesion between the polyimide film and the copper layer cannot be maintained, and the corrosion resistance and migration resistance are poor.
  • the thickness of the base metal layer exceeds 50 nm, it may be difficult to sufficiently remove the base metal layer when wiring processing is performed by the subtractive method. If the removal of the underlying metal layer is insufficient, there is a concern about problems such as migration between wirings.
  • the copper thin film layer 3 is mainly composed of copper, and the film thickness is desirably 10 nm to 1 ⁇ m. If the film thickness of the copper thin film layer is less than 10 nm, the conductivity when the copper electroplating layer is formed by the electroplating method cannot be ensured, leading to an appearance defect during electroplating. Even if the film thickness of the copper thin film layer exceeds 1 ⁇ m, the quality problem of the two-layer flexible wiring board does not occur, but the productivity is inferior.
  • the base metal layer and the copper thin film layer are preferably formed by a dry plating method.
  • the dry plating method include a sputtering method, an ion plating method, a cluster ion beam method, a vacuum deposition method, a CVD method, and the like. From the viewpoint of controlling the composition of the seed layer, the sputtering method is preferable.
  • the film can be formed by a known sputtering apparatus.
  • To form a film on a long resin film substrate use a known roll-to-roll sputtering apparatus. Can do. If this roll-to-roll sputtering apparatus is used, a base metal layer and a copper thin film layer can be continuously formed on the surface of a long polyimide film.
  • FIG. 2 is an example of a roll-to-roll sputtering apparatus.
  • the roll-to-roll sputtering apparatus 10 includes a rectangular parallelepiped casing 12 that accommodates most of its components.
  • the casing 12 may be cylindrical, and the shape is not limited as long as it can maintain a reduced pressure in the range of 10 ⁇ 4 Pa to 1 Pa.
  • a polyimide film F which is a long resin film substrate, is supplied with an unwinding roll 13
  • a can roll 14 sputtering cathodes 15a, 15b, 15c, 15d, a front feed roll 16a, and a rear feed roll.
  • 16b a tension roll 17a, a tension roll 17b, and a winding roll 18.
  • the unwinding roll 13, the can roll 14, the front feed roll 16a, and the take-up roll 18 are provided with power by a servo motor.
  • the unwinding roll 13 and the winding roll 18 are configured so that the tension balance of the polyimide film F is maintained by torque control using a powder clutch or the like.
  • the tension rolls 17a and 17b are finished with hard chrome plating and provided with a tension sensor.
  • the sputtering cathodes 15a to 15d are of a magnetron cathode type and are arranged to face the can roll 14.
  • the width direction of the polyimide film F of the sputtering cathodes 15a to 15d may be wider than the width of the polyimide film F.
  • the polyimide film F is transported through a roll-to-roll sputtering apparatus 10 which is a roll-to-roll vacuum film forming apparatus, and is formed by sputtering cathodes 15a to 15d facing the can roll 14, with a copper thin film layer attached. Processed into a polyimide film F2.
  • the surface of the can roll 14 is finished with hard chrome plating, and a coolant or a heating medium supplied from the outside of the housing 12 circulates inside the can roll 14 to be adjusted to a substantially constant temperature.
  • the target having the composition of the base metal layer is mounted on the sputtering cathode 15a, and the copper target is mounted on the sputtering cathodes 15b to 15d.
  • the inside of the apparatus in which the polyimide film is set on the unwinding roll 13 is evacuated, and then the inside of the apparatus is held at about 1.3 Pa by introducing a sputtering gas such as argon. Further, after forming the base metal layer by sputtering, the copper thin film layer may be formed by vapor deposition.
  • the copper electroplating layer is formed by electroplating.
  • the thickness of the copper electroplating layer is desirably 1 ⁇ m to 20 ⁇ m.
  • the electroplating method to be used is to perform electroplating using an insoluble anode in a copper sulfate plating bath, and the composition of the copper plating bath to be used is a high-throw sulfuric acid for a commonly used printed wiring board.
  • a copper plating bath may be used.
  • FIG. 3 is an example of a roll-to-roll continuous electroplating apparatus (hereinafter referred to as a plating apparatus 20) that can be used in the production of the two-layer flexible wiring board according to the present invention.
  • a polyimide film F2 with a copper thin film layer obtained by forming a base metal layer and a copper thin film layer is unwound from the unwinding roll 22 and continuously immersed in the plating solution 28 in the electroplating tank 21. It is conveyed to.
  • 28a indicates the surface of the plating solution.
  • the polyimide film F2 with a copper thin film layer is formed by depositing a copper layer on the surface of the metal thin film by electroplating while being immersed in the plating solution 28, and after forming a copper layer with a predetermined thickness, the metallized resin
  • the film is wound around a winding roll 29 as a two-layer flexible wiring substrate S which is a film substrate.
  • the transport speed of the polyimide film F2 with a copper thin film layer is preferably in the range of several meters to several tens of meters / minute.
  • the polyimide film F2 with a copper thin film layer will be unwound from the unwinding roll 22, and will be immersed in the plating solution 28 in the electroplating tank 21 through the electric power feeding roll 26a.
  • the copper thin film layer-attached polyimide film F2 that has entered the electroplating tank 21 is reversed in the conveying direction through the reversing roll 23, and is drawn out of the electroplating tank 21 by the power supply roll 26b.
  • the polyimide film F2 with a copper thin film layer repeats immersion in a plating solution a plurality of times (10 times in FIG. 3), a copper layer is formed on the metal thin film of the polyimide film F2 with a copper thin film layer. It is.
  • a power source (not shown) is connected between the power supply roll 26a and the anode 24a.
  • An electroplating circuit is configured by the power supply roll 26a, the anode 24a, the plating solution, the polyimide film F2 with a copper thin film layer, and the power source.
  • the insoluble anode does not require a special one, and may be a known anode whose surface is coated with a conductive ceramic.
  • a mechanism for supplying copper ions to the plating solution 28 is provided outside the electroplating tank 21.
  • the copper ions are supplied to the plating solution 28 using an aqueous copper oxide solution, an aqueous copper hydroxide solution, an aqueous copper carbonate solution, or the like.
  • an aqueous copper oxide solution an aqueous copper hydroxide solution, an aqueous copper carbonate solution, or the like.
  • a small amount of iron ions is added to the plating solution to dissolve the oxygen-free copper balls and supply the copper ions. Any of the above methods can be used as a method for supplying copper.
  • the current density during plating is increased stepwise from the anode 24a toward the downstream in the transport direction so that the maximum current density is reached at 24t from the anode 24o.
  • discoloration of the copper layer can be prevented by increasing the current density.
  • the current density during plating is 0.1 A / dm 2 to 8 A except for the reverse current of the periodic reverse current described later. / Dm 2 is desirable.
  • the current density is increased, a poor appearance of the copper electroplating layer occurs.
  • the copper electroplating layer is formed using a PR current in a range of 10% or more from the surface of the film thickness.
  • a PR current periodic reverse current
  • the reverse current time ratio is preferably about 1 to 10%.
  • the period in which the reversal current next to the PR current flows is desirably 10 milliseconds or more, and more desirably 20 milliseconds to 300 milliseconds.
  • FIG. 4 schematically shows the time and current density of the PR current.
  • a plating voltage suitably so that the above-mentioned current density is realizable.
  • a PR current is allowed to flow at one or more anodes from the downstream side of the conveyance path.
  • the number of anodes through which the PR current flows is determined by the ratio of the range in which the PR current is formed from the surface of the copper electroplating layer to the polyimide film side. That is, at least the anode 24t causes a PR current to flow, and if necessary, the PR current flows to the anode 24s, the anode 24r, and the anode 24q.
  • the two-layer flexible wiring board according to the present invention if a film of 10% of the film thickness is formed with a PR current from the surface of the copper electroplating layer to the polyimide direction, a fold resistance test (JIS C-5016-1994). Since the difference d [(200) / (111)] of the crystal orientation ratio [(200) / (111)] of the copper layer can be 0.03 or more before and after the execution of the step, as a result, the bending resistance test (MIT Improvement of the test).
  • the reason why copper electroplating using a PR current is desirable is that when the current is reversed, the copper crystal grain size of the copper electroplating layer can be about 200 nm or more, and the grain boundaries can be reduced. This is because the starting point of cracking can be reduced.
  • the deposited copper is affected by the surface of the substrate to be copper-plated, but if 10% or more of the film thickness from the surface of the copper electroplating layer is formed by PR current, the grain boundary Therefore, if 10% or more of the film thickness from the surface of the copper electroplating layer of the two-layer flexible wiring board is a crystal that matches the folding resistance, the effect on the folding resistance of the copper electroplating layer Can be achieved and the object of the present invention can be achieved.
  • a layer formed with a PR current of 10% or more of the film thickness from the surface of the copper layer after polishing is used. If it remains, the effect of the present invention can be exhibited.
  • the copper layer in the flexible wiring board of the present invention is characterized by exhibiting a (111) crystal orientation degree index of copper of 1.2 or more. In the bending test, the crystal becomes slippery.
  • the copper layer of the flexible wiring board of the present invention includes (200), (220), and (311) orientations in addition to the (111) orientation, of which the (111) orientation occupies most of the crystal orientation.
  • the degree index is 1.20 or more.
  • a further feature is that the difference in the crystal orientation ratio [(200) / (111)] before and after the MIT folding resistance test (JIS C-5016-1994) is 0.03 or more. In such a state, it is considered that the crystal slipped due to the MIT bending resistance test and recrystallization occurred.
  • a glossy film is preferable so that unevenness on the surface does not cause a notch.
  • the average crystal grain size is preferably as large as possible, it should be noted that it also affects the etching of the copper layer when the flexible wiring board is processed into a flexible wiring board by the subtractive method.
  • the crystal grain size of the copper layer may not affect, but when etching the grain boundary of the crystal grain of the copper layer, The crystal grain size also affects the shape of the wiring.
  • the average crystal grain size is preferably about 200 nm to 400 nm. If it is 200 nm or less, there are many crystal grain boundaries, and cracks that are the starting points of fracture are likely to occur, and the reason why it is 400 nm or less is to maintain the smoothness of the metal surface.
  • the copper layer of the flexible wiring board of the present invention is obtained by the above-described copper layer deposition method, and the difference in crystal orientation ratio [(200) / (111)] before and after the MIT folding resistance test is 0.03.
  • the copper layer has the characteristics as described above.
  • the crystal orientation of the copper electroplating layer can be determined from the Wilson orientation degree index of X-ray diffraction.
  • the copper crystal of the copper layer obtained by the above method has a dynamic recrystallization effect at room temperature during refraction.
  • the average crystal grain size after the bending resistance test tends to be about 100 nm to 200 nm by recrystallization.
  • it has been considered that a copper electroplated film does not dynamically recrystallize at room temperature.
  • the flexible wiring substrate of the present invention is dynamically recrystallized at room temperature, it is difficult to cut the sample when a refraction test such as the MIT test is performed.
  • the average crystal grain size of the copper layer and dynamic recrystallization at room temperature can be observed with a cross-sectional SIM image.
  • the arithmetic surface roughness Ra is preferably 0.2 ⁇ m or less.
  • the surface roughness Ra exceeds 0.2 ⁇ m, even if the difference in crystal orientation ratio [(200) / (111)] before and after the MIT bending resistance test is 0.03 or more, the effect of improving the bending resistance is small. . Therefore, it is desirable that the difference in the crystal orientation ratio [(200) / (111)] before and after the MIT bending resistance test is 0.03 or more and the arithmetic surface roughness Ra is 0.2 ⁇ m or less.
  • the arithmetic surface roughness Ra of the surface of the copper layer after chemical polishing may be 0.2 ⁇ m or less.
  • Flexible wiring board The flexible wiring board according to the present invention is manufactured by performing wiring processing on the two-layer flexible wiring board according to the present invention by a subtractive method.
  • Etching solution used for etching process to process copper electroplating layer etc. into wiring is not limited to aqueous solution or special chemical solution containing ferric chloride, cupric chloride and copper sulfate with special blending, general A commercially available etching solution containing a ferric chloride aqueous solution having a specific gravity of 1.30 to 1.45 or a cupric chloride aqueous solution having a specific gravity of 1.30 to 1.45 can be used.
  • the surface of the wiring is subjected to tin plating, nickel plating, gold plating, or the like as required, and the surface is covered with a known solder resist or the like. And electronic parts, such as a semiconductor element, are mounted and an electronic device is formed.
  • the polyimide film with a copper thin film layer was produced using a roll-to-roll sputtering apparatus 10.
  • a nickel-20 wt% chromium alloy target for forming a base metal layer is attached to the sputtering cathode 15a, and a copper target is attached to the sputtering cathodes 15b to 15d, respectively.
  • argon gas was introduced to keep the inside of the apparatus at 1.3 Pa to produce a polyimide film with a copper thin film layer.
  • the film thickness of the underlying metal layer (nickel-chromium alloy) was 20 nm, and the film thickness of the copper thin film layer was 200 nm.
  • the obtained polyimide film with a copper thin film layer was subjected to copper electroplating using a plating apparatus 20 to form a copper electroplating layer.
  • the plating solution is a copper sulfate aqueous solution having a pH of 1 or less, and the anodes 24o to 24t are set to have the maximum current density (excluding the reversal current of the PR current) unless otherwise specified.
  • the current density was adjusted to 8.5 ⁇ m.
  • a test pattern of JIS-C-5016-1994 was formed by a subtractive method using ferric chloride in an etching solution, and evaluated according to the same standard.
  • the crystal orientation of the copper electroplating layer before and after the folding resistance test was measured by X-ray diffraction using Wilson's orientation degree index.
  • a PR current was passed through the anode 24t to produce a two-layer flexible wiring board of Example 1.
  • the (111) crystal orientation index of the copper electroplating layer before the MIT fold resistance test is 1.31, and the crystal orientation ratio represented by the X-ray orientation index before and after the MIT fold resistance test [(200) / (111) ] Of 0.04 and arithmetic surface roughness Ra of 0.06 ⁇ m gave a good result of 536 times in the MIT folding resistance test.
  • the crystal orientation of the copper electroplating layer before the MIT bending resistance test is (111) crystal orientation degree index 1.35, and electroplating is performed using PR current from the surface of the copper electroplating layer to a film thickness range of 30%. Therefore, the same procedure as in Example 1 was performed except that a PR current was passed through the anodes 24r to 24t, and a two-layer flexible wiring board of Example 2 was produced.
  • the sample of Example 2 in which the difference in crystal orientation ratio [(200) / (111)] expressed by the X-ray orientation degree index before and after the MIT folding resistance test is 0.09 and the arithmetic surface roughness Ra is 0.18 ⁇ m. A good result of 736 times was obtained in the MIT folding resistance test.
  • the crystal orientation of the copper electroplating layer before the MIT fold resistance test is (111) crystal orientation degree index of 1.42, and electricity is generated using PR current from the surface of the copper electroplating layer to a film thickness range of 40%.
  • a two-layer flexible wiring board of Example 3 was produced in the same manner as in Example 1 except that a PR current was passed through the anodes 24r to 24t for plating.
  • the sample of Example 3 in which the difference in crystal orientation ratio [(200) / (111)] expressed by the X-ray orientation degree index before and after the MIT folding resistance test is 0.10 and the arithmetic surface roughness Ra is 0.20 ⁇ m.
  • a good result of 608 times was obtained in the MIT folding resistance test.
  • Comparative Example 2 The crystal orientation of the copper electroplating layer before the MIT bending resistance test is (111) crystal orientation degree index is 0.85, and electroplating is performed with PR current from the surface of the copper electroplating layer to a film thickness range of 5%. Therefore, a substrate for two-layer flexible wiring of Comparative Example 2 was produced in the same manner as in Example 1 except that a PR current was passed through the anode 24t and the current density of the anode was changed to 50% of Example 1.
  • Example 1 was carried out in the same manner as in Example 1 except that a plating apparatus having a different electroplating tank depth from Example 1 was used and the conveyance speed was adjusted so that the film thickness of the electrolytic copper plating layer was 8.5 ⁇ m.
  • a two-layer flexible wiring board of Example 4 was produced.
  • the crystal orientation of the copper electroplating layer before the MIT fold resistance test has a (111) crystal orientation index of 1.22, and the crystal orientation ratio represented by the X-ray orientation index before and after the MIT fold resistance test [(200) / (111)] difference of 0.04 and arithmetic surface roughness Ra of 0.22 gave a sample of 197 in the MIT fold resistance test.
  • the MIT folding resistance test was improved as compared with Comparative Examples 1, 2, and 3, the results were inferior to Examples 1, 2, and 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

【課題】 耐折れ性に優れた2層フレキシブル配線用基板及びフレキシブル配線板と、それらの製造方法を提供する。 【解決手段】 ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、前記下地金属層の表面に銅層を設けた積層構造の2層フレキシブル配線用基板において、JIS C-5016-1994に規定される耐折れ性試験の実施前後において得られる、銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が、0.03以上であることを特徴とする2層フレキシブル配線用基板。

Description

2層フレキシブル配線用基板及びフレキシブル配線板並びにそれらの製造方法
 本発明は、銅層の一部を銅電気めっき法で析出させ耐折れ性を改良した2層フレキシブル配線用基板及びフレキシブル配線板と、その2層フレキシブル配線用基板の製造方法とフレキシブル配線板の製造方法に関する。
 フレキシブル配線板は、その屈曲性を活かしてハードディスクの読み書きヘッドやプリンターヘッドなど電子機器の屈折ないし屈曲を要する部分や、液晶ディスプレイ内の屈折配線などに広く用いられている。
 かかるフレキシブル配線板の製造には、銅層と樹脂層を積層したフレキシブル配線用基板(銅張積層板、FCCL:Flexible Copper Clad Laminationとも称す。)を、サブトラクティブ法等を用いて配線加工する方法が用いられている。
 このサブトラクティブ法とは、フレキシブル配線用基板の銅層を化学エッチング処理して不要部分を除去する方法である。即ち、フレキシブル配線用基板の銅層のうち導体配線として残したい部分の表面にレジストを設け、銅に対応するエッチング液による化学エッチング処理と水洗を経て、銅層の不要部分を選択的に除去して導体配線を形成するものである。
 ところで、フレキシブル配線用基板(FCCL)は、3層FCCL板(以下、3層FCCLと称す。)と2層FCCL板(2層FCCLと称す。)に分類することができる。
 3層FCCLは、電解銅箔や圧延銅箔をベース(絶縁層)の樹脂フィルムに接着した構造(銅箔/接着剤層/樹脂フィルム)となっている。一方、2層FCCLは、銅層若しくは銅箔と樹脂フィルム基材とが積層された構造(銅層若しくは銅箔/樹脂フィルム)となっている。
 また、上記2層FCCLには大別して3種のものがある。
 即ち、樹脂フィルムの表面に下地金属層と銅層を順次めっきして形成したFCCL(通称メタライジング基板)、銅箔に樹脂フィルムのワニスを塗って絶縁層を形成したFCCL(通称キャスト基板)、及び銅箔に樹脂フィルムをラミネートしたFCCL(通称ラミネート基板)である。
 上記メタライジング基板、即ち樹脂フィルムの表面に下地金属層と銅層を順次めっきして形成したFCCLは、銅層の薄膜化が可能で、且つポリイミドフィルムと銅層界面の平滑性が高いため、キャスト基板やラミネート基板あるいは3層FCCLと比較して、配線のファインパターン化に適している。
 例えば、メタライジング基板の銅層は、乾式めっき法及び電気めっき法により層厚を自由に制御できるのに対し、キャスト基板やラミネート基板あるいは3層FCCLは使用する銅箔によって、その厚みなどは制約されてしまう。
 また、フレキシブル配線板の配線に用いられる銅箔については、例えば、銅箔に熱処理を施す方法(特許文献1参照。)や、圧延加工を行う方法(特許文献2参照。)により、耐折れ性の向上が図られている。
 しかし、これらの方法は、3層FCCLの圧延銅箔や電解銅箔、2層FCCLのうちのキャスト基板とラミネート基板に用いられる銅箔自体の処理に関するものである。
 なお、銅箔の耐折れ性評価は、JIS C-5016-1994等やASTM D2176で規格されるMIT耐屈折度試験(Folding Endurance Test)が工業的に使用されている。
 この試験では、試験片に形成した回路パターンが断線するまでの屈折回数をもって評価し、この屈折回数が大きいほど耐折れ性が良いとされている。
特開平8-283886号公報 特開平6-269807号公報
 本発明が対象とする2層フレキシブル配線用基板は、樹脂フィルム基材の少なくとも片面に接着剤を介せずに形成したシード層と銅めっき層からなる金属層を順次形成しためっき基板であるため、先行技術に開示されるような銅めっき層のみの熱処理や圧延加工を施して耐折性を向上させることは困難であり、めっき基板に於いて耐折れ性に優れためっき基板の製造方法が望まれていた。
 このような状況に鑑み、本発明は、耐折れ性に優れた2層フレキシブル配線用基板及びフレキシブル配線板と、それらの製造方法を提供するものである。
 本発明者らは上記課題を解決するために、めっき法によりポリイミド樹脂層に形成した銅層の耐折れ性について鋭意研究した結果、耐折れ性前後での結晶配向性の変化が耐折れ性試験結果に与える影響を確認し、本発明に至った。
 本発明の第1の発明は、ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、その下地金属層の表面に銅層を設けた積層構造の2層フレキシブル配線用基板において、JIS C-5016-1994に規定される耐折れ性試験の実施前後において得られる、その銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が0.03以上であることを特徴とするものである。
 さらに、その銅層の膜厚が5μm~12μm、銅層の(111)面における結晶配向度指数が1.2以上、その表面粗さが算術平均粗さRaで0.2μm以下であることを特徴とし、その銅層は、下地金属層の表面に成膜された銅薄膜層と、その銅薄膜層の表面に成膜された銅電気めっき層から構成されているものである。
 また、その銅電気めっき層は、その表面からポリイミドフィルム方向に膜厚の10%以上の厚み範囲において、周期的に短時間の電位反転を行うPeriodic Reverse電流による銅電気めっきによって形成されるものであることを特徴とする。
 本発明の第2の発明は、ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、その下地金属層の表面に銅層を備える積層構造の配線が設けられるフレキシブル配線板において、JIS-P-8115に規定される耐折れ性試験の実施前後において得られる、その銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が、0.03以上であることを特徴とするものである。
 さらに、その銅層の(111)面における結晶配向度指数が1.2以上、その表面粗さが算術平均粗さRaで0.2μm以下であることを特徴とし、その銅層は、下地金属層の表面に成膜された銅薄膜層と、その銅薄膜層の表面に成膜された銅電気めっき層から構成されているものである。
 また、その銅電気めっき層は、その表面からポリイミドフィルム方向に銅電気めっき層膜厚の10%以上の厚み範囲において、周期的に短時間の電位反転を行うPeriodic Reverse電流による銅電気めっきによって形成されるものであることを特徴とする。
 本発明の第3の発明は、第1の発明の2層フレキシブル配線用基板の製造方法であって、ポリイミドフィルムの表面に接着剤を介することなく乾式めっき法により成膜されたニッケル合金からなる下地金属層と、その下地金属層の表面に乾式めっき法による銅薄膜層の成膜と、その銅薄膜層の表面に電気めっき法による銅電気めっき層の成膜を行って形成した銅薄膜層と銅電気めっき層からなる銅層との積層構造を有し、その銅電気めっき層は、銅電気めっき層の表面からポリイミドフィルム方向に、銅電気めっき層膜厚の10%以上の厚み範囲において、周期的に短時間の電位反転を行うPeriodic Reverse電流による銅電気めっき法によって形成されるものであることを特徴とする。
 本発明の第4の発明は、第2の発明のフレキシブル配線板の製造方法であって、ポリイミドフィルムの表面に接着剤を介することなく乾式めっき法により成膜されたニッケル合金からなる下地金属層と、その下地金属層の表面に乾式めっき法よる銅薄膜層の成膜と、その銅薄膜層の表面に電気めっき法による銅電気めっき層の成膜を行って形成される銅薄膜層と銅電気めっき層からなる銅層との積層構造を有する2層フレキシブル配線用基板の下地金属層と銅層からなる積層構造を、サブトラクティブ法により配線に形成するもので、さらに、その銅電気めっき層は、銅電気めっき層の表面からポリイミドフィルム方向に銅電気めっき層の膜厚の10%以上の厚み範囲において、周期的に短時間の電位反転を行うPeriodic Reverse電流による銅電気めっき法によって形成されるものであることを特徴とする。
 金属化ポリイミドフィルムを得る方法として、本発明のようにポリイミドフィルム表面にNi、Cr、Cu等の金属層および合金層を、蒸着法もしくはスパッタ法で形成し、その後電気めっき法、無電解めっき法もしくは両者を組み合わせた方法で銅を積層する工程において、MIT耐折れ性試験(JIS C-5016-1994)前後で得られる結晶配向比[(200)/(111)]の差が0.03以上の銅層を、ポリイミドフィルム表面に積層することで、耐折れ性が改良された2層フレキシブル配線用基板が得られる。
メタラインジング法で作製した2層フレキシブル配線用基板の断面模式図である。 2層フレキシブル配線用基板の下地金属層および銅薄膜層を成膜するロール・ツー・ロールスパッタリング装置を示す概要図である。 2層フレキシブル配線用基板の製造における電気めっきを行うロール・ツー・ロール方式の連続めっき装置を示す概要図である。 本発明におけるPR電流の時間と電流密度を模式的に示した図である。
(1)2層フレキシブル配線用基板
 まず、本発明の2層フレキシブル配線用基板について説明する。
 本発明の2層フレキシブル配線用基板は、ポリイミドフィルムの少なくとも片面に接着剤を介さずに下地金属層と銅層が逐次的に積層された積層構造を採り、その銅層は、銅薄膜層と銅電気めっき層により構成されている。
 図1は、メタラインジング法で作製された2層フレキシブル配線用基板6の断面を示した模式図である。
 樹脂フィルム基板1にポリイミドフィルムを用い、そのポリイミドフィルムの少なくとも一方の面には、ポリイミドフィルム側から下地金属層2、銅薄膜層3、銅電気めっき層4の順に成膜、積層されている。銅薄膜層3と銅電気めっき層4から銅層5が構成される。
 使用する樹脂フィルム基板としては、ポリイミドフィルムのほかに、ポリアミドフィルム、ポリエステルフィルム、ポリテトラフルオロエチレンフィルム、ポリフェニレンサルファイドフィルム、ポリエチレンナフタレートフィルム、液晶ポリマーフィルムなどを用いることができる。
 特に、機械的強度や耐熱性や電気絶縁性の観点から、ポリイミドフィルムが好ましい。
 さらに、フィルムの厚みが12.5~75μmの上記樹脂フィルム基板が好ましく使用できる。
 下地金属層2は、樹脂フィルム基板と銅などの金属層との密着性や耐熱性などの信頼性を確保するものである。従って、下地金属層の材質は、ニッケル、クロム又はこれらの合金の中から選ばれる何れか1種とするが、密着強度や配線作製時のエッチングしやすさを考慮すると、ニッケル・クロム合金が適している。
 ニッケル・クロム合金の組成は、クロム15重量%以上から22重量%以下が望ましく、耐食性や耐マイグレーション性の向上が望める。
 このうち20重量%クロムのニッケル・クロム合金は、ニクロム合金として流通し、マグネトロンスパッタリング法のスパッタリングターゲットとして容易に入手可能である。また、ニッケルを含む合金には、クロム、バナジウム、チタン、モリブデン、コバルト等を添加しても良い。
 さらに、クロム濃度の異なる複数のニッケル・クロム合金の薄膜を積層して、ニッケル・クロム合金の濃度勾配を設けた下地金属層を構成しても良い。
 下地金属層の膜厚は、3nm~50nmが望ましい。
 下地金属層の膜厚が3nm未満では、ポリイミドフィルムと銅層の密着性を保てず、耐食性や耐マイグレーション性で劣る。一方、下地金属層の膜厚が50nmを越えると、サブトラクティブ法で配線加工する際に、下地金属層の十分な除去が困難な場合が生じる。下地金属層の除去が不十分な場合は、配線間のマイグレーション等の不具合が懸念される。
 銅薄膜層3は、主に銅で構成され、その膜厚は、10nm~1μmが望ましい。
 銅薄膜層の膜厚が10nm未満では、銅電気めっき層を電気めっき法で成膜する際の導電性が確保できず、電気めっきの際の外観不良に繋がる。銅薄膜層の膜厚が1μmを越えても2層フレキシブル配線用基板の品質上の問題は生じないが、生産性が劣る問題がある。
(2)下地金属層と銅薄膜層の成膜方法
 下地金属層および銅薄膜層は、乾式めっき法で形成することが好ましい。
 乾式めっき法には、スパッタリング法、イオンプレーティング法、クラスターイオンビーム法、真空蒸着法、CVD法等が挙げられるが、シード層の組成の制御等の観点から、スパッタリング法が望ましい。
 樹脂フィルム基材にスパッタリング成膜するには公知のスパッタリング装置で成膜することができ、長尺の樹脂フィルム基材に成膜するには、公知のロール・ツー・ロール方式スパッタリング装置で行うことができる。このロール・ツー・ロールスパッタリング装置を用いれば、長尺のポリイミドフィルムの表面に、下地金属層および銅薄膜層を連続して成膜することができる。
 図2はロール・ツー・ロールスパッタリング装置の一例である。
 ロール・ツー・ロールスパッタリング装置10は、その構成部品のほとんどを収納した直方体状の筐体12を備えている。
 筐体12は円筒状でも良く、その形状は問わないが、10-4Pa~1Paの範囲に減圧された状態を保持できれば良い。
 この筐体12内には、長尺の樹脂フィルム基板であるポリイミドフィルムFを、供給する巻出ロール13、キャンロール14、スパッタリングカソード15a、15b、15c、15d、前フィードロール16a、後フィードロール16b、テンションロール17a、テンションロール17b、巻取ロール18を有する。
 巻出ロール13、キャンロール14、前フィードロール16a、巻取ロール18にはサーボモータによる動力を備える。巻出ロール13、巻取ロール18は、パウダークラッチ等によるトルク制御によってポリイミドフィルムFの張力バランスが保たれるようになっている。
 テンションロール17a、17bは、表面が硬質クロムめっきで仕上げられ張力センサーが備えられている。
 スパッタリングカソード15a~15dは、マグネトロンカソード式でキャンロール14に対向して配置される。スパッタリングカソード15a~15dのポリイミドフィルムFの巾方向の寸法は、ポリイミドフィルムFの巾より広ければよい。
 ポリイミドフィルムFは、ロール・ツー・ロール真空成膜装置であるロール・ツー・ロールスパッタリング装置10内を搬送されて、キャンロール14に対向するスパッタリングカソード15a~15dで成膜され、銅薄膜層付ポリイミドフィルムF2に加工される。
 キャンロール14は、その表面が硬質クロムめっきで仕上げられ、その内部には筐体12の外部から供給される冷媒や温媒が循環し、略一定の温度に調整される。
 ロール・ツー・ロールスパッタリング装置10を用いて下地金属層と銅薄膜層を成膜する場合、下地金属層の組成を有するターゲットをスパッタリングカソード15aに、銅ターゲットをスパッタリングカソード15b~15dにそれぞれ装着し、ポリイミドフィルムを巻出ロール13にセットした装置内を真空排気した後、アルゴン等のスパッタリングガスを導入して装置内を1.3Pa程度に保持する。
 また、下地金属層をスパッタリングで成膜した後に、銅薄膜層を蒸着法で成膜しても良い。
(3)銅電気めっき層とその成膜方法
 銅電気めっき層は、電気めっき法により成膜される。その銅電気めっき層の膜厚は、1μm~20μmが望ましい。
 ここで、使用する電気めっき法は、硫酸銅のめっき浴中にて、不溶性アノードを用いて電気めっきを行うもので、使用する銅めっき浴の組成は、通常用いられるプリント配線板用のハイスロー硫酸銅めっき浴でも良い。
 図3は、本発明に係る2層フレキシブル配線用基板の製造に用いることができるロール・ツー・ロール連続電気めっき装置(以下めっき装置20という)の一例である。
 下地金属層と銅薄膜層を成膜して得られた銅薄膜層付ポリイミドフィルムF2は、巻出ロール22から巻き出され、電気めっき槽21内のめっき液28への浸漬を繰り返しながら連続的に搬送される。なお、28aはめっき液の液面を指している。
 銅薄膜層付ポリイミドフィルムF2は、めっき液28に浸漬されている間に電気めっきにより金属薄膜の表面に銅層が成膜され、所定の膜厚の銅層が形成された後、金属化樹脂フィルム基板である2層フレキシブル配線用基板Sとして、巻取ロール29に巻き取れられる。なお、銅薄膜層付ポリイミドフィルムF2の搬送速度は、数m~数十m/分の範囲が好ましい。
 具体的に説明すると、銅薄膜層付ポリイミドフィルムF2は、巻出ロール22から巻き出され、給電ロール26aを経て、電気めっき槽21内のめっき液28に浸漬される。電気めっき槽21内に入った銅薄膜層付ポリイミドフィルムF2は、反転ロール23を経て搬送方向が反転され、給電ロール26bにより電気めっき槽21外へ引き出される。
 このように、銅薄膜層付ポリイミドフィルムF2が、めっき液への浸漬を複数回(図3では10回)繰り返す間に、銅薄膜層付ポリイミドフィルムF2の金属薄膜上に銅層を形成するものである。
 給電ロール26aとアノード24aの間には電源(図示せず)が接続されている。
 給電ロール26a、アノード24a、めっき液、銅薄膜層付ポリイミドフィルムF2および電源により、電気めっき回路が構成される。また、不溶性アノードは、特別なものを必要とせず、導電性セラミックで表面をコーティングした公知のアノードでよい。なお、電気めっき槽21の外部に、めっき液28に銅イオンを供給する機構を備える。
 めっき液28への銅イオンの供給は、酸化銅水溶液、水酸化銅水溶液、炭酸銅水溶液等で供給する。もしくはめっき液中に微量の鉄イオンを添加して、無酸素銅ボールを溶解して銅イオンを供給する方法もある。銅の供給方法は上記のいずれかの方法を用いることができる。
 めっき中における電流密度は、アノード24aから搬送方向下流に進むにつれて電流密度を段階的に上昇させ、アノード24oから24tで最大の電流密度となるようにする。
 このように電流密度を上昇させることで、銅層の変色を防ぐことができる。特に銅層の膜厚が薄い場合に電流密度が高いと銅層の変色が起こりやすいために、めっき中の電流密度は、後述するPeriodic Reverse電流の反転電流を除き0.1A/dm~8A/dmが望ましい。電流密度が高くなると銅電気めっき層の外観不良が発生する。
 本発明に係る2層フレキシブル配線用基板を製造するためには銅電気めっき層の膜厚の表面から10%以上の範囲でPR電流を用いて形成する。
 Periodic Reverse電流(以下PR電流ということがある。)を使用する場合、反転電流は正電流の1~9倍の電流を加えると良い。
 反転電流時間割合としては1~10%程度が望ましい。
 また、PR電流の次の反転電流が流れる周期は、10m秒以上が望ましく、より望ましくは20m秒~300m秒である。
 図4はPR電流の時間と電流密度を模式的に示したものである。
 なお、めっき電圧は、上述の電流密度が実現できるように適宜調整すればよい。
 本発明に係る2層フレキシブル配線用基板を、ロール・ツー・ロール連続電気めっき装置(以下めっき装置20という)で製造するには、搬送経路の下流側から1つ以上のアノードでPR電流を流せばよく、PR電流を流すアノード数は、銅電気めっき層の表面からポリイミドフィルム側にPR電流で成膜する範囲の割合をどのようにするかで決まる。すなわち、少なくともアノード24tはPR電流が流れ、必要に応じてアノード24s、アノード24r、アノード24qにPR電流が流れることとなる。
 なお、全アノードにPR電流を流してもよいが、PR電流用の整流器が高価な為、製造コストが増加する。そこで、本発明に係る2層フレキシブル配線用基板では、銅電気めっき層の表面からポリイミド方向に膜厚の10%をPR電流で成膜すれば、耐折れ性試験(JIS C-5016-1994)の実施前後で、銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が0.03以上とできるので、結果的に耐折れ性試験(MIT試験)の向上が望める。
 PR電流を使用した銅電気めっきが望ましい理由は、電流を反転させると、銅電気めっき層の銅の結晶粒径は200nm程度以上とすることができ結晶粒界を少なくできるので、粒界で発生するクラックの起点を少なくすることができるためである。
 一般に電気めっき法では、めっき析出する銅は、銅めっきされる基材表面の影響を受けるが、銅電気めっき層の表面から膜厚の10%以上をPR電流で成膜すれば、結晶粒界を制御でき従って、2層フレキシブル配線用基板の銅電気めっき層の表面から膜厚の10%以上が、耐折れ性に合致した結晶になっていれば、銅電気めっき層の耐折れ性に対する効果が得られ、本発明の課題を達成することができる。
 なお、得られた2層フレキシブル配線用基板の銅層の厚みを化学研磨などで調整する場合は、研磨後の銅層の表面から膜厚の10%以上のPR電流で成膜された層が残留すれば、本発明の効果が発揮できる。
(4)銅電気めっき層の特徴
 本発明のフレキシブル配線用基板における銅層は、1.2以上の銅の(111)結晶配向度指数を示すことを特徴とし、このような状態では、MIT耐折れ試験において、結晶が滑りやすくなる。なお、本発明のフレキシブル配線用基板の銅層には(111)配向のほかに(200)、(220)、(311)配向も含むが、そのうち(111)配向が殆どを占め、その結晶配向度指数が1.20以上を示すということである。
 さらなる特徴は、MIT耐折れ性試験(JIS C-5016-1994)前後における結晶の配向比[(200)/(111)]の差が0.03以上の状態となることにある。このような状態は、MIT耐折れ試験をすることで結晶が滑り、再結晶が起こったと考えられる。
 表面の光沢性は、表面の凹凸が切り欠きの要因とならないよう光沢膜が好ましい。
 また、平均結晶粒径の大きさは、大きいほど良いが、フレキシブル配線用基板をサブトラクティブ法でフレキシブル配線板に配線加工する際の銅層のエッチングにも影響するので留意する必要がある。
 サブトラクティブ法での銅層のエッチングに塩化第二鉄水溶液を用いる場合には、銅層の結晶粒径は影響しないこともあるが、銅層の結晶粒子の粒界をエッチングする場合には、結晶粒径が配線の形状にも影響するのである。平均結晶粒径としては、200nm~400nm程度が望ましい。200nm以下であると結晶粒界が多く、破断の起点となるクラックが入りやすくなり、400nm以下とするのは、金属表面の平滑性を保つためである。
 また、本発明のフレキシブル配線用基板の銅層は、上述の銅層の成膜方法で得られ、MIT耐折れ試験前後における結晶配向比[(200)/(111)]の差が0.03以上であるという特性等を有する銅層となる。なお、銅電気めっき層の結晶配向はX線回折のWilsonの配向度指数から知ることができる。
 さらに、上記方法で得られた銅層の銅結晶は、屈折時に常温下での動的再結晶効果を有する。耐折れ性試験後の平均結晶粒径は再結晶で100nm~200nm程度となる傾向である。
 一般に、銅の電気めっき膜は、常温下で動的再結晶しないと考えられてきた。しかし、本発明のフレキシブル配線用基板は、常温下で動的再結晶するので、結果的に、MIT試験のような屈折試験を行うと試料が切れ難い。銅層の平均結晶粒径と常温下での動的再結晶は、断面SIM像での観察することができる。
 ついで、算術表面粗さRaは0.2μm以下が望ましい。
 表面粗さRaが、0.2μmを超えると、MIT耐折れ試験前後の結晶配向比[(200)/(111)]の差が0.03以上であっても耐折れ性の改善効果は少ない。そのため、MIT耐折れ試験前後の結晶配向比[(200)/(111)]の差が0.03以上、かつ、算術表面粗さRaは、0.2μm以下が望ましいのである。
 当然、銅層の表面を化学研磨等で研磨する場合は、化学研磨後の銅層の表面の算術表面粗さRaが0.2μm以下ならば良い。
(5)フレキシブル配線板
 本発明に係るフレキシブル配線板は、本発明に係る2層フレキシブル配線用基板をサブトラクティブ法で配線加工して製造する。
 銅電気めっき層などを配線に加工するエッチング加工に用いるエッチング液は、特別な配合の塩化第二鉄と塩化第二銅と硫酸銅とを含む水溶液や特殊な薬液には限定されず、一般的な比重1.30~1.45の塩化第二鉄水溶液や比重1.30~1.45の塩化第二銅水溶液を含む市販のエッチング液を用いることができる。
 配線の表面には、錫めっき、ニッケルめっき、金めっきなどを必要に応じて、必要な箇所に施し、公知のソルダーレジストなどで表面が覆われる。そして、半導体素子などの電子部品が実装されて電子装置を形成する。
 以下、実施例を用いて本発明をより説明する。
 銅薄膜層付ポリイミドフィルムは、ロール・ツー・ロールスパッタリング装置10を用いて製造した。
 下地金属層を成膜する為のニッケル-20重量%クロム合金ターゲットをスパッタリングカソード15aに、銅ターゲットをスパッタリングカソード15b~15dにそれぞれ装着し、厚み38μmのポリイミドフィルム(カプトン 登録商標 東レ・デュポン社製)をセットした装置内を真空排気した後、アルゴンガスを導入して装置内を1.3Paに保持して銅薄膜層付ポリイミドフィルムを製造した。下地金属層(ニッケル-クロム合金)の膜厚は20nm、銅薄膜層の膜厚は200nmであった。
 得られた銅薄膜層付ポリイミドフィルムに、めっき装置20を用いて銅電気めっきを行い、銅電気めっき層を成膜した。めっき液はpH1以下の硫酸銅水溶液を用い、アノード24oから24tは特に断らない限り最大の電流密度(PR電流の反転電流を除く)となるようにし、最終的に銅電気めっき層の膜厚が8.5μmとなるように電流密度を調整した。
 耐折れ性試験は、塩化第二鉄をエッチング液にもちいてサブトラクティブ法でJIS-C-5016-1994のテストパターンを形成し、同規格に従い評価した。
 耐折れ性試験前後の銅電気めっき層の結晶配向はX線回折でWilsonの配向度指数を用い測定した。
 銅電気めっき層の表面から10%の膜厚範囲までPR電流を用いて電気めっきを行う為に、アノード24tにPR電流を流して、実施例1の2層フレキシブル配線用基板を作製した。
 MIT耐折れ性試験前の銅電気めっき層の(111)結晶配向度指数が1.31で、MIT耐折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.04、算術表面粗さRaが0.06μmの実施例1のサンプルは、MIT耐折れ性試験で536回という良好な結果を得た。
 MIT耐折れ性試験前の銅電気めっき層の結晶配向は(111)結晶配向度指数が1.35で、銅電気めっき層の表面から30%の膜厚範囲までPR電流を用いて電気めっきを行う為、アノード24r~24tにPR電流を流した以外は、実施例1と同様に行い、実施例2の2層フレキシブル配線用基板を作製した。
 MIT耐折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.09、算術表面粗さRaが0.18μmの実施例2のサンプルは、MIT耐折れ性試験で736回という良好な結果を得た。
 MIT耐折れ性試験前の銅電気めっき層の結晶配向は、(111)結晶配向度指数が、1.42で、銅電気めっき層の表面から40%の膜厚範囲までPR電流を用いて電気めっきを行う為、アノード24r~24tにPR電流を流した以外は、実施例1と同様に行い、実施例3の2層フレキシブル配線用基板を作製した。
 MIT耐折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.10、算術表面粗さRaが0.20μmの実施例3のサンプルは、MIT耐折れ性試験で608回という良好な結果を得た。
(比較例1)
 MIT耐折れ性試験前の銅電気めっき層の結晶配向は(111)結晶配向度指数が、0.98で、銅電気めっき層の表面から8%の膜厚範囲までPR電流を用いて電気めっきを行う為、アノード24tにPR電流を流し、そのアノードの電流密度を実施例1の80%とした以外は、実施例1と同様に行い、比較例1の2層フレキシブル配線用基板を作製した。
 MIT体折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.02、算術表面粗さRaが0.15μmの比較例1のサンプルは、MIT耐折れ性試験で135回という改善効果が見られない結果であった。
(比較例2)
 MIT耐折れ性試験前の銅電気めっき層の結晶配向は(111)結晶配向度指数が、0.85で、銅電気めっき層の表面から5%の膜厚範囲までPR電流で電気めっきを行う為、アノード24tにPR電流を流し、そのアノードの電流密度を実施例1の50%とした以外は、実施例1と同様に行い、比較例2の2層フレキシブル配線用基板を作製した。
 MIT耐折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.01、算術表面粗さRaが0.16μmの比較例2のサンプルは、MIT耐折れ性試験で83回という改善効果が見られない結果であった。
(比較例3)
 MIT耐折れ性試験前の銅電気めっき層の結晶配向は(111)結晶配向度指数が、1.06で、銅電気めっき層の表面から9%の膜厚範囲までPR電流を用いて電気めっきを行う為、アノード24tにPR電流を流し、そのアノードの電流密度を実施例1の90%とした以外は、実施例1と同様に行い、比較例3の2層フレキシブル配線用基板を作製した。
 MIT体折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.02、算術表面粗さRaが0.11μmの比較例3のサンプルは、MIT耐折れ性試験で141回という改善効果が見られない結果であった。
 実施例1とは電気めっき槽の深さが異なるめっき装置を用い、電気銅めっき層の膜厚が8.5μmとなるように搬送速度を調整した以外は、実施例1と同様に行い、実施例4の2層フレキシブル配線用基板を作製した。
 MIT耐折れ性試験前の銅電気めっき層の結晶配向は(111)結晶配向度指数が、1.22で、MIT耐折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.04、算術表面粗さRaが0.22の実施例4のサンプルは、MIT耐折れ性試験で197回という結果を得た。比較例1、2、3よりはMIT耐折れ性試験が向上しているが、実施例1、2、3には及ばない結果であった。
 1  ポリイミドフィルム(樹脂フィルム基板)
 2  下地金属層
 3  銅薄膜層
 4  銅電気めっき層
 5  銅層
 6  2層フレキシブル配線用基板
10  ロール・ツー・ロールスパッタリング装置
12  筐体
13  巻出ロール
14  キャンロール
15a、15b、15c、15d スパッタリングカソード
16a 前フィードロール
16b 後フィードロール
17a、17b テンションロール
18  巻取ロール
20  ロール・ツー・ロール方式の連続めっき装置
21  電気めっき槽
22  巻出ロール
23  反転ロール
24a~24t アノード
26a~26k 給電ロール
28  めっき液
28a めっき液の液面
29  巻取ロール
 F  ポリイミドフィルム(樹脂フィルム基板)
 F2 銅薄膜層付ポリイミドフィルム(銅薄膜層付樹脂フィルム基板)
 S  2層フレキシブル配線用基板

Claims (11)

  1.  ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、前記下地金属層の表面に銅層を設けた積層構造の2層フレキシブル配線用基板において、
     JIS C-5016-1994に規定される耐折れ性試験の実施前後において得られる前記銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が、0.03以上であることを特徴とする2層フレキシブル配線用基板。
  2.  前記銅層の膜厚が、5μm~12μmであることを特徴とする請求項1に記載の2層フレキシブル配線用基板。
  3.  前記銅層の(111)面における結晶配向度指数が、1.2以上であることを特徴とする請求項1または2に記載の2層フレキシブル配線用基板。
  4.  前記銅層が、前記下地金属層の表面に成膜された銅薄膜層と前記銅薄膜層の表面に成膜された銅電気めっき層から構成され、
      前記銅電気めっき層が、その表面から前記ポリイミドフィルム方向に膜厚の10%以上の厚み範囲において、周期的に短時間の電位反転を行うPeriodic Reverse電流による銅電気めっきによって形成されることを特徴とする請求項1から3のいずれか1項に記載の2層フレキシブル配線用基板。
  5.  前記銅層の表面粗さが、算術平均粗さRaで0.2μm以下であることを特徴とする請求項1から4に記載の2層フレキシブル配線用基板。
  6.  ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、前記下地金属層の表面に銅層を備える積層構造の配線が設けられるフレキシブル配線板において、
     JIS-P-8115に規定される耐折れ性試験の実施前後において得られる前記銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が、0.03以上であることを特徴とするフレキシブル配線板。
  7.  前記銅層の(111)面における結晶配向度指数が、1.2以上であることを特徴とする請求項6に記載のフレキシブル配線板。
  8.  前記銅層が、前記下地金属層の表面に成膜された銅薄膜層と前記銅薄膜層の表面に成膜された銅電気めっき層から構成され、
      前記銅電気めっき層が、その表面から前記ポリイミドフィルム方向に前記銅電気めっき層膜厚の10%以上の厚み範囲において、周期的に短時間の電位反転を行うPeriodic Reverse電流による銅電気めっきによって形成されることを特徴とする請求項6または7に記載のフレキシブル配線板。
  9.  前記銅層の表面粗さが、算術平均粗さRaで0.2μm以下であることを特徴とする請求項6から8に記載のフレキシブル配線板。
  10.  前記請求項1から5のいずれかに記載の2層フレキシブル配線用基板の製造方法であって、
      ポリイミドフィルムの表面に接着剤を介することなく乾式めっき法により成膜されたニッケル合金からなる下地金属層と、前記下地金属層の表面に乾式めっき法による銅薄膜層の成膜と、前記銅薄膜層の表面に電気めっき法による銅電気めっき層の成膜を行って形成した前記銅薄膜層と銅電気めっき層からなる銅層との積層構造を有し、
       前記銅電気めっき層が、前記銅電気めっき層の表面から前記ポリイミドフィルム方向に前記銅電気めっき層膜厚の10%以上の厚み範囲において、周期的に短時間の電位反転を行うPeriodic Reverse電流による銅電気めっき法によって形成されることを特徴とする2層フレキシブル配線用基板の製造方法。
  11.  請求項6から9に記載のフレキシブル配線板の製造方法であって、
      ポリイミドフィルムの表面に接着剤を介することなく乾式めっき法により成膜されたニッケル合金からなる下地金属層と、
      前記下地金属層の表面に乾式めっき法による銅薄膜層の成膜と、前記銅薄膜層の表面に電気めっき法による銅電気めっき層の成膜を行って形成される前記銅薄膜層と銅電気めっき層からなる銅層との積層構造を有する2層フレキシブル配線用基板の前記下地金属層と銅層からなる積層構造を、サブトラクティブ法により配線に形成し、
       前記銅電気めっき層が、前記銅電気めっき層の表面からポリイミドフィルム方向に銅電気めっき層の膜厚の10%以上の厚み範囲において、周期的に短時間の電位反転を行うPeriodic Reverse電流による銅電気めっき法によって形成されることを特徴とするフレキシブル配線板の製造方法。
PCT/JP2013/059363 2012-04-24 2013-03-28 2層フレキシブル配線用基板及びフレキシブル配線板並びにそれらの製造方法 WO2013161507A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014512436A JP6083433B2 (ja) 2012-04-24 2013-03-28 2層フレキシブル配線用基板及びフレキシブル配線板並びにそれらの製造方法
KR1020147032650A KR101669745B1 (ko) 2012-04-24 2013-03-28 2층 플렉시블 배선용 기판 및 플렉시블 배선판 및 이들의 제조 방법
CN201380021656.5A CN104247576B (zh) 2012-04-24 2013-03-28 2层挠性配线用基板及挠性配线板及其制造方法
TW102114635A TWI522019B (zh) 2012-04-24 2013-04-24 Layer 2 flexible wiring substrate and flexible wiring board and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-099306 2012-04-24
JP2012099306 2012-04-24

Publications (1)

Publication Number Publication Date
WO2013161507A1 true WO2013161507A1 (ja) 2013-10-31

Family

ID=49482841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059363 WO2013161507A1 (ja) 2012-04-24 2013-03-28 2層フレキシブル配線用基板及びフレキシブル配線板並びにそれらの製造方法

Country Status (5)

Country Link
JP (1) JP6083433B2 (ja)
KR (1) KR101669745B1 (ja)
CN (1) CN104247576B (ja)
TW (1) TWI522019B (ja)
WO (1) WO2013161507A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131421A (ja) * 2014-01-10 2015-07-23 住友金属鉱山株式会社 金属張積層基板、配線基板、および多層配線基板
JP2015140447A (ja) * 2014-01-27 2015-08-03 住友金属鉱山株式会社 フレキシブル配線板
JP2015141950A (ja) * 2014-01-27 2015-08-03 住友金属鉱山株式会社 フレキシブル配線板
JP2016136362A (ja) * 2015-01-23 2016-07-28 住友金属鉱山株式会社 積層体基板、配線基板ならびにそれらの製造方法
JP2016157752A (ja) * 2015-02-23 2016-09-01 住友金属鉱山株式会社 フレキシブル配線用基板およびフレキシブル配線板
JP2016173674A (ja) * 2015-03-16 2016-09-29 大日本印刷株式会社 導電性パターンシートの製造方法、導電性パターンシート、タッチパネルセンサおよび画像表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398596B2 (ja) * 2013-10-22 2018-10-03 住友金属鉱山株式会社 2層フレキシブル配線用基板及びそれを用いたフレキシブル配線板
KR102502200B1 (ko) * 2016-08-11 2023-02-20 에스케이넥실리스 주식회사 회로 단선/단락을 방지할 수 있는 연성동박적층필름 및 그 제조방법
KR102329838B1 (ko) * 2019-04-30 2021-11-22 도레이첨단소재 주식회사 연성 금속박 적층 필름, 이를 포함하는 물품 및 상기 연성 금속박 적층 필름의 제조방법
CN112911817B (zh) * 2021-01-20 2022-03-11 南昌欧菲显示科技有限公司 挠性覆铜板的制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091648A (ja) * 2002-08-30 2004-03-25 Ube Ind Ltd ボンディングシ−トおよび積層体
JP2008130585A (ja) * 2006-11-16 2008-06-05 Sumitomo Metal Mining Co Ltd 銅被覆ポリイミド基板とその製造方法
JP2009295656A (ja) * 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd フレキシブル配線板用基板及びその製造方法
JP2009298065A (ja) * 2008-06-16 2009-12-24 Sumitomo Metal Mining Co Ltd 金属被覆ポリイミド基板とその製造方法
JP2011017036A (ja) * 2009-07-07 2011-01-27 Ebara-Udylite Co Ltd 銅めっき方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269807A (ja) 1993-03-25 1994-09-27 Fukuda Metal Foil & Powder Co Ltd 銅箔の製造方法
JP3608840B2 (ja) 1995-04-07 2005-01-12 古河サーキットフォイル株式会社 フレキシブル配線板用電解銅箔
JP3563730B2 (ja) * 2002-06-07 2004-09-08 松下電器産業株式会社 フレキシブルプリント回路基板
KR100858309B1 (ko) * 2004-09-01 2008-09-11 스미토모 긴조쿠 고잔 가부시키가이샤 2층 플렉시블 기판 및 그 제조 방법
KR100858310B1 (ko) * 2004-09-01 2008-09-11 스미토모 긴조쿠 고잔 가부시키가이샤 2층 플렉시블 기판 및 그 제조 방법
WO2008090654A1 (ja) * 2007-01-24 2008-07-31 Sumitomo Metal Mining Co., Ltd. 2層フレキシブル基板とその製造方法及び該2層フレキシブル基板より得られたフレキシブルプリント配線基板
JP5194602B2 (ja) * 2007-07-20 2013-05-08 住友金属鉱山株式会社 金属被覆ポリイミド基板の製造方法
JP5347980B2 (ja) * 2010-01-14 2013-11-20 住友金属鉱山株式会社 金属化ポリイミドフィルム、及びそれを用いたフレキシブル配線板
JP2013000585A (ja) * 2011-06-16 2013-01-07 Fujifilm Corp 放射線撮影装置およびその動作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091648A (ja) * 2002-08-30 2004-03-25 Ube Ind Ltd ボンディングシ−トおよび積層体
JP2008130585A (ja) * 2006-11-16 2008-06-05 Sumitomo Metal Mining Co Ltd 銅被覆ポリイミド基板とその製造方法
JP2009295656A (ja) * 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd フレキシブル配線板用基板及びその製造方法
JP2009298065A (ja) * 2008-06-16 2009-12-24 Sumitomo Metal Mining Co Ltd 金属被覆ポリイミド基板とその製造方法
JP2011017036A (ja) * 2009-07-07 2011-01-27 Ebara-Udylite Co Ltd 銅めっき方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131421A (ja) * 2014-01-10 2015-07-23 住友金属鉱山株式会社 金属張積層基板、配線基板、および多層配線基板
JP2015140447A (ja) * 2014-01-27 2015-08-03 住友金属鉱山株式会社 フレキシブル配線板
JP2015141950A (ja) * 2014-01-27 2015-08-03 住友金属鉱山株式会社 フレキシブル配線板
JP2016136362A (ja) * 2015-01-23 2016-07-28 住友金属鉱山株式会社 積層体基板、配線基板ならびにそれらの製造方法
JP2016157752A (ja) * 2015-02-23 2016-09-01 住友金属鉱山株式会社 フレキシブル配線用基板およびフレキシブル配線板
JP2016173674A (ja) * 2015-03-16 2016-09-29 大日本印刷株式会社 導電性パターンシートの製造方法、導電性パターンシート、タッチパネルセンサおよび画像表示装置

Also Published As

Publication number Publication date
JPWO2013161507A1 (ja) 2015-12-24
KR20150003854A (ko) 2015-01-09
KR101669745B1 (ko) 2016-10-27
CN104247576B (zh) 2017-05-31
JP6083433B2 (ja) 2017-02-22
TWI522019B (zh) 2016-02-11
CN104247576A (zh) 2014-12-24
TW201352087A (zh) 2013-12-16

Similar Documents

Publication Publication Date Title
JP6083433B2 (ja) 2層フレキシブル配線用基板及びフレキシブル配線板並びにそれらの製造方法
JP6398596B2 (ja) 2層フレキシブル配線用基板及びそれを用いたフレキシブル配線板
JP5769030B2 (ja) 金属化樹脂フィルムおよびその製造方法
TWI568865B (zh) Layer 2 flexible wiring substrate and manufacturing method thereof, and two-layer flexible wiring board and manufacturing method thereof
JP6035678B2 (ja) フレキシブル配線板の製造方法ならびにフレキシブル配線板
JP6403095B2 (ja) フレキシブル配線用基板およびフレキシブル配線板
JP6398175B2 (ja) 2層フレキシブル配線板およびその製造方法
JP5858286B2 (ja) 長尺導電性基板の電解めっき方法および銅張積層板の製造方法
JP6667982B2 (ja) フレキシブル配線板
JP5835670B2 (ja) プリント配線基板およびその製造方法
JP6365937B2 (ja) 2層銅張積層板及びその製造方法
JP6405615B2 (ja) 2層フレキシブル配線用基板およびその製造方法
JP6245473B2 (ja) フレキシブル配線板の製造方法
JP5754275B2 (ja) 金属化ポリイミドフィルム及びプリント配線基板
JP2015140447A (ja) フレキシブル配線板
JP6252987B2 (ja) 2層銅張積層板及びその製造方法
JP2016004825A (ja) フレキシブル配線板の製造方法
JP6201191B2 (ja) 銅張積層板の製造方法
JP6329727B2 (ja) キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板、プリント回路板、銅張積層板、及び、プリント配線板の製造方法
JP2010153537A (ja) フレキシブル配線用基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147032650

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13780962

Country of ref document: EP

Kind code of ref document: A1