WO2013157579A1 - 窒化鋼部材およびその製造方法 - Google Patents

窒化鋼部材およびその製造方法 Download PDF

Info

Publication number
WO2013157579A1
WO2013157579A1 PCT/JP2013/061396 JP2013061396W WO2013157579A1 WO 2013157579 A1 WO2013157579 A1 WO 2013157579A1 JP 2013061396 W JP2013061396 W JP 2013061396W WO 2013157579 A1 WO2013157579 A1 WO 2013157579A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
iron nitride
nitride compound
steel member
nitriding
Prior art date
Application number
PCT/JP2013/061396
Other languages
English (en)
French (fr)
Inventor
清水 雄一郎
厚 小林
前田 晋
正男 金山
秀樹 今高
将人 祐谷
裕也 行徳
清隆 秋元
Original Assignee
Dowaサーモテック株式会社
本田技研工業株式会社
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaサーモテック株式会社, 本田技研工業株式会社, 新日鐵住金株式会社 filed Critical Dowaサーモテック株式会社
Priority to CN201380020718.0A priority Critical patent/CN104334766B/zh
Priority to US14/394,423 priority patent/US9783879B2/en
Priority to DE112013002114.5T priority patent/DE112013002114B4/de
Priority to MX2014012432A priority patent/MX371079B/es
Publication of WO2013157579A1 publication Critical patent/WO2013157579A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the present invention relates to a nitrided steel member whose surface is nitrided by nitriding in a gas atmosphere and a method for manufacturing the same. Further, the present invention relates to a high-strength and nitrided steel member that is used in gears of automobiles and the like and has improved pitting resistance and bending fatigue strength.
  • gears used in transmissions for automobiles are required to have high pitting resistance and bending fatigue strength.
  • carburizing treatment has been widely implemented as a technique for strengthening steel members such as gears.
  • strength by a carbonitriding process is proposed aiming at the further improvement of pitting resistance (patent document 1).
  • the invention regarding the gas soft nitriding process with few distortion of a steel member and a small distortion variation is also proposed (patent document 2).
  • Steel members strengthened by gas soft nitriding treatment have less fatigue strength such as pitting resistance and bending fatigue strength compared to steel members strengthened by carburizing and carbonitriding, although the amount of strain and strain variation are small. .
  • the high-strength carbonitriding member by carbonitriding described in Patent Document 1 has a problem of low bending fatigue strength, although the pitting resistance is higher than that of the carburized material. Moreover, since heat treatment is performed in the austenite transformation temperature range of steel, there is a problem that the amount of strain increases. Further, since the quenching process is essential for carburizing and carbonitriding, there is a problem that distortion variation within lots and between lots is large.
  • the nitrided member subjected to gas soft nitriding described in Patent Document 2 and the like has a pitting resistance (outermost surface) compared to a compound layer obtained by conventional gas soft nitriding by thinning the compound layer.
  • the problem that the compound layer peels is improved, but it is inferior to the carburizing treatment.
  • An object of the present invention is to provide a high-strength / low-strain nitrided steel member having high pitting resistance and bending fatigue strength, and having a low strain compared to carburizing and carbonitriding, and a method for producing the same. .
  • the present inventors have produced an iron nitride compound layer having a predetermined structure on a steel member having a predetermined composition on the surface of the steel member. It has been found that a high strength / low strain nitrided steel member having excellent pitting resistance and bending fatigue strength can be obtained, and the present invention has been completed.
  • C 0.05 to 0.14%
  • Si 0.10 to 0.30%
  • Mn 0.10 to 1.4%
  • Cr 0.9 to 1.9 %
  • Mo 0 to 0.50%
  • V 0 to 0.40%
  • Al 0.01 to 0.14%
  • S 0.005 to 0.030%
  • the Hs value is 1.19 or more
  • the Hc value represented by the following formula 2 is 3.76 or less
  • the balance is Fe and impurities
  • P, N, and O in the impurities are P: 0.
  • the steel nitride member is characterized in that the iron nitride compound layer has a thickness of 2 to 17 ⁇ m.
  • Hs value ( ⁇ 342.1 ⁇ C + 23.5 ⁇ Mn + 125.0 ⁇ Cr + 14.4 ⁇ Mo + 208.3 ⁇ V + 346.4 ⁇ Al) / 100 Formula 1
  • C, Mn, Cr, Mo, V, and Al in the formula 1 are mass% values of the respective elements.
  • Hc value (156.1 ⁇ C + 54.7 ⁇ Mn + 158.4 ⁇ Cr + 146.5 ⁇ Mo + 33.8 ⁇ V + 418.6 ⁇ Al) / 100 Equation 2
  • C, Mn, Cr, Mo, V, and Al in the formula 2 are mass% values of the respective elements.
  • the nitrided steel member of the present invention is preferably a gear used for a transmission.
  • C 0.05 to 0.14%, Si: 0.10 to 0.30%, Mn: 0.4 to 1.4%, Cr: 0.9 to 1.% by mass. 9%, Mo: 0 to 0.50%, V: 0 to 0.40%, Al: 0.01 to 0.14%, S: 0.005 to 0.030%.
  • the Hs value is 1.19 or more, the Hc value represented by the following formula 2 is 3.76 or less, the balance is Fe and impurities, and P, N and O in the impurities are each P: 0. 0.03% or less, N: 0.008% or less, and O: 0.0030% or less, the ratio of the partial pressure of NH 3 gas when the total pressure is 1 is 0.08 to 0.003.
  • H 2 gas partial pressure ratio of 0.54 to 0.82 in the nitriding treatment in a gas atmosphere with a partial pressure ratio of 0.09 to 0.18 in the N 2 gas, your on the surface of the steel member
  • the flow rate of the nitriding gas is 1 m / s or more, and nitriding is performed at a temperature of 500 to 620 ° C., thereby forming an iron nitride compound layer having a thickness of 2 to 17 ⁇ m on the surface of the steel member.
  • a method for producing a nitrided steel member is
  • Hs value ( ⁇ 342.1 ⁇ C + 23.5 ⁇ Mn + 125.0 ⁇ Cr + 14.4 ⁇ Mo + 208.3 ⁇ V + 346.4 ⁇ Al) / 100 Formula 1
  • C, Mn, Cr, Mo, V, and Al in the formula 1 are mass% values of the respective elements.
  • Hc value (156.1 ⁇ C + 54.7 ⁇ Mn + 158.4 ⁇ Cr + 146.5 ⁇ Mo + 33.8 ⁇ V + 418.6 ⁇ Al) / 100 Equation 2
  • C, Mn, Cr, Mo, V, and Al in the formula 2 are mass% values of the respective elements.
  • the nitriding time may be in the range of more than 0.5 hours and less than 10 hours.
  • the “iron nitride compound layer” is typified by ⁇ ′ phase—Fe 4 N and ⁇ phase—Fe 2-3 N on the surface of a steel member formed by nitriding in a gas atmosphere. Refers to the iron nitride compound.
  • a nitrided steel member having excellent pitting resistance and bending fatigue strength equal to or higher than those of a carburized member, and having a low strain compared to carburizing and carbonitriding. Can do.
  • the nitrided steel member of the present invention has an iron nitride compound layer mainly composed of a ⁇ ′ phase on the surface of a steel member (base material) having a predetermined composition.
  • the steel member (base material) of the present invention is, in mass%, C: 0.05 to 0.14%, Si: 0.10 to 0.30%, Mn: 0.4 to 1.4%, Cr: 0.9 to 1.9%, Mo: 0 to 0.50%, V: 0 to 0.40%, Al: 0.01 to 0.14%, S: 0.005 to 0.030%
  • the balance is made of Fe and impurities.
  • C 0.05 to 0.14% C is an essential element for securing the strength of the nitrided part, and a content of 0.05% or more is necessary. However, if the C content increases and exceeds 0.14%, the hardness before nitriding increases and the machinability decreases. Therefore, the C content is set to 0.05 to 0.14%. In order to ensure the strength of the nitrided part more stably, the C content is preferably 0.09% or more. Further, when the machinability is more important, the C content is preferably set to 0.13% or less.
  • Si 0.10 to 0.30% Si has a deoxidizing action. In order to obtain this effect, a Si content of 0.10% or more is necessary. However, if the Si content increases and exceeds 0.30%, the hardness before nitriding increases and the machinability decreases. Therefore, the Si content is set to 0.10 to 0.30%.
  • the Si content is preferably 0.12% or more, and more preferably 0.25% or less.
  • Mn 0.4 to 1.4%
  • Mn has an action of ensuring the pitting resistance and bending fatigue strength of the nitrided part, and a deoxidizing action. In order to obtain these effects, a content of 0.4% or more is necessary. However, if the Mn content increases and exceeds 1.4%, the hardness before nitriding becomes too high, and the machinability deteriorates. Therefore, the Mn content is set to 0.4 to 1.4%. In order to ensure the strength of the nitrided part more stably, the Mn content is preferably 0.5% or more. When the machinability is more important, the Mn content is preferably 1.3% or less.
  • Cr 0.9 to 1.9% Cr increases the surface hardness and the core hardness in nitriding, and has the effect of ensuring the pitting resistance and bending fatigue strength of the part. However, if the Cr content is less than 0.9%, the above effect cannot be obtained. On the other hand, if the Cr content increases and exceeds 1.9%, the hardness before nitriding increases and the machinability decreases. Therefore, the Cr content is set to 0.9 to 1.9%. In order to increase the surface hardness and core hardness in nitriding more stably, the Cr content is preferably 1.1% or more. When the machinability is more important, the Cr content is preferably 1.4% or less.
  • Mo 0 to 0.50% (including 0%) Mo may not be contained.
  • Mo When Mo is contained, Mo combines with C in the steel at the nitriding temperature to form a carbide, so that the core hardness after nitriding is improved.
  • the Mo content is set to 0.50% or less.
  • the Mo content is preferably 0.40% or less.
  • V 0 to 0.40% (including 0%) V may not be contained.
  • V When V is contained, like Mo, it combines with C in steel at a nitriding temperature to form a carbide, and has an effect of improving the core hardness after nitriding. It also has the effect of improving the surface hardness by forming a nitride or carbonitride by combining with N or C that penetrates and diffuses from the surface during nitriding. If the V content increases and exceeds 0.40%, the hardness before nitriding becomes too high and the machinability deteriorates, and the V is solidified in the matrix by hot forging and subsequent normalization. The effect is saturated because it does not dissolve. Therefore, the content of V is set to 0 to 0.40%.
  • the V content is preferably 0.15% or more, and preferably 0.20% or less.
  • Al 0.01 to 0.14%
  • Al has a deoxidizing action. Moreover, it combines with N that penetrates and diffuses from the surface during nitriding to form AlN, and has the effect of improving the surface hardness. In order to acquire these effects, it is necessary to contain Al 0.01% or more. However, if the Al content increases and exceeds 0.14%, not only does the hard Al 2 O 3 form and the machinability decreases, but the hardened layer becomes shallower and the pitting resistance and The problem that bending fatigue strength falls arises. Therefore, the Al content is set to 0.01% or more and 0.14% or less. The preferable lower limit of the Al content is 0.02%, and the preferable upper limit is 0.07%.
  • S 0.005 to 0.030%
  • S combines with Mn to form MnS and has the effect of improving machinability.
  • the S content is set to 0.005 to 0.030%.
  • the S content is preferably set to 0.010% or more.
  • the S content is preferably 0.025% or less.
  • Hs value 1.19 or more
  • the Hs value is an index representing the hardness of the base material immediately below the iron nitride compound layer after nitriding.
  • the Hs value represented by the following formula 1 needs to be 1.19 or more.
  • Hs value ( ⁇ 342.1 ⁇ C + 23.5 ⁇ Mn + 125.0 ⁇ Cr + 14.4 ⁇ Mo + 208.3 ⁇ V + 346.4 ⁇ Al) / 100
  • Formula 1 C, Mn, Cr, Mo, V, and Al in Formula 1 are values of mass% of each element.
  • Hc value 3.76 or less
  • the Hc value is an index representing the hardness of the iron nitride compound layer. In order to avoid a decrease in fatigue strength and a decrease in peeling characteristics of the iron nitride compound layer, the Hc value needs to be 3.76 or less.
  • Hc value (156.1 ⁇ C + 54.7 ⁇ Mn + 158.4 ⁇ Cr + 146.5 ⁇ Mo + 33.8 ⁇ V + 418.6 ⁇ Al) / 100 Equation 2
  • C, Mn, Cr, Mo, V, and Al in Formula 2 are values of mass% of each element.
  • the present invention has a chemical composition in which the balance is composed of Fe and impurities in addition to the above elements.
  • Fe and impurities as the balance are inevitably mixed from the ore as a raw material, for example, Cu, Ni, and Ti, or inevitably mixed from the production environment, for example, when steel materials are industrially manufactured. , O (oxygen) and the like.
  • P, N, and O in the impurities must be particularly strictly limited, and in terms of mass%, P: 0.030% or less, N: 0.008% or less, O: 0 0030% or less is necessary.
  • P, N, and O in the impurities will be described.
  • P 0.030% or less
  • P is an impurity contained in the steel and segregates at the grain boundaries to embrittle the steel.
  • the content of P in the impurities is set to 0.030% or less.
  • content of P in an impurity shall be 0.020% or less.
  • N in steel is easy to form carbonitride by combining with elements such as C and V, and when carbonitride such as VCN is formed before nitriding, the hardness becomes high,
  • N is an undesirable element because machinability is reduced.
  • this carbonitride has a high solid solution temperature, V becomes difficult to dissolve in the matrix by hot forging or subsequent heating in normalization, and when the N content in the steel is high, the above V due to nitriding The effect cannot be obtained sufficiently. Therefore, in the present invention, the content of N in the impurities is set to 0.008% or less. In addition, the preferable content of N in the impurities is 0.006% or less.
  • O forms oxide inclusions that cause fatigue failure starting from inclusions, and lowers the pitting resistance and bending fatigue strength.
  • the content of O in the impurities is set to 0.0030% or less.
  • the preferable content of O in the impurities is 0.0020% or less.
  • the Vickers hardness of the iron nitride compound layer is 900 or less, the Vickers hardness of the base material immediately below the iron nitride compound layer is 700 or more, and the difference between the two is 150 or less.
  • a steel member can be easily obtained.
  • the Vickers hardness of the iron nitride compound layer exceeds 900, since there is no conformability and minute unevenness generated by processing remains, local stress increases and fatigue strength cannot be expected.
  • the Vickers hardness of the base material immediately below the iron nitride compound layer is less than 700, the hardness difference from the iron nitride compound layer becomes large and peeling easily occurs, and wear of the base material exposed after disappearance of the wear of the iron nitride compound layer suddenly progresses and the tooth profile deteriorates, resulting in sound and vibration deterioration and damage.
  • the difference in hardness between the two is 150 or more, it is easy to peel off from the boundary portion, and improvement in fatigue strength cannot be expected.
  • the “iron nitride compound layer” refers to the nitriding of iron typified by ⁇ ′ phase—Fe 4 N and ⁇ phase—Fe 2-3 N on the surface of a steel member formed by gas soft nitriding. Refers to a compound.
  • the iron nitride compound layer has a ⁇ ′ phase and an ⁇ phase, and is deposited as a layer state.
  • an iron nitride compound layer composed of these ⁇ ′ phase and ⁇ phase is formed on the surface of a steel member (base material) in a thickness range of 2 to 17 ⁇ m.
  • the steel member (base material) is made of steel having the above-described predetermined component range, but directly below the iron nitride compound layer (in contact with the interface between the iron nitride compound layer and the steel member (base material)).
  • the steel member (base material) at the position is in a state where alloy carbonitride is finely aligned and precipitated in the steel.
  • the alloy carbonitride is precipitated in this way, so that the hardness is higher than that of the base metal core.
  • an iron nitride compound layer mainly composed of a ⁇ 'phase is formed on the surface by nitriding the steel member in a gas atmosphere.
  • the thickness of the iron nitride compound layer is 2 to 17 ⁇ m. If the thickness of the iron nitride compound layer is less than 2 ⁇ m, the fatigue strength is considered to be limited because it is too thin. On the other hand, when the thickness of the iron nitride compound layer exceeds 17 ⁇ m, the nitrogen diffusion rate of the ⁇ ′ phase is slow, so that the nitrogen concentration of the iron nitride compound layer increases as the thickness increases, and the ratio of the ⁇ phase increases.
  • the thickness of the iron nitride compound layer is 4 to 16 ⁇ m in view of the reason and the variation in film thickness during mass production.
  • the reason why the nitrided steel member of the present invention is excellent in pitting resistance and bending fatigue strength is considered as follows.
  • the crystal structure of the ⁇ 'phase is FCC (face centered cubic) and has 12 slip systems, so that the crystal structure itself is rich in toughness. Furthermore, it is considered that the fatigue strength is improved because a fine equiaxed structure is formed.
  • the crystal structure of the ⁇ phase is HCP (hexagonal close-packed) and the bottom surface slip is prioritized, it is considered that the crystal structure itself has the property of being “deformable and fragile”. Further, the ⁇ phase forms coarse columnar crystals and has a structure form that is disadvantageous for fatigue strength.
  • the ⁇ ′ phase-Fe 4 N appearing around 2 ⁇ : 41.2 degrees.
  • the “iron nitride compound layer” is a layer composed of ⁇ phase—Fe 2-3 N and / or ⁇ ′ phase—Fe 4 N or the like, and when X-ray diffraction analysis is performed on the surface of the steel member, It is determined whether or not the ⁇ ′ phase is a main component by measuring the ratio of the X-ray peak intensity.
  • the strength ratio is 0.5 or more
  • the iron nitride compound layer formed on the surface of the nitrided steel member can be determined to have a ⁇ ′ phase as a main component, and the resistance of the nitrided steel member can be determined. Pitching properties and bending fatigue strength are excellent.
  • the intensity ratio is preferably 0.8 or more, and more preferably 0.9 or more.
  • the nitriding treatment in the gas atmosphere applied to the steel member is performed using, for example, a heat treatment apparatus 1 shown in FIG.
  • the heat treatment apparatus 1 includes a carry-in unit 10, a heating chamber 11, a cooling chamber 12, and a carry-out conveyor 13.
  • the case 20 placed in the carry-in unit 10 houses the above-described steel member such as a gear used in an automatic transmission, for example.
  • An entrance hood 22 having a door 21 that can be opened and closed is attached to the entrance side of the heating chamber 11 (left side in FIG. 1).
  • a heater 25 is provided in the heating chamber 11.
  • a nitriding gas composed of N 2 gas, NH 3 gas, and H 2 gas is introduced into the heating chamber 11, and the nitriding gas introduced into the heating chamber 11 is heated to a predetermined temperature by the heater 25 and heated. Nitriding of the steel member carried into the chamber 11 is performed.
  • a fan 26 is mounted on the ceiling of the heating chamber 11 to stir the processing gas in the heating chamber 11, to uniformize the heating temperature of the steel member, and to control the wind speed of the processing gas that hits the steel member.
  • An openable / closable intermediate door 27 is attached to the outlet side of the heating chamber 11 (right side in FIG. 1).
  • the cooling chamber 12 is provided with an elevator 30 that raises and lowers a case 20 in which a steel member is stored.
  • An oil tank 32 in which cooling oil 31 is stored is provided at the lower portion of the cooling chamber 12.
  • An outlet hood 36 having an openable / closable door 35 is attached to the outlet side (right side in FIG. 1) of the cooling chamber 12.
  • the case 20 in which the steel member is stored is carried into the heating chamber 11 from the carry-in unit 10 by a pusher or the like.
  • cleaning pretreatment
  • vacuum cleaning in which oil or the like is dissolved and replaced with a hydrocarbon-based cleaning liquid and evaporated to degrease and dry, or alkaline cleaning in which a degreasing treatment is performed with an alkaline cleaning liquid is preferable.
  • the processing gas is introduced into the heating chamber 11. Further, the processing gas introduced into the heating chamber 11 is brought to a predetermined high temperature by the heater 25, and the steel member carried into the heating chamber 11 is nitrided while stirring the processing gas by the fan 26.
  • N 2 gas 0.04 m 3 / min and NH 3 gas 0.01 m 3 / min are introduced into the heating chamber 11 and heated by the heater 25. Then, a step of raising the temperature to a nitriding temperature of 600 ° C. is performed. In the temperature raising step, it is not necessary to precisely control the atmosphere if extreme oxidation of the steel member can be prevented during heating. For example, heating may be performed in an N 2 or Ar atmosphere that is an inert gas. Further, as described above, an appropriate amount of NH 3 gas or the like may be mixed to form a reducing atmosphere.
  • NH 3 gas and H 2 gas are introduced into the heating chamber 11 so that the flow rate is controlled and a predetermined nitriding gas composition is obtained, heated by the heater 25, and soaked at 600 ° C. for 120 minutes, for example.
  • a step of nitriding the steel member is performed.
  • the partial pressure of NH 3 gas, the partial pressure of H 2 gas, and the partial pressure of N 2 gas in the heating chamber 11 are controlled within a predetermined range. These gas partial pressures can be adjusted by the flow rate of NH 3 gas and the flow rate of H 2 gas supplied to the heating chamber 11.
  • N 2 gas is obtained by the decomposition of NH 3 gas at the nitriding temperature. Further, N 2 gas may be added, and the gas partial pressure may be controlled by adjusting the flow rate.
  • the flow rate of NH 3 gas and the flow rate of H 2 gas introduced into the heating chamber 11 are controlled, and further, N 2 gas is introduced as necessary, and the heating temperature of the steel member Is preferably maintained at 500-620 ° C. If the nitriding temperature is higher than 620 ° C., the member may be softened and the strain may increase. If it is lower than 500 ° C., the formation rate of the iron nitride compound layer is slow, which is not preferable in terms of cost, and it is easy to form the ⁇ phase. Become. More preferably, it is 550 to 610 ° C.
  • the ratio of gas partial pressures in the nitriding process is as follows. When the total pressure is 1, NH 3 gas is 0.08 to 0.34, H 2 gas is 0.54 to 0.82, and N 2 gas is 0.09 to 0. .18 to control. If the H 2 gas partial pressure ratio is smaller than 0.54, an iron nitride compound containing the ⁇ phase as a main component is likely to be generated, and if it exceeds 0.82, the generation rate of the iron nitride compound is very slow or no longer generated. There is a fear.
  • the NH 3 gas partial pressure ratio is larger than 0.34, an iron nitride compound containing ⁇ phase as a main component is likely to be formed, and if it is smaller than 0.08, the generation rate of iron nitride compound is very slow or generated. There is a risk that it will not.
  • the total pressure in the nitriding process may be a reduced pressure or a pressurized atmosphere.
  • the atmospheric pressure is preferably about atmospheric pressure, for example, 0.092 to 0.11 MPa in view of the manufacturing cost and ease of handling of the heat treatment apparatus.
  • the gas partial pressure ratio is such that NH 3 gas is 0.09 to 0.20, H 2 gas is 0.60 to 0.80, and N 2 gas is 0.09 to 0.17. preferable.
  • the flow rate (wind speed) of the gas in which the nitriding gas hits the object to be processed is 1 m / It is preferable to control to s or more, more preferably 1.5 m / s or more. If the flow rate is lower than 1 m / s, uneven formation of the iron nitride compound may occur or the ⁇ ′ phase iron nitride compound may not be formed. A higher flow rate can form the iron nitride compound layer more uniformly.
  • the flow rate is preferably about 6 m / s at most.
  • the nitride compound containing the ⁇ phase as a main component is formed without any trouble.
  • a nitrided steel member having an iron nitride compound layer mainly composed of a ⁇ ′ phase on the surface can be obtained.
  • the steel member thus obtained is strengthened by forming a nitrogen diffusion layer and nitride inside, and a ⁇ ′-phase rich iron nitride compound layer is formed on the surface, so that sufficient pitting resistance and bending fatigue strength are formed.
  • Have The thickness of the iron nitride compound can be controlled by time and temperature in the nitriding gas atmosphere of the present invention. That is, when the time is increased, the iron nitride compound becomes thicker, and when the temperature is increased, the generation speed of the iron nitride compound increases.
  • the nitriding time is preferably in the range of more than 0.5 hours and less than 10 hours.
  • the nitriding treatment of the present invention is a treatment at austenite transformation temperature or lower, so that the amount of strain is small. Further, since the quenching step, which is an essential step in carburizing / carbonitriding, can be omitted, the amount of strain variation is small. As a result, a low strength and high strength / low strain nitrided steel member could be obtained.
  • the fatigue strength is dominated by the composition of the iron nitride compound layer ( ⁇ ′ phase or ⁇ phase) formed on the surface of the member, and the hardness of the iron nitride compound layer and the hardness of the base material immediately below it. . Examples are shown below.
  • Table 1 shows the components, Hs value, Hc value, and Vickers hardness of the steel members and iron nitride compound layers of each Example and each Comparative Example.
  • the manufacturing conditions are shown in Table 2.
  • the evaluation results are shown in Table 3.
  • Example 1 In mass%, C: 0.07%, Si: 0.19%, Mn: 1.28%, P: 0.015%, S: 0.025%, Cr: 1.32%, Mo: 0.00. 34%, V: 0.23%, Al: 0.030%, N: 0.0050%, O: 0.0015%, the balance having the composition of Fe and impurities, Hs value of 2.34, Hc A steel member sample having a value of 3.60 was prepared. Sample shapes were prepared for peel strength, nitriding quality confirmation (disk shape), roller pitching test, Ono type rotary bending fatigue test, and gear strain measurement.
  • the sample was subjected to nitriding treatment in a gas atmosphere.
  • the flow rate of NH 3 gas supplied into the furnace (heating chamber) was set to 0.01 m 3 / min and the flow rate of N 2 gas was set to 0.04 m 3 / min, and the temperature was raised to nitriding treatment. .
  • the conditions for the subsequent nitriding treatment were a temperature of 610 ° C., a nitriding time of 5 h (hours), and the respective supply gas flow rates into the furnace for NH 3 gas, H 2 gas and N 2 gas were adjusted,
  • the total pressure is 1
  • the NH 3 gas partial pressure ratio is 0.09
  • the H 2 gas partial pressure ratio is 0.77
  • the ratio of the partial pressure of N 2 gas was 0.14 (0.014 MPa partial pressure of N 2 gas).
  • the total pressure in the furnace during nitriding is atmospheric pressure, and the gas flow rate (wind speed) of the furnace gas contacting the test piece is increased by 2 to 2 by vigorously stirring the nitriding gas by increasing the rotational speed of the fan. .6 m / s (seconds). Then, each test piece was immersed in 130 degreeC oil, oil-cooled, and each evaluation was performed.
  • NH 3 partial pressure in nitriding gas is “gas soft nitriding furnace NH 3 analyzer” (HORIBA, model FA-1000), and analysis of H 2 partial pressure is “continuous gas analyzer” (ABB). Manufactured, model AO2000), the balance being N 2 partial pressure.
  • the gas flow rate was measured with the “windmill type anemometer” (testo, model 350M / XL) under the same conditions as the nitriding process (nitriding gas composition, etc.) except that the furnace temperature was room temperature before nitriding. did. In the present invention, this value is defined as the gas flow rate.
  • Example 2 By mass%, C: 0.07%, Si: 0.16%, Mn: 1.27%, P: 0.025%, S: 0.014%, Cr: 0.90%, Mo: 0.00. 20%, Al: 0.027%, N: 0.0080%, O: 0.0009%, the balance is Fe and impurities, Hs value is 1.31, and Hc value is 2.64.
  • a sample was prepared in the same manner as in Example 1 except for the above. Next, pretreatment and nitriding treatment were carried out under the same conditions as in Example 1, and after forming an iron nitride compound on the surface of the sample, each evaluation was performed.
  • Example 3 By mass%, C: 0.09%, Si: 0.18%, Mn: 0.70%, P: 0.009%, S: 0.014%, Cr: 1.20%, V: 0.00. 13%, Al: 0.030%, N: 0.0045%, O: 0.0016%, balance is Fe and impurities, Hs value is 1.73, Hc value is 2.59.
  • a sample was prepared in the same manner as in Example 1 except for the above. Next, pretreatment and nitriding treatment were carried out under the same conditions as in Example 1, and after forming an iron nitride compound on the surface of the sample, each evaluation was performed.
  • Example 4 In mass%, C: 0.10%, Si: 0.15%, Mn: 1.10%, P: 0.007%, S: 0.015%, Cr: 1.20%, V: 0.00. 15%, Al: 0.030%, N: 0.0048%, O: 0.0010, balance is Fe and impurities, Hs value is 1.83, Hc value is 2.83 Prepared a sample in the same manner as in Example 1. Next, pretreatment and nitriding treatment were carried out under the same conditions as in Example 1, and after forming an iron nitride compound on the surface of the sample, each evaluation was performed.
  • Example 5 In mass%, C: 0.09%, Si: 0.14%, Mn: 1.26%, P: 0.009%, S: 0.015%, Cr: 1.27%, Al: 0.00. 115%, N: 0.0044%, O: 0.0010%, the balance is Fe and impurities, the Hs value is 1.97, and the Hc value is 3.32, as in Example 1.
  • a sample was prepared. Next, pretreatment and nitriding treatment were carried out under the same conditions as in Example 1, and after forming an iron nitride compound on the surface of the sample, each evaluation was performed.
  • Example 6 In mass%, C: 0.07%, Si: 0.19%, Mn: 1.28%, P: 0.015%, S: 0.025%, Cr: 1.32%, Mo: 0.00. 34%, V: 0.23%, Al: 0.030%, N: 0.0050%, O: 0.0015%, the balance having the composition of Fe and impurities, Hs value of 2.34, Hc A sample was prepared in the same manner as in Example 1 except that the value was 3.60. Next, except that the nitriding time was 2.5 h, nitriding was performed under the same pretreatment and nitriding conditions as in Example 1, and after forming an iron nitride compound on the surface of the sample, each evaluation was performed. It was.
  • Example 7 In mass%, C: 0.07%, Si: 0.19%, Mn: 1.28%, P: 0.015%, S: 0.025%, Cr: 1.32%, Mo: 0.00. 34%, V: 0.23%, Al: 0.030%, N: 0.0050%, O: 0.0015%, the balance having the composition of Fe and impurities, Hs value of 2.34, Hc A sample was prepared in the same manner as in Example 1 except that the value was 3.60. Next, nitriding was performed under the same pretreatment and nitriding conditions as in Example 1 except that the nitriding time was 8 h, and each evaluation was performed after the iron nitride compound was formed on the surface of the sample.
  • the nitriding treatment conditions were a temperature of 570 ° C., a nitriding time of 2.5 h (hours), NH 3 gas and adjust the respective supply gas flow rate to the H 2 gas and N 2 gas in the furnace, when the 1 the total pressure in the furnace, the ratio of the partial pressure of NH 3 gas 0.4 (of the NH 3 gas
  • the partial pressure is 0.041 MPa
  • the H 2 gas partial pressure ratio is 0.28
  • H 2 gas partial pressure ratio is 0.32
  • N 2 gas partial pressure ratio is 0.32 (N 2 gas Except that the partial pressure was 0.032 MPa)
  • the nitriding treatment was performed in the same manner as in Example 1 to form an iron nitride compound on the surface of the sample, and then each evaluation was performed.
  • Example 6 By mass%, C: 0.09%, Si: 0.14%, Mn: 1.26%, P: 0.009%, S: 0.015%, Cr: 1.27%, Al: 0.00. 115%, N: 0.0044%, O: 0.0010%, the balance is Fe and impurities, the Hs value is 1.97, and the Hc value is 3.32, as in Example 1. A sample was prepared. Next, the temperature raising step of the pretreatment and the nitriding treatment was performed under the same conditions as in Example 1.
  • the nitriding treatment conditions were a temperature of 570 ° C., a nitriding time of 2.5 h (hours), NH 3 gas and adjust the respective supply gas flow rate to the H 2 gas and N 2 gas in the furnace, when the 1 the total pressure in the furnace, the ratio of the partial pressure of NH 3 gas 0.4 (of the NH 3 gas
  • the partial pressure is 0.041 MPa
  • the H 2 gas partial pressure ratio is 0.28
  • H 2 gas partial pressure ratio is 0.32
  • N 2 gas partial pressure ratio is 0.32 (N 2 gas Except that the partial pressure was 0.032 MPa)
  • the nitriding treatment was performed in the same manner as in Example 1 to form an iron nitride compound on the surface of the sample, and then each evaluation was performed.
  • the nitriding treatment conditions were a temperature of 570 ° C., a nitriding time of 2.5 h (hours), NH 3 gas and adjust the respective supply gas flow rate to the H 2 gas and N 2 gas in the furnace, when the 1 the total pressure in the furnace, the ratio of the partial pressure of NH 3 gas 0.4 (of the NH 3 gas
  • the partial pressure is 0.041 MPa
  • the H 2 gas partial pressure ratio is 0.28
  • H 2 gas partial pressure ratio is 0.32
  • N 2 gas partial pressure ratio is 0.32 (N 2 gas Except that the partial pressure was 0.032 MPa)
  • the nitriding treatment was performed in the same manner as in Example 1 to form an iron nitride compound on the surface of the sample, and then each evaluation was performed.
  • the nitriding treatment conditions were a temperature of 570 ° C., a nitriding time of 2.5 h (hours), NH 3 gas and adjust the respective supply gas flow rate to the H 2 gas and N 2 gas in the furnace, when the 1 the total pressure in the furnace, the ratio of the partial pressure of NH 3 gas 0.4 (of the NH 3 gas
  • the partial pressure is 0.041 MPa
  • the H 2 gas partial pressure ratio is 0.28
  • H 2 gas partial pressure ratio is 0.32
  • N 2 gas partial pressure ratio is 0.32 (N 2 gas Except that the partial pressure was 0.032 MPa)
  • the nitriding treatment was performed in the same manner as in Example 1 to form an iron nitride compound on the surface of the sample, and then each evaluation was performed.
  • the nitriding treatment conditions were a temperature of 570 ° C., a nitriding time of 2.5 h (hours), NH 3 gas and adjust the respective supply gas flow rate to the H 2 gas and N 2 gas in the furnace, when the 1 the total pressure in the furnace, the ratio of the partial pressure of NH 3 gas 0.4 (of the NH 3 gas
  • the partial pressure is 0.041 MPa
  • the H 2 gas partial pressure ratio is 0.28
  • H 2 gas partial pressure ratio is 0.32
  • N 2 gas partial pressure ratio is 0.32 (N 2 gas Except that the partial pressure was 0.032 MPa)
  • the nitriding treatment was performed in the same manner as in Example 1 to form an iron nitride compound on the surface of the sample, and then each evaluation was performed.
  • Nitriding treatment was performed in the same manner as in Example 1 except that the gas flow rate (wind velocity) was 0 to 0.5 m / s (seconds), and an iron nitride compound was formed on the surface of the sample. Later, each evaluation was performed.
  • the X-ray tube uses Cu, the voltage is 40 kV, the current is 20 mA, the scanning angle 2 ⁇ is 20 to 80 °, and the scanning step is 1 ° / min. Went.
  • the peak represented by IFe 4 N (111) / ⁇ IFe 4 N (111) + IFe 3 N (111) ⁇ The intensity ratio of strength (XRD diffraction intensity ratio) was measured.
  • Peel strength Peel strength was measured by using a scratch tester and sliding with a conical diamond indenter with a tip curvature of 100 ⁇ m at a load of 60 N, a reciprocating frequency of 5 times, in a non-lubricated state, and observing the state of peeling or breaking.
  • the sample for the peeling test uses a small roller for the roller pitching test, and the test was performed by sliding a ⁇ 26 mm test portion in the axial direction. The axial sliding was tested by sliding the top of the shaft as shown by the arrow in FIG.
  • the peel strength contributes to the peel resistance of the gear tooth surface and affects the pitting resistance. When the gear tooth surface peels, the strength is reduced due to the exposure of the base material, and the vibration and noise are deteriorated due to the unevenness of the gear tooth surface.
  • roller pitching test Using an RP201 type fatigue strength tester, slip ratio: -40%, lubricant: ATF (lubricant for automatic transmission), lubricant temperature: 90 ° C, amount of lubricant: 0.002 m 3 / min, Large roller crowning: tested under conditions of R700.
  • the small roller 100 was rotated while pressing the large roller 101 against the small roller 100 with a weight P.
  • Small roller rotation speed 1560 rpm
  • surface pressure 1800 MPa
  • large and small roller pitching test pieces were subjected to the same nitriding treatment with the same material.
  • Ono type rotating bending fatigue test The Ono type rotating bending fatigue tester was evaluated under the following test conditions. As shown in FIG. 5, by rotating the test piece 102 with the bending moment M applied, a fatigue test was performed by repeatedly applying a compressive stress on the upper side and a tensile stress on the lower side to the test piece 102. The test conditions are as follows. Temperature: Room temperature Atmosphere: Rotational speed in air: 3500 rpm
  • an internal gear having an outer diameter of 120 mm, an inner diameter of the tooth tip of 106.5 mm, a gear width of 30 mm, a module 1.3, a number of teeth of 78, and a torsion angle / pressure angle of 20 degrees is manufactured by machining.
  • the nitriding treatment or carburizing treatment was performed, and the change in the tooth profile was measured and evaluated.
  • the tooth profile inclination of the tooth profile as an evaluation was used.
  • the inclination of the tooth trace was measured for 4 teeth every 90 degrees in one gear, and 10 gears were measured in the same manner, and the maximum width was defined as the variation in inclination of the tooth trace.
  • Example 6 where the compound layer thickness is thin, an indentation was created at a test load of 4.903 mN (since the compound layer thickness was small), and SEM observation / measurement was performed.
  • the test load is set to 4.903 mN and the Vickers hardness is measured.
  • An example of the SEM used for the measurement is shown in FIG.
  • Vickers hardness of the base material immediately below the iron nitride compound and the iron nitride compound layer As shown in FIG. 7, the Vickers hardness of the cross section of the sample in which the thickness of the iron nitride compound layer was measured was measured.
  • the Vickers hardness HV of Example 1 was 812 for the base material immediately below the iron nitride compound layer, 871 for the iron nitride compound layer, and 59 for the hardness difference.
  • Example 2 is 740, 776, 36
  • Example 3 is 715, 790, 75, Example 4.
  • Comparative Example 1 is 690, 765, 75
  • Comparative Example 2 is 780, 917, 137
  • Comparative Example 3 is 648, 759, 111
  • Comparative Example 4 is 669, 766, 97
  • Comparative Example 5 is 748, 930, 182
  • Comparative Example 6 is 761, 965, 204
  • Comparative Example 7 is 731, 911, 180
  • Comparative Example 8 is 855, 1102, 247
  • Comparative Example 9 is 890, 1095, 205
  • Comparative Example 11 was 778, 951, 173.
  • Comparative Example 10 the Vickers hardness of the base material immediately below the iron nitride compound layer was 781, and the iron nitride compound layer was as thin as 1 ⁇ m, so measurement was impossible. Comparative Example 12 was a carburized product, and the surface layer base material had a Vickers hardness of 745. In Comparative Example 13, the Vickers hardness of the base material immediately below the iron nitride compound layer was 813, and the iron nitride compound layer could not be measured because the layer thickness was as thin as 0 to 0.5 ⁇ m.
  • the X-ray diffraction intensity ratios in the comparative examples are 0.98 or more in Comparative Examples 1 to 4, 0.01 in Comparative Examples 5 to 9, 0.98 or more in Comparative Example 10, and 0.2 in Comparative Example 11. It was over 98.
  • the comparative example 13 was 0.01.
  • roller Pitching Test As a result of the roller pitching test, in Examples 1 to 7 and Comparative Examples 1 and 12, peeling of the iron nitride compound layer on the surface of the sample was performed even after a 1.0 ⁇ 10 7 cycle test at a surface pressure of 1800 MPa. It was not recognized, and the fatigue strength condition targeted by the present invention was cleared.
  • Comparative Examples 2 to 11 were damaged or peeled off on the sample surface before reaching 1.0 ⁇ 10 7 cycles.
  • Comparative Example 2 was damaged after 9.5 ⁇ 10 6 cycles
  • Comparative Example 3 was damaged after 6.2 ⁇ 10 6 cycles
  • Comparative Example 4 was damaged after 6.8 ⁇ 10 6 cycles.
  • Comparative Examples 5 to 7 peeling of the iron nitride compound occurred after 1.0 ⁇ 10 4 cycles.
  • Comparative Examples 8 and 9 peeling of the iron nitride compound occurred after 1.0 ⁇ 10 3 cycles.
  • Comparative Example 10 was damaged after 4.2 ⁇ 10 6 cycles
  • Comparative Example 11 was damaged after 5.5 ⁇ 10 6 cycles.
  • the sample of the comparative example 12 (carburizing treatment) is 1.0 ⁇ 10 7 and the surface is not damaged.
  • the difference between the occurrence of damage and the occurrence of delamination was defined as “delamination occurrence” as the delamination damage of the compound layer, and “damage occurrence” as damage other than the delamination of the compound layer (pitching / spalling damage).
  • Comparative Example 13 was not evaluated, since the iron nitride compound is an ⁇ -rich phase and the thickness is small, the characteristics are considered to be equal to or less than that of Comparative Example 10 in which the iron nitride compound layer is thin.
  • Example 5 Ono-type rotating bending fatigue test As a result of the rotating bending fatigue test, in Example 1, the strength at 1.0 ⁇ 10 7 cycles was 520 MPa. Similarly, it was 440 MPa in Example 3, and 470 MPa in Example 4. In Comparative Example 7, it was 320 MPa, and in Comparative Example 12, it was 430 MPa. It is clear that the nitriding treatment according to the invention has a high bending fatigue strength. Although Comparative Example 13 was not evaluated, since the iron nitride compound is an ⁇ -rich phase and the thickness is small, the characteristics are considered to be equal to or less than that of Comparative Example 10 in which the iron nitride compound layer is thin.
  • the correction amount of the tooth trace is 4 ⁇ m (Example 1), 8 ⁇ m (Example 2), 5 ⁇ m (Example 3), 8 ⁇ m (Comparative Example 5), 6 ⁇ m (Comparative Example 6). ), 7 ⁇ m (Comparative Example 7), and 38 ⁇ m (Comparative Example 12).
  • the strain amount of the present invention of examples 1 to 3 is equivalent to that of comparative examples 5 to 7 which are conventional nitriding treatments, and the high fatigue strength and bending fatigue with a small strain amount. It was confirmed that the strength was achieved.
  • Table 1 shows the component compositions of the steel materials of Examples 1 to 7 and Comparative Examples 1 to 12.
  • Steel materials of Examples 1 to 7 and Comparative Examples 1 to 12 temperature as nitriding conditions, treatment time, N 2 gas partial pressure, NH 3 gas partial pressure, H 2 gas partial pressure and compound layer morphology, XRD diffraction
  • Table 2 summarizes the strength ratio and thickness.
  • the characteristics of Examples 1 to 7 and Comparative Examples 1 to 12 were as shown in Table 3.
  • the nitrided steel member of the present invention has a Vickers hardness of 900 or less of the iron nitride compound layer and a Vickers hardness of the base material immediately below the iron nitride compound layer of 700 or more.
  • the core hardness is preferably 150 or more in terms of Vickers hardness.
  • the core hardness of the nitrided steel member of the present invention is preferably 150 or more in terms of Vickers hardness.
  • a preferable lower limit of the core hardness is 170 in terms of Vickers hardness.
  • Table 4 shows the core hardness of each example and each comparative example.
  • the upper limit of the core hardness need not be specified, but the upper limit of the present invention is about 350 in terms of Vickers hardness.
  • the present invention is useful for steel nitriding technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Gears, Cams (AREA)
  • Heat Treatment Of Articles (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 所定の成分を有する鋼部材の表面に鉄窒化化合物層が形成された窒化鋼部材であり、X線回折により該窒化鋼部材の表面について測定したFe4Nの(111)結晶面のX線回折ピーク強度IFe4N(111)と、Fe3Nの(111)結晶面のX線回折ピーク強度IFe3N(111)において、IFe4N(111)/{IFe4N(111)+IFe3N(111)}で表される強度比が0.5以上であり、前記鉄窒化化合物層のビッカース硬さが900以下、前記鉄窒化化合物層直下の母材のビッカース硬さが700以上、且つ前記鉄窒化化合物層のビッカース硬さと前記母材のビッカース硬さの差が150以下であり、前記鉄窒化化合物層の厚さが2~17μmである。

Description

窒化鋼部材およびその製造方法
 本発明は、ガス雰囲気中での窒化処理により、表面を窒化した窒化鋼部材およびその製造方法に関する。さらには自動車等の歯車に用いられ、耐ピッチング性と曲げ疲労強度を向上された高強度・窒化鋼部材に関する。
 例えば自動車用の変速機に用いられる歯車には、高い耐ピッチング性と曲げ疲労強度が要求される。かかる要求に応えるべく、従来より歯車などの鋼部材を強化させる手法として浸炭処理が広く実施されている。また、耐ピッチング性の更なる向上を目指し、浸炭窒化処理による高強度化に関する発明が提案されている(特許文献1)。一方、プラネタリギヤにおいては、噛み合い次数が高いため、ギヤノイズに対する歯形精度(ひずみ)の影響が大きい。特に内歯ギヤにおいては薄肉大径であるためひずみ易いという問題があった。そこで、鋼部材の歪が少なく、歪ばらつきも小さいガス軟窒化処理に関する発明も提案されている(特許文献2)。
特開平5-70925号公報 特開平11-72159号公報
 ガス軟窒化処理により高強度化された鋼部材は、歪量、歪ばらつきこそ小さいものの浸炭や浸炭窒化によって高強度化された鋼部材と比較すると耐ピッチング性や曲げ疲労強度等の疲労強度が劣る。
 また、特許文献1に記載されている浸炭窒化による高強度浸炭窒化部材は、耐ピッチング性こそ浸炭材以上であるが、曲げ疲労強度が低いという問題がある。また、鋼のオーステナイト変態温度域で熱処理がなされるため、歪量が大きくなるという問題がある。さらに浸炭や浸炭窒化処理は焼き入れ工程が必須であるためロット内やロット間の歪ばらつきが大きいという問題がある。
 また、特許文献2などに記載されたガス軟窒化処理を施した窒化部材は、化合物層を薄くすることで、従来のガス軟窒化処理で得られる化合物層に比べ、耐ピッチング性(最表面の化合物層が剥離する問題)の向上が図られているが、浸炭処理に比べると劣っている。
 本発明の目的は、高い耐ピッチング性と曲げ疲労強度を有し、さらに浸炭や浸炭窒化処理と比較して低歪である高強度・低歪窒化鋼部材およびその製造方法を提供することである。
 本発明者らは、上記課題を解決するために鋭意研究した結果、所定の組成の鋼部材に所定の構造を有する鉄窒化化合物層を、該鋼部材の表面に生成することで、低歪かつ優れた耐ピッチング性と曲げ疲労強度を有する高強度・低歪窒化鋼部材が得られることを見出し、本発明を完成するに至った。
 本発明は、質量%で、C:0.05~0.14%、Si:0.10~0.30%、Mn:0.4~1.4%、Cr:0.9~1.9%、Mo:0~0.50%、V:0~0.40%、Al:0.01~0.14%、S:0.005~0.030%であり、下記式1で表されるHs値が1.19以上であり、下記式2で表されるHc値が3.76以下であり、残部がFeおよび不純物からなり、不純物中のP、NおよびOがそれぞれP:0.030%以下、N:0.008%以下およびO:0.0030%以下である鋼部材の表面に鉄窒化化合物層が形成された窒化鋼部材であって、X線回折により該窒化鋼部材の表面について測定したFe4Nの(111)結晶面のX線回折ピーク強度IFe4N(111)と、Fe3Nの(111)結晶面のX線回折ピーク強度IFe3N(111)において、IFe4N(111)/{IFe4N(111)+IFe3N(111)}で表される強度比が0.5以上であり、前記鉄窒化化合物層のビッカース硬さが900以下、前記鉄窒化化合物層直下の母材のビッカース硬さが700以上、且つ前記鉄窒化化合物層のビッカース硬さと前記母材のビッカース硬さの差が150以下であり、前記鉄窒化化合物層の厚さが2~17μmであることを特徴とする、窒化鋼部材である。
Hs値=(-342.1×C+23.5×Mn+125.0×Cr+14.4×Mo+208.3×V+346.4×Al)/100 ・・・ 式1
ただし、式1中のC、Mn、Cr、Mo、V、Alはそれぞれの元素の質量%の値。
Hc値=(156.1×C+54.7×Mn+158.4×Cr+146.5×Mo+33.8×V+418.6×Al)/100 ・・・ 式2
ただし、式2中のC、Mn、Cr、Mo、V、Alはそれぞれの元素の質量%の値。
 本発明の窒化鋼部材は変速機に用いられる歯車であることが好ましい。
 また本発明は、質量%で、C:0.05~0.14%、Si:0.10~0.30%、Mn:0.4~1.4%、Cr:0.9~1.9%、Mo:0~0.50%、V:0~0.40%、Al:0.01~0.14%、S:0.005~0.030%であり、下記式1で表されるHs値が1.19以上であり、下記式2で表されるHc値が3.76以下であり、残部がFeおよび不純物からなり、不純物中のP、NおよびOがそれぞれP:0.030%以下、N:0.008%以下およびO:0.0030%以下である鋼部材に対し、全圧を1としたときのNHガスの分圧の比を0.08~0.34、H2ガスの分圧の比を0.54~0.82、N2ガスの分圧の比を0.09~0.18とする窒化処理ガス雰囲気中で、鋼部材の表面における前記窒化処理ガスの流速を1m/s以上とし、500~620℃の温度で窒化処理することにより、前記鋼部材の表面に厚さが2~17μmの鉄窒化化合物層を形成することを特徴とする、窒化鋼部材の製造方法である。
Hs値=(-342.1×C+23.5×Mn+125.0×Cr+14.4×Mo+208.3×V+346.4×Al)/100 ・・・ 式1
ただし、式1中のC、Mn、Cr、Mo、V、Alはそれぞれの元素の質量%の値。
Hc値=(156.1×C+54.7×Mn+158.4×Cr+146.5×Mo+33.8×V+418.6×Al)/100 ・・・ 式2
ただし、式2中のC、Mn、Cr、Mo、V、Alはそれぞれの元素の質量%の値。
 前記窒化処理の時間を0.5時間を超え、10時間未満の範囲としても良い。
 なお、本明細書中において、「鉄窒化化合物層」とは、ガス雰囲気中での窒化処理によって形成された鋼部材表面のγ’相-FeNやε相-Fe2-3Nに代表される鉄の窒化化合物をいう。
 本発明によれば、浸炭処理した部材と同等あるいはそれ以上の優れた耐ピッチング性と曲げ疲労強度を有し、さらに浸炭や浸炭窒化処理と比較して低歪である窒化鋼部材を提供することができる。
熱処理装置の説明図である。 ガス軟窒化処理の工程説明図である。 剥離強度試験の説明図である。 ローラーピッチング試験の説明図である。 小野式回転曲げ疲労試験の説明図である。 ビッカース硬さの測定に用いたSEMの一例である。 鉄窒化化合物層の厚さの測定の説明図である。
 以下、図面を参照して、本発明の窒化鋼部材およびその製造方法について詳細に説明する。
 本発明の窒化鋼部材は、所定の組成の鋼部材(母材)の表面に、γ’相を主成分とする鉄窒化化合物層を有するものである。
 本発明の鋼部材(母材)は、質量%で、C:0.05~0.14%、Si:0.10~0.30%、Mn:0.4~1.4%、Cr:0.9~1.9%、Mo:0~0.50%、V:0~0.40%、Al:0.01~0.14%、S:0.005~0.030%であって、残部がFeおよび不純物からなるものである。
 C:0.05~0.14%
 Cは、窒化部品の強度確保のために必須の元素であり、0.05%以上の含有量が必要である。しかしながら、Cの含有量が多くなって0.14%を超えると、窒化前の硬さが高くなって被削性の低下をきたす。このため、Cの含有量を0.05~0.14%とした。窒化部品の強度をより安定して確保するためには、Cの含有量は0.09%以上とすることが好ましい。また、被削性がより重視されるときには、Cの含有量は0.13%以下とすることが好ましい。
 Si:0.10~0.30%
 Siは、脱酸作用を有する。この効果を得るには、0.10%以上のSi含有量が必要である。しかしながら、Siの含有量が多くなって0.30%を超えると、窒化前の硬さが高くなって被削性が低下する。したがって、Siの含有量を0.10~0.30%とした。Siの含有量は0.12%以上とすることが好ましく、また0.25%以下とすることが好ましい。
 Mn:0.4~1.4%
 Mnは、窒化部品の耐ピッチング性および曲げ疲労強度を確保する作用、ならびに脱酸作用を有する。これらの効果を得るには、0.4%以上の含有量が必要である。しかしながら、Mnの含有量が多くなって1.4%を超えると、窒化前の硬さが高くなりすぎて被削性が低下する。このため、Mnの含有量を0.4~1.4%とした。窒化部品の強度をより安定して確保するためには、Mnの含有量は0.5%以上とすることが好ましい。また、被削性がより重視されるときには、Mnの含有量は1.3%以下とすることが好ましい。
 Cr:0.9~1.9%
 Crは、窒化での表面硬さおよび芯部硬さを高め、部品の耐ピッチング性および曲げ疲労強度を確保する作用を有する。しかしながら、Crの含有量が0.9%未満では前記の効果を得ることができない。一方、Crの含有量が多くなって1.9%を超えると、窒化前の硬さが高くなって被削性が低下する。したがって、Crの含有量を0.9~1.9%とした。窒化での表面硬さおよび芯部硬さをより安定して高めるためには、Crの含有量は1.1%以上とすることが好ましい。また、被削性がより重視されるときには、Crの含有量は1.4%以下とすることが好ましい。
 Mo:0~0.50%(0%を含む)
 Moは含有していなくともよい。Moを含有すると、Moが窒化温度で鋼中のCと結合して炭化物を形成するので、窒化後の芯部硬さが向上する。しかしながら、Moの含有量が多くなって0.50%を超えると、原料コストが高くなるだけでなく、窒化前の硬さが高くなって被削性が低下する。そのため、Moの含有量を0.50%以下とした。なお、被削性が重視される場合は、Moの含有量を0.40%以下とすることが好ましい。
 V:0~0.40%(0%を含む)
 Vは含有していなくても良い。Vを含有すると、Moと同じく、窒化温度で鋼中のCと結合して炭化物を形成し、窒化後の芯部硬さを向上させる作用を有する。また、窒化時に表面から侵入・拡散するNやCと結合して窒化物や炭窒化物を形成し、表面硬さを向上させる作用も有する。Vの含有量が多くなって0.40%を超えると、窒化前の硬さが高くなりすぎて被削性が低下するばかりか、熱間鍛造やその後の焼準でマトリックス中にVが固溶しなくなるため、前記の効果が飽和する。そのため、Vの含有量を0~0.40%とした。Vの含有量は0.15%以上とすることが好ましく、また0.20%以下とすることが好ましい。
 Al:0.01~0.14%
 Alは、脱酸作用を有する。また、窒化時に表面から侵入・拡散するNと結合してAlNを形成し、表面硬さを向上させる作用を有する。これらの効果を得るには、Alを0.01%以上含有させる必要がある。しかしながら、Alの含有量が多くなって0.14%を超えると、硬質のAl23を形成して被削性が低下するばかりか、窒化での硬化層が浅くなって耐ピッチング性や曲げ疲労強度が低下する問題が生じる。そのため、Alの含有量を0.01%以上0.14%以下とした。Al含有量の好ましい下限は0.02%であり、また好ましい上限は0.07%である。
 S:0.005~0.030%
 Sは、Mnと結合してMnSを形成し、被削性を向上させる作用がある。しかしながら、Sの含有量が0.005%未満では、前記の効果が得がたい。一方、Sの含有量が0.030%を超えると、粗大なMnSを形成して、熱間鍛造性および曲げ疲労強度が低下する。そのため、Sの含有量を0.005~0.030%とした。より安定して被削性を確保するためには、Sの含有量は0.010%以上とすることが好ましい。また、熱間鍛造性および曲げ疲労強度がより重視される場合には、Sの含有量は0.025%以下とすることが好ましい。
 Hs値:1.19以上
 Hs値は、窒化処理後の鉄窒化化合物層直下の母材硬さを表す指標である。Nによる固溶強化および合金窒化物による析出強化で、窒化鋼部材に必要な表面硬さを得るには、下記式1で表されるHs値を1.19以上にする必要がある。
Hs値=(-342.1×C+23.5×Mn+125.0×Cr+14.4×Mo+208.3×V+346.4×Al)/100 ・・・ 式1
式1中のC、Mn、Cr、Mo、V、Alはそれぞれの元素の質量%の値。
 Hc値:3.76以下
 Hc値は、鉄窒化化合物層の硬さを表す指標である。疲労強度の低下および鉄窒化化合物層の剥離特性の低下を回避するためには、Hc値を3.76以下にする必要がある。
Hc値=(156.1×C+54.7×Mn+158.4×Cr+146.5×Mo+33.8×V+418.6×Al)/100 ・・・ 式2
式2中のC、Mn、Cr、Mo、V、Alはそれぞれの元素の質量%の値。
 本発明は、上記元素の他、残部がFeおよび不純物からなる化学組成を有するものである。なお、残部としての「Feおよび不純物」とは、鋼材を工業的に製造する際に、原料としての鉱石から不可避的に混入する例えばCu、NiおよびTi、または製造環境から不可避的に混入する例えば、O(酸素)などを指す。
 ただし、本発明においては、不純物中のP、NおよびOは、特に厳しく制限する必要があり、それぞれ、質量%で、P:0.030%以下、N:0.008%以下、O:0.0030%以下にする必要がある。以下、不純物中のP、N、Oについて説明する。
 P:0.030%以下
 Pは、鋼に含有される不純物であり、結晶粒界に偏析して鋼を脆化させ、特に、その含有量が0.030%を超えると、脆化の程度が著しくなる場合がある。したがって、本発明においては、不純物中のPの含有量を0.030%以下とした。なお、不純物中のPの含有量は0.020%以下とすることが好ましい。
 N:0.008%以下
 鋼中のNは、CおよびVなどの元素と結合して炭窒化物を形成しやすく、窒化前にVCNなどの炭窒化物を形成すると硬さが高くなって、被削性が低下するため、本発明においてはNは好ましくない元素である。また、この炭窒化物は固溶温度が高いため、熱間鍛造やその後の焼準での加熱でVがマトリックスに固溶しにくくなり、鋼中のN含有量が高いと窒化による前記Vの効果が十分に得られない。そのため、本発明においては、不純物中のNの含有量を0.008%以下とした。なお、不純物中のNの好ましい含有量は0.006%以下である。
 O:0.0030%以下
 Oは、介在物起点の疲労破壊の原因となる酸化物系の介在物を形成して、耐ピッチング性や曲げ疲労強度を低下させてしまう。特に、Oの含有量が0.0030%を超えると、上記疲労強度の低下が著しくなる。そのため、本発明においては、不純物中のOの含有量を0.0030%以下とした。なお、不純物中のOの好ましい含有量は0.0020%以下である。
 このような鋼部材に後述の窒化処理を行うと、鉄窒化化合物層のビッカース硬さ900以下、鉄窒化化合物層直下の母材のビッカース硬さが700以上、且つ両者の差が150以下である鋼部材を得ることが容易にできる。鉄窒化化合物層のビッカース硬さが900を超えると、なじみ性がなく加工によって生じた微小凹凸が残存するため、局所的な応力が高くなり疲労強度の向上は期待できない。また、鉄窒化化合物層直下の母材のビッカース硬さが700未満では鉄窒化化合物層との硬度差が大きくなり剥離が生じ易くなるととともに、鉄窒化化合物層の摩耗消失後に露出した母材の摩耗が急激に進行してしまい、歯形の悪化により、音・振動が悪化するとともに損傷が発生する。一方、両者の硬度差が150以上では、境界部から剥離しやすくなり疲労強度の向上は期待できない。
 なお、本発明において、「鉄窒化化合物層」とは、ガス軟窒化処理によって形成された鋼部材表面のγ’相-FeNやε相-Fe2-3Nに代表される鉄の窒化化合物をいう。鉄窒化化合物層は、γ’相、ε相であり、層状態として析出している。本発明では、鋼部材(母材)の表面に、これらγ’相、ε相からなる鉄窒化化合物層が、厚さ2~17μmの範囲で形成されている。一方、鋼部材(母材)は、先に説明した所定の成分範囲を有する鋼からなるが、鉄窒化化合物層直下(鉄窒化化合物層と鋼部材(母材)との境界面に接している位置での鋼部材(母材))は、鋼中に合金炭窒化物が微細に整合析出した状態になっている。鉄窒化化合物層直下では、このように合金炭窒化物が析出しているので、母材芯部に比べ硬度が高くなっている。
 本発明の窒化鋼部材は、前記鋼部材をガス雰囲気中で窒化処理することにより、表面にγ’相を主成分とする鉄窒化化合物層が形成されている。また、鉄窒化化合物層の厚さが、2~17μmである。鉄窒化化合物層の厚さが2μm未満では薄すぎて疲労強度向上は限定的と考えられる。一方、鉄窒化化合物層の厚さが17μmを超えるとγ’相の窒素拡散速度が遅いことにより、鉄窒化化合物層の窒素濃度が厚さの増加とともに高くなりε相の割合が増加する。その結果、鉄窒化化合物層全体が脆くなることから剥離が発生し易くなり疲労強度向上は期待できない。前記鉄窒化化合物層の厚さが4~16μmであることが、前記理由および量産時の膜厚のばらつきを考慮した場合、さらに好ましい。
 本発明の窒化鋼部材の耐ピッチング性と曲げ疲労強度が優れる理由は次の通り考えられる。γ’相の結晶構造はFCC(面心立方晶)であり、12個のすべり系を有するため、結晶構造自体が靭性に富んでいる。さらに、微細な等軸組織を形成するため、疲労強度が向上すると考えられる。これに対し、ε相の結晶構造はHCP(六方最密充填)であり、底面すべりが優先されるため、結晶構造自体に「変形しにくく脆い」という性質があると考えられる。また、ε相は粗大な柱状晶を形成しており、疲労強度には不利な組織形態をしている。
 本発明の窒化鋼部材の表面に形成された鉄窒化化合物層のX線管球Cuを使用したX線回折(XRD)プロファイルによる2θ:41.2度付近に出現するγ’相-Fe4Nの(111)結晶面のX線回折ピーク強度IFe4N(111)と2θ:43.7度付近に出現するε相-Fe2-3Nの(111)結晶面のX線回折ピーク強度IFe3N(111)において、IFe4N(111)/{IFe4N(111)+IFe3N(111)}で表される強度比が0.5以上となる。前述の通り、「鉄窒化化合物層」は、ε相-Fe2-3N及び/またはγ’相-FeN等からなる層であり、鋼部材表面についてX線回折分析を実施したとき、前記X線ピーク強度の比を測定することによりγ’相が主成分であるか否かを判定する。本発明においては前記強度比が0.5以上であれば、窒化鋼部材の表面に形成された鉄窒化化合物層はγ’相が主成分であると判定することができ、窒化鋼部材の耐ピッチング性と曲げ疲労強度が優れたものとなる。前記強度比は0.8以上が好ましく、さらには0.9以上であることがより好ましい。
 ここで、鋼部材に施されるガス雰囲気中での窒化処理は、例えば図1に示される熱処理装置1を用いて行われる。図1に示すように、熱処理装置1は、搬入部10、加熱室11、冷却室12、搬出コンベア13を有している。搬入部10に置かれたケース20内には、例えば自動変速機に用いられる歯車などの前述の鋼部材が収納されている。加熱室11の入り口側(図1において左側)には、開閉自在な扉21を備えた入り口フード22が取り付けられている。
 加熱室11内には、ヒータ25が設けられている。加熱室11内には、Nガス、NHガス、Hガスからなる窒化処理ガスが導入され、加熱室11内に導入された窒化処理ガスがヒータ25で所定の温度にされて、加熱室11内に搬入された鋼部材の窒化処理が行われる。加熱室11の天井には、加熱室11内の処理ガスを攪拌し、鋼部材の加熱温度を均一化させ、また鋼部材にあたる処理ガスの風速を制御するファン26が装着されている。加熱室11の出口側(図1において右側)には、開閉自在な中間扉27が取り付けられている。
 冷却室12には、鋼部材が収納されたケース20を昇降させるエレベータ30が設けられている。冷却室12の下部には、冷却用の油31を溜めた油槽32が設けられている。冷却室12の出口側(図1において右側)には、開閉自在な扉35を備えた出口フード36が取り付けられている。
 かかる熱処理装置1において、鋼部材が収納されたケース20が、プッシャー等により、搬入部10から加熱室11内に搬入される。なお、窒化処理する前に、被処理材(窒化鋼部材)の汚れや油を除去するための洗浄(前処理)を行うことが好ましい。例えば、炭化水素系の洗浄液で油などを溶解置換させ、蒸発させることで脱脂乾燥させる真空洗浄、アルカリ系の洗浄液で脱脂処理するアルカリ洗浄などが好ましい。
 そして、このように前処理された鋼部材を収納したケース20が加熱室11内に搬入された後、加熱室11内に処理ガスが導入される。さらに、加熱室11内に導入された処理ガスがヒータ25で所定の高温度にされて、ファン26で処理ガスを攪拌しながら加熱室11内に搬入された鋼部材の窒化処理が行われる。
(昇温工程)
 ここで、加熱室11内には、例えば図2に示すように、先ず、20分間、Nガス0.04m/minとNHガス0.01m/minが導入され、ヒータ25で加熱されて、600℃の窒化処理温度まで昇温する工程が行われる。昇温工程は加熱中に鋼部材の極端な酸化を防止できれば精密な雰囲気の制御の必要はなく、例えば不活性ガスであるNやAr雰囲気中で加熱を行っても良い。また上記のようにNHガス等を適量混合して還元性の雰囲気としても良い。
(窒化処理工程)
 その後、NHガスとHガスが流量を制御されて所定の窒化処理ガス組成になるように加熱室11内に導入され、ヒータ25で加熱されて、例えば120分間、600℃に均熱され、鋼部材を窒化処理する工程が行われる。鋼部材を窒化処理する工程では、加熱室11内のNHガスの分圧、Hガスの分圧及びNガスの分圧が所定の範囲に制御される。これらのガス分圧は加熱室11に供給するNHガスの流量とHガスの流量により調整することができる。なお、Nガスは窒化処理温度においてNHガスが分解することで得られる。さらにNガスを添加してもよく、その流量を調整して前記ガス分圧に制御しても良い。
 鋼部材をガス軟窒化処理する工程は、加熱室11内に導入するNHガスの流量とHガスの流量が制御され、さらに必要に応じてNガスが導入され、鋼部材の加熱温度は500~620℃に維持されるのが好ましい。窒化処理温度が620℃よりも高いと部材の軟化、歪が増大する恐れがあり、500℃より低いと鉄窒化化合物層の形成速度が遅くなりコスト的に好ましくなく、またε相を形成しやすくなる。より好ましくは550~610℃である。
 窒化処理工程におけるガス分圧の比は、全圧を1とするとNH3ガスが0.08~0.34、H2ガスが0.54~0.82、N2ガスが0.09~0.18となるように制御する。H2ガスの分圧の比が0.54より小さいとε相が主成分の鉄窒化化合物が生成しやすく、0.82を超えると鉄窒化化合物の生成速度が非常に遅くなるか生成しなくなる恐れがある。また、NH3ガスの分圧の比が0.34より大きいとε相が主成分の鉄窒化化合物が生成しやすく、0.08より小さいと鉄窒化化合物の生成速度が非常に遅くなるか生成しなくなる恐れがある。なお、窒化処理工程における全圧は減圧あるいは加圧雰囲気でも良い。ただし、熱処理装置の製造コストや扱いやすさから略大気圧、例えば0.092~0.11MPaであることが好ましい。また、前記ガス分圧の比は、NH3ガスが0.09~0.20、H2ガスが0.60~0.80、N2ガスが0.09~0.17であることがさらに好ましい。
 本発明の窒化処理工程において、加熱室内のファンなどにより、窒化処理ガスが被処理物にあたるガスの流速(風速)、すなわち被処理物表面に接触する窒化処理ガスの相対的な速度、を1m/s以上、さらには1.5m/s以上に制御することが好ましい。1m/sより流速が小さいと鉄窒化化合物の形成にムラが発生したり、γ’相の鉄窒化化合物が形成されない恐れもある。また、流速は大きい方が鉄窒化化合物層を均一に形成することができるが、流速を大きくするためにはファンの能力などを上げるなどの装置上の対応が必要である。ただし装置作製のコスト、大きさなどを考えると流速は大きくても6m/s程度であることが好ましい。なお、従来のガス軟窒化処理においては、例えば流速が0m/sでもε相が主成分の窒化化合物は不具合なく形成される。
(冷却工程)
 そして、鋼部材を窒化処理する工程が終了すると、次に、鋼部材が収納されたケース20が冷却室12に搬送される。そして、冷却室12では、エレベータ30によって、鋼部材が収納されたケース20が油槽32に沈められて、鋼部材の冷却が例えば15分間行われる。そして、冷却が終了すると、鋼部材が収納されたケース20が搬出コンベア13に搬出される。こうして、窒化処理が終了する。なお、冷却工程における冷却は、上記油冷である必要はなく、空冷、ガス冷、水冷などの方法で行ってもよい。
 かかる条件で窒化処理が行われることにより、表面にγ’相を主成分とする鉄窒化化合物層を有する窒化鋼部材を得ることができる。こうして得られた鋼部材は、内部に窒素拡散層および窒化物が形成されて強化されると共に、表面にγ’相リッチな鉄窒化化合物層が形成されて、十分な耐ピッチング性と曲げ疲労強度を有する。
 なお、鉄窒化化合物の厚さは、本発明の窒化処理ガス雰囲気中において、時間と温度で制御することができる。すなわち時間を長くすると鉄窒化化合物は厚くなり、温度を高くすると鉄窒化化合物の生成スピードが大きくなる。なお、窒化処理の時間は、0.5時間を超え、10時間未満の範囲とすることが望ましい。
 また、浸炭や浸炭窒化処理と比較して本発明の窒化処理はオーステナイト変態温度以下での処理であるため歪量が小さい。また、浸炭・浸炭窒化処理で必須工程である焼き入れ工程が省略できるため、歪ばらつき量も小さい。その結果、低歪で、かつ、高強度・低歪窒化鋼部材を得ることができた。
 また、疲労強度は、部材表面に形成される鉄窒化化合物層の組成(γ’相またはε相)、および、鉄窒化化合物層の硬度とその直下母材の硬度が支配的であると考えられる。以下実施例に示す。
 各実施例および各比較例の鋼部材および鉄窒化化合物層の成分、Hs値、Hc値、ビッカース硬さを表1に示す。製造条件を表2に示す。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実施例1]
 質量%で、C:0.07%、Si:0.19%、Mn:1.28%、P:0.015%、S:0.025%、Cr:1.32%、Mo:0.34%、V:0.23%、Al:0.030%、N:0.0050%、O:0.0015%、残部がFeおよび不純物の組成を有し、Hs値が2.34、Hc値が3.60である、鋼部材のサンプルを準備した。また、サンプルの形状は、剥離強度用、窒化品質確認用(円板状)、ローラーピッチング試験用、小野式回転曲げ疲労試験用、ギヤ歪量測定用に合わせて準備した。
 次に、ガス軟窒化の前処理として各サンプルについて真空洗浄を実施した。
 次に、サンプルにガス雰囲気中での窒化処理を実施した。まず、昇温工程においては、炉内(加熱室内)に供給するNHガスの流量を0.01m/min、N2ガスの流量を0.04m/minとして、窒化処理まで昇温した。続いて実施した窒化処理の条件としては、温度610℃、窒化時間は5h(時間)とし、NHガスとHガス及びN2ガスの炉内へのそれぞれの供給ガス流量を調整し、炉内の全圧を1としたときに、NHガスの分圧の比を0.09(NHガスの分圧を0.0091MPa)、Hガスの分圧の比を0.77(Hガスの分圧を0.078MPa)、N2ガスの分圧の比を0.14(Nガスの分圧を0.014MPa)とした。なお、窒化処理時の炉内の全圧は大気圧であり、窒化ガスをファンの回転数をあげて強攪拌することにより試験片に接触する炉内ガスのガス流速(風速)を2~2.6m/s(秒)とした。その後、130℃の油に各試験片を浸漬して油冷し各評価を行った。
 なお、窒化処理ガス中のNH分圧の分析は「ガス軟窒化炉NH分析計」(HORIBA製、形式FA-1000)、H分圧の分析は「連続式ガス分析計」(ABB製、形式AO2000)で実施し、残部をN分圧とした。また、ガス流速は「風車式風速計」(testo製、形式350M/XL)で予め窒化処理前に炉内温度が室温である以外は窒化処理工程と同じ条件(窒化処理ガス組成など)で測定した。本発明においては、この値をガス流速と規定する。
[実施例2]
 質量%で、C:0.07%、Si:0.16%、Mn:1.27%、P:0.025%、S:0.014%、Cr:0.90%、Mo:0.20%、Al:0.027%、N:0.0080%、O:0.0009%、残部がFeおよび不純物の組成を有し、Hs値が1.31、Hc値が2.64である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理を実施例1と同様の条件で実施し、鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[実施例3]
 質量%で、C:0.09%、Si:0.18%、Mn:0.70%、P:0.009%、S:0.014%、Cr:1.20%、V:0.13%、Al:0.030%、N:0.0045%、O:0.0016%、残部がFeおよび不純物の組成を有し、Hs値が1.73、Hc値が2.59である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理を実施例1と同様の条件で実施し、鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[実施例4]
 質量%で、C:0.10%、Si:0.15%、Mn:1.10%、P:0.007%、S:0.015%、Cr:1.20%、V:0.15%、Al:0.030%、N:0.0048%、O:0.0010、残部がFeおよび不純物の組成を有し、Hs値が1.83、Hc値が2.83である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理を実施例1と同様の条件で実施し、鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[実施例5]
 質量%で、C:0.09%、Si:0.14%、Mn:1.26%、P:0.009%、S:0.015%、Cr:1.27%、Al:0.115%、N:0.0044%、O:0.0010%、残部がFeおよび不純物の組成を有し、Hs値が1.97、Hc値が3.32である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理を実施例1と同様の条件で実施し、鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[実施例6]
 質量%で、C:0.07%、Si:0.19%、Mn:1.28%、P:0.015%、S:0.025%、Cr:1.32%、Mo:0.34%、V:0.23%、Al:0.030%、N:0.0050%、O:0.0015%、残部がFeおよび不純物の組成を有し、Hs値が2.34、Hc値が3.60である以外は実施例1と同様にサンプルを準備した。次に、窒化処理時間を2.5hとした以外は、実施例1と同様の前処理および窒化処理条件で窒化処理を実施し、鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[実施例7]
 質量%で、C:0.07%、Si:0.19%、Mn:1.28%、P:0.015%、S:0.025%、Cr:1.32%、Mo:0.34%、V:0.23%、Al:0.030%、N:0.0050%、O:0.0015%、残部がFeおよび不純物の組成を有し、Hs値が2.34、Hc値が3.60である以外は実施例1と同様にサンプルを準備した。次に、窒化処理時間を8hとした以外は、実施例1と同様の前処理および窒化処理条件で窒化処理を実施し、鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[比較例1]
 質量%で、C:0.34%、Si:0.16%、Mn:0.85%、P:0.020%、S:0.014%、Cr:0.90%、Mo:0.20%、Al:0.030%、N:0.0110%、O:0.0015%、残部がFeおよび不純物の組成を有し、Hs値が0.29、Hc値が2.84である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理を実施例1と同様の条件で実施し、鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[比較例2]
 質量%で、C:0.19%、Si:0.15%、Mn:0.84%、P:0.019%、S:0.014%、Cr:1.68%、Mo:0.36%、V:0.19%、Al:0.031%、N:0.0095%、O:0.0015%、残部がFeおよび不純物の組成を有し、Hs値が2.20、Hc値が4.14である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理を実施例1と同様の条件で実施し、鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[比較例3]
 質量%で、C:0.20%、Si:0.25%、Mn:0.72%、P:0.018%、S:0.017%、Cr:1.05%、Al:0.030%、N:0.0120%、O:0.0012%、残部がFeおよび不純物の組成を有し、Hs値が0.90、Hc値が2.49である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理を実施例1と同様の条件で実施し、鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[比較例4]
 質量%で、C:0.20%、Si:0.25%、Mn:0.72%、P:0.017%、S:0.016%、Cr:1.05%、Mo:0.20%、Al:0.030%、N:0.0110%、O:0.0011%、残部がFeおよび不純物の組成を有し、Hs値が0.93、Hc値が2.79である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理を実施例1と同様の条件で実施し、鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[比較例5]
 質量%で、C:0.07%、Si:0.19%、Mn:1.28%、P:0.015%、S:0.025%、Cr:1.32%、Mo:0.34%、V:0.23%、Al:0.030%、N:0.0050%、O:0.0015%、残部がFeおよび不純物の組成を有し、Hs値が2.34、Hc値が3.60である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理の昇温工程を実施例1と同様の条件で実施し、窒化処理の条件としては、温度570℃、窒化時間は2.5h(時間)とし、NHガスとHガス及びN2ガスの炉内へのそれぞれの供給ガス流量を調整し、炉内の全圧を1としたときに、NHガスの分圧の比を0.4(NHガスの分圧を0.041MPa)、Hガスの分圧の比を0.28(Hガスの分圧を0.028MPa)、N2ガスの分圧の比を0.32(Nガスの分圧を0.032MPa)とした以外は実施例1と同様の方法で窒化処理を行い鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[比較例6]
 質量%で、C:0.09%、Si:0.14%、Mn:1.26%、P:0.009%、S:0.015%,Cr:1.27%、Al:0.115%、N:0.0044%、O:0.0010%、残部がFeおよび不純物の組成を有し、Hs値が1.97、Hc値が3.32である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理の昇温工程を実施例1と同様の条件で実施し、窒化処理の条件としては、温度570℃、窒化時間は2.5h(時間)とし、NHガスとHガス及びN2ガスの炉内へのそれぞれの供給ガス流量を調整し、炉内の全圧を1としたときに、NHガスの分圧の比を0.4(NHガスの分圧を0.041MPa)、Hガスの分圧の比を0.28(Hガスの分圧を0.028MPa)、N2ガスの分圧の比を0.32(Nガスの分圧を0.032MPa)とした以外は実施例1と同様の方法で窒化処理を行い鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[比較例7]
 質量%で、C:0.20%、Si:0.25%、Mn:0.72%、P:0.017%、S:0.016%、Cr:1.05%、Mo:0.20%、Al:0.030%、N:0.0110%、O:0.0011%、残部がFeおよび不純物の組成を有し、Hs値が0.93、Hc値が2.79である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理の昇温工程を実施例1と同様の条件で実施し、窒化処理の条件としては、温度570℃、窒化時間は2.5h(時間)とし、NHガスとHガス及びN2ガスの炉内へのそれぞれの供給ガス流量を調整し、炉内の全圧を1としたときに、NHガスの分圧の比を0.4(NHガスの分圧を0.041MPa)、Hガスの分圧の比を0.28(Hガスの分圧を0.028MPa)、N2ガスの分圧の比を0.32(Nガスの分圧を0.032MPa)とした以外は実施例1と同様の方法で窒化処理を行い鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[比較例8]
 質量%で、C:0.46%、Si:0.26%、Mn:0.29%、P:0.022%、S:0.014%、Cr:1.50%、Mo:0.23%、Al:0.950%、N:0.0045%、O:0.0007%、残部がFeおよび不純物の組成を有し、Hs値が3.69、Hc値が7.57である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理の昇温工程を実施例1と同様の条件で実施し、窒化処理の条件としては、温度570℃、窒化時間は2.5h(時間)とし、NHガスとHガス及びN2ガスの炉内へのそれぞれの供給ガス流量を調整し、炉内の全圧を1としたときに、NHガスの分圧の比を0.4(NHガスの分圧を0.041MPa)、Hガスの分圧の比を0.28(Hガスの分圧を0.028MPa)、N2ガスの分圧の比を0.32(Nガスの分圧を0.032MPa)とした以外は実施例1と同様の方法で窒化処理を行い鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[比較例9]
 質量%で、C:0.37%、Si:0.93%、Mn:0.46%、P:0.022%、S:0.017%、Cr:5.00%、Mo:1.25%、V:1.00%、Al:0.030%、N:0.0085%、O:0.0039%、残部がFeおよび不純物の組成を有し、Hs値が7.46、Hc値が11.04である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理の昇温工程を実施例1と同様の条件で実施し、窒化処理の条件としては、温度570℃、窒化時間は2.5h(時間)とし、NHガスとHガス及びN2ガスの炉内へのそれぞれの供給ガス流量を調整し、炉内の全圧を1としたときに、NHガスの分圧の比を0.4(NHガスの分圧を0.041MPa)、Hガスの分圧の比を0.28(Hガスの分圧を0.028MPa)、N2ガスの分圧の比を0.32(Nガスの分圧を0.032MPa)とした以外は実施例1と同様の方法で窒化処理を行い鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[比較例10]
 質量%で、C:0.10%、Si:0.15%、Mn:1.10%、P:0.007%、S:0.015%、Cr:1.20%、V:0.15%、Al:0.030%、N:0.0048%、O:0.0010%、残部がFeおよび不純物の組成を有し、Hs値が1.83、Hc値が2.83である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理の昇温工程を実施例1と同様の条件で実施し、窒化処理の条件としては、窒化時間を0.5h(時間)とした以外は実施例1と同様の方法で窒化処理を行い鉄窒化化合物をサンプルの表面に形成した後、各評価を行った。
[比較例11]
 質量%で、C:0.10%、Si:0.15%、Mn:1.10%、P:0.007%、S:0.015%、Cr:1.20%、V:0.15%、Al:0.030%、N:0.0048%、O:0.0010%、残部がFeおよび不純物の組成を有し、Hs値が1.83、Hc値が2.83である以外は実施例1と同様にサンプルを準備した。次に、前処理および窒化処理の昇温工程を実施例1と同様の条件で実施し、窒化処理の条件としては、窒化時間を10h(時間)とした以外は実施例1と同様の方法で窒化処理を行い鉄窒化化合物をサンプルの表面に形成した後、各評価を行った。
[比較例12]
 質量%で、C:0.20%、Si:0.25%、Mn:0.72%、P:0.017%、S:0.016%、Cr:1.05%、Mo:0.20%、Al:0.030%、N:0.0110、O:0.0011%、残部がFeおよび不純物の組成を有し、Hs値が0.93、Hc値が2.79である以外は実施例1と同様にサンプルを準備した。次に、前処理を実施例1と同様の条件で実施した後、浸炭処理を実施したサンプルを作成し、各評価を行った。
[比較例13]
 質量%で、C:0.07%、Si:0.19%、Mn:1.28%、P:0.015%、S:0.025%、Cr:1.32%、Mo:0.34%、V:0.23%、Al:0.030%、N:0.0050%、O:0.0015%、残部がFeおよび不純物の組成を有し、Hs値が2.34、Hc値が3.60である、鋼部材のサンプルを準備した。次に、前処理および窒化処理の昇温工程を実施例1と同様の条件で実施し、窒化処理の条件としては、温度600℃、窒化時間は2h(時間)とし、NHガスとHガス及びN2ガスの炉内へのそれぞれの供給ガス流量を調整し、炉内の全圧を1としたときに、NHガスの分圧の比を0.16(NHガスの分圧を0.016MPa)、Hガスの分圧の比を0.72(Hガスの分圧を0.073MPa)、N2ガスの分圧の比を0.12(Nガスの分圧を0.012MPa)とし、ガス流速(風速)を0~0.5m/s(秒)とした、以外は実施例1と同様の方法で窒化処理を行い鉄窒化化合物をサンプルの表面に形成したのち、各評価を行った。
[評価方法]
1.鉄窒化化合物層の厚さ測定
 円板状の試験片を切断機で切断し、エメリー紙で断面を研磨し、バフで研磨面を鏡面仕上げした。3%硝酸アルコールで腐食した後、金属(光学)顕微鏡を用いて倍率400倍で前記断面を観察し、鉄窒化化合物層の厚さ測定した。鉄窒化化合物層は白層とも称され、母材との組織が異なるとともに白く見えるので視覚的に判別できる。
2.X線回析
 X線管球はCuを使用し、電圧:40kV、電流:20mA、走査角度2θ:20~80°、スキャンステップ1°/minで円板状の試験片の表面のX線回折を行った。
 このとき、X線回折プロファイルによる2θ:41.2度付近に出現するFe4Nの(111)結晶面のX線回折ピーク強度IFe4N(111)と、2θ:43.7度付近に出現するFe3Nの(111)結晶面のX線回折ピーク強度IFe3N(111)において、IFe4N(111)/{IFe4N(111)+IFe3N(111)}で表されるピーク強度の強度比(XRD回析強度比)を測定した。
3.剥離強度
 剥離強度はスクラッチ試験機を用い、先端曲率100μmの円錐形ダイヤモンド圧子にて、荷重60N、往復回数5回、無潤滑状態にて往復摺動させ、剥離あるいは破壊の状態を観察した。図3に示すように、剥離試験のサンプルはローラーピッチング試験の小ローラーを用いており、Φ26mm試験部を軸方向に摺動させ、試験を行った。
 軸方向の摺動とは、図3中の矢印に示すように、軸の頂部を摺動させて試験した。剥離強度は、ギヤ歯面の耐剥離性に寄与し耐ピッチング性に影響する。ギヤ歯面が剥離することにより、母材の露出に伴う強度低下、およびギヤ歯面の凹凸による振動・ノイズ悪化が発生する。
4.ローラーピッチング試験
 RP201型疲労強度試験機を用い、すべり率:-40%、潤滑油:ATF(オートマチックトランスミッション用潤滑油)、潤滑油温度:90℃、潤滑油の量:0.002m/min、大ローラークラウニング:R700の条件で試験した。図4に示すように、小ローラー100に大ローラー101を加重Pで押し当てながら、小ローラー100を回転させた。小ローラー回転数:1560rpm、面圧:1800MPaの条件、また、大・小のローラーピッチング試験片は同一材料で同一の窒化処理を行った。
5.小野式回転曲げ疲労試験
 小野式回転曲げ疲労試験機にて、下記の試験条件で評価した。図5に示すように、曲げモーメントMを加えた状態で試験片102を回転させることにより、上側で圧縮応力、下側で引っ張り応力を試験片102に繰り返し加えて疲労試験を行った。試験条件は次の通り。
温度:室温
雰囲気:大気中
回転数:3500rpm
6.ギヤ歪量
 評価のために、機械加工により、外形φ120mm、歯先内径φ106.5mm、ギヤ幅30mm、モジュール1.3、歯数78、ねじれ角/圧力角20度の内歯歯車を製作し、前記窒化処理、もしくは浸炭処理を施し、歯形の変化を測定し、評価した。評価としての歯形の、歯すじ傾きを用いた。歯すじの傾きは、1個のギヤにおいて90度ごとに4歯測定し、且つ、10個のギヤを同様に測定し最大幅を歯すじの傾きばらつきとした。
7.ビッカース硬さの測定方法
(1)鉄窒化化合物層
 円板状の試験片を加工面(表面)に垂直に切断し、切断面を研磨仕上げして被検面とする。切断又は研磨の際に、被検面の硬さに影響を及ぼさないよう、また端部が欠けたり、丸くならないよう充分に注意した。
 測定は、JIS Z 2244(2003)記載の「ビッカース硬さ試験・試験方法」を基本として行う。試験装置はミツトヨ製の微小硬さ試験機を用い、試験力は98.07mN(1g)とし、化合物層厚さに対し中央に圧痕を付与する。圧痕はSEMにて観察し、圧痕付近の割れがないことを確認するとともに、大きさを測定し、ビッカース硬度に換算する。また、測定は5箇所行い平均値を用いる。なお、化合物層厚さの薄い実施例6においては、(化合物層厚さが薄いため、)試験荷重を4.903mNにて圧痕を作成しSEM観察・測定を行った。本発明では5μm以下の化合物層厚さのときに、試験荷重を4.903mNとしてビッカース硬さを測定する。測定に用いたSEMの一例を図6に示す。
(2)鉄窒化化合物層直下の母材
 前記鉄窒化化合物層のビッカース硬さと同様に、試験片を加工面(表面)に垂直に切断し、切断面を研磨仕上げして被検面とする。切断又は研磨の際に、被検面の硬さに影響を及ぼさないよう、また端部が欠けたり、丸くならないよう充分に注意した。
 測定は、JIS Z 2244(2003)記載の「ビッカース硬さ試験・試験方法」を基本として行う。試験力は1.96Nとし、化合物層と母材の境界を0とし、母材内部方向25μmの深さにて測定する。また、測定は5箇所行い、平均値を用いる。
(評価結果)
1.鉄窒化化合物層の厚さ測定
窒化品質確認用(円板状)のサンプルを切断し、断面を顕微鏡で観察して鉄窒化化合物層の厚さを測定した。
 実施例における鉄窒化化合物層の厚さは、実施例1~5は10~12μm、実施例6は3μm、実施例7は16μmであった。
 また、比較例における鉄窒化物層の厚さは、比較例1~9は9~13μm、比較例10は1μm、比較例11は20μmであった。比較例13は0~0.5μmであった。
2.鉄窒化化合物および鉄窒化化合物層直下の母材のビッカース硬さ
 図7に示すように、鉄窒化化合物層の厚さを測定したサンプルについて、断面のビッカース硬さを測定した。
 ビッカース硬さHVは実施例1が、鉄窒化化合物層直下の母材が812、鉄窒化化合物層が871、硬度差が59であった。同様に鉄窒化化合物層直下の母材、鉄窒化化合物層、硬度差の順にビッカース硬さを記すと、実施例2が740、776、36、実施例3が715、790、75、実施例4が785、828、43、実施例5が749、841、92、実施例6は803、878、75、実施例7が798、880、82であった。同様に比較例1のビッカース硬さは690、765、75であり、比較例2は780、917、137、比較例3は648、759、111、比較例4は669、766、97、比較例5は748、930、182、比較例6は761、965、204、比較例7は731、911、180、比較例8は855、1102、247、比較例9は890、1095、205、比較例11は778、951、173であった。なお、比較例10は、鉄窒化化合物層直下の母材のビッカース硬さが781であり、鉄窒化化合物層は、層厚さが1μmと薄いため測定が不可であった。また、比較例12は、浸炭処理品であり、表層母材のビッカース硬さは745であった。比較例13は、鉄窒化化合物層直下の母材のビッカース硬さが813であり、鉄窒化化合物層は、層厚さが0~0.5μmと薄いため測定できなかった。
3.X線回折による化合物層の分析
 実施例におけるX線回折の強度比は、実施例1~実施例7は0.98以上であった。よって、実施例1~7は、いずれも強度比は0.5以上であり、鉄窒化化合物層はγ’相が主成分であると判定された。
 また、比較例におけるX線回折の強度比はそれぞれ、比較例1~4が0.98以上、比較例5~9が0.01、比較例10が0.98以上、比較例11が0.98以上であった。比較例13は0.01であった。
4.ローラーピッチング試験
 ローラーピッチング試験の結果、実施例1~実施例7および比較例1、12においては、面圧1800MPaにおいて1.0×10サイクル試験後においてもサンプル表面の鉄窒化化合物層の剥離は認められず、本発明で目標とする疲労強度条件をクリアした。
 これに対し、比較例2~11のサンプルは、1.0×10サイクルに到達する前にサンプル表面に損傷、或いは剥離の不具合が発生した。比較例2は9.5×10サイクル後に損傷が発生し、比較例3は6.2×10サイクル後に損傷が発生、比較例4は6.8×10サイクル後に損傷が発生した。比較例5~7は1.0×10サイクル後に鉄窒化化合物の剥離が発生した。また、比較例8、9は1.0×10サイクル後に鉄窒化化合物の剥離が発生した。さらに比較例10は4.2×10サイクル後に損傷が発生し、比較例11は5.5×10サイクル後に損傷が発生した。また、比較例12(浸炭処理)のサンプルは1.0×10で表面の損傷は発生していない。以上比較例2~11は、いずれも本発明の目的とする疲労強度条件を満たさなかった。なお、損傷発生と剥離発生の違いは、化合物層の剥離損傷を「剥離発生」とし、化合物層剥離以外の損傷(ピッチング・スポーリング損傷)を「損傷発生」とした。
 なお、比較例13は評価しなかったが、鉄窒化化合物がεリッチ相であり厚さも薄いため、特性としては鉄窒化化合物層の薄い比較例10と同等またはそれ以下と考えられる。
5.小野式回転曲げ疲労試験
 回転曲げ疲労試験の結果、実施例1では1.0×10サイクルにおける強度が520MPaであった。同様に実施例3では440MPa、実施例4では470MPaであった。比較例7では320MPaであり、比較例12では430MPaであった。本発明による窒化処理が高い曲げ疲労強度を有することが明らかである。
 なお、比較例13は評価しなかったが、鉄窒化化合物がεリッチ相であり厚さも薄いため、特性としては鉄窒化化合物層の薄い比較例10と同等またはそれ以下と考えられる。
6.歪量
 歪量の評価用ギヤ試験片において、歯すじ修正量は4μm(実施例1)、8μm(実施例2)、5μm(実施例3)、8μm(比較例5)、6μm(比較例6)、7μm(比較例7)、38μm(比較例12)であった。
 浸炭処理した比較例12と比べて、実施例1~3の本願発明の歪量は、従来の窒化処理である比較例5~7と同等であり、歪量が小さいまま高い疲労強度、曲げ疲労強度を達成できていることを確認した。
 実施例1~7と比較例1~12の鋼材種類の成分組成を、表1に示す。実施例1~7と比較例1~12の鋼材種類、窒化処理条件である温度、処理時間、Nガス分圧、NHガス分圧、Hガス分圧および化合物層の形態、XRD回折強度比、厚さを表2にまとめて示す。実施例1~7と比較例1~12の特性(剥離強度、ローラーピッチング試験、小野式回転曲げ疲労試験など)は、表3に示す結果となった。
 スクラッチ試験の結果、実施例1~実施例7、および比較例10は鉄窒化化合物層の剥離が認められず、本発明により高い耐剥離特性を有することが明らかになった。これに対し、比較例1~4、および比較例11は剥離が数箇所発生、比較例5~9は10箇所以上の剥離が発生した。
 剥離強度は、ギヤ歯面の耐剥離性に寄与し耐ピッチング性に影響する。剥離強度が小さいと、ギヤ歯面が剥離することにより、母材の露出に伴う強度低下、およびギヤ歯面の凹凸による振動・ノイズ悪化につながる。
[窒化鋼部材の芯部硬さ]
 以上のように、本発明の窒化鋼部材は、鉄窒化化合物層のビッカース硬さが900以下であり、鉄窒化化合物層直下の母材のビッカース硬さが700以上であるが、窒化鋼部材の芯部硬さが低いと、負荷が加わった際に内部で塑性変形が生じ、内部で発生した亀裂により歯面損傷が発生し、耐ピッチング性が低下してしまう。窒化鋼部材で内部の塑性変形を抑制するには、ビッカース硬さで150以上の芯部硬さであることが好ましい。そのため、本発明の窒化鋼部材の芯部硬さはビッカース硬さで150以上が好ましい。芯部硬さの好ましい下限はビッカース硬さで170である。各実施例および各比較例の芯部硬さを表4に示す。なお、芯部硬さの上限は特に規定する必要はないが、本発明の上限はビッカース硬さで350程度である。
Figure JPOXMLDOC01-appb-T000004
 
 本発明は、鋼の窒化技術に有用である。
1 熱処理装置
10 搬入部
11 加熱室
12 冷却室
13 搬出コンベア
20 ケース
21 扉
22 入り口フード
26 ファン
30 エレベータ
31 油
32 油槽
35 扉
36 出口フード
100 小ローラー
101 大ローラー
102 試験片

Claims (4)

  1.  質量%で、C:0.05~0.14%、Si:0.10~0.30%、Mn:0.4~1.4%、Cr:0.9~1.9%、Mo:0~0.50%、V:0~0.40%、Al:0.01~0.14%、S:0.005~0.030%であり、
    下記式1で表されるHs値が1.19以上であり、
    下記式2で表されるHc値が3.76以下であり、
    残部がFeおよび不純物からなり、不純物中のP、NおよびOがそれぞれP:0.030%以下、N:0.008%以下およびO:0.0030%以下である鋼部材の表面に鉄窒化化合物層が形成された窒化鋼部材であって、
     X線回折により該窒化鋼部材の表面について測定したFe4Nの(111)結晶面のX線回折ピーク強度IFe4N(111)と、Fe3Nの(111)結晶面のX線回折ピーク強度IFe3N(111)において、IFe4N(111)/{IFe4N(111)+IFe3N(111) }で表される強度比が0.5以上であり、
     前記鉄窒化化合物層のビッカース硬さが900以下、前記鉄窒化化合物層直下の母材のビッカース硬さが700以上、且つ前記鉄窒化化合物層のビッカース硬さと前記母材のビッカース硬さの差が150以下であり、
     前記鉄窒化化合物層の厚さが2~17μmであることを特徴とする、窒化鋼部材。
    Hs値=(-342.1×C+23.5×Mn+125.0×Cr+14.4×Mo+208.3×V+346.4×Al)/100 ・・・ 式1
    ただし、式1中のC、Mn、Cr、Mo、V、Alはそれぞれの元素の質量%の値。
    Hc値=(156.1×C+54.7×Mn+158.4×Cr+146.5×Mo+33.8×V+418.6×Al)/100 ・・・ 式2
    ただし、式2中のC、Mn、Cr、Mo、V、Alはそれぞれの元素の質量%の値。
  2. 変速機に用いられる歯車であることを特徴とする、請求項1に記載の窒化鋼部材。
  3.  質量%で、C:0.05~0.14%、Si:0.10~0.30%、Mn:0.4~1.4%、Cr:0.9~1.9%、Mo:0~0.50%、V:0~0.40%、Al:0.01~0.14%、S:0.005~0.030%であり、
    下記式1で表されるHs値が1.19以上であり、
    下記式2で表されるHc値が3.76以下であり、
    残部がFeおよび不純物からなり、不純物中のP、NおよびOがそれぞれP:0.030%以下、N:0.008%以下およびO:0.0030%以下である鋼部材に対し、全圧を1としたとき、NHガスの分圧の比を0.08~0.34、H2ガスの分圧の比を0.54~0.82、N2ガスの分圧の比を0.09~0.18とする窒化処理ガス雰囲気中で、鋼部材の表面における前記窒化処理ガスの流速を1m/s以上とし、500~620℃の温度で窒化処理することにより、前記鋼部材の表面に厚さが2~17μmの鉄窒化化合物層を形成することを特徴とする、窒化鋼部材の製造方法。
    Hs値=(-342.1×C+23.5×Mn+125.0×Cr+14.4×Mo+208.3×V+346.4×Al)/100 ・・・ 式1
    ただし、式1中のC、Mn、Cr、Mo、V、Alはそれぞれの元素の質量%の値。
    Hc値=(156.1×C+54.7×Mn+158.4×Cr+146.5×Mo+33.8×V+418.6×Al)/100 ・・・ 式2
    ただし、式2中のC、Mn、Cr、Mo、V、Alはそれぞれの元素の質量%の値。
  4.  前記窒化処理の時間を0.5時間を超え、10時間未満の範囲とすることを特徴とする、請求項3に記載の窒化綱部材の製造方法。
PCT/JP2013/061396 2012-04-18 2013-04-17 窒化鋼部材およびその製造方法 WO2013157579A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380020718.0A CN104334766B (zh) 2012-04-18 2013-04-17 氮化钢构件及其制造方法
US14/394,423 US9783879B2 (en) 2012-04-18 2013-04-17 Nitrided steel member and manufacturing method thereof
DE112013002114.5T DE112013002114B4 (de) 2012-04-18 2013-04-17 Nitriertes Stahl-Bauteil und Herstellungsverfahren dafür
MX2014012432A MX371079B (es) 2012-04-18 2013-04-17 Miembro de acero nitrurado y proceso de manufactura del mismo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012095035A JP5656908B2 (ja) 2012-04-18 2012-04-18 窒化鋼部材およびその製造方法
JP2012-095035 2012-04-18

Publications (1)

Publication Number Publication Date
WO2013157579A1 true WO2013157579A1 (ja) 2013-10-24

Family

ID=49383534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061396 WO2013157579A1 (ja) 2012-04-18 2013-04-17 窒化鋼部材およびその製造方法

Country Status (6)

Country Link
US (1) US9783879B2 (ja)
JP (1) JP5656908B2 (ja)
CN (1) CN104334766B (ja)
DE (1) DE112013002114B4 (ja)
MX (1) MX371079B (ja)
WO (1) WO2013157579A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194111A (ja) * 2015-03-31 2016-11-17 Dowaサーモテック株式会社 鋼部材の窒化処理方法
WO2018066666A1 (ja) 2016-10-05 2018-04-12 新日鐵住金株式会社 窒化処理部品及びその製造方法
JPWO2018066667A1 (ja) * 2016-10-05 2019-08-15 日本製鉄株式会社 窒化処理部品及びその製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2679701B1 (en) * 2011-02-23 2017-07-12 Dowa Thermotech Co., Ltd. Manufacturing method of a nitrided steel member
KR101552449B1 (ko) * 2011-08-31 2015-09-10 신닛테츠스미킨 카부시키카이샤 열간 단조용 압연 봉강 또는 선재
JP6378189B2 (ja) 2013-09-30 2018-08-22 Dowaサーモテック株式会社 鋼部材の窒化処理方法
JP6234803B2 (ja) * 2013-12-18 2017-11-22 曙ブレーキ工業株式会社 プレッシャプレートおよびこれを用いたブレーキパッド、並びにこれらの製造方法
US10570496B2 (en) 2015-03-25 2020-02-25 Nippon Steel Corporation Nitrided or soft nitrided part with excellent wear resistance and pitting resistance, and nitriding and soft nitriding method
JP6636829B2 (ja) * 2015-05-12 2020-01-29 パーカー熱処理工業株式会社 窒化鋼部材及び窒化鋼部材の製造方法
DE102015213068A1 (de) * 2015-07-13 2017-01-19 Robert Bosch Gmbh Verfahren zum Nitrieren eines Bauteils
JP6558997B2 (ja) * 2015-07-24 2019-08-14 キヤノン株式会社 トナー処理装置及びトナー製造方法
WO2017043594A1 (ja) 2015-09-08 2017-03-16 新日鐵住金株式会社 窒化処理鋼部品及びその製造方法
CN107923028B (zh) 2015-09-08 2020-01-24 日本制铁株式会社 氮化处理钢部件及其制造方法
WO2017130572A1 (ja) * 2016-01-26 2017-08-03 株式会社神戸製鋼所 硬質皮膜被覆部材
JP6762790B2 (ja) * 2016-01-26 2020-09-30 株式会社神戸製鋼所 硬質皮膜被覆部材
JP6477614B2 (ja) * 2016-06-30 2019-03-06 Jfeスチール株式会社 軟窒化用鋼および部品ならびにこれらの製造方法
EP3712287B1 (en) * 2017-11-16 2023-07-19 Nippon Steel Corporation Nitrided part
JP2021042398A (ja) * 2017-12-27 2021-03-18 パーカー熱処理工業株式会社 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置
JP7094540B2 (ja) * 2018-04-26 2022-07-04 パーカー熱処理工業株式会社 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置
JPWO2020090999A1 (ja) * 2018-11-02 2021-12-02 パーカー熱処理工業株式会社 窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置
JP7180300B2 (ja) * 2018-11-15 2022-11-30 日本製鉄株式会社 鋼部品及びその製造方法
JP7295378B2 (ja) * 2019-01-22 2023-06-21 日本製鉄株式会社 ガス軟窒化処理部品及びその製造方法
JP2022125513A (ja) 2021-02-17 2022-08-29 パーカー熱処理工業株式会社 鋼部材の窒化処理方法
TWI833179B (zh) 2021-03-31 2024-02-21 日商帕卡熱處理工業股份有限公司 鋼構件之氮化處理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097563A (ja) * 2000-09-21 2002-04-02 Nissan Motor Co Ltd 摺動部品及びその製造方法
JP2006028588A (ja) * 2004-07-16 2006-02-02 Toyota Motor Corp 窒化処理方法
JP2006225741A (ja) * 2005-02-21 2006-08-31 Sumitomo Metal Ind Ltd 歯車

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3399085A (en) 1965-12-22 1968-08-27 United States Steel Corp Method of nitriding
JP2549039B2 (ja) 1991-09-17 1996-10-30 新日本製鐵株式会社 歪の小さい高強度歯車の浸炭窒化熱処理方法
JPH0633219A (ja) * 1992-07-14 1994-02-08 Sumitomo Metal Ind Ltd 疲れ強さの高い鉄道用車軸およびその製造方法
JP3495590B2 (ja) 1997-06-30 2004-02-09 アイシン・エィ・ダブリュ株式会社 軟窒化処理を施した歯車並びにその製造方法
JP4009313B2 (ja) 2006-03-17 2007-11-14 株式会社神戸製鋼所 溶接性に優れた高強度鋼材およびその製造方法
US20090324825A1 (en) * 2008-05-30 2009-12-31 Evenson Carl R Method for Depositing an Aluminum Nitride Coating onto Solid Substrates
JP5336972B2 (ja) * 2009-08-03 2013-11-06 新日鐵住金株式会社 窒化用鋼および窒化部品
EP2679701B1 (en) 2011-02-23 2017-07-12 Dowa Thermotech Co., Ltd. Manufacturing method of a nitrided steel member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097563A (ja) * 2000-09-21 2002-04-02 Nissan Motor Co Ltd 摺動部品及びその製造方法
JP2006028588A (ja) * 2004-07-16 2006-02-02 Toyota Motor Corp 窒化処理方法
JP2006225741A (ja) * 2005-02-21 2006-08-31 Sumitomo Metal Ind Ltd 歯車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HISAHIKO YAMANAKA, ION CHIKKAHO, vol. 1ST ED., 10 July 1976 (1976-07-10), pages 70 - 71, 79, 141 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194111A (ja) * 2015-03-31 2016-11-17 Dowaサーモテック株式会社 鋼部材の窒化処理方法
US11359271B2 (en) 2015-03-31 2022-06-14 Dowa Thermotech Co., Ltd. Nitriding treatment method of steel member
WO2018066666A1 (ja) 2016-10-05 2018-04-12 新日鐵住金株式会社 窒化処理部品及びその製造方法
KR20190028520A (ko) 2016-10-05 2019-03-18 신닛테츠스미킨 카부시키카이샤 질화 처리 부품 및 그 제조 방법
JPWO2018066666A1 (ja) * 2016-10-05 2019-08-08 日本製鉄株式会社 窒化処理部品及びその製造方法
JPWO2018066667A1 (ja) * 2016-10-05 2019-08-15 日本製鉄株式会社 窒化処理部品及びその製造方法

Also Published As

Publication number Publication date
MX371079B (es) 2020-01-15
CN104334766B (zh) 2016-09-21
US20150053311A1 (en) 2015-02-26
US9783879B2 (en) 2017-10-10
JP2013221203A (ja) 2013-10-28
JP5656908B2 (ja) 2015-01-21
DE112013002114B4 (de) 2023-11-02
CN104334766A (zh) 2015-02-04
DE112013002114T5 (de) 2015-04-16
MX2014012432A (es) 2015-05-08

Similar Documents

Publication Publication Date Title
JP5656908B2 (ja) 窒化鋼部材およびその製造方法
JP6212190B2 (ja) 窒化鋼部材の製造方法
JP5617747B2 (ja) 窒化処理機械部品の製造方法
WO2019098340A1 (ja) 窒化処理部品
WO2016153009A1 (ja) 耐摩耗性と耐ピッティング性に優れた窒化、軟窒化処理部品および窒化、軟窒化処理方法
CN107849679B (zh) 氮化处理钢部件及其制造方法
WO2009107288A1 (ja) ショットピーニング用投射材の材料、仕上げ線、製造方法及びショットピーニング用投射材
JP4752635B2 (ja) 軟窒化部品の製造方法
JP5499974B2 (ja) 非調質型窒化クランクシャフト
JP2009263767A (ja) 高強度肌焼鋼部品の製造方法
JP2021113338A (ja) 鋼部品及びその製造方法
JP5708844B2 (ja) 非調質型窒化クランクシャフト
JP7295378B2 (ja) ガス軟窒化処理部品及びその製造方法
WO2021181570A1 (ja) ガス軟窒化処理部品及びその製造方法
TW201739933A (zh) 表面硬化鋼
JP2010222649A (ja) 炭素鋼材料の製造方法および炭素鋼材料
JP2013220509A (ja) ショットピーニング方法及びそれを用いた歯車材
JPH08165556A (ja) 耐ピッチング性軟窒化歯車の製造方法
JP2004027273A (ja) 機械構造用鋼部品の製造方法および機械構造用鋼部品
JP2020084206A (ja) 鋼部品及びその製造方法
JP2015074814A (ja) Cvtリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14394423

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/012432

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 112013002114

Country of ref document: DE

Ref document number: 1120130021145

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201407070

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13778218

Country of ref document: EP

Kind code of ref document: A1