DE102015213068A1 - Verfahren zum Nitrieren eines Bauteils - Google Patents

Verfahren zum Nitrieren eines Bauteils Download PDF

Info

Publication number
DE102015213068A1
DE102015213068A1 DE102015213068.1A DE102015213068A DE102015213068A1 DE 102015213068 A1 DE102015213068 A1 DE 102015213068A1 DE 102015213068 A DE102015213068 A DE 102015213068A DE 102015213068 A1 DE102015213068 A1 DE 102015213068A1
Authority
DE
Germany
Prior art keywords
component
nitrogen
phase
process gas
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102015213068.1A
Other languages
English (en)
Inventor
Lothar Foerster
Thomas Krug
Jochen Schwarzer
Marcus Hansel
Thomas Waldenmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102015213068.1A priority Critical patent/DE102015213068A1/de
Priority to PCT/EP2016/065124 priority patent/WO2017009044A1/de
Priority to BR112017028323A priority patent/BR112017028323A2/pt
Priority to EP16733080.2A priority patent/EP3322833B1/de
Priority to CN201680041599.0A priority patent/CN107849678A/zh
Publication of DE102015213068A1 publication Critical patent/DE102015213068A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/08Extraction of nitrogen

Abstract

Verfahren zum Nitrieren eines Bauteils (6) aus einem metallischen Werkstoff (W), der Eisen als Basismetall enthält, wobei das Bauteil (6) in einer ersten Nitrierphase (D1) auf mindestens 450 °C erwärmt und an seiner Oberfläche (8) ein Stickstoff abgebendes Prozessgas und/oder Prozessgasgemisch (7) vorgelegt wird, so dass Stickstoff durch die Oberfläche (8) diffundiert, wobei in der ersten Nitrierphase (D1) eine eisennitridhaltige Verbindungsschicht (V) ausgebildet wird, wobei die Verbindungsschicht (V) in einer ersten Abbauphase (E1) durch Wärmebehandlung aufgelöst wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Nitrieren eines Bauteils aus einem metallischen Werkstoff.
  • Stand der Technik
  • Zur Erhöhung der Schwingfestigkeit metallischer Bauteile ist es bekannt, diese in oberflächennahen Bereichen zu nitrieren. Durch das Nitrieren entstehen Einschlüsse, die die oberflächennahen Bereiche mit einem Druck-Eigenspannungsprofil vorspannen und auf diese Weise insbesondere vor Kerb- und Schwingbelastungen schützen.
  • Neben diesen Einschlüssen entsteht beim Nitrieren zwangsläufig in den der Oberfläche am nächsten gelegenen Bereichen eine harte, dafür aber spröde Verbindungsschicht mit deutlich höherem Stickstoffgehalt. Diese Schicht kann insbesondere bei Kerbbelastungen abplatzen, was zu einem Versagen des Bauteils sowie zu Folgeschäden durch dabei freigesetzte Partikel führen kann. Um dieses Problem zu vermindern, ist es aus der DE 102005049534 A1 bekannt, die Verbindungsschicht nachträglich elektrochemisch abzutragen. Bei komplexeren Bauteilgeometrien ist dies nicht immer möglich.
  • Daher offenbart die DE 102009045878 A1 , die Dicke der Verbindungsschicht bereits während der Nitrierung auf ein Optimum zu begrenzen, dass die Bauteiloberfläche noch hinreichend gegen Korrosion passiviert, jedoch die Schwächung der Schwingfestigkeit durch die Verbindungsschicht vermeidet.
  • Aus (M. Sumida, „Surface hardening and Microstructural Features of Chromium-Molybdenum Steel via Two-Stage Gas Nitriding with a Short Isothermal Time in Stage One", Materials Transactions 53 (8), 1468 bis 1474 (2012)) ist ein zweistufiger Prozess bekannt, bei dem durch Veränderung des Stickstoffangebots eine zunächst dicke Verbindungsschicht nachträglich wieder reduziert werden kann. Als weiterer Stand der Technik ist die DE 102009002985 A1 zu nennen.
  • Es hat sich herausgestellt, dass bei Bauteilen mit komplizierten Geometrien eine Nitrierung mit verminderter Verbindungsschichtdicke vielfach nicht den gewünschten Effekt mit sich bringt. Statt dauerhaft schwingfest zu sein, fallen die Bauteile mit großer Streuung der ertragbaren Lastspielzahl aus.
  • Aufgabe und Lösung
  • Es ist daher die Aufgabe der Erfindung, ein Verfahren zum Nitrieren zur Verfügung zu stellen, mit dem Streuung der ertragbaren Lastspielzahl bei diesen Ausfällen reduziert wird.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren gemäß Hauptanspruch. Weitere vorteilhafte Ausgestaltungen ergeben sich aus den darauf rückbezogenen Unteransprüchen.
  • Offenbarung der Erfindung
  • Im Rahmen der Erfindung wurde ein Verfahren zum Nitrieren eines Bauteils aus einem metallischen Werkstoff, der Eisen als Basismetall enthält, entwickelt.
  • Das Bauteil wird in einer ersten Nitrierphase auf mindestens 450 °C erwärmt, und es wird an seiner Oberfläche ein stickstoffabgebendes Prozessgas und/oder Prozessgasgemisch vorgelegt. Dadurch diffundiert Stickstoff durch die Oberfläche. In der ersten Nitrierphase wird eine eisennitridhaltige Verbindungsschicht ausgebildet.
  • Erfindungsgemäß wird die Verbindungsschicht in einer ersten Abbauphase durch Wärmebehandlung aufgelöst.
  • Es wurde erkannt, dass die Maßnahmen zur Nitrierung mit verminderter Verbindungsschichtdicke als störende Nebenwirkung das Stickstoffangebot während der gesamten Nitrierung vermindern. Bei Bauteilen mit komplexen Geometrien hat dies zur Folge, dass die Nitrierung ungleichmäßiger wird. Unvollständig nitrierte Bereiche in der Bauteiloberfläche entwickeln sich im Laufe des Betriebes zu Schwachpunkten, an denen das Bauteil unter wiederholter Schwingbelastung bevorzugt versagt. Durch die Bildung der Verbindungsschicht wird zunächst einmal der Nachteil in Kauf genommen, dass diese eine deutlich schlechtere Schwingfestigkeit aufweist. Durch das anschließende Auflösen der Verbindungsschicht in der Abbauphase verschwindet dieser Nachteil.
  • Vorteilhaft enthält der metallische Werkstoff mindestens ein weiteres metallisches Element, und der durch die Oberfläche diffundierende Stickstoff bildet mit diesem weiteren metallischen Element mindestens ein Sondernitrid. Das Verfahren hat dann den zusätzlichen Vorteil, dass die Bildung dieser Sondernitride vergleichmäßigt wird.
  • Das weitere metallische Element kann insbesondere ein Legierungselement des metallischen Werkstoffs sein. Die Erfindung bezieht sich aber ausdrücklich nicht nur auf höher legierte Werkstoffe, sondern auch auf niedrig legierte und unlegierte Werkstoffe.
  • Vorteilhaft werden die Dauer der ersten Nitrierphase, die Temperatur des Bauteils während der ersten Nitrierphase und/oder das Angebot an Stickstoff an der Oberfläche des Bauteils während der ersten Nitrierphase so gewählt, dass die Verbindungsschicht mit einer Dicke von höchstens 10 µm, bevorzugt zwischen 2 µm und 6 µm, ausgebildet wird. Dieser Bereich ist in dem Sinne bevorzugt, dass die eigentliche Nitrierung vergleichmäßigt wird, sich in der Verbindungsschicht jedoch noch kein Porensaum durch das Rekombinieren von atomarem zu molekularem Stickstoff bildet. Diese Poren wären durch das bloße Entfernen des Eisennitrids nicht nachträglich zu beseitigen; sie könnten nur durch, beispielsweise mechanisches oder elektrochemisches, Abtragen der Verbindungsschicht entfernt werden.
  • In einer besonders vorteilhaften Ausgestaltung der Erfindung schließen sich an die erste Abbauphase eine zweite Nitrierphase und eine zweite Abbauphase an. Dabei müssen die Parameter der zweiten Nitrierphase nicht mit den Parametern der ersten Nitrierphase übereinstimmen. Ebenso müssen die Parameter der zweiten Abbauphase nicht mit den Parametern der ersten Abbauphase übereinstimmen. Zwei (oder mehr) Nitrierphasen mit zwischengeschalteter Abbauphase haben den Vorteil, dass insgesamt eine höhere Nitriertiefe erreicht werden kann, ohne dass dabei zu irgendeinem Zeitpunkt eine zu dicke Verbindungsschicht entsteht und sich dadurch beispielsweise ein Porensaum bildet. Die Nitriertiefe wächst mit jeder Nitrierphase additiv, während die Dicke der Verbindungsschicht auf Grund der vorangegangenen Abbauphase jeweils wieder bei Null anfängt.
  • Indem die Bildung einer Verbindungsschicht zunächst in Kauf genommen wird, sind vorteilhaft zur Bildung des Sondernitrids höhere Temperaturbereiche zugänglich. Aus der Literatur ist bekannt (für Reineisen im Lehrer-Diagramm), dass bei gleichbleibendem Stickstoffangebot die Neigung zur Bildung einer Verbindungsschicht mit steigender Behandlungstemperatur zunimmt. Je höher die Temperatur, desto schneller diffundiert der Stickstoff zwecks Bildung des Sondernitrids in die Bauteiloberfläche. Vorteilhaft wird daher das Bauteil zur Bildung des Sondernitrids auf Temperaturen bis zu 580 °C erwärmt. Nach dem bisherigen Stand der Technik musste mit deutlich geringeren Temperaturen gearbeitet werden, um nicht die Bildung einer Verbindungsschicht überproportional zu fördern.
  • Versuche der Erfinder haben ergeben, dass bereits sehr dünne Verbindungsschichten von etwa 100–200 nm Dicke, die etwa unter dem Röntgenmikroskop oder mittels energiedispersiver Röntgenspektroskopie (EDX) nachweisbar sind, mit Frühausfällen der behandelten Bauteile korreliert sind. Die zunächst gebildete Verbindungsschicht wird daher vorteilhaft so vollständig aufgelöst, dass sie mindestens im Lichtmikroskop nicht mehr zu erkennen ist. Vorteilhaft wird sie so vollständig aufgelöst, dass ihre Phasenanteile durch Röntgendiffraktometrie (XRD) nicht mehr nachweisbar sind. Durch Beobachtung der Phasenanteile kann das Auflösen in-situ beobachtet werden.
  • Für die letztendliche Schwing- und Kerbfestigkeit des Bauteils kommt es allein darauf an, dass die Verbindungsschicht vollständig aufgelöst wird. Das generelle Funktionieren der Erfindung hängt nicht daran, wie dies im Einzelnen geschieht. In einer besonders vorteilhaften Ausgestaltung der Erfindung wird die Verbindungsschicht jedoch aufgelöst, indem die Konzentration von atomarem Stickstoff und/oder eines stickstoffabgebenden Prozessgases vermindert wird und/oder indem die Zusammensetzung eines Stickstoff abgebenden Prozessgasgemisches dahingehend verändert wird, dass weniger Stickstoff für die Nitrierung angeboten wird. Diese Maßnahme kann beispielsweise für eine Charge aus einer Vielzahl unterschiedlicher Bauteile, die sich in ungeordneter Form als Schüttgut in einer Behandlungskammer befinden, in einem Arbeitsgang durchgeführt werden.
  • Das Stickstoff abgebende Prozessgas kann insbesondere Ammoniak sein. Es kann auch ein Gemisch von beispielsweise Ammoniak mit Stickstoff und/oder Wasserstoff verwendet werden. Dann kann durch eine Änderung der Gemischzusammensetzung das Stickstoffangebot für die Nitrierung verändert werden, ohne dass der Druck in der Behandlungskammer geändert werden muss. Das Stickstoffangebot an der Bauteiloberfläche kann aber auch ohne Änderung der Gaszusammensetzung allein durch eine weitere Erwärmung des Bauteils und/oder des Gases oder Gasgemisches vermindert werden: je höher die Temperatur, desto schneller dissoziiert Ammoniak an der Bauteiloberfläche und desto schneller diffundiert atomarer Stickstoff von der Bauteiloberfläche weg. Wird die Gaszusammensetzung geändert, so kann als Zwischenschritt vorteilhaft die Behandlungskammer evakuiert werden, um in der ganzen Behandlungskammer definierte Bedingungen zu schaffen.
  • Vorteilhaft wird das Bauteil zum Auflösen der Verbindungsschicht auf nicht mehr als 1000 °C, bevorzugt auf nicht mehr als 600 °C, weiter erwärmt. Oberhalb von etwa 600 °C ist damit zu rechnen, dass der metallische Werkstoff des Bauteils durch den an seiner Oberfläche vorgelegten Stickstoff austenitisch wird. Dies ist beim Nitrieren nicht erwünscht, da das Bauteil sich verziehen, sein Kern zu hoch angelassen und/oder seine Gitterstruktur am Rand verändert werden könnte. Weiterhin sind viele Nitrieröfen auf Betriebstemperaturen bis ca. 700 °C begrenzt; bei höheren Temperaturen kann die Standzeit der Ofenmaterialien stark reduziert werden, was vermehrt Verzüge verursachen kann. Niobnitrid und Chromnitrid sind Beispiele für Sondernitride, die bis ca. 1000 °C temperaturbeständig sind.
  • Die Einschlüsse aus dem Sondernitrid, die für die vorteilhaften Druckeigenspannungen verantwortlich sind, sind metastabil. Vorteilhaft wird daher die Bauteiltemperatur unterhalb der Temperatur gehalten, bei der sich Einschlüsse aus dem Sondernitrid spontan auflösen. Die Druckeigenspannungen bleiben dann gleichsam im Gefüge des Bauteils erhalten.
  • Zum Auflösen der Verbindungsschicht kann das Angebot an atomarem Stickstoff an der Bauteiloberfläche insbesondere nicht nur reduziert, sondern komplett auf null zurückgefahren werden, beispielsweise, indem die Behandlungskammer evakuiert oder an der Bauteiloberfläche lediglich ein Inertgas, wie beispielsweise molekularer Stickstoff oder Argon, vorgelegt wird. Allerdings gibt es hier ein materialabhängiges Optimum: die Kombination aus der Konzentration des Stickstoffs und/oder Prozessgases bzw. aus der Zusammensetzung des Prozessgasgemisches einerseits und der Bauteiltemperatur andererseits wird in einer besonders vorteilhaften Ausgestaltung der Erfindung aus einem Kennfeldbereich ausgewählt, in dem eine Diffusion von in der Verbindungsschicht gebundenen Stickstoff aus der Oberfläche des Bauteils angetrieben wird.
  • Für nitriertes Reineisen als das einfachste Materialsystem gibt das bekannte Lehrer-Diagramm beispielhaft an, bei welchen Kombinationen aus Temperatur, Nitrierkennzahl und Stickstoffangebot sich eine Eisennitridschicht bildet oder auflöst oder ob sich das Eisen in eine austenitische Struktur umwandeln wird.
  • Vorteilhaft wird die Kombination aus der Konzentration des Stickstoffs und/oder Prozessgases bzw. aus der Zusammensetzung des Prozessgasgemisches einerseits und der Bauteiltemperatur andererseits aus einem Kennfeldbereich ausgewählt, in dem das Eisennitrid der Verbindungsschicht thermodynamisch instabil ist. Der Prozess, der zur Bildung der Verbindungsschicht geführt hat, läuft dann bevorzugt rückwärts ab. In einer weiteren besonders vorteilhaften Ausgestaltung ist in diesem Kennfeldbereich das Sondernitrid thermodynamisch stabil. Es bleibt dann in vollem Umfang erhalten.
  • In einer weiteren besonders vorteilhaften Ausgestaltung wird die Kombination aus der Konzentration des Stickstoffs und/oder Prozessgases bzw. aus der Zusammensetzung des Prozessgasgemisches einerseits und der Bauteiltemperatur andererseits aus einem Kennfeldbereich ausgewählt, in dem der in Sondernitriden stärker gebundene Stickstoff in der Oberfläche des Bauteils verbleibt. Dann bleibt die für die Schwingfestigkeit maßgebliche eigentliche Nitrierschicht in vollem Umfang erhalten, und es wird lediglich die Verbindungsschicht zurückgebildet.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die Bauteiloberfläche vor mindestens einer Nitrierphase und/oder nach mindestens einer Abbauphase in einer zusätzlichen Oxidationsphase oxidiert. Hierdurch wird Eisenoxid gebildet, wodurch die Nitrierwirkung verbessert wird. Da hierdurch jedoch auch gleichzeitig die Bildung der Verbindungsschicht begünstigt wird, ist die erfindungsgemäß vorgesehene Abbauphase in dieser Ausgestaltung besonders vorteilhaft in Bezug auf die Schwingfestigkeit.
  • Die Prozessgase oder Prozessgasgemische können beispielsweise nitrierkennzahl- und/oder oxidationskennzahl- und/oder kohlungskennzahlgeregelt der Behandlungskammer zugeführt werden. Sie können aber beispielsweise auch als Festgasmenge der Behandlungskammer zugeführt werden. Das generelle Funktionieren der Erfindung hängt nicht daran, dass die Prozessgase oder Prozessgasgemische in bestimmter Weise geregelt zugeführt werden. Durch kohlungskennzahlgeregelte Zuführung kann das Bauteil gleichzeitig nitriert und carburiert werden. Hierbei verändert sich der Aufbau der Verbindungsschicht. Alternativ oder auch in Kombination hierzu kann durch oxidationskennzahlgeregelte Zuführung die Nitrierwirkung erhöht werden. Weiterhin ist eine solche Regelung von Vorteil, wenn das Bauteil aus einem hoch mit Chrom legierten Stahl besteht.
  • Vorteilhaft wird das Verfahren unter Atmosphärendruck durchgeführt. Dann muss die Behandlungskammer nicht druckfest sein. Vorteilhaft kann das Verfahren aber auch im Niederdruck, d.h. mit einem geringeren Druck als dem Atmosphärendruck, durchgeführt werden. Bereits bei einem geringen Druckunterschied kann beispielsweise verhindert werden, dass Prozessgase bei einem Leck aus der Behandlungskammer entweichen. Außerdem ist die mittlere freie Weglänge für die Diffusion bei einem geringeren Druck größer.
  • Das Verfahren kann beispielsweise auch unter Plasmanitrierbedingungen mit oder ohne active screen-Unterstützung durchgeführt werden. Dadurch wird die Nitrierung insgesamt beschleunigt. Es kann zu jeder Zeit weiterhin ein Sauerstoff und/oder Kohlenstoff abgebendes Prozessgas oder Prozessgasgemisch zugegeben werden, um eine Nitrocarburierung vorzunehmen.
  • Die Freiheit der fertigen Bauteiloberfläche von einer harten eisennitridhaltigen Verbindungsschicht hat den Nebeneffekt, dass Werkzeuge, mit denen diese Oberfläche nachträglich mechanisch bearbeitet wird, weniger schnell verschleißen.
  • Zur Auslegung des Gesamtprozesses können Simulationsmodelle herangezogen werden, die die Diffusion von Stickstoff und die Bildung der Sondernitride in Abhängigkeit von Zeit, Temperatur und Werkstoffzusammensetzung berechnen. Ansonsten können die Prozessparameter in bekannter Weise durch Anfertigung einer Reihe von Probestücken und Begutachtung metallographischer Schliffe fein abgestimmt werden.
  • Ob ein gegebenes Bauteil mit dem erfindungsgemäßen Verfahren wärmebehandelt wurde, kann ein Denitrieren bei der Nitriertemperatur zeigen. Im Vergleich zu einem Bauteil, das, etwa durch ein vermindertes Ammoniakangebot, von vornherein verbindungsschichtfrei nitriert wurde, wird aus einem mit dem erfindungsgemäßen Verfahren behandelten Bauteil weniger Stickstoff effundieren, da die Konzentration ungebundener Stickstoffatome in der Eisenmatrix bereits während des Nitrierens durch Effusion und Diffusion im Randbereich stark erniedrigt wird. Wie viel Stickstoff effundiert, kann beispielsweise durch Wiegen des Bauteils, durch eine Analyse der Zusammensetzung des Abgases oder durch Messung des Druckanstiegs in einer temperierbaren Messkammer festgestellt werden. Darüber hinaus ist die ursprünglich gebildete, später aufgelöste Verbindungsschicht metallographisch durch ein verändertes Anätzverhalten nachweisbar.
  • Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand von Figuren näher dargestellt.
  • Ausführungsbeispiele
  • Es zeigt:
  • 1: Verlauf der Temperatur T über der Zeit t bei einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens.
  • 2: Gefügeaufnahme einer gemäß Stand der Technik nitrierten Probe (a) und einer mit dem erfindungsgemäßen Verfahren nitrierten Probe (b).
  • 3: GDOES-Tiefenprofilanalyse der Stickstoffkonzentration n über dem Randabstand d für die Probe gemäß 2a (Kurve a) sowie die Probe gemäß 2b (Kurve b).
  • 4: Auswirkung einer Nitrierung mit Verbindungsschichtdicken von < 1 µm sowie von 5 µm auf die Schwingfestigkeit.
  • 5: Auswirkung einer Nitrierung gemäß einem Ausführungsbeispiel der Erfindung auf die Schwingfestigkeit.
  • 1 zeigt beispielhaft die Prozessführung für ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Die durchgehende Kurve bezeichnet den Verlauf der Temperatur T über der Zeit t. Entlang der Zeitachse sind Abschnitte A1 bis F definiert, in denen unterschiedliche Aktivitäten stattfinden.
  • In der Aufheizphase A1 wird das Bauteil 6 zunächst von Raumtemperatur auf eine Temperatur von 420 °C gebracht. Die Aufheizrate ist dabei konstant. Die Behandlungskammer, in der das Verfahren durchgeführt wird, ist mit einem Inertgas, wie zum Beispiel Stickstoff oder Argon, mit einem Überdruck von 20 bis 100 mbar über dem Atmosphärendruck befüllt.
  • In der an die Aufheizphase A1 anschließenden Temperaturvergleichmäßigungsphase B1 wird die Behandlungstemperatur konstant auf etwa 420 °C gehalten. Während der Aufheizphase A1 und der Temperaturvergleichmäßigungsphase B1 wird dabei kein sauerstoffhaltiges Prozessgas oder Stickstoffspendergas 7 zugeführt.
  • An die Temperaturvergleichmäßigungsphase B1 schließt sich eine Voroxidationsphase C mit einem sauerstoffhaltigen Prozessgas an. Zu diesem Zweck wird der Behandlungskammer zum Beispiel Luft, Lachgas, synthetische Luft oder ein Stickstoff-Wasserdampf-Gemisch isobar zugeführt.
  • Nach der Voroxidationsphase C wird der Behandlungskammer zum Tausch der Gasatmosphäre isobar ein Inertgas, wie zum Beispiel Stickstoff oder Argon, zugeführt. Daran anschließend folgt die Aufheizphase A2 mit einer konstanten Aufheizrate, bis eine Behandlungstemperatur von etwa 540 °C erreicht wird. An die Aufheizphase A2 schließt sich die zweite Temperaturvergleichmäßigungsphase B2 an.
  • In der darauffolgenden Nitrierphase D1 wird der Behandlungskammer zum Tausch der Gasatmosphäre isobar ein Stickstoffspendergas 7, beispielsweise ein Ammoniak-Stickstoff-Gemisch oder ein Ammoniak-Stickstoff-Wasserstoff-Gemisch zugeführt. Durch ein ausreichend hohes Ammoniakangebot werden die in der Behandlungskammer enthaltenen metallischen Bauteile 6 nitriert, und es bildet sich eine Verbindungsschicht V aus.
  • In der anschließenden Abbauphase E1 wird das Stickstoffangebot abgesenkt, indem der Behandlungskammer isobar ein Ammoniak-Stickstoff-Gemisch oder ein Ammoniak-Stickstoff-Wasserstoff-Gemisch mit einem niedrigeren Ammoniakgehalt zugeführt wird. Dadurch wird die Bindung des Stickstoffs in der Verbindungsschicht V thermodynamisch instabil. Der Stickstoff diffundiert zum Einen tiefer in das Bauteil hinein und bildet dort Sondernitride N. Zum Anderen tritt er auch aus der Oberfläche der Verbindungsschicht in die Atmosphäre der Behandlungskammer über. Die Verbindungsschicht wird aufgelöst. Der oberflächennächste Bereich des Bauteils verliert ihren harten, spröden Charakter.
  • In der anschließenden zweiten Nitrierphase D2 wird das Stickstoffangebot wieder auf das Niveau der Nitrierphase D1 erhöht. Im Inneren des Bauteils bilden sich weitere Sondernitride, während sich in seinem oberflächennächsten Bereich erneut eine Verbindungsschicht ausbildet. Diese wird in der anschließenden Abbauphase E2, in der das Stickstoffangebot wieder auf das Niveau der ersten Abbauphase E1 abgesenkt wird, vollständig abgebaut.
  • Am Ende der zweiten Abbauphase E2 wird der Behandlungskammer zum Tausch der Gasatmosphäre isobar ein Inertgas, wie zum Beispiel Stickstoff oder Argon, zugeführt. Hierdurch wird das Nitrieren der metallischen Bauteile 6 beendet. Die Behandlungskammer und die metallischen Bauteile 6 werden anschließend auf Raumtemperatur abgekühlt.
  • Es versteht sich selbst, dass auf diese Weise zahlreiche Verfahren zum Nitrieren realisierbar sind und die Erfindung nicht auf die erläuterte Abfolge und Anzahl von zwei Aufheizphasen A1, A2, zwei Temperaturvergleichmäßigungsphasen B1, B2 einer Voroxidationsphase C, zwei Nitrierphasen mit hohem Stickstoffangebot D1, D2, zwei Abbauphasen mit niedrigerem Stickstoffangebot E1, E2 und einer Abkühlphase F beschränkt ist.
  • Die Aufteilung in zwei Nitrierphasen D1 und D2 mit zwischengeschalteter Abbauphase E1 hat den Vorteil, dass die Verbindungsschicht V keine allzu große Dicke erreicht, bei der sie Poren P ausbildet. Diese wären in der Abbauphase E1 nicht mehr zu entfernen.
  • 2 verdeutlicht den Vergleich einer gemäß Stand der Technik nitrierten Probe (2a) mit einer gemäß der in 1 gezeigten Prozessführung nitrierten Probe (2b) in Schnittzeichnung. Das Stickstoffspendergas 7 wurde jeweils an der Oberfläche 8 des Bauteils 6 aus dem metallischen Werkstoff W vorgelegt.
  • Bei der Herstellung der in 2a skizzierten Probe waren gegenüber der in 1 verdeutlichten Prozessführung die Abbauphasen E1 und E2 fortgelassen worden. Infolgedessen verblieb auf der eigentlichen Nitrierschicht N eine 8 µm dicke Verbindungsschicht V, deren 4 µm dicker oberer Bereich P zusätzlich noch von Poren durchsetzt war.
  • Die in 2b skizzierte Probe wurde gemäß der in 1 dargestellten Prozessführung hergestellt. Die 8 µm dicke Verbindungsschicht wurde nicht etwa abgetragen, sondern es wurde während der Abbauphasen E1 und E2 jeweils die in der vorherigen Nitrierphase D1 bzw. D2 angefallene Verbindungsschichtdicke von 4 µm durch Entfernen des Stickstoffs aus dem Eisennitrid der Verbindungsschicht V zurückgebildet. Dabei blieb das Eisen jeweils an seinem Platz. Infolgedessen ist das normale Gefüge auch in den Bereich, der der Oberfläche 8 des Bauteils 6 am nächsten ist, ohne Bruch fortgesetzt. Im Vergleich zu 2a fehlen im der Oberfläche 8 des Bauteils 6 nächsten Bereich auch die unerwünschten Poren P, die sich in 2a bis in eine Tiefe von etwa 4 µm erstrecken.
  • Die zurückgebildete Verbindungsschicht V zeigt im Vergleich zu einer von vornherein verbindungsschichtfreien Nitrierung ein stärkeres Anätzverhalten und erscheint auf Mikroskopaufnahmen metallographischer Schliffe daher dunkler.
  • Der Werkstoff der in 2 skizzierten Proben ist X40CrMoV5-1, der neben Eisen als Basismetall folgende weiteren Legierungselemente in folgenden Massenprozentanteilen enthält: Kohlenstoff 0,39, Silizium 1,10, Mangan 0,4, Chrom 5,20, Molybdän 1,40, Vanadium 0,95.
  • 3 zeigt eine GDOES-Tiefenprofilanalyse der in 2 dargestellten Bauteile 6. Kurve a bezieht sich auf das in 2a skizzierte Bauteil 6. Kurve b bezieht sich auf das in 2b skizzierte Bauteil 6. Aufgetragen ist jeweils die Stickstoffkonzentration n in Massenprozent M% über dem Randabstand (Tiefe) d in µm. In Kurve a ist die etwa 8 µm dicke Verbindungsschicht deutlich zu erkennen. Gemäß Kurve b ist bei dem in 2b skizzierten Bauteil 6 der gesamte seiner Oberfläche 8 nahe Bereich sehr gleichmäßig nitriert. Mit zunehmender Tiefe d konvergiert auch die Stickstoffkonzentration n im Bauteil 6 gemäß 2a gegen die Stickstoffkonzentration n in dem Bauteil 6 gemäß 2b.
  • 4 zeigt Ergebnisse einer Dauerprüfung von gekerbten, zylindrischen Bauteilen 6 (Zugproben) in Bezug auf die Schwingfestigkeit. Alle Bauteile 6 wurden vergütet. Ein Teil der Bauteile 6 wurde nicht weiter wärmebehandelt, während der Rest der Bauteile 6 nitriert wurde. Vor dem zugschwellenden Beanspruchen wurden alle Bauteile 6 im Einspannbereich nachbearbeitet. Die Kerben wurden nicht nachbearbeitet. Getestet wurden nicht nitrierte Bauteile 6, Bauteile 6 mit einer etwa 5 µm dicken Verbindungsschicht V und Bauteile 6 mit einer weniger als 1 µm dicken Verbindungsschicht V.
  • Aufgetragen ist jeweils die Amplitude q der Spannungen, mit denen die Bauteile 6 beaufschlagt wurden, in N/mm2 über der Anzahl z der Schwingungen, denen die Bauteile 6 ausgesetzt waren. An jedem Punkt ist durch die Symbolart angegeben, ob das Bauteil 6 den Test bestanden hat (hohles Symbol) oder ob es versagt hat (ausgefülltes Symbol). Mit den unterschiedlichen Symbolformen ist jeweils angegeben, auf welche Probe sich die Messungen beziehen. Eine auf seiner Kante liegendes Quadrat kennzeichnet einen Messwert, der an einem nicht nitrierten Bauteil 6 gewonnen wurde. Ein auf einer Spitze stehendes Quadrat kennzeichnet einen Messpunkt, der an einem Bauteil 6 mit 5 µm dicker Verbindungsschicht V aufgenommen wurde. Ein Kreis kennzeichnet einen Messpunkt, der an einem Bauteil 6 mit einer weniger als 1 µm dicken Verbindungsschicht gewonnen wurde. Durch die Messpunkte ist jeweils eine Ausgleichskurve (1a, 2a, 3a) gelegt, die angibt, für welche Kombinationen aus Spannungsamplituden q und Wiederholungszahlen z jeweils eine Ausfallwahrscheinlichkeit von 50 % zu erwarten ist. Diese Ausgleichskurven (1a, 2a, 3a) sind jeweils von gestrichelten Kurven (1b, 2b, 3b) bzw. (1c, 2c, 3c) umgeben, die angeben, für welche Kombinationen aus Spannungsamplituden q und Anzahl z der Wiederholungen Ausfallraten von 10% bzw. 90% zu erwarten sind.
  • Kurven, die mit der Zahl 1 bezeichnet sind, beziehen sich auf mit einer 5 µm dicken Verbindungsschicht V nitrierte Bauteile 6. Kurven, die mit der Zahl 2 bezeichnet sind, beziehen sich auf nicht nitrierte Bauteile 6. Kurven, die mit der Zahl 3 bezeichnet sind, beziehen sich auf mit einer weniger als 1 µm dicken Verbindungsschicht V nitrierte Bauteile 6. Der Buchstabe a bezeichnet jeweils die Ausgleichskurve, die 50 % Ausfallwahrscheinlichkeit entspricht. Der Buchstabe b bezeichnet jeweils die Kurve, die 90 % Ausfallwahrscheinlichkeit entspricht. Der Buchstabe c bezeichnet jeweils die Kurve, die 10 % Ausfallwahrscheinlichkeit entspricht.
  • Die nicht nitrierten Bauteile 6 schneiden am schlechtesten ab bezogen auf eine Ausfallwahrscheinlichkeit von 50 %. Die Bauteile 6 mit einer weniger als 1 µm dicken Verbindungsschicht V zeigen die höchste ertragbare Spannungsamplitude bezogen auf eine Ausfallwahrscheinlichkeit von 50 %. Allerdings werden die negativen Auswirkungen der dünnen Verbindungsschicht V bei der Streuung 1/TN der Wiederholungszahlen z deutlich: Während nicht nitrierte Bauteile 6 eine Streuung von 1/TN = 2,72 und die Bauteile 6 mit einer 5 µm dicken Verbindungsschicht V eine Streuung von 1/TN = 1,44 aufweisen, ist die Streuung bei den Bauteilen 6 mit einer weniger als 1 µm dicken Verbindungsschicht V mit 1/TN = 16,2 gravierend höher. Auffällig sind weiterhin Unterschiede bezüglich der Eckschwingzahl, also der Stelle auf der Achse der Wiederholungszahl z, an der die Ausgleichskurve (1a, 2a, 3a) für 50 % Ausfallwahrscheinlichkeit in einen waagerechten Verlauf abknickt. Während die Eckschwingzahlen der nicht nitrierten Bauteile 6 und der Bauteile 6 mit einer weniger als 1 µm dicken Verbindungsschicht V in einem vergleichbaren Bereich liegen, ist die Eckschwingzahl der Bauteile 6 mit einer 5 µm dicken Verbindungsschicht V deutlich nach links zu einem niedrigen Wert von ca. 5000 Lastwechseln verschoben.
  • Dies zeigt, dass bei mit einer 5 µm dicken Verbindungsschicht V nitrierte Bauteile 6 bei dieser Beanspruchung bezogen auf 50 % Ausfallwahrscheinlichkeit sehr früh, aber mit kleiner Streuung ausfallen können. Die mit einer weniger als 1 µm dicken Verbindungsschicht V nitrierten Bauteile 6 zeigen bei dieser Beanspruchung bezogen auf 50 % Ausfallwahrscheinlichkeit eine mit den nicht nitrierten Bauteilen 6 vergleichbare Eckschwingzahl, aber die Streuung ist massiv erhöht. Durch die zunehmende Streuung müssen bei der Auslegung der Bauteile 6 höhere Sicherheitszuschläge berücksichtigt werden, wodurch sich der Nutzen der Wärmebehandlung deutlich relativiert.
  • Der Werkstoff der in 4 untersuchten Proben ist 50CrMo4, der neben Eisen als Basismetall folgende weiteren Legierungselemente in folgenden Massenprozentanteilen enthält: Kohlenstoff 0,50, Chrom 1,05, Molybdän 0,23.
  • In 5 werden in analoger Weise mit einem Verfahren gemäß einem Ausführungsbeispiel der Erfindung nitrierte Bauteile 6 (Kreise als Symbole, mit Zahl 4 bezeichnete Kurven) und weitere nicht nitrierte Bauteile 6 (Quadrate als Symbole, mit Zahl 5 bezeichnete Kurven) miteinander verglichen. Die Neigung der Kurven 4a, 4b und 4c im Zeitfestigkeitsbereich ist mit der Neigung der Kurven 5a, 5b und 5c vergleichbar. Darüber hinaus nähern sich die Kurven 4a, 4b und 4c im Zeitfestigkeitsbereich den Kurven 5a, 5b und 5c an. Damit kann von einer vergleichbaren Zeitfestigkeit gesprochen werden. Die Spannungsamplitude ist bezogen auf eine Ausfallwahrscheinlichkeit von 50 % um etwa 24 % erhöht. Der Vorteil des erfindungsgemäßen Verfahrens manifestiert sich besonders darin, dass die Streuung der gemäß diesem Verfahren nitrierten Bauteile 6 im Vergleich mit den nicht nitrierten Bauteilen 6 ähnlich ist und keine Frühausfälle bei geringen Anzahlen z von Lastwechseln stattfinden.
  • Der Werkstoff der in 5 untersuchten Proben ist 8CrMo16, der neben Eisen als Basismetall folgende weiteren Legierungselemente in folgenden Massenprozentanteilen enthält: Kohlenstoff 0,09, Chrom 3,90, Molybdän 0,50.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102005049534 A1 [0003]
    • DE 102009045878 A1 [0004]
    • DE 102009002985 A1 [0005]
  • Zitierte Nicht-Patentliteratur
    • M. Sumida, „Surface hardening and Microstructural Features of Chromium-Molybdenum Steel via Two-Stage Gas Nitriding with a Short Isothermal Time in Stage One“, Materials Transactions 53 (8), 1468 bis 1474 (2012) [0005]

Claims (13)

  1. Verfahren zum Nitrieren eines Bauteils (6) aus einem metallischen Werkstoff (W), der Eisen als Basismetall enthält, wobei das Bauteil (6) in einer ersten Nitrierphase (D1) auf mindestens 450 °C erwärmt und an seiner Oberfläche (8) ein Stickstoff abgebendes Prozessgas und/oder Prozessgasgemisch (7) vorgelegt wird, so dass Stickstoff durch die Oberfläche (8) diffundiert, wobei in der ersten Nitrierphase (D1) eine eisennitridhaltige Verbindungsschicht (V) ausgebildet wird, dadurch gekennzeichnet, dass die Verbindungsschicht (V) in einer ersten Abbauphase (E1) durch Wärmebehandlung aufgelöst wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der metallische Werkstoff (W) mindestens ein weiteres metallisches Element enthält und dass der durch die Oberfläche (8) diffundierende Stickstoff mit diesem weiteren metallischen Element mindestens ein Sondernitrid (N) bildet.
  3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Dauer der ersten Nitrierphase (D1), die Temperatur des Bauteils (6) während der ersten Nitrierphase (D1) und/oder das Angebot an Stickstoff an der Oberfläche (8) des Bauteils während der ersten Nitrierphase (D1) so gewählt werden, dass die Verbindungsschicht (V) mit einer Dicke von höchstens 10 µm, bevorzugt mit einer Dicke von 2 µm bis 6 µm, ausgebildet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sich an die erste Abbauphase (E1) eine zweite Nitrierphase (D2) und eine zweite Abbauphase (E2) anschließen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Bauteil (6) zur Bildung des Sondernitrids (N) auf Temperaturen bis zu 580 °C erwärmt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verbindungsschicht (V) aufgelöst wird, indem die Konzentration von atomarem Stickstoff und/oder eines Stickstoff abgebenden Prozessgases (7) vermindert und/oder die Zusammensetzung eines Stickstoff abgebenden Prozessgasgemisches (7) verändert wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Bauteil (6) zum Auflösen der Verbindungsschicht (V) weiter erwärmt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Bauteil (6) auf nicht mehr als 1000 °C, bevorzugt auf nicht mehr als 600 °C, weiter erwärmt wird.
  9. Verfahren nach einem der Ansprüche 7 bis 8, dadurch gekennzeichnet, dass die Temperatur des Bauteils (6) unterhalb der Temperatur gehalten wird, bei der sich Einschlüsse aus dem Sondernitrid (N) spontan auflösen.
  10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Kombination aus der Konzentration des Stickstoffs und/oder Prozessgases (7) bzw. aus der Zusammensetzung des Prozessgasgemisches (7) einerseits und der Temperatur des Bauteils (6) andererseits aus einem Kennfeldbereich ausgewählt wird, in dem eine Diffusion von in der Verbindungsschicht (V) gebundenem Stickstoff aus der Oberfläche des Bauteils (6) angetrieben wird.
  11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Kombination aus der Konzentration des Stickstoffs und/oder Prozessgases (7) bzw. aus der Zusammensetzung des Prozessgasgemisches (7) einerseits und der Temperatur des Bauteils (6) andererseits aus einem Kennfeldbereich ausgewählt wird, in dem das Eisennitrid der Verbindungsschicht (V) thermodynamisch instabil ist.
  12. Verfahren nach einem der Ansprüche 10 bis 11, dadurch gekennzeichnet, dass die Kombination aus der Konzentration des Stickstoffs und/oder Prozessgases (7) bzw. aus der Zusammensetzung des Prozessgasgemisches (7) einerseits und der Temperatur des Bauteils (6) andererseits aus einem Kennfeldbereich ausgewählt wird, in dem der in Sondernitriden (N) stärker gebundene Stickstoff in der Oberfläche des Bauteils (6) verbleibt.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Oberfläche (8) des Bauteils (6) vor mindestens einer Nitrierphase (D1, D2) und/oder nach mindestens einer Abbauphase (E1, E2) in einer zusätzlichen Oxidationsphase (C) oxidiert wird.
DE102015213068.1A 2015-07-13 2015-07-13 Verfahren zum Nitrieren eines Bauteils Withdrawn DE102015213068A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102015213068.1A DE102015213068A1 (de) 2015-07-13 2015-07-13 Verfahren zum Nitrieren eines Bauteils
PCT/EP2016/065124 WO2017009044A1 (de) 2015-07-13 2016-06-29 Verfahren zum nitrieren eines bauteils
BR112017028323A BR112017028323A2 (pt) 2015-07-13 2016-06-29 processo para nitretação de um componente
EP16733080.2A EP3322833B1 (de) 2015-07-13 2016-06-29 Verfahren zum nitrieren eines bauteils
CN201680041599.0A CN107849678A (zh) 2015-07-13 2016-06-29 用于对构件进行渗氮的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015213068.1A DE102015213068A1 (de) 2015-07-13 2015-07-13 Verfahren zum Nitrieren eines Bauteils

Publications (1)

Publication Number Publication Date
DE102015213068A1 true DE102015213068A1 (de) 2017-01-19

Family

ID=56289510

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015213068.1A Withdrawn DE102015213068A1 (de) 2015-07-13 2015-07-13 Verfahren zum Nitrieren eines Bauteils

Country Status (5)

Country Link
EP (1) EP3322833B1 (de)
CN (1) CN107849678A (de)
BR (1) BR112017028323A2 (de)
DE (1) DE102015213068A1 (de)
WO (1) WO2017009044A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338090B (zh) * 2018-11-30 2020-04-21 武汉钢铁有限公司 连续式退火炉脱碳渗氮装置
CN114182196B (zh) * 2021-12-02 2024-01-19 贵州师范大学 钛合金真空气体阶梯渗氮方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005049534A1 (de) 2005-10-17 2007-04-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bearbeitung eines Düsenkörpers für ein Kraftstoffeinspritzventil
DE102009002985A1 (de) 2009-05-11 2010-11-18 Robert Bosch Gmbh Verfahren zur Carbonitrierung
DE102009045878A1 (de) 2009-10-21 2011-04-28 Robert Bosch Gmbh Verfahren zum Steigern der Beanspruchbarkeit von Bauteilen aus Stahl unter zyklischer Belastung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3495590B2 (ja) * 1997-06-30 2004-02-09 アイシン・エィ・ダブリュ株式会社 軟窒化処理を施した歯車並びにその製造方法
JP3303741B2 (ja) * 1997-09-25 2002-07-22 トヨタ自動車株式会社 ガス軟窒化処理方法
JP2011235318A (ja) * 2010-05-11 2011-11-24 Daido Steel Co Ltd ダイカスト金型の表面処理方法
JP5656908B2 (ja) * 2012-04-18 2015-01-21 Dowaサーモテック株式会社 窒化鋼部材およびその製造方法
JP6115140B2 (ja) * 2013-01-15 2017-04-19 株式会社ジェイテクト 摺動部材の製造方法およびクラッチプレートの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005049534A1 (de) 2005-10-17 2007-04-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bearbeitung eines Düsenkörpers für ein Kraftstoffeinspritzventil
DE102009002985A1 (de) 2009-05-11 2010-11-18 Robert Bosch Gmbh Verfahren zur Carbonitrierung
DE102009045878A1 (de) 2009-10-21 2011-04-28 Robert Bosch Gmbh Verfahren zum Steigern der Beanspruchbarkeit von Bauteilen aus Stahl unter zyklischer Belastung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. Sumida, „Surface hardening and Microstructural Features of Chromium-Molybdenum Steel via Two-Stage Gas Nitriding with a Short Isothermal Time in Stage One", Materials Transactions 53 (8), 1468 bis 1474 (2012)

Also Published As

Publication number Publication date
BR112017028323A2 (pt) 2018-09-11
EP3322833B1 (de) 2020-08-12
EP3322833A1 (de) 2018-05-23
WO2017009044A1 (de) 2017-01-19
CN107849678A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
DE19758822B4 (de) Wälzlager
EP0697503B1 (de) Verfahren zur Herstellung einer Turbinenschaufel aus einer (alpha-Beta)-Titan-Basislegierung
DE2417179C3 (de) Verfahren zum karburieren hochlegierter staehle
EP2045339B1 (de) Für eine Wälzbeanspruchung ausgebildetes Werkstück aus durchhärtendem Stahl und Verfahren zur Wärmebehandlung
DE60017010T2 (de) Schraube mit hoher Festigkeit
DE10254635A1 (de) Lagerteil, Hitzebehandlungsverfahren dafür und Wälzlager
DE3744573A1 (de) Oberflaechenraffinierter sinterlegierungskoerper und verfahren zu dessen herstellung
EP3733326A1 (de) Verfahren zur herstellung eines stahlbauteils mit einem additiven fertigungsverfahren
EP1249512A1 (de) Kaltarbeitsstahllegierung zur pulvermetallurgischen Herstellung von Teilen
DE112004001919T5 (de) Wälzlager
DE102019207111A1 (de) Verfahren zum Herstellen eines Bauteils mittels eines additiven Fertigungsverfahrens unter Verwendung eines Lasers
DE112004001914T5 (de) Kugel- und Rollenlager
DE102014105005A1 (de) Karburiertes Teil, Verfahren zu dessen Herstellung, und Stahl für karburiertes Teil
DE102018201854A1 (de) Werkstoff, geeignet für additive Fertigung
DE102011088234A1 (de) Bauteil
EP3322833B1 (de) Verfahren zum nitrieren eines bauteils
EP0751234B1 (de) Stammblatt einer Säge, wie einer Kreis- oder Gattersäge, einer Trennscheibe, einer Schneide- oder einer Schabvorrichtung
EP3591081A1 (de) Verwendung eines stahls zur herstellung eines stahlbauteils, nämlich eines zahnrads, einer welle, einer achse oder eines werkzeughalters mit einer thermochemisch gehärteten randschicht und derartiges stahlbauteil mit thermochemisch gehärteter randschicht
CH365880A (de) Verfahren zur Herstellung von Werkstücken mit hoher Dämpfungsfähigkeit, nach diesem Verfahren hergestelltes Werkstück und dessen Verwendung
DE102007020027B4 (de) Behandelter austenitischer Stahl, nitrierter austenitischer Stahl, aufgekohlter austenitischer Stahl, sowie ein Verfahren zum Behandeln eines austenitischen Stahls
DE69914741T2 (de) Verfahren zur Verstärkung der Korngrenzen einer Komponente aus Ni-basierter Superlegierung
DE102017215222A1 (de) Einsatzhärtbare Edelstahllegierung
DE102016221891A1 (de) Verfahren zur Wärmebehandlung eines aus einem hochlegierten Stahl bestehenden Werkstücks
DE102006039744B4 (de) Verfahren zur Herstellung eines nichtmagnetischen und/oder korrosionsbeständigen Wälzlagerbauteils
DE2165105A1 (de) Verfahren zur Herstellung von Kugelkopfbolzen

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee