WO2019098340A1 - 窒化処理部品 - Google Patents

窒化処理部品 Download PDF

Info

Publication number
WO2019098340A1
WO2019098340A1 PCT/JP2018/042548 JP2018042548W WO2019098340A1 WO 2019098340 A1 WO2019098340 A1 WO 2019098340A1 JP 2018042548 W JP2018042548 W JP 2018042548W WO 2019098340 A1 WO2019098340 A1 WO 2019098340A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound layer
phase
fatigue strength
test
hardness
Prior art date
Application number
PCT/JP2018/042548
Other languages
English (en)
French (fr)
Inventor
崇秀 梅原
将人 祐谷
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US16/764,756 priority Critical patent/US11371132B2/en
Priority to EP18878030.8A priority patent/EP3712287B1/en
Priority to KR1020207013197A priority patent/KR20200062317A/ko
Priority to CN201880074035.6A priority patent/CN111406123B/zh
Priority to JP2019554321A priority patent/JP6922998B2/ja
Publication of WO2019098340A1 publication Critical patent/WO2019098340A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Definitions

  • the present invention relates to a steel part subjected to gas nitriding treatment.
  • Steel parts used in automobiles and various industrial machines are subject to carburizing, induction hardening, nitriding, and nitrocarburizing in order to improve mechanical properties such as fatigue strength, wear resistance, and seizure resistance.
  • a surface hardening heat treatment is applied.
  • Nitriding and nitrocarburizing process is performed by A 1 point or less of the ferrite region, since there is no phase transformation during processing, it is possible to reduce the heat treatment distortion. Therefore, nitriding treatment and soft nitriding treatment are often used for parts having high dimensional accuracy and large parts, and are applied to, for example, gears used for transmission parts of automobiles and crankshafts used for engines.
  • the nitriding treatment is a treatment method in which nitrogen penetrates the surface of the steel material.
  • the medium used for the nitriding treatment includes gas, salt bath, plasma and the like.
  • the gas nitriding process which is excellent in productivity is mainly applied to transmission parts of automobiles.
  • a compound layer (a layer in which a nitride such as Fe 3 N is deposited) having a thickness of 10 ⁇ m or more is formed on the surface of the steel by gas nitriding treatment, and a nitrogen diffusion layer is formed on the surface of the steel under the compound layer.
  • a hardened layer is formed.
  • the compound layer is mainly composed of Fe 2 to 3 N ( ⁇ ) and Fe 4 N ( ⁇ ′), and the hardness of the compound layer is extremely high compared to the steel core which is a non-nitrided layer. Therefore, the compound layer improves the wear resistance and the surface fatigue strength of the steel component in the early stage of use.
  • Patent Document 1 discloses a nitrided component having improved bending fatigue resistance by setting the ratio of the? 'Phase in the compound layer to 30 mol% or more.
  • the ratio of the ⁇ ′ phase in the compound layer is 0.5 or more, the thickness of the compound layer is 13 to 30 ⁇ m, and the compound layer thickness / hardened layer depth ⁇ 0.04, A steel member excellent in wear resistance is disclosed.
  • the thickness in the compound layer is 3 to 15 ⁇ m
  • the area ratio is 50% or more of the ⁇ ′ phase
  • the void area ratio from the surface to a depth of 3 ⁇ m is 10
  • a nitrided component excellent in rotational bending fatigue strength is disclosed by setting the compressive residual stress on the compound layer surface to 500 MPa or more.
  • Patent Document 1 gas nitrocarburizing using CO 2 as an atmosphere gas, so the surface side of the compound layer tends to be ⁇ phase.
  • Patent Document 3 The nitrided part of Patent Document 3 is mainly aimed at controlling the ⁇ 'phase ratio of the surface layer portion of the compound layer, and knowledge of the phase ratio and various fatigue strengths in the entire depth direction of the compound layer Because there is not enough, there is room for improvement.
  • An object of the present invention is to provide a part that is excellent in surface fatigue strength or wear resistance in addition to rotational bending fatigue strength.
  • the present inventors paid attention to the form of the compound layer formed on the surface of the steel material by the nitriding treatment, and investigated the relationship with the fatigue strength.
  • the structure of the compound layer produced on the surface layer of the steel after nitriding is mainly made of ⁇ 'phase by nitriding the steel whose component is adjusted under the control of nitriding potential, and the void layer of the surface layer (hereinafter "porous layer") It has been found that a nitrided part having excellent rotational bending fatigue strength and surface fatigue strength or wear resistance can be produced by suppressing the occurrence of (1) and setting the hardness of the compound layer to a certain value or more.
  • C 0.05 to 0.35%
  • Si 0.05 to 1.50%
  • Mn 0.20 to 2.50%
  • P 0.025% or less
  • S 0.050% or less
  • Cr 0.50 to 2.50%
  • V 0.05 to 1.30%
  • Al 0.050% or less
  • N 0.0250% or less
  • Mo 0 to 1.
  • a nitrided component excellent in surface fatigue strength or wear resistance in addition to rotational bending fatigue strength is suitable for gear parts, and a nitrided part having excellent wear resistance in addition to rotational bending fatigue strength is suitable for CVT and camshaft parts.
  • rotational bending fatigue strength it is possible to obtain a nitrided part excellent in wear resistance.
  • % representing the content of each component element and the element concentration on the part surface shall mean “mass%”.
  • steel core part of the nitriding-treated part concerning this invention is equipped with the same chemical composition as the steel materials used as the raw material.
  • C 0.05 to 0.35%
  • C is an element necessary to secure the core hardness of the part. Therefore, C needs 0.05% or more.
  • the preferable lower limit of the C content is 0.08%.
  • the preferable upper limit of C content is 0.30%.
  • Si 0.05 to 1.50%
  • Si is an element that enhances core hardness by solid solution strengthening. In addition, the resistance to temper softening is increased, and the surface fatigue strength and wear resistance of the surface of the component, which becomes high temperature under wear conditions, are enhanced. In order to exert these effects, Si needs to be 0.05% or more. On the other hand, if the content of Si exceeds 1.50%, the strength after the bar, wire or hot forging becomes too high, and the cutting workability is greatly reduced.
  • the preferred lower limit of the Si content is 0.08%.
  • the preferred upper limit of the Si content is 1.30%.
  • Mn forms a fine nitride (Mn 3 N 2 ) in the compound layer and the diffusion layer by nitriding treatment to increase the hardness, thereby improving the surface fatigue strength, the wear resistance, and the rotational bending fatigue strength. It is an effective element.
  • the core hardness is increased by solid solution strengthening. In order to acquire these effects, 0.20% or more of Mn is required.
  • Mn when the content of Mn exceeds 2.50%, not only the effect is saturated, but also the hardness after the steel bar, wire rod and hot forging which are materials become too high, so the machinability is greatly reduced.
  • the preferable lower limit of the Mn content is 0.40%.
  • the preferred upper limit of the Mn content is 2.30%.
  • P 0.025% or less
  • the content be as small as possible. If the P content exceeds 0.025%, the surface fatigue strength, the wear resistance, and the rotational bending fatigue strength may be reduced.
  • the preferable upper limit of P content for preventing the fall of rotational bending fatigue strength is 0.018%. Although the content of P may be 0, it is difficult to make it completely 0, and may be 0.001% or more.
  • S 0.050% or less
  • S in steel is also an element that combines with Mn to form MnS and improves the machinability. In order to obtain the effect of improving the machinability, it is preferable to contain S 0.003% or more.
  • S when the content of S exceeds 0.050%, coarse MnS is easily formed, and the surface fatigue strength, the wear resistance, and the rotational bending fatigue strength are greatly reduced.
  • the preferable lower limit of the S content is 0.005%.
  • the preferred upper limit of the S content is 0.030%.
  • Cr forms a fine nitride (CrN) in the compound layer and the diffusion layer by nitriding treatment to increase the hardness, and is an element effective for improving the surface fatigue strength, the wear resistance, and the rotational bending fatigue strength. It is. In order to obtain these effects, Cr needs to be 0.50% or more. On the other hand, when the content of Cr exceeds 2.50%, not only the effect is saturated, but also the hardness after the steel bar, wire rod and hot forging which are raw materials is too high, so the machinability is significantly reduced. .
  • the preferable lower limit of the Cr content is 0.70%.
  • the preferred upper limit of the Cr content is 2.00%.
  • V forms a fine nitride (VN) in the compound layer and the diffusion layer by nitriding treatment to increase hardness, and is an element effective for improving surface fatigue strength, wear resistance, and rotational bending fatigue strength. It is. In order to obtain these effects, V needs to be 0.05% or more. On the other hand, when the content of V exceeds 1.30%, not only the effect is saturated, but also the hardness after the steel bar, wire rod and hot forging which are raw materials is too high, so the machinability is significantly reduced. .
  • the preferable lower limit of V content is 0.10%.
  • the preferable upper limit of the V content is 1.10%.
  • Al 0.050% or less
  • Al is not an essential element, it is a deoxidizing element and is often contained to some extent in the deoxidized steel. Moreover, it combines with N to form AlN, and the pinning action of austenite grains has the effect of refining the structure of the steel before nitriding treatment and reducing the variation in mechanical characteristics of the nitrided part. In order to obtain the effect of refining the structure of the steel material, it is preferable to contain 0.010% or more.
  • Al tends to form hard oxide inclusions, and when the content of Al exceeds 0.050%, the decrease in rotational bending fatigue strength becomes remarkable, and it is desirable even if other requirements are satisfied. The rotational bending fatigue strength can not be obtained.
  • the preferred lower limit of the Al content is 0.020%.
  • the preferred upper limit of the Al content is 0.040%.
  • N 0.0250% or less
  • N in the steel combines with Mn, Cr, Al and V to form Mn 3 N 2 , CrN, AlN and VN.
  • Al and V which have a high tendency to form nitrides, have the effect of refining the structure of the steel before nitriding treatment and reducing the variation in mechanical characteristics of the nitrided parts by the pinning action of austenite grains.
  • the content of N exceeds 0.0250%, coarse AlN is easily formed, so that the above-described effect is difficult to obtain.
  • the preferable lower limit of the N content is 0.0050%.
  • the preferred upper limit of the N content is 0.0200%.
  • the chemical composition of the steel which is the material of the nitriding treatment part concerning the present invention contains the above-mentioned elements, and the balance is Fe and impurities.
  • the impurities are components contained in the raw materials or components mixed in in the process of production and are components which are not intentionally contained in steel.
  • the impurities are, for example, 0.05% or less of Te, 0.01% or less of W, Co, As, Mg, Zr, and REM.
  • the addition of 0.30% or less has no significant effect on the purpose of improving machinability.
  • the steel used as the raw material of the nitriding-treated part of the present invention may contain elements shown below instead of a part of Fe.
  • Mo forms fine nitrides (Mo 2 N) in the compound layer and diffusion layer formed by nitriding treatment to increase hardness, thereby improving surface fatigue strength, wear resistance, and rotational bending fatigue strength. Is an element effective for In order to acquire these effects, it is preferable to make Mo into 0.01% or more. On the other hand, when the content of Mo exceeds 1.50%, not only the effect is saturated, but also the hardness after the steel bar, wire rod and hot forging which are raw materials becomes too high, so the machinability decreases remarkably. . A more preferable lower limit of the Mo content is 0.10%. The preferred upper limit of the Mo content is 1.10%.
  • Cu improves the core hardness of the part as well as the hardness of the nitrogen diffusion layer as a solid solution strengthening element.
  • the content is preferably 0.01% or more.
  • the content of Cu exceeds 0.50%, the hardness after being used as a material for steel bars, wires and hot forging becomes too high, so the machinability is remarkably reduced and the hot ductility is also reduced. Therefore, during hot rolling, it causes surface damage during hot forging.
  • the preferable lower limit of Cu content for maintaining hot ductility is 0.05%.
  • the preferred upper limit of the Cu content is 0.40%.
  • Ni improves core hardness and surface hardness by solid solution strengthening.
  • the content is preferably 0.01% or more.
  • the content of Ni exceeds 0.50%, the hardness after a bar, wire or hot forging becomes too high, so that the machinability is remarkably reduced and the alloy cost is increased.
  • the preferable lower limit of Ni content for obtaining sufficient machinability is 0.05%.
  • the preferred upper limit of the Ni content is 0.40%.
  • Nb combines with C and N to form NbC and NbN, and has the effect of refining the structure of the steel before nitriding treatment by the pinning action of austenite grains and reducing the variation in mechanical properties of the nitrided parts .
  • Nb is preferably made 0.010% or more.
  • the preferable lower limit of the Nb content is 0.015%.
  • the preferred upper limit of the Nb content is 0.090%.
  • Ti 0 to 0.050%
  • Ti combines with N to form TiN and improves core hardness and surface hardness.
  • Ti is preferably made 0.005% or more.
  • the content of Ti exceeds 0.050%, the effect of improving the core hardness and the surface hardness is saturated and the alloy cost is increased.
  • the preferred lower limit of the Ti content is 0.007%.
  • the preferred upper limit of the Ti content is 0.040%.
  • Solid solution B suppresses grain boundary segregation of P and has an effect of improving toughness.
  • BN which combines with N and precipitates improves the machinability.
  • B is preferably made 0.0005% (5 ppm) or more.
  • the preferable lower limit of the B content is 0.0008%.
  • the preferred upper limit of the B content is 0.0080%.
  • a machinable element for improving machinability can be contained.
  • free-cutting elements include Ca, Pb, Bi, In, and Sn.
  • the Ca content is 0.0100% or less
  • the Pb content is 0.50% or less
  • Bi is The content is 0.50% or less
  • the content of In is 0.20% or less
  • the content of Sn is 0.100% or less.
  • C, Mn, Cr, V and Mo are elements that affect the phase structure and thickness of the compound layer.
  • C and Mo have the effect of stabilizing the ⁇ phase and increasing the thickness.
  • Mn, Cr and V have the effect of thinning the compound layer. Therefore, by designing these elements in a certain range, the ratio of ⁇ 'phase in the compound layer and the compound layer thickness can be stably controlled, and the surface fatigue strength, the wear resistance and the rotational bending fatigue strength can be reduced. Improve.
  • X needs to be 0 or more. If it is less than 0, an effective ratio of ⁇ 'phase can not be obtained for rotational bending fatigue strength. On the other hand, when X exceeds 0.50, the compound layer becomes thin and desired characteristics can not be obtained. The area ratio of the ⁇ ′ phase will be described later.
  • the nitriding-treated component according to the present invention is manufactured by processing a steel material into a molded material and then performing nitriding treatment under predetermined conditions.
  • the nitrided component according to the present invention comprises a steel core, a nitrogen diffusion layer formed on the steel core, and a compound layer formed on the nitrogen diffusion layer. That is, the nitrided component according to the present invention has a structure in which the compound layer is on the surface, the nitrogen diffusion layer is on the inside of the compound layer, and the steel core is on the inside of the nitrogen diffusion layer.
  • the steel core portion is a portion to which the nitrogen which has invaded from the surface did not reach in the nitriding treatment.
  • the steel core has the same chemical composition as the steel material that has become the material of the nitrided component.
  • the nitrogen diffusion layer is a portion where nitrogen which has invaded from the surface in the nitriding treatment is dissolved in the matrix phase or precipitated as iron nitride and alloy nitride.
  • the nitrogen diffusion layer is affected by solid solution strengthening of nitrogen and particle dispersion strengthening of iron nitride and alloy nitride, so the hardness is higher than that of the steel core.
  • the compound layer is a layer mainly containing iron nitrides formed by combining nitrogen atoms which have penetrated into steel by nitriding treatment and iron atoms contained in the material.
  • the compound layer is mainly composed of iron nitride, but in addition to iron and nitrogen, oxygen mixed from the open air, and each element contained in the steel material of the material (that is, each element contained in the steel core) Or the like) is also included in the compound layer. Generally, 90% or more (mass%) of the elements contained in the compound layer is nitrogen and iron.
  • the iron nitride contained in the compound layer is Fe 2-3 N ( ⁇ phase) or Fe 4 N ( ⁇ ′ phase).
  • the thickness of the compound layer affects the surface fatigue strength, the wear resistance, and the rotational bending fatigue strength of the nitrided component.
  • the compound layer is hard but fragile compared to the inner nitrogen diffusion layer and steel core. If the compound layer is excessively thick, pitting or bending is likely to cause a crack, which is a starting point of fracture, leading to deterioration of surface fatigue strength and rotational bending fatigue strength. On the other hand, when the compound layer is too thin, the contribution of the hard compound layer decreases, so that the surface fatigue strength and the rotational bending fatigue strength also decrease.
  • the thickness of the compound layer is set to 5 to 15 ⁇ m from the above viewpoint.
  • the thickness of the compound layer is measured by polishing, etching, and observing with a scanning electron microscope (SEM) the vertical cross section of the test material after gas nitriding treatment.
  • the etching is performed with a 3% nital solution for 20 to 30 seconds.
  • the compound layer is present on the surface of the low alloy steel and is observed as an uncorroded layer.
  • the compound layer is observed from 10 fields of view (photograph area: 6.6 ⁇ 10 2 ⁇ m 2 ) taken at 4000 ⁇ magnification, and the thickness of the compound layer is measured at three points every 10 ⁇ m in the horizontal direction. Then, the average value of the 30 measured points is defined as the compound layer thickness ( ⁇ m).
  • FIG. 1 shows an outline of the measurement method
  • FIG. 2 shows an example of a photograph of the structure of the compound layer and the nitrogen diffusion layer. As shown in FIG. 2, the compound layer which is not etched by etching and the nitrogen diffusion layer which has been corroded clearly have different contrasts and can be discrimin
  • the compound layer and the nitrogen diffusion layer between the nitrogen diffusion layer into which nitrogen has penetrated by the nitriding treatment and the steel core part to which the penetration does not reach. It is difficult to identify the boundary with the steel core.
  • the hardness profile in the depth direction is measured, the area where the hardness decreases continuously with the depth is the nitrogen diffusion layer, and the area where the hardness becomes constant regardless of the depth is the steel core is there. If the difference between the Vickers hardness value at a certain point A and the Vickers hardness value at a point B 50 ⁇ m deeper than the surface at a certain point A is within 1% in the nitrided parts, the point A and the point B and It may be determined that both are in the steel core. Alternatively, since nitrogen does not infiltrate 5.0 mm or more from the surface under normal nitriding conditions, the point 5.0 mm deep from the surface may be the steel core.
  • the ⁇ 'phase has an fcc structure, and is richer in toughness than the ⁇ phase which is an hcp structure.
  • the ⁇ phase has a wider solid solution range of N and C and higher hardness than the ⁇ ′ phase. Therefore, the present inventors have conducted research and research focusing on clarifying the structure of a compound layer effective for surface fatigue strength and rotational bending fatigue strength. As a result, as shown in FIG. 3, it was found that the rotational bending fatigue strength increased as the ratio of the ⁇ ′ phase in the compound layer increased. In particular, it has been found that the ratio of the ⁇ ′ phase effective for rotational bending fatigue strength is 50% or more in the area ratio in the surface vertical cross section.
  • the ratio of the ⁇ ′ phase forms a peak around 70% in the above area ratio, and at least the surface fatigue strength decreases at most by the ⁇ ′ phase.
  • the area ratio of the ⁇ 'phase is determined by image processing of the tissue photograph. Specifically, ⁇ in the compound layer is obtained for 10 texture photographs of a cross section perpendicular to the surface of the surface of the nitrided part taken at 4000 times by backscattered electron diffraction (EBSD). The 'phase and ⁇ phase are determined, and the area ratio of the ⁇ ' phase in the compound layer is determined by binarization by image processing. Then, an average value of the measured area ratio of the ⁇ 'phase of 10 views is defined as the area ratio (%) of the ⁇ ' phase.
  • EBSD backscattered electron diffraction
  • the void is formed by separating N 2 gas from the surface of the steel material along grain boundaries from an energy stable place such as a grain boundary on the surface of the steel material with small binding force by the base material.
  • the generation of N 2 is more likely to occur as the nitriding potential K N described later is higher. This is in accordance with K N increases, bcc ⁇ ⁇ ' ⁇ occur phase transformation epsilon, gamma' for toward the epsilon phase than phase is larger amount of dissolved N 2, towards the epsilon phase N 2 gas It is because it is easy to generate
  • the outline of formation of voids in the compound layer in FIG. 5 (Dieter Rietke et al .: “Nitriding and soft nitriding of iron”, Agne Technical Center, Tokyo, (2011), P. 21); Shows a photo of the organized tissue.
  • the void area ratio can be measured by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the ratio of the total area of the voids (void area ratio, unit:%) in the area 90 ⁇ m 2 in the range of 3 ⁇ m deep from the outermost surface is determined by analysis using an image processing application. And the average value of 10 measured visual fields is defined as a void area ratio (%). Even in the case where the compound layer is less than 3 ⁇ m, the measurement target is similarly to a depth of 3 ⁇ m from the surface.
  • the void area ratio is preferably 5% or less, more preferably 2% or less, still more preferably 1% or less, and most preferably 0.
  • a steel material having the above-described components is subjected to gas nitriding treatment.
  • the treatment temperature of the gas nitriding treatment is 550 to 620 ° C., and the treatment time of the entire gas nitriding treatment is 1.5 to 10 hours.
  • the temperature of the gas nitriding process (nitriding temperature) mainly correlates with the diffusion rate of nitrogen and affects the surface hardness and the depth of the hardened layer. If the nitriding temperature is too low, the diffusion rate of nitrogen is low, the surface hardness is low, and the depth of the hardened layer is shallow. On the other hand, if the nitriding temperature exceeds the A C1 point, an austenitic phase ( ⁇ phase) in which the diffusion rate of nitrogen is smaller than that of the ferrite phase ( ⁇ phase) is generated in the steel, the surface hardness is lowered, and the hardened layer depth It gets shallow. Therefore, in the present embodiment, the nitriding temperature is 550 to 620 ° C. around the ferrite temperature range. In this case, reduction in surface hardness can be suppressed, and reduction in depth of the hardened layer can be suppressed.
  • Treatment time of whole gas nitriding treatment 1.5 to 10 hours
  • the gas nitriding treatment is performed in an atmosphere containing NH 3 , H 2 and N 2 .
  • the time of the entire nitriding treatment correlates with the formation and decomposition of the compound layer and the diffusion and penetration of nitrogen, and influences the surface hardness and the depth of the hardened layer. Exert. If the treatment time is too short, the surface hardness will be low and the hardened layer depth will be shallow. On the other hand, if the treatment time is too long, the void area ratio on the surface of the compound layer increases, and the surface fatigue strength and the rotational bending fatigue strength decrease. If the treatment time is too long, the manufacturing cost will further increase. Therefore, the treatment time of the entire nitriding treatment is 1.5 to 10 hours.
  • the atmosphere gas nitriding process of the present embodiment includes other NH 3, H 2 and N 2, inevitably oxygen, an impurity such as carbon dioxide.
  • a preferred atmosphere is 99.5% (volume%) or more in total of NH 3 , H 2 and N 2 .
  • the nitriding potential is controlled.
  • the area ratio of the ⁇ ′ phase in the compound layer can be set within a predetermined range, and the void area ratio in the range of 3 ⁇ m from the surface can be 10% or less.
  • the nitriding potential K N of the gas nitriding treatment is defined by the following equation.
  • K N (atm -1/2 ) (NH 3 partial pressure (atm)) / [(H 2 partial pressure (atm)) 3/2 ]
  • the partial pressure of NH 3 and H 2 in the atmosphere of gas nitriding can be controlled by adjusting the flow rate of gas.
  • the nitriding potential of the gas nitriding treatment affects the thickness, phase structure and void area ratio of the compound layer, and the optimum nitriding potential has a lower limit of 0.15 and an upper limit of 0.40. , It was found that the average was 0.18 or more and less than 0.30.
  • the ⁇ 'phase ratio in the compound layer can be stably increased without complicating the nitriding conditions, and the surface is 3 ⁇ m deep from the surface.
  • the void area ratio in the range of height can be 10% or less. Therefore, it is possible to obtain a nitrided component having an excellent rotational bending fatigue strength, preferably a surface fatigue strength of 2400 MPa or more and a rotational bending fatigue strength of 600 MPa or more.
  • the rotational bending fatigue strength can be enhanced by increasing the proportion of the ⁇ 'phase in the compound layer.
  • the surface fatigue (contact fatigue with tangential force due to slip) strength is such that the proportion of ⁇ 'phase forms a peak around 70% in area ratio, and at least the surface fatigue strength decreases at most by ⁇ ' phase It turned out to be. This seems to be because it is desirable that the hardness of the compound layer is high in order to secure the surface fatigue strength.
  • the ratio of ⁇ 'phase in the compound layer is 50% or more and 80% or less in area ratio in a cross section perpendicular to the surface Specify.
  • the present inventors deposit nitrides such as CrN and VN in the compound layer, or make a solid solution element of substitution type element in the compound layer, so that the hardness is also obtained in the compound layer of 50-80% of the ⁇ 'phase. It has been found that it is possible to enhance Specifically, the hardness of the compound layer is increased and the surface fatigue strength is enhanced by satisfying 0 ⁇ X ⁇ 0.25 for the value X of the content ratio of C, Mn, Cr, V and Mo. it can.
  • the area ratio of the ⁇ ′ phase of the iron nitride in the compound layer is 50% or more and 80% or less, and 0 ⁇ X ⁇ 0.25.
  • the surface fatigue strength and the rotational bending fatigue strength can be compatible at a high level as compared with the prior art.
  • the hardness of the compound layer can be 730 HV or more, but the hardness of the compound layer is preferably harder, and specifically, it is preferably 750 Hv or more.
  • Nitrided parts having excellent rotational bending fatigue strength can be enhanced by increasing the proportion of the ⁇ 'phase in the compound layer. Therefore, for products in which surface fatigue strength is not required so much (products in which the tangential force and the contact surface pressure are below a certain level), the proportion of ⁇ 'phase in the compound layer in the nitrided part according to the present invention is perpendicular to the surface. It is desirable that the area ratio in the cross section be 80% or more. However, in a product in which the tangential force and the contact surface pressure are equal to or less than a predetermined value, when the ⁇ ′ phase is 80% or more, the wear resistance becomes a problem instead of the surface fatigue strength. As described above, in addition to the hardness of the ⁇ 'phase being lower than that of the ⁇ phase, when the ⁇ ' phase is 80% or more, the thickness of the compound layer becomes insufficient, resulting in insufficient wear resistance. Was there.
  • the present inventors appropriately control not only the hardness of the compound layer but also the necessary compounds by appropriately controlling the value of X, specifically by setting 0.25 ⁇ X ⁇ 0.50. It has been found that the thickness of the layer can be secured. That is, also in the nitrided part according to the present invention, the area ratio of the ⁇ ′ phase of the iron nitride in the compound layer is particularly 80% or more, in particular, 0.25 ⁇ X ⁇ 0.50. In this way, both the rotational bending fatigue strength and the wear resistance can be achieved at a high level.
  • the hardness of the compound layer can be 710 HV or more, but the hardness of the compound layer is preferably harder, and specifically, it is preferably 730 Hv or more.
  • Example 1 In the first embodiment, in particular, a nitrided component excellent in rotational bending fatigue strength and surface fatigue strength will be described.
  • the nitrided parts according to the present invention in particular, 0 ⁇ X ⁇ 0.25, and the area ratio of the ⁇ ′ phase of iron nitride in the compound layer is 50% or more and 80% or less. .
  • Ingots of steels a to ag having chemical components shown in Tables 1-1 to 1-2 were manufactured using a 50 kg vacuum melting furnace.
  • a to y in Table 1-1 are steels having the chemical components specified in this example.
  • steels z to ag shown in Table 1-2 are steels of comparative examples which deviate from the chemical components specified in the present embodiment by at least one element or more.
  • the ingot was hot forged to form a round bar with a diameter of 40 mm. Hot forging was performed at a temperature between 1000 ° C. and 1100 ° C., and after forging, it was allowed to cool in the air. Subsequently, each round bar was annealed and then subjected to cutting work to produce a small roller for a roller pitting test for evaluating the surface fatigue strength shown in FIG.
  • a plurality of small rollers are made from one ingot for the roller pitting test, in which cross-sectional observation (measurement of compound layer thickness and void area ratio, measurement of ⁇ 'phase ratio, and compound layer hardness Of the number of small rollers required for the roller pitting test. Furthermore, the cylindrical test piece for evaluating the rotational bending fatigue strength shown in FIG. 9 was produced by using the same round bar as a raw material. A plurality of cylindrical specimens were also made from one ingot for rotational bending fatigue testing.
  • the small roller which is a roller pitting test piece, includes a test surface with a diameter of 26 mm and a width of 28 mm and a grip with a diameter of 22 provided on both sides of the test surface.
  • the test surface was brought into contact with the large roller, and was rotated after applying a predetermined surface pressure.
  • Gas nitriding was performed on the collected test pieces under the following conditions.
  • the test piece was charged into a gas nitriding furnace, and each gas of NH 3 , H 2 and N 2 was introduced into the furnace to carry out nitriding treatment under the conditions shown in Tables 2-1 and 2-2.
  • Test No. 42 was gas soft nitriding treatment in which 3% of CO 2 gas was added in volume ratio in the atmosphere. Oil-cooling was performed using the oil of 80 degreeC with respect to the test piece after gas nitriding treatment.
  • the H 2 partial pressure in the atmosphere was measured using a heat conduction H 2 sensor directly attached to the gas nitriding furnace. The difference in thermal conductivity between the standard gas and the measurement gas was converted to the gas concentration and measured. The H 2 partial pressure was measured continuously during the gas nitriding process.
  • NH 3 partial pressure was measured using an infrared absorption NH 3 analyzer attached to the outside of the furnace. The NH 3 partial pressure was measured continuously during the gas nitriding process. As for Test No. 42, which is in the atmosphere of a CO 2 gas mixture, (NH 4 ) 2 CO 3 may be precipitated in the infrared absorption type NH 3 analyzer and there is a risk that the device may break down. The NH 3 partial pressure was measured every 10 minutes using an analyzer.
  • the NH 3 flow rate and the N 2 flow rate were adjusted such that the nitriding potential K N calculated in the apparatus converges to the target value.
  • the nitriding potential K N was recorded every 10 minutes, and the lower limit value, the upper limit value, and the average value were derived.
  • the test surface (the position of 26 in FIG. 7) was cut at a plane perpendicular to the longitudinal direction, and the obtained cross section was mirror-polished and etched.
  • the etched cross section was observed using a scanning electron microscope (SEM, manufactured by JEOL Ltd .; JSM-7100F) to measure the compound layer thickness and confirm the presence or absence of voids in the surface layer. Etching was performed for 20-30 seconds with a 3% nital solution.
  • the compound layer can be identified as an uncorroded layer present in the surface layer.
  • the compound layer was observed at a magnification of 4000 ⁇ from 10 fields of view (area of view: 6.6 ⁇ 10 2 ⁇ m 2 ) taken with a scanning electron microscope, and the thickness of three compound layers was measured every 10 ⁇ m. . Then, the average value of the 30 measured points was defined as the compound layer thickness ( ⁇ m).
  • the ratio of the total area of voids (void area ratio, unit%) in the area 90 ⁇ m 2 in the range of depth 3 ⁇ m from the outermost surface It calculated
  • tissue photograph was measured by remove
  • the ⁇ 'phase ratio was determined by image processing of the tissue photograph. Specifically, the cross-sectional view perpendicular to the surface of the nitrided component obtained at 4000 ⁇ was analyzed by backscattered electron diffraction (Electron Back Scatter Diffraction: EBSD, manufactured by EDAX), and a phase map was drawn. The ⁇ ′ phase and the ⁇ phase in the compound layer were determined with respect to 10 sheets of the phase map, and the area ratio of the ⁇ ′ phase in the compound layer was determined by binarization by image processing. Then, the average value of the measured area ratio of the ⁇ ′ phase of 10 fields of view was defined as the ⁇ ′ phase ratio (%).
  • the hardness of the compound layer was measured by the following method using a nanoindentation apparatus (Hysitron; TI950). At a position near the center in the thickness direction of the compound layer, 50 points were randomly indented at an indentation load of 10 mN. Indenter is triangular pyramid (Berkovich) shape, hardness derivation complies with ISO14577-1, the conversion from nanoindentation hardness H IT to Vickers hardness HV, was performed by the following equation.
  • the average value of the measured 50 points was defined as the hardness (HV) of the compound layer.
  • the roller pitting test was conducted under the conditions shown in Table 3 by combining the small roller for the roller pitting test and the large roller for the roller pitting test having the shape shown in FIG. In addition, a large roller is created on the conditions different from this invention, and is not this invention item.
  • the unit of dimensions in FIGS. 7 and 8 is “mm”.
  • the large roller for the roller pitting test is a general manufacturing process using steel meeting the SCM420 standard of JIS G 4053 (2016), that is, “normalize ⁇ test piece processing ⁇ eutectoid carburization by gas carburizing furnace ⁇
  • the Vickers hardness HV is 740 to 760 at a position of 0.05 mm from the surface, that is, a position of 0.05 mm in depth, and the Vickers hardness Hv is 550.
  • the above depth was in the range of 0.8 to 1.0 mm.
  • Table 3 shows the test conditions under which the surface fatigue strength was evaluated.
  • the number of times of test discontinuation was 2 ⁇ 10 7 showing the fatigue limit of general steel, and the maximum contact pressure reached 2 ⁇ 10 7 without pitting in the small roller test piece was used for the small roller test piece It was a fatigue limit.
  • the surface pressure was tested in increments of 50 MPa, particularly near the fatigue limit. That is, in the pitting strength values shown in Tables 2-1 and 2-2, in the target test numbers, no pitting occurred in the small roller test pieces tested under the same surface pressure, but the same surface pressure It is shown that pitting occurred in the small roller test pieces tested at a surface pressure higher than 50 MPa.
  • the pitting occurrence was detected by a vibrometer provided in the tester, and after the occurrence of vibration, the rotation of both the small roller test piece and the large roller test piece was stopped to confirm the pitting occurrence and the number of rotations.
  • the surface pressure at the fatigue limit in the roller pitting test shown in Table 3 is 2400 MPa or more.
  • the stress at the fatigue limit in the Ono type rotational bending fatigue test was aimed to be 600 MPa or more.
  • Test results The results are shown in Tables 2-1 and 2-2.
  • the test numbers 1 to 31 are the components of steel and the conditions of gas nitriding treatment within the range assumed in the present embodiment, the compound layer thickness is 5 to 15 ⁇ m, and the ⁇ ′ phase ratio of the compound layer is 50% to 80%.
  • the void area ratio of the compound layer was 10% or less.
  • the hardness of the compound layer was 730 Hv or more (measured load: 10 mN), and good results were obtained with a surface fatigue strength of 2400 MPa or more and a rotational bending fatigue strength of 600 MPa or more.
  • the composition of the steel and part of the conditions for gas nitriding treatment are out of the range assumed in the present embodiment, and any of the thickness of the compound layer, the ⁇ ′ phase, and the void area ratio Or several characteristics did not reach the target value.
  • the surface fatigue strength or the rotational bending fatigue strength did not meet the target.
  • the atmosphere in the gas nitriding treatment is carbon dioxide-containing and soft nitriding treatment is performed, the formed compound layer is thick and the ratio of ⁇ 'phase is low ( ⁇ phase is formed And the void area ratio was high, and sufficient characteristics were not obtained in terms of pitting strength and rotational bending fatigue strength.
  • Test No. 46 is a comparative example in which the surface fatigue strength does not reach the target value, but is a component suitable as a nitrided component excellent in rotational bending fatigue strength and wear resistance of Example 2 described later.
  • the steel ac used for the test No. 46 is also the steel b of the invention example of the second embodiment.
  • Example 2 In the second embodiment, a nitrided part which is particularly excellent in rotational bending fatigue strength and wear resistance will be described.
  • the nitrided parts according to the present invention in particular, 0.25 ⁇ X ⁇ 0.50, and the area ratio of the ⁇ ′ phase of the iron nitride in the compound layer is 80% or more. .
  • Ingots of steels a to ag having chemical components shown in Tables 4-1 to 4-2 were produced in a 50 kg vacuum melting furnace.
  • a to y in Table 4-1 are steels having the chemical components specified in this example.
  • steels z to ag shown in Table 4-2 are steels of comparative examples in which at least one element or more deviates from the chemical components specified in this example.
  • the ingot was hot forged to form a round bar with a diameter of 40 mm.
  • hot forging was performed at a temperature between 1000 ° C. and 1100 ° C., and after forging, it was allowed to cool in the air.
  • each round bar was annealed and then subjected to a cutting process to produce a small roller for a roller pitting test for evaluating the abrasion resistance shown in FIG.
  • the quantity used for cross-sectional observation was also produced under the same conditions.
  • the cylindrical test piece for evaluating the rotational bending fatigue strength shown in FIG. 9 was produced by using the same round bar as a raw material.
  • Gas nitriding was performed on the collected test pieces under the following conditions.
  • the test piece was charged into a gas nitriding furnace, and NH 3 , H 2 and N 2 gases were introduced into the furnace, and the nitriding treatment was carried out under the conditions shown in Tables 5-1 to 5-2.
  • Test No. 42 was gas soft nitriding treatment in which 3% of CO 2 gas was added in volume ratio in the atmosphere. Oil-cooling was performed using the oil of 80 degreeC with respect to the test piece after gas nitriding treatment.
  • the thickness of the compound layer, the ratio (area ratio) of the ⁇ 'phase in the compound layer, the void area ratio, and the hardness of the compound layer were measured by the same method as in Example 1 using the small roller after gas nitriding treatment .
  • the abrasion resistance evaluation test was evaluated by a roller pitting tester (manufactured by Komatsu Equipment Co., Ltd .; RP 102) according to the following method.
  • the small roller for the roller pitting test was subjected to finish processing of the grip portion for the purpose of removing heat treatment distortion, and then subjected to the roller pitting test piece.
  • the shape after finishing is the same as that of Example 1 shown in FIG.
  • the roller pitting test was conducted under the conditions shown in Table 6 using a combination of the above-mentioned small roller for the pitting test and the large roller for the roller pitting test of the shape shown in FIG.
  • a large roller is created on the conditions different from this invention, and is not this invention item.
  • the unit of dimensions in FIGS. 7 and 8 is “mm”.
  • the large roller for the roller pitting test is a general manufacturing process using steel meeting the SCM420 standard of JIS G 4053 (2016), that is, “normalize ⁇ test piece processing ⁇ eutectoid carburization by gas carburizing furnace ⁇
  • the Vickers hardness HV is 740 to 760 at a position of 0.05 mm from the surface, that is, a position of 0.05 mm in depth, and the Vickers hardness Hv is 550.
  • the above depth was in the range of 0.8 to 1.0 mm.
  • Table 6 shows the test conditions under which the abrasion resistance was evaluated.
  • the number of repetitions is 2 ⁇ 10 6
  • the wear portion of the small roller is scanned along the main axis direction using a roughness meter, and the maximum wear depth is measured.
  • the average value of In this example assuming application to a CVT or a camshaft part, it was aimed that the wear depth by the roller pitting test shown in Table 6 is 10 ⁇ m or less.
  • the wear depth is 10 ⁇ m or less and the maximum stress at fatigue limit is 640 MPa or more did.
  • Test results The results are shown in Tables 5-1 to 5-2.
  • the test numbers 1 to 31 are the composition of steel and the conditions of gas nitriding treatment in the range assumed in this embodiment, the compound layer thickness is 5 to 15 ⁇ m, the ⁇ ′ phase ratio of the compound layer is 80% or more, the compound The layer void area ratio was 10% or less.
  • the hardness of the compound layer was 710 Hv (measured load: 10 mN), and a favorable result was obtained with an abrasion depth of 10 ⁇ m or less and a rotational bending fatigue strength of 640 MPa or more.
  • the composition of the steel and part of the conditions for gas nitriding treatment are out of the range assumed in the present embodiment, and any of the thickness of the compound layer, the ⁇ ′ phase, and the void area ratio Or several characteristics did not reach the target value.
  • the abrasion resistance or rotational bending fatigue strength did not meet the target.
  • the atmosphere in the gas nitriding treatment contains carbon dioxide and is soft nitriding treatment, the proportion of the ⁇ 'phase in the formed compound layer becomes low ( ⁇ phase is formed), Sufficient characteristics were not obtained in terms of rotational bending fatigue strength.
  • test number 46 is a comparative example in which the rotational bending fatigue strength does not reach the target value, the target value of the rotational bending fatigue strength in Example 1 described above (an example in which the gear parts are assumed) is cleared. It is a component suitable as a nitrided component excellent in rotational bending fatigue strength and surface fatigue strength.
  • the steel ac used for the test No. 46 is also the steel k of the invention example of the example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本発明は、回転曲げ疲労強度に加え、面疲労強度、あるいは耐摩耗性に優れた部品を提供することを課題とする。本発明においては、目的とする特性に応じて、鋼の成分、特にC、Mn、Cr、V、Moの含有量を調整し、窒化ポテンシャル制御下で窒化部品を作製する。

Description

窒化処理部品
 本発明は、ガス窒化処理を施された鋼部品に関する。
 自動車や各種産業機械などに使用される鋼部品には、疲労強度、耐摩耗性、及び耐焼付き性などの機械的性質を向上させるために、浸炭焼入れ、高周波焼入れ、窒化、及び軟窒化などの表面硬化熱処理が施される。
 窒化処理及び軟窒化処理は、A点以下のフェライト域で行われ、処理中に相変態がないため、熱処理ひずみを小さくすることができる。そのため、窒化処理及び軟窒化処理は、高い寸法精度を有する部品や大型の部品に用いられることが多く、例えば自動車のトランスミッション部品に用いられる歯車や、エンジンに用いられるクランク軸に適用されている。
 窒化処理は、鋼材表面に窒素を侵入させる処理方法である。窒化処理に用いる媒体には、ガス、塩浴、プラズマなどがある。自動車のトランスミッション部品には、主に、生産性に優れるガス窒化処理が適用されている。ガス窒化処理によって、鋼材表面には、厚さが10μm以上の化合物層(FeN等の窒化物が析出した層)が形成され、さらに、化合物層の下側の鋼材表層には窒素拡散層である硬化層が形成される。化合物層は主にFe2~3N(ε)とFeN(γ’)で構成され、化合物層の硬さは非窒化層である鋼芯部と比較して極めて高い。そのため、化合物層は、使用の初期において、鋼部品の耐摩耗性及び面疲労強度を向上させる。
 特許文献1には、化合物層中のγ’相比率を30mol%以上とすることで、耐曲げ疲労強度を向上させた窒化処理部品が開示されている。
 特許文献2には、化合物層中のγ’相の比率を0.5以上、化合物層の厚さを13~30μm、かつ化合物層厚さ/硬化層深さ≧0.04とすることで、耐摩耗性に優れた鋼部材が開示されている。
 特許文献3には、化合物層中の厚さを3~15μm、表面から5μmの深さまでの相構造を面積率で50%以上のγ’相、表面から3μmの深さまでの空隙面積率が10%未満、化合物層表面の圧縮残留応力が500MPa以上とすることで、面疲労強度に加え回転曲げ疲労強度に優れた窒化処理部品が開示されている。
特開2015-117412号公報 特開2016-211069号公報 国際公開第2018/66666号
 特許文献1の窒化処理部品は、雰囲気ガスにCOを使用したガス軟窒化であることから、化合物層の表面側はε相になりやすいため、曲げ疲労強度はまだ十分ではないと考えられる。
 特許文献2の窒化処理部品は、化合物層の硬さや構造に影響を及ぼすC、Cr、Mo及びVの成分範囲が最適化されておらず、窒化条件によっては化合物層の構造が狙い通りにならない可能性がある。
 特許文献3の窒化処理部品は、化合物層の表層部分のγ’相比率を制御することに主眼が置かれたものであり、化合物層の深さ方向全域における相比率と各種疲労強度についての知見は不十分であることから、改善の余地があると考えられる。
 本発明の目的は、回転曲げ疲労強度に加え、面疲労強度、あるいは耐摩耗性に優れた部品を提供することである。
 本発明者らは、窒化処理によって鋼材の表面に形成される化合物層の形態に着目し、疲労強度との関係を調査した。
 その結果、成分を調整した鋼を、窒化ポテンシャル制御下で窒化することにより、窒化後の鋼の表層に生じた化合物層の構造をγ’相主体とし、表層の空隙層(以下「ポーラス層」という)の発生を抑制し、化合物層の硬さを一定値以上とすることにより、優れた回転曲げ疲労強度、及び面疲労強度あるいは耐摩耗性を有する窒化部品を作製できることを見出した。
 本発明は、上記の知見をもとに、さらに検討を重ねてなされたものであって、その要旨は以下のとおりである。
 (1)質量%で、C:0.05~0.35%、Si:0.05~1.50%、Mn:0.20~2.50%、P:0.025%以下、S:0.050%以下、Cr:0.50~2.50%、V:0.05~1.30%、Al:0.050%以下、N:0.0250%以下、Mo:0~1.50%、Cu:0~0.50%、Ni:0~0.50%、Nb:0~0.100%、Ti:0~0.050%、B:0~0.0100%、Ca:0~0.0100%、Pb:0~0.50%、Bi:0~0.50%、In:0~0.20%、及びSn:0~0.100%を含有し、残部がFe及び不純物である鋼芯部と、前記鋼芯部の上に形成された窒素拡散層と、前記窒素拡散層の上に形成された、鉄窒化物を主として含有する厚さ5~15μmの化合物層を有し、前記化合物層の表面から垂直な断面において、表面から3μmまでの深さの範囲における空隙面積率が10%以下であり、前記鋼芯部におけるC、Mn、Cr、V、Moの含有量に基づいて定められるXを、X=-2.1×C+0.04×Mn+0.5×Cr+1.8×V-1.5×Moと定義すると、(i)0≦X≦0.25、かつ、前記化合物層における前記鉄窒化物のγ’相の面積率が50%以上、80%以下である、または、(ii)0.25≦X≦0.50、かつ、前記化合物層における鉄窒化物のγ’相の面積率が80%以上であることを特徴とする窒化処理部品。
 (2)0≦X≦0.25、かつ、前記化合物層における前記鉄窒化物のγ’相の面積率が50%以上、80%以下であることを特徴とする前記(1)の窒化処理部品。
 (3)0.25≦X≦0.50、かつ、前記化合物層における鉄窒化物のγ’相の面積率が80%以上であることを特徴とする前記(1)の窒化処理部品。
 本発明によれば、回転曲げ疲労強度に加え、面疲労強度あるいは耐摩耗性に優れた窒化処理部品を得ることができる。回転曲げ疲労強度に加え面疲労強度に優れた窒化処理部品は歯車部品に、回転曲げ疲労強度に加え耐摩耗性に優れた窒化処理部品はCVT、カムシャフト部品に好適である。
化合物層の深さの測定方法を説明する図である。 化合物層と拡散層の組織写真の一例である。 γ’相比率と回転曲げ疲労強度の関係を示す図である。 γ’相比率と面疲労強度の関係を示す図である。 化合物層中に空隙が形成される様子を示す図である。 化合物層中に空隙が形成された組織写真の一例である。 面疲労強度、及び耐摩耗性を評価するために用いたローラーピッティング試験用の小ローラーの形状である。 面疲労強度、及び耐摩耗性を評価するために用いたローラーピッティング試験用の大ローラーの形状である。 回転曲げ疲労強度を評価するための円柱試験片の形状である。
 本発明では、成分を目的の特性にあわせて調整した鋼を、窒化ポテンシャル制御下で窒化することにより、鋼の成分に応じて、回転曲げ疲労強度に加え面疲労強度に優れた窒化処理部品、回転曲げ疲労強度に加え耐摩耗性に優れた窒化処理部品を得ることができる。以下、本発明の実施形態について詳しく説明する。
 (1)本発明にかかる窒化処理部品
 はじめに、素材となる鋼材の化学組成について説明する。以下、各成分元素の含有量及び部品表面における元素濃度を表す「%」は「質量%」を意味するものとする。また、本発明にかかる窒化処理部品の鋼芯部は、素材となった鋼材と同じ化学組成を備える。
 [C:0.05~0.35%]
 Cは、部品の芯部硬さを確保するために必要な元素である。そのため、Cは0.05%以上が必要である。一方、Cの含有量が0.35%を超えると、熱間鍛造後の強度が高くなりすぎるため、切削加工性が大きく低下する。C含有量の好ましい下限は0.08%である。また、C含有量の好ましい上限は0.30%である。
 [Si:0.05~1.50%]
 Siは、固溶強化によって、芯部硬さを高める元素である。また、焼戻し軟化抵抗を高め、摩耗条件下で高温となる部品表面の面疲労強度、および耐摩耗性を高める。これらの効果を発揮させるため、Siは0.05%以上が必要である。一方、Siの含有量が1.50%を超えると、棒鋼、線材や熱間鍛造後の強度が高くなりすぎるため、切削加工性が大きく低下する。Si含有量の好ましい下限は0.08%である。Si含有量の好ましい上限は1.30%である。
 [Mn:0.20~2.50%]
 Mnは、窒化処理によって、化合物層や拡散層中に微細な窒化物(Mn)を形成し、硬さを高めるため、面疲労強度や耐摩耗性、および回転曲げ疲労強度の向上に有効な元素である。また、固溶強化によって、芯部硬さを高める。これらの効果を得るため、Mnは0.20%以上が必要である。一方、Mnの含有量が2.50%を超えると、効果が飽和するだけでなく、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が大きく低下する。Mn含有量の好ましい下限は0.40%である。Mn含有量の好ましい上限は2.30%である。
 [P:0.025%以下]
 Pは不純物であって、粒界偏析して部品を脆化させるので、含有量は少ない方が好ましい。Pの含有量が0.025%を超えると、面疲労強度や耐摩耗性、および回転曲げ疲労強度が低下する場合がある。回転曲げ疲労強度の低下を防止するためのP含有量の好ましい上限は0.018%である。Pの含有量は0でもよいが、完全に0とするのは難しく、0.001%以上含有してもよい。
 [S:0.050%以下]
 Sは必須の元素ではないが、意図的に添加しなくても通常不純物として含有される。鋼中のSはMnと結合してMnSを形成し、切削加工性を向上させる元素でもある。切削加工性を向上させる効果を得るために、Sは0.003%以上含有させるのが好ましい。しかしながら、Sの含有量が0.050%を超えると、粗大なMnSを生成しやすくなり、面疲労強度や耐摩耗性、および回転曲げ疲労強度が大きく低下する。S含有量の好ましい下限は0.005%である。S含有量の好ましい上限は0.030%である。
 [Cr:0.50~2.50%]
 Crは、窒化処理によって、化合物層や拡散層中に微細な窒化物(CrN)を形成し、硬さを高めるため、面疲労強度や耐摩耗性、および回転曲げ疲労強度の向上に有効な元素である。これらの効果を得るため、Crは0.50%以上が必要である。一方、Crの含有量が2.50%を超えると、効果が飽和するだけでなく、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が著しく低下する。Cr含有量の好ましい下限は0.70%である。Cr含有量の好ましい上限は2.00%である。
 [V:0.05~1.30%]
 Vは、窒化処理によって、化合物層や拡散層中に微細な窒化物(VN)を形成し、硬さを高めるため、面疲労強度や耐摩耗性、および回転曲げ疲労強度の向上に有効な元素である。これらの効果を得るため、Vは0.05%以上が必要である。一方、Vの含有量が1.30%を超えると、効果が飽和するだけでなく、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が著しく低下する。V含有量の好ましい下限は0.10%である。V含有量の好ましい上限は1.10%である。
 [Al:0.050%以下]
 Alは必須の元素ではないが、脱酸元素であり、脱酸後の鋼中にも、多くの場合はある程度含有される。また、Nと結合してAlNを形成し、オーステナイト粒のピンニング作用により、窒化処理前の鋼材の組織を微細化し、窒化処理部品の機械的特性のばらつきを低減する効果を持つ。鋼材の組織を微細化する効果を得るためには、0.010%以上含有させるのが好ましい。一方で、Alは硬質な酸化物系介在物を形成しやすく、Alの含有量が0.050%を超えると、回転曲げ疲労強度の低下が著しくなり、他の要件を満たしていても所望の回転曲げ疲労強度が得られなくなる。Al含有量の好ましい下限は0.020%である。Al含有量の好ましい上限は0.040%である。
 [N:0.0250%以下]
 Nは、必須の元素ではないが、意図的に添加しなくても通常不純物として含有される。鋼中のNは、Mn、Cr、Al、Vと結合してMn、CrN、AlN、VNを形成する。中でも窒化物形成傾向の高いAl、Vはオーステナイト粒のピンニング作用により、窒化処理前の鋼材の組織を微細化し、窒化処理部品の機械的特性のばらつきを低減する効果を持つ。鋼材の組織を微細化する効果を得るためには、0.0030%以上含有させるのが好ましい。一方で、Nの含有量が0.0250%を超えると、粗大なAlNが形成されやすくなるため、上記の効果は得難くなる。N含有量の好ましい下限は0.0050%である。N含有量の好ましい上限は0.0200%である。
 本発明にかかる窒化処理部品の素材となる鋼の化学成分は、上記の元素を含有し、残部はFe及び不純物である。不純物とは、原材料に含まれる、あるいは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分のことをいう。不純物とは、例えば、0.05%以下のTe、0.01%以下のW、Co、As、Mg、Zr、REMである。Teは被削性を向上させる目的で、0.30%以下を添加しても大きな影響はない。
 ただし、本発明の窒化処理部品の素材となる鋼は、Feの一部に代えて、以下に示す元素を含有してもよい。
 [Mo:0~1.50%]
 Moは、窒化処理によって形成される化合物層や拡散層中に微細な窒化物(MoN)を形成し、硬さを高めるため、面疲労強度や耐摩耗性、および回転曲げ疲労強度の向上に有効な元素である。これらの効果を得るため、Moは0.01%以上とするのが好ましい。一方、Moの含有量が1.50%を超えると、効果が飽和するだけでなく、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が著しく低下する。Mo含有量のより好ましい下限は0.10%である。Mo含有量の好ましい上限は1.10%である。
 [Cu:0~0.50%]
 Cuは、固溶強化元素として部品の芯部硬さならびに窒素拡散層の硬さを向上させる。Cuの固溶強化の作用を発揮させるためには0.01%以上の含有が好ましい。一方、Cuの含有量が0.50%を超えると、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が著しく低下する他、熱間延性が低下するため、熱間圧延時、熱間鍛造時に表面傷発生の原因となる。熱間延性維持のためのCu含有量の好ましい下限は0.05%である。Cu含有量の好ましい上限は0.40%である。
 [Ni:0~0.50%]
 Niは、固溶強化により芯部硬さ及び表面硬さを向上させる。Niの固溶強化の作用を発揮させるためには0.01%以上の含有が好ましい。一方、Niの含有量が0.50%を超えると、棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が著しく低下する他、合金コストが増大する。十分な切削加工性を得るためのNi含有量の好ましい下限は0.05%である。Ni含有量の好ましい上限は0.40%である。
 [Nb:0~0.100%]
 Nbは、CやNと結合してNbCやNbNを形成し、オーステナイト粒のピンニング作用により、窒化処理前の鋼材の組織を微細化し、窒化処理部品の機械的特性のばらつきを低減する効果を持つ。この作用を得るため、Nbは0.010%以上とするのが好ましい。一方、Nbの含有量が0.100%を超えると、粗大なNbC、NbNが形成されるため、上記の効果は得難くなる。Nb含有量の好ましい下限は0.015%である。Nb含有量の好ましい上限は0.090%である。
 [Ti:0~0.050%]
 Tiは、Nと結合してTiNを形成し、芯部硬さ及び表面硬さを向上させる。この作用を得るため、Tiは0.005%以上とするのが好ましい。一方、Tiの含有量が0.050%を超えると、芯部硬さ及び表面硬さを向上させる効果が飽和する他、合金コストが増大する。Ti含有量の好ましい下限は0.007%である。Ti含有量の好ましい上限は0.040%である。
 [B:0~0.0100%]
 固溶Bは、Pの粒界偏析を抑制し、靭性を向上させる効果を持つ。また、Nと結合して析出するBNは、切削性を向上させる。これらの作用を得るため、Bは0.0005%(5ppm)以上とすることが好ましい。一方、Bの含有量が0.0100%を超えると、上記効果が飽和するだけでなく、多量なBNが偏析することで鋼材に割れが生じることがある。B含有量の好ましい下限は0.0008%である。B含有量の好ましい上限は0.0080%である。
 [Ca:0~0.0100%、Pb:0~0.50%、Bi:0~0.50%、In:0~0.20%、及びSn:0~0.100%]
 その他、必要に応じて被削性を向上させるための快削性元素を含有させることができる。快削性元素としては、Ca、Pb、Bi、In、及びSnが挙げられる。被削性向上のためには、Ca、Pb、Bi、In、及びSnの1種類以上の元素を、それぞれ0.005%以上含有させることが好ましい。快削性元素は多量に添加しても効果は飽和し、また、熱間延性が低下するので、Caの含有量は0.0100%以下、Pbの含有量は0.50%以下、Biの含有量は0.50%以下、Inの含有量は0.20%以下、Snの含有量は0.100%以下とする。
 本発明の窒化処理部品の成分は、さらに、C、Mn、Cr、V、Moの含有量(質量%)が0≦-2.1×C+0.04×Mn+0.5×Cr+1.8×V-1.5×Mo≦0.50を満たす必要がある。含有しない元素は0として計算する。ここで、Xの値を、以下数式により定義し、以下の説明ではXを用いて説明する。
  X=-2.1×C+0.04×Mn+0.5×Cr+1.8×V-1.5×Mo
 C、Mn、Cr、V及びMoは、化合物層の相構造及び厚さに影響を及ぼす元素である。C及びMoにはε相を安定化させ、厚さを高める効果がある。一方Mn、Cr及びVには、化合物層を薄くする効果がある。そのため、これらの元素を一定の範囲に設計することで、化合物層中のγ’相の比率、及び化合物層厚さを安定して制御でき、面疲労強度、耐摩耗性及び回転曲げ疲労強度を向上させる。
 これらの効果を得るため、Xは0以上であることが必要である。0未満となると、回転曲げ疲労強度に有効な割合のγ’相が得られない。一方、Xが0.50を超えると、化合物層が薄くなり、所望の特性が得られない。γ’相の面積率については後述する。
 次に、本発明の窒化処理部品について説明する。
 本発明にかかる窒化処理部品は、鋼材を素形材に加工したうえで、所定の条件下で窒化処理を行うことによって製造される。本発明にかかる窒化処理部品は、鋼芯部と、鋼芯部の上に形成された窒素拡散層と、窒素拡散層の上に形成された化合物層と、を備える。すなわち、本発明にかかる窒化処理部品は、表面に化合物層があり、化合物層の内側に窒素拡散層があり、窒素拡散層の内側に鋼芯部がある構造を有する。
 鋼芯部は、窒化処理において表面から侵入した窒素の届かなかった部分である。鋼芯部は、窒化処理部品の素材となった鋼材と同じ化学組成を有する。
 窒素拡散層は、窒化処理において表面から侵入した窒素が母相に固溶したり、鉄窒化物および合金窒化物として析出した部分である。窒素拡散層には、窒素の固溶強化および鉄窒化物、合金窒化物の粒子分散強化が作用しているため、硬さは鋼芯部のそれに比べ高い。
 化合物層は、窒化処理により鋼に侵入した窒素原子と、素材に含まれる鉄原子とが結合して形成した鉄窒化物を主として含む層である。化合物層は主として鉄窒化物により構成されるが、鉄及び窒素のほかに、外気から混入する酸素、および、素材の鋼材に含有されている各元素(すなわち、鋼芯部に含有される各元素)の一種または二種以上も化合物層に含まれる。一般に、化合物層に含まれる元素の90%以上(質量%)は窒素および鉄である。化合物層に含まれる鉄窒化物は、Fe2~3N(ε相)もしくはFeN(γ’相)である。
 [化合物層の厚さ:5~15μm]
 化合物層の厚さは、窒化処理部品の面疲労強度や耐摩耗性、回転曲げ疲労強度に影響する。化合物層は、内側の窒素拡散層および鋼芯部に比べると硬質だが割れやすい性質を持つ。化合物層が過度に厚いと、ピッティングや曲げによって亀裂が生じやすく、破壊起点となりやすく、面疲労強度、回転曲げ疲労強度の劣化につながる。一方、化合物層が薄すぎると、硬い化合物層の寄与が小さくなるために、やはり面疲労強度や回転曲げ疲労強度が低下する。本発明にかかる窒化処理部品においては、上記の観点から、化合物層の厚さは5~15μmとする。
 化合物層の厚さは、ガス窒化処理後、供試材の垂直断面を研磨し、エッチングして走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察して測定する。エッチングは、3%ナイタール溶液で20~30秒間行う。化合物層は、低合金鋼の表層に存在し、未腐食の層として観察される。4000倍で撮影した組織写真10視野(視野面積:6.6×10μm)から化合物層を観察し、それぞれ水平方向に10μm毎に3点で化合物層の厚さを測定する。そして、測定された30点の平均値を化合物層厚さ(μm)と定義する。図1に測定方法の概略を、図2に化合物層と窒素拡散層の組織写真の一例を示す。図2に示す通り、エッチングで腐食されない化合物層と、腐食された窒素拡散層とは明確にコントラストが異なり、判別可能である。
 窒化処理により窒素が侵入した窒素拡散層と、侵入が及ばなかった鋼芯部との間には、化合物層-窒素拡散層間の界面のような明確なコントラストの差は生じず、窒素拡散層と鋼芯部との境界を特定することは困難である。深さ方向への硬さプロファイルを測定したときに、硬さが深さとともに連続的に減少する領域は窒素拡散層であり、硬さが深さによらず一定となる領域は鋼芯部である。窒化処理部品において、ある地点Aにおけるビッカース硬さの値と、地点Aよりも表面から50μmさらに深い地点Bにおけるビッカース硬さの値との差が1%以内であれば、地点Aと地点Bとの両方が鋼芯部内にあると判断してもよい。もしくは、通常の窒化条件であれば窒素は表面から5.0mm以上侵入しないため、表面から5.0mm深い地点は鋼芯部であるとしてもよい。
 [化合物層のγ’相の面積率:50%以上]
 γ’相はfcc構造であり、hcp構造であるε相に比べ靭性に富む。一方で、ε相はγ’相に比べ、N及びCの固溶範囲が広く、高硬度である。そこで、本発明者らは、面疲労強度及び回転曲げ疲労強度に有効な化合物層の構造を明らかにすることを主眼とした調査、研究を重ねた。その結果、図3に示すように、化合物層におけるγ’相の割合が高まるほど回転曲げ疲労強度が高まることを知見した。特に、回転曲げ疲労強度に有効なγ’相の割合は、表面な垂直な断面における面積率で50%以上であることを知見した。
 一方で、図4に示すように、面疲労強度は、γ’相の割合が上記面積率において70%付近にピークを形成し、それよりもγ’相が多くとも少なくとも面疲労強度が低下することを知見した。すなわち、特に面疲労強度が重視される部品(歯車部品等)では、化合物層のγ’相の面積率を80%以下とすることが望ましい。一方で、面疲労強度よりも回転曲げ疲労強度が重視される部品(自動車におけるCVT、カムシャフト部品等)では、化合物層のγ’相の面積率が高いほうが望ましく、特に80%以上とすることが望ましい。
 γ’相の面積率は、組織写真を画像処理することにより求める。具体的には、後方散乱電子回折法(Electron Back Scatter Diffraction:EBSD)により、4000倍で撮影した窒化処理部品表層の、表面に垂直な断面の組織写真10枚に対して、化合物層中のγ’相、ε相を判別し、化合物層中に占めるγ’相の面積比率を、画像処理により2値化して求める。そして、測定された10視野のγ’相の面積比率の平均値を、γ’相の面積率(%)と定義する。
 [表面から3μmの深さまでの範囲の化合物層の空隙面積率:10%以下]
 表面から3μmの深さまでの範囲の化合物層に存在する空隙には応力集中が生じ、ピッティングや曲げ疲労破壊の起点となりやすい。そのため、空隙面積率は10%以下とする必要がある。
 空隙は、母材による拘束力の小さい鋼材表面において、粒界などエネルギー的に安定な場所から、Nガスが粒界に沿って鋼材表面から脱離することにより形成される。Nの発生は、後述する窒化ポテンシャルKが高いほど発生しやすくなる。これは、Kが高くなるに従い、bcc→γ’→εの相変態が起こり、γ’相よりもε相の方がNの固溶量が大きいため、ε相の方がNガスを発生させやすいためである。図5に化合物層に空隙が形成される概略(ディーター・リートケ他:「鉄の窒化と軟窒化」,アグネ技術センター,東京,(2011),P.21)を、図6に空隙が形成された組織写真を示す。
 空隙面積率は、走査型電子顕微鏡(Scanning Electron Microscope:SEM)によって測定することができる。最表面から3μm深さの範囲の面積90μm中に占める空隙の総面積の比(空隙面積率、単位は%)を、画像処理アプリケーションを用いた解析により求める。そして、測定された10視野の平均値を、空隙面積率(%)と定義する。化合物層が3μm未満の場合においても、同様に表面から3μm深さまでを測定対象とする。
 空隙面積率は好ましくは5%以下、より好ましくは2%以下であり、さらに好ましくは1%以下であり、0であることが最も好ましい。
 次に、本発明にかかる窒化処理部品の製造方法の一例を説明する。
 本発明にかかる窒化処理部品の製造方法では、上述した成分を有する鋼材に対してガス窒化処理を施す。ガス窒化処理の処理温度は550~620℃であり、ガス窒化処理全体の処理時間は1.5~10時間である。
 [処理温度:550~620℃]
 ガス窒化処理の温度(窒化処理温度)は、主に、窒素の拡散速度と相関があり、表面硬さ及び硬化層深さに影響を及ぼす。窒化処理温度が低すぎれば、窒素の拡散速度が遅く、表面硬さが低くなり、硬化層深さが浅くなる。一方、窒化処理温度がAC1点を超えれば、フェライト相(α相)よりも窒素の拡散速度が小さいオーステナイト相(γ相)が鋼中に生成され、表面硬さが低くなり、硬化層深さが浅くなる。したがって、本実施形態では、窒化処理温度はフェライト温度域周囲の550~620℃である。この場合、表面硬さが低くなるのを抑制でき、かつ、硬化層深さが浅くなるのを抑制できる。
 [ガス窒化処理全体の処理時間:1.5~10時間]
 ガス窒化処理は、NH、H、Nを含む雰囲気で実施する。窒化処理全体の時間、つまり、窒化処理の開始から終了までの時間(処理時間)は、化合物層の形成及び分解と窒素の拡散浸透と相関があり、表面硬さ及び硬化層深さに影響を及ぼす。処理時間が短すぎると表面硬さが低くなり、硬化層深さが浅くなる。一方、処理時間が長すぎれば、化合物層表面の空隙面積率が増加し、面疲労強度や回転曲げ疲労強度が低下する。処理時間が長すぎればさらに、製造コストが高くなる。したがって、窒化処理全体の処理時間は1.5~10時間である。
 なお、本実施形態のガス窒化処理の雰囲気は、NH、H及びNの他、不可避的に酸素、二酸化炭素などの不純物を含む。好ましい雰囲気は、NH、H及びNを合計で99.5%(体積%)以上である。雰囲気において不純物、特に二酸化炭素の含有量が高くなると、炭素の存在によって非γ’相(ε相)の形成を促進してしまうため、本発明の窒化処理部品の作成は難しくなる。
 [窒化処理のガス条件]
 本発明にかかる窒化処理部品の窒化処理方法では、窒化ポテンシャルを制御する。これにより、化合物層中のγ’相の面積率を所定の範囲内とし、表面から3μmの深さの範囲における空隙面積率を10%以下とすることができる。
 ガス窒化処理の窒化ポテンシャルKは、下記式で定義される。
  K(atm-1/2)=(NH3分圧(atm))/[(H2分圧(atm))3/2
 ガス窒化処理の雰囲気のNH及びHの分圧は、ガスの流量を調整することにより制御することができる。
 本発明者らの検討の結果、ガス窒化処理の窒化ポテンシャルは、化合物層の厚さ、相構造、空隙面積率に影響し、最適な窒化ポテンシャルは、下限が0.15、上限が0.40、平均が0.18以上0.30未満であることを見出した。
 このように、本発明における成分系の鋼を窒化する場合、窒化処理条件を複雑にすることなく、安定的に化合物層中のγ’相比率を高めることができ、かつ、表面から3μmの深さの範囲における空隙面積率を10%以下とすることができる。そのため、優れた回転曲げ疲労強度、好ましくは、面疲労強度が2400MPa以上、回転曲げ疲労強度が600MPa以上の窒化処理部品を得ることができる。
 (2)面疲労強度に優れた窒化処理部品
 上述したように、化合物層におけるγ’相の割合を高めることで回転曲げ疲労強度を高めることができる。反面、面疲労(すべりによる接線力を伴う接触疲労)強度は、γ’相の割合が面積率で70%付近にピークを形成し、それよりもγ’相が多くとも少なくとも面疲労強度が低下することが判明した。これは、面疲労強度を確保するうえでは化合物層の硬さが高いほうが望ましいことに由来すると思われる。すなわち、γ’相が70%を超えて過度に多くなると、γ’相に比べて硬いε相の割合が減少し、特に80%を超えると化合物層の硬さが不十分となり、その結果、面疲労強度が低下するものと思われる。反面、上述したように、靱性に富むγ’相を少なくして50%未満とすると、回転曲げ疲労強度が不十分となる。本発明にかかる窒化処理部品において、特に面疲労強度が要求される窒化処理部品については、化合物層におけるγ’相の割合を、表面に垂直な断面における面積率で50%以上、80%以下と規定する。
 本発明者らは、CrNやVNなどの窒化物を化合物層中に析出させ、または置換型元素を化合物層に固溶させることで、γ’相が50-80%の化合物層においても硬さを高めることができることを知見した。具体的には、C、Mn、Cr、V及びMoの含有割合にかかる値Xについて、0≦X≦0.25であることにより、化合物層の硬さを高め、面疲労強度を高めることができる。すなわち、本発明における窒化処理部品においても、特に、0≦X≦0.25、かつ、前記化合物層における前記鉄窒化物のγ’相の面積率が50%以上、80%以下とすることで、従来に比べて面疲労強度と回転曲げ疲労強度とを高い水準で両立できる。この窒化処理部品においては、化合物層の硬さは730HV以上を実現することができるが、化合物層の硬さはより固いほうが望ましく、具体的には750Hv以上であることが好ましい。
 (3)回転曲げ疲労強度に優れた窒化処理部品
 上述したように、化合物層におけるγ’相の割合を高めることで回転曲げ疲労強度を高めることができる。そのため、面疲労強度がそれほど要求されない製品(接線力や接触面圧が一定以下である製品)には、本発明にかかる窒化部品において、さらに化合物層におけるγ’相の割合を、表面に垂直な断面における面積率で80%以上とすることが望ましい。しかしながら、接線力や接触面圧が一定以下の製品において、γ’相を80%以上とした場合には、面疲労強度に代えて、耐摩耗性が問題となる。上述したように、γ’相はε相に比べて硬度が低いことに加え、γ’相が80%以上の場合には化合物層の厚さが不十分となり、結果として耐摩耗性が不十分であることがあった。
 本発明者らは、前記Xの値を適切に制御し、具体的には0.25≦X≦0.50とすることで、化合物層の硬さを適正化するだけでなく、必要な化合物層の厚さを確保することができることを知見した。すなわち、本発明における窒化処理部品においても、特に、0.25≦X≦0.50、かつ、前記化合物層における前記鉄窒化物のγ’相の面積率を80%以上とすることで、従来に比べて回転曲げ疲労強度と耐摩耗性とを高い水準で両立できる。この窒化処理部品においては、化合物層の硬さは710HV以上を実現することができるが、化合物層の硬さはより固いほうが望ましく、具体的には730Hv以上であることが好ましい。
 [実施例1]
 実施例1では、特に回転曲げ疲労強度及び面疲労強度に優れた窒化処理部品について説明する。本発明にかかる窒化処理部品の中でも、特に、0≦X≦0.25、かつ、化合物層における鉄窒化物のγ’相の面積率が50%以上、80%以下であることを特徴とする。
 表1-1~1-2に示す化学成分を有する鋼a~agのインゴットを、50kg真空溶解炉を用いて製造した。なお、表1-1中のa~yは、本実施例で規定する化学成分を有する鋼である。一方、表1-2に示す鋼z~agは、少なくとも1元素以上、本実施例で規定する化学成分から外れた比較例の鋼である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 このインゴットを熱間鍛造して直径40mmの丸棒とした。熱間鍛造は1000℃から1100℃の間の温度にて行い、鍛造後は大気中で放冷した。続いて、各丸棒を焼鈍した後、切削加工を施し、図7に示す面疲労強度を評価するためのローラーピッティング試験用の小ローラーを作製した。一つのインゴットから、ローラーピッティング試験に向けて複数の小ローラーを作成するが、その際、断面観察(化合物層厚さ及び空隙面積率の測定、γ’相比率の測定、および化合物層硬さの測定向け)の対象とすることを想定し、ローラーピッティング試験に必要な数よりも多く小ローラーを作成した。さらに、同じ丸棒を素材として、図9に示す回転曲げ疲労強度を評価するための円柱試験片を作製した。円柱試験片も、一つのインゴットから回転曲げ疲労試験に向けて複数を作成した。
 ローラーピッティング試験片である小ローラーは、図7に示すように、中央のφ26、幅28mmの試験面部と、その両側部に設けられたφ22の掴み部とを備える。ローラーピッティング試験では、試験面部を大ローラーと接触させ、所定の面圧を加えたうえで回転させた。
 採取された試験片に対して、次の条件でガス窒化処理を実施した。試験片をガス窒化炉に装入し、炉内にNH、H、Nの各ガスを導入して、表2-1~2-2に示す条件で窒化処理を実施した。ただし、試験番号42は、雰囲気中にCOガスを体積率で3%添加したガス軟窒化処理とした。ガス窒化処理後の試験片に対して、80℃の油を用いて油冷を実施した。
 雰囲気中のH分圧は、ガス窒化炉体に直接装着した熱伝導式Hセンサを用いて測定した。標準ガスと測定ガスとの熱伝導度の違いをガス濃度に換算して測定した。H分圧は、ガス窒化処理の間、継続して測定した。
 また、NH分圧は、炉外に取り付けた赤外線吸収式NH分析計を用いて測定した。NH分圧は、ガス窒化処理の間継続して測定した。なお、COガス混合の雰囲気下である試験番号42については、赤外線吸収式NH分析計内に(NHCOが析出し、装置が故障する恐れがあったため、ガラス管式NH3分析計を用いて、10分毎にNH分圧を測定した。
 装置内で演算された窒化ポテンシャルKが目標値に収束するように、NH流量及びN流量を調整した。10分毎に窒化ポテンシャルKを記録し、下限値、上限値及び平均値を導出した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 [化合物層厚さ及び空隙面積率の測定]
 ガス窒化処理後の小ローラーにおいて、試験面部(図7のφ26の位置)を長手方向に垂直な面にて切断し、得られた断面を鏡面研磨し、エッチングした。走査型電子顕微鏡(Scanning Electron Microscope:SEM、日本電子社製;JSM-7100F)を用いてエッチングされた断面を観察し、化合物層厚さの測定及び表層部の空隙の有無の確認を行った。エッチングは、3%ナイタール溶液で20~30秒間行った。
 化合物層は、表層に存在する未腐食の層として確認可能である。4000倍で、走査型電子顕微鏡で撮影した組織写真10視野(視野面積:6.6×10μm)から化合物層を観察し、それぞれ10μm毎に3点の化合物層の厚さを測定した。そして、測定された30点の平均値を、化合物層厚さ(μm)と定義した。
 最表面から3μm深さの範囲の面積90μm中に占める空隙の総面積の比(空隙面積率、単位は%)を、上述した組織写真(10視野)を画像処理アプリケーション(日本電子社製;AnalysisStation)で解析することにより求めた。具体的には、組織写真における試料表面付近の、深さ方向3μm×表面に平行な方向30μmの領域を抽出し、抽出した領域において空隙となっている部分の面積を算出した。算出された面積を、抽出した領域の面積(90μm)で除すことにより、当該組織写真での空隙面積率を測定した。この計算を、測定された10視野において行い、その平均値を、空隙面積率(%)と定義した。化合物層が3μm未満の場合においても、同様に表面から3μm深さまでを測定対象とした。
 [γ’相比率の測定]
 γ’相比率は、組織写真を画像処理することにより求めた。具体的には、後方散乱電子回折法(Electron Back Scatter Diffraction:EBSD、EDAX社製)により、4000倍で取得した窒化処理部品の表面に垂直な断面視野を解析し、相マップを作図した。この相マップ10枚に対して、化合物層中のγ’相、ε相を判別し、化合物層中に占めるγ’相の面積比率を、画像処理により2値化して求めた。そして、測定された10視野のγ’相の面積比率の平均値を、γ’相比率(%)と定義した。
 [化合物層の硬さ]
 化合物層の硬さは、ナノインデンテーション装置(Hysitron社製;TI950)により、次の方法で測定した。化合物層の厚さ方向中央近傍位置において、押込み荷重10mNにてランダムに50点インデントした。圧子は三角錐(バーコビッチ)形状であり、硬さ導出はISO14577-1に準拠し、ナノインデンテーション硬さHITからビッカース硬さHVへの換算を、次式により行った。
  HV=0.0924×HIT
 測定した50点の平均値を、化合物層の硬さ(HV)と定義した。
 [面疲労強度評価試験]
 面疲労強度は、ローラーピッティング試験機(小松設備社製;RP102)により、次の方法で評価した。ローラーピッティング試験用小ローラーを、熱処理ひずみを除く目的で掴み部の仕上げ加工を行った後、それぞれローラーピッティング試験に供した。仕上げ加工後の形状を図7に示す。
 ローラーピッティング試験は、上記のローラーピッティング試験用小ローラーと図8に示す形状のローラーピッティング試験用大ローラーの組み合わせで、表3に示す条件で行った。なお、大ローラーは、本発明とは異なる条件で作成したものであり、本発明品ではない。
 なお、図7、8における寸法の単位は「mm」である。上記ローラーピッティング試験用大ローラーは、JIS G 4053(2016)のSCM420規格を満たす鋼を用いて、一般的な製造工程、つまり「焼きならし→試験片加工→ガス浸炭炉による共析浸炭→低温焼戻し→研磨」の工程によって作製したものであり、表面から0.05mmの位置、すなわち、深さ0.05mmの位置におけるビッカース硬さHVは740~760で、また、ビッカース硬さHvが550以上の深さは、0.8~1.0mmの範囲にあった。
 表3に、面疲労強度の評価を行った試験条件を示す。試験打ち切り回数は、一般的な鋼の疲労限を示す2×10回とし、小ローラー試験片においてピッティングが発生せずに2×10回に達した最大面圧を小ローラー試験片の疲労限とした。ローラーピッティング試験においては、特に疲労限付近では面圧を50MPa刻みで試験を行った。すなわち、表2-1~2-2に示すピッティング強度の値は、対象試験番号において、同面圧下にて試験を行った小ローラー試験片にはピッティングが生じなかったが、同面圧よりも50MPa高い面圧下で試験を行った小ローラー試験片にはピッティングが生じたことを示している。
Figure JPOXMLDOC01-appb-T000005
 ピッティング発生の検出は、試験機に備え付けられた振動計によって行い、振動発生後に、小ローラー試験片と大ローラー試験片の両方の回転を停止させ、ピッティング発生と回転数を確認した。本実施例においては、歯車部品への適用を想定し、表3に示すローラーピッティング試験での疲労限における面圧が2400MPa以上であることを目標とした。
 [回転曲げ疲労強度評価試験]
 ガス窒化処理に供した円柱試験片に対し、JIS Z 2274(1978)に準拠した小野式回転曲げ疲労試験を実施した。回転数は3000rpm、試験打ち切り回数は、一般的な鋼の疲労限を示す1×10回とし、回転曲げ疲労試験片において、破断が生じずに1×10回に達した最大応力を回転曲げ疲労試験片の疲労限とした。回転曲げ疲労試験においては、特に疲労限付近では応力を10MPa刻みで試験を行った。すなわち、表2-1~2-2に示す回転曲げ疲労強度の値は、対象試験番号において、同応力下にて試験を行った円柱試験片には破断が生じなかったが、同応力よりも10MPa高い応力下で試験を行った円柱試験片には破断が生じたことを示している。
 本実施例においては、歯車部品への適用を想定し、小野式回転曲げ疲労試験での疲労限における応力が600MPa以上であることを目標にした。
 [試験結果]
 結果を表2-1~2-2に示す。試験番号1~31は鋼の成分、及びガス窒化処理の条件が本実施例で想定する範囲内であり、化合物層厚さが5~15μm、化合物層のγ’相比率が50%以上80%以下、化合物層空隙面積率が10%以下であった。その結果、化合物層の硬さが730Hv以上(測定荷重10mN)となり、面疲労強度が2400MPa以上、回転曲げ疲労強度が600MPa以上と良好な結果が得られた。
 試験番号32~50は、鋼の成分、及びガス窒化処理の条件の一部が本実施例で想定する範囲外であり、化合物層の厚さ、γ’相、空隙面積率のうちいずれか、もしくは複数の特性が目標値に届かなかった。その結果、面疲労強度もしくは回転曲げ疲労強度が目標を満たさなかった。たとえば、試験番号42は、ガス窒化処理における雰囲気が二酸化炭素を含有するものであり軟窒化処理であったため、形成された化合物層が厚く、またγ’相の割合が低く(ε相が形成され)、空隙面積率が高くなり、ピッティング強度および回転曲げ疲労強度の観点で十分な特性を得られなかった。
 なお、試験番号46は、面疲労強度が目標値に届かない比較例であるが、後述する実施例2の回転曲げ疲労強度及び耐摩耗性に優れた窒化処理部品としては適した部品である。試験番号46に用いた鋼acは、実施例2の本発明例の鋼bでもある。
 [実施例2]
 実施例2では、特に回転曲げ疲労強度及び耐摩耗性に優れた窒化処理部品について説明する。本発明にかかる窒化処理部品の中でも、特に、0.25≦X≦0.50、かつ、前記化合物層における前記鉄窒化物のγ’相の面積率が80%以上であることを特徴とする。
 表4-1~4-2に示す化学成分を有する鋼a~agのインゴットを、50kg真空溶解炉で製造した。なお、表4-1中のa~yは、本実施例で規定する化学成分を有する鋼である。一方、表4-2に示す鋼z~agは、少なくとも1元素以上、本実施例で規定する化学成分から外れた比較例の鋼である。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 このインゴットを熱間鍛造して直径40mmの丸棒とした。実施例1と同じように、熱間鍛造は1000℃から1100℃の間の温度にて行い、鍛造後は大気中で放冷した。続いて、各丸棒を焼鈍した後、切削加工を施し、図7に示す耐摩耗性を評価するためのローラーピッティング試験用の小ローラーを作製した。実施例1と同じように、ローラーピッティング試験に用いられる数量に加え、断面観察に用いられる数量も同条件で作製した。さらに、同じ丸棒を素材として、図9に示す回転曲げ疲労強度を評価するための円柱試験片を作製した。
 採取された試験片に対して、次の条件でガス窒化処理を実施した。試験片をガス窒化炉に装入し、炉内にNH、H、Nの各ガスを導入して、表5-1~5-2に示す条件で窒化処理を実施した。ただし、試験番号42は、雰囲気中にCOガスを体積率で3%添加したガス軟窒化処理とした。ガス窒化処理後の試験片に対して、80℃の油を用いて油冷を実施した。
 雰囲気中のH2、NHの分圧は、それぞれ実施例1と同じ方法で測定した。また、窒化処理中の窒化ポテンシャルKの制御についても、実施例1と同じ方法により行った。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 ガス窒化処理後の小ローラーを用い、実施例1と同様の方法により、化合物層の厚さ、化合物層におけるγ’相の割合(面積率)、空隙面積率、化合物層の硬さを測定した。
 [耐摩耗性評価試験]
 耐摩耗性は、ローラーピッティング試験機(小松設備社製;RP102)により、次の方法で評価した。ローラーピッティング試験用小ローラーを、熱処理ひずみを除く目的で掴み部の仕上げ加工を行った後、それぞれローラーピッティング試験片に供した。仕上げ加工後の形状は、図7に示した実施例1のものと同じである。
 ローラーピッティング試験は、上記のローラーピッティング試験用小ローラーと図8に示す形状のローラーピッティング試験用大ローラーの組み合わせで、表6に示す条件で行った。なお、大ローラーは、本発明とは異なる条件で作成したものであり、本発明品ではない。
 なお、図7、8における寸法の単位は「mm」である。上記ローラーピッティング試験用大ローラーは、JIS G 4053(2016)のSCM420規格を満たす鋼を用いて、一般的な製造工程、つまり「焼きならし→試験片加工→ガス浸炭炉による共析浸炭→低温焼戻し→研磨」の工程によって作製したものであり、表面から0.05mmの位置、すなわち、深さ0.05mmの位置におけるビッカース硬さHVは740~760で、また、ビッカース硬さHvが550以上の深さは、0.8~1.0mmの範囲にあった。
 表6に、耐摩耗性の評価を行った試験条件を示す。試験は繰返し数2×106回で打ち止めし、粗さ計を使用して、小ローラーの摩耗部を主軸方向に沿って走査し、最大摩耗深さを測定し、N数を5として摩耗深さの平均値を算出した。本実施例においては、CVTまたはカムシャフト部品への適用を想定し、表6に示すローラーピッティング試験による摩耗深さが10μm以下であることを目標とした。
Figure JPOXMLDOC01-appb-T000010
 [回転曲げ疲労強度評価試験]
 ガス窒化処理に供した円柱試験片に対し、JIS Z 2274(1978)に準拠した小野式回転曲げ疲労試験を実施した。回転数は3000rpm、試験打ち切り回数は、一般的な鋼の疲労限を示す1×10回とし、回転曲げ疲労試験片において、破断が生じずに1×10回に達した最大応力を回転曲げ疲労試験片の疲労限とした。
 回転曲げ疲労強度及び耐摩耗性に優れた窒化処理部品においては、CVT、カムシャフト部品への適用を想定し、摩耗深さが10μm以下、疲労限における最大応力が640MPa以上であることを目標にした。
 [試験結果]
 結果を表5-1~5-2に示す。試験番号1~31は鋼の成分、及びガス窒化処理の条件が本実施例で想定する範囲内であり、化合物層厚さが5~15μm、化合物層のγ’相比率が80%以上、化合物層空隙面積率10%以下となった。その結果、化合物層の硬さが710Hv(測定荷重10mN)となり、摩耗深さが10μm以下、回転曲げ疲労強度が640MPa以上と良好な結果が得られた。
 試験番号32~50は、鋼の成分、及びガス窒化処理の条件の一部が本実施例で想定する範囲外であり、化合物層の厚さ、γ’相、空隙面積率のうちいずれか、もしくは複数の特性が、目標値に届かなかった。その結果、耐摩耗性もしくは回転曲げ疲労強度が目標を満たさなかった。たとえば、試験番号42は、ガス窒化処理における雰囲気が二酸化炭素を含有するものであり軟窒化処理であったため、形成された化合物層におけるγ’相の割合が低くなり(ε相が形成され)、回転曲げ疲労強度の観点で十分な特性を得られなかった。
 なお、試験番号46は、回転曲げ疲労強度が目標値に届かない比較例であるが、前述した実施例1(歯車部品を想定した実施例)での回転曲げ疲労強度の目標値はクリアしており、回転曲げ疲労強度及び面疲労強度に優れた窒化処理部品としては適した部品である。試験番号46に用いた鋼acは、実施例1の本発明例の鋼kでもある。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示にすぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。

Claims (3)

  1.  質量%で、
      C :0.05~0.35%、
      Si:0.05~1.50%、
      Mn:0.20~2.50%、
      P :0.025%以下、
      S :0.050%以下、
      Cr:0.50~2.50%、
      V :0.05~1.30%、
      Al:0.050%以下、
      N :0.0250%以下、
      Mo:0~1.50%、
      Cu:0~0.50%、
      Ni:0~0.50%、
      Nb:0~0.100%、
      Ti:0~0.050%、
      B :0~0.0100%、
      Ca:0~0.0100%、
      Pb:0~0.50%、
      Bi:0~0.50%、
      In:0~0.20%、及び
      Sn:0~0.100%
    を含有し、残部がFe及び不純物である鋼芯部と、
     前記鋼芯部の上に形成された窒素拡散層と、
     前記窒素拡散層の上に形成された、鉄窒化物を主として含有する厚さ5~15μmの化合物層を有し、
     前記化合物層の表面から垂直な断面において、表面から3μmまでの深さの範囲における空隙面積率が10%以下であり、
     前記鋼芯部におけるC、Mn、Cr、V、Moの含有量に基づいて定められるXを、
      X=-2.1×C+0.04×Mn+0.5×Cr+1.8×V-1.5×Mo
     と定義すると、
     (i)0≦X≦0.25、かつ、前記化合物層における前記鉄窒化物のγ’相の面積率が50%以上、80%以下である、または、
     (ii)0.25≦X≦0.50、かつ、前記化合物層における鉄窒化物のγ’相の面積率が80%以上である
    ことを特徴とする窒化処理部品。
  2.  0≦X≦0.25、かつ、前記化合物層における前記鉄窒化物のγ’相の面積率が50%以上、80%以下であることを特徴とする請求項1に記載の窒化処理部品。
  3.  0.25≦X≦0.50、かつ、前記化合物層における鉄窒化物のγ’相の面積率が80%以上であることを特徴とする請求項1に記載の窒化処理部品。
PCT/JP2018/042548 2017-11-16 2018-11-16 窒化処理部品 WO2019098340A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/764,756 US11371132B2 (en) 2017-11-16 2018-11-16 Nitrided part
EP18878030.8A EP3712287B1 (en) 2017-11-16 2018-11-16 Nitrided part
KR1020207013197A KR20200062317A (ko) 2017-11-16 2018-11-16 질화 처리 부품
CN201880074035.6A CN111406123B (zh) 2017-11-16 2018-11-16 氮化处理部件
JP2019554321A JP6922998B2 (ja) 2017-11-16 2018-11-16 窒化処理部品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-220894 2017-11-16
JP2017220894 2017-11-16
JP2017220885 2017-11-16
JP2017-220885 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019098340A1 true WO2019098340A1 (ja) 2019-05-23

Family

ID=66539678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042548 WO2019098340A1 (ja) 2017-11-16 2018-11-16 窒化処理部品

Country Status (6)

Country Link
US (1) US11371132B2 (ja)
EP (1) EP3712287B1 (ja)
JP (1) JP6922998B2 (ja)
KR (1) KR20200062317A (ja)
CN (1) CN111406123B (ja)
WO (1) WO2019098340A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021101040A (ja) * 2019-12-24 2021-07-08 日本製鉄株式会社 窒化処理鋼部品およびその製造方法
WO2021154360A1 (en) * 2020-01-30 2021-08-05 Cummins Inc. Two-stage gas nitriding process for improved wear and erosion resistance
WO2021172177A1 (ja) * 2020-02-25 2021-09-02 日本製鉄株式会社 クランクシャフト及びその製造方法
JP2021147688A (ja) * 2020-03-23 2021-09-27 日本製鉄株式会社 機械構造用鋼、機械構造部品およびその製造方法
DE112020006870T5 (de) 2020-03-11 2022-12-29 Nippon Steel Corporation Gasweichnitrierbehandeltes bauteil und herstellungsverfahren davon
CN115605629A (zh) * 2020-05-15 2023-01-13 杰富意钢铁株式会社(Jp) 钢和钢部件
WO2023203838A1 (ja) * 2022-04-18 2023-10-26 ジヤトコ株式会社 歯車

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458518B1 (ko) * 2022-04-05 2022-10-25 신승호 내마모성 유압 브레이커용 프론트 커버

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221203A (ja) * 2012-04-18 2013-10-28 Dowa Thermotech Kk 窒化鋼部材およびその製造方法
JP2015117412A (ja) 2013-12-18 2015-06-25 大同特殊鋼株式会社 窒化処理方法及び窒化部品
US20160130692A1 (en) * 2014-11-07 2016-05-12 Caterpillar Inc. Rapid Nitriding Through Nitriding Potential Control
JP2016211069A (ja) 2015-05-12 2016-12-15 パーカー熱処理工業株式会社 窒化鋼部材及び窒化鋼部材の製造方法
WO2017043594A1 (ja) * 2015-09-08 2017-03-16 新日鐵住金株式会社 窒化処理鋼部品及びその製造方法
JP2017160517A (ja) * 2016-03-11 2017-09-14 パーカー熱処理工業株式会社 窒化鋼部材及び窒化鋼部材の製造方法
WO2018066666A1 (ja) 2016-10-05 2018-04-12 新日鐵住金株式会社 窒化処理部品及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598760B2 (en) * 2011-02-23 2017-03-21 Dowa Thermotech Co., Ltd. Nitrided steel member and manufacturing method thereof
JP5708844B2 (ja) * 2014-02-20 2015-04-30 新日鐵住金株式会社 非調質型窒化クランクシャフト
CN107406959B (zh) * 2015-03-25 2020-02-04 日本制铁株式会社 耐磨性和耐点蚀性优异的氮化处理部件和软氮化处理部件以及氮化处理方法、软氮化处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221203A (ja) * 2012-04-18 2013-10-28 Dowa Thermotech Kk 窒化鋼部材およびその製造方法
JP2015117412A (ja) 2013-12-18 2015-06-25 大同特殊鋼株式会社 窒化処理方法及び窒化部品
US20160130692A1 (en) * 2014-11-07 2016-05-12 Caterpillar Inc. Rapid Nitriding Through Nitriding Potential Control
JP2016211069A (ja) 2015-05-12 2016-12-15 パーカー熱処理工業株式会社 窒化鋼部材及び窒化鋼部材の製造方法
WO2017043594A1 (ja) * 2015-09-08 2017-03-16 新日鐵住金株式会社 窒化処理鋼部品及びその製造方法
JP2017160517A (ja) * 2016-03-11 2017-09-14 パーカー熱処理工業株式会社 窒化鋼部材及び窒化鋼部材の製造方法
WO2018066666A1 (ja) 2016-10-05 2018-04-12 新日鐵住金株式会社 窒化処理部品及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIETER LIEDTKE ET AL.: "Nitriding and nitrocarburizing on iron materials", 2011, AGNE GIJUTSU CENTER, pages: 21
See also references of EP3712287A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021101040A (ja) * 2019-12-24 2021-07-08 日本製鉄株式会社 窒化処理鋼部品およびその製造方法
JP7415154B2 (ja) 2019-12-24 2024-01-17 日本製鉄株式会社 窒化処理鋼部品の製造方法
WO2021154360A1 (en) * 2020-01-30 2021-08-05 Cummins Inc. Two-stage gas nitriding process for improved wear and erosion resistance
CN115210401A (zh) * 2020-01-30 2022-10-18 康明斯公司 用于改善耐磨性和耐腐蚀性的两阶段气体氮化方法
WO2021172177A1 (ja) * 2020-02-25 2021-09-02 日本製鉄株式会社 クランクシャフト及びその製造方法
JPWO2021172177A1 (ja) * 2020-02-25 2021-09-02
CN115151737B (zh) * 2020-02-25 2024-07-26 日本制铁株式会社 曲轴及其制造方法
CN115151737A (zh) * 2020-02-25 2022-10-04 日本制铁株式会社 曲轴及其制造方法
US12031577B2 (en) 2020-02-25 2024-07-09 Nippon Steel Corporation Crankshaft and method of manufacturing the same
JP7488491B2 (ja) 2020-02-25 2024-05-22 日本製鉄株式会社 クランクシャフト及びその製造方法
DE112020006870T5 (de) 2020-03-11 2022-12-29 Nippon Steel Corporation Gasweichnitrierbehandeltes bauteil und herstellungsverfahren davon
JP7410391B2 (ja) 2020-03-23 2024-01-10 日本製鉄株式会社 機械構造用鋼、機械構造部品およびその製造方法
JP2021147688A (ja) * 2020-03-23 2021-09-27 日本製鉄株式会社 機械構造用鋼、機械構造部品およびその製造方法
EP4151760A4 (en) * 2020-05-15 2023-10-11 JFE Steel Corporation STEEL COMPONENT
EP4151761A4 (en) * 2020-05-15 2023-10-11 JFE Steel Corporation STEEL AND STEEL COMPONENT
CN115605629A (zh) * 2020-05-15 2023-01-13 杰富意钢铁株式会社(Jp) 钢和钢部件
WO2023203838A1 (ja) * 2022-04-18 2023-10-26 ジヤトコ株式会社 歯車

Also Published As

Publication number Publication date
KR20200062317A (ko) 2020-06-03
JPWO2019098340A1 (ja) 2020-12-03
EP3712287A1 (en) 2020-09-23
EP3712287B1 (en) 2023-07-19
US11371132B2 (en) 2022-06-28
CN111406123A (zh) 2020-07-10
EP3712287A4 (en) 2021-03-24
US20200362447A1 (en) 2020-11-19
JP6922998B2 (ja) 2021-08-18
CN111406123B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2019098340A1 (ja) 窒化処理部品
JP6769491B2 (ja) 窒化処理部品及びその製造方法
JP6388075B2 (ja) 耐摩耗性と耐ピッティング性に優れた窒化、軟窒化処理部品および窒化、軟窒化処理方法
JP5333682B2 (ja) 熱間鍛造用圧延棒鋼または線材
EP3360984B1 (en) Nitrided steel part and method of production of same
JP6766876B2 (ja) 窒化処理部品及びその製造方法
JP7364895B2 (ja) 鋼部品及びその製造方法
JP7277859B2 (ja) ガス軟窒化処理部品及びその製造方法
JP7295378B2 (ja) ガス軟窒化処理部品及びその製造方法
JP7180300B2 (ja) 鋼部品及びその製造方法
EP3348664B1 (en) Nitrided steel component and manufacturing method thereof
JP2021152199A (ja) 摺動部品及び摺動部品の製造方法
JP2022079181A (ja) 窒化用鋼および窒化処理部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554321

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207013197

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018878030

Country of ref document: EP

Effective date: 20200616