WO2021172177A1 - クランクシャフト及びその製造方法 - Google Patents

クランクシャフト及びその製造方法 Download PDF

Info

Publication number
WO2021172177A1
WO2021172177A1 PCT/JP2021/006247 JP2021006247W WO2021172177A1 WO 2021172177 A1 WO2021172177 A1 WO 2021172177A1 JP 2021006247 W JP2021006247 W JP 2021006247W WO 2021172177 A1 WO2021172177 A1 WO 2021172177A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
compound layer
wrapping
journal
cross
Prior art date
Application number
PCT/JP2021/006247
Other languages
English (en)
French (fr)
Inventor
達彦 安部
暁 大川
将人 祐谷
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to MX2022010039A priority Critical patent/MX2022010039A/es
Priority to US17/759,451 priority patent/US20230146538A1/en
Priority to CN202180016198.0A priority patent/CN115151737A/zh
Priority to JP2022503319A priority patent/JP7488491B2/ja
Publication of WO2021172177A1 publication Critical patent/WO2021172177A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/08Crankshafts made in one piece
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/10Porosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/02Carbon based material
    • F16C2206/04Diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/60Shaping by removing material, e.g. machining
    • F16C2220/70Shaping by removing material, e.g. machining by grinding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding
    • F16C2223/14Hardening, e.g. carburizing, carbo-nitriding with nitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings

Definitions

  • the present invention relates to a crankshaft and a method for manufacturing the same.
  • crankshafts are nitrided and used for the purpose of improving fatigue strength and wear resistance.
  • a gas nitriding treatment having excellent productivity is often used.
  • the nitriding potential at the time of nitriding treatment is controlled so that the surface of the steel material is densely composed of the ⁇ 'phase. It is described that a compound layer can be formed, whereby high fatigue strength and bending correctability can be achieved at the same time.
  • a cured layer and a compound layer are formed by subjecting the sliding surface of the drive cam to a soft nitriding treatment, and then the compound layer is removed so that the cured layer exists on the surface of the sliding surface.
  • a method of manufacturing a drive cam is described.
  • the crankshaft is required to have seizure resistance in addition to fatigue strength and wear resistance. Conventionally, proposals have been made to improve seizure resistance by controlling the surface shape of sliding parts.
  • Japanese Unexamined Patent Publication No. 2017-218951 describes that the surface roughness Ra of the crankshaft of a compressor for refrigerating machines should be 0.05 ⁇ m or less.
  • International Publication No. 2016/072305 describes that in a rotary slide bearing composed of a bearing and a shaft, the surface roughness Ra of the shaft should be 0.10 ⁇ m or less.
  • Japanese Patent No. 5199728 describes that the surface roughness of the martensite layer or the nitride layer of the crankshaft is made smaller than the surface roughness of the journal bearing.
  • JP-A-2018-70928 International Publication No. 2018/06667 Japanese Unexamined Patent Publication No. 2013-221203
  • Japanese Patent No. 5898092 Japanese Unexamined Patent Publication No. 2017-218951 International Publication No. 2016/072305 Japanese Patent No. 5199728
  • An object of the present invention is to provide a crankshaft having excellent seizure resistance and a method for manufacturing the same.
  • the crankshaft according to an embodiment of the present invention is a crankshaft having a journal portion and a pin portion, and is provided with a compound layer containing iron and nitrogen on the surface, and the compound layer is a journal portion and a pin portion, respectively.
  • the void area ratio of the region from the surface to the depth of 3.0 ⁇ m and the thinner region of the total thickness region of the compound layer is 10.0% or less
  • each of the journal portion and the pin portion has a void area ratio of 10.0% or less.
  • Has a surface shape in which the arithmetic mean height Pa of the cross-sectional curve is 0.090 ⁇ m or less.
  • the method for manufacturing a crank shaft according to an embodiment of the present invention is the above-mentioned method for manufacturing a crank shaft, which comprises an intermediate grinding step of grinding a journal portion and a pin portion of an intermediate product of the crank shaft, and after the intermediate grinding step.
  • the journal portion and the pin portion of the above are provided with a finishing wrapping step of wrapping the journal portion and the pin portion using a film coated with diamond abrasive grains.
  • crankshaft having excellent seizure resistance can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing a structure near the surface of a steel material subjected to a general gas nitriding treatment.
  • FIG. 2 is an example of a cross-sectional curve.
  • FIG. 3 is an example of a roughness curve.
  • FIG. 4 is a schematic view of a crankshaft according to an embodiment of the present invention.
  • FIG. 5 is a flow chart showing an example of the method for manufacturing the crankshaft of FIG.
  • FIG. 6 is a schematic view of the evaluation device used in the baking test.
  • FIG. 7 is a diagram schematically showing a portion in the vicinity of the bearing of the evaluation device of FIG.
  • FIG. 8 is a schematic view of the time change of the surface pressure applied to the test shaft.
  • Nitriding of the crankshaft is performed to improve wear resistance and fatigue strength.
  • the relationship between nitriding treatment and seizure resistance has not been sufficiently studied so far.
  • the compound layer formed by the nitriding treatment and the seizure resistance it is said that the compound layer having a high void area ratio becomes an oil pool and contributes to the improvement of the seizure resistance ( Dieter Rietke et al., "Iron nitriding and soft nitriding", Agne Technology Center, p. 27, 2011), no systematic investigation was conducted.
  • FIG. 1 is a cross-sectional view schematically showing a structure near the surface of a steel material subjected to general gas nitriding treatment.
  • a compound layer 50 having a thickness of about several tens of ⁇ m is formed on the surface of the steel material.
  • a nitrogen diffusion layer 60 formed by diffusing nitrogen on the surface of the steel material is formed.
  • the compound layer 50 includes a porous layer 51 having a high void area ratio formed near the surface and a dense layer 52 having a low void area ratio formed between the porous layer 51 and the nitrogen diffusion layer 60. Is done.
  • the compound layer 50 is known to contain an ⁇ phase (Fe 2-3 N), a ⁇ 'phase (Fe 4 N), and an ⁇ phase ( ⁇ Fe).
  • the compound layer 50 including the porous layer 51 as described above is mainly composed of the ⁇ phase.
  • a compound layer mainly composed of the ⁇ 'phase and having few voids can be obtained. It is also known that it can be formed.
  • the present inventors conducted a detailed study on the relationship between the compound layer and seizure resistance. Specifically, (1) a steel material mainly composed of the ⁇ phase and having a compound layer containing a porous layer and a dense layer, and (2) a compound mainly composed of the ⁇ phase and having only the dense layer removed. Seizure resistance to each of the steel material having a layer, (3) the steel material having the nitrogen diffusion layer exposed by removing the compound layer, and (4) the steel material having a compound layer mainly composed of the ⁇ 'phase. Evaluation was performed.
  • the steel materials of (2) and (4) showed better seizure resistance than the steel materials of (1) and (3). From this, it was found that the presence of the compound layer is advantageous for improving the seizure resistance, and the lower the void area ratio of the compound layer is advantageous for improving the seizure resistance.
  • the surface shape of the sliding part on which the compound layer is formed is also important for improving the seizure resistance.
  • the present inventors set the void area ratio near the surface of the compound layer to 10.0% or less, and further set the arithmetic mean height Pa of the cross-sectional curve to 0.090 ⁇ m or less to improve the seizure resistance of the nitride crankshaft. It was clarified that it can be significantly improved compared to the past.
  • the surface shape is defined by using the arithmetic mean height Ra of the roughness curve (hereinafter referred to as "average roughness Ra").
  • average roughness Ra the arithmetic mean height Ra of the roughness curve
  • the surface shape of industrial products such as crankshafts contains not a little long-period component (waviness) derived from the vibration of the grinding machine. Since the average roughness Ra is based on the roughness curve (FIG. 3) in which the waviness component is removed by the high frequency filter, it cannot be said that the actual surface shape is accurately evaluated. Further, the value of the average roughness Ra greatly fluctuates depending on the cutoff value ⁇ c of the high frequency filter used when obtaining the roughness curve.
  • nitriding treatment deteriorates the surface roughness by about 1.5 to 2 times (Dieter Rietke et al., "Iron nitriding and soft nitriding", Agne Technology Center, p. 72, 2011). .. Therefore, in order to reduce the arithmetic mean height Pa of the cross-sectional curve of the steel material after the nitriding treatment, it is necessary to polish the steel material even after the nitriding treatment to adjust the surface shape. On the other hand, the thickness of the compound layer that can be formed in an industrially realistic time is about several tens of ⁇ m.
  • polishing allowance is small, in order to keep the arithmetic mean height Pa of the cross-sectional curve to 0.090 ⁇ m or less while leaving the compound layer, it is necessary to have a sufficiently smooth surface shape at the stage before polishing. For that purpose, it is necessary to perform sufficient polishing not only after the nitriding treatment but also before the nitriding treatment.
  • FIG. 4 is a schematic view of the crankshaft 10 according to the embodiment of the present invention.
  • the crankshaft 10 includes a journal portion 11, a pin portion 12, and an arm portion 13.
  • the journal section 11 is connected to a cylinder block (not shown).
  • the pin portion 12 is connected to a connecting rod (not shown).
  • the arm portion 13 connects the journal portion 11 and the pin portion 12.
  • the crankshaft 10 is made of, for example, a steel material for machine structure.
  • the crankshaft 10 is not limited to these, but one made of JIS G 4051: 2009 machine structural carbon steel, JIS G 4053: 2008 machine structural alloy steel, or the like can be used.
  • JIS G 4051: 2009 S45C, S50C and S53C, and JIS G 4053: 2008 SMn438 are preferable, and S is added to these steel materials to improve machinability. Is particularly suitable.
  • the chemical composition of the crank shaft 10 (chemical composition of the base material portion excluding the compound layer and the nitrogen diffusion layer) is, for example, in addition to Fe and impurities, in terms of mass%, C: 0.30 to 0.60%, Si: 0. 0.01 to 2.0%, Mn: 0.1 to 2.0%, Cr: 0.01 to 0.50%, Al: 0.001 to 0.06%, N: 0.001 to 0.02 %, P: 0.03% or less, S: 0.20% or less.
  • the chemical composition of the crankshaft 10 may contain elements other than the above.
  • the chemical composition of the crankshaft 10 is, for example, mass%, Mo: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0.50%, Ti: 0 to 0.050%, Nb. : 0 to 0.050%, Ca: 0 to 0.005%, Bi: 0 to 0.30%, and V: 0 to 0.20% may be contained.
  • a compound layer containing iron and nitrogen is formed on the surface of the crankshaft 10.
  • the compound layer is mainly composed of an iron-nitrogen compound, but may contain a small amount of elements other than iron and nitrogen.
  • the compound layer preferably contains 10% by mass or less of elements other than iron and nitrogen.
  • the compound layer is usually formed on the surface of the entire crankshaft 10.
  • the compound layer may be formed on the surfaces of the journal portion 11 and the pin portion 12 which are sliding portions, and may not necessarily be formed on the surface of the entire crankshaft 10.
  • the compound layer may be mainly composed of the ⁇ phase (Fe 2-3 N) or the ⁇ 'phase (Fe 4 N).
  • the compound layer may be a mixture of the ⁇ phase and the ⁇ 'phase.
  • the crankshaft 10 may include a compound layer in which the ratio of the ⁇ phase is 80% or more in terms of cross-sectional area ratio. Since the ⁇ phase has a crystal structure composed of a dense hexagonal lattice and is superior in fatigue strength and wear resistance to the ⁇ 'phase, it is convenient for applications in which mechanical strength performance is important. Further, the self-diffusion coefficient of the ⁇ phase is 10 times or more higher than that of the self-diffusion coefficient in the ⁇ 'phase under the same temperature condition, and the ⁇ phase is more likely to be generated.
  • crankshaft having a compound layer having a high proportion of the ⁇ phase is more advantageous in manufacturing than a crankshaft having a compound layer having a high proportion of the ⁇ 'phase.
  • the cross-sectional area ratio of the ⁇ phase is more preferably 90% or more.
  • the crankshaft 10 may include a compound layer in which the ratio of the ⁇ 'phase is 80% or more in terms of cross-sectional area ratio.
  • the ⁇ 'phase has a crystal structure composed of a face-centered cubic lattice, and its volume expansion rate is about 30% lower than that of the ⁇ phase, which is convenient for applications in which thermal stability such as thermal shock resistance is important.
  • the cross-sectional area ratio of the ⁇ 'phase is more preferably 90% or more.
  • the ratio of the ⁇ phase, ⁇ 'phase and ⁇ phase in the compound layer shall be determined by electron backscatter diffraction (EBSD). Specifically, the EBSD measurement of the cross section of the compound layer is performed, and the ⁇ phase, the ⁇ 'phase, and the ⁇ phase are mapped to obtain the area ratio of these. For EBSD measurement, it is appropriate to measure about 10 fields of view at a magnification of about 4000 times.
  • EBSD electron backscatter diffraction
  • the compound layer has a void area ratio of 10.0% or less in the region from the surface to a depth of 3.0 ⁇ m.
  • the void area ratio measured with the total thickness may be 10.0% or less.
  • the void area ratio of the region from the surface to the depth of 3.0 ⁇ m and the thinner region of the total thickness region of the compound layer is referred to as the “surface void area ratio” of the compound layer.
  • the mechanism is not clear, but the lower the surface void area ratio of the compound layer, the better the seizure resistance.
  • the surface void area ratio of the compound layer in the journal portion 11 and the pin portion 12 is preferably 5.0% or less, and more preferably 3.0% or less.
  • the surface void area ratio shall be measured as follows.
  • the cross section of the compound layer is photographed with a scanning electron microscope (SEM) at a magnification of about 5000 times. Twelve lines are drawn at 0.25 ⁇ m intervals parallel to the surface of the compound layer, and 92 lines are drawn at 0.25 ⁇ m intervals in the direction perpendicular to the surface of the compound layer. do.
  • SEM scanning electron microscope
  • the surface void area ratio of the compound layer in the portions other than the journal portion 11 and the pin portion 12 is arbitrary.
  • the compound layer may have a low surface void area ratio as a whole, or the surface void area ratio may be low only in the journal portion 11 and the pin portion 12.
  • the thickness of the compound layer in the journal portion 11 and the pin portion 12 is preferably 1.0 to 50 ⁇ m.
  • the lower limit of the thickness of the compound layer in the journal portion 11 and the pin portion 12 is more preferably 2.0 ⁇ m, still more preferably 3.0 ⁇ m.
  • the upper limit of the thickness of the compound layer in the journal portion 11 and the pin portion 12 is more preferably 30 ⁇ m, further preferably 20 ⁇ m, and further preferably 8 ⁇ m.
  • the thickness of the compound layer in the portions other than the journal portion 11 and the pin portion 12 is arbitrary.
  • the thickness of the compound layer shall be measured as follows.
  • the cross section of the compound layer is polished, etched with a nital solution, and observed with an optical microscope.
  • the compound layer is observed as a white uncorroded layer.
  • the hardness of the compound layer in the journal portion 11 and the pin portion 12 is preferably HV500 to HV1000.
  • the lower limit of the hardness of the compound layer in the journal portion 11 and the pin portion 12 is more preferably HV700, still more preferably HV800.
  • the hardness of the compound layer in the portions other than the journal portion 11 and the pin portion 12 is arbitrary.
  • Each of the journal portion 11 and the pin portion 12 has a surface shape in which the arithmetic mean height Pa of the cross-sectional curve is 0.090 ⁇ m or less.
  • the arithmetic mean height Pa of the cross-sectional curve is defined in JIS B 0601: 2001.
  • the arithmetic mean height Pa of the cross-sectional curve is measured as follows.
  • a test piece is collected from the measurement target points (journal portion 11 and pin portion 12) of the crankshaft 10, and a measurement cross-sectional curve is obtained using a contact type roughness tester.
  • the tip radius of the stylus of the contact type roughness tester is 2 ⁇ m, and the taper angle of the cone is 60 °.
  • the scanning speed shall be 0.5 mm / s or less, and the measurement length shall be 5 mm or more.
  • the cross-section curve is used as the contour curve, the average of the absolute values of Z (x) at the evaluation length l is obtained, and the arithmetic mean height Pa of the cross-section curve is used.
  • Z (x) is the vertical coordinate at the position x.
  • the cutoff value ⁇ s is 2.5 ⁇ m, and the evaluation length l is 5 mm.
  • the seizure resistance can be remarkably improved as compared with the conventional case.
  • the arithmetic mean height Pa of the cross-sectional curve is preferably 0.080 ⁇ m or less.
  • crankshaft manufacturing method Next, an example of a method for manufacturing the crankshaft 10 will be described.
  • the manufacturing method described below is merely an example, and does not limit the manufacturing method of the crankshaft 10.
  • FIG. 5 is a flow chart showing an example of a method for manufacturing the crankshaft 10.
  • This manufacturing method includes a material preparation process (step S1), a hot forging process (step S2), a heat treatment process (step S3), a machining process (step S4), an intermediate grinding process (step S5), and an intermediate wrapping process (step).
  • step S6 a nitriding process (step S7), a grinding process (step S8), a rough wrapping process (step S9), and a finishing wrapping process (step S10) are provided.
  • step S1 material preparation process
  • step S2 a hot forging process
  • step S3 a heat treatment process
  • step S4 a machining process
  • step S5 an intermediate grinding process
  • step S5 an intermediate wrapping process
  • step S6 a nitriding process
  • step S8 a grinding process
  • step S9 a rough wrapping process
  • step S10 a finishing wrapping process
  • the chemical composition of the material of the crankshaft is not particularly limited, but for example, the above-mentioned steel material for machine structure can be used.
  • the material can be produced, for example, by continuous casting or bulk rolling of molten steel having the above chemical composition.
  • the material is hot forged to give a rough shape to the crankshaft (step S2). Hot forging may be carried out separately for rough forging and finish forging.
  • the rough crankshaft manufactured by hot forging is subjected to heat treatment such as quenching, tempering, and normalizing as necessary (step S3).
  • the heat treatment step (step S3) is an arbitrary step, and this step may be omitted depending on the required characteristics of the crankshaft and the like.
  • Machining a rough crankshaft includes cutting, grinding, and drilling. This process produces an intermediate crankshaft that has a shape similar to that of the final product.
  • the arithmetic mean height Pa of the cross-sectional curve is set to 0.090 ⁇ m or less while leaving the compound layer.
  • the arithmetic mean height Pa of each of the cross-sectional curves of the journal portion and the pin portion is set to 0.15 ⁇ m or less.
  • Nitriding treatment is performed on the intermediate product of the intermediate grinding and intermediate wrapping crankshaft (step S7).
  • the nitriding treatment is carried out in an atmosphere containing , for example, NH 3 , H 2 , and N 2.
  • the nitriding treatment may be carried out in an atmosphere containing CO 2 in addition to NH 3 , H 2 and N 2.
  • the treatment temperature is, for example, 550 to 620 ° C.
  • the processing time is, for example, 1.5 to 10 hours.
  • the ratio of the ⁇ phase and the ⁇ 'phase in the compound layer can be controlled.
  • P NH 3 and PH 2 are partial pressures of NH 3 and H 2, respectively. Specifically, increasing the nitriding potential K n increases the proportion of the ⁇ phase, and decreasing the nitriding potential K n increases the proportion of the ⁇ 'phase.
  • the journal portion and the pin portion are ground again to adjust the surface shape (step S8).
  • the compound layer formed by the nitriding treatment contains a porous layer (reference numeral 51 in FIG. 1), the porous layer is removed by this grinding.
  • journal portion and the pin portion are wrapped (steps S9 and S10).
  • This wrapping step is divided into a coarse wrapping step and a finish wrapping step.
  • a film coated with alumina abrasive grains is used, and in the finish wrapping step, a film coated with diamond abrasive grains is used.
  • the arithmetic mean height Pa of the cross-sectional curve is set to 0.090 ⁇ m or less while leaving the compound layer.
  • step S5 In order to make the arithmetic mean height Pa of the cross-sectional curve 0.090 ⁇ m or less, it is necessary to reduce both the roughness and the waviness in the intermediate grinding step (step S5) and the grinding step (step S8). Of these, the roughness depends on the size of the abrasive grains used for grinding. Therefore, it is preferable to grind using as fine an abrasive grain as possible.
  • the journal part and the pin part have swells with a period of several hundred ⁇ m to several mm due to the feed and vibration of the tool during the machining process (step S4). Even if the roughness is made sufficiently small (even if the arithmetic mean height Ra of the roughness curve is made sufficiently small), the arithmetic mean height Pa of the cross-sectional curve does not become small if the swell remains. Therefore, in the intermediate grinding step (step S5) and the grinding step (step S8), it is necessary to continue grinding even after Ra becomes small to sufficiently remove the waviness.
  • step S6, S9, and S10 it is preferable to carry out the following (1) to (4) in order to prevent the central portion from becoming a concave shape.
  • step S6 S9, and S10 it is preferable to carry out the following (1) to (4) in order to prevent the central portion from becoming a concave shape.
  • the feed rate of the film in the axial direction of the crankshaft is made as small as possible.
  • fine waviness can be removed, and the arithmetic mean height Pa of the cross-sectional curve can be made smaller.
  • crankshaft 10 The configuration of the crankshaft 10 according to the embodiment of the present invention and an example of the manufacturing method thereof have been described above. According to this embodiment, a crankshaft having excellent seizure resistance can be obtained.
  • test shafts for seizure test were prepared.
  • the material was heated at 1250 ° C. for 1 hour, then hot forged at around 1150 ° C., and after the forging was completed, it was air-cooled to room temperature. After that, the outer diameter was adjusted to about 53 mm by machining (cutting).
  • intermediate grinding and intermediate wrapping were performed to adjust the arithmetic mean height Pa of the cross-sectional curve to be 0.15 ⁇ m or less.
  • intermediate wrapping a film coated with alumina abrasive grains having a particle size of 9 to 15 ⁇ m was used.
  • some test shafts were subjected to the following nitriding treatment, omitting intermediate grinding and intermediate wrapping.
  • nitriding treatment As the nitriding treatment, (A) a nitriding treatment for forming a compound layer mainly composed of the ⁇ phase and (B) a nitriding treatment for forming a compound layer mainly composed of the ⁇ 'phase were performed.
  • the nitriding treatment was carried out in an atmosphere containing ammonia, hydrogen, and CO 2.
  • (A) by adjusting the nitriding potential K n to 1-10 and held for 3 hours at 570 ° C., it was then oil-cooling processes.
  • B by adjusting the nitriding potential K n to 0.3-0.5 and held for 8 hours at 570 ° C., it was then oil-cooling processes.
  • the surface shape, surface void area ratio, and hardness of the prepared test shaft were measured.
  • the surface shape was measured using a contact type roughness tester (SJ-412 manufactured by Mitutoyo Co., Ltd.). Hardness was measured using a nanoindenter.
  • a baking test was carried out using the prepared test shaft.
  • a schematic diagram of the evaluation device 20 used in the seizure test is shown in FIG.
  • the test shaft TP was inserted into the test bearing 21 and the holding bearing 22, and the test shaft TP was rotated at a peripheral speed of 20 m / sec by a motor (not shown) while lubricating the test bearing 21.
  • a shim 25 having a thickness of 30 ⁇ m was bitten between the housing of the test bearing 21 and the testing machine to forcibly generate a strong one-sided contact.
  • a Bi / Cu alloy was used as the metal of the bearing.
  • the lubricating oil was VG22, the lubrication temperature was 100 ° C., and the lubrication amount was 150 ml / min.
  • FIG. 8 schematically shows the time change of the surface pressure applied to the test axis TP.
  • the holding time at the same surface pressure was 10 minutes, and the amount of increase in surface pressure per step was 5 MPa. It was determined that seizure occurred when the bearing back temperature became 230 ° C. or higher or the belt slipped due to torque fluctuation.
  • Table 2 shows the manufacturing conditions and test results for each test axis.
  • surface layer void area ratio of the test axis symbols K1, K2 and K3
  • the void area ratio of the region from the surface of the nitrogen diffusion layer to the depth of 3.0 ⁇ m is described.
  • the surface void area ratio of the compound layer is 10.0% or less, and the arithmetic mean height Pa of the cross-sectional curve is 0.090 ⁇ m or less. It had a surface shape that was.
  • These test shafts had a seizure surface pressure of 100 MPa or more and showed excellent seizure resistance.
  • the seizure surface pressure of the test shafts of the test shaft symbols C2 and G2 was less than 100 MPa. It is considered that this is because the arithmetic mean height Pa of the cross-sectional curves of these test axes was large. These test shafts were subjected to grinding, rough wrapping, and finish wrapping after the nitriding treatment, but since intermediate grinding and intermediate wrapping were not performed, the arithmetic mean height Pa of the cross-sectional curve could not be sufficiently lowered.
  • test axes of the test axis symbols P1, P2 and P3 are those in which the porous layer is left on the outermost surface of the compound layer. These test shafts had a seizure surface pressure of less than 100 MPa.
  • test axes of the test axis symbols K1, K2 and K3 are those in which the compound layer is completely removed so that the nitrogen diffusion layer is exposed. These test shafts had a seizure surface pressure of less than 100 MPa.
  • the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented within a range that does not deviate from the gist thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ocean & Marine Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

耐焼付性に優れたクランクシャフトを提供する。ジャーナル部11及びピン部12を有するクランクシャフトであって、鉄及び窒素を含有する化合物層を表面に備え、化合物層は、ジャーナル部11及びピン部12の各々において、表面から深さ3.0μmまでの領域及び前記化合物層の全厚さ領域のうちの薄い方の領域の空隙面積率が10.0%以下であり、ジャーナル部11及びピン部12の各々は、断面曲線の算術平均高さPaが0.090μm以下である表面形状を有する。

Description

クランクシャフト及びその製造方法
 本発明は、クランクシャフト及びその製造方法に関する。
 クランクシャフトには、疲労強度や耐摩耗性の向上を目的として、窒化処理を施されて使用されるものがある。クランクシャフトの窒化処理としては、生産性に優れるガス窒化処理がよく用いられる。
 特開2018-70928号公報、国際公開第2018/066667号、及び特開2013-221203号公報には、窒化処理時の窒化ポテンシャルを制御することによって、鋼材の表面にγ’相からなる緻密な化合物層を形成することができ、これによって高疲労強度と曲げ矯正性とを両立できることが記載されている。
 特許第5898092号公報には、駆動カムの摺動面に軟窒化処理を施すことで硬化層及び化合物層を形成した後、化合物層を除去することで、硬化層が摺動面の表面に存在するようにする、駆動カムの製造方法が記載されている。
 クランクシャフトには、疲労強度や耐摩耗性に加えて、耐焼付性が要求される。従来から、摺動部品の表面形状を制御して耐焼付性を改善する提案がなされている。
 特開2017-218951号公報には、冷凍機械用圧縮機のクランク軸の表面粗さRaを0.05μm以下にすることが記載されている。国際公開第2016/072305号には、軸受と軸とからなる回転すべり軸受において、軸の表面粗さRaを0.10μm以下にすることが記載されている。特許第5199728号公報には、クランクシャフトのマルテンサイト層もしくは窒化物層の表面粗さを、ジャーナル軸受けの表面粗さよりも小さくすることが記載されている。
特開2018-70928号公報 国際公開第2018/066667号 特開2013-221203号公報 特許第5898092号公報 特開2017-218951号公報 国際公開第2016/072305号 特許第5199728号公報
ディーター・リートケほか著、「鉄の窒化と軟窒化」、アグネ技術センター、第23頁、第72頁、2011年
 近年、燃費改善を目的として潤滑油の低粘度化やクランクシャフトの摺動部の細軸化が進んでおり、クランクシャフトには、より優れた耐焼付性が求められている。
 本発明の目的は、耐焼付性に優れたクランクシャフト及びその製造方法を提供することである。
 本発明の一実施形態によるクランクシャフトは、ジャーナル部及びピン部を有するクランクシャフトであって、鉄及び窒素を含有する化合物層を表面に備え、前記化合物層は、前記ジャーナル部及びピン部の各々において、表面から深さ3.0μmまでの領域及び前記化合物層の全厚さ領域のうちの薄い方の領域の空隙面積率が10.0%以下であり、前記ジャーナル部及びピン部の各々は、断面曲線の算術平均高さPaが0.090μm以下である表面形状を有する。
 本発明の一実施形態によるクランクシャフトの製造方法は、上記のクランクシャフトの製造方法であって、クランクシャフトの中間品のジャーナル部及びピン部を研削する中間研削工程と、前記中間研削工程後に、前記中間品のジャーナル部及びピン部をラッピングする中間ラッピング工程と、前記中間ラッピング工程後に、前記中間品を窒化処理する窒化処理工程と、前記窒化処理工程後に、前記中間品のジャーナル部及びピン部を研削する研削工程と、前記研削工程後に、前記中間品のジャーナル部及びピン部を、アルミナ砥粒がコーティングされたフィルムを用いてラッピングする粗ラッピング工程と、前記粗ラッピング工程後に、前記中間品のジャーナル部及びピン部を、ダイヤモンド砥粒がコーティングされたフィルムを用いてラッピングする仕上ラッピング工程とを備える。
 本発明によれば、耐焼付性に優れたクランクシャフトが得られる。
図1は、一般的なガス窒化処理が施された鋼材の表面近傍の構造を模式的に示す断面図である。 図2は、断面曲線の例である。 図3は、粗さ曲線の例である。 図4は、本発明の一実施形態によるクランクシャフトの概略図である。 図5は、図4のクランクシャフトの製造方法の一例を示すフロー図である。 図6は、焼付試験で使用した評価装置の模式図である。 図7は、図6の評価装置の軸受近傍の部分を模式的に示す図である。 図8は、試験軸に加えた面圧の時間変化の模式図である。
 クランクシャフトの窒化処理は、耐摩耗性や疲労強度を向上させるために行われている。一方、窒化処理と耐焼付性との関係については、これまで十分な検討がなされていなかった。特に、窒化処理によって形成される化合物層と耐焼付性との関係については、空隙面積率の高い化合物層が油溜まりとなって耐焼付性の向上に寄与しているとも言われているものの(ディーター・リートケほか著、「鉄の窒化と軟窒化」、アグネ技術センター、第27頁、2011年)、系統的な調査は行われていなかった。
 図1は、一般的なガス窒化処理が施された鋼材の表面近傍の構造を模式的に示す断面図である。鋼材の表面には、厚さ数十μm程度の化合物層50が形成される。化合物層50の下側には、鋼材表面に窒素が拡散して形成された窒素拡散層60が形成される。また、化合物層50には、表面近傍に形成された空隙面積率の高いポーラス層51と、ポーラス層51と窒素拡散層60との間に形成された空隙面積率の低い緻密層52とが含まれる。
 化合物層50は、ε相(Fe2-3N)、γ’相(FeN)、及びα相(αFe)を含むことが知られている。なかでも、上記のようなポーラス層51を含む化合物層50は、ε相を主体とするものであることが知られている。前掲の特開2018-70928号公報及び国際公開第2018/066667号に記載されているように、窒化処理時の窒化ポテンシャルを制御することによって、γ’相を主体とする空隙の少ない化合物層を形成できることも知られている。
 本発明者らは、化合物層と耐焼付性との関係について詳細な検討を行った。具体的には、(1)ε相を主体とし、ポーラス層と緻密層とを含む化合物層を備えた鋼材、(2)ε相を主体とし、ポーラス層を除去して緻密層だけにした化合物層を備えた鋼材、(3)化合物層を除去して窒素拡散層を露出させた鋼材、及び(4)γ’相を主体とする化合物層を備えた鋼材のそれぞれに対し、耐焼付性の評価を行った。
 その結果、(1)及び(3)の鋼材よりも、(2)及び(4)の鋼材の方が優れた耐焼付性を示すことが分かった。このことから、化合物層がある方が耐焼付性の向上に有利であること、及び、化合物層の空隙面積率が低い方が耐焼付性の向上に有利であることが分かった。
 耐焼付性の向上には、化合物層が形成された摺動部の表面形状も重要である。本発明者らは、化合物層の表面近傍の空隙面積率を10.0%以下にし、さらに断面曲線の算術平均高さPaを0.090μm以下にすることで、窒化クランクシャフトの耐焼付性を従来よりも顕著に向上できることを明らかにした。
 上述した特開2017-218951号公報、国際公開第2016/072305号では、粗さ曲線の算術平均高さRa(以下「平均粗さRa」という。)を用いて表面形状を規定している。しかし、平均粗さRaによる規定には、以下のような問題がある。
 図2及び図3はそれぞれ、断面曲線及び粗さ曲線の例である。クランクシャフト等の工業製品の表面形状には、短周期成分(粗さ)に加えて、研削機の振動等に由来する長周期成分(うねり)が少なからず含まれている。平均粗さRaは、うねり成分を高域フィルタで除いた粗さ曲線(図3)に基づくため、実際の表面形状を正確に評価しているとは言いがたい。また平均粗さRaの値は、粗さ曲線を得る際に用いられる高域フィルタのカットオフ値λcによって大きく変動する。実際、平均粗さRaが同程度であっても、うねりの大きさによって耐焼付性は大きく変動する。そのため、耐焼付性を制御する指標としては、断面曲線(図2)を輪郭曲線とした評価パラメータを用いることが適切である。
 一般に、窒化処理をすることで、表面粗さは1.5~2倍程度悪化する(ディーター・リートケほか著、「鉄の窒化と軟窒化」、アグネ技術センター、第72頁、2011年。)。そのため、窒化処理後の鋼材の断面曲線の算術平均高さPaを小さくするためには、窒化処理後にも研磨を行い、表面形状を整える必要がある。一方、工業的に現実的な時間で形成できる化合物層の厚さは数十μm程度である。研磨代が小さいため、化合物層を残しつつ断面曲線の算術平均高さPaを0.090μm以下にするためには、研磨前の段階で十分に平滑な表面形状にしておく必要がある。そのためには、窒化処理後だけではなく、窒化処理前にも十分な研磨を行っておく必要がある。
 本発明は、以上の知見に基づいて完成された。以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 [クランクシャフト]
 図4は、本発明の一実施形態によるクランクシャフト10の概略図である。クランクシャフト10は、ジャーナル部11、ピン部12、及びアーム部13を備えている。
 ジャーナル部11は、シリンダブロック(不図示)と連結される。ピン部12は、コネクティングロッド(不図示)と連結される。アーム部13は、ジャーナル部11とピン部12とを接続する。
 クランクシャフト10は、例えば機械構造用鋼材からなる。クランクシャフト10は、これらに限定されないが、JIS G 4051:2009の機械構造用炭素鋼鋼材、JIS G 4053:2008の機械構造用合金鋼鋼材等からなるものを用いることができる。これらの鋼材の中でも、JIS G 4051:2009のS45C、S50C及びS53C、並びにJIS G 4053:2008のSMn438が好適であり、また、これらの鋼材に被削性を向上させるためにSを添加した鋼材が特に好適である。
 クランクシャフト10の化学組成(化合物層及び窒素拡散層を除く母材部分の化学組成)は例えば、Fe及び不純物に加えて、質量%で、C:0.30~0.60%、Si:0.01~2.0%、Mn:0.1~2.0%、Cr:0.01~0.50%、Al:0.001~0.06%、N:0.001~0.02%、P:0.03%以下、S:0.20%以下を含む。クランクシャフト10の化学組成は、上記以外の元素を含有してもよい。クランクシャフト10の化学組成は例えば、質量%で、Mo:0~0.50%、Cu:0~0.50%、Ni:0~0.50%、Ti:0~0.050%、Nb:0~0.050%、Ca:0~0.005%、Bi:0~0.30%、及びV:0~0.20%を含有してもよい。
 クランクシャフト10の表面には、鉄及び窒素を含有する化合物層が形成されている。化合物層は、主に鉄-窒素化合物からなるが、鉄及び窒素以外の元素を少量含んでいてもよい。化合物層は、好ましくは、鉄及び窒素以外の元素の含有量が10質量%以下である。
 化合物層は、通常はクランクシャフト10全体の表面に形成される。しかし化合物層は、摺動部であるジャーナル部11及びピン部12の表面に形成されていればよく、必ずしもクランクシャフト10全体の表面に形成されていなくてもよい。
 化合物層は、ε相(Fe2-3N)を主体とするものであってもよいし、γ’相(FeN)を主体とするものであってもよい。化合物層は、ε相とγ’相とが混在したものであってもよい。
 クランクシャフト10は、一つの態様として、ε相の割合を断面面積率で80%以上にした化合物層を備えていてもよい。ε相は稠密六方格子からなる結晶構造を有し、γ’相よりも疲労強度や耐摩耗性に優れるため、機械的強度性能が重視される用途に際しては好都合である。また、ε相の自己拡散係数はγ’相中の自己拡散係数に比べて同一温度条件下では10倍以上高く、ε相の方が生成しやすい。そのため、ε相の割合が高い化合物層を備えたクランクシャフトは、γ’相の割合が高い化合物層を備えたクランクシャフトよりも製造上有利である。ε相の断面面積率はより好ましくは90%以上である。
 クランクシャフト10は、別の態様として、γ’相の割合を断面面積率で80%以上にした化合物層を備えていてもよい。γ’相は面心立方格子からなる結晶構造を有し、ε相よりも体積膨張率が3割程度低いため、耐熱衝撃性など熱的安定性が重視される用途に際しては好都合である。γ’相の断面面積率はより好ましくは90%以上である。
 化合物層中のε相、γ’相及びα相の割合は、電子線後方散乱回折法(Electron Backscatter Diffraction:EBSD)によって求めるものとする。具体的には、化合物層の断面のEBSD測定を行って、ε相、γ’相及びα相をマッピングしてこれらの面積比を求める。EBSD測定は、4000倍前後の倍率で10視野程度測定するのが適当である。
 化合物層は、ジャーナル部11及びピン部12の各々において、表面から深さ3.0μmまでの領域の空隙面積率が10.0%以下である。ただし、化合物層の厚さが3.0μmよりも薄い場合には、全厚さで測定した空隙面積率が10.0%以下であればよい。以下、表面から深さ3.0μmまでの領域及び化合物層の全厚さ領域のうちの薄い方の領域の空隙面積率を、化合物層の「表層空隙面積率」という。
 メカニズムは明らかではないが、化合物層の表層空隙面積率が低いほど、耐焼付性が向上する。ジャーナル部11及びピン部12における化合物層の表層空隙面積率は、好ましくは5.0%以下であり、さらに好ましくは3.0%以下である。
 表層空隙面積率は、次のように測定するものとする。化合物層の断面を走査型電子顕微鏡(Scanning Electron Microscope:SEM)で5000倍程度の倍率で撮影する。化合物層の表面と平行に0.25μm間隔で12本、化合物層の表面と垂直な方向に0.25μm間隔で92本の線を引き、これらの交点が空隙である割合を表層空隙面積率とする。
 ジャーナル部11及びピン部12以外の部分における化合物層の表層空隙面積率は任意である。化合物層は、全体にわたって表層空隙面積率が低くてもよいし、ジャーナル部11及びピン部12だけにおいて表層空隙面積率が低くてもよい。
 ジャーナル部11及びピン部12における化合物層の厚さは、好ましくは1.0~50μmである。ジャーナル部11及びピン部12における化合物層の厚さの下限は、より好ましくは2.0μmであり、さらに好ましくは3.0μmである。ジャーナル部11及びピン部12における化合物層の厚さの上限は、より好ましくは30μmであり、さらに好ましくは20μmであり、さらに好ましくは8μmである。なお、ジャーナル部11及びピン部12以外の部分における化合物層の厚さは任意である。
 化合物層の厚さは、次のように測定するものとする。化合物層の断面を研磨し、ナイタール液でエッチングして光学顕微鏡で観察する。化合物層は、白い未腐食の層として観察される。光学顕微鏡により500倍で撮影した組織写真5視野を観察する。各視野において、水平方向に30μm毎に4点、化合物層の厚さを測定する。測定された20点の平均値を、化合物層の厚さとする。
 ジャーナル部11及びピン部12における化合物層の硬さは、好ましくはHV500~HV1000である。ジャーナル部11及びピン部12における化合物層の硬さの下限は、より好ましくはHV700であり、さらに好ましくはHV800である。なお、ジャーナル部11及びピン部12以外の部分における化合物層の硬さは任意である。
 ジャーナル部11及びピン部12の各々は、断面曲線の算術平均高さPaが0.090μm以下である表面形状を有する。ここで、断面曲線の算術平均高さPaは、JIS B 0601:2001に定義されたものである。
 断面曲線の算術平均高さPaは、より具体的には、次のように測定する。クランクシャフト10の測定対象箇所(ジャーナル部11及びピン部12)から試験片を採取し、接触式粗さ試験機を用いて測定断面曲線を取得する。接触式粗さ試験機の触針の先端半径は2μm、円錐のテーパ角度は60°とする。走査速度は0.5mm/s以下とし、測定長さは5mm以上とする。
 測定断面曲線にカットオフ値λsの低域フィルタを適用して、断面曲線を得る。図2に示すように、断面曲線を輪郭曲線として、評価長さlにおけるZ(x)の絶対値の平均を求め、断面曲線の算術平均高さPaとする。ここで、Z(x)は位置xにおける縦座標である。カットオフ値λsは2.5μm、評価長さlは5mmとする。
 化合物層の表層空隙面積率を10.0%以下にし、さらに断面曲線の算術平均高さPaを0.090μm以下にすることで、耐焼付性を従来よりも顕著に向上させることができる。断面曲線の算術平均高さPaは、好ましくは0.080μm以下である。
 [クランクシャフトの製造方法]
 次に、クランクシャフト10の製造方法の一例を説明する。以下に説明する製造方法は、あくまでも例示であって、クランクシャフト10の製造方法を限定するものではない。
 図5は、クランクシャフト10の製造方法の一例を示すフロー図である。この製造方法は、素材準備工程(ステップS1)、熱間鍛造工程(ステップS2)、熱処理工程(ステップS3)、機械加工工程(ステップS4)、中間研削工程(ステップS5)、中間ラッピング工程(ステップS6)、窒化処理工程(ステップS7)、研削工程(ステップS8)、粗ラッピング工程(ステップS9)、及び仕上ラッピング工程(ステップS10)を備えている。以下、各工程を詳述する。
 クランクシャフトの素材を準備する(ステップS1)。クランクシャフトの素材の化学組成は特に限定されないが、例えば上述した機械構造用鋼材を用いることができる。素材は例えば、上記の化学組成を有する溶鋼を連続鋳造又は分塊圧延して製造することができる。
 素材を熱間鍛造してクランクシャフトの粗形状にする(ステップS2)。熱間鍛造は、粗鍛造と仕上鍛造とに分けて実施してもよい。
 熱間鍛造によって製造されたクランクシャフトの粗形品に対して、必要に応じて焼入れ、焼戻し、焼準し等の熱処理を実施する(ステップS3)。熱処理工程(ステップS3)は任意の工程であり、クランクシャフトの要求特性等によってはこの工程を省略してもよい。
 クランクシャフトの粗形品を機械加工する(ステップS4)。機械加工は、切削加工や研削加工、孔開け加工等である。この工程により、最終製品に近い形状を有するクランクシャフトの中間品が製造される。
 クランクシャフトの中間品のジャーナル部及びピン部に対して、中間研削及び中間ラッピングを行う(ステップS5及びS6)。上述のとおり、本実施形態によるクランクシャフトは、化合物層を残しつつ、断面曲線の算術平均高さPaを0.090μm以下にする。そのためには、窒化処理(ステップS7)の前の段階で、ジャーナル部及びピン部の断面曲線の算術平均高さPaを小さくしておく必要がある。好ましくは、中間研削及び中間ラッピングにおいて、ジャーナル部及びピン部の断面曲線の各々の算術平均高さPaを0.15μm以下にする。
 中間研削及び中間ラッピングされたクランクシャフトの中間品に対して、窒化処理を実施する(ステップS7)。窒化処理は例えば、NH、H、Nを含む雰囲気で実施する。窒化処理は、NH、H、Nに加えて、COを含む雰囲気で実施してもよい。処理温度は、例えば550~620℃である。処理時間は、例えば1.5~10時間である。
 このとき、窒化ポテンシャルK=PNH3/(PH23/2を制御することで、化合物層中のε相とγ’相との割合を制御することができる。PNH3及びPH2はそれぞれNH及びHの分圧である。具体的には、窒化ポテンシャルKを大きくするとε相の割合が高くなり、窒化ポテンシャルKを小さくするとγ’相の割合が高くなる。
 窒化処理をした後、ジャーナル部及びピン部を再び研削して、表面形状を整える(ステップS8)。窒化処理によって形成された化合物層にポーラス層(図1の符号51)が含まれる場合、この研削によってポーラス層を除去する。
 続いて、ジャーナル部及びピン部をラッピングする(ステップS9及びS10)。このラッピング工程は、粗ラッピング工程と仕上ラッピング工程とに分けて実施し、粗ラッピング工程ではアルミナ砥粒をコーティングしたフィルムを、仕上ラッピング工程ではダイヤモンド砥粒をコーティングしたフィルムを用いる。これによって、化合物層を残しつつ断面曲線の算術平均高さPaを0.090μm以下にする。このとき、前述した中間研削及び中間ラッピングが十分でなければ、化合物層を残しつつ断面曲線の算術平均高さPaを0.090μm以下にすることが困難になる。
 断面曲線の算術平均高さPaを0.090μm以下にするためには、中間研削工程(ステップS5)及び研削工程(ステップS8)において、粗さ及びうねりの両方を小さくする必要がある。このうち粗さは、研削に用いる砥粒の大きさに依存する。そのため、できるだけ細かい砥粒を用いて研削することが好ましい。
 ジャーナル部及びピン部には、機械加工工程(ステップS4)の際の工具の送りや振動に起因して、数100μm~数mm周期のうねりが存在している。粗さを十分に小さくしても(粗さ曲線の算術平均高さRaを十分に小さくしても)、うねりが残っていると断面曲線の算術平均高さPaは小さくならない。そのため、中間研削工程(ステップS5)及び研削工程(ステップS8)では、Raが小さくなった後も研削を続けて、うねりを十分に除去する必要がある。
 また、ラッピング工程(ステップS6、S9、及びS10)の際、中心部が窪む中凹状の形状になることを防止するため、以下の(1)~(4)を実施することが好ましい。(1)幅が狭いフィルムを使用して軸方向に送りながら研磨する。これによって、潤滑油がフィルム中央部まで到達しやすくなる。(2)砥粒をできるだけ小径にする。これによって、切り込み深さが浅くなるので過度な研削が緩和される。(3)工作物の回転速度を高くし、かつ押しつけ力を小さくする。これによって、フィルムと工作物との間の油(水)膜の厚さを増加させることができる。(4)潤滑油(水)の量を多くする。これによって、フィルムと工作物との間の油(水)膜の厚さを増加させることができる。
 また、中間ラッピング工程(ステップS6)、粗ラッピング工程(ステップS9)及び仕上ラッピング工程(ステップS10)のいずれにおいても、クランクシャフトの軸方向のフィルムの送り速度をできるだけ小さくする。これによって、微細なうねりが除去され、断面曲線の算術平均高さPaをより小さくすることができる。
 以上、本発明の一実施形態によるクランクシャフト10の構成、及びその製造方法の一例を説明した。本実施形態によれば、耐焼付性に優れたクランクシャフトが得られる。
 以下、実施例によって本発明をより具体的に説明する。本発明はこれらの実施例に限定されない。
 表1に示す化学組成を有する鋼を素材として、焼付試験用の試験軸を複数作製した。
Figure JPOXMLDOC01-appb-T000001
 具体的には、素材を1250℃で1時間加熱した後、1150℃付近で熱間鍛造を実施し、鍛造終了後、室温まで空冷した。その後、機械加工(切削加工)によって外径を約53mmにした。
 機械加工後、中間研削及び中間ラッピングを行って、断面曲線の算術平均高さPaが0.15μm以下になるように調整した。中間ラッピングは、粒径9-15μmのアルミナ砥粒がコーティングされたフィルムを使用した。比較用として、一部の試験軸に対しては、中間研削及び中間ラッピングを省略して次の窒化処理を行った。
 窒化処理として、(A)ε相を主体とする化合物層を形成する窒化処理と、(B)γ’相を主体とする化合物層を形成する窒化処理とを行った。窒化処理は、いずれもアンモニア、水素、及びCOを含む雰囲気で行った。(A)では、窒化ポテンシャルKを1~10に調整して570℃で3時間保持し、その後油冷する処理を行った。(B)では、窒化ポテンシャルKを0.3~0.5に調整して570℃で8時間保持し、その後油冷する処理を行った。
 EBSD測定により、(A)の処理をした試験軸にはε相の割合が断面面積率で90%以上である化合物層が形成され、(B)の処理をした試験軸にはγ’相の割合が断面面積率で90%以上である化合物層が形成されていることを確認した。
 窒化処理された試験軸に対して、研削、粗ラッピング、及び仕上ラッピングを実施した。研削工程は、化合物層を残すように行った。ε相を主体とする化合物層が形成された試験軸に対しては、ポーラス層を除去し、緻密層が残るように研削を行った。粗ラッピングは粒径9-15μmのアルミナ砥粒がコーティングされたフィルムを用いて、仕上ラッピングは粒径1-3μm(#8000-#4000)のダイヤモンド砥粒がコーティングされたフィルムを用いて行った。試験軸の外径は、後述する焼付試験に用いる軸受とのクリアランスが約0.080mmになるように調整した。比較用として、ポーラス層を残した試験軸や、化合物層を全て除去した試験軸、研削工程を簡略化して外径の調整だけを行った試験軸も作製した。
 作製した試験軸の表面形状、表層空隙面積率、及び硬さを測定した。表面形状は、接触式粗さ試験機(株式会社ミツトヨ製SJ-412)を用いて測定した。硬さは、ナノインデンターを用いて測定した。
 作製した試験軸を用いて、焼付試験を実施した。焼付試験に使用した評価装置20の模式図を図6に示す。試験軸TPを試験軸受21及び保持軸受22に挿入し、試験軸受21に給油しながら、モータ(不図示)によって試験軸TPを周速20m/秒で回転させた。図7に示すように、試験軸受21のハウジングと試験機との間に厚さ30μmのシム25を噛ませて、強制的に強い片当たりが発生するようにした。軸受のメタルは、Bi/Cu合金を使用した。潤滑油はVG22、給油温度は100℃、給油量は150ml/分とした。
 50分間慣らし運転をした後、試験軸受21に荷重を加え、試験軸TPに加わる面圧を段階的に増加させながら、焼付きが発生するまで運転した。図8に、試験軸TPに加えた面圧の時間変化を模式的に示す。同一面圧での保持時間は10分間、1ステップあたりの面圧増加幅は5MPaとした。軸受背面温度が230℃以上になるか、トルク変動によりベルトがスリップしたときに焼付きが発生したと判定した。
 各試験軸の製造条件、試験結果を表2に示す。なお、試験軸記号K1、K2及びK3の「表層空隙面積率」の欄には、窒素拡散層の表面から深さ3.0μmまでの領域の空隙面積率を記載している。
Figure JPOXMLDOC01-appb-T000002
 試験軸記号C1Z、C1A、G1A、C1B、C1C、C1D及びG1Bの試験軸は、化合物層の表層空隙面積率が10.0%以下であり、断面曲線の算術平均高さPaが0.090μm以下である表面形状を有していた。これらの試験軸は、焼付面圧が100MPa以上であり、優れた耐焼付性を示した。
 試験軸記号C2及びG2の試験軸は、焼付面圧が100MPa未満であった。これは、これらの試験軸の断面曲線の算術平均高さPaが大きかったためと考えられる。これらの試験軸は、窒化処理後に研削、粗ラッピング及び仕上ラッピングを行ったが、中間研削及び中間ラッピングを行わなかったため、断面曲線の算術平均高さPaを十分に下げることができなかった。
 試験軸記号P1、P2及びP3の試験軸は、化合物層の最表面にポーラス層を残したものである。これらの試験軸は、焼付面圧が100MPa未満であった。
 試験軸記号K1、K2及びK3の試験軸は、化合物層を完全に除去し、窒素拡散層が露出するようにしたものである。これらの試験軸は、焼付面圧が100MPa未満であった。
 以上、本発明の一実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。

Claims (6)

  1.  ジャーナル部及びピン部を有するクランクシャフトであって、
     鉄及び窒素を含有する化合物層を表面に備え、
     前記化合物層は、前記ジャーナル部及びピン部の各々において、表面から深さ3.0μmまでの領域及び前記化合物層の全厚さ領域のうちの薄い方の領域の空隙面積率が10.0%以下であり、
     前記ジャーナル部及びピン部の各々は、断面曲線の算術平均高さPaが0.090μm以下である表面形状を有する、クランクシャフト。
  2.  請求項1に記載のクランクシャフトであって、
     前記化合物層の硬さがHV500~HV1000である、クランクシャフト。
  3.  請求項1又は2に記載のクランクシャフトであって、
     前記化合物層は、前記ジャーナル部及びピン部の各々において、1.0~50μmの厚さを有する、クランクシャフト。
  4.  請求項1~3のいずれか一項に記載のクランクシャフトであって、
     前記化合物層中のε相の割合が断面面積率で80%以上である、クランクシャフト。
  5.  請求項1~3のいずれか一項に記載のクランクシャフトであって、
     前記化合物層中のγ’相の割合が断面面積率で80%以上である、クランクシャフト。
  6.  請求項1~5のいずれか一項に記載のクランクシャフトを製造する方法であって、
     クランクシャフトの中間品のジャーナル部及びピン部を研削する中間研削工程と、
     前記中間研削工程後に、前記中間品のジャーナル部及びピン部をラッピングする中間ラッピング工程と、
     前記中間ラッピング工程後に、前記中間品を窒化処理する窒化処理工程と、
     前記窒化処理工程後に、前記中間品のジャーナル部及びピン部を研削する研削工程と、
     前記研削工程後に、前記中間品のジャーナル部及びピン部を、アルミナ砥粒がコーティングされたフィルムを用いてラッピングする粗ラッピング工程と、
     前記粗ラッピング工程後に、前記中間品のジャーナル部及びピン部を、ダイヤモンド砥粒がコーティングされたフィルムを用いてラッピングする仕上ラッピング工程とを備える、クランクシャフトの製造方法。
PCT/JP2021/006247 2020-02-25 2021-02-19 クランクシャフト及びその製造方法 WO2021172177A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2022010039A MX2022010039A (es) 2020-02-25 2021-02-19 Cigue?al y metodo de fabricacion del mismo.
US17/759,451 US20230146538A1 (en) 2020-02-25 2021-02-19 Crankshaft and method of manufacturing the same
CN202180016198.0A CN115151737A (zh) 2020-02-25 2021-02-19 曲轴及其制造方法
JP2022503319A JP7488491B2 (ja) 2020-02-25 2021-02-19 クランクシャフト及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020029228 2020-02-25
JP2020-029228 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021172177A1 true WO2021172177A1 (ja) 2021-09-02

Family

ID=77490988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006247 WO2021172177A1 (ja) 2020-02-25 2021-02-19 クランクシャフト及びその製造方法

Country Status (5)

Country Link
US (1) US20230146538A1 (ja)
JP (1) JP7488491B2 (ja)
CN (1) CN115151737A (ja)
MX (1) MX2022010039A (ja)
WO (1) WO2021172177A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232546A (ja) * 2000-02-22 2001-08-28 Sumitomo Heavy Ind Ltd 動力伝達部材の研磨方法及び研磨装置、及び該動力伝達部材を用いた揺動内接噛合遊星歯車伝動機構
JP2003277882A (ja) * 2002-03-26 2003-10-02 Yamaha Motor Co Ltd 鉄合金部品およびその製造方法
JP2009275645A (ja) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp ロータリ圧縮機
WO2019098340A1 (ja) * 2017-11-16 2019-05-23 日本製鉄株式会社 窒化処理部品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907470B1 (fr) * 2006-10-20 2009-04-17 Hef Soc Par Actions Simplifiee Piece en contact glissant, en regime lubrifie, revetue d'une couche mince.
CN100580260C (zh) * 2007-06-12 2010-01-13 天润曲轴股份有限公司 发动机球墨铸铁曲轴
DE102007028888B4 (de) * 2007-06-20 2015-07-23 Maschinenfabrik Alfing Kessler Gmbh Verfahren zur Erhöhung der Festigkeit eines Bauteils
WO2010110133A1 (ja) * 2009-03-26 2010-09-30 本田技研工業株式会社 クランクシャフトおよびその製造方法
JP5811303B2 (ja) * 2013-03-07 2015-11-11 新日鐵住金株式会社 非調質型軟窒化部品
WO2016009640A1 (ja) * 2014-07-16 2016-01-21 新日鐵住金株式会社 レシプロエンジンのクランク軸
WO2016035519A1 (ja) * 2014-09-02 2016-03-10 新日鐵住金株式会社 非調質型軟窒化部品
US20170343038A1 (en) * 2016-05-25 2017-11-30 Ford Motor Company Laser hardened crankshaft
EP3524709A4 (en) * 2016-10-05 2020-02-19 Nippon Steel Corporation NITRIDE COMPONENT AND PROCESS FOR PRODUCING THE SAME
JP6911606B2 (ja) 2017-07-20 2021-07-28 日本製鉄株式会社 窒化部品および窒化処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232546A (ja) * 2000-02-22 2001-08-28 Sumitomo Heavy Ind Ltd 動力伝達部材の研磨方法及び研磨装置、及び該動力伝達部材を用いた揺動内接噛合遊星歯車伝動機構
JP2003277882A (ja) * 2002-03-26 2003-10-02 Yamaha Motor Co Ltd 鉄合金部品およびその製造方法
JP2009275645A (ja) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp ロータリ圧縮機
WO2019098340A1 (ja) * 2017-11-16 2019-05-23 日本製鉄株式会社 窒化処理部品

Also Published As

Publication number Publication date
MX2022010039A (es) 2022-09-19
CN115151737A (zh) 2022-10-04
US20230146538A1 (en) 2023-05-11
JP7488491B2 (ja) 2024-05-22
JPWO2021172177A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
US5595613A (en) Steel for gear, gear superior in strength of tooth surface and method for producing same
JP5169724B2 (ja) 摺動部品
JP6304386B2 (ja) 非調質型軟窒化部品
US8523722B2 (en) Pulley for continuously variable transmission
JPWO2004003246A1 (ja) 自己潤滑性を有する摺動部品用材料およびピストンリング用線材
JP6561816B2 (ja) クランクシャフト及びその製造方法
KR20050118175A (ko) 질화 밸브 리프터 및 그 제조 방법
EP3336206A1 (en) Method for manufacturing product member, and product member
WO2021172177A1 (ja) クランクシャフト及びその製造方法
JP5499974B2 (ja) 非調質型窒化クランクシャフト
JP4301507B2 (ja) サイレントチェーン用焼結スプロケットおよびその製造方法
CN112639307B (zh) 曲轴及其制造方法
JP5811303B2 (ja) 非調質型軟窒化部品
EP4102087A1 (en) Sliding member, production method of sliding member, and evaluation method of sliding member
JP5708844B2 (ja) 非調質型窒化クランクシャフト
JP2003148490A (ja) スラスト型ボールベアリングレースの製造方法
JP4291639B2 (ja) 鉄基焼結合金およびその製造方法
EP4130500B1 (en) Bearing device and method for driving bearing device
JPH10317090A (ja) 鉄合金焼結体部品とその製法
JP2013220509A (ja) ショットピーニング方法及びそれを用いた歯車材
WO2022209568A1 (ja) クランクシャフト及びその製造方法
JP6553275B1 (ja) シリンダライナ及びその製造方法
WO2020209320A1 (ja) 鋼軸部品
JPS60155618A (ja) 切欠部を有する浸炭焼入部材の疲労強度向上方法
Rau et al. P/M gear for a passenger car gear box

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761853

Country of ref document: EP

Kind code of ref document: A1