WO2013157286A1 - 超電導成膜用基材及び超電導線並びに超電導線の製造方法 - Google Patents

超電導成膜用基材及び超電導線並びに超電導線の製造方法 Download PDF

Info

Publication number
WO2013157286A1
WO2013157286A1 PCT/JP2013/052755 JP2013052755W WO2013157286A1 WO 2013157286 A1 WO2013157286 A1 WO 2013157286A1 JP 2013052755 W JP2013052755 W JP 2013052755W WO 2013157286 A1 WO2013157286 A1 WO 2013157286A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
film
forming
pair
layer
Prior art date
Application number
PCT/JP2013/052755
Other languages
English (en)
French (fr)
Inventor
義則 長洲
樋口 優
久樹 坂本
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to US14/236,188 priority Critical patent/US9002424B2/en
Priority to JP2013527815A priority patent/JP5367927B1/ja
Priority to KR1020147002314A priority patent/KR101553183B1/ko
Priority to EP13778174.6A priority patent/EP2728590B9/en
Priority to CN201380002439.1A priority patent/CN103718256B/zh
Publication of WO2013157286A1 publication Critical patent/WO2013157286A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/04Single wire
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/30Drying; Impregnating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24488Differential nonuniformity at margin

Definitions

  • the present invention relates to a substrate for superconducting film formation, a superconducting wire, and a method for manufacturing the superconducting wire.
  • a superconducting wire manufacturing method for obtaining a superconducting wire by forming a superconducting layer on a film forming surface of a superconducting film forming substrate having a tape shape and a rectangular tape section is known.
  • Japanese Patent Application Laid-Open No. 2011-165568 discloses a superconducting wire in which a first intermediate layer and a second intermediate layer are sequentially laminated on a film formation surface of a superconducting film forming base material.
  • a superconducting wire in which the second intermediate layer extends to the side surface of the first intermediate layer and the side surface of the tape-shaped metal substrate is disclosed.
  • Japanese Patent Application Laid-Open No. 2004-31128 does not deal with peeling of the intermediate layer or the superconducting layer, but the film-forming surface is directed from the edge of the back surface opposite to the film-forming surface toward the edge of the film-forming surface.
  • a substrate for superconducting film formation in which an R-plane extending in an R shape (round shape) is formed outward in the in-plane direction.
  • the present invention has been made in view of the above facts, and a superconducting layer can be reliably formed on the side surface, and the superconducting film-forming substrate, the superconducting wire, and the superconducting material can be prevented from being peeled off. It aims at providing the manufacturing method of a wire.
  • ⁇ 3> The substrate for superconducting film formation according to ⁇ 2>, wherein the spread surface has a surface roughness of 15 nm or more.
  • the ratio of the spread distance in the in-plane direction of the film formation surface in the pair of spread surfaces to the maximum distance between the pair of side surfaces is 0.005% or more and 7.59% or less, respectively.
  • ⁇ 1>- ⁇ 3> The substrate for superconducting film formation according to any one of ⁇ 3>.
  • ⁇ 5> A tape-shaped base body and a metal layer that covers at least both side surfaces of the base body and has a higher malleability than the base body, and the pair of side surfaces are formed on the metal layer.
  • ⁇ 6> The superconducting film-forming substrate according to any one of ⁇ 1> to ⁇ 5>, wherein the pair of side surfaces includes an anchor portion that is recessed along the longitudinal direction of the superconducting film-forming substrate.
  • a spreading surface extending from an edge of the film-forming surface is defined as a first spreading surface, and the pair of side surfaces are further within the surface of the film-forming surface from the edge of the back surface toward the first spreading surface.
  • ⁇ 8> The superconducting film-forming substrate according to any one of ⁇ 1> to ⁇ 7>, wherein the pair of side surfaces further includes a vertical surface that extends from the spreading surface and is perpendicular to the back surface.
  • the superconducting film-forming substrate according to any one of ⁇ 1> to ⁇ 8>, the film-forming surface of the superconducting film-forming substrate, and at least the spreading surface of the pair of side surfaces A superconducting wire having a laminated intermediate layer and a superconducting layer laminated on a surface of the intermediate layer.
  • the superconducting layer usually includes a superconducting portion mainly composed of an oxide superconductor which is located on the film formation surface and serves as a superconducting phase, and an oxide superconductor which is located on the spreading surface side and serves as a normal conducting phase.
  • a processing step of forming a spreading surface that spreads outward in the in-plane direction of the surface; and after the processing step, an intermediate layer on at least the spreading surface of the superconducting film-forming substrate and the pair of side surfaces A method for producing a superconducting wire, comprising: an intermediate layer forming step for forming a film; and a superconducting layer forming step for forming a superconducting layer on the surface of the intermediate layer.
  • the processing step includes a coating step in which a pair of side surfaces of a tape-shaped base body is covered with a metal layer having higher malleability than the base body to obtain the base material for superconducting film formation.
  • the method for producing a superconducting wire according to ⁇ 12> wherein the metal layer of the obtained superconducting film-forming substrate is processed to form spread surfaces on the pair of side surfaces, respectively.
  • the method includes a step of heat-treating the superconducting layer portion located on the spreading surface side to make the superconducting layer portion located on the spreading surface side non-superconducting.
  • ⁇ 12> or ⁇ 13> The manufacturing method of the superconducting wire as described in 13>.
  • a superconducting film-forming substrate a superconducting wire, and a superconducting wire manufacturing method capable of reliably forming a superconducting layer on the side surface and suppressing peeling of the formed layer. Can do.
  • FIG. 1 is a perspective view of a superconducting wire including a superconducting film forming substrate according to a first embodiment of the present invention.
  • FIG. 2 is a process diagram of the method of manufacturing a superconducting wire according to the first embodiment of the present invention.
  • FIG. 3 is a view of the superconducting wire according to the second embodiment of the present invention as viewed from the end surface direction.
  • FIG. 4 is a view of the superconducting wire according to the third embodiment of the present invention as viewed from the end surface direction.
  • FIG. 5A is a diagram showing a modification of the shape of a pair of side surfaces of a substrate for superconducting film formation.
  • FIG. 5B is a diagram showing a modification of the shape of a pair of side surfaces of the superconducting film-forming substrate.
  • FIG. 5C is a diagram showing a modification of the shape of a pair of side surfaces of the substrate for superconducting film formation.
  • FIG. 5D is a diagram showing a modification of the shape of a pair of side surfaces of the substrate for superconducting film formation.
  • FIG. 6A is a diagram showing a modified example of a laminated structure of a laminated body including a superconducting layer.
  • FIG. 6B is a diagram showing a modification of the laminated structure of the laminated body including the superconducting layer.
  • FIG. 1 is a perspective view of a superconducting wire including a superconducting film forming substrate according to a first embodiment of the present invention.
  • the superconducting wire 20 has an intermediate layer 30, a superconducting layer 40, and a stabilization layer on one main surface in the thickness direction T of the superconducting film-forming substrate 10 (hereinafter referred to as a film-forming surface 10 ⁇ / b> A).
  • 50 has a laminated structure laminated in this order.
  • Superconducting film-forming substrate 10 is in the form of a tape extending in the direction of arrow L (hereinafter referred to as longitudinal direction L) in the figure.
  • a low magnetic metal substrate or ceramic substrate is used as the material of the metal substrate.
  • a metal such as Co, Cu, Cr, Ni, Ti, Mo, Nb, Ta, W, Mn, Fe, and Ag, which is excellent in strength and heat resistance, or an alloy thereof is used. .
  • Ni-based alloys such as Hastelloy (registered trademark) and Inconel (registered trademark)
  • Fe-based alloys such as stainless steel.
  • Various ceramics may be arranged on these various metal materials.
  • a material of the ceramic substrate for example, MgO, SrTiO 3 , yttrium stabilized zirconia, or the like is used as a material of the ceramic substrate.
  • the superconducting film forming substrate 10 includes a film forming surface 10A for forming a laminate including the superconducting layer 40, a back surface 10B opposite to the film forming surface 10A, and a film forming surface 10A and a back surface. It has a pair of end faces 10C and 10D that are connected to 10B.
  • the film formation surface 10A is a substantially smooth surface.
  • the surface roughness of the film formation surface 10A is preferably 10 nm or less. This is because it is possible to increase the degree of orientation of the superconducting layer portion 40A located (deposited) on the film forming surface 10A, thereby enhancing the superconducting characteristics of the superconducting wire 20.
  • the surface roughness of the film formation surface 10A is set to 1 nm or less and 0.01 nm or more in order to further increase the degree of orientation of the superconducting layer 40 and clarify the difference from the spread surface 12 described later. More preferred.
  • the surface roughness is the arithmetic average roughness Ra in the “amplitude average parameter in the height direction” of the surface roughness parameter defined in JISB-0601-2001.
  • the superconducting film-forming substrate 10 has a pair of side surfaces 10E and 10F connected to the film-forming surface 10A, the back surface 10B, and the pair of end surfaces 10C and 10D.
  • Each of the pair of side surfaces 10E and 10F is located outside the in-plane direction P (or the width direction of the substrate) of the film-forming surface 10A from the edge of the film-forming surface 10A toward the back surface 10B (hereinafter referred to as the in-plane direction P outside). And includes a spread surface 12 that extends in the width direction of the substrate.
  • the spreading surface 12 points to both the pair of side surfaces 10E and 10F, and the film-forming surface 10A
  • the inner angle is an inclined surface larger than 90 degrees and smaller than 180 degrees.
  • the shape of the pair of end faces 10C and 10D is a trapezoidal shape with the film forming surface 10A being the upper base and the back surface 10B being the lower bottom.
  • the inner angle formed by the film formation surface 10A and the spread surface 12 is preferably 95 degrees or more from the viewpoint that the intermediate layer 30 and the like can be easily formed on the spread surface 12. Moreover, it is preferable that the said internal angle is 110 degree
  • the surface roughness of the spreading surface 12 is set so that the degree of crystal orientation of the superconducting layer portion 40B located on (deposited on) the spreading surface 12 is lower than that of the superconducting layer portion 40B. From the viewpoint of non-orienting the crystal and generating an anchor effect, it is preferably rougher than the surface roughness of the film formation surface 10A.
  • the surface roughness of the spreading surface 12 is preferably 15 nm or more, and as described above, the surface roughness of the film formation surface 10A is preferably 10 nm or less.
  • the surface roughness of the spreading surface 12 is less than 15 nm, the crystal of the superconducting layer portion 40B located on the spreading surface 12 is oriented and the superconducting layer portion 40B becomes superconducting, which becomes a starting point of a current path and a thermal instability factor. . Therefore, by setting the surface roughness of the spreading surface 12 to 15 nm or more, crystal growth of the superconducting layer portion 40B located on the spreading surface 12 can be made irregular, and the superconducting layer portion 40B can be made normal conducting. In other words, when the surface roughness of the spread surface 12 is 15 nm or more, the superconducting layer portion 40B located on the spread surface 12 becomes normal conducting and the critical current value Ic can be improved. “Normal conduction” is also described as “normal conduction”, and is to prevent a superconducting phenomenon from occurring even when the superconductor is cooled to an extremely low temperature.
  • the surface roughness of the spreading surface 12 makes clear the difference from the surface roughness of the film formation surface 10A, and the superconducting layer portion located on the normal conducting superconducting layer portion 40B and the film formation surface 10A maintaining the superconducting state. It is more preferably 20 nm or more from the viewpoint of delimiting 40A continuity. Furthermore, the surface roughness of the spreading surface 12 is determined by the remaining polishing abrasive grains at the time of manufacturing, and the scattering of fine particles due to contact between the spreading surface 12 and the susceptor, guide roll, and guide pulley used during manufacturing. From the viewpoint of suppressing 10A from being contaminated (subject to indirect surface scratches), it is preferably 500 nm or less. The surface roughness described above is preferably applied not only to the spread surface 12 but also to the pair of side surfaces 10E and 10F including the spread surface 12.
  • the ratio ⁇ (D2 / D1) ⁇ D2 (that is, the distance in the in-plane direction P of the film forming surface between the film forming surface side end and the back surface side end of the spreading surface, also referred to as the shoulder distance) 100 ⁇ is preferably 0.005% or more and 7.59% or less, respectively.
  • the separation characteristic specifically, the characteristic that it is difficult to separate after film formation on the spread surface 12
  • the superconducting characteristic specifically This is because the critical current characteristic is also improved.
  • the ratio of the spread distance D2 to the maximum distance D1 is preferably 0.018% or more and 5.00% or less. It is because peeling can be effectively suppressed within the evaluation sample length of 1 m when the ratio is within the numerical range.
  • the ratio of the spread distance D2 to the maximum distance D1 is preferably 0.15% or more and 1.00% or less.
  • the above superconducting film-forming substrate 10 may be composed of a single component and / or member, or may be composed of a plurality of components and / or members.
  • a material used for the superconducting film-forming substrate 10 is formed in a central shape of the superconducting film-forming substrate 10 in a tape shape and has a rectangular sectional view when cut in the thickness direction.
  • the base material body 14 made of the material described above and the metal layer 16 that covers at least both side surfaces of the base material body 14 and has higher malleability than the base material body 14 may be provided.
  • the pair of side surfaces 10F and 10E are formed on the metal layer 16, but the metal layer 16 is more malleable than the base body 14, and thus is easily formed.
  • the mechanical strength of the superconducting film-forming substrate 10 is reduced by the amount of the base body 14 having low malleability as compared with the case where the malleability of the entire superconducting film-forming substrate 10 is increased. Can be suppressed.
  • Examples of the material of the metal layer 16 include metals containing at least one of Ag, Cu, Ni, Cr, Mo, W, V, Au, Sn, Al, and P. Moreover, it is preferable that the metal layer 16 has malleability of elongation of 2% or more from the viewpoint of easy molding.
  • an intermediate layer 30 is laminated on the film forming surface 10 ⁇ / b> A and the spreading surface 12 of the superconducting film forming substrate 10.
  • the intermediate layer 30 is a layer for realizing, for example, high biaxial orientation in the superconducting layer 40.
  • Such an intermediate layer 30 has, for example, physical values such as a coefficient of thermal expansion and a lattice constant that are intermediate values between the superconducting film-forming substrate 10 and the superconductor constituting the superconducting layer 40.
  • the intermediate layer 30 may have a single layer structure or a multilayer structure.
  • a bed layer containing amorphous Gd 2 Zr 2 O 7- ⁇ ( ⁇ is an oxygen non-stoichiometric amount) and the like, and IBAD containing crystalline MgO and the like is a structure in which a forced alignment layer formed by an Ion Beam Assisted Deposition method, an LMO layer containing LaMnO 3 + ⁇ ( ⁇ is an oxygen non-stoichiometric amount), and a cap layer containing CeO 2 or the like are sequentially laminated. Also good.
  • a superconducting layer 40 is laminated on the surface of the intermediate layer 30.
  • the superconducting layer 40 preferably contains an oxide superconductor, particularly a copper oxide superconductor.
  • an oxide superconductor particularly a copper oxide superconductor.
  • REBa 2 Cu 3 O 7- ⁇ hereinafter referred to as RE superconductor
  • the RE in the RE-based superconductor is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. Y is preferable because it is difficult to cause substitution with the Ba site.
  • is an oxygen non-stoichiometric amount and is, for example, 0 or more and 1 or less, and is preferably closer to 0 from the viewpoint that the superconducting transition temperature is high.
  • the oxygen non-stoichiometric amount may be less than 0, that is, take a negative value when high-pressure oxygen annealing or the like is performed using an apparatus such as an autoclave.
  • the superconducting layer portion 40A on the film forming surface 10A is a superconducting portion mainly composed of the oxide superconductor that becomes the superconducting phase, and the superconducting layer portion 40B on the spreading surface 12 becomes the normal conducting phase. It is preferable to be a normal conducting part including an oxide superconductor. This is because by making the superconducting layer portion 40B a normal conducting portion, it is possible to suppress the superconducting layer portion 40B from becoming an origin of an unnecessary current path or a thermal instability factor.
  • the surface roughness of the superconducting layer portion 40B is preliminarily shaped to 15 nm or more and 500 nm or less, the crystal orientation of each layer constituting the intermediate layer 30 becomes nonuniform, and the orientation of the intermediate layer 30 varies.
  • the intermediate layer 30 has a forced alignment layer formed by the IBAD method, the irradiation direction of the IBAD method is such that the film forming surface 10A of the superconducting film forming substrate 10 is appropriately irradiated. Since the angle is adjusted at an arbitrary angle, the irradiation angle with respect to the pair of side surfaces 10E and 10F deviates from an appropriate angle for film formation, and the film formation state of the intermediate layer 30 becomes uneven.
  • the superconducting layer portion 40A located on the film forming surface 10A and the superconducting layer portion 40B located on the spreading surface 12 are controlled to have different properties (superconducting portion and normal conducting portion).
  • the “main body” described above and hereinafter represents the component contained in the largest amount among the constituent components constituting a certain layer or certain portion.
  • a certain layer or a certain part may consist only of components.
  • the oxide superconductor serving as the normal conducting phase inevitably has a lower degree of crystal orientation than the oxide superconductor serving as the superconducting phase.
  • a normal conducting part contains at least any one part among the composition of the base material 10 for superconducting film-forming, and the composition of the intermediate
  • the superconducting layer 40 extends from the intermediate layer 30 and extends outward in the in-plane directions of the surfaces 10E and 10F, and covers the end surface (the tip in FIG. 1) of the intermediate layer 30. It is preferable. Thereby, peeling of the intermediate layer 30 can be further suppressed.
  • the intermediate layer 30 has a multilayer structure, it is preferable that the intermediate layer on the superconducting layer 40 side covers the end face of the intermediate layer on the superconducting film forming substrate 10 side, as with the superconducting layer 40.
  • the stabilization layer 50 covers the surface of the superconducting layer 40.
  • the stabilization layer 50 preferably covers the end surface (the front end in FIG. 1) of the superconducting layer 40, similarly to the superconducting layer 40, and the superconducting film-forming substrate 10, the intermediate layer 30, and the superconducting layer 40 are covered. More preferably, the entire periphery is covered.
  • the stabilization layer 50 may have a single layer structure or a multilayer structure. In the case of a multilayer structure, the number and types of the layers are not limited, but a silver stabilization layer made of silver and a copper stabilization layer made of copper may be laminated in order.
  • stacked on the spreading surface 12 in embodiment described above is laminated
  • FIG. 2 is a process diagram of the method for manufacturing the superconducting wire 20 according to the first embodiment of the present invention.
  • the following parentheses are step identification codes in the figure.
  • a processing step of processing a superconducting film-forming substrate having a tape shape and a rectangular tape cross-section having end faces 10C and 10D and a pair of side surfaces 10F and 10E connected to the film forming surface 10A and the back surface 10B is performed.
  • This processing process includes processes from step S11 to step S18, but at least the side surface forming process of step S16 can be omitted.
  • the superconducting film-forming substrate is roll-rolled, and further slitted with a finished size to obtain a superconducting film-forming substrate having a predetermined thickness and width.
  • the abrasive grains are preferably diamond grains or oxide grains, particularly aluminum oxide, cerium oxide, zirconium oxide, iron oxide and the like.
  • the polishing liquid may be water, a surfactant, oils, organic solvents or a mixture thereof, or a solution in which water is mixed with an acid such as formic acid, acetic acid or nitric acid, or water is mixed with an alkali such as sodium hydroxide. In particular, soapy water is desirable. Grinding stone polishing can also be used. In this case, polishing molding in which the shape of the side surface is approximately approximate to the final shape is also possible.
  • the polishing liquid is a chemical solvent that chemically reacts with the surface of the substrate for superconducting film formation.
  • a solution obtained by mixing a liquid such as acetic acid or a mixture thereof and further an accelerator such as saturated alcohol or sulfonic acid into the mixture is desirable.
  • the abrasive grains may be the above mechanical abrasive grains, and a polishing solvent (slurry) containing a chemical polishing solution is used there.
  • a superconducting film-forming substrate is immersed in an electrolytic solution, and the superconducting film-forming substrate is energized with the anode as an anode, and the surface of the superconducting film-forming substrate is polished by an electrolytic reaction.
  • This electrolytic solution may be an acid or an alkali, and nitric acid, phosphoric acid, chromic acid, hydrogen peroxide, potassium hydroxide, potassium cyanide and the like are particularly desirable.
  • angular part can be made into a predetermined shape by using the combination roll of a forming roll and a flat roll structure.
  • the forming roll is used for forming the side surface and the corner on the film forming surface side
  • the flat roll is used for forming an uneven shape near the corner of the wide surface (film forming surface) whose shape has been changed by the forming roll.
  • the forming roll is a groove type, and may have an integrated or divided structure. It is also possible to form the spread surface 12 into a predetermined shape by combining a pair of forming rolls and flat rolls as a pair and combining a plurality of pair rolls in tandem.
  • a pair of side surfaces of a substrate for superconducting film formation (here, referred to as a substrate body 14) is covered with a metal layer 16 having a higher malleability than the substrate body for superconducting film formation.
  • a covering step for obtaining a base material may be included, the metal layer 16 of the obtained superconducting film forming base material may be processed, and the spread surfaces 12 may be respectively formed on the pair of side surfaces.
  • dry plating or wet plating can be used.
  • the side surface and the side corners of the superconducting film-forming substrate are formed by polishing to a shape approximating the final shape, and then the metal layer 16 is coated on the side surfaces and corners to form the final shape. Is also possible.
  • the above steps S15 and S16 are continuous lines, and can be performed simultaneously, which is effective for cost reduction.
  • the film-side surface is polished by precision polishing.
  • This precision polishing may be any method of electrolytic polishing, mechanical polishing, and chemical polishing.
  • there are no protrusions on the side and corners before precision polishing, and the smooth slope reduces damage to the polishing line and polishing cloth and reduces electric field concentration, improving the uniformity of polishing and precision polishing costs. There is a reduction effect.
  • the superconducting film-forming substrate 10 according to the first embodiment is obtained. Of the above S11 to S18, processes other than S16 can be omitted.
  • an intermediate layer film forming step for forming the intermediate layer 30 on the film forming surface 10A side of the superconducting film forming substrate 10 is performed.
  • the intermediate layer 30 is not only formed on the film forming surface 10A of the superconducting film forming substrate 10 having high flatness formed by precision polishing, but also on the pair of side surfaces 10E and 10F. Form a film.
  • the pair of side surfaces 10E and 10F is formed with a spreading surface 12 that spreads outward in the in-plane direction P of the film formation surface 10A from the edge of the film formation surface 10A toward the back surface 10B side.
  • the intermediate layer 30 can also be reliably formed on the side surfaces 10E and 10F. Examples of the method for forming the intermediate layer 30 include a sputtering method and an IBAD method.
  • a superconducting layer forming step for forming the superconducting layer 40 on the surface of the intermediate layer 30 is performed.
  • the pair of side surfaces 10E and 10F is formed with a spreading surface 12 that spreads outward in the in-plane direction P of the film formation surface 10A from the edge of the film formation surface 10A toward the back surface 10B side.
  • the superconducting layer 40 can be reliably formed on the side surfaces 10E and 10F.
  • Examples of a method for forming (depositing) the superconducting layer 40 include a TFA-MOD method, a PLD method, a CVD method, an MOCVD method, and a sputtering method.
  • superconductivity is performed so as to cover the corner (end) of the intermediate layer 30 by irradiating and depositing target particles in a range wider than the width of the intermediate layer 30 from the normal direction of the surface of the intermediate layer 30.
  • Layer 40 can be deposited. Note that the superconducting layer 40 can be more reliably formed on the end face of the intermediate layer 30 by adjusting the irradiation angle with respect to the surface of the intermediate layer 30 to a position where the angle is increased or decreased in the width direction with respect to the normal direction. it can.
  • the superconducting layer portion 40B formed on the spreading surface 12 is locally heat-treated by laser irradiation, partial annealing or the like to forcibly diffuse the layers and the substrate for superconducting film formation.
  • the superconducting layer portion 40B can be made non-superconducting, that is, the superconducting layer portion 40B can be made normal conducting, and the adhesion between the superconducting layer portion 40B and the intermediate layer 30 can be increased, and peeling can be further suppressed. Because.
  • a stabilization layer forming step for forming the stabilization layer 50 on at least the surface of the superconducting layer 40 is performed.
  • a method for forming (depositing) the stabilization layer 50 for example, a sputtering method can be used. In this sputtering method, similarly to the formation of the superconducting layer 40, the target particles are irradiated and deposited in a range wider than the width of the superconducting layer 40 from the normal direction of the surface of the superconducting layer 40, or the angle is increased or decreased in the width direction. It can be adjusted to the position.
  • the superconducting wire 20 according to the first embodiment of the present invention can be obtained. Since this superconducting wire 20 has the intermediate layer 30 and the superconducting layer 40 (laminated body) not only on the film forming surface 10A but also on the spreading surface 12, it is a laminated body as compared with the case where there is a laminated body only on the film forming surface 10A. Peeling can be suppressed.
  • FIG. 3 is a view of the superconducting wire 120 according to the second embodiment of the present invention as viewed from the end surface direction.
  • the superconducting wire 120 has a laminated structure in which the intermediate layer 30, the superconducting layer 40, and the stabilizing layer 50 are laminated in this order on the film forming surface 110A of the superconducting film forming substrate 110.
  • the superconducting film forming substrate 110 includes a film forming surface 110A for forming a laminate including the superconducting layer 40, a back surface 110B opposite to the film forming surface 110A, and a film forming surface 110A.
  • a pair of end surfaces (only one end surface 110C is shown in the drawing) connected to the back surface 110B, a pair of side surfaces 110E and the film forming surface 110A, the back surface 110B, and a pair of end surfaces (only one end surface 110C is shown in the drawing) 110F.
  • Each of the pair of side surfaces 110E and 110F has a spreading surface 112 that spreads outward in the in-plane direction P (or the width direction of the substrate) of the film formation surface 110A from the edge of the film formation surface 110A toward the back surface 110B. It includes an orthogonal surface 114 that extends from the spreading surface 112 and is orthogonal to the back surface 110B.
  • the spreading surface 112 refers to a portion in which the film formation surface side edges of the pair of side surfaces 110E and 110F have an R shape.
  • the spreading surface 112 can be configured similarly to the spreading surface 12.
  • the expansion distance D2 of the pair of expansion surfaces 112 in the in-plane direction P of the film formation surface A is 0.005%, respectively. It is preferable that it is 7.59% or less.
  • the ratio of the spread distance D2 to the maximum distance D1 is preferably 0.018% or more and 5.00% or less. Furthermore, the ratio of the spread distance D2 to the maximum distance D1 is preferably 0.15% or more and 1.00% or less.
  • the intermediate layer 30 and the superconducting layer 40 are reliably formed on the pair of side surfaces 110E and 110F by the presence of the R-shaped spreading surface 112. A film can be formed, and peeling of these can be suppressed.
  • the superconducting film forming substrate 110 includes the orthogonal surface 114, the entire width of the superconducting film forming substrate 110 can be reduced while securing the film forming surface 110A as compared with the first embodiment. Can do.
  • the laminated body such as the intermediate layer 3 may be laminated not only on the spreading surface 112 but also on the orthogonal surface 114.
  • FIG. 4 is a view of the superconducting wire 220 according to the third embodiment of the present invention as viewed from the end surface direction.
  • the superconducting wire 220 has an intermediate layer 30, a superconducting layer 40, and two stabilization layers 50 (the first stabilization layer 52 as the first layer, and the second layer as the second layer) on the deposition surface 210 A of the superconducting film-forming substrate 210.
  • a second stabilizing layer 54 is sequentially laminated.
  • the first stabilization layer 52 covers a part of the periphery of the superconducting film forming substrate 210
  • the second stabilizing layer 54 is surrounded by the superconducting film forming substrate 210. Although the whole is covered, the entire periphery of the superconducting film-forming substrate 210 may be covered together.
  • the superconducting film-forming substrate 210 includes a film forming surface 210A for forming a laminate including the superconducting layer 40, a back surface 210B that is the surface opposite to the film forming surface 210A, and a film forming surface 210A. It has a pair of end surfaces (only one end surface 210C is shown in the drawing) that is continuous with the back surface 210B, and a pair of side surfaces 210E and 210F that are continuous with the film forming surface 210A, the back surface 210B, and the pair of end surfaces 210C.
  • Each of the pair of side surfaces 210E and 210F has a first spreading surface 212 that spreads outward in the in-plane direction P (or the width direction of the substrate) of the film formation surface 210A from the edge of the film formation surface 210A toward the back surface 210B. And a second spreading surface 214 that spreads outside the back surface 210B in the in-plane direction P of the film-forming surface 210A from the edge of the back surface 210B toward the first spreading surface 212 side.
  • both the first spreading surface 212 and the second spreading surface 214 are continuous in an R shape. That is, the shape of the pair of side surfaces 210E and 210F is an arc shape.
  • first spreading surface 212 and the second spreading surface 214 can be configured similarly to the spreading surface 12.
  • the pair of first spread surfaces 212 has a spread distance D2 in the in-plane direction P of the film formation surface (that is, the film formation surface side of the first spread surface).
  • the ratio ⁇ (D2 / D1) ⁇ 100 ⁇ of the distance in the in-plane direction P of the film formation surface between the end and the back side end is preferably 0.005% or more and 7.59% or less, respectively.
  • the ratio of the spread distance D2 to the maximum distance D1 is preferably 0.018% or more and 5.00% or less.
  • the ratio of the spread distance D2 to the maximum distance D1 is preferably 0.15% or more and 1.00% or less.
  • the intermediate layer 30 and the superconducting layer 40 can be reliably provided on the pair of side surfaces 210E and 210F by the R-shaped first spreading surface 212. It is possible to form a film, and to suppress such peeling.
  • the R-shaped second spreading surface 214 is present, the second stabilization layer 54 covering the entire periphery of the superconducting film-forming substrate 210 can be more reliably deposited on the vicinity of the edge of the back surface 210B.
  • the shape of the pair of side surfaces of the substrate for superconducting film formation is not particularly limited as long as there is a spread surface, and may be a shape as shown in FIGS. 5A to 5D.
  • the superconducting film-forming substrate 310 shown in FIG. 5A has a film-forming surface 310A, a back surface 310B, and a pair of side surfaces 310E and 310F.
  • Each of the pair of side surfaces 310E and 310F has a spread surface 312 and a spread surface inclined outward in the in-plane direction (or the width direction of the substrate) of the film formation surface from the edge of the film formation surface 310A toward the back surface 310B. It has an orthogonal surface 314 that continues to 312 and the back surface 310B and is orthogonal to the back surface 310B.
  • the superconducting film-forming substrate 410 shown in FIG. 5B has a film-forming surface 410A, a back surface 410B, and a pair of side surfaces 410E and 410F.
  • Each of the pair of side surfaces 410E and 410F includes a first spreading surface 412 inclined outward in the in-plane direction (or the width direction of the substrate) of the film formation surface 410A from the film formation surface 410A toward the back surface 410B.
  • a superconducting film-forming substrate 510 shown in FIG. 5C has a film-forming surface 510A, a back surface 510B, and a pair of side surfaces 510E and 510F.
  • Each of the pair of side surfaces 510E and 510F has a first spreading surface 512 inclined outward in the in-plane direction (or the width direction of the substrate) of the film formation surface 510A from the edge of the film formation surface 510A toward the back surface 510B side,
  • the first spread surface 512 and the back surface 510B are connected to each other, and the second spread surface 514 is inclined outward in the in-plane direction of the film formation surface 510A from the edge of the back surface 510B toward the film formation surface 510A.
  • a superconducting film-forming substrate 610 shown in FIG. 5D has a film-forming surface 610A, a back surface 610B, and a pair of side surfaces 610E and 610F.
  • Each of the pair of side surfaces 610E and 610F includes a first spreading surface 612 that spreads in an R shape from the film formation surface 610A, and an in-plane direction of the film formation surface 610A that is connected to the first spread surface 612 (or the width direction of the base material).
  • an inclined portion 614 and an inclined surface 616 form an anchor portion 620 whose side surface center portion is recessed in the longitudinal direction L (see FIG. 1).
  • the laminated body including the superconducting layer 40 is configured to cover the lower end surface, it may be configured not to cover the lower end surface as shown in FIG. 6A. Further, as shown in FIG. 6B, only the stabilization layer 50 may cover the end surfaces of the superconducting layer 40 and the intermediate layer 30.
  • the intermediate layer 30 or the stabilization layer 50 may be omitted.
  • Example 1 The substrate for superconducting film formation and the superconducting wire according to Example 1 were produced as follows. First, both surfaces of a Hastelloy material 0.3 mmt ⁇ 75 mm width ⁇ 350 m (BA (bright annealing) material: surface roughness about Ra 50 nm) were mechanically polished to modify the surface roughness Ra to about 30 nm. Next, using this tape base material, a tape base material of 0.1 mmt ⁇ 75 mm width ⁇ 1050 m was manufactured with a 12-high rolling mill having a roll diameter of ⁇ 20 mm. The surface roughness of the front and back surfaces of the final tape substrate finished by rolling was mirror finished with an Ra of about 9 nm.
  • BA blue annealing
  • a tension of 6 kgf / mm 2 was applied under a holding condition of 790 ° C. for 20 seconds, and heat treatment was performed in an atmosphere of a mixed gas of argon gas and hydrogen (TA (tension annealing). )processing).
  • TA tension annealing
  • the tape base material was roll-rolled, and further slitted at a finished size to finish a tape having a thickness of 100 ⁇ m, a width of 10 mm ⁇ 1050 m ⁇ 6.
  • the processing rate in the rolling process secured 60% or more.
  • the slits at this time were performed in a direction in which the slit surfaces were unified so that the surface during rolling was the surface of all six strips having a width of 10 mm after slitting.
  • the exit side direction of the burrs generated by the slit can be unified to the back side direction having a width of 10 mm, so that the shape controllability of the side surface is high and significant.
  • Side surface molding is possible even with the slit method in which burrs appear in alternating directions, but the work may be complicated, for example, by reversing the front and back.
  • the side surfaces and corners of the superconducting layer film-forming substrate obtained by slitting are polished by mechanical polishing, and cutting marks, shear marks, etc. scattered on the side surfaces and corner parts are removed by polishing, and the side surfaces are removed.
  • the Ra of the part was finished to about 50 nm. Polishing was performed by polishing a (# 600) grindstone.
  • the pair of side surfaces of the superconducting layer film-forming substrate each include a spread surface extending outward in the in-plane direction of the film-forming surface from the edge of the film-forming surface (front surface) toward the back surface side.
  • a pair of side surfaces was molded with a combination roll of a pair of upper and lower flat rolls.
  • the spreading surface was formed into an R shape, and the entire side surface was formed into a U shape as shown in FIG.
  • the linearity of the superconducting layer film-forming substrate having a side shape formed by a forming roll and a flat roll was changed. Therefore, the TA treatment was performed again in order to restore the flatness of the superconducting layer film-forming substrate.
  • heat treatment was performed in an atmosphere of a mixed gas of argon gas and hydrogen under the condition of holding at 650 ° C., which is slightly lower than the first temperature, for 30 seconds and under the condition of applying a tension of 4 kgf / mm 2 .
  • the spread distance D2 of one spread surface in the in-plane direction P (or the width direction of the substrate) of the film formation surface (that is, the film formation surface of the spread surface)
  • Example 1 an intermediate layer was formed on the surface (film-forming surface) and the spreading surface of the superconducting film-forming substrate according to Example 1.
  • an amorphous Gd 2 Zr 2 O 7- ⁇ ( ⁇ is an oxygen non-stoichiometric amount) layer (bed layer) by a sputtering method and a crystalline MgO layer (forced) by an IBAD method are used as an intermediate layer.
  • An alignment layer), a LaMnO 3 + ⁇ layer (LMO layer) by a sputtering method, and a CeO 2 layer (cap layer) by a sputtering method were sequentially formed.
  • the intermediate layer was laminated along the rounded R shape.
  • the total thickness of the intermediate layer was 0.6 ⁇ mt. Details of the film forming conditions are omitted.
  • a YBa 2 Cu 3 O 7- ⁇ layer having a thickness of about 1 ⁇ mt was formed as a superconducting layer using a PLD method so as to cover the intermediate layer.
  • a silver stabilization layer was formed by vapor-depositing silver having a thickness of about 10 ⁇ mt using a high-frequency sputtering device so as to cover the superconducting layer. Thereafter, oxygen annealing was performed at 550 ° C. in an oxygen atmosphere.
  • a copper stabilization layer having a thickness of about 40 ⁇ mt was formed by plating on the entire periphery of the superconducting film forming substrate having the silver stabilization layer.
  • Example 2 0.010%, Example 3: 0.018%, Example 4: 0.044%, Example 5: 0.10%, Example 6: 0.150%, Example 7: 0 176%, Example 8: 0.466%, Example 9: 0.50%, Example 10: 1.00%, Example 11: 1.43%, Example 12: 2.14% Example 13: 5.00%, Example 14: 5.61%, Example 15: 7.59%, Example 16: 11.43%, Example 17: 28.64%, Example 18: 47. 74%, Example 19: 49.95%.
  • Comparative Example 1 a substrate for superconducting film formation and a superconducting wire according to Comparative Example 1 were produced in the same manner as in Example 1. However, the side molding of S16 shown in FIG. 2 was not performed. Therefore, the shoulder distance ratio is 0%.
  • Tables 1 and 2 below show the evaluation results of the superconducting properties and the peeling properties when the shoulder distance ratio is changed.
  • the absolute value of the shoulder distance is shown together with the ratio of the shoulder distance.
  • the superconducting characteristic A is a superconducting characteristic in which the critical current value exceeds 300 A in all measurement points and the difference between the maximum value and the minimum value is within a variation range of 10 A or less.
  • B of the superconducting characteristic indicates that the superconducting characteristic has been confirmed that the critical current value exceeds 250A in the range of all measurement points, and the difference between the maximum value and the minimum value is within a variation range of 30A or less.
  • the superconducting characteristic C indicates that the superconducting characteristic has been confirmed that the critical current value exceeds 150 A in the range of all measurement points, and the difference between the maximum value and the minimum value is within the variation range within 50 A.
  • a of a peeling characteristic points out that the peeling location is not confirmed in the range of evaluation sample length 1m.
  • B of the peeling characteristic refers to that in which the slight peeling within one place is confirmed in the evaluation sample length of 1 m.
  • the peeling property C is within the range of the evaluation sample length of 1 m, and the peeling state at a plurality of places is confirmed, but the total length of the peeling portions is less than 0.5 m, that is, less than half of the evaluation sample length. Point to.
  • the peeling property D indicates that the peeled state at a plurality of locations is confirmed within an evaluation sample length of 1 m, and the total length of the peeled portions is 0.5 m or more, that is, half or more of the evaluation sample length is confirmed.
  • the shoulder distance ratio when the shoulder distance ratio is 0.005% or more, a plurality of peeling portions are observed within the evaluation sample length of 1 m, but the total length of the peeling portions is set to 0. It was possible to suppress to less than 5 m, that is, less than half of the evaluation sample length.
  • the shoulder distance ratio is in the range of 0.018% or more and 5.00% or less, the number of peelings can be suppressed within one place within the evaluation sample length of 1 m.
  • the shoulder distance ratio when the shoulder distance ratio was in the range of 0.15% or more and 1.00% or less, there was no peeling within the evaluation sample length of 1 m.
  • the shoulder distance ratio is preferably 0.018% or more and 5.00% or less, and more preferably 0.15% or more and 1.00% or less. I understood that.
  • the present Example evaluated based on the shape of FIG. 4, it was not limited to this shape, It confirmed that peeling characteristics improved with the ratio of the shoulder distance also in other embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

テープ状の超電導成膜用基材であって、超電導層を含む積層体を成膜するための成膜面と、前記成膜面の反対側の面である裏面と、前記成膜面と前記裏面に連なる一対の端面と、前記成膜面、前記裏面及び前記一対の端面に連なる一対の側面と、を有し、前記一対の側面が、前記成膜面の縁部から前記裏面側に向かって前記成膜面の面内方向において外側に広がる広がり面をそれぞれ含む、超電導成膜用基材が開示される。また、超電導線、及び超電導線の製造方法も開示される。

Description

超電導成膜用基材及び超電導線並びに超電導線の製造方法
 本発明は、超電導成膜用基材及び超電導線並びに超電導線の製造方法に関する。
 従来から、テープ状で且つテープ断面が矩形状の超電導成膜用基材の成膜面上に、超電導層を成膜することにより超電導線を得る超電導線の製造方法が知られている。
 このような製造方法では、超電導層等の成膜層が、成膜面と側面との間の角部の位置を起点として、剥離する問題があった。
 そこで、特開2011-165568号公報には、超電導成膜用基材の成膜面上に第1中間層と第2中間層を順に積層した超電導線であって、第1中間層や第2中間層の剥離を抑制するため、第2中間層が第1中間層の側面及びテープ状金属基板の側面にまで延びた超電導線が開示されている。
 また、特開2004-31128号公報には、中間層や超電導層の剥離対策ではないが、成膜面の反対側の裏面の縁部から成膜面の縁部側に向かって成膜面の面内方向において外側にR形状(round shape)に広がるR面が成形されている超電導成膜用基材が知られている。
 しかしながら、特開2011-165568号公報では、超電導成膜用基材の側面が成膜面と直交するため、側面への成膜は困難であり、成膜した後の側面の堆積状態も成膜面上に比べて長手方向に亘って不均一となり易い。また、成膜面と側面の間の角部との密着が他の場所に比べて弱くなり易い。この結果、第1中間層や第2中間層を含む中間層又は超電導層が剥離する虞がある。
 また、特開2004-31128号公報のように、裏面にR面が成形されていても、成膜面にはR面が成形されていない。すなわち、成膜面と側面の間には角部があり、この角部の位置を基点として中間層又は超電導層が剥離する虞がある。
 本発明は上記事実に鑑みてなされたものであり、側面にも超電導層を確実に成膜でき、成膜された層の剥離を抑制することができる超電導成膜用基材及び超電導線並びに超電導線の製造方法を提供することを目的とする。
 <1> テープ状の超電導成膜用基材であって、超電導層を含む積層体を成膜するための成膜面と、前記成膜面の反対側の面である裏面と、前記成膜面と前記裏面に連なる一対の端面と、前記成膜面、前記裏面及び前記一対の端面に連なる一対の側面と、を有し、前記一対の側面が、前記成膜面の縁部から前記裏面側に向かって前記成膜面の面内方向において外側に広がる広がり面をそれぞれ含む、超電導成膜用基材。
 <2> 前記広がり面の表面粗さは、前記成膜面の表面粗さよりも粗い、<1>に記載の超電導成膜用基材。
 <3> 前記広がり面の表面粗さは、15nm以上である、<2>に記載の超電導成膜用基材。
 <4> 前記一対の側面間の最大距離に対して、前記一対の広がり面における前記成膜面の面内方向の広がり距離の比率は、それぞれ0.005%以上7.59%以下である、<1>~<3>の何れか1項に記載の超電導成膜用基材。
 <5> テープ状の基材本体と、前記基材本体の少なくとも両側面を覆い、前記基材本体よりも展性が高い金属層と、を有し、前記一対の側面は、前記金属層に成形されている、<1>~<4>の何れか1項に記載の超電導成膜用基材。
 <6> 前記一対の側面は、超電導成膜用基材の長手方向に亘って窪んだアンカー部を含む、<1>~<5>の何れか1項に記載の超電導成膜用基材。
 <7> 前記成膜面の縁部から広がる広がり面を第1広がり面とし、前記一対の側面は、さらに、前記裏面の縁部から前記第1広がり面に向って前記成膜面の面内方向において前記裏面の外側に広がる第2広がり面を含む、<1>~<6>の何れか1項に記載の超電導成膜用基材。
 <8> 前記一対の側面は、さらに、前記広がり面から連なり、前記裏面と垂直な垂直面を含む、<1>~<7>の何れか1項に記載の超電導成膜用基材。
 <9> <1>~<8>の何れか1項に記載の超電導成膜用基材と、前記超電導成膜用基材の成膜面、及び前記一対の側面のうち少なくとも前記広がり面に積層した中間層と、前記中間層の表面に積層した超電導層と、を有する超電導線。
 <10> 前記超電導層は、前記成膜面に位置し超電導相となる酸化物超電導体を主体とする超電導部と、前記広がり面側に位置し常電導相となる酸化物超電導体を含む常電導部とを有する、<9>に記載の超電導線。
 <11> 前記超電導層は、前記中間層よりも前記広がり面の面内方向において外側に向かって延在し、前記中間層の端面を覆っている、<9>又は<10>に記載の超電導線。
 <12> 超電導層を含む積層体を成膜するための成膜面と、前記成膜面と反対側の面である裏面と、前記成膜面と前記裏面に連なる一対の端面と、前記成膜面と前記裏面に連なる一対の側面とを有するテープ状の超電導成膜用基材を加工して、前記一対の側面に、前記成膜面の縁部から前記裏面側に向かって前記成膜面の面内方向において外側に広がる広がり面をそれぞれ成形する加工工程と、前記加工工程後に、前記超電導成膜用基材の成膜面、及び前記一対の側面のうち少なくとも前記広がり面に中間層を成膜する中間層成膜工程と、前記中間層の表面に超電導層を成膜する超電導層成膜工程と、を有する超電導線の製造方法。
 <13> 前記加工工程では、テープ状の基材本体の一対の側面を、前記基材本体よりも展性が高い金属層で被覆して前記超電導成膜用基材を得る被覆工程を有し、得られた超電導成膜用基材の金属層を加工して、前記一対の側面に広がり面をそれぞれ成形する、<12>に記載の超電導線の製造方法。
 <14> 前記超電導層成膜工程の後、前記広がり面側に位置する超電導層部分を熱処理して前記広がり面側に位置する超電導層部分を非超電導化する工程を有する、<12>又は<13>に記載の超電導線の製造方法。
 本発明によれば、側面にも超電導層を確実に成膜でき、成膜された層の剥離を抑制することができる超電導成膜用基材及び超電導線並びに超電導線の製造方法を提供することができる。
図1は、本発明の第1実施形態に係る超電導成膜用基材を含む超電導線の斜視図である。 図2は、本発明の第1実施形態に係る超電導線の製造方法の工程図である。 図3は、本発明の第2実施形態に係る超電導線を端面方向から見た図である。 図4は、本発明の第3実施形態に係る超電導線を端面方向から見た図である。 図5Aは、超電導成膜用基材の一対の側面の形状の変形例を示す図である。 図5Bは、超電導成膜用基材の一対の側面の形状の変形例を示す図である。 図5Cは、超電導成膜用基材の一対の側面の形状の変形例を示す図である。 図5Dは、超電導成膜用基材の一対の側面の形状の変形例を示す図である。 図6Aは超電導層を含む積層体の積層構造の変形例を示す図である。 図6Bは超電導層を含む積層体の積層構造の変形例を示す図である。
 以下、添付の図面を参照しながら、本発明の実施形態に係る超電導成膜用基材及び超電導線並びに超電導線の製造方法を具体的に説明する。なお、各図面を通して、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。
<<第1実施形態>>
-超電導成膜用基材及び超電導線の概略構成-
 図1は、本発明の第1実施形態に係る超電導成膜用基材を含む超電導線の斜視図である。
 図1に示すように、超電導線20は、超電導成膜用基材10の厚み方向Tの一方の主面(以下、成膜面10Aという)に、中間層30、超電導層40及び安定化層50がこの順に積層した積層構造を有している。
 超電導成膜用基材10は、図中矢印L方向(以下、長手方向Lとする)に伸びるテープ状とされている。この超電導成膜用基材10は、低磁性の金属基板やセラミックス基板が用いられる。金属基板の材料としては、例えば、強度及び耐熱性に優れた、Co、Cu、Cr、Ni、Ti、Mo、Nb、Ta、W、Mn、Fe、Ag等の金属又はこれらの合金が用いられる。特に、耐食性及び耐熱性が優れているという観点からハステロイ(登録商標)、インコネル(登録商標)等のNi基合金、またはステンレス鋼等のFe基合金を用いることが好ましい。また、これら各種金属材料上に各種セラミックスを配してもよい。また、セラミックス基板の材料としては、例えば、MgO、SrTiO、又はイットリウム安定化ジルコニア等が用いられる。
 超電導成膜用基材10は、超電導層40を含む積層体を成膜するための成膜面10Aの他、成膜面10Aの反対側の面である裏面10Bと、成膜面10Aと裏面10Bに連なる一対の端面10C及び10Dとを有している。
 成膜面10Aは、略平滑な面とされており、例えば成膜面10Aの表面粗さが10nm以下とされていることが好ましい。成膜面10Aに位置する(堆積する)超電導層部分40Aの高配向度化が可能となり、もって超電導線20の超電導特性を高めることができるからである。また、成膜面10Aの表面粗さは、より超電導層40の高配向度化を図り且つ後述する広がり面12との差異を明確にするため、1nm以下0.01nm以上とされていることがより好ましい。
 なお、表面粗さとは、JISB-0601-2001において規定する表面粗さパラメータの「高さ方向の振幅平均パラメータ」における算術平均粗さRaである。
 また、超電導成膜用基材10は、これら成膜面10A、裏面10B及び一対の端面10C及び10Dに連なる一対の側面10E及び10Fを有している。
 一対の側面10E及び10Fはそれぞれ、成膜面10Aの縁部から裏面10B側に向かって成膜面10Aの面内方向P(または基材の幅方向)の外側(以下、面内方向P外側と称し、基材の幅方向外側と一致する)に広がる広がり面12を含んでいる。
 具体的に、本第1実施形態に係る超電導成膜用基材10では、図1に示すように、広がり面12は、一対の側面10E及び10Fの両方を指しており、成膜面10Aに対する内角が90度より大きく180度より小さい傾斜面となっている。これにより、一対の端面10C及び10Dの形状はそれぞれ、成膜面10Aが上底で裏面10Bが下底の台形状となっている。
 成膜面10Aと広がり面12とのなす内角は、広がり面12に中間層30等を成膜し易いという観点から95度以上が好ましい。また、上記内角は、一対の側面10E,10Fの成形がし易いという観点から、110度以上145度以下であることが好ましい。
 また、広がり面12の表面粗さは、広がり面12に位置する(に堆積する)超電導層部分40Bの結晶の配向度を成膜面10Aに位置するものよりも低くする又は超電導層部分40Bの結晶を無配向化するという観点やアンカー効果を発生させるという観点から、成膜面10Aの表面粗さよりも粗いことが好ましい。具体的に、広がり面12の表面粗さは、15nm以上であることが好ましく、上述したように成膜面10Aの表面粗さは10nm以下であることが好ましい。広がり面12の表面粗さが15nm未満であると、広がり面12に位置する超電導層部分40Bの結晶が配向して超電導層部分40Bが超電導化し、電流パスの起点や熱的不安定要因となる。そのため、広がり面12の表面粗さを15nm以上とすることで、広がり面12に位置する超電導層部分40Bの結晶成長を不規則にし、超電導層部分40Bを常電導化することができる。言い換えれば、広がり面12の表面粗さが15nm以上であると、広がり面12に位置する超電導層部分40Bが常電導化して臨界電流値Icの向上を図ることができるからである。
 なお、「常電導化」は、「常伝導化」とも記載され、超電導体を極低温に冷やしても超電導現象を起こさないようにすることである。
 さらに、広がり面12の表面粗さは、成膜面10Aの表面粗さとの差異を明確にし、常電導化された超電導層部分40Bと超電導状態を維持した成膜面10Aに位置する超電導層部分40Aの連続性を区切るという観点から20nm以上であることがより好ましい。
 さらにまた、広がり面12の表面粗さは、製造時の研磨砥粒の残りや、広がり面12と製造時に用いるサセプタやガイドロール、ガイドプーリーとの接触による微粒の飛散を介して、成膜面10Aが汚染される(間接的な表面傷を受ける)ことを抑制するという観点から、500nm以下であることが好ましい。
 なお、以上説明した表面粗さは、広がり面12だけでなく、広がり面12を含む一対の側面10E,10Fにも適用することが好ましい。
 また、一対の側面10E及び10F間の最大距離D1(成膜面10Aの幅D3の長さを含む)に対して、一対の広がり面12における、成膜面10Aの面内方向Pの広がり距離D2(すなわち、広がり面の、成膜面側末端と裏面側末端との間の、成膜面の面内方向Pにおける距離であって、肩距離ともいう)の比率{(D2/D1)×100}は、それぞれ0.005%以上7.59%以下であることが好ましい。成膜面10Aの幅D3を確保しつつ、広がり距離D2を調整することで、剥離特性(具体的に広がり面12に成膜した後剥離し難いという特性)が良好となり、超電導特性(具体的に臨界電流特性)も良好になるからである。剥離特性に関しては、具体的に、上記比率が上記数値範囲内であると、評価サンプル長さ1m内で、複数箇所の剥離部分が見られるものの、剥離部分の合計の長さをより効果的に抑制することができる。
 また、最大距離D1に対して広がり距離D2の比率は、0.018%以上5.00%以下であることが好ましい。上記比率が上記数値範囲内であると、評価サンプル長さ1m内で、剥離を効果的に抑制することができるからである。
 さらに、より効果的に剥離を抑制するという観点から、最大距離D1に対して広がり距離D2の比率は、0.15%以上1.00%以下であることが好ましい。
 以上の超電導成膜用基材10は、単一の構成成分及び/または部材からなるものであってもよく、複数の構成成分及び/または部材からなってもよい。
 例えば、図1に示すように、超電導成膜用基材10の中央部に、テープ状でその厚み方向に切ったときの断面視が矩形状とされ、超電導成膜用基材10に用いる材料として上述した材料で構成される基材本体14と、当該基材本体14の少なくとも両側面を覆い、基材本体14よりも展性が高い金属層16と、を有するようにしてもよい。
 これにより、上記一対の側面10F及び10Eは、金属層16に成形することになるが、金属層16が基材本体14よりも展性が高いため、成形が容易となる。また、超電導成膜用基材10全体の展性を高くする場合に比べて、展性の低い基材本体14がある分だけ、超電導成膜用基材10の機械的強度が低下することを抑制できる。
 この金属層16の材料は、例えばAg、Cu、Ni、Cr、Mo、W、V、Au、Sn、Al及びPのうち少なくとも1種以上を含む金属が挙げられる。また、金属層16は、成形がし易いという観点から、伸び2%以上の展性を有することが好ましい。
 図1において、超電導成膜用基材10の成膜面10Aと広がり面12には、中間層30が積層している。中間層30は、超電導層40において例えば高い2軸配向性を実現するための層である。このような中間層30は、例えば、熱膨張率や格子定数等の物理的な特性値が超電導成膜用基材10と超電導層40を構成する超電導体との中間的な値を示す。また、中間層30は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、非晶質のGdZr7-δ(δは酸素不定比量)等を含むベッド層と、結晶質のMgO等を含みIBAD(Ion Beam Assisted Deposition)法により成形された強制配向層と、LaMnO3+δ(δは酸素不定比量)を含むLMO層と、CeO等を含むキャップ層と、を順に積層した構成となっていてもよい。
 この中間層30の表面には、超電導層40が積層している。超電導層40は、酸化物超電導体、特に銅酸化物超電導体を含んでいることが好ましい。銅酸化物超電導体としては、高温超電導体としてのREBaCu7-δ(以下、RE系超電導体と称す)が好ましい。なお、RE系超電導体中のREは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,YbやLuなどの単一の希土類元素又は複数の希土類元素であり、これらの中でもBaサイトと置換が起き難い等の理由でYであることが好ましい。また、δは、酸素不定比量であって、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。なお、酸素不定比量は、オートクレーブ等の装置を用いて高圧酸素アニール等を行えば、δは0未満、すなわち、負の値をとることもある。
 超電導層40は、成膜面10A上の超電導層部分40Aが、超電導相となる上記酸化物超電導体を主体とする超電導部となり、広がり面12上の超電導層部分40Bが、常電導相となる酸化物超電導体を含む常電導部となることが好ましい。超電導層部分40Bを常電導部とすることで、当該超電導層部分40Bが不要な電流パスの起点や熱的不安定要因の起点となることを抑制することができるからである。
 このとき、超電導層部分40Bは予め表面粗さが15nm以上500nm以下に成形されているため、中間層30を構成する各層の結晶配向が不均一になるので、中間層30の配向性が変動する。また、中間層30がIBAD法により成形された強制配向層を有する場合、IBAD法の照射方向は、超電導成膜用基材10の成膜面10Aに対して適正な照射がなされるようにある任意の角度で調整されているため、一対の側面10E及び10Fに対する照射角度が、成膜のための適正な角度から逸脱する状態となり、中間層30の成膜状態は不均一なものとなる。以上のメカニズムにより、成膜面10Aに位置する超電導層部分40Aと広がり面12に位置する超電導層部分40Bは、異なる性質(超電導部と常電導部)に制御されることになる。
 ここで、上記及び以降から説明する「主体」とは、ある層又はある部分を構成する構成成分のうち、最も多く中に含有されている成分を表す。例えば、ある層またはある部分が主体となる成分のみからなっていてもよい。
 常電導相となる酸化物超電導体は、超電導相となる酸化物超電導体よりも結晶の配向度は必然的に低くなる。
 また、常電導部は、超電導成膜用基材10の組成物及び中間層30の組成物のうち少なくとも何れか一方の一部を含むことが好ましい。酸化物超電導体に上記組成物が混じることで、酸化物超電導体が確実に常電導相となり、また超電導層40と中間層30との密着性が高まるからである。
 また、超電導層40は、図1に示すように、中間層30よりも広がり面10E及び10Fの面内方向において外側に向かって延在し、中間層30の端面(図1では先端)を覆っていることが好ましい。これにより中間層30の剥離をより抑制することができる。なお、中間層30が多層構造の場合、超電導層40と同様に、超電導層40側の中間層が、超電導成膜用基材10側の中間層の端面を覆っていることが好ましい。
 安定化層50は、超電導層40の表面を覆っている。なお、安定化層50は、超電導層40と同様に、超電導層40の端面(図1では先端)を覆っていることが好ましく、超電導成膜用基材10と中間層30と超電導層40の周囲全体を覆っていることがより好ましい。
 この安定化層50は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、銀からなる銀安定化層と、銅からなる銅安定化層を順に積層した構成となっていてもよい。
 なお、以上説明した実施形態における広がり面12に積層される積層体(中間層30、超電導層40及び安定化層50)は、広がり面12の傾斜に沿って積層されており、広がり面12と積層体との間には隙間がない。
-超電導線の製造方法-
 次に、本発明の第1実施形態に係る超電導線20の製造方法について説明する。図2は、本発明の第1実施形態に係る超電導線20の製造方法の工程図である。なお、以下の括弧内は図中のステップ識別符号である。
(S10)まず、超電導層40を含む積層体を成膜するための成膜面10Aと、当該成膜面10Aの反対側の面である裏面10Bと、成膜面10Aと裏面10Bに連なる一対の端面10C及び10Dと、成膜面10Aと裏面10Bに連なる一対の側面10F及び10Eを有するテープ状で且つテープ断面が矩形状の超電導成膜用基材を加工する加工工程を行う。
 この加工工程は、ステップS11からステップS18までの工程があるが、少なくともステップS16の側面成形工程を行えば、他の工程は省略することができる。
 以下、加工工程の各詳細工程を列挙する。
(S11)超電導成膜用基材の成膜面10Aと裏面10Bを、機械研磨で表面粗さを改質する。
(S12)次に、圧延機で超電導成膜用基材を圧延する。
(S13)次に、超電導成膜用基材の平坦性をより改善するため、テンションアニーリング処理(TA処理)を行う。
(S14)次に、超電導成膜用基材にロール圧延を施し、さらに仕上りサイズでスリット加工することで、所定の厚さ及び幅の超電導成膜用基材を得る。
(S15)次に、超電導成膜用基材の一対の側面及び成膜面側角部を研磨する。これにより、超電導成膜用基材の一対の側面に点在し得る切断痕、せん断痕、溶断痕を削除することができる。研磨方法としては、機械研磨、電解研磨、化学研磨、それらの組合せた研磨方法を用いることができる。
 機械研磨では、研磨粒はダイヤモンド粒や酸化物粒、特に酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化鉄などが望ましい。また、研磨液は水や界面活性剤や、油類、有機溶剤やそれらの混合物、或いは、水に蟻酸や酢酸、硝酸などの酸、或いは水に水酸化ナトリウムなどのアルカリを混合した溶液であれば良いが、特に石鹸水が望ましい。また、砥石研磨も用いることが出来る。この場合、側面の形状を最終形状に概略近似した研磨成形も可能である。
 化学研磨では、研磨液は超電導成膜用基材表面と化学反応する化学溶剤であって、例えば、硝酸、硫酸、蟻酸、酢酸、塩素、フッ素、クロム過酸化水素、シュウ酸、テトラリン酸、氷酢酸などの液体、或いはその混合液で、更にその混合液に飽和アルコールやスルホン酸類などの促進剤を混合した溶液が望ましい。
 化学機械研磨では、研磨粒は上記機械研磨粒でも良く、そこに化学研磨の溶液を含む研磨溶剤(スラリー)を用いる。
 電解研磨では、超電導成膜用基材を電解液に浸して、超電導成膜用基材を陽極として通電して、電解反応で超電導成膜用基材表面を研磨する。この電解液は酸やアルカリで良く、特に、硝酸、リン酸、クロム酸、過酸化水素、水酸化カリウム、シアン化カリウムなどが望ましい。
(S16)次に、超電導成膜用基材の一対の側面10F及び10Eに、成膜面10Aの縁部から裏面10B側に向かって成膜面10Aの面内方向Pにおいて外側に広がる広がり面12をそれぞれ成形する。この成形では、成形ロールと平ロール構成の組み合わせロールを用いることで側面及び成膜面側角部を所定形状にすることができる。成形ロールは、側面と成膜面側角部の成形用に用い、平ロールは成形ロールで形状が変化した幅広面(成膜面)の角部近傍の凸凹形状の成形用に用いる。
 また、成形ロールは溝型であり、一体化、分割化の構造でもよい。また、成形ロールと平ロールの組み合わせを1対として、複数の対ロールをタンデムに組み合わせて広がり面12を所定の形状に成形することも可能である。
 或いは、成形前に、予め超電導成膜用基材(ここでは、基材本体14とする)の一対の側面を、基材本体よりも展性が高い金属層16で被覆して超電導成膜用基材を得る被覆工程を有し、得られた超電導成膜用基材の金属層16を加工して、その一対の側面に広がり面12をそれぞれ成形するようにしてもよい。
 なお、当該被覆工程では、乾式メッキや湿式メッキ法を用いることができる。
また、超電導成膜用基材の側面及び成膜面側角部を最終形状に近似した形状に研磨により成形し、その後、側面及び角部に金属層16を被覆し、最終形状に成形する組み合わせも可能である。
 また、上記ステップS15とS16は連続的なラインで、同時に行うことも可能であり、コスト低減に有効である。
(S17)成形ロールと平ロールで側面形状を成形された基板は、直線性が変化する場合がある。この時、基板の平坦性を回復するため、再度TA処理を行う。なお、このTA条件は超電導成膜用基材の要求される平坦性で決定される条件である。 
(S18)次に、成膜面側の表面を精密研磨で研磨する。この精密研磨は電解研磨、機械研磨、化学研磨のいずれの方法でもよい。
 なお、精密研磨前の側面と角部には突起物がなく、滑らかな傾斜のため、研磨ライン、研磨布の破損や、電界集中が軽減され、研磨の一様性が向上し、精密研磨コストの低減効果がある。
 以上のS11~S18の加工工程を経ることにより、本第1実施形態に係る超電導成膜用基材10が得られる。なお、以上のS11~S18のうち、S16以外の工程は省略することもできる。
(S20)次に、超電導成膜用基材10の成膜面10A側に中間層30を成膜する中間層成膜工程を行う。
 この中間層成膜工程では、中間層30を、精密研磨により形成された高い平坦性を有する超電導成膜用基材10の成膜面10A上だけでなく、一対の側面10E及び10F上にも成膜する。このとき、一対の側面10E 及び10Fには、成膜面10Aの縁部から裏面10B側に向かって成膜面10Aの面内方向Pにおいて外側に広がる広がり面12が成形されているので、一対の側面10E及び10F上にも中間層30を確実に成膜することができる。
 中間層30の成膜方法としては、例えばスパッタリング法やIBAD法等が挙げられる。
(S30)次に、中間層30の表面に超電導層40を成膜する超電導層成膜工程を行う。このとき、一対の側面10E及び10Fには、成膜面10Aの縁部から裏面10B側に向かって成膜面10Aの面内方向Pにおいて外側に広がる広がり面12が成形されているので、一対の側面10E及び10Fにも超電導層40を確実に成膜することができる。
 超電導層40の形成(成膜)方法としては、例えばTFA-MOD法、PLD法、CVD法、MOCVD法、またはスパッタリング法などが挙げられる。例えば、スパッタリング法では、中間層30表面の法線方向から、ターゲット粒子を中間層30の幅より広い範囲で照射・堆積することで、中間層30の角部(端部)を覆うように超電導層40を成膜することができる。なお、中間層30表面に対する照射角度を法線方向に対して、幅方向に角度を増減する位置に調整することで、中間層30の端面等に超電導層40をより確実に成膜することもできる。
 このとき、広がり面12上に形成された超電導層部分40Bを、レーザー照射や部分アニール等で局所的に熱処理し、各層間及び超電導成膜用基材の拡散を強制的に行うことが好ましい。これにより、超電導層部分40Bを非超電導化する、つまり超電導層部分40Bを常電導化することができ、また超電導層部分40Bと中間層30の密着度が増し、剥離を更に抑制することができるからである。
(S40)次に、少なくとも超電導層40の表面に安定化層50を成膜する安定化層成膜工程を行う。安定化層50の形成(成膜)方法としては、例えばスパッタリング法を用いることができる。
 このスパッタリング法では、超電導層40の成膜と同様に、超電導層40表面の法線方向から、ターゲット粒子を超電導層40の幅より広い範囲で照射・堆積したり、幅方向に角度を増減する位置に調整したりすることができる。
 以上により、本発明の第1実施形態に係る超電導線20を得ることができる。
 この超電導線20は、成膜面10Aだけでなく広がり面12にも中間層30や超電導層40(積層体)があるため、成膜面10Aにのみ積層体がある場合に比べて、積層体の剥離を抑制することができる。
<<第2実施形態>>
 次に、本発明の第2実施形態に係る超電導線について説明する。図3は、本発明の第2実施形態に係る超電導線120を端面方向から見た図である。
 超電導線120は、超電導成膜用基材110の成膜面110Aに、中間層30、超電導層40及び安定化層50がこの順に積層した積層構造を有している。
 この超電導成膜用基材110は、超電導層40を含む積層体を成膜するための成膜面110Aの他、成膜面110Aの反対側の面である裏面110Bと、成膜面110Aと裏面110Bに連なる一対の端面(図中では一方の端面110Cのみ記載)と、これら成膜面110A、裏面110B及び一対の端面(図中では一方の端面110Cのみ記載)に連なる一対の側面110E及び110Fを有している。
 一対の側面110E及び110Fはそれぞれ、成膜面110Aの縁部から裏面110B側に向かって成膜面110Aの面内方向P(または基材の幅方向)において外側に広がる広がり面112と、当該広がり面112から連なり、裏面110Bと直交する直交面114とを含んでいる。
 本第2実施形態では、広がり面112は、一対の側面110E及び110Fの成膜面側縁部がR形状となっている部分を指す。
 この広がり面112は、広がり面12と同様に構成することができる。
 例えば一対の側面110E及び110F間の最大距離D1(成膜面110Aの幅D3の長さを含む)に対して、一対の広がり面112の、成膜面Aの面内方向Pにおける広がり距離D2(すなわち、広がり面の、成膜面側末端と裏面側末端との間の、成膜面の面内方向Pにおける距離)の比率{(D2/D1)×100}は、それぞれ0.005%以上7.59%以下であることが好ましい。また、最大距離D1に対して広がり距離D2の比率は、0.018%以上5.00%以下であることが好ましい。さらに、最大距離D1に対して広がり距離D2の比率は、0.15%以上1.00%以下であることが好ましい。
 なお、その他各構成の詳細は、第1実施形態と同様なので説明を省略する。
 以上、本第2実施形態に係る超電導成膜用基材110によれば、R形状の広がり面112があることで、一対の側面110E及び110Fにも中間層30や超電導層40を確実に成膜でき、これらの剥離を抑制することができる。
 また、超電導成膜用基材110は直交面114を含んでいるので、第1実施形態に比べて、成膜面110Aを確保しつつ、超電導成膜用基材110の全体幅を小さくすることができる。
 なお、第2実施形態では、中間層3等の積層体は広がり面112だけでなく、直交面114にも積層していてもよい。
<<第3実施形態>>
 次に、本発明の第3実施形態に係る超電導線について説明する。図4は、本発明の第3実施形態に係る超電導線220を端面方向から見た図である。
 超電導線220は、超電導成膜用基材210の成膜面210Aに、中間層30、超電導層40及び二層の安定化層50(一層目を第1安定化層52とし、二層目を第2安定化層54とする)が順に積層した積層構造を有している。なお、第3実施形態では、第1安定化層52は超電導成膜用基材210の周囲一部を覆っているのに対し、第2安定化層54は超電導成膜用基材210の周囲全体を覆っているが、共に超電導成膜用基材210の周囲全体を覆ってもよい。
 この超電導成膜用基材210は、超電導層40を含む積層体を成膜するための成膜面210Aの他、成膜面210Aの反対側の面である裏面210Bと、成膜面210Aと裏面210Bに連なる一対の端面(図中では一方の端面210Cのみ記載)と、これら成膜面210A、裏面210B及び一対の端面210Cに連なる一対の側面210E及び210Fを有している。
 一対の側面210E及び210Fはそれぞれ、成膜面210Aの縁部から裏面210B側に向かって成膜面210Aの面内方向P(または基材の幅方向)において外側に広がる第1広がり面212と、裏面210Bの縁部から第1広がり面212側に向って成膜面210Aの面内方向Pにおいて裏面210Bの外側に広がる第2広がり面214とを含んでいる。
 第3実施形態では、これら第1広がり面212と第2広がり面214は共にR形状となって連なっている。すなわち、一対の側面210E及び210Fの形状が円弧状となっている。
 また、これら第1広がり面212と第2広がり面214は、広がり面12と同様に構成することができる。
 例えば一対の側面210E及び210F間の最大距離D1に対して、一対の第1広がり面212の、成膜面の面内方向Pにおける広がり距離D2(すなわち、第1広がり面の、成膜面側末端と裏面側末端との間の、成膜面の面内方向Pにおける距離)の比率{(D2/D1)×100}は、それぞれ0.005%以上7.59%以下であることが好ましい。また、最大距離D1に対して広がり距離D2の比率は、0.018%以上5.00%以下であることが好ましい。さらに、最大距離D1に対して広がり距離D2の比率は、0.15%以上1.00%以下であることが好ましい。
 なお、その他各構成の詳細は、第1実施形態と同様なので説明を省略する。
 以上、本第3実施形態に係る超電導成膜用基材210によれば、R形状の第1広がり面212があることで、一対の側面210E,210Fにも中間層30や超電導層40を確実に成膜でき、これらの剥離を抑制することができる。
 また、R形状の第2広がり面214があることで、超電導成膜用基材210の周囲全体を覆う第2安定化層54を、裏面210B縁部付近に対してより確実に成膜できる。
<<変形例>>
 なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであり、例えば上述の複数の実施形態は、適宜、組み合わされて実施可能である。また、以下の変形例を、適宜、組み合わせてもよい。
 例えば、超電導成膜用基材の一対の側面の形状は広がり面があれば特に限定されず、図5A~図5Dに示すような形状であってもよい。
 図5Aに示す超電導成膜用基材310は、成膜面310Aと裏面310Bと一対の側面310E及び310Fを有している。一対の側面310E及び310Fはそれぞれ、成膜面310A縁部から裏面310B側に向かって成膜面の面内方向(または基材の幅方向)おいて外側に傾斜した広がり面312と、広がり面312と裏面310Bに連なり、当該裏面310Bと直交する直交面314を有している。
 図5Bに示す超電導成膜用基材410は、成膜面410Aと裏面410Bと一対の側面410E及び410Fを有している。一対の側面410E及び410Fはそれぞれ、成膜面410Aから裏面410B側に向かって成膜面410Aの面内方向(または基材の幅方向)において外側に傾斜した第1広がり面412と、当該第1広がり面412に連なり、当該裏面410Bと垂直な垂直面414と、当該垂直面414と裏面410Bに連なり、裏面410Bから成膜面410A側に向かって成膜面410Aの面内方向において外側に傾斜した第2広がり面416を有している。
 図5Cに示す超電導成膜用基材510は、成膜面510Aと裏面510Bと一対の側面510E及び510Fを有している。一対の側面510E及び510Fはそれぞれ、成膜面510A縁部から裏面510B側に向かって成膜面510Aの面内方向(または基材の幅方向)において外側に傾斜した第1広がり面512と、当該第1広がり面512と裏面510Bに連なり、裏面510B縁部から成膜面510A側に向かって成膜面510Aの面内方向において外側に傾斜した第2広がり面514を有している。
 図5Dに示す超電導成膜用基材610は、成膜面610Aと裏面610Bと一対の側面610E及び610Fを有している。一対の側面610E及び610Fはそれぞれ、成膜面610AからR形状に広がった第1広がり面612と、当該第1広がり面612に連なり成膜面610Aの面内方向(または基材の幅方向)において内側に傾斜した傾斜面614と、当該傾斜面614に連なり成膜面610Aの面内方向(または基材の幅方向)において外側に傾斜した傾斜面616と、当該傾斜面616と裏面610Bに連なり、当該裏面610BからR形状に広がった第2広がり面618を有している。
 この一対の側面610E及び610Fには、傾斜面614と傾斜面616とで、側面中央部が長手方向L(図1参照)に亘って窪んだアンカー部620が形成される。このアンカー部620に、超電導層40を含む積層体を積層させることにより、積層体の剥離がより一層抑制できるようになる。
 また、超電導層40を含む積層体は、それぞれ下層の端面まで覆う構成としたが、図6Aに示すように、下層の端面まで覆わない構成であってもよい。また、図6Bに示すように、安定化層50のみが超電導層40や中間層30の端面まで覆うようにしてもよい。
 また、上記実施形態では、超電導線20、120または220が中間層30や安定化層50を有する場合を説明したが、中間層30や安定化層50は省略してもよい。
 以下に、本発明に係る超電導成膜用基材及び超電導線並びに超電導線の製造方法について、実施例により説明するが、本発明はこれら実施例により何ら限定されるものではない。
<<実施例1>>
 実施例1に係る超電導成膜用基材及び超電導線を以下のように作製した。
 まず、ハステロイ素材0.3mmt×75mm幅×350m(BA(bright annealing)材:表面粗さ約Ra50nm)の両面を機械研磨で表面粗さRaを30nm程度に改質した。
 次に、このテープ基材を用いて、ロール径Φ20mmの12段圧延機で0.1mmt×75mm幅×1050mのテープ基材を製造した。
 このときの圧延の最終仕上がりテープ基材表裏面の表面粗さをRaで約9nmの鏡面仕上げとした。
 次いで、テープ基材の平坦性を改善するため、790℃で20秒の保持条件で、6kgf/mmの張力を印加し、アルゴンガスと水素の混合気体の雰囲気で熱処理した(TA(tension annealing)処理)。
 このようにしてテープ基材にロール圧延を施し、更に、仕上りサイズでスリット加工することで、厚さ100μm幅10mm×1050m×6条のテープに仕上げた。圧延工程の加工率は60%以上を確保した。
 このときのスリットは、圧延時の表面を、スリット後の10mm幅6条すべての表面になるようにスリット面を統一した方向で行った。この場合、スリットにより発生したカエリの出側方向を10mm幅の裏面方向に統一できるので、側面の形状制御性が高く、有意である。カエリが交互方向に出るスリット工法でも側面成形は可能であるが、表裏を反転させるなど作業が煩雑になる場合がある。
 次いで、スリットして得られた超電導層成膜基材の側面と角部を機械研磨で研磨し、側面と角部に点在している、切断痕、せん断痕等を研磨で除去し、側面部のRaを約50nm程度に仕上げた。研磨は(600番)の砥石研磨で行った。
 次いで、超電導層成膜基材の一対の側面が、成膜面(表面)の縁部から裏面側に向かって成膜面の面内方向において外側に広がる広がり面をそれぞれ含むように、1組の成形ロールと1組の上下平ロールの組み合わせロールで一対の側面の成形を行った。本実施例では、広がり面がR形状となり、側面全体が図4に示すようなU字形状となるように成形した。
 次いで、成形ロールと平ロールで側面形状が成形された超電導層成膜基材は、直線性が変化していた。したがって、超電導層成膜基材の平坦性を回復するため、再度TA処理を施した。このTA処理では具体的に、1回目の温度よりやや低めの650℃で30秒保持する条件及び4kgf/mmの張力印加条件で、アルゴンガスと水素の混合気体の雰囲気で熱処理した。
 次いで、成膜面側の表面を精密研磨(機械研磨工程)で研磨した。
 以上により、本実施例1に係る超電導成膜用基材を得た。
 なお、本実施例1に係る超電導成膜用基材の表面、裏面、及び一対の側面の粗さRaを、原子間力顕微鏡(AFM)で求めたところ、それぞれ8.9nm、9.4nm、及び38.7nmであった。また、超電導成膜用基材について引っ張り試験を室温で行ったところ、0.2%耐力は1.6GPaであった。したがって、高強度、低磁性、高性能な超電導成膜用基材を製作することができた。
 また、一対の側面間の最大距離D1に対して、1つの広がり面の、成膜面の面内方向P(または基材の幅方向)の広がり距離D2(すなわち、広がり面の、成膜面側末端と裏面側末端との間の、成膜面の面内方向Pにおける距離であって、肩距離ともいう)の比率{(D2/D1)×100}は、0.005%であった。
 次に、本実施例1に係る超電導成膜用基材の表面(成膜面)及び広がり面に、中間層を成膜した。本実施例1では、中間層として、スパッタリング法により非晶質のGdZr7-δ(δは酸素不定比量)層(ベッド層)と、IBAD法により結晶質のMgO層(強制配向層)と、スパッタリング法によりLaMnO3+δ層(LMO層)と、スパッタリング法によりCeO層(キャップ層)と、を順に成膜した。このとき、中間層は広がり面のR形状に沿って積層していった。中間層の全体の厚みは0.6μmtだった。なお、成膜条件の詳細は省略する。
 次に、中間層を覆うように、超電導層として、PLD法を用いて、厚さ約1μmtのYBaCu7-δ層を形成した。
 次に、超電導層を覆うように、高周波スパッタ装置を用いて厚さ約10μmtの銀を蒸着して銀安定化層を形成した。その後、酸素雰囲気下550℃で酸素アニールを行った。
 そして、銀安定化層を有した超電導成膜用基材の周囲全体に、厚さ約40μmtの銅安定化層をメッキ法で形成した。   
 以上により、本実施例1に係る超電導線を得た(図4参照)。
<<実施例2~19>>
 実施例2~19に係る超電導成膜用基材及び超電導線は、実施例1と同一の方法で作製した。ただし、一対の側面間の最大距離D1に対して、1つの広がり面の成膜面の面内方向P(または基材の幅方向)における広がり距離D2(すなわち、広がり面の、成膜面側末端と裏面側末端との間の、成膜面の面内方向Pにおける距離であって、肩距離ともいう)の比率{(D2/D1)×100}がそれぞれ以下の値となるように、広がり面を成形した。
 実施例2:0.010%、実施例3:0.018%、実施例4:0.044%、実施例5:0.10%、実施例6:0.150%、実施例7:0.176%、実施例8:0.466%、実施例9:0.50%、実施例10:1.00%、実施例11:1.43%、実施例12:2.14%、実施例13:5.00%、実施例14:5.61%、実施例15:7.59%、実施例16:11.43%、実施例17:28.64%、実施例18:47.74%、実施例19:49.95%。
<<比較例1>>
 次に、比較例1に係る超電導成膜用基材及び超電導線を、実施例1と同様の方法で作製した。ただし、図2に示すS16の側面成形は行わなかった。したがって、肩距離の比率は0%である。
<<超電導特性の評価方法>>
 次に、得られた各実施例及び比較例の超電導線について、超電導特性の評価を行った。
 超電導特性の評価では、各超電導線を200m分それぞれ液体窒素に浸漬した状態で、四端子法を用いて臨界電流Icを測定した。測定は1mピッチとし、電圧端子は1.2mとした。
<<剥離特性の評価方法>>
 次に、得られた各実施例及び比較例の超電導線について、剥離特性の評価を行った。
 この剥離特性では、超電導線の中間層、超電導層及び安定化層の密着状態を曲げ試験法にて確認した。
 具体的に、曲げ試験では、安定化層まで形成された超電導線(厚みt=0.2mm)に対し、円柱状物(直径φ=10mm)を用いて、超電導線の長手方向を円柱状物の外周面の湾曲に沿うように、超電導線の表裏の両方向に対して1回ずつ曲げひずみε=2%(ε=t/φ)を与えて、超電導線の側面および、表層における剥離状態を評価した。この時の曲げ試験は、超電導線に対して張力を印加しない無張力条件下で行った。
<<評価結果>>
 以下の表1及び表2に、肩距離の比率を変化させたときの超電導特性と剥離特性の評価結果を示す。
 なお、表中には肩距離の比率と合わせて、肩距離の絶対値も記載している。
 また、表1及び表2において、超電導特性のAは、すべての測定点の範囲で臨界電流値が300Aを超え、その最大値と最小値の差が10A以内のバラツキ範囲内である超電導特性が確認されたものを指す。超電導特性のBはすべての測定点の範囲で臨界電流値が250Aを超え、その最大値と最小値の差が30A以内のバラツキ範囲内である超電導特性が確認されたものを指す。超電導特性のCはすべての測定点の範囲で臨界電流値が150Aを超え、その最大値と最小値の差が50A以内のバラツキ範囲内である超電導特性が確認されたものを指す。
 また、表1及び表2において、剥離特性のAは評価サンプル長さ1mの範囲で、剥離箇所が確認されないものを指す。剥離特性のBは評価サンプル長さ1mの範囲で、一箇所以内の僅かな剥離が確認されたものを指す。剥離特性のCは評価サンプル長さ1mの範囲で、複数個所の剥離状態が確認されるものの、剥離部分の合計の長さが0.5m未満、すなわち評価サンプル長さの半分未満となるものを指す。剥離特性のDは評価サンプル長さ1m内で、複数個所の剥離状態が確認され、剥離部分の合計の長さが0.5m以上、すなわち評価サンプル長さの半分以上確認されたものを指す。
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002

 
 剥離特性に関しては、具体的に、肩距離の比率が0.005%以上のとき、評価サンプル長さ1m内で、複数箇所の剥離部分が見られるものの、剥離部分の合計の長さを0.5m未満、すなわち評価サンプル長さの半分未満に抑制することができた。また、肩距離の比率が、0.018%以上5.00%以下の範囲内であると、評価サンプル長さ1m内で、剥離の個数を1箇所以内に抑制することができた。さらに、肩距離の比率が0.15%以上1.00%以下の範囲内であると、評価サンプル長さ1m内で、剥離がなかった。
 表1及び表2に示す結果から、まず、肩距離のある実施例1~19の方が、肩距離のない比較例1に比べて、剥離特性が向上していることが分かった。ただし、超電導特性までも考慮すると、0.005%以上7.59%以下であることが好ましいことが分かった。
 なお、肩距離の比率が7.59%超で超電導特性が悪化したのは、肩距離の幅方向の占める割合が大きくなり、超電導特性の有効幅が減少したからだと考えられる。また、肩距離の比率が0.005%未満で剥離特性が悪化したのは、スリット上がりの矩形状基材の成膜後の形態に近似するので、側面からの層剥離の事象が起きやすくなったからだと考えられる。
 また、表1及び表2に示す結果から、肩距離の比率は、0.018%以上5.00%以下であることが好ましく、0.15%以上1.00%以下であることがより好ましいことが分かった。なお、本実施例は図4の形状に基づき評価を行ったが、この形状に限定されることなく、他の実施形態においても肩距離の比率により剥離特性が向上することを確認した。
 日本出願第2012-092803の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (14)

  1.  テープ状の超電導成膜用基材であって、
     超電導層を含む積層体を成膜するための成膜面と、
     前記成膜面の反対側の面である裏面と、
     前記成膜面と前記裏面に連なる一対の端面と、
     前記成膜面、前記裏面及び前記一対の端面に連なる一対の側面と、
     を有し、
     前記一対の側面が、前記成膜面の縁部から前記裏面側に向かって前記成膜面の面内方向において外側に広がる広がり面をそれぞれ含む、
     超電導成膜用基材。
  2.  前記広がり面の表面粗さは、前記成膜面の表面粗さよりも粗い、
     請求項1に記載の超電導成膜用基材。
  3.  前記広がり面の表面粗さは、15nm以上である、
     請求項2に記載の超電導成膜用基材。
  4.  前記一対の側面間の最大距離に対して、前記一対の広がり面における前記成膜面の面内方向の広がり距離の比率は、それぞれ0.005%以上7.59%以下である、
     請求項1~請求項3の何れか1項に記載の超電導成膜用基材。
  5.  テープ状の基材本体と、
     前記基材本体の少なくとも両側面を覆い、前記基材本体よりも展性が高い金属層と、
     を有し、
     前記一対の側面は、前記金属層に成形されている、
     請求項1~請求項4の何れか1項に記載の超電導成膜用基材。
  6.  前記一対の側面は、超電導成膜用基材の長手方向に亘って窪んだアンカー部を含む、
     請求項1~請求項5の何れか1項に記載の超電導成膜用基材。
  7.  前記成膜面の縁部から広がる広がり面を第1広がり面とし、
     前記一対の側面は、さらに、前記裏面の縁部から前記第1広がり面に向って前記成膜面の面内方向において前記裏面の外側に広がる第2広がり面を含む、
     請求項1~請求項6の何れか1項に記載の超電導成膜用基材。
  8.  前記一対の側面は、さらに、前記広がり面から連なり、前記裏面と垂直な垂直面を含む、
     請求項1~請求項7の何れか1項に記載の超電導成膜用基材。
  9.  請求項1~請求項8の何れか1項に記載の超電導成膜用基材と、
     前記超電導成膜用基材の成膜面、及び前記一対の側面のうち少なくとも前記広がり面に積層した中間層と、
     前記中間層の表面に積層した超電導層と、
     を有する超電導線。
  10.  前記超電導層は、前記成膜面に位置し超電導相となる酸化物超電導体を主体とする超電導部と、前記広がり面側に位置し常電導相となる酸化物超電導体を含む常電導部とを有する、
     請求項9に記載の超電導線。
  11.  前記超電導層は、前記中間層よりも前記広がり面の面内方向において外側に向かって延在し、前記中間層の端面を覆っている、
     請求項9又は請求項10に記載の超電導線。
  12.  超電導層を含む積層体を成膜するための成膜面と、前記成膜面と反対側の面である裏面と、前記成膜面と前記裏面に連なる一対の端面と、前記成膜面と前記裏面に連なる一対の側面とを有するテープ状の超電導成膜用基材を加工して、前記一対の側面に、前記成膜面の縁部から前記裏面側に向かって前記成膜面の面内方向において外側に広がる広がり面をそれぞれ成形する加工工程と、
     前記加工工程後に、前記超電導成膜用基材の成膜面、及び前記一対の側面のうち少なくとも前記広がり面に中間層を成膜する中間層成膜工程と、
     前記中間層の表面に超電導層を成膜する超電導層成膜工程と、
     を有する超電導線の製造方法。
  13.  前記加工工程では、テープ状の基材本体の一対の側面を、前記基材本体よりも展性が高い金属層で被覆して前記超電導成膜用基材を得る被覆工程を有し、得られた超電導成膜用基材の金属層を加工して、前記一対の側面に広がり面をそれぞれ成形する、
     請求項12に記載の超電導線の製造方法。
  14.  前記超電導層成膜工程の後、前記広がり面側に位置する超電導層部分を熱処理して前記広がり面側に位置する超電導層部分を非超電導化する工程を有する、
     請求項12又は請求項13に記載の超電導線の製造方法。
PCT/JP2013/052755 2012-04-16 2013-02-06 超電導成膜用基材及び超電導線並びに超電導線の製造方法 WO2013157286A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/236,188 US9002424B2 (en) 2012-04-16 2013-02-06 Superconducting film-forming substrate, superconducting wire, and superconducting wire manufacturing method
JP2013527815A JP5367927B1 (ja) 2012-04-16 2013-02-06 超電導成膜用基材及び超電導線並びに超電導線の製造方法
KR1020147002314A KR101553183B1 (ko) 2012-04-16 2013-02-06 초전도 성막용 기재 및 초전도선, 그리고 초전도선의 제조방법
EP13778174.6A EP2728590B9 (en) 2012-04-16 2013-02-06 Substrate for superconducting film, superconducting wire, and superconducting wire fabrication method
CN201380002439.1A CN103718256B (zh) 2012-04-16 2013-02-06 超导成膜用基材和超导线以及超导线的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012092803 2012-04-16
JP2012-092803 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013157286A1 true WO2013157286A1 (ja) 2013-10-24

Family

ID=49383255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052755 WO2013157286A1 (ja) 2012-04-16 2013-02-06 超電導成膜用基材及び超電導線並びに超電導線の製造方法

Country Status (6)

Country Link
US (1) US9002424B2 (ja)
EP (1) EP2728590B9 (ja)
JP (1) JP5367927B1 (ja)
KR (1) KR101553183B1 (ja)
CN (1) CN103718256B (ja)
WO (1) WO2013157286A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017204A1 (ja) * 2014-07-31 2016-02-04 住友電気工業株式会社 超電導線材
WO2016017205A1 (ja) * 2014-07-31 2016-02-04 住友電気工業株式会社 超電導線材
JP2016031828A (ja) * 2014-07-29 2016-03-07 住友電気工業株式会社 高温超電導薄膜線材
WO2017081762A1 (ja) * 2015-11-11 2017-05-18 住友電気工業株式会社 超電導線材
US10460854B2 (en) 2014-07-31 2019-10-29 Sumitomo Electric Industries, Ltd. Superconducting wire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106378A (ja) * 2016-03-11 2016-06-16 住友電気工業株式会社 超電導線及びその製造方法
KR102314493B1 (ko) * 2017-07-13 2021-10-18 한국전기연구원 표면이 가공된 초전도선재 및 그 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480026A (ja) * 1990-07-24 1992-03-13 Ngk Insulators Ltd ビスマス系超電導一貴金属積層体
JPH04141913A (ja) * 1990-10-02 1992-05-15 Mitsubishi Kasei Corp 酸化物超伝導体複合線材
JP2004031128A (ja) 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd 超電導薄膜線材およびその製造方法、ならびに超電導ケーブル導体
JP2011003494A (ja) * 2009-06-22 2011-01-06 Toshiba Corp 補強高温超電導線およびそれを巻線した高温超電導コイル
JP2011009098A (ja) * 2009-06-26 2011-01-13 Fujikura Ltd 超電導線材
JP2011165568A (ja) 2010-02-12 2011-08-25 Swcc Showa Cable Systems Co Ltd 酸化物超電導線材及び酸化物超電導線材の製造方法
JP2012092803A (ja) 2010-10-28 2012-05-17 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443753A (en) * 1987-07-27 1995-08-22 Elliott; Stanley B. Reaction products of lyotropic liquid crystal salt complexes
EP2131408B1 (en) * 2008-06-02 2011-09-07 Nexans Process for the preparation of a shaped substrate for a coated conductor and coated conductor using said substrate
JP5448425B2 (ja) * 2008-11-21 2014-03-19 公益財団法人国際超電導産業技術研究センター 超電導膜成膜用基板、超電導線材及びそれらの製造方法
JP5474339B2 (ja) * 2008-11-28 2014-04-16 住友電気工業株式会社 超電導線材の前駆体の製造方法、超電導線材の製造方法
JP5356134B2 (ja) * 2009-07-10 2013-12-04 住友電気工業株式会社 基板、基板の製造方法、超電導線材および超電導線材の製造方法
WO2011007527A1 (ja) * 2009-07-17 2011-01-20 東洋鋼鈑株式会社 酸化物超電導線材用金属積層基板の製造方法及び酸化物超電導線材用金属積層基板
JP5427553B2 (ja) * 2009-10-30 2014-02-26 公益財団法人国際超電導産業技術研究センター 酸化物超電導導体用基材及びその製造方法と酸化物超電導導体及びその製造方法
JP5517196B2 (ja) * 2009-11-20 2014-06-11 東洋鋼鈑株式会社 超電導化合物用基板及びその製造方法
CN103069508A (zh) * 2011-06-30 2013-04-24 古河电气工业株式会社 超导薄膜用基材、超导薄膜以及超导薄膜用基材的制造方法
CN103069509A (zh) * 2011-07-25 2013-04-24 古河电气工业株式会社 超导薄膜用基材、超导薄膜以及超导薄膜的制造方法
US9014768B2 (en) * 2011-08-02 2015-04-21 Furukawa Electric Co., Ltd. Method of producing superconducting conductor, superconducting conductor, and substrate for superconducting conductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480026A (ja) * 1990-07-24 1992-03-13 Ngk Insulators Ltd ビスマス系超電導一貴金属積層体
JPH04141913A (ja) * 1990-10-02 1992-05-15 Mitsubishi Kasei Corp 酸化物超伝導体複合線材
JP2004031128A (ja) 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd 超電導薄膜線材およびその製造方法、ならびに超電導ケーブル導体
JP2011003494A (ja) * 2009-06-22 2011-01-06 Toshiba Corp 補強高温超電導線およびそれを巻線した高温超電導コイル
JP2011009098A (ja) * 2009-06-26 2011-01-13 Fujikura Ltd 超電導線材
JP2011165568A (ja) 2010-02-12 2011-08-25 Swcc Showa Cable Systems Co Ltd 酸化物超電導線材及び酸化物超電導線材の製造方法
JP2012092803A (ja) 2010-10-28 2012-05-17 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728590A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031828A (ja) * 2014-07-29 2016-03-07 住友電気工業株式会社 高温超電導薄膜線材
WO2016017204A1 (ja) * 2014-07-31 2016-02-04 住友電気工業株式会社 超電導線材
WO2016017205A1 (ja) * 2014-07-31 2016-02-04 住友電気工業株式会社 超電導線材
JP2016033882A (ja) * 2014-07-31 2016-03-10 住友電気工業株式会社 超電導線材
US10460854B2 (en) 2014-07-31 2019-10-29 Sumitomo Electric Industries, Ltd. Superconducting wire
US10497494B2 (en) 2014-07-31 2019-12-03 Sumitomo Electric Industries, Ltd. Superconducting wire
US11264151B2 (en) 2014-07-31 2022-03-01 Sumitomo Electric Industries, Ltd. Superconducting wire
DE112015003518B4 (de) 2014-07-31 2024-03-28 Sumitomo Electric Industries, Ltd. Supraleitender Draht
WO2017081762A1 (ja) * 2015-11-11 2017-05-18 住友電気工業株式会社 超電導線材
JPWO2017081762A1 (ja) * 2015-11-11 2018-08-30 住友電気工業株式会社 超電導線材
US11665982B2 (en) 2015-11-11 2023-05-30 Sumitomo Electric Industries, Ltd. Superconducting wire

Also Published As

Publication number Publication date
US20150038334A1 (en) 2015-02-05
EP2728590A1 (en) 2014-05-07
US9002424B2 (en) 2015-04-07
KR20140090592A (ko) 2014-07-17
JP5367927B1 (ja) 2013-12-11
EP2728590A4 (en) 2015-08-26
EP2728590B1 (en) 2018-04-11
EP2728590B9 (en) 2018-09-05
CN103718256B (zh) 2016-11-16
CN103718256A (zh) 2014-04-09
KR101553183B1 (ko) 2015-09-14
JPWO2013157286A1 (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5367927B1 (ja) 超電導成膜用基材及び超電導線並びに超電導線の製造方法
EP2357656B1 (en) Method for producing a metal laminated substrate for an oxide superconducting wire, and oxide superconducting wire using the substrate
EP2741301B1 (en) Superconductor and manufacturing method
EP3133612B1 (en) Oxide superconducting wire material and oxide superconducting wire material production method
EP1653484B1 (en) Method of producing a superconducting wire
KR102403087B1 (ko) 초전도 선재용 기판 및 그 제조 방법과 초전도 선재
WO2013002410A1 (ja) 超電導薄膜用基材及び超電導薄膜、並びに超電導薄膜用基材の製造方法
EP3367394A1 (en) Oxide superconducting wire
JP5400416B2 (ja) 超電導線材
JP6751054B2 (ja) 酸化物超電導線材、超電導コイル、および酸化物超電導線材の製造方法
WO2021070810A1 (ja) 酸化物超電導線材
JP6743233B1 (ja) 酸化物超電導線材
WO2013008851A1 (ja) 超電導薄膜及び超電導薄膜の製造方法
JP2007179827A (ja) 酸化物超電導導体用金属基材の製造方法、酸化物超電導導体の製造方法
WO2011142449A1 (ja) 超電導線材用基板、超電導線材用基板の製造方法及び超電導線材
JP2000109320A (ja) 酸化物超電導体用金属基板及びその製造方法
JP2012252825A (ja) 酸化物超電導線材用基材および酸化物超電導線材
JP2010123448A (ja) 酸化物超電導線材及びその製造方法
JP4804993B2 (ja) 酸化物超電導導体
JP5732323B2 (ja) 酸化物超電導線材の製造方法
JP5578939B2 (ja) 酸化物超電導線材の製造方法
JP2019125436A (ja) 酸化物超電導線材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013527815

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147002314

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013778174

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14236188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE