WO2013002410A1 - 超電導薄膜用基材及び超電導薄膜、並びに超電導薄膜用基材の製造方法 - Google Patents

超電導薄膜用基材及び超電導薄膜、並びに超電導薄膜用基材の製造方法 Download PDF

Info

Publication number
WO2013002410A1
WO2013002410A1 PCT/JP2012/066904 JP2012066904W WO2013002410A1 WO 2013002410 A1 WO2013002410 A1 WO 2013002410A1 JP 2012066904 W JP2012066904 W JP 2012066904W WO 2013002410 A1 WO2013002410 A1 WO 2013002410A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
layer
superconducting thin
superconducting
substrate
Prior art date
Application number
PCT/JP2012/066904
Other languages
English (en)
French (fr)
Inventor
樋口 優
久樹 坂本
義則 長洲
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP12804747.9A priority Critical patent/EP2592632A4/en
Priority to CN2012800023426A priority patent/CN103069508A/zh
Priority to US13/814,595 priority patent/US9608191B2/en
Publication of WO2013002410A1 publication Critical patent/WO2013002410A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/83Element shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a substrate for a superconducting thin film, a superconducting thin film, and a method for manufacturing a substrate for a superconducting thin film.
  • an oxide superconductor is formed on a substrate to form a superconducting layer, and a stabilizing layer for protecting the superconducting layer is formed on the superconducting layer.
  • a stabilizing layer for protecting the superconducting layer is formed on the superconducting layer.
  • an RE superconductor (RE: rare earth element) represented by a composition formula of REBa 2 Cu 3 O 7- ⁇ is used as a kind of oxide superconductor exhibiting superconductivity at a liquid nitrogen temperature (77 K) or higher
  • the superconducting wire obtained by forming a film on a long tape-like substrate is one of the superconducting thin films that are being actively researched and developed because of its high current characteristics. A number of prototypes related to electric power equipment using sapphire have reached the stage of being produced.
  • Such superconducting thin film critical current characteristics in (I c characteristics) are known to the oxide depends largely on the orientation of the superconductor constituting the crystal. The reason is that there is an electric anisotropy in the oxide superconductor crystal, and it is easy for electricity to flow in the a-axis direction and b-axis direction of the crystal, but it is difficult for electricity to flow in the c-axis direction. is there. Therefore, in order to obtain a superconducting thin film having excellent critical current characteristics, the crystal orientation of the superconducting crystal forming the superconducting thin film is good, and the direction of the orientation flows through the a-axis or b-axis. It is necessary to set the c-axis to the other direction in the direction in which it is intended.
  • SOE surface oxidation epitaxy
  • IBAD ion beam assisted deposition
  • RABiTS Rolling-Assisted Biaxially Textured Substrates
  • a low-magnetic non-oriented metal substrate for example, Hastelloy (registered trademark, manufactured by Haynes), which is a nickel-based heat- and corrosion-resistant alloy
  • a Gd 2 Zr 2 O 7 layer, an MgO layer, a LaMnO 3 layer, and a CeO 2 layer are laminated in this order to form an underlayer.
  • the IBAD method is used when stacking MgO.
  • each layer The role of each layer is as follows.
  • the Gd 2 Zr 2 O 7 layer prevents diffusion of the metal base element, and an upper layer (for example, an MgO layer) formed on the Gd 2 Zr 2 O 7 layer among the base layers laminated with the metal base element.
  • an upper layer for example, an MgO layer
  • LaMnO 3 layer, CeO 2 layer is suppressed from generating reaction products.
  • the MgO layer is forcibly oriented by the IBAD method and becomes the basis for the orientation of the upper layer.
  • the LaMnO 3 layer has a role of buffering the degree of lattice mismatch between the MgO layer and the CeO 2 layer.
  • the CeO 2 layer which is the uppermost layer of the base, has a small degree of lattice mismatch with the crystal of the RE superconductor, and is therefore suitable as a base for producing an RE superconductor having good crystal orientation.
  • the surface properties of the substrate affect the orientation of the underlayer formed on the substrate and the RE superconductor. That is, when the surface roughness of the base material is large, the unevenness becomes large for all of the base layers formed on the base material, and as a result, good crystal orientation cannot be obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-250931
  • an oxide superconducting layer having excellent crystal orientation is obtained by using a long base material whose surface roughness Rmax is smoothed to 0.05 ⁇ m or less. And a superconducting thin film capable of making the intermediate layer thin.
  • the present invention has been made in view of the above-mentioned facts, and is suitable for producing a superconducting thin film excellent in critical current characteristics, a superconducting thin film using the same, and production of the superconducting thin film substrate. It aims to provide a method.
  • a substrate for a superconducting thin film comprising a substrate body having a main surface with a root mean square slope R ⁇ q of a roughness curve of 0.4 or less.
  • ⁇ 4> The superconducting thin film substrate according to any one of ⁇ 1> to ⁇ 3>, wherein the arithmetic mean roughness Ra of the roughness curve on the main surface is 10 nm or less.
  • ⁇ 5> The substrate for a superconducting thin film according to any one of ⁇ 1> to ⁇ 4>, and a superconducting layer formed on the main surface and containing an oxide superconductor as a main component.
  • Superconducting thin film provided.
  • ⁇ 6> The superconducting thin film according to ⁇ 5>, further including an intermediate layer formed between the base material for the superconducting thin film and the superconducting layer.
  • ⁇ 7> a step of preparing a metal base body, a step of polishing the main surface of the metal base body on the side on which the oxide superconductor is formed, and an electrolytic solution containing the metal base body by energizing the 15A / dm 2 or more 30A / dm 2 or less of the current density for 60 seconds to 15 seconds or less at a current at medium, the method of manufacturing the superconducting thin film for a substrate having a step, in this order to electro-polishing the main surface .
  • the base material for superconducting thin films suitable for producing the superconducting thin film excellent in the critical current characteristic, the superconducting thin film using the same, and the manufacturing method of the base material for superconducting thin films could be provided. .
  • FIG. 1 is a diagram showing a laminated structure of a superconducting thin film 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the root mean square slope.
  • FIG. 3 is for explaining the arithmetic average roughness Ra.
  • FIG. 4 is a cross-sectional view showing a detailed configuration of the intermediate layer 20 of the superconducting thin film 1 according to the embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between R ⁇ q and Ic (A) obtained by measurement in the superconducting thin films according to Examples 1 to 15 and Comparative Examples 1 to 4.
  • FIG. 1 is a diagram showing a laminated structure of a superconducting thin film 1 according to an embodiment of the present invention.
  • the superconducting thin film 1 includes an intermediate layer 20, a superconducting layer 30, and a stabilizing layer (on a tape-shaped superconducting thin film base material 10 (hereinafter also referred to as a base material 10)).
  • (Protective layer) 40 has a laminated structure formed in order.
  • the root mean square slope R ⁇ q of the roughness curve on the surface on which the thin film is formed (the surface on which the intermediate layer 20 is formed in FIG. 1) is 0.
  • a base body 10A having a main surface 10B that is 4 or less is provided.
  • FIG. 2 is a schematic diagram for explaining the root mean square slope.
  • the root mean square slope R ⁇ q of the roughness curve described above is a parameter obtained by averaging the slopes of the irregularities in the minute range, and is represented by the following formula (1).
  • lr in Formula (1) is the reference length
  • Z (x) is the height of the roughness curve at the position x.
  • R ⁇ q represented by the formula (1) has a correlation with the crystal orientation of the thin film formed on the main surface 10B. Specifically, the smaller R ⁇ q is, the more the film is formed on the substrate 10 for the superconducting thin film. Thus, the crystal orientation of the intermediate layer 20 and the superconducting layer 30 is improved, and the critical current characteristics of the superconducting thin film 1 are improved.
  • R ⁇ q is set to 0.4 or less from the viewpoint of linearly improving the critical current characteristics. Further, R ⁇ q is more preferably 0.12 or less from the viewpoint that the critical current characteristic is further rapidly improved. Further, R ⁇ q is preferably closer to 0 from the viewpoint of eliminating the unevenness of the main surface 10B, and is preferably substantially 0. However, from the viewpoint of reducing the adhesion strength between the substrate and the intermediate layer formed immediately above the substrate, R ⁇ q is preferably 0.01 or more.
  • the arithmetic mean roughness Ra of the roughness curve on the main surface 10B is not particularly limited in the present embodiment, but is preferably as small as R ⁇ q in order to suppress the influence on the critical current characteristics. Specifically, it is preferably 10 nm or less, and more preferably 5.0 nm or less. Moreover, it is most preferable that it is 2.0 nm or less from a viewpoint that a critical current characteristic improves more in combination with R ⁇ q.
  • FIG. 3 is for explaining the arithmetic mean roughness Ra.
  • the arithmetic average roughness Ra is an average value of absolute values of Z (x) in the reference length as represented by the following formula (2), and indicates that the smaller the value is, the smoother it is.
  • lr in Formula (2) is the reference length
  • Z (x) is the height of the roughness curve at the position x.
  • R ⁇ q in equation (1) and Ra in equation (2) may increase at the same time as Ra increases, but in principle there is no correlation, and if Ra is defined, R ⁇ q The value is not determined. And even if Ra is small, if R ⁇ q is large, the crystal orientation of the intermediate layer 20 and the superconducting layer 30 is not improved, and it becomes difficult to produce a superconducting thin film having excellent critical current characteristics.
  • the base body 10A is made of either a non-oriented material or an oriented material, for example, a metal, a metal oxide, or a ceramic material.
  • Various shapes other than the long tape shape can be adopted as the shape of the base body 10A on the premise that there is a main surface, but it is preferable to adopt a rectangular flat plate shape that is easy to handle.
  • Specific examples of the metal include iron-based alloys, nickel-based alloys (particularly Hastelloy), copper alloys, aluminum alloys, and composites thereof.
  • the metal oxide include Al 2 O 3 (aluminum oxide, particularly sapphire), (Zr, Y) O 2 (yttria stabilized zirconia), LaAlO 3 (lanthanum aluminate), SrTiO 3 (titanic acid). Strontium), (La x Sr 1-x ) (Al x Ta 1-x ) O 3 (lanthanum strontium tantalum aluminum oxide), NdGaO 3 (neodymium gallate), YAlO 3 (yttrium aluminate), MgO (magnesium oxide), Examples thereof include TiO 2 (titania) and BaTiO 3 (barium titanate).
  • ceramics include silicon carbide and graphite. Among these, it is preferable to employ a Hastelloy substrate because it is excellent in strength, heat resistance, and corrosion resistance.
  • the intermediate layer 20 is a buffer layer formed on the substrate 10 for superconducting thin film in order to realize high in-plane orientation in the superconducting layer 30, and has physical characteristics such as a coefficient of thermal expansion and a lattice constant.
  • An intermediate value between the thin film substrate 10 and the oxide superconductor constituting the superconducting layer 30 is shown. A specific layer structure will be described later.
  • Superconducting layer 30 is formed on intermediate layer 20 and contains an oxide superconductor, particularly a copper oxide superconductor, as a main component.
  • the “main component” indicates that the content is the largest among the constituent components contained in the superconducting layer 30, and preferably has a content of 90% or more.
  • copper oxide superconductors include REBa 2 Cu 3 O 7- ⁇ (referred to as RE-123), Bi 2 Sr 2 CaCu 2 O 8 + ⁇ (including those in which Bi sites are Pb-doped), Bi 2 Sr 2 Ca 2.
  • the crystal material may be a polycrystalline material or a single crystal material.
  • the RE in the RE-based superconductor is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. Y is preferred for reasons such as no site substitution.
  • is an oxygen nonstoichiometric amount, for example, 0 or more and 1 or less, and is preferably closer to 0 from the viewpoint of a high superconducting transition temperature.
  • the oxygen non-stoichiometric amount may be less than 0, that is, take a negative value when high-pressure oxygen annealing or the like is performed using an apparatus such as an autoclave.
  • ⁇ of the crystal material other than the RE-based superconductor also represents an oxygen non-stoichiometric amount, for example, 0 or more and 1 or less.
  • the film thickness of the superconducting layer 30 is not particularly limited, but is, for example, not less than 500 nm and not more than 3000 nm.
  • Examples of the method for forming (depositing) the superconducting layer 30 include a TFA-MOD method, a PLD method, a CVD method, an MOCVD method, and a sputtering method.
  • a TFA-MOD method a method for forming (depositing) the superconducting layer 30
  • a PLD method a PLD method
  • a CVD method a CVD method
  • MOCVD method a sputtering method.
  • it is preferable to use the MOCVD method because it does not require a high vacuum, can be formed on a large-area base material 10 having a complicated shape, and is excellent in mass productivity.
  • a stabilizing layer 40 made of silver is formed by sputtering, for example.
  • FIG. 4 is a cross-sectional view showing a detailed configuration of the base material 10 and the intermediate layer 20 constituting the superconducting thin film 1 according to the embodiment of the present invention.
  • the intermediate layer 20 constituting the superconducting thin film 1 has a configuration in which a bed layer 22, an alignment layer 24, an LMO layer 26, and a cap layer 28 are sequentially laminated.
  • the bed layer 22 is formed on the superconducting thin film substrate 10 to prevent the metal element of the superconducting thin film substrate 10 from diffusing and to improve the biaxial orientation of the alignment layer 24. is there.
  • the bed layer 22 is affected by the surface properties of the base material 10 for the superconducting thin film serving as the underlying layer. However, since the root mean square slope R ⁇ q of the base material 10 for the superconducting thin film is small, the alignment layer 24 of the bed layer 22 is used. There are no steep irregularities on the side surface.
  • the bed layer 22 is preferably non-oriented from the viewpoint of improving the biaxial orientation of the alignment layer 24, and is preferably in an amorphous state that becomes non-oriented at least in the manufacturing process of the alignment layer 24.
  • the thickness of the bed layer 22 is not particularly limited, but it is 10 nm from the viewpoint of suppressing a decrease in the function of the bed layer 22 (suppression of diffusion of metal elements from the superconducting thin film substrate 10 and improvement of alignment layer orientation). From the viewpoint of suppressing warpage of the superconducting thin film substrate 10, it is preferably 500 nm or less. In particular, the thickness is more preferably 100 nm or less from the viewpoint of reducing the thickness due to a request for cost or the like.
  • Examples of the method for forming (depositing) the bed layer 22 include a TFA-MOD method, a PLD method, a CVD method, an MOCVD method, and a sputtering method. Among these, it is preferable to use a sputtering method from the viewpoint of easy manufacture.
  • the bed layer 22 can be formed by ion beam sputtering in which ions generated by an ion generator (ion gun) collide with a vapor deposition source. Further, the bed layer 22 may have a multilayer structure such as a two-layer structure of a Y 2 O 3 layer and an Al 2 O 3 layer.
  • the orientation layer 24 is formed immediately above the bed layer 22 and is a layer for orienting the crystals of the superconducting layer 30 in a certain direction.
  • the alignment layer 24 is affected by the surface properties of the bed layer 22 as a base, but there is no steep unevenness on the surface of the bed layer 22, that is, the surface properties of the superconducting thin film substrate 10 are affected. Since the R ⁇ q of the bed layer 22 is also reduced, the crystal orientation of the alignment layer 24 is improved as compared with the conventional case.
  • the constituent material of the alignment layer 24 examples include polycrystalline materials such as NbO and MgO. Moreover, the same material as the bed layer 22, for example, Gd 2 Zr 2 O 7 can also be used. Further, the thickness of the alignment layer 24 is not particularly limited, but is, for example, 1 nm or more and 20 nm or less.
  • Examples of the method of forming (depositing) the alignment layer 24 include a method of forming a film by the IBAD method in an atmosphere of argon, oxygen, or a mixed gas of argon and oxygen.
  • a method of forming a film by the IBAD method in an atmosphere of argon, oxygen, or a mixed gas of argon and oxygen.
  • vapor deposition particles ejected from a vapor deposition source (MgO or the like) by RF sputtering (or ion beam sputtering) are deposited on the film formation surface while irradiating an assist ion beam obliquely with respect to the film formation surface. Form a film.
  • the alignment layer 24 is formed by reactive sputtering in which MgO is formed by reacting the sputtered Mg and oxygen by sputtering in a mixed gas atmosphere of argon and oxygen, for example, with Mg as the deposition source. Can also be used.
  • the alignment layer 24 may be a composite layer having a layer formed by an epitaxial method and a layer formed by IBAD.
  • the LMO layer 26 is disposed between the alignment layer 24 and the cap layer 28 and has a function of improving the lattice matching of the cap layer 28.
  • Such an LMO layer 26 is an oxide layer made of a crystalline material whose composition formula is LaMnO 3 + ⁇ ( ⁇ is an oxygen non-stoichiometric amount). Although the value of ⁇ is not particularly limited, for example, ⁇ 1 ⁇ ⁇ 1.
  • the LMO layer 26 is affected by the surface properties of the orientation layer 24 serving as a base, but the crystal orientation of the LMO layer 24 is improved as compared with the prior art because the crystal orientation of the orientation layer 24 is high.
  • the thickness of the LMO layer 26 is not particularly limited, but is preferably 100 nm or less from the viewpoint of suppressing the surface roughness of the LMO layer 26, and is preferably 4 nm or more from the viewpoint of manufacturing. A specific value is 30 nm.
  • Examples of the formation (film formation) method of the LMO layer 26 include film formation by a PLD method or an RF sputtering method performed while heating the substrate 10 for a superconducting thin film.
  • the cap layer 28 is formed on the LMO layer 26 and is a layer for protecting the LMO layer 26 and further improving lattice matching with the superconducting layer 30.
  • the cap layer 28 is affected by the surface properties of the underlying LMO layer 26. However, since the crystal orientation of the LMO layer 26 is high, the crystal orientation of the cap layer 28 is improved as compared with the conventional case.
  • Such a cap layer 28 is made of a material containing a rare earth element and having self-orientation. This substance is, for example, a substance selected from CeO 2 and REMnO 3 , preferably CeO 2 .
  • the thickness of the cap layer 28 is not particularly limited, but is preferably 50 nm or more, and more preferably 300 nm or more in order to obtain sufficient orientation. However, since the film formation time increases when the thickness exceeds 600 nm, it is preferable that the thickness is 600 nm or less.
  • the cap layer 28 As a method of forming (depositing) the cap layer 28, there is a deposition by a PLD method or an RF sputtering method.
  • Substrates generally made of metal, including the superconducting thin film substrate 10 described above, are produced by rolling the material.
  • surface flaws caused by material defects may be removed by mechanical polishing. Since the substrate finally finished and rolled to a predetermined size has a surface roughness that is not small enough to be used for the production of a superconducting thin film, the surface properties of the substrate are adjusted by precision polishing.
  • abrasive polishing It is generally possible to finish the surface roughness Ra to a few nanometers by selecting appropriate abrasive grains. However, in normal abrasive polishing, the formation of minute irregularities due to the abrasive grain size cannot be avoided, and it is difficult to prevent the formation of steep undulations on the substrate surface.
  • the electrolytic polishing is further performed on the metal substrate that has been subjected to abrasive polishing by optimally adjusting the abrasive polishing conditions.
  • steep undulations on the surface of the metal substrate can be removed, that is, the root mean square slope R ⁇ q of the roughness curve in the main surface 10B can be reduced to 0.4 or less.
  • a coil polishing machine suitable for polishing long coil materials can be used.
  • the polishing method can be a multistage method of a polishing portion using a buff tape and an abrasive. While rotating a flocking cloth or a non-woven fabric tape to the polishing head, a long base material is run between the support base and polishing is performed with a multi-stage head while supplying an abrasive.
  • the first stage abrasive is an aqueous solution to which a glycol compound, glycerin, fatty acid and the like are added, and the average particle size is 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • a glycol compound, glycerin, fatty acid and the like are added, and the average particle size is 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • 0.125 ⁇ m polycrystalline diamond abrasive grains are added.
  • the second-stage abrasive comprises colloidal silica abrasive grains having an average particle size of 0.01 ⁇ m or more and 0.05 ⁇ m or less, preferably 0.03 ⁇ m, in an aqueous solution to which a water-soluble dispersant, ammonium oxalate, potassium oxalate and glycerin are added. Use the added one.
  • the pressing force of the support base is 5 kg or less
  • the rotation speed of the polishing head is 400 rpm or more
  • the substrate running speed is 10 m / hr or less.
  • Electropolishing has the characteristic of preferentially dissolving the convex portions on the surface of the metal substrate, and can make the sharp convex portions gentle.
  • the electrolytic solution composition, current density, etc. are appropriately optimized according to the material of the substrate. It can be carried out by adjusting to the conditions. As an example, if conditions suitable for electropolishing a substrate made of Hastelloy, which is a Ni-based alloy, are exemplified, an electrolytic solution for general stainless steel may be used.
  • methanesulfonic acid and phosphorus A mixed liquid containing an acid as a main component is used as an electrolytic solution, and a current of 15 A / dm 2 or more and 30 A / dm 2 or less is applied in the electrolytic solution at a current density of 15 seconds or more and 60 seconds or less, thereby causing the hastelloy base material to flow.
  • Electropolishing the surface More specifically, the Hastelloy base material is processed in the order of degreasing, water washing, pickling, water washing, electrolytic polishing, water washing, pickling, water washing, and drying.
  • degreasing a general alkaline degreasing material may be used, and electrolytic degreasing may be applied.
  • pickling for example, a 10% sulfuric acid solution may be used.
  • the electropolishing is more preferably performed at a current density of 20 A / dm 2 for 45 seconds.
  • the surface roughness Ra of the main surface 10B of the base body 10A is adjusted, and the main surface 10B has no steep irregularities that hinder the crystal orientation of the underlayer, that is, the main surface of the base body 10A.
  • the root mean square slope R ⁇ q in the roughness curve of 10B is 0.4 or less. Therefore, the underlying layer (intermediate layer 20) and the superconducting layer 30 with good crystal orientation can be produced, and the superconducting thin film 1 having excellent critical current characteristics can be obtained.
  • the root mean square slope R ⁇ q is a value calculated from the AFM measurement data (data sampling interval 0.006 ⁇ m).
  • each layer of the intermediate layer 20 can be omitted.
  • layers other than those described above can be added as part of the intermediate layer 20.
  • the entire disclosure of Japanese application 2011-146162 is incorporated herein by reference.
  • Example 1 Hastelloy C-276 rolled to a width of 1 cm and a thickness of 0.1 mm was used as the substrate for the superconducting thin film.
  • One side of this base material was subjected to rough polishing by abrasive polishing, and further polished by abrasive polishing and then further polished by electrolytic polishing.
  • AFM atomic force microscope
  • a base layer was formed on the polished surface of the substrate.
  • As an underlayer (intermediate layer) a Gd 2 Zr 2 O 7 layer, a MgO layer, a LaMnO 3 layer, and a CeO 2 layer were laminated in this order from the substrate side.
  • a superconducting layer (YBCO) was formed on the base layer surface. The thickness of the superconducting layer was 1 ⁇ m.
  • silver was formed as a stabilization layer on the superconducting layer surface. The thickness of the silver layer was 10 ⁇ m. The above procedure was obtained to obtain a superconducting thin film according to Example 1 of the present invention.
  • a substrate was prepared. Then, a base layer, a superconducting layer, and a stabilizing layer were formed on these substrates by the same method as in Example 1, respectively, to obtain superconducting thin films according to Examples 2 to 8 of the present invention.
  • Table 1 below shows specific production conditions for each example and comparative example.
  • the critical current Ic of the superconducting thin films obtained in Examples 1 to 15 and Comparative Examples 1 to 4 was measured. Specifically, the critical current Ic was measured using a four-terminal method in a state where the superconducting thin film material was immersed in liquid nitrogen. The voltage terminal was 1 cm, and the electric field reference was 1 ⁇ V / cm.
  • FIG. 5 is a graph showing the relationship between R ⁇ q obtained by measurement and Ic (A).
  • Reference numeral 1 denotes a superconducting thin film.
  • Reference numeral 10 denotes a substrate for a superconducting thin film.
  • Reference numeral 10A denotes a base body.
  • Reference numeral 10B denotes a main surface.
  • Reference numeral 20 denotes an intermediate layer.
  • Reference numeral 30 denotes a superconducting layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 臨界電流特性に優れた超電導薄膜を作製する。 超電導薄膜用基材は、粗さ曲線の二乗平均平方根傾斜RΔqが0.4以下である主面(10B)を有する基材本体(10A)を備える。

Description

超電導薄膜用基材及び超電導薄膜、並びに超電導薄膜用基材の製造方法
 本発明は、超電導薄膜用基材及び超電導薄膜、並びに超電導薄膜用基材の製造方法に関する。
 従来から、超電導ケーブルや超電導マグネットに利用するため、基材上に酸化物超電導体を成膜して超電導層を形成し、さらにこの超電導層上に超電導層保護用の安定化層等を形成して、超電導薄膜を製造する試みが数多く提案されている。
 なかでも、液体窒素温度(77K)以上で超電導を示す酸化物超電導体の一種として、REBaCu7-δの組成式で表されるRE系超電導体(RE:希土類元素)を用い、長尺のテープ状基材上に成膜して得られた超電導線は、高い電流特性が得られることから、現在、盛んに研究開発が進められている超電導薄膜のひとつであり、この超電導薄膜を用いた電力機器等に関する試作品が、多数、作製される段階にまで達している。
 このような超電導薄膜における臨界電流特性(I特性)は、その酸化物超電導体を構成する結晶の配向性に大きく依存することが知られている。その理由は、酸化物超電導体の結晶には電気的な異方性が存在し、その結晶のa軸方向とb軸方向には電気を流し易いがc軸方向には電気を流しにくいためである。したがって、優れた臨界電流特性を有する超電導薄膜を得るためには、超電導薄膜を形成する超電導体結晶の結晶配向性が良好で、かつ、その配向性の方向がa軸あるいはb軸を電気を流そうとする方向に、c軸をその他の方向にする必要がある。
 そして、このような結晶配向性が良好な超電導体結晶を得るためには、超電導体結晶とその下地との格子不整合度が小さく、かつその下地の表面が緻密で平滑であることが必要である。そのため、下地はその結晶構造が超電導体結晶との格子不整合度が小さいものが選択され、下地自身についても良好な結晶配向性が必要とされる。
 従来、結晶配向性が良好な超電導体結晶を得るために、様々な下地層の構成と下地層の形成方法が試みられている。例えば、代表的な方法として、表面酸化エピタキシー法(Surface-Oxidation Epitaxy:SOE)、イオンビームアシスト蒸着法(Ion Beam Assisted Deposition:IBAD)、RABiTS法(Rolling-Assisted Biaxially Textured Substrates)などである。例えば、IBAD法を用いた下地層の構成の一例を挙げると、低磁性の無配向金属基材(例えば、ニッケル基の耐熱・耐食合金であるハステロイ(登録商標、ヘインズ社製))上に、GdZr層、MgO層、LaMnO層、CeO層の順に積層して下地層とすることがある。ここで、MgOを積層する際にIBAD法が用いられる。
 各層の役割は以下の通りである。GdZr層は金属基材元素の拡散を防止し、金属基材元素と積層された下地層のうちGdZr層の上に形成された上部層(例えば、MgO層、LaMnO層、CeO層)との反応生成物の発生を抑制する。MgO層はIBAD法により強制的に配向され、上部層の配向の基礎となる。LaMnO層はMgO層とCeO層の格子不整合度を緩衝する役割をもつ。下地最上層のCeO層はRE系超電導体の結晶との格子不整合度が小さいことから、良好な結晶配向性を有するRE系超電導体を作製するための下地として適している。
 以上の下地層の構成と役割を鑑みるに、基材の表面性状が基材上に形成された下地層とRE系超電導体の配向性に影響を与えることは明らかである。すなわち、基材の表面粗さが大きい場合には、基材上に形成された下地層のすべてについて凹凸が大きくなり、結果として良好な結晶配向性は得られない。
 そこで、特許文献1(特開平5-250931号公報)では、表面粗さRmaxが0.05μm以下に平滑化された長尺基材を用いることにより、結晶配向性に優れた酸化物の超電導層を備え、かつ中間層の厚みを薄いものとすることが可能な超電導薄膜が開示されている。
 しかしながら、本発明者らによる鋭意研究の結果、下地層の配向性を良好なものとするのに必要な基材の表面性状の管理ポイントとして、粗さ曲線で示される起伏の高低差だけでないことが判った。つまり、粗さ曲線における二乗平均平方根傾斜RΔqも、下地層ひいては超電導層の結晶配向性に影響することが明らかとなった。
 本発明は上記事実に鑑みてなされたものであり、臨界電流特性に優れた超電導薄膜を作製するのに適した超電導薄膜用基材及びこれを用いた超電導薄膜、並びに超電導薄膜用基材の製造方法を提供することを目的とする。
 本発明の上記課題は下記の手段によって解決された。
<1>粗さ曲線の二乗平均平方根傾斜RΔqが0.4以下である主面を有する基材本体を備える超電導薄膜用基材。
<2>前記主面における粗さ曲線の二乗平均平方根傾斜RΔqは、0.32以下である、前記<1>に記載の超電導薄膜用基材。
<3>前記主面における粗さ曲線の二乗平均平方根傾斜RΔqは、0.12以下である、前記<2>に記載の超電導薄膜用基材。
<4>前記主面における粗さ曲線の算術平均粗さRaは、10nm以下である、前記<1>~前記<3>の何れか1つに記載の超電導薄膜用基材。
<5>前記<1>~前記<4>の何れか1つに記載の超電導薄膜用基材と、前記主面上に形成され、酸化物超電導体を主成分として含有する超電導層と、を備える超電導薄膜。
<6>前記超電導薄膜用基材と前記超電導層との間に形成された中間層、をさらに備える前記<5>に記載の超電導薄膜。
<7>金属基材本体を用意する工程と、酸化物超電導体を成膜する側の前記金属基材本体の主面を砥粒研磨する工程と、前記金属基材本体を入れた電解液の中で15A/dm以上30A/dm以下の電流密度で15秒間以上60秒間以下電流を通電することによって、前記主面を電解研磨する工程と、を順に有する超電導薄膜用基材の製造方法。
 本発明によれば、臨界電流特性に優れた超電導薄膜を作製するのに適した超電導薄膜用基材及びこれを用いた超電導薄膜、並びに超電導薄膜用基材の製造方法を提供することができた。
図1は、本発明の実施形態に係る超電導薄膜1の積層構造を示す図である。 図2は、二乗平均平方根傾斜を説明するための概略図である。 図3は、算術平均粗さRaを説明するためのものである。 図4は、本発明の実施形態に係る超電導薄膜1の中間層20の詳細構成を示す断面図である。 図5は、実施例1~15及び比較例1~4に係る超電導薄膜において、測定により得られたRΔqとIc(A)との関係示すグラフである。
 以下、添付の図面を参照しながら、本発明の実施形態に係る超電導薄膜用基材及び超電導薄膜、並びに超電導薄膜用基材の製造方法について具体的に説明する。なお、図中、同一の又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。
<超電導薄膜の概略構成>
 図1は、本発明の実施形態に係る超電導薄膜1の積層構造を示す図である。
 図1に示すように、超電導薄膜1は、長尺のテープ状超電導薄膜用基材10(以下、基材10と表記することもある)上に中間層20、超電導層30、安定化層(保護層)40が順に形成された積層構造を有している。
 本発明の実施形態に係る超電導薄膜用基材10は、薄膜が成膜される面(図1においては中間層20が成膜される面)における粗さ曲線の二乗平均平方根傾斜RΔqが0.4以下である主面10Bを有する基材本体10Aを備えている。
 ここで、図2は、二乗平均平方根傾斜を説明するための概略図である。上述した粗さ曲線の二乗平均平方根傾斜RΔqは、微小範囲における凹凸の傾斜を平均化して求められるパラメータであり、以下の式(1)により表される。
Figure JPOXMLDOC01-appb-M000001

 ただし、式(1)中のlrは基準長さであり、Z(x)は位置xにおける粗さ曲線の高さである。
 このような式(1)により表されるRΔqは、主面10B上に成膜する薄膜の結晶配向性と相関があり、具体的にはRΔqが小さいほど超電導薄膜用基材10上に成膜される中間層20や超電導層30等の結晶配向性が良くなり、ひいては超電導薄膜1の臨界電流特性が向上する。
 なお、このRΔqを0.4以下としている理由は、臨界電流特性を約250A以上と高い状態にし、且つ、臨界電流特性が急激に減少するのを回避するためである。また、線形的に臨界電流特性が向上するという観点からRΔqは、0.32以下であることが好ましい。また、さらに急激に臨界電流特性が向上するという観点からRΔqは、0.12以下であることがより好ましい。さらに、RΔqは、主面10Bの凹凸を無くすという観点から0に近づくほど好ましく、実質的に0であることが好ましい。しかし、基板と基板直上に成膜される中間層との密着強度が低下するという観点から、RΔqは、0.01以上であることが好ましい。
 また、主面10Bにおける粗さ曲線の算術平均粗さRaは、本実施形態では特に限定されないが、臨界電流特性への影響を抑制するために、RΔqと同様に小さいほうが好ましい。具体的には、10nm以下であることが好ましく、5.0nm以下であることがさらに好ましい。また、RΔqとの組み合わせでより臨界電流特性が向上するという観点から2.0nm以下であることが最も好ましい。
 ここで、図3は、算術平均粗さRaを説明するためのものである。算術平均粗さRaは以下の式(2)で表すように、基準長さにおけるZ(x)の絶対値の平均値であり、より値が小さくなるほど平滑であることを示す。
Figure JPOXMLDOC01-appb-M000002

 ただし、式(2)中のlrは基準長さであり、Z(x)は位置xにおける粗さ曲線の高さである。
 なお、上述した式(1)のRΔqと式(2)のRaとは、Raの増大とともにRΔqも同時に増加する場合もあり得るが、原則として相関がなく、Raを規定しただけでは、RΔqの値は決まらない。そして、Raが小さくてもRΔqが大きい場合には、中間層20や超電導層30の結晶配向性が向上せず、臨界電流特性に優れた超電導薄膜を作製するのが困難となる。
 基材本体10Aは、無配向の材料又は配向した材料のいずれかで構成され、例えば金属や金属酸化物、セラミックスの材料で構成されている。基材本体10Aの形状は、主面があることを前提として長尺のテープ形状以外にも様々な形状を採用することができるが、取扱いが容易な矩形平板形状を採用することが好ましい。
 金属の具体例としては、鉄基合金、ニッケル基合金(特にハステロイ)、銅合金、アルミ合金、あるいはそれらの複合体等が挙げられる。また、金属酸化物の具体例としては、Al(酸化アルミニウム、特にサファイア)、 (Zr,Y)O(イットリア安定化ジルコニア)、LaAlO(ランタンアルミネート)、SrTiO(チタン酸ストロンチウム)、(LaSr1-x)(AlTa1-x)O(酸化ランタンストロンチウムタンタルアルミニウム)、NdGaO(ネオジムガレート)、YAlO(イットリウムアルミネート)、MgO(酸化マグネシウム)、TiO(チタニア)、BaTiO(チタン酸バリウム)等が挙げられる。セラミックスの具体例としては、炭化ケイ素、黒鉛等が挙げられる。
 特に、これらの中でも、強度、耐熱性、耐食性に優れている点からハステロイ基板を採用することが好ましい。
 中間層20は、超電導層30において高い面内配向性を実現するために超電導薄膜用基材10上に形成される緩衝層であり、熱膨張率や格子定数等の物理的な特性値が超電導薄膜用基材10と超電導層30を構成する酸化物超電導体との中間的な値を示す。なお、具体的な層構成については、後述する。
 超電導層30は、中間層20上に形成され、酸化物超電導体、特に銅酸化物超電導体を主成分として含有している。なお、「主成分」とは、超電導層30に含まれる構成成分中で含有量が最も多いことを示し、好ましくは90%以上の含有量を有する。
 銅酸化物超電導体としては、REBaCu7-δ(RE-123と称す),BiSrCaCu8+δ(BiサイトにPbドープしたものも含む),BiSrCaCu10+δ(BiサイトにPbドープしたものも含む),(La,Ba)CuO4-δ,(Ca,Sr)CuO2-δ[CaサイトはBaであってもよい],(Nd,Ce)CuO4-δ,(Cu,Mo)Sr(Ce,Y)CuO [(Cu,Mo)-12s2と称し、s=1、2、3,4である],Ba(Pb,Bi)O又はTlBaCan-1Cu2n+4(nは2以上の整数である)等の組成式で表される結晶材料を用いることができる。また、銅酸化物超電導体は、これら結晶材料を組み合わせて構成することもできる。
 以上の結晶材料の中でも、超電導特性が良く、結晶構造が単純であるという理由から、RE系超電導体(REBaCu7-δ)を用いることが好ましい。また、結晶材料は、多結晶材料であっても単結晶材料であってもよい。
 上記RE系超電導体中のREは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,YbやLuなどの単一の希土類元素又は複数の希土類元素であり、これらの中でもBaサイトと置換が起きない等の理由でYであることが好ましい。また、δは、酸素不定比量であり、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。なお、酸素不定比量は、オートクレーブ等の装置を用いて高圧酸素アニール等を行えば、δは0未満、すなわち、負の値をとることもある。
 また、RE系超電導体以外の結晶材料のδも酸素不定比量を表し、例えば0以上1以下である。
 超電導層30の膜厚は、特に限定されないが、例えば500nm以上3000nm以下である。
 超電導層30の形成(成膜)方法としては、例えばTFA-MOD法、PLD法、CVD法、MOCVD法、又はスパッタ法などが挙げられる。これら成膜方法の中でも、高真空を必要としない、大面積、複雑な形状の基材10にも成膜可能、量産性に優れているという理由からMOCVD法を用いることが好ましい。
 以上のような超電導層30の上面には、例えばスパッタ法により銀からなる安定化層40が成膜されている。
<超電導薄膜用基材及びその製造方法>
 図4は、本発明の実施形態に係る超電導薄膜1を構成する基材10と中間層20の詳細構成を示す断面図である。
 図4に示すように、超電導薄膜1を構成する中間層20は、ベッド層22と、配向層24と、LMO層26と、キャップ層28と、を順に積層した構成である。
 ベッド層22は、超電導薄膜用基材10上に形成され、超電導薄膜用基材10の金属元素が拡散するのを防止し、且つ、配向層24の2軸配向性を向上させるための層である。そして、このベッド層22は、その下地となる超電導薄膜用基材10の表面性状の影響を受けるが、超電導薄膜用基材10の二乗平均平方根傾斜RΔqが小さいため、ベッド層22の配向層24側の表面にも急峻な凹凸がない。
 また、ベッド層22は、配向層24の2軸配向性を向上させるという観点から、非配向であることが好ましく、少なくとも配向層24の製造過程では非配向となるアモルファス状態であることが好ましい。
 ベッド層22の厚みは、特に限定されないが、当該ベッド層22の機能(超電導薄膜用基材10からの金属元素の拡散抑制と配向層の配向性を向上)の低下を抑制するという観点から10nm以上であることが好ましく、超電導薄膜用基材10の反りを抑制するという観点から500nm以下であることが好ましい。特にコスト等の要請により厚みを薄くするという観点から、100nm以下であることがより好ましい。
 ベッド層22の形成(成膜)方法としては、例えばTFA-MOD法、PLD法、CVD法、MOCVD法、又はスパッタ法等が挙げられる。中でも製造が容易であるという観点からスパッタ法を用いることが好ましい。
 なお、ベッド層22の成膜には、イオン発生器(イオン銃)で発生させたイオンを蒸着源に衝突させるイオンビームスパッタ法を利用することもできる。また、ベッド層22は、例えばY層とAl層との2層構造等の多層構造とすることもできる。
 配向層24は、ベッド層22の直上に形成され、超電導層30の結晶を一定の方向に配向させるための層である。そして、この配向層24は、その下地となるベッド層22の表面性状の影響を受けるが、ベッド層22の表面に急峻な凹凸がない、すなわち超電導薄膜用基材10の表面性状に影響してベッド層22のRΔqも小さくなるため、配向層24の結晶配向性が従来に比べて向上する。
 配向層24の構成材料としては、NbOやMgO等の多結晶材料が挙げられる。また、ベッド層22と同様の材料、例えばGdZrを用いることもできる。また、配向層24の膜厚は、特に限定されないが、例えば1nm以上20nm以下である。
 配向層24の形成(成膜)方法としては、例えばアルゴン、酸素、又はアルゴンと酸素の混合ガス雰囲気中でIBAD法により成膜する方法が挙げられる。IBAD法では、アシストイオンビームを成膜面に対して斜め方向から照射しながら、RFスパッタ(又はイオンビームスパッタ)により蒸着源(MgO等)からはじき出された蒸着粒子を成膜面に堆積させて成膜する。
 なお、配向層24の成膜には、蒸着源を例えばMgとして、アルゴンと酸素の混合ガス雰囲気中でスパッタすることにより、はじき出されたMgと酸素を反応させてMgOを成膜させる反応性スパッタを利用することもできる。また、配向層24は、エピタキシャル法により成膜した層とIBADにより成膜した層とを有する複合層であってもよい。
 LMO層26は、配向層24とキャップ層28の間に配置され、キャップ層28の格子整合性を向上させる機能を有している。このようなLMO層26は、組成式がLaMnO3+δ(δは酸素不定比量)で表される結晶材料で構成された酸化物層である。なお、δの値は、特に限定されないが、例えば-1<δ<1である。そして、このLMO層26は、その下地となる配向層24の表面性状の影響を受けるが、配向層24の結晶配向性が高いため、LMO層24の結晶配向性も従来に比べて向上する。
 また、LMO層26は、LMOの結晶格子が立方晶となる相転移温度を低くできるという観点から、組成式がLa(Mn1-x3+δ(M=Cr,Al,Co及びTiから選ばれる少なくとも1つであって、δは酸素不定比量であり、0<z/w<2、0<x≦1である)で表される結晶材料で構成された酸化物層であることが好ましい。
 LMO層26の厚みは、特に限定されないが、LMO層26の表面粗さを抑制するという観点から100nm以下であることが好ましく、製造上の観点から4nm以上であることが好ましい。具体値としては30nmが挙げられる。
 LMO層26の形成(成膜)方法としては、超電導薄膜用基材10を加熱しながら行うPLD法やRFスパッタリング法による成膜が挙げられる。
 キャップ層28は、LMO層26上に形成され、LMO層26を保護するとともに超電導層30との格子整合性をさらに高めるための層である。そして、このキャップ層28は、その下地となるLMO層26の表面性状の影響を受けるが、LMO層26の結晶配向性が高いため、キャップ層28の結晶配向性も従来に比べて向上する。
 このようなキャップ層28は、希土類元素を含有し、かつ自己配向性を有する物質で構成されている。この物質は、例えばCeO及びREMnOから選ばれる物質であり、好ましくはCeOである。
 キャップ層28の膜厚は、特に限定されないが、十分な配向性を得るには50nm以上が好ましく、300nm以上であればさらに好ましい。ただし、600nm を超えると成膜時間が増大するので、600nm以下とすることが好ましい。
 このキャップ層28の形成(成膜)方法としては、PLD法やRFスパッタ法による成膜が挙げられる。
<超電導薄膜用基材10の製造方法>
 上述した超電導薄膜用基材10を含め一般的に金属で構成された基材は、その素材を圧延することにより作製される。圧延の中間工程において素材欠陥に起因する表面傷などは機械研磨により除去されることがある。最終的に所定の寸法に仕上げ圧延された基材は、超電導薄膜作製用に供するには表面粗さが十分に小さくないため、精密研磨により基材の表面性状が調整される。
 精密研磨の方法の一つとして砥粒研磨がある。適切な砥粒を選択することにより表面粗さRaを数ナノメートルに仕上げることは一般的に可能である。しかしながら、通常の砥粒研磨においては、砥粒サイズに起因する微小な凹凸の形成は避けることができず、基材表面の急峻な起伏の形成を防止するのは困難である。
 そこで、本発明の実施形態に係る超電導薄膜用基材10の製造方法においては、砥粒研磨の条件を最適に調整することにより、あるいは砥粒研磨された金属基材に更に電解研磨を施すことにより、金属基材表面の急峻な起伏を除去、すなわち主面10Bにおける粗さ曲線の二乗平均平方根傾斜RΔqを0.4以下まで小さくすることができる。
 砥粒による仕上げ研磨は、長尺のコイル材の研磨に適しているコイル研磨機を使用することができる。研磨方式はバフテープと研磨剤を用いた研磨部の多段方式とすることができる。研磨ヘッドに植毛布あるいは不織布テープを送りながら回転させ、支持台との間に長尺の基材を走行させ、研磨剤を供給しながら、多段ヘッドで研磨を行なう。
 一例として、ハステロイ基材を仕上げ研磨するのに好適な条件を例示すれば、一段目の研磨剤はグリコール化合物、グリセリン及び脂肪酸等を添加した水溶液に平均粒径が0.1μm以上1.0μm以下で好ましくは0.125μmの多結晶ダイヤモンド砥粒を添加したものを使用する。2段目の研磨剤は、水溶性分散剤、しゅうアンモニウム、しゅう酸カリウム及びグリセリンを添加した水溶液に平均粒径が0.01μm以上0.05μm以下で好ましくは0.03μmのコロイダルシリカ砥粒を添加したものを使用する。急峻な起伏を形成させない研磨条件として、支持台の加圧力を5kg以下、研磨ヘッドの回転数を400rpm以上、基材走行速度を10m/hr以下とすることが好ましい。
 電解研磨は金属基材表面の凸部を優先的に溶解する特徴を有し、急峻な凸部をなだらかにすることができる。電解研磨の方法としては、一般的な金属の表面処理等で行われている電解研磨法と同等の手法を用いて、基材の材質に応じて、電解液組成、電流密度等を適宜最適な条件に調整して実施することができる。一例として、Ni基合金であるハステロイからなる基材を電解研磨するのに好適な条件を例示すれば、電解液は一般的なステンレス鋼用の電解液を用いれば良く、例えばメタンスルホン酸とリン酸を主成分とする混合液を電解液として用い、当該電解液の中で15A/dm以上30A/dm以下の電流密度で15秒間以上60秒間以下電流を通電することによってハステロイ基材の表面を電解研磨する。より具体的には、ハステロイ基材を、脱脂、水洗、酸洗、水洗、電解研磨、水洗、酸洗、水洗、乾燥、の順に処理する。脱脂は一般的なアルカリ系脱脂材を用いればよく、電解脱脂を適用してもよい。酸洗は例えば10%硫酸液を用いればよい。電解研磨はより好適には20A/dmの電流密度で45秒行なうのがよい。
 以上の方法により、基材本体10Aの主面10Bの表面粗さRaが調整され、かつその主面10Bに下地層の結晶配向を阻害する急峻な凹凸がない、すなわち基材本体10Aの主面10Bの粗さ曲線における二乗平均平方根傾斜RΔqが0.4以下となる。したがって、良好に結晶配向した下地層(中間層20)と超電導層30を作製することができ、臨界電流特性に優れた超電導薄膜1が得られる。
 なお、上述した算術平均粗さRaは、原子間力顕微鏡(Atomic Force Microscope:AFM、Nanosurf AG社製Nanosurf(R)Mobile S)によりX×Y=1.54μm×1.54μmの正方形領域にて測定したときの値である。また、二乗平均平方根傾斜RΔqは上記AFM測定データ(データサンプリング間隔0.006μm)より算出したときの値である。
<変形例>
 なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであり、例えば上述の複数の実施形態は、適宜、組み合わされて実施可能である。また、以下の変形例を、適宜、組み合わせてもよい。
 例えば、中間層20の各層全て又はその一部の層を省略することができる。逆に、上述した層以外の層を中間層20の一部として追加することもできる。
 なお、日本出願2011-146162の開示はその全体が参照により本明細書に取り込まれる。
 以下に、本発明に係る超電導薄膜用基材及び超電導薄膜について、実施例により説明するが、本発明はこれら実施例により何ら限定されるものではない。
<実施例1>
 実施例1では、超電導薄膜用基材として幅が1cmで厚さが0.1mmに圧延されたハステロイC-276を用いた。この基材の片面を、砥粒研磨により粗研磨を行い、さらに砥粒研磨により仕上げ研磨を行なった後に電解研磨により更なる研磨を行なった。ここで、研磨の加工条件を調整することにより、RΔq=0.09及びRa=1.8nmを示す表面性状の基材を作製した。なお、Raは、原子間力顕微鏡(Atomic Force Microscope:AFM、Nanosurf AG社製Nanosurf(R)Mobile S)によりX×Y=1.54μm×1.54μmの正方形領域にて測定した。また、RΔqは上記AFM測定データ(データサンプリング間隔0.006μm)より256×256点の測定データから、X方向、Y方向それぞれにRΔqを求めて平均値を算出し、RΔq=0.09を得た。
 次に、基材の研磨面上に下地層の成膜を行った。下地層(中間層)として、基材側からGdZr層、MgO層、LaMnO層、CeO層の順に積層した。次に、下地層面上に超電導層(YBCO)の成膜を行なった。超電導層の厚さは1μmとした。次に、超電導層面上に安定化層として銀を成膜した。銀層の厚さは10μmとした。
以上の手順を得て本発明の実施例1に係る超電導薄膜を得た。
<実施例2~8>
 実施例2~8では、実施例1と同一の方法で、研磨の加工条件を調整することにより、それぞれRΔq=0.10及びRa=4.8nm(実施例2)、RΔq=0.10及びRa=1.9nm(実施例3)、RΔq=0.11及びRa=7.8nm(実施例4)、RΔq=0.14及びRa=4.9nm(実施例5)、RΔq=0.15及びRa=2.0nm(実施例6)、RΔq=0.17及びRa=7.9nm(実施例7)、RΔq=0.19及びRa=2.1nm(実施例8)を示す表面性状の基材を作製した。そして、実施例1と同一の方法で、これらの基材上にそれぞれ下地層、超電導層及び安定化層を成膜して、本発明の実施例2~8に係る超電導薄膜を得た。
<実施例9~15>
 実施例9~15では、実施例1の方法から電解研磨を省略してその他は当該方法と同一の方法で、研磨の加工条件を調整することにより、それぞれRΔq=0.21及びRa=5.0nm(実施例9)、RΔq=0.24及びRa=2.0nm(実施例10)、RΔq=0.27及びRa=8.0nm(実施例11)、RΔq=0.31及びRa=1.9nm(実施例12)、RΔq=0.32及びRa=5.1nm(実施例13)、RΔq=0.35及びRa=2.2nm(実施例14)、RΔq=0.39及びRa=2.1nm(実施例15)を示す表面性状の基材を作製した。そして、実施例1と同一の方法で、これらの基材上にそれぞれ下地層、超電導層及び安定化層を成膜して、本発明の実施例9~15に係る超電導薄膜を得た。
<比較例1~4>
 比較例1~4では、実施例1の方法から電解研磨を省略してその他は当該方法と同一の方法で、研磨の加工条件を調整することにより、それぞれRΔq=0.43及びRa=2.0nm(比較例1)、RΔq=0.44及びRa=5.0nm(比較例2)、RΔq=0.48及びRa=2.0nm(比較例3)、RΔq=0.55及びRa=8.0nm(比較例4)を示す表面性状の基材を作製した。そして、実施例1と同一の方法で、これらの基材上にそれぞれ下地層、超電導層及び安定化層を成膜して、本発明の比較例1~4に係る超電導薄膜を得た。
 以下の表1に、各実施例及び比較例の具体的製造条件を示す。
Figure JPOXMLDOC01-appb-T000003
<評価方法>
 実施例1~15及び比較例1~4にて超電導層を成膜する前の状態で、下地層であるCeOの(100)面の面内配向性Δφについて、X線回折法のφスキャンにより測定した。(100)面の面内配向性Δφは、対応する面として(111)面のφスキャンのX線回折ピークの半値全幅により求めた。すなわちCeO(111)面の測定角度である55°に試料を固定して0~360°サンプルを回転させて得られた4回対象ピークの半値全幅を平均して求めた。
 次に、実施例1~15及び比較例1~4にて得られた超電導薄膜の臨界電流Icを測定した。具体的に臨界電流Icは、超電導薄膜材を液体窒素に浸漬した状態で四端子法を用いて測定した。電圧端子は1cm、電界基準は1μV/cmとした。
<測定結果>
 以上の評価方法を用いて測定した各下地層の面内配向性Δφと各超電導薄膜の臨界電流Icの結果を、以下の表2にまとめた。また、図5で、測定により得られたRΔqとIc(A)との関係をグラフにした。
Figure JPOXMLDOC01-appb-T000004
 表2及び図5に示すように、RΔqが0.4超ではIcが急激に低下していく傾向にあることが分かった。逆に、RΔqが0.4以下ではIcが250A以上と高い状態になっていることが分かった。また、RΔqが0.4以下の範囲内では、RΔqが小さくなればなるほど臨界電流特性(Ic)が向上していることが分かった。
 特に、RΔqが0.32超よりもRΔqが小さくなるにつれて線形的に臨界電流特性が向上するという観点から、このRΔqは、0.32以下が好ましいことが分かった。
 さらに、RΔqが0.12超よりもさらに急激に臨界電流特性が向上するという観点から、このRΔqは、0.12以下が好ましいことが分かった。
 また、RΔqとΔφとの関係は、RΔqとIcとの関係に相関しており、以上の結果は、RΔqとΔφとの関係からも確認できた。
 また、Raに関しては、実施例及び比較例ともに全て10nm以下であることが分かった。さらに、実施例2と実施例3の結果は、RΔqが同じ値であっても、Raが異なれば、ΔφやIcが異なる値になることを示している。ただし、Raが4.8nmと1.9nmと大きな差があってもΔφやIcの差は小さいため、RaよりもRΔqの方が、ΔφやIcにより大きく寄与していることが推測される。
 したがって、臨界電流特性に優れた超電導薄膜を作製するには、RaよりもRΔqをまず調整することが有効であるものと考えられる。
符号1は、超電導薄膜である。
符号10は、超電導薄膜用基材である。
符号10Aは、基材本体である。
符号10Bは、主面である。
符号20は、中間層である。
符号30は、超電導層である。

Claims (7)

  1.  粗さ曲線の二乗平均平方根傾斜RΔqが0.4以下である主面を有する基材本体を備える超電導薄膜用基材。
  2.  前記主面における粗さ曲線の二乗平均平方根傾斜RΔqは、0.32以下である、
     請求項1に記載の超電導薄膜用基材。
  3.  前記主面における粗さ曲線の二乗平均平方根傾斜RΔqは、0.12以下である、
     請求項2に記載の超電導薄膜用基材。
  4.  前記主面における粗さ曲線の算術平均粗さRaは、10nm以下である、
     請求項1~請求項3の何れか1項に記載の超電導薄膜用基材。
  5.  請求項1~請求項4の何れか1項に記載の超電導薄膜用基材と、
     前記主面上に形成され、酸化物超電導体を主成分として含有する超電導層と、
     を備える超電導薄膜。
  6.  前記超電導薄膜用基材と前記超電導層との間に形成された中間層、
     をさらに備える請求項5に記載の超電導薄膜。
  7.  金属基材本体を用意する工程と、
     酸化物超電導体を成膜する側の前記金属基材本体の主面を砥粒研磨する工程と、
     前記金属基材本体を入れた電解液の中で15A/dm以上30A/dm以下の電流密度で15秒間以上60秒間以下電流を通電することによって、前記主面を電解研磨する工程と、
     を順に有する超電導薄膜用基材の製造方法。
PCT/JP2012/066904 2011-06-30 2012-07-02 超電導薄膜用基材及び超電導薄膜、並びに超電導薄膜用基材の製造方法 WO2013002410A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12804747.9A EP2592632A4 (en) 2011-06-30 2012-07-02 SUPERCONDUCTING THIN LAYER SUBSTRATE, SUPERCONDUCTING THIN LAYER, AND METHOD FOR MANUFACTURING SUPERCONDUCTING THIN LAYER SUBSTRATE
CN2012800023426A CN103069508A (zh) 2011-06-30 2012-07-02 超导薄膜用基材、超导薄膜以及超导薄膜用基材的制造方法
US13/814,595 US9608191B2 (en) 2011-06-30 2012-07-02 Substrate for superconductor thin film, superconductor thin film, and method for producing substrate for superconductor thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-146162 2011-06-30
JP2011146162 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002410A1 true WO2013002410A1 (ja) 2013-01-03

Family

ID=47424295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066904 WO2013002410A1 (ja) 2011-06-30 2012-07-02 超電導薄膜用基材及び超電導薄膜、並びに超電導薄膜用基材の製造方法

Country Status (5)

Country Link
US (1) US9608191B2 (ja)
EP (1) EP2592632A4 (ja)
JP (1) JPWO2013002410A1 (ja)
CN (1) CN103069508A (ja)
WO (1) WO2013002410A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022533331A (ja) * 2019-05-21 2022-07-22 SuperOx Japan合同会社 超電導線の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728590B9 (en) * 2012-04-16 2018-09-05 Furukawa Electric Co., Ltd. Substrate for superconducting film, superconducting wire, and superconducting wire fabrication method
JP6256244B2 (ja) * 2014-07-31 2018-01-10 住友電気工業株式会社 超電導線材
KR102632410B1 (ko) * 2015-12-14 2024-02-05 한국전기연구원 금속기판 결함에 의해 자기 정렬된 초전도 스트립을 구비하는 초전도 선재의 제조 방법
WO2017105029A1 (ko) * 2015-12-14 2017-06-22 한국전기연구원 금속기판 결함에 의해 자기 정렬된 초전도 스트립을 구비하는 초전도 선재의 제조 방법
US20200118716A1 (en) * 2018-10-12 2020-04-16 Te Connectivity Corporation Electrical cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250931A (ja) 1992-03-02 1993-09-28 Fujikura Ltd 酸化物超電導導体
JP2008269852A (ja) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法
JP2008266686A (ja) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法
JP2008311222A (ja) * 2007-05-11 2008-12-25 Furukawa Electric Co Ltd:The 超電導線およびその製造方法
JP2011146162A (ja) 2010-01-12 2011-07-28 Kuraray Co Ltd 分散型無機el素子およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510641B2 (en) 2003-07-21 2009-03-31 Los Alamos National Security, Llc High current density electropolishing in the preparation of highly smooth substrate tapes for coated conductors
CN100422392C (zh) * 2004-10-13 2008-10-01 北京有色金属研究总院 涂层超导体镍基带的电化学抛光工艺方法
JP4741326B2 (ja) 2005-09-07 2011-08-03 株式会社フジクラ 酸化物超電導導体およびその製造方法
JP2007200870A (ja) 2006-01-26 2007-08-09 Ls Cable Ltd 超伝導ケーブル用基板の製造方法
JP5049530B2 (ja) 2006-08-01 2012-10-17 日本ミクロコーティング株式会社 酸化物超伝導体用テープ基材の研磨方法並びに酸化物超伝導体及び酸化物超伝導体用基材
JP2008200773A (ja) 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd 超電導体用テープ基材の製造方法及びテープ基材
DE102007024166B4 (de) * 2007-05-24 2011-01-05 Zenergy Power Gmbh Verfahren zum Bearbeiten eines Metallsubstrats und Verwendung dessen für einen Hochtemperatur-Supraleiter
JP5448425B2 (ja) * 2008-11-21 2014-03-19 公益財団法人国際超電導産業技術研究センター 超電導膜成膜用基板、超電導線材及びそれらの製造方法
DE102008058768B4 (de) * 2008-11-24 2011-12-15 Zenergy Power Gmbh Verfahren zur Herstellung von Metallsubstraten für HTS-Schichtanordnungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250931A (ja) 1992-03-02 1993-09-28 Fujikura Ltd 酸化物超電導導体
JP2008269852A (ja) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法
JP2008266686A (ja) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc エピタキシャル薄膜形成用のクラッド配向金属基板及びその製造方法
JP2008311222A (ja) * 2007-05-11 2008-12-25 Furukawa Electric Co Ltd:The 超電導線およびその製造方法
JP2011146162A (ja) 2010-01-12 2011-07-28 Kuraray Co Ltd 分散型無機el素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2592632A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022533331A (ja) * 2019-05-21 2022-07-22 SuperOx Japan合同会社 超電導線の製造方法
JP7266326B2 (ja) 2019-05-21 2023-04-28 Faraday Factory Japan合同会社 超電導線の製造方法

Also Published As

Publication number Publication date
CN103069508A (zh) 2013-04-24
US20130137581A1 (en) 2013-05-30
EP2592632A4 (en) 2014-12-10
JPWO2013002410A1 (ja) 2015-02-23
US9608191B2 (en) 2017-03-28
EP2592632A1 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
US6730410B1 (en) Surface control alloy substrates and methods of manufacture therefor
US6624122B1 (en) High critical current superconducting tapes
US6562761B1 (en) Coated conductor thick film precursor
KR101016868B1 (ko) 초전도 선재 및 그 제조 방법
WO2013002410A1 (ja) 超電導薄膜用基材及び超電導薄膜、並びに超電導薄膜用基材の製造方法
JP4800740B2 (ja) 希土類系テープ状酸化物超電導体及びその製造方法
EP1198848A1 (en) Coated conductor thick film precursor
JP4411265B2 (ja) 希土類系テープ状酸化物超電導体及びその製造方法
JP5513154B2 (ja) 酸化物超電導線材及び酸化物超電導線材の製造方法
EP1908128A2 (en) Structure for improved high critical current densities in ybco coatings
JP5799081B2 (ja) 単層コーティングによる酸化物厚膜
JP5415824B2 (ja) 被覆された導体のための、形状を変化させた基板の製造方法及び上記基板を使用する被覆された導体
JP5939995B2 (ja) 超電導線材及び超電導線材の製造方法
JP5950826B2 (ja) 超電導線材及び超電導線材の製造方法
JP5503252B2 (ja) 希土類系酸化物超電導線材
WO2013008851A1 (ja) 超電導薄膜及び超電導薄膜の製造方法
JP5981346B2 (ja) 超電導線材用基材、超電導線材及び超電導線材の製造方法
JP5889072B2 (ja) 超電導線用基材の製造方法及び超電導線の製造方法
JP2525842B2 (ja) 超電導線材とその製造方法
WO2002093590A1 (fr) Supraconducteur oxyde sous forme de ruban et son mode de fabrication

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002342.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012552185

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012804747

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13814595

Country of ref document: US

Ref document number: 2012804747

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE