WO2013156638A1 - Material itq-49, su procedimiento de obtención y su uso - Google Patents

Material itq-49, su procedimiento de obtención y su uso Download PDF

Info

Publication number
WO2013156638A1
WO2013156638A1 PCT/ES2013/000094 ES2013000094W WO2013156638A1 WO 2013156638 A1 WO2013156638 A1 WO 2013156638A1 ES 2013000094 W ES2013000094 W ES 2013000094W WO 2013156638 A1 WO2013156638 A1 WO 2013156638A1
Authority
WO
WIPO (PCT)
Prior art keywords
material according
value
microporous crystalline
crystalline material
processes
Prior art date
Application number
PCT/ES2013/000094
Other languages
English (en)
French (fr)
Other versions
WO2013156638A8 (es
Inventor
Avelino CORMA CANÓS
Fernando REY GARCÍA
Manuel HERNÁNDEZ RODRÍGUEZ
José Luis JORDÁ MORET
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad Politécnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015506267A priority Critical patent/JP6194352B2/ja
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad Politécnica De Valencia filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to SG11201406708XA priority patent/SG11201406708XA/en
Priority to CN201380026350.9A priority patent/CN104487385B/zh
Priority to BR112014026154-7A priority patent/BR112014026154B1/pt
Priority to EP13778919.4A priority patent/EP2840064A4/en
Priority to RU2014141931A priority patent/RU2667296C2/ru
Priority to CA2870579A priority patent/CA2870579C/en
Priority to KR1020147029223A priority patent/KR101951217B1/ko
Publication of WO2013156638A1 publication Critical patent/WO2013156638A1/es
Priority to ZA2014/07558A priority patent/ZA201407558B/en
Priority to US14/516,743 priority patent/US9764311B2/en
Publication of WO2013156638A8 publication Critical patent/WO2013156638A8/es
Priority to US15/678,636 priority patent/US10427140B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/047Germanosilicates; Aluminogermanosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G73/00Recovery or refining of mineral waxes, e.g. montan wax
    • C10G73/02Recovery of petroleum waxes from hydrocarbon oils; Dewaxing of hydrocarbon oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas

Definitions

  • Zeolites are porous crystalline aluminosilicates that have found important applications as catalysts, adsorbents and ion exchangers. These zeolitic materials have well-defined structures that form channels and cavities in their interior of uniform size and shape that allow the adsorption of certain molecules, while preventing the passage into the glass of other molecules of size too large to diffuse through pores This characteristic gives these materials molecular sieve properties. These molecular sieves may include in the network, in addition to Si, other elements of the MIA group of the periodic system, all of them tetrahedrally coordinated.
  • the negative charge generated by the elements of the NIA group tetrahedrally coordinated in network positions is compensated by the presence in the cation crystal, such as alkaline or alkaline earth cations.
  • cation crystal such as alkaline or alkaline earth cations.
  • These cations can be totally or partially exchanged for other types of cations by ion exchange techniques, thus being able to vary the properties of a given silicate by selecting the desired cations.
  • zeolites have been synthesized in the presence of an organic molecule that acts as a structure directing agent.
  • Organic molecules that act as structure directing agents (ADE) generally contain nitrogen in their composition, and can give rise to stable organic cations in the reaction medium.
  • zeolites containing channel systems with different pore openings are especially desirable since they provide selectivities in catalytic processes that cannot be obtained with materials with channels with identical openings in all of them. That is why, an important scientific activity has been developed in this regard. Description of the invention
  • a synthetic microporous crystalline material called ITQ-49 is described.
  • the structure of this material has a microporous network consisting of channels with openings formed by 7 and 8 T0 4 tetrahedra that intersect each other giving rise to non-spherical cavities, which are accessed through four windows formed by 7 tetrahedra and others two of 8 tetrahedra, with a narrowing formed by 10 tetrahedra, these cavities being accessible to molecules of interest in catalysis, in adsorption or separation processes.
  • the structure of the ITQ-49 zeolite can be described by its unit cell, which is the smallest structural unit that contains all the structural elements of this material and whose projections along the crystallographic axes are shown in Figures 1 to 3.
  • Table 1 shows the list of atomic positions of all atoms in tetrahedral coordination in a unit cell. All these atoms are connected to each other through bridge oxygen that bind contiguous tetrahedral atoms two to two.
  • each unit cell contains 92 atoms in tetrahedral coordination, called T1, T2, T3, T4 through T92, other than oxygen, which are located in the crystallographic positions with Cartesian atomic coordinates x, y and z shown in Table 1.
  • Each of the T atoms in Table 1 is surrounded by four oxygen atoms as first neighbors and four other T atoms as second neighbors, so that the T atoms are connected two by two through bridge oxygen forming TOT bonds .
  • the presence of cations or the different nature of atoms T can modify the values presented in Table 1, so each crystallographic coordinate can be modified up to 1 A of the value given in Table 1.
  • the ITQ-49 zeolite has in its uncalcined form an X-ray diffraction diagram whose most important diffraction peaks are given in Table 2, and in Table 3 for its calcined form.
  • the diffraction data listed for these samples as single or single lines may be formed by multiple overlaps or overlapping reflections that, under certain conditions, such as differences in chemical composition, may appear as partially or resolved lines. resolved.
  • changes in the chemical composition can cause variations in the parameters of the unit cell and / or changes in the symmetry of the crystal, without a change in the structure.
  • modifications, which also include changes in relative intensities may also be due to differences in the type and amount of compensation cations, network composition, crystal size and shape thereof, preferred orientation or the type of thermal or hydrothermal treatments suffered.
  • the present invention relates to a microporous crystalline material called ITQ-49, which may have a chemical composition: x X 2 0 3 : y Y0 2 : z Z0 2
  • X is a trivalent element selected from Al, B, Fe, In, Ga, Cr, or mixtures thereof;
  • Y is a tetravalent element selected from Ti, Sn, Zr, V or mixtures thereof, preferably from Ti, Sn, Zr, or mixtures thereof;
  • Z is a tetravalent element selected from Si, Ge or mixtures thereof, preferably Si;
  • the value of (y + z) / x is between 9 and infinity, preferably between 20 and infinity; the value of z / y is between 10 and infinity, preferably between 15 and infinity.
  • the value of x can be equal to zero, so it can have a chemical composition:
  • the value of y is equal to zero, so it can have a chemical composition: x X 2 0 3 : z Z0 2
  • the value of z / x is between 9 and infinity, and more preferably between 20 and infinity.
  • the material of the present invention has a chemical composition: t P 2 0 5 : x X 2 0 3 : y Y0 2 : z Z0 2
  • X is a trivalent element selected from Al, B, Fe, In, Ga, Cr, or mixtures thereof;
  • Y is a tetravalent element selected from Ti, Sn, Zr, V or mixtures thereof, preferably from Ti, Sn, Zr, or mixtures thereof;
  • Z is a tetravalent element selected from Si, Ge or mixtures thereof, preferably Si;
  • P refers to phosphorus from the structure managing agent; the value of (y + z) / x is between 9 and infinity, preferably between 20 and infinity; the value of z / y is between 10 and infinity, preferably between 15 and infinity.
  • t / (x + y + z) can be between 1 and 0. It is clear from the values given that the ITQ-49 crystalline material can be synthesized in the absence of added trivalent elements.
  • the X-ray diffractogram of the zeolite in its calcined form has the diffraction peaks listed in Table 3.
  • x may be 0 and the ITQ-49 material may have a chemical composition: t P 2 0 5 : y Y0 2 : z Z0 2
  • the ITQ-49 material can have a chemical composition: t P 2 0 5 : x X 2 0 3 : z Z0 2
  • the value of z / x is between 9 and infinity, preferably between 20 and infinity.
  • t / (x + z) can be between 1 and 0.
  • the calcined crystalline material ITQ-49 can be subjected to one or several chemical extraction processes or washing in aqueous, alcoholic, organic or mixture thereof to eliminate inorganic residues P 2 0 5 from the elimination of the structure directing agent.
  • This extraction or washing treatment can be performed in acid, neutral or alkaline medium.
  • the material of the present invention has a chemical composition: n R: x X 2 0 3 : z ZO z : y Y0 2
  • X is a trivalent element selected from Al, B, Fe, In, Ga, Cr, or mixtures thereof;
  • Y is a tetravalent element selected from Ti, Sn, Zr, V or mixtures thereof, preferably from Ti, Sn, Zr, or mixtures thereof;
  • Z is a tetravalent element selected from Si, Ge or mixtures thereof, preferably Si;
  • the value of z / y is between 10 and infinity, preferably between 15 and infinity.
  • R is a structure directing agent, preferably said R contains P, more preferably R is a salt of an alkylphosphonium cation, and more preferably is selected from 1,4-butanediyl bis (tritertbutyl phosphonium) hydroxide or one of its salts;
  • n / (x + y + z) is between 1 and 0.001.
  • n R y Y0 2 : z Z0 2
  • n / (y + z) is between 1 and 0.001.
  • the ITQ-49 material can have a chemical composition n R: x X 2 0 3 : z Z0 2
  • the value of z / x is between 9 and infinity, preferably between 20 and infinity. . .
  • n / (x + z) is between 1 and 0.001.
  • the calcined and / or calcined and washed ITQ-49 crystalline material may be subjected to one or more post-synthesis processes of incorporation or exchange of trivalent elements using solutions containing trivalent elements X that may be selected from Al, Ga, B, Cr , Fe, In and mixtures thereof in aqueous, alcoholic, organic or mixture thereof.
  • trivalent elements X may be selected from Al, Ga, B, Cr , Fe, In and mixtures thereof in aqueous, alcoholic, organic or mixture thereof.
  • inorganic waste P 2 0 5 from the elimination of the structure directing agent and / or incorporating the trivalent elements of the solutions can be eliminated.
  • This treatment of incorporation of trivalent metals and / or washing can be carried out in acid, neutral or alkaline medium.
  • the crystalline material with trivalent metals incorporated by post-synthesis treatments has a molar composition in its anhydrous state that is given by the equation: x X 2 0 3 : y Y0 2 : z Z0 2 in which X is a trivalent element such as Al, B, Fe, In, Ga, Cr or mixtures thereof, Y is a tetravalent element such as Ti, Sn, Zr, V or mixtures thereof, and Z corresponds to an element selected from Si or Ge, or mixtures thereof.
  • the value of (y + z) / x is at least 9, and can be between 20 and infinity and the value z / y is at least 10.
  • the ITQ-49 crystalline material is can synthesize in the absence of added trivalent elements.
  • the X-ray diffractogram of the zeolite after post-synthesis treatment to incorporate trivalent elements in its structure presents the characteristic diffraction peaks of the ITQ-49 material
  • the organic component present in the ITQ-49 material as synthesized can be removed, for example by extraction and / or by heat treatment by heating at a temperature above 200 ° C for a period of time that can be between 2 minutes and 25 hours.
  • the compensation cations in the material in its uncalcined form, or after thermal treatment, can be exchanged in the case of being present, by other cations such as metal ions, H + and H + precursors such as NH + 4 .
  • cations that can be introduced by ion exchange those that can have a positive role in the activity of the material as a catalyst are preferred, and more specifically cations such as H + , rare earth cations, and group VIII metals are preferred, as well as from the NA, MIA, IVA, Va, IB, IIB, IIIB, IVB, VB, VIIB group of the periodic table of the elements.
  • the crystalline material of the present invention can be intimately combined with hydrogenating-dehydrogenating components such as platinum, palladium, nickel, rhenium, cobalt, tungsten, molybdenum, vanadium, chromium, manganese, iron and combinations thereof.
  • hydrogenating-dehydrogenating components such as platinum, palladium, nickel, rhenium, cobalt, tungsten, molybdenum, vanadium, chromium, manganese, iron and combinations thereof.
  • the introduction of these elements can be carried out in the crystallization stage, by exchange (if applicable), and / or by impregnation or by physical mixing.
  • These elements can be introduced in their cationic form and / or from salts or other compounds that by decomposition generate the metal component or oxide in its appropriate catalytic form.
  • the present invention relates to the process for obtaining the ITQ-49 material described above.
  • the process for preparing the ITQ-49 material may comprise at least a first step of preparing a mixture containing H 2 0, a source of fluoride ions, an oxide or other source of the tetravalent material Z and an agent structure director (R), a source of the trivalent element X, an oxide or other source of the tetravalent material Y, where the synthesis mixture has a molar composition of oxides in the following ranges:
  • F7 (Y0 2 + Z0 2 ) 0.01-3.0, preferably between 0.05-1.
  • Si0 2 / Ge0 2 greater than 1, preferably greater than 5.
  • Z is a mixture of Si and Ge.
  • the structure directing agent R may be a compound containing P, more preferably R is a salt of an alkylphosphonium cation, and more preferably is selected from 1,4-butanediyl-bis (tritertbutyl phosphonium) hydroxide or One of its salts.
  • This material can be prepared according to a particular embodiment, from a reaction mixture containing H 2 0, a source of fluoride anions, optionally an oxide or a source of the trivalent element X, such as Al and / or B, a oxide or a source of the tetravalent element or elements Y, such as Si, a source of Ge, such as Ge0 2 and an organic structure directing agent (R) generally an organic cation, which may contain atoms other than C, H and N in its composition.
  • Composite structure directing agents of the alkylphosphonium type can be used, and more preferably it is 1,4-butanediyl bis (tritertbutyl phosphonium) hydroxide or one of its salts.
  • composition of the reaction mixture has the following composition in terms of molar ratios of oxides: Reagents Useful Preferred (Y0 2 + Z0 2 ) / X 2 0 3 greater than 2 greater than 5 H 2 0 / (Y0 2 + Z0 2 ) 1-50 2-30
  • Crystallization of the material can be carried out under stirring, in autoclaves at a temperature between 80 and 200 ° C, at times sufficient to achieve crystallization, for example "between 12 hours and 30 days.
  • the crystals of the material are separated from the mother liquors, and recovered. It should be taken into account that the components of the synthesis mixture can come from different sources, and depending on these, crystallization times and conditions may vary. In order to facilitate synthesis, crystals of the same material or of this calcined material can be added as seeds, in amounts of up to 15% by weight with respect to the total oxides, to the synthesis mixture. These can be added before or during crystallization.
  • the procedure for preparing the ITQ-49 material may comprise a step of calcining the crystalline material obtained, calcination that can be carried out under vacuum, in air, nitrogen, hydrogen, argon, helium or any other gas already a temperature greater than 200 ° C and less than 1200 ° C, preferably between 200 and 1000 ° C for a time that may be between 2 minutes and 25 hours.
  • the ITQ-49 material after calcination has a system of pores free of organic matter, whose X-ray diffractogram presents the peaks listed in Table 2. During this calcination they can remain inside the channels or on the surface of inorganic waste material from the structure director.
  • washing process or processes may comprise at least the following stage:
  • a solution is an aqueous, alcoholic, organic solution or mixture of both.
  • the washing process is carried out at a temperature preferably between 0 ° C and 200 ° C.
  • the diffraction diagram of the resulting material presents the characteristic diffraction peaks of this ITQ-49 material.
  • the calcined ITQ-49 material or the calcined and washed ITQ-49 material may be subjected to one or more post-synthesis treatments.
  • Such treatments may preferably consist of treating the ITQ-49 with aqueous, alcoholic, organic solutions or mixtures thereof containing trivalent elements X, preferably selected from Al, Ga, B, Cr, Fe In, and mixtures thereof with the in order to incorporate them into the zeolitic network.
  • This post-synthesis treatment can be carried out at alkaline, acidic or neutral pHs at temperatures preferably between 0 and 200 ° C for a preferred time between 1 hour to 15 days.
  • the resulting material has the characteristic diffraction peaks of this ITQ-49 material.
  • the present invention relates to a method of obtaining a material that it possesses, in addition a post-synthesis treatment comprises at least:
  • the solution is selected from an aqueous, alcoholic, organic solution or mixture of both.
  • said post-synthesis treatment is carried out at a preferred temperature between 0 and 200 ° C.
  • the ITQ-49 material can be used as a catalyst in processes of conversion of hydrocarbons, alcohols to others of greater added value, in the elimination of nitrogen compounds from gaseous or liquid streams as well as in separation processes.
  • the ITQ-49 material can be used as a catalyst in hydrocarbon conversion processes, in hydrocarbon dewaxing processes, in alcohol conversion processes, in alcohol conversion processes with less than four carbons in olefins, in processes of elimination of nitrogen pollutants in gaseous or liquid streams, in processes of elimination of nitrogen oxides from gaseous streams, in processes of elimination of nitrogen oxides from gaseous streams in the presence of reducing gases, in processes of nitrogen oxides removal of gaseous streams in the presence of ammonia as a reducer, in processes of elimination of nitrogen oxides from gaseous streams in the presence of hydrocarbons as reductants and combinations thereof.
  • the ITQ-49 material can be used as an adsorbent.
  • it can be used as a selective adsorbent in processes of separation of C0 2 and methane, in processes of separation of propane and propene, in processes of separation of linear olefins of fraction C4 and combinations thereof.
  • Figure 1. View of the structure of the ITQ-49 zeolite along the a axis (oxygen omitted for clarity.
  • Figure 2. View of the structure of the ITQ-49 zeolite along the b-axis (oxygens omitted for clarity).
  • Figure 3 View of the structure of the ITQ-49 zeolite along the c axis (oxygens omitted for clarity).
  • Figure 4. Rietveld tuning of the X-ray diffraction diagram of an ITQ-49 sample calcined at 923K, measured using the copper's alpha K radiation.
  • the dots show the experimental diagram.
  • the line along them shows the calculated diagram for the proposed structure. The difference between the two is shown below.
  • the vertical lines under the diagrams indicate the positions of the Bragg reflections.
  • the resulting solid presents an X-ray diffraction diagram that contains the characteristic peaks of the ITQ-49 material.
  • Example 3- Preparation of zeolite ITQ-49 in its calcined form.
  • a solid prepared as described in Example 2 is introduced into a muffle furnace and calcined in air at 700 ° C for 5 hours to decompose the retained organic matter inside.
  • the resulting solid presents an X-ray diffraction diagram containing the characteristic peaks of the calcined ITQ-49 material.
  • the gel obtained is homogenized and transferred to Teflon coated steel autoclaves and placed in an oven with stirring at 125 ° C for 18 days.
  • Example 5- Refinement of the ITQ-49 structure according to the Rietveld method.
  • the structure of a sample of the ITQ-49 zeolite can be satisfactorily refined using the Rietveld method applied to an X-ray diffraction diagram obtained from a sample prepared as described in example 3.
  • the fit between the experimental diagram and the simulated is shown in Figure 4.
  • the spatial group, refinement parameters and atomic positions of the ITQ-49 zeolite are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

En la presente invención, se presenta un material cristalino microporoso, su procedimiento de preparación y uso, que tiene una composición: en la que X es un elemento trivalente tal como Al, B, Fe, In, Ga, Cr, o mezclas de estos, donde (y+z)/x puede tomar valores entre 9 e infinito; Z corresponde a un elemento tetravalente seleccionado entre Si y Ge o mezclas de ellos; Y corresponde a un elemento tetravalente tal como Ti, Sn, Zr, V o mezclas de ellos, donde z/y puede tomar valores entre 10 e infinito.

Description

MATERIAL ITQ-49, SU PROCEDIMIENTO DE OBTENCIÓN Y SU USO
DESCRIPCIÓN
Campo de la invención
Esta patente se refiere a un material zeolítico denominado ITQ-49 y a su método de preparación. Estado de la técnica anterior a la invención
Las zeolitas son aluminosilicatos cristalinos porosos que han encontrado importantes aplicaciones como catalizadores, adsorbentes e intercambiadores iónicos. Estos materiales zeolíticos tienen estructuras bien definidas que forman canales y cavidades en su interior de tamaño y forma uniforme que permiten la adsorción de determinadas moléculas, mientras que impiden el paso al interior del cristal de otras moléculas de tamaño demasiado grande para difundir a través de los poros. Esta característica confiere a estos materiales propiedades de tamiz molecular. Estos tamices moleculares pueden incluir en la red, además de Si, otros elementos del grupo MIA del sistema periódico, todos ellos tetraédricamente coordinados. La carga negativa generada por los elementos del grupo NIA tetraédricamente coordinados en posiciones de red está compensada por la presencia en el cristal de cationes, como por ejemplo cationes alcalinos o alcalinotérreos. Estos cationes pueden ser intercambiados total o parcialmente por otro tipo de cationes mediante técnicas de intercambio iónico, pudiendo variar así las propiedades de un silicato dado seleccionando los cationes deseados.
Muchas zeolitas han sido sintetizadas en presencia de una molécula orgánica que actúa como agente director de estructura. Las moléculas orgánicas que actúan como agentes directores de estructura (ADE) contienen generalmente nitrógeno en su composición, y pueden dar lugar a cationes orgánicos estables en el medio de reacción.
Desde un punto de vista de sus posibles aplicaciones, las zeolitas que contienen sistemas de canales con distintas aperturas de poro son especialmente deseables ya que aportan selectividades en los procesos catalíticos que no pueden obtenerse con materiales con canales con aperturas idénticas en todos ellos. Es por ello, que se ha desarrollado una importante actividad científica en este sentido. Descripción de la invención
En la presente invención, se describe un material cristalino microporoso sintético denominado ITQ-49. La estructura de este material presenta una red microporosa constituida por canales con aperturas formadas por 7 y 8 tetraedros T04 que se cruzan entre sí dando lugar a cavidades no esféricas, a las que se accede a través de cuatro ventanas formadas por 7 tetraedros y otras dos de 8 tetraedros, con un estrechamiento formado por 10 tetraedros, siendo estas cavidades accesibles a moléculas de interés en catálisis, en procesos de adsorción o de separación. Además, presenta unidades estructurales de menor tamaño con forma de cubo, que no son accesibles dado que solo poseen ventanas formadas por cuatro tetraedros.
La estructura de la zeolita ITQ-49 puede describirse por su celda unidad, que es la unidad estructural más pequeña que contiene todos los elementos estructurales de este material y cuyas proyecciones a lo largo de los ejes cristalográficos se muestran en las figuras 1 a 3. La tabla 1 muestra la lista de posiciones atómicas de todos los átomos en coordinación tetraédrica en una celda unidad. Todos estos átomos están conectados entre sí a través de oxígenos puente que unen átomos tetraédricos contiguos dos a dos. En total, cada celda unidad contiene 92 átomos en coordinación tetraédrica, denominados T1 , T2, T3, T4 hasta T92, distintos de oxígeno, que están localizados en las posiciones cristalográficas con coordenadas atómicas cartesianas x, y y z que se muestran en la Tabla 1.
Tabla 1
Coordenadas a (A) b (A) c (A)
atómicas
T1 4,6 2,2 3,0
T2 14,4 11 ,3 11 ,2 T3 15,0 16,1 3,0
T4 5,2 7,0 11,2
Τ5 4,6 16,1 13,6
Τ6 14,4 7,0 5,3
Τ7 15,0 2,2 13,6
Τ8 5,2 11,3 5,3
Τ9 15,0 16,1 13,6
Τ10 5,2 7,0 5,3
Τ11 4,6 2,2 13,6
Τ12 14,4 11,3 5,3
Τ13 15,0 2,2 3,0
Τ14 5,2 11,3 11,2
Τ15 4,6 16,1 3,0
Τ16 14,4 7,0 11,2
Τ17 3,2 7,0 3,0
Τ18 13,0 16,1 11,2
Τ19 16,4 11,4 3,0
Τ20 6,6 2,2 11,2
Τ21 3,2 11,4 13,6
Τ22 13,0 2,2 5,3
Τ23 16,4 7,0 13,6
Τ24 6,6 16,1 5,3
Τ25 16,4 11,4 13,6
Τ26 6,6 2,2 5,3
Τ27 3,2 7,0 13,6
Τ28 13,0 16,1 5,3
Τ29 16,4 7,0 3,0
Τ30 6,6 16,1 11,2
Τ31 3,2 11,4 3,0
Τ32 13,0 2,2 11,2
Τ33 ο,ο 2,6 1,5
Τ34 9,8 11,8 9,8 T35 0,0 15,7 1 ,5
T36 9,8 6,5 9,8
T37 0,0 15,7 15,0
T38 9,8 6,5 6,8
T39 ο,ο 2,6 15,0
T40 9,8 11 ,8 6,8
T41 2,7 4,3 1 ,6
T42 12,5 13,5 9,9
T43 16,9 14,0 1 ,6
T44 7,1 4,8 9,9
T45 2,7 14,0 14,9
T46 12,5 4,8 6,7
T47 16,9 4,3 14,9
T48 7,1 13,5 6,7
T49 16,9 14,0 14,9
T50 7,1 4,8 6,7
T51 2,7 4,3 14,9
T52 12,5 13,5 6,7
T53 16,9 4,3 1 ,6
T54 7,1 13,5 9,9
T55 2,7 14,0 1,6
T56 12,5 4,8 9,9
T57 1 ,6 9,2 4,3
T58 11,4 ο,ο 12,5
T59 18,0 9,2 4,3
T60 8,2 ο,ο 12,5
T61 1 ,6 9,2 12,3
T62 11 ,4 ο,ο 4,0
T63 18,0 9,2 12,3
T64 8,2 ο,ο 4,0
T65 4,9 ο,ο 6,7
T66 14,7 9,2 15,0 T67 14,7 ο,ο 6,7
T68 4,9 9,2 15,0
T69 4,9 ο,ο 9,8
T70 14,7 9,2 1 ,6
T71 14,7 ο,ο 9,8
T72 4,9 9,2 1 ,6
T73 2,9 ο,ο 4,4
T74 12,7 9,2 12,6
T75 16,7 ο,ο 4,4
T76 6,9 9,2 12,6
T77 2,9 ο,ο 12,2
T78 12,7 9,2 3,9
T79 16,7 ο,ο 12,2
T80 6,9 9,2 3,9
T81 3,5 9,2 6,7
T82 13,3 ο,ο 15,0
T83 16,1 9,2 6,7
T84 6,3 ο,ο 15,0
T85 3,5 9,2 9,8
T86 13,3 ο,ο 1 ,5
T87 16,1 9,2 9,8
T88 6,3 ο,ο 1 ,5
T89 ο,ο ο,ο 3,4
T90 9,8 9,2 11 ,7
T91 ο,ο ο,ο 13,1
T92 9,8 9,2 4,9
Cada uno de los átomos T de la Tabla 1 se encuentra rodeado por cuatro átomos de oxígeno como primeros vecinos y otros cuatro átomos T como segundos vecinos, de tal forma que los átomos T quedan conectados dos a dos a través de oxígenos puente formando enlaces T-O-T. La presencia de cationes o la diferente naturaleza de los átomos T pueden modificar los valores presentados en la Tabla 1 , por lo que cada coordenada cristalográfica puede modificarse hasta 1 A del valor dado en la Tabla 1.
La zeolita ITQ-49 tiene en su forma sin calcinar un diagrama de difracción de rayos X cuyos picos de difracción más importantes vienen dados en la tabla 2, y en la tabla 3 para su forma calcinada.
Tabla 2
Intensidad
29a
Relativa
7,0 d
9,0 mf
9,7 m
10,7 m
11 ,5 md
11 ,9 md
12,6 md
13,2 d
14,0 d
14,4 mf
15,2 md
15,5 md
16,7 d
17,1 d
17,5 m
18,0 md
18,7 md
19,4 md
19,9 md
20,6 md
21 ,1 md 21 ,5 md
22,2 md
22,7 md
23,2 d
23,7 md
24,0 m
24,8 d
25,4 md
25,7 md
26,0 md
26,7 md
27,3 md
27,9 md
28,4 md
28,8 md
29,1 md
30,0 md a (± 0.5)
Tabla 3
Intensidad
29a
Relativa
7,0 mf
7,2 md
9,0 f
9,6 m
10,7 d
11 ,5 md
11 ,9 d
12,6 md
13,2 md 14,0 md
14,4 d
15,2 md
15,5 md
16,8 md
17,0 md
17,5 d
18,0 md
18,6 md
19,4 md
19,5 md
19,9 md
20,5 md
21 ,1 md
21 ,5 md
22,2 md
22,5 md
23,3 md
23,6 md
24,0 d
24,7 md
25,3 md
25,7 md
25,9 md
26,5 md
27,4 md
27,9 md
28,2 md
28,4 md
28,8 md
29,1 md
29,4 md 29,9 md
a (± 0.5)
Estos difractogramas de Rayos X se obtuvieron con un difractó-metro Panalytical X'Pert Pro equipado con una rendija de divergencia fija utilizando la radiación K„ del cobre. La intensidad relativa de las líneas se calcula como el porcentaje respecto del pico más intenso, y se considera muy fuerte (mf)= 80-100, fuerte (f)=60-80, media (m)= 40-60, débil (d)=20-40, y muy débil (md)= 0-20.
Debe tenerse en cuenta que los datos de difracción listados para estas muestras como líneas sencillas o únicas, pueden estar formados por múltiples solapamientos o superposición de reflexiones que, en ciertas condiciones, tales como diferencias en la composición química, pueden aparecer como líneas resueltas o parcialmente resueltas. Generalmente, los cambios en la composición química pueden originar variaciones en los parámetros de la celda unidad y/o cambios en la simetría del cristal, sin que se produzca un cambio en la estructura. Estas modificaciones, que incluyen también cambios en intensidades relativas pueden deberse también a diferencias en el tipo y cantidad de cationes de compensación, composición de red, tamaño de cristal y forma de los mismos, orientación preferente o al tipo de tratamientos térmicos o hidrotérmicos sufridos.
La presente invención se refiere a un material cristalino microporoso denominado ITQ-49, que puede poseer una composición química: x X203 : y Y02 : z Z02
donde:
X es un elemento trivalente seleccionado entre Al, B, Fe, In, Ga, Cr, o mezclas de estos;
Y es un elemento tetravalente seleccionado entre Ti, Sn, Zr, V o mezclas de ellos, preferentemente entre Ti, Sn, Zr, o mezclas de los mismos;
Z es un elemento tetravalente seleccionado entre Si, Ge o mezclas de ellos, preferentemente Si;
el valor de (y+z)/x está comprendido entre 9 e infinito, preferentemente entre 20 e infinito; el valor de z/y está comprendido entre 10 e infinito, preferentemente entre 15 e infinito.
De los valores dados se deduce claramente que el material cristalino ITQ-49 se puede obtener en ausencia de elementos trivalentes añadidos.
Según una realización particular de la presente invención, el valor de x puede ser igual a cero por lo que puede poseer una composición química:
y Y02 : z Z02
Según otra realización particular, el valor de y es igual a cero por lo que puede poseer una composición química: x X203 : z Z02
donde:
- el valor de z/x está comprendido entre 9 e infinito, y más preferentemente entre 20 e infinito.
Según una realización preferente, el material de la presente invención, ITQ-49, posee una composición química: t P205 : x X203 : y Y02 : z Z02
donde:
X es un elemento trivalente seleccionado entre Al, B, Fe, In, Ga, Cr, o mezclas de estos;
Y es un elemento tetravalente seleccionado entre Ti, Sn, Zr, V o mezclas de ellos, preferentemente entre Ti, Sn, Zr, o mezclas de los mismos;
Z es un elemento tetravalente seleccionado entre Si, Ge o mezclas de ellos, preferentemente Si;
P se refiere a fósforo proveniente del agente director de estructura; el valor de (y+z)/x está comprendido entre 9 e infinito, preferentemente entre 20 e infinito; el valor de z/y está comprendido entre 10 e infinito, preferentemente entre 15 e infinito.
el valor de t/(x+y+z) puede estar comprendido entre 1 y 0. De los valores dados se deduce claramente que el material cristalino ITQ-49 se puede sintetizar en ausencia de elementos trivalentes añadidos. El difractograma de Rayos X de la zeolita en su forma calcinada presenta los picos de difracción que se listan en la Tabla 3. Según una realización particular, x puede ser 0 y el material ITQ-49 puede poseer una composición química: t P205 : y Y02 : z Z02
donde:
- t/(y+z) puede estar comprendido entre 1 y 0.
Según otra realización particular, y puede ser 0 y el material ITQ-49 puede poseer una composición química: t P205 : x X203 : z Z02
donde:
el valor de z/x está comprendido entre 9 e infinito, preferentemente entre 20 e infinito.
t/(x+z) puede estar comprendido entre 1 y 0.
El material cristalino calcinado ITQ-49 puede ser sometido a uno o varios procesos de extracción química o lavado en medio acuoso, alcohólico, orgánico o mezcla de ellos para eliminar los residuos inorgánicos P205 provenientes de la eliminación del agente director de estructura. Este tratamiento de extracción o lavado puede ser realizado en medio ácido, neutro o alcalino.
Según otra realización preferente, el material de la presente invención, ITQ-49, posee una composición química: n R : x X203 : z ZOz : y Y02
donde:
X es un elemento trivalente seleccionado entre Al, B, Fe, In, Ga, Cr, o mezclas de estos;
Y es un elemento tetravalente seleccionado entre Ti, Sn, Zr, V o mezclas de ellos, preferentemente entre Ti, Sn, Zr, o mezclas de los mismos;
Z es un elemento tetravalente seleccionado entre Si, Ge o mezclas de ellos, preferentemente Si;
- el valor de (y+z)/x está comprendido entre 9 e infinito, preferentemente entre 20 e infinito;
el valor de z/y está comprendido entre 10 e infinito, preferentemente entre 15 e infinito.
R es un agente director de estructura, preferentemente dicho R contiene P, más preferentemente R es una sal de un catión alquilfosfonio, y más preferentemente está seleccionado entre hidróxido de 1 ,4-butanodiil-bis(tritertbutil fosfonio) o una de sus sales;
el valor de n/(x+y+z) está comprendido entre 1 y 0,001.
De los valores dados se deduce claramente que el material cristalino ITQ-49 se puede sintetizar en ausencia de elementos trivalentes añadidos. La relación n/z puede estar comprendida entre 1 y 0.001 en el material ITQ-49 según se sintetiza. El difractograma de rayos X de la zeolita en su forma sintetizada presenta los picos de difracción que se listan en la Tabla 2. Según una realización particular, x puede ser 0 y el material ITQ-49 puede poseer una composición química: n R : y Y02 : z Z02
donde:
- el valor de n/(y+z) está comprendido entre 1 y 0,001.
Según otra realización particular, y puede ser 0 y el material ITQ-49 puedeposeer una composición química n R : x X203 : z Z02
donde:
el valor de z/x está comprendido entre 9 e infinito, preferentemente entre 20 e infinito. . .
el valor de n/(x+z) está comprendido entre 1 y 0,001.
El material cristalino ITQ-49 calcinado y/o calcinado y lavado pueden ser sometidos a uno o varios procesos post-síntesis de incorporación o intercambio de elementos trivalentes empleando disoluciones que contengan elementos trivalentes X que pueden estar seleccionados entre Al, Ga, B, Cr, Fe, In y mezclas de los mismos en medio acuoso, alcohólico, orgánico o mezcla de ellos. En este proceso se pueden eliminar los residuos inorgánicos P205 provenientes de la eliminación del agente director de estructura y/o incorporar los elementos trivalentes de las disoluciones. Este tratamiento de incorporación de metales trivalentes y/o lavado puede ser realizado en medio ácido, neutro o alcalino. El material cristalino con metales trivalentes incorporados mediante tratamientos postsíntesis tiene una composición molar en su estado anhidro que viene dado por la ecuación: x X203 : y Y02 : z Z02 en la que X es un elemento trivalente tal como Al, B, Fe, In, Ga, Cr o mezclas de estos, Y es un elemento tetravalente tal como Ti, Sn, Zr, V o mezclas de ellos, y Z corresponde a un elemento seleccionado entre Si o Ge, o mezclas de ellos. El valor de (y+z)/x es al menos 9, y puede estar comprendido entre 20 e infinito y el valor z/y es de al menos 10. De los valores dados se deduce claramente que el material cristalino ITQ-49 se puede sintetizar en ausencia de elementos trivalentes añadidos. El difractograma de Rayos X de la zeolita tras el tratamiento post-síntesis para incorporar elementos trivalentes en su estructura presenta los picos de difracción característicos del material ITQ-49
El componente orgánico presente en el material ITQ-49 según se sintetiza se puede eliminar, por ejemplo por extracción y/o por tratamiento térmico calentando a temperatura por encima de 200° C durante un periodo de tiempo que puede estar comprendido entre 2 minutos y 25 horas. Los cationes de compensación en el material en su forma sin calcinar, o después de un tratamiento térmico, pueden intercambiarse, en el caso de estar presentes, por otros cationes tales como iones metálicos, H+ y precursores de H+ como por ejemplo NH+ 4. Entre los cationes que pueden introducirse por intercambio iónico se prefieren aquellos que pueden tener un papel positivo en la actividad del material como catalizador, y más específicamente se prefieren cationes tales como H+, cationes de tierras raras, y metales del grupo VIII, así como del grupo NA, MIA, IVA, Va, IB, IIB, IIIB, IVB, VB, VIIB de la tabla periódica de los elementos.
Asimismo, es posible introducir cationes en la red de la zeolita ITQ-49 mediante tratamientos post-síntesis. Estos tratamientos consisten en suspender la muestra de ITQ- 49 calcinada o calcinada y lavada en una disolución acuosa, alcohólica, orgánica o mezclas de ambos que contiene el elemento trivalente que se desea incorporar a temperatura entre 0 y 200°C durante periodos comprendidos entre 1 hora y 15 días.
Con el fin de preparar catalizadores, el material cristalino de la presente invención puede combinarse íntimamente con componentes hidrogenantes-deshidrogenantes como platino, paladio, níquel, renio, cobalto, tungsteno, molibdeno, vanadio, cromo, manganeso, hierro y combinaciones de los mismos. La introducción de estos elementos se puede llevar a cabo en la etapa de cristalización, por intercambio (si ha lugar), y/o por impregnación o por mezcla física. Estos elementos pueden ser introducidos en su forma catiónica y/o a partir de sales u otros compuestos que por descomposición generen el componente metálico u óxido en su forma catalítica adecuada.
Además, la presente invención se refiere al procedimiento de obtención del material ITQ- 49 descrito anteriormente.
Según la presente invención, el procedimiento de preparación del material ITQ-49 puede comprender al menos un primer paso de preparación de una mezcla que contiene H20, una fuente de iones fluoruro, un óxido u otra fuente del material tetravalente Z y un agente director de estructura (R), una fuente del elemento trivalente X, un óxido u otra fuente del material tetravalente Y, donde la mezcla de síntesis tiene una composición molar de óxidos en los siguientes rangos:
(Y02+Z02) X203 mayor de 2, preferentemente mayor de 5.
H20/(Y02+Z02) 1-50, preferentemente 2-30.
R/(Y02 + Z02 ) 0.05-3.0, preferentemente entre 0.05-1.
F7(Y02 + Z02 ) 0.01-3.0, preferentemente entre 0.05-1.
Z02/Y02 mayor de 5, preferentemente entre 8-25.
Si02/Ge02 mayor de 1 , preferentemente mayor de 5.
Un segundo paso en el que se puede mantener la mezcla a una temperatura entre 80 y 200°C hasta que se formen los cristales del material y un paso posterior de recuperación del material cristalino. Según una realización preferente de la presente invención, Z es una mezcla de Si y Ge.
Según otra realización preferente, el agente director de estructura R puede ser un compuesto que contiene P, más preferentemente R es una sal de un catión alquilfosfonio, y más preferentemente está seleccionado entre hidróxido de 1 ,4-butanodiil-bis(tritertbutil fosfonio) o una de sus sales.
Este material se puede preparar según una realización particular, a partir de una mezcla de reacción que contiene H20, una fuente de aniones fluoruro, opcionalmente un óxido o una fuente del elemento trivalente X, como por ejemplo Al y/o B, un óxido o una fuente del elemento o elementos tetravalentes Y, como por ejemplo Si, una fuente de Ge, como por ejemplo Ge02 y un agente orgánico director de estructura (R) generalmente un catión orgánico, que puede contener átomos distintos de C, H y N en su composición. Pueden utilizarse como agentes directores de estructura compuestos del tipo alquilfosfonio, y más preferentemente es el hidróxido de 1 ,4-butanodiil-bis(tritertbutil fosfonio) o una de sus sales.
La composición de la mezcla de reacción tiene la siguiente composición en términos de relaciones molares de óxidos: Reactivos Útil Preferido (Y02+Z02)/X203 mayor de 2 mayor de 5 H20/(Y02+Z02) 1-50 2-30
R/(Y02+ Z02) 0.05-3.0 0.05-1.0
F7(Y02 + Z02) 0.01-3.0 0.05-1.0 Ζ02Λ 2 mayor de 5 8-25
Si02/Ge02 mayor de 1 mayor de 5 La cristalización del material se puede llevar a cabo en agitación, en autoclaves a temperatura comprendida entre 80 y 200°C, a tiempos suficientes para conseguir la cristalización, por ejemplo" entre 12 horas y 30 días.
Al finalizar la etapa de cristalización, se separan los cristales del material de las aguas madres, y se recuperan. Debe tenerse en cuenta que los componentes de la mezcla de síntesis pueden provenir de distintas fuentes, y dependiendo de estos pueden variar tiempos y condiciones de cristalización. Con el fin de facilitar la síntesis, se pueden añadir cristales del mismo material o de este material calcinado como semillas, en cantidades de hasta 15% en peso respecto del total de óxidos, a la mezcla de síntesis. Estas pueden ser adicionadas previamente o durante la cristalización.
Según una realización particular, el procedimiento de preparación del material ITQ-49 puede comprender un paso de calcinación del material cristalino obtenido, calcinación que se puede llevar a cabo a vacío, en aire, nitrógeno, hidrógeno, argón, helio o cualquier otro gas y a una temperatura superior a 200°C e inferior a 1200°C, preferentemente entre 200 y 1000°C durante un tiempo que puede ser entre 2 minutos y 25 horas. El material ITQ-49 tras la calcinación, posee un sistema de poros libre de materia orgánica, cuyo difractograma de Rayos X presenta los picos que se listan en la Tabla 2. Durante esta calcinación pueden quedar en el interior de los canales o sobre la superficie del material residuos inorgánicos provenientes del agente director de estructura. Estos residuos pueden ser eliminados mediante un tratamiento posterior de lavado con agua, cualquier alcohol con menos de seis carbonos o mezclas de ellos, así como por disoluciones acuosas o alcohólicas de sales inorgánicas. Según una realización particular, dicho proceso o procesos de lavado puede comprender al menos la siguiente etapa:
a) suspensión del material en una disolución de un compuesto seleccionado entre un ácido, una base, una sal amónica, una sal sódica, de cualquier metal alcalino, cualquier metal alcalino-terreo o mezclas de ellos. De manera preferente dicha disolución es una disolución acuosa, alcohólica, orgánica o mezcla de ambas.
El proceso de lavado se lleva a cabo a una temperatura preferentemente comprendida entre 0°C y 200°C. El diagrama de difracción del material resultante presenta los picos de difracción característicos de este material ITQ-49.
Además, el material ITQ-49 calcinado o el material ITQ-49 calcinado y lavado puede ser sometido a uno o más tratamientos post-síntesis. Dichos tratamientos pueden consistir de manera preferente en tratar la ITQ-49 con disoluciones acuosas, alcohólicas, orgánicas o mezclas de ellas que contenga elementos trivalentes X, seleccionados preferentemente entre Al, Ga, B, Cr, Fe In, y mezclas de ellos con el fin de incorporarlos a la red zeolítica. Este tratamiento post-síntesis se puede realizar a pHs alcalinos, ácidos o neutros a temperaturas comprendidas preferentemente entre 0 y 200°C durante un tiempo preferido entre 1 hora a 15 días. El material resultante presenta los picos de difracción característicos de este material ITQ-49.
Posteriormente se puede recuperar del sólido lavado mediante filtración, centrifugación o cualquier técnica de separación de sólidos de líquidos y puede ser posteriormente activado mediante calcinación a temperaturas superiores a 200°C.
Según una realización particular, la presente invención se refiere a un procedimiento de obtención de un material que posee, además un tratamiento post-síntesis comprende al menos:
a) suspender el material en una disolución que contiene al menos un elemento trivalente X seleccionado entre Al, Ga, B, Cr, Fe, In o mezclas de ellos;
b) recuperación del sólido mediante filtración, centrifugación o cualquier técnica de separación de sólidos de líquidos; c) activación del material mediante calcinación a temperaturas superiores a 200°C.
De manera preferente, la disolución está seleccionada entre una disolución acuosa, alcohólica, orgánica o mezcla de ambas. Además, dicho tratamiento post-síntesis se lleva a cabo a una temperatura preferente entre 0 y 200°C.
El material ITQ-49 puede ser empleado como catalizador en procesos de conversión de hidrocarburos, alcoholes a otros de mayor valor añadido, en la eliminación de compuestos nitrogenados de corrientes gaseosas o líquidas así como en procesos de separación. Según una realización particular, el material ITQ-49 puede ser empleado como catalizador en procesos de conversión de hidrocarburos, en procesos de desparafinado de hidrocarburos, en procesos de conversión de alcoholes, en procesos de conversión de alcoholes con menos de cuatro carbonos en olefinas, en procesos de eliminación de contaminantes nitrogenados en corrientes gaseosas o líquidas, en procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas, en procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas en presencia de gases reductores, en procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas en presencia de amoníaco como reductor, en procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas en presencia de hidrocarburos como reductores y combinaciones de los mismos.
Según otra realización particular, el material ITQ-49 puede ser utilizado como adsorbente. De manera preferente, puede ser utilizado como adsorbente selectivo en procesos de separación de C02 y metano, en procesos de separación de propano y propeno, en procesos de separación de olefinas lineales de la fracción C4 y combinaciones de los mismos.
Descripción de las figuras Figura 1.- Vista de la estructura de la zeolita ITQ-49 a lo largo del eje a (oxígenos omitidos para mayor claridad. Figura 2.- Vista de la estructura de la zeolita ITQ-49 a lo largo del eje b (oxígenos omitidos para mayor claridad).
Figura 3.- Vista de la estructura de la zeolita ITQ-49 a lo largo del eje c (oxígenos omitidos para mayor claridad).
Figura 4.- Afinamiento de Rietveld del diagrama de difracción de rayos X de una muestra de ITQ-49 calcinada a 923K, medido usando la radiación K alfa del cobre. Los puntos muestran el diagrama experimental. La línea a lo largo de los mismos muestra el diagrama calculado para la estructura propuesta. La diferencia entre ambos se muestra debajo. Las líneas verticales bajo los diagramas señalan las posiciones de las reflexiones de Bragg.
Ejemplos Ejemplo 1- Preparación del hidróxido de 1,4-butanodiilbis(tri-tertbutilfosfonio).
20.2 g de tri-tertbutilfosfina se disuelven en 250 mL de acetonitrilo. A esta disolución se le adiciona lentamente una disolución de 61.5 g de 1 ,4-diiodobutano en 150 mL de acetonitrilo. La mezcla se mantiene en agitación a 90°C durante 12 horas, y a continuación se enfría hasta temperatura ambiente.
La mezcla resultante se filtra, el sólido obtenido se lava con acetonitrilo y con éter dietílico, y se seca a vacío. Este sólido, tras disolverlo en metanol, se convierte en el hidróxido correspondiente empleando una resina de intercambio aniónico, en agitación, durante 12 horas.
Ejemplo 2- Preparación de la zeolita ITQ-49
A 28.69 g de una disolución acuosa (0.7 M) de hidróxido de 1 ,4-butanodiil-bis(tritertbutil fosfonio), se le añaden 1 ,9 g Ge02 y 13 g de tetraetilortosilicato. La mezcla se mantiene bajo agitación a temperatura ambiente hasta la total evaporación del etanol formado durante la hidrólisis del tetraetilortosilicato. Posteriormente se añaden 1.67 g de HF (48%) y la suficiente cantidad de agua para alcanzar la relación H20/Si de 7. El gel obtenido se homogeniza y se trasvasa a autoclaves de acero recubiertos de teflón y se introducen en una estufa con agitación a 125°C durante 16 días. Transcurrido el tiempo de síntesis, el sólido obtenido se lava con agua destilada a 85°C, se centrifuga para separar el sólido y se seca a 100 °C durante 12 horas.
El sólido resultante presenta un diagrama de difracción de Rayos X que contiene los picos característicos del material ITQ-49.
Ejemplo 3- Preparación de la zeolita ITQ-49 en su forma calcinada.
Un sólido preparado tal y como se describe en el ejemplo 2 se introduce en un horno de mufla y se calcina en aire a 700°C durante 5 horas para descomponer la materia orgánica retenida en su interior.
El sólido resultante presenta un diagrama de difracción de Rayos X que contiene los picos característicos del material ITQ-49 calcinado.
Ejemplo 4- Preparación de la zeolita ITQ-49
A 28.69 g de una disolución acuosa (0.7 M) de hidróxido de 1 ,4-butanodiil-bis(tritertbutil fosfonio), se le añaden 1 ,4 g Ge02 y 14 g de tetraetilortosilicato. La mezcla se mantiene bajo agitación a temperatura ambiente hasta la total evaporación del etanol formado durante la hidrólisis del tetraetilortosilicato. Posteriormente se añaden 1.67 g de HF (48%) y la suficiente cantidad de agua para alcanzar la relación H20/S¡ de 7.
El gel obtenido se homogeniza y se trasvasa a autoclaves de acero recubiertos de teflón y se introducen en una estufa con agitación a 125°C durante 18 días.
Transcurrido el tiempo de síntesis, el sólido obtenido se lava con agua destilada a 85°C, se centrifuga para separar el sólido y se seca a 100 °C durante 12 horas. El sólido resultante presenta un diagrama de difracción de Rayos X que contiene los picos característicos del material ITQ-49. Ejemplo 5- Refinamiento de la estructura de ITQ-49 según el método de Rietveld.
La estructura de una muestra de la zeolita ITQ-49 puede ser satisfactoriamente refinada empleando el método de Rietveld aplicado a un diagrama de difracción de Rayos X obtenido de una muestra preparada según se describe en el ejemplo 3. El ajuste entre el diagrama experimental y el simulado se muestra en la Figura 4. El grupo espacial, los parámetros del refinamiento y las posiciones atómicas de la zeolita ITQ-49 se muestran en la Tabla 4.
Tabla 4
Grupo espacial:
I m m m
Parámetros de celda unidad:
a= 19.6007(8) angstroms
b= 18.3274(7) angstroms
c= 16.5335(6) angstroms
alpha=beta=gamma=90°
Posiciones atómicas:
Posición X y z Ocupación
Sil 0.2357(3) 0.1189(3) 0.1786(4) 0.78(1)
Ge1 0.2357(3) 0.1189(3) 0.1786(4) 0.22(1)
Si2 0.1640(3) 0.3802(4) 0.1797(4) 0.77(1)
Ge2 0.1640(3) 0.3802(4) 0.1797(4) 0.23(1)
Si3 0 0.1436(4) 0.0908(5) 0.89(1)
Ge3 0 0.1436(4) 0.0908(5) 0.11(1)
Si4 0.1389(4) 0.2365(4) 0.0960(4) 0.91(1)
Ge4 0.1389(4) 0.2365(4) 0.0960(4) 0.09(1) Si5 0.0812(4) 0.2575(5) 0.83(1)
Ge5 0.0812(4) ½ 0.2575(5) 0.17(1)
S¡6 0.2487(4) 0 0.4062(4) 0.66(1)
Ge6 0.2487(4) 0 0.4062(4) 0.34(1)
Si7 0.1481(4) 0 0.2636(4) 0.78(1)
Ge7 0.1481(4) 0 0.2636(4) 0.22(1)
Si8 0.1806(4) ½ 0.4067(4) 0.90(1)
Ge8 0.1806(4) ½ 0.4067(4) 0.10(1)
S¡9 0 0 0.2061(6) 0.92(1)
Ge9 0 0 0.2061(6) 0.08(1)
01 0.2854(10) 0.1493(7) 0.2501(10) 1.0
02 0.1695(7) 0.0724(7) 0.2126(11) 1.0
03 0.2005(7) 0.1898(7) 0.1354(11) 1.0
04 0.2665(7) 0.0671(6) 0.1070(8) 1.0
05 0.0965(6) 0.4320(7) 0.1950(9) 1.0
06 0.2144(8) 0.4210(6) 0.1153(9) 1.0
07 0.1245(8) 0.3199(6) 0.1240(10) 1.0
08 0 0.1096(11) 0 1.0
09 0.0698(6) 0.1891 (8) 0.1079(11) 1.0
010 0 0.0663(7) 0.1392(10) 1.0
011 0.1468(13) 0.2247(13) 0 1.0
012 0.1151(8) ½ 0.3473(8) 1.0
013 0 ½ 0.268(2) 1.0
014 0.1749(7) 0 0.3581 (7) 1.0
015 0.2169(11) 0 ½ 1.0
016 0.0655(4) 0 0.2650(10) 1.0
017 0.1596(14) ½ ½ 1.0

Claims

REIVINDICACIONES
1. - Un material cristalino microporoso, caracterizado porque posee una composición química:
x X203 : y Y02 : z Z02
donde:
X es un elemento trivalente seleccionado entre Al, B, Fe, In, Ga, Cr, o mezclas de estos;
Y es un elemento tetravalente seleccionado entre Ti, Sn, Zr, V o mezclas de ellos;
Z es un elemento tetravalente seleccionado entre Si, Ge o mezclas de ellos; el valor de (y+z)/x está comprendido entre 9 e infinito;
el valor de z/y está comprendido entre 10 e infinito;
y porque tiene un patrón de difracción rayos X representado en la tabla 3.
2. - Un material cristalino microporoso según la reivindicación 1 , caracterizado porque
- Y está seleccionado entre Ti, Sn, Zr, o mezclas de los mismos; el valor de (y+z)/x está comprendido entre 20 e infinito;
el valor de z y está comprendido entre 15 e infinito;
3.- Un material cristalino microporoso según cualquiera de las reivindicaciones 1 y 2, caracterizado porque Z es Si.
4. - Un material cristalino microporoso según cualquiera de las reivindicaciones 1 a 3, caracterizado porque x es igual a cero y posee una composición química:
y Y02 : z Z02
5. - Un material cristalino microporoso según cualquiera de las reivindicaciones 1 a 3, caracterizado porque y es igual a cero y posee una composición química:
x X203 : z Z02
donde:
- el valor de z/x está comprendido entre 9 e infinito.
6.- Un material cristalino microporoso según la reivindicación 5, caracterizado porque el valor de z/x está comprendido entre 20 e infinito.
7. - Un material cristalino microporoso según cualquiera de las reivindicaciones 1 a 3, caracterizado porque posee una composición química:
t P205 : x X203 : y Y02 : z Z02
donde:
el valor de t/(x+y+z) está comprendido entre 1 y 0;
y porque tiene un patrón de rayos X representado en la tabla 3.
8. - Un material cristalino microporoso según la reivindicación 7, caracterizado porque x es igual a cero y posee una composición química:
t P205 : y Y02 : z Z02
donde:
- t/(y+z) está comprendido entre 1 y 0.
9. - Un material cristalino microporoso según una de las reivindicaciones 6 y 7, caracterizado porque y es igual a cero y posee una composición química:
t P205 : x X203 : z Z02
donde:
el valor de z/x está comprendido entre 9 e infinito;
t/(x+z) está comprendido entre 1 y 0.
10.- Un material cristalino microporoso según la reivindicación 9, caracterizado porque el valor de z/x está comprendido entré 20 e infinito.
11.- Un material cristalino microporoso según una de las reivindicaciones 1 a 3, caracterizado porque posee una composición química:
n R : x X203 : z Z02 : y Y02
donde:
R es un agente director de estructura;
el valor de n/(x+y+z) está comprendido entre 1 y 0,001 ;
y porque tiene un patrón de rayos X representado en la tabla 2.
12.- Un material cristalino microporoso según la reivindicación 11 , caracterizado porque el agente director de estructura R contiene P.
13.- Un material cristalino microporoso según la reivindicación 12, caracterizado porque R es una sal de un catión alquilfosfonio.
14. - Un material cristalino microporoso según la reivindicación 13, caracterizado porque R es hidróxido de 1 ,4-butanodiil-bis(tritertbutil fosfonio).
15. - Un material cristalino microporoso según cualquiera de las reivindicaciones 11 a 14, caracterizado porque x es igual a cero y por la siguiente composición química:
n R : y Y02 : z Z02
donde:
- el valor de n/(y+z) está comprendido entre 1 y 0,001.
16. - Un material cristalino microporoso según cualquiera de las reivindicaciones 11 a 14, caracterizado porque y es igual a cero y por la siguiente composición química:
n R : x X203 : z Z02
donde:
el valor de z/x está comprendido entre 9 e infinito;
el valor de n/(x+z) está comprendido entre 1 y 0,001.
17. - Un material cristalino microporoso según la reivindicación 16, caracterizado porque el valor de z/x está comprendido entre 20 e infinito.
18. - Un material cristalino microporoso según cualquiera de las reivindicaciones anteriores, caracterizado porque posee átomos en coordinación tetraédrica unidos a través de átomos de oxígeno puente que conectan átomos en coordinación tetraédrica contiguos, conteniendo 92 átomos en coordinación tetraédrica en su celda unidad, denominados T1 , T2, T3, T4 hasta T92, que están localizados en las posiciones cristalográficas con coordenadas atómicas cartesianas x, y y z que se muestran en la Tabla 1.
19. - Un procedimiento de preparación del material descrito según cualquiera de las reivindicaciones 1 a 18, caracterizado porque comprende al menos los siguientes pasos: a) preparación de una mezcla que contiene H20, una fuente de iones fluoruro, un óxido u otra fuente del material tetravalente Z y un agente director de estructura (R), una fuente del elemento trivalente X, un óxido u otra fuente del material tetravalente Y, donde la mezcla de síntesis tiene una composición molar de óxidos en los siguientes rangos:
(Y02+Z02)/X203 mayor de 2
H20/(Y02+Z02) 1-50
R/(Y02+ Z02) 0.05-3.0
F7(Y02 + Z02) 0.01-3.0
Z02/Y02 mayor de 5
Si02/Ge02 mayor de 1
b) mantener la mezcla a una temperatura entre 80 y 200°C hasta que se formen los cristales del material;
c) recuperación del material cristalino.
20. - Procedimiento de obtención de un material según la reivindicación 19, caracterizado porque Z es Si, Ge o una mezcla de ambos.
21.- Procedimiento de obtención de un material según cualquiera de las reivindicaciones 19 y 20, caracterizado porque el agente director de estructura R es un compuesto que contiene P.
22. - Procedimiento de obtención de un material según la reivindicación 21 , caracterizado porque R es una sal de alquilfosfonio.
23. - Procedimiento de obtención de un material según la reivindicación 22, caracterizado porque R es hidróxido de 1 ,4-butanodiil-bis(tritertbutil fosfonio) o una de sus sales.
24.- Procedimiento de obtención de un material según cualquiera de las reivindicaciones 19 a 23, caracterizado porque comprende, además, la calcinación del material cristalino obtenido.
25. - Procedimiento de obtención de un material según la reivindicación 24, caracterizado porque la calcinación se lleva a cabo a una temperatura entre 200 y 1200°C.
26. - Procedimiento de obtención de un material según cualquiera de las reivindicaciones 19 a 25, caracterizado porque comprende, además uno o varios procesos post-síntesis.
27. - Procedimiento de obtención de un material según la reivindicación 26, caracterizado porque dicho tratamiento post-síntesis comprende al menos:
a) suspender el material en una disolución que contiene al menos un elemento trivalente X seleccionado entre Al, Ga, B, Cr, Fe, In o mezclas de ellos;
b) recuperación del sólido mediante filtración, centrifugación o cualquier técnica de separación de sólidos de líquidos;
c) activación del material mediante calcinación a temperaturas superiores a 200°C.
28.- Procedimiento de obtención de un material según la reivindicación 27, caracterizado porque la disolución está seleccionada entre una disolución acuosa, alcohólica, orgánica o mezcla de ambas.
29. - Procedimiento de obtención de un material según cualquiera de las la reivindicaciones 27 y 28, caracterizado porque el tratamiento post-síntesis se lleva a cabo a una temperatura entre 0 y 200°C.
30. - Uso de un material descrito según cualquiera de las reivindicaciones 1 a 18 y obtenido según el proceso descrito en las reivindicaciones 19 a 29 como catalizador.
31. -Uso del material descrito según la reivindicación 30 como catalizador en procesos de conversión de hidrocarburos.
32. - Uso del material descrito según la reivindicación 30 como catalizador en procesos de desparafinado de hidrocarburos.
33. - Uso del material descrito según la reivindicación 30 como catalizador en procesos de conversión de alcoholes.
34.- Uso del material descrito según la reivindicación 30 como catalizador en procesos de conversión de alcoholes con menos de cuatro carbonos en olefinas.
35.- Uso del material descrito según la reivindicación 30 como catalizador en procesos de eliminación de contaminantes nitrogenados en corrientes gaseosas o líquidas.
36. - Uso del material descrito según la reivindicación 30 como catalizador en procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas.
37. - Uso del material descrito según la reivindicación 30 como catalizador en procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas en presencia de gases reductores.
38.- Uso del material descrito según la reivindicación 30 como catalizador en procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas en presencia amoniaco como reductor.
39. - Uso del material descrito según la reivindicación 30 como catalizador en procesos de eliminación de óxidos de nitrógeno de corrientes gaseosas en presencia hidrocarburos como reductores.
40. - Uso de un material descrito según cualquiera de las reivindicaciones 1 a 18 y obtenido según el proceso descrito en las reivindicaciones 19 a 29 como adsorbente.
41. - Uso del material descrito según la reivindicación 40 como adsorbente selectivo en procesos de separación de C02 y metano.
42. - Uso del material descrito según la reivindicación 40 como adsorbente selectivo en procesos de separación de propano y propeno.
43.- Uso del material descrito según la reivindicación 40 como adsorbente selectivo en procesos de separación de olefinas lineales de la fracción C4.
PCT/ES2013/000094 2012-04-18 2013-04-16 Material itq-49, su procedimiento de obtención y su uso WO2013156638A1 (es)

Priority Applications (11)

Application Number Priority Date Filing Date Title
RU2014141931A RU2667296C2 (ru) 2012-04-18 2013-04-16 Материал itq-49, способ его получения и его применение
SG11201406708XA SG11201406708XA (en) 2012-04-18 2013-04-16 Itq-49 material, method for the production thereof and use of same
CN201380026350.9A CN104487385B (zh) 2012-04-18 2013-04-16 Itq‑49材料、其生产方法及其用途
BR112014026154-7A BR112014026154B1 (pt) 2012-04-18 2013-04-16 material itq-49, método para a produção do mesmo e uso do mesmo
EP13778919.4A EP2840064A4 (en) 2012-04-18 2013-04-16 ITQ-49 MATERIAL, METHOD FOR THE PRODUCTION THEREOF AND USE THEREOF
JP2015506267A JP6194352B2 (ja) 2012-04-18 2013-04-16 Itq−49物質、その製造方法およびその使用
CA2870579A CA2870579C (en) 2012-04-18 2013-04-16 Itq-49 zeolitic material, method for the production thereof and use of same
KR1020147029223A KR101951217B1 (ko) 2012-04-18 2013-04-16 Itq-49 재료, 그 제조 방법 및 용도
ZA2014/07558A ZA201407558B (en) 2012-04-18 2014-10-17 Itq-49 material, method for the production thereof and use of same
US14/516,743 US9764311B2 (en) 2012-04-18 2014-10-17 ITQ-49 material, method for the production thereof and use of same
US15/678,636 US10427140B2 (en) 2012-04-18 2017-08-16 ITQ-49 material, method for the production thereof and use of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201230579A ES2430404B1 (es) 2012-04-18 2012-04-18 Material ITQ-49, su procedimiento de obtención y su uso
ESP201230579 2012-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/516,743 Continuation US9764311B2 (en) 2012-04-18 2014-10-17 ITQ-49 material, method for the production thereof and use of same

Publications (2)

Publication Number Publication Date
WO2013156638A1 true WO2013156638A1 (es) 2013-10-24
WO2013156638A8 WO2013156638A8 (es) 2014-12-18

Family

ID=49382964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/000094 WO2013156638A1 (es) 2012-04-18 2013-04-16 Material itq-49, su procedimiento de obtención y su uso

Country Status (12)

Country Link
US (2) US9764311B2 (es)
EP (1) EP2840064A4 (es)
JP (1) JP6194352B2 (es)
KR (1) KR101951217B1 (es)
CN (1) CN104487385B (es)
BR (1) BR112014026154B1 (es)
CA (1) CA2870579C (es)
ES (1) ES2430404B1 (es)
RU (1) RU2667296C2 (es)
SG (1) SG11201406708XA (es)
WO (1) WO2013156638A1 (es)
ZA (1) ZA201407558B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015196049A1 (en) * 2014-06-20 2015-12-23 Exxonmobil Research And Engineering Company Separation and storage of fluids using itq-55

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2430404B1 (es) 2012-04-18 2014-09-29 Consejo Superior De Investigaciones Científicas (Csic) Material ITQ-49, su procedimiento de obtención y su uso
JP7148641B2 (ja) * 2018-02-20 2022-10-05 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー Emm-37材料並びにその方法及び使用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992250A (en) * 1984-04-13 1991-02-12 Uop Germanium-aluminum-phosphorus-silicon-oxide molecular sieve compositions

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354719A (en) * 1993-05-03 1994-10-11 Intevep, S.A. Method of manufacturing metallosilicates
US5849258A (en) * 1996-06-06 1998-12-15 Intevep, S.A. Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same
ES2192935B1 (es) * 2001-05-14 2004-08-16 Universidad Politecnica De Valencia Sintesis de zeolita itq-21.
RU2328445C2 (ru) * 2002-05-23 2008-07-10 Консехо Супериор Де Инвестигасьонес Сьентификас Микропористый кристаллический цеолитный материал (цеолит itq-22), способ его получения и применение в качестве катализатора
ES2228278B1 (es) * 2003-09-29 2006-06-01 Universidad Politecnica De Valencia. Material cristalino microporoso de naturaleza zeolitica (zeolita itq-28).
ES2245588B1 (es) * 2004-03-11 2007-08-16 Universidad Politecnica De Valencia Material cristalino microporoso de naturaleza zeolitica con estructura lta (itq-29), su procedimiento de preparacion y usos del mismo en procesos de transformacion y separacion de compuestos organicos.
ES2246704B1 (es) * 2004-05-28 2007-06-16 Universidad Politecnica De Valencia Zeolita itq-30.
US7527782B2 (en) * 2004-11-19 2009-05-05 Exxonmobil Research And Engineering Company ITQ-27, new crystalline microporous material
ES2259537B1 (es) * 2005-01-17 2007-11-01 Universidad Politecnica De Valencia Sintesis de la zeolita itq-33.
ES2263369B1 (es) * 2005-02-02 2007-12-16 Universidad Politecnica De Valencia Material cristalino microporoso de naturaleza zeolitica, zeolita itq-32, procedimiento de preparacion y uso.
ES2284379B1 (es) * 2006-02-28 2008-11-01 Universidad Politecnica De Valencia Un material cristalino microporoso, zeolita itq-37, procedimiento de preparacion y uso.
EP2099713B1 (en) * 2006-12-07 2012-09-19 ExxonMobil Research and Engineering Company Itq-34, crystalline microporous material
US8529868B2 (en) * 2009-12-31 2013-09-10 Exxonmobil Research And Engineering Company ITQ-40, new crystalline microporous material
ES2430404B1 (es) 2012-04-18 2014-09-29 Consejo Superior De Investigaciones Científicas (Csic) Material ITQ-49, su procedimiento de obtención y su uso
MX2015011098A (es) * 2013-02-28 2016-04-06 Aqua Membranes Llc Construcción mejorada de elementos enrollados en espiral.
ES2554648B1 (es) * 2014-06-20 2016-09-08 Consejo Superior De Investigaciones Científicas (Csic) Material ITQ-55, procedimiento de preparación y uso

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992250A (en) * 1984-04-13 1991-02-12 Uop Germanium-aluminum-phosphorus-silicon-oxide molecular sieve compositions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BURTON A.W. ET AL.: "The chemistry of phase selectivity in the synthesis of high-silica zeolites", CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, vol. 10, 7 October 2005 (2005-10-07), pages 211 - 219, XP027721266 *
See also references of EP2840064A4 *
SIMANCAS R. ET AL.: "Modular Organic Structure-Directing Agents for the Synthesis of Zeolites", SCIENCE, vol. 330, 26 October 2010 (2010-10-26), pages 1219 - 1222, XP055168907 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015196049A1 (en) * 2014-06-20 2015-12-23 Exxonmobil Research And Engineering Company Separation and storage of fluids using itq-55
WO2015196026A1 (en) * 2014-06-20 2015-12-23 Exxonmobil Research And Engineering Company Separation and storage of fluids using itq-55
WO2015196018A1 (en) * 2014-06-20 2015-12-23 Higher Council Of Scientific Research (Csic) Material itq-55, method for preparation and use
WO2015196023A1 (en) * 2014-06-20 2015-12-23 Exxonmobil Research And Engineering Company Separation, storage, and catalytic conversion of fluids using itq-55
WO2015196043A1 (en) * 2014-06-20 2015-12-23 Exxonmobil Research And Engineering Company Separation and storage of fluids using itq-55
CN106458617A (zh) * 2014-06-20 2017-02-22 埃克森美孚研究工程公司 使用itq‑55分离和储存流体
KR20170021314A (ko) * 2014-06-20 2017-02-27 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Itq-55를 사용한 유체 분리 및 저장
KR20170021855A (ko) * 2014-06-20 2017-02-28 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Itq-55를 사용한 유체 분리 및 저장
KR20170024000A (ko) * 2014-06-20 2017-03-06 하이어 카운슬 오브 사이언티픽 리서치 (씨에스아이씨) Itq-55 물질, 제조 방법 및 용도
KR20170024001A (ko) * 2014-06-20 2017-03-06 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Itq-55를 사용한 유체 분리 및 저장
US9617164B2 (en) 2014-06-20 2017-04-11 Exxonmobil Research And Engineering Company Separation, storage, and catalytic conversion of fluids using ITQ-55
CN106660011A (zh) * 2014-06-20 2017-05-10 科学研究高等委员会 材料itq‑55、制备方法及用途
US9688542B2 (en) 2014-06-20 2017-06-27 Exxonmobil Research And Engineering Company Separation and storage of fluids using ITQ-55
US9695056B2 (en) 2014-06-20 2017-07-04 Exxonmobil Research And Engineering Company Separation and storage of fluids using ITQ-55
AU2015276976B2 (en) * 2014-06-20 2017-07-13 Exxonmobil Research And Engineering Company Separation and storage of fluids using ITQ-55
AU2015276970B2 (en) * 2014-06-20 2017-07-13 Exxonmobil Research And Engineering Company Separation and storage of fluids using ITQ-55
AU2015276953B2 (en) * 2014-06-20 2017-07-13 Exxonmobil Research And Engineering Company Separation and storage of fluids using ITQ-55
JP2017519629A (ja) * 2014-06-20 2017-07-20 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Itq−55を使用する流体の分離および貯蔵
JP2017519628A (ja) * 2014-06-20 2017-07-20 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Itq−55を使用する流体の分離および貯蔵
JP2017521243A (ja) * 2014-06-20 2017-08-03 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Itq−55を使用する流体の分離および貯蔵
US9738539B2 (en) 2014-06-20 2017-08-22 Exxonmobil Research And Engineering Company Separation and storage of fluids using ITQ-55
JP2017524637A (ja) * 2014-06-20 2017-08-31 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス(シーエスアイシー)Consejo Superior De Investigaciones Cientificas 材料itq−55、調製方法および使用
US9856145B2 (en) 2014-06-20 2018-01-02 Exxonmobil Research And Engineering Company Material ITQ-55, method for preparation and use
CN106458617B (zh) * 2014-06-20 2018-09-14 埃克森美孚研究工程公司 使用itq-55分离流体的方法
RU2672424C2 (ru) * 2014-06-20 2018-11-14 ЭкссонМобил Рисерч энд Энджиниринг Компани Разделение и хранение текучих сред с использованием itq-55
RU2674121C2 (ru) * 2014-06-20 2018-12-04 ЭкссонМобил Рисерч энд Энджиниринг Компани Разделение и хранение текучих сред с использованием itq-55
RU2675874C2 (ru) * 2014-06-20 2018-12-25 ЭкссонМобил Рисерч энд Энджиниринг Компани Разделение и хранение текучих сред с использованием itq-55
RU2682600C2 (ru) * 2014-06-20 2019-03-19 Хайер Каунсил Оф Сайентифик Рисерч (Ксис) Материал ITQ-55, способ получения и применение
CN106660011B (zh) * 2014-06-20 2019-09-17 科学研究高等委员会 材料itq-55、制备方法及用途
KR102338477B1 (ko) 2014-06-20 2021-12-15 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Itq-55를 사용한 유체 분리 및 저장
KR102338470B1 (ko) 2014-06-20 2021-12-15 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Itq-55를 사용한 유체 분리 및 저장
KR102360244B1 (ko) 2014-06-20 2022-02-09 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Itq-55를 사용한 유체 분리 및 저장
KR102382437B1 (ko) * 2014-06-20 2022-04-04 하이어 카운슬 오브 사이언티픽 리서치 (씨에스아이씨) Itq-55 물질, 제조 방법 및 용도

Also Published As

Publication number Publication date
CN104487385A (zh) 2015-04-01
SG11201406708XA (en) 2015-04-29
BR112014026154B1 (pt) 2021-01-05
JP6194352B2 (ja) 2017-09-06
RU2014141931A (ru) 2016-05-10
EP2840064A1 (en) 2015-02-25
WO2013156638A8 (es) 2014-12-18
CN104487385B (zh) 2017-11-14
CA2870579C (en) 2019-09-03
EP2840064A4 (en) 2016-02-10
US10427140B2 (en) 2019-10-01
ZA201407558B (en) 2016-01-27
RU2667296C2 (ru) 2018-09-18
KR101951217B1 (ko) 2019-02-22
BR112014026154A2 (pt) 2017-06-27
CA2870579A1 (en) 2013-10-24
JP2015520715A (ja) 2015-07-23
ES2430404A1 (es) 2013-11-20
KR20150016215A (ko) 2015-02-11
US9764311B2 (en) 2017-09-19
US20150038756A1 (en) 2015-02-05
US20170368537A1 (en) 2017-12-28
ES2430404B1 (es) 2014-09-29

Similar Documents

Publication Publication Date Title
EP3157869B1 (en) Material itq-55 and method for preparation
US10464817B2 (en) EMM-26, a novel synthetic crystalline material, its preparation, and its use
ES2745930T3 (es) ITQ-27, nuevo material microporoso cristalino
ES2907869T3 (es) Síntesis térmica de sólidos de una zeolita que contiene boro con una estructura de entramado MWW.
ES2263369A1 (es) Material cristalino microporoso de naturaleza zeolitica, zeolita itq-32, procedimiento de preparacion y uso.
WO2004071956A2 (es) Un material cristalino poroso (zeolita itq-24), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos
US10427140B2 (en) ITQ-49 material, method for the production thereof and use of same
ES2327395T3 (es) Material cristalino poroso (zeolita itq-21), el metodo de preparacion del mismo y el uso del mismo en la conservacion catalitica de compuestos organicos.
Xu et al. From Zeolites to Porous MOF Materials-the 40th Anniversary of International Zeolite Conference, 2 Vol Set: Proceedings of the 15th International Zeolite Conference, Beijing, PR China, 12-17th August 2007
WO2011107641A1 (es) Material itq-47, su procedimiento de obtención y su uso
ES2650083B1 (es) Material itq-62, su procedimiento de obtención y su uso
ES2380471B1 (es) Material itq-45, su procedimiento de obtención y su uso.
KR20210100696A (ko) Emm-41 조성물, 이의 제조 방법 및 용도
Corma et al. Material ITQ-55, method for preparation and use
ES2421063B1 (es) Material ITQ-38, su procedimiento de obtención y su uso

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2870579

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015506267

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20147029223

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2014141931

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013778919

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014026154

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014026154

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141020