WO2013153704A1 - レーザ装置 - Google Patents

レーザ装置 Download PDF

Info

Publication number
WO2013153704A1
WO2013153704A1 PCT/JP2012/082222 JP2012082222W WO2013153704A1 WO 2013153704 A1 WO2013153704 A1 WO 2013153704A1 JP 2012082222 W JP2012082222 W JP 2012082222W WO 2013153704 A1 WO2013153704 A1 WO 2013153704A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
gas
housing
laser beam
closed loop
Prior art date
Application number
PCT/JP2012/082222
Other languages
English (en)
French (fr)
Inventor
古田 啓介
大嗣 森田
今野 進
一樹 久場
西前 順一
藤川 周一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2013153704A1 publication Critical patent/WO2013153704A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • H01S3/027Constructional details of solid state lasers, e.g. housings or mountings comprising a special atmosphere inside the housing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3505Coatings; Housings; Supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium

Definitions

  • the present invention relates to a laser apparatus including a housing that houses various optical elements, and more particularly to measures against harmful gases that degrade optical elements.
  • the UV laser oscillator applied to microfabrication is generally a solid laser medium such as YAG (Yttrium Aluminum Garnet) or YVO 4 doped with active ions, such as LBO crystal (LiB 3 O 5 ). UV light is generated by applying a wavelength conversion technique using a nonlinear optical crystal.
  • Patent Document 1 in order to remove harmful gas that degrades the optical components existing in the housing, scattered light or part of the UV laser light A harmful gas density is reduced by installing a photocatalyst at a site in the case where the reflected light is irradiated and decomposing the harmful gas to a harmless level. Further, a dedicated UV light source for exciting the photocatalyst is separately installed. Further, an adsorbent that removes the decomposed gas is installed in the housing.
  • gas adsorbents for example, Patent Documents 2 to 5
  • desiccants for example, desiccants
  • filtration are used to remove moisture, organic gas, suspended particulates, and ozone harmful to the optical elements inside the laser housing.
  • a filter, a decomposition catalyst, and the like are installed outside the casing to form a closed loop by gas piping, and the gas is circulated by a pump.
  • the harmful gas reduction effect cannot be obtained when the laser is stopped or the photocatalytic excitation light source is stopped. Further, although the harmful gas reduction operation starts from the time of starting the laser, a waiting time of several hours is required until the harmful gas density is sufficiently reduced. Further, when a dedicated light source for photocatalytic excitation is applied when the laser is stopped, the main power supply of the apparatus cannot be stopped even when the apparatus is not used, and the running cost of the excitation UV light source is required separately.
  • An object of the present invention is to provide a laser apparatus that can reduce the influence of harmful gas without consuming electric power even when the apparatus is stopped and without requiring a standby time when the apparatus is started up.
  • a laser apparatus includes a laser light generator that generates laser light, A housing for hermetically storing the laser beam generator; An adsorbing part installed inside the housing to adsorb harmful gases, Closed loop piping in communication with the exhaust and supply ports of the housing; A pump for circulating the gas in the housing using closed loop piping; A gas pressure adjusting valve provided between the pump and the air supply port for adjusting the gas pressure inside the housing is provided.
  • the adsorption part preferably contains at least one material selected from the group consisting of activated carbon, zeolite and silica gel.
  • an organic substance removing pipe is provided on the closed loop pipe.
  • a gas drying pipe is provided on the closed loop pipe.
  • a gas buffer unit is provided on the closed loop piping.
  • an opening / closing valve is provided on the piping side of the exhaust port and the supply port of the housing.
  • the inside of the housing is preferably filled with a rare gas while the apparatus is stopped.
  • the gas pressure in the housing is preferably maintained at an absolute pressure of 65 kPa or less by the suction operation of the pump.
  • the present invention further includes a fundamental laser oscillator that is disposed outside the housing and generates fundamental laser light,
  • the laser beam generator preferably has a wavelength conversion function for generating harmonics of the fundamental laser beam.
  • the laser beam generator generates an ultraviolet laser beam.
  • the influence of harmful gas can be reduced without consuming electric power even when the apparatus is stopped by installing an adsorption portion for adsorbing harmful gas inside the casing. Further, by providing a gas pressure adjusting valve for adjusting the gas pressure inside the housing, it becomes possible to quickly maintain the inside of the housing at a negative pressure when the apparatus is started up. As a result, the influence of harmful gas can be reduced without requiring standby time.
  • FIG. 1 is a block diagram showing a laser apparatus according to Embodiment 1 of the present invention.
  • an apparatus that generates UV (ultraviolet) laser light is illustrated, but for an apparatus that generates other wavelength regions, for example, X-ray laser light, visible laser light, infrared laser light, and far-infrared laser light.
  • the present invention is also applicable.
  • the laser device includes a fundamental wave laser oscillator 20, a wavelength conversion unit 40, and a housing 1 for hermetically storing them.
  • the fundamental laser oscillator 20 includes an excitation light source 21, a condensing element 22, a resonator mirror 23, a laser medium 24, a Q switch element 25, and a resonator mirror 26 along an optical axis through which laser light propagates. Etc.
  • the excitation light source 21 is composed of a semiconductor laser or the like, and generates excitation light for optically exciting the laser medium 24.
  • the condensing element 22 is composed of a lens, a mirror, etc., condenses the excitation light from the excitation light source 21 and irradiates the laser medium 24.
  • the resonator mirror 23 has a low transmittance with respect to the excitation light and a high reflectance with respect to the oscillation light of the laser medium 24, and optical resonance with respect to the oscillation light of the laser medium 24 together with the resonator mirror 26. Configure the vessel.
  • the laser medium 24 is formed of a solid-state laser material doped with active ions, and exhibits an optical amplification function related to oscillation light by irradiation with excitation light.
  • an Nd: YAG crystal or an Nd: YVO 4 crystal is used as the laser medium 24, the laser medium 24 is excited by excitation light having a wavelength of 810 nm and generates near infrared laser light having a wavelength of 1064 nm.
  • the Q switch element 25 has a function of achieving high output pulse oscillation by changing the Q value of the optical resonator at high speed.
  • the resonator mirror 26 has a function of partially transmitting the oscillation light of the laser medium 24, and functions as an output mirror of the fundamental laser beam.
  • the wavelength conversion unit 40 includes a condensing element 41, a non-linear optical element 42, a condensing element 43, a non-linear optical element 44, a condensing element 45, and the like along the optical axis through which the laser light propagates.
  • the condensing elements 41, 43, and 45 are configured with lenses, mirrors, and the like.
  • laser light having various wavelengths can be obtained by using wavelength conversion methods such as sum frequency generation (SFG), frequency multiplication, difference frequency generation (DFG), and optical parametric oscillation (OPG).
  • FSG sum frequency generation
  • DFG difference frequency generation
  • OPG optical parametric oscillation
  • the nonlinear optical elements 42 and 44 are made of a crystal material such as BBO, LBO, CLBO, CBO, KTP, LiNbO 3 , MgO: LiNbO 3 , AgGaS 2, for example.
  • the front-stage nonlinear optical element 42 has a function of generating the second harmonic of the fundamental laser beam. For example, when the wavelength of the fundamental laser beam is 1064 nm, a visible laser with a wavelength of 532 nm is 1 ⁇ 2. Generate light.
  • the latter-stage nonlinear optical element 44 has a function of generating the third harmonic of the fundamental laser beam. For example, when the wavelength of the fundamental laser beam is 1064 nm, a UV laser having a wavelength of 1/3 is 355 nm. Generate light.
  • an emission window 2 made of an optical material such as quartz is installed, and the internal space is isolated from the outside air while allowing the wavelength-converted laser light to pass therethrough.
  • the present invention can also be applied to a form of internal wavelength conversion arranged inside the optical resonator. Further, in the present embodiment, the generation of the third harmonic is exemplified, but the present invention can also be applied to the generation of the fourth or higher harmonic.
  • the adsorbing part 5 has a container made of a material having negligible outgas generation, for example, a metal, a fluorine-based resin, or a paper-made packaging material such as paper, and has activated carbon, zeolite, silica gel, or these in the inside thereof. Contains a combination of adsorbents.
  • An exhaust port 8 and an air supply port 9 are provided on the side wall of the housing 1.
  • a gas pipe 10 isolated from the outside air is connected to the exhaust port 8 and the air supply port 9 so as to form a closed loop outside the housing.
  • a pump 11, a gas drying pipe 12, an organic substance removal pipe 13, and a gas pressure adjustment valve 14 are installed on the gas pipe 10 along the gas flow direction.
  • the pump 11 is, for example, a diaphragm pump for driving a fluororesin diaphragm, and sucks the gas in the housing 1 from the exhaust port 8 and supplies it again from the air supply port 9 through the gas pipe 10. Circulate the gas.
  • the gas circulation direction is preferably a direction from the wavelength conversion unit 40 toward the fundamental laser oscillator 20 so that harmful gas does not stay around the wavelength conversion unit 40 for a long time.
  • the gas drying tube 12 is configured as a sealed tube filled with silica gel, for example.
  • the organic substance removing tube 13 is configured as a sealed tube filled with activated carbon, for example.
  • the gas pressure adjustment valve 14 is provided between the pump 11 and the air supply port 9 and has a function of adjusting the gas pressure inside the housing 1.
  • Such a closed-loop gas piping system is preferably composed of a material that does not release the outgas of the silicon compound, such as a metal or a fluorine-based material.
  • a gas pressure sensor (not shown) for measuring the internal gas pressure in the housing 1 may be provided, and the operations of the pump 11 and the gas pressure adjustment valve 14 are performed based on the output signal of the gas pressure sensor. It is possible to control by (not shown) etc.
  • the adsorption unit 5 that directly adsorbs the harmful gas that degrades the optical components inside the housing 1, power is not consumed even when the laser apparatus is stopped. Harmful gas density inside the housing can be reduced. It has been clarified that this kind of harmful gas is mainly an organic silicon compound. The present inventor has confirmed that the coconut shell activated carbon has an effect of adsorbing this harmful gas directly, and separately confirmed that the same effect can be obtained even with the coal-based activated carbon.
  • Figure 2 compares the changes over time in the density of harmful gases contained in the gas inside the housing under typical conditions when activated carbon is placed as an example of an adsorbent in the housing of an actual UV laser oscillator. It is a graph.
  • the vertical axis represents harmful gas density (ng / cm 3 ), and the horizontal axis represents elapsed days.
  • the inside of the housing is replaced with clean dry gas at atmospheric pressure, and the density of harmful gas is sufficiently low.
  • the clean dry gas for example, a rare gas such as argon, dry air, oxygen, or the like can be used.
  • casing can be maintained in a low state beforehand, and long-term reliability improves.
  • the laser apparatus shown in FIG. 1 is hermetically configured by a closed loop gas pipe 10 that communicates with the internal space of the housing 1 and is previously replaced with a clean dry gas at approximately atmospheric pressure.
  • the pump 11 provided on the closed loop gas pipe 10 starts the suction operation, and the gas starts to circulate through the closed loop gas pipe 10.
  • the gas pressure adjusting valve 14 installed in the vicinity of the air inlet 9 of the housing 1 is adjusted in advance so that the internal pressure of the housing 1 after passing through the valve becomes a negative pressure.
  • the inside of the housing was adjusted to 40 kPa (absolute pressure) with respect to the atmospheric pressure of about 100 kPa.
  • FIG. 3 is a graph showing an example of the relationship between the gas pressure in the housing and the reflux gas flow rate.
  • the vertical axis represents the gas pressure in the housing (absolute pressure notation: kPa), and the horizontal axis represents the reflux gas flow rate (mL / min).
  • the internal pressure of the housing can be maintained at about 40 kPa by presetting the gas flow rate to 600 mL / min by the gas pressure adjusting valve 14.
  • the gas is circulated through the organic substance removing pipe 13 provided on the closed loop gas pipe 10, and the result is shown in the graph of FIG.
  • the density of harmful gas in the casing after startup decreases with time. It is shown that by operating the pump 11 for about 20 hours continuously, the noxious gas density is saturated to a very low level of 0.04 ng / cm 3 or less.
  • the gas drying pipe 12 in the closed loop gas pipe. Accordingly, the reflux gas can be kept dry for a long period of time, and the reliability of the coating of the optical element and the nonlinear optical crystal that are sensitive to moisture can be improved.
  • the closed portion of the laser apparatus is provided with a closed loop piping in which an adsorbing portion containing an adsorbent such as activated carbon is stored, and the gas in the housing is sucked by the pump and the sucked gas is returned into the housing. Since the pressure adjustment valve is attached to the gas inflow part to the casing of the piping and the inside of the casing is set to a negative pressure immediately after the startup of the device, there is no need to circulate the gas during the shutdown of the device. No waiting time is required. As a result, for example, it is possible to stably output a high-power UV laser output exceeding an average output of 10 W for 1000 hours or more.
  • FIG. FIG. 5 is a block diagram showing a laser apparatus according to Embodiment 2 of the present invention.
  • the laser apparatus according to this embodiment includes a gas buffer unit 15 on the closed loop gas pipe 10 in addition to the configuration shown in FIG.
  • the gas buffer unit 15 is for expanding the internal volume of the gas pipe 10 between the pump 11 and the pressure adjustment valve 14, and may be disposed at any position between the pump 11 and the valve 14.
  • the gas buffer 15 is preferably made of a material that does not release silicon compound outgas, such as a well-washed metal or a fluorine-based resin material, as in the case of the gas pipe 10 system.
  • the volume in the closed loop gas pipe 10 increases and the pressure decreases, so that when the pump 11 having the same suction pressure is used, the reflux gas flow rate can be suppressed to a lower level. If the reflux gas flow rate is suppressed as shown in FIG. 3, the gas pressure in the housing 1 can be reached to a lower pressure. That is, the suction capacity required for the pump 11 that realizes the negative pressure of 65 kPa or less described in the first embodiment is lowered, and cost reduction and long-term reliability can be realized.
  • FIG. FIG. 6 is a block diagram showing a laser apparatus according to the third embodiment.
  • the laser device according to the present embodiment is on the side of the gas pipe 10 of the exhaust port 8 and the air supply port 9 (between the exhaust port 8 and the pump 11 and between the pressure adjustment valve 14 and the supply port). Opening and closing valves 16 and 17 are respectively provided between the air ports 9).
  • FIG. 6 shows an example in which two opening / closing valves (16, 17) are provided, but the function of the opening / closing valve 17 between the pressure adjusting valve 14 and the air supply port 9 may be combined with the pressure adjusting valve 14.
  • FIG. FIG. 7 is a block diagram showing a laser apparatus according to Embodiment 4 of the present invention.
  • the laser device according to the present embodiment has the same configuration as that shown in FIG. 1, but the fundamental laser oscillator 20 is arranged outside the casing 1, and the wavelength conversion unit 40 is arranged inside the casing 1. Is different.
  • the wavelength conversion unit 40 that generates UV laser light that determines the life of the apparatus. Therefore, the wavelength conversion unit 40 is hermetically housed inside the housing 1, the adsorption unit 5 is installed inside the housing 1, and the closed-loop gas pipe 10 is connected to the pump 11, the gas drying pipe 12, and the organic matter.
  • the removal pipe 13 and the gas pressure adjusting valve 14 may be provided.
  • the fundamental laser beam emitted from the fundamental laser oscillator 20 passes through the incident window 3 installed on the wall surface of the housing 1 and enters the wavelength conversion unit 40.
  • the present invention is extremely useful industrially in that it can reduce the influence of harmful gas without consuming electric power even when the laser apparatus is stopped and without requiring a standby time when the apparatus is started up.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

 レーザ装置は、レーザ光を発生する基本波レーザ発振器20および波長変換ユニット40と、基本波レーザ発振器20および波長変換ユニット40を気密収納するための筐体1と、筐体1内部に設置され、有害ガスを吸着するための吸着部5と、筐体1の排気口8および給気口9と連通した閉ループ配管10と、閉ループ配管10を用いて筐体1内のガスを循環させるためのポンプ11と、ポンプ11と給気口9との間に設けられ、筐体1内部のガス圧を調整するためのガス圧調整バルブ14などを備える。 こうした構成により、装置の停止中であっても電力を消費することなく、そして、装置立上げ時に待機時間を要することなく、有害ガスの影響を低減できる。

Description

レーザ装置
 本発明は、各種光学素子を収納した筐体を備えるレーザ装置に関し、特に、光学素子を劣化させる有害ガスの対策に関する。
 近年の微細加工市場の拡大を受けて、微細なスポットに集光可能なUV光を発生するレーザを利用した加工機が注目されている。微細加工に適用されるUVレーザ発振器は、一般的に活性イオンをドープしたYAG(Yttrium Aluminum Garnet)やYVO等の固体レーザ媒質を適用したものであり、LBO結晶(LiB)等の非線形光学結晶を用いた波長変換技術を適用してUV光を発生させるものである。
 産業分野で用いられるためには、装置のメンテナンス周期が長いことが必要である。しかし、UVレーザ発振器においては、特にUV光が透過する素子の表面にアモルファスSiO等の異物が堆積して、ビームモードの劣化や出力低下を引き起こすことが知られておる(例えば、非特許文献1を参照)。異物堆積の原因としては、レーザ発振器周囲のガスに含まれるシリコン化合物と酸素に対してUV光が作用することで生ずると考えられている。ガス中のシリコン化合物は、レーザ筐体内にもともと存在しているものや、レーザ筐体内の部品から発生するものがあり、筐体内を真空とする以外、完全に排除するのは困難である。
 上記のような問題を回避するために、従来のレーザ装置(例えば、特許文献1)では、筐体内に存在する光学部品を劣化させる有害ガスを除去するために、UVレーザ光の散乱光または部分反射光が照射される筐体内の部位に光触媒を設置し、有害ガスを無害なレベルまで分解することにより、有害ガス密度を低減している。また、前記光触媒を励起する専用のUV光源を別途設置する構成としている。また、その分解されたガスを除去する吸着剤を、筐体内に設置している。
 従来の別のレーザ装置(例えば、特許文献2~5)では、レーザ筐体内部の光学素子に有害な湿気、有機ガス、浮遊微粒子、オゾンを除去するために、ガス吸着剤、乾燥剤、濾過フィルタ、分解触媒などを筐体外部に設置してガス配管により閉ループを形成し、ガスをポンプで循環させている。
特開2007-123322号公報 米国特許第6671303号明細書 米国特許第6798813号明細書 米国特許第7239656号明細書 特表2006-504252号公報
S. Moeller et al., "Insight to UV-induced formation of laser damage on LiB3O5 optical surfaces during long-term sum-frequency generation", OPTICS EXPRESS, Vol.15, No.12, pp. 7351-7356, (2007)
 特許文献1の手法では、レーザ停止時あるいは光触媒励起光源停止時は、有害ガスの低減効果が得られない。また、レーザ起動時から有害ガスの低減動作が開始するが、有害ガス密度が十分低減するまでに数時間の待機時間が必要になる。さらに、レーザ停止時に光触媒励起用の専用光源を適用する場合は、装置を使用しない時間も装置の主電源を停止できず、また励起用UV光源のランニングコストが別途必要となる。
 特許文献2~5の手法についても同様に、レーザ停止時は有害ガスの低減作用が働かず、装置の立上げ時は一定の待機時間が必要になる。
 本発明の目的は、装置の停止中であっても電力を消費することなく、そして、装置立上げ時に待機時間を要することなく、有害ガスの影響を低減できるレーザ装置を提供することである。
 上記目的を達成するために、本発明に係るレーザ装置は、レーザ光を発生するレーザ光発生部と、
 レーザ光発生部を気密収納するための筐体と、
 筐体内部に設置され、有害ガスを吸着するための吸着部と、
 筐体の排気口および給気口と連通した閉ループ配管と、
 閉ループ配管を用いて筐体内のガスを循環させるためのポンプと、
 ポンプと給気口との間に設けられ、筐体内部のガス圧を調整するためのガス圧調整バルブと、を備えたことを特徴とする。
 本発明において、吸着部は、活性炭、ゼオライトおよびシリカゲルからなるグループから選択された少なくとも1つの材料を含むことが好ましい。
 また本発明において、閉ループ配管上に、有機物除去管が設けられたことが好ましい。
 また本発明において、閉ループ配管上に、ガス乾燥管が設けられたことが好ましい。
 また本発明において、閉ループ配管上に、ガスバッファ部が設けられたことが好ましい。
 また本発明において、筐体の排気口と給気口の配管側に、開閉バルブが設けられたことが好ましい。
 また本発明において、筐体内部は、装置停止中に希ガスで充満されていることが好ましい。
 また本発明において、レーザ光を発生する際、ポンプの吸引動作により、筐体内ガス圧は、絶対圧65kPa以下に維持されることが好ましい。
 また本発明において、筐体の外部に配置され、基本波レーザ光を発生する基本波レーザ発振器をさらに備え、
 前記レーザ光発生部は、該基本波レーザ光の高調波を発生する波長変換機能を有することが好ましい。
 また本発明において、前記レーザ光発生部は、紫外レーザ光を発生することが好ましい。
 本発明によれば、有害ガスを吸着するための吸着部を筐体内部に設置することによって、装置の停止中であっても電力を消費することなく、有害ガスの影響を低減できる。また、筐体内部のガス圧を調整するためのガス圧調整バルブを設けることによって、装置立上げ時に速やかに筐体内部を負圧に維持することが可能になる。その結果、待機時間を要することなく、有害ガスの影響を低減できる。
本発明の実施の形態1によるレーザ装置を示す構成図である。 筐体内に、吸着材の一例として活性炭を配置した場合と配置しない場合について、筐体内部ガスに含まれる有害ガス密度の時間変化を比較したグラフである。 筐体内のガス圧力と環流ガス流量の関係の一例を示すグラフである。 有機物除去管を通してガス環流させた場合の有害ガス密度の時間変化を示すグラフである。 本発明の実施の形態2によるレーザ装置を示す構成図である。 本発明の実施の形態3によるレーザ装置を示す構成図である。 本発明の実施の形態4によるレーザ装置を示す構成図である。
実施の形態1.
 図1は、本発明の実施の形態1によるレーザ装置を示す構成図である。ここでは、UV(紫外)レーザ光を発生する装置を例示するが、その他の波長領域、例えば、X線レーザ光、可視レーザ光、赤外レーザ光、遠赤外レーザ光などを発生する装置にも本発明は適用可能である。
 レーザ装置は、基本波レーザ発振器20と、波長変換ユニット40と、これらを気密収納するための筐体1などを備える。
 基本波レーザ発振器20は、レーザ光が伝搬する光軸に沿って、励起光源21と、集光素子22と、共振器ミラー23と、レーザ媒質24と、Qスイッチ素子25と、共振器ミラー26などを備える。
 励起光源21は、半導体レーザ等で構成され、レーザ媒質24を光励起するための励起光を発生する。集光素子22は、レンズやミラー等で構成され、励起光源21からの励起光を集光し、レーザ媒質24に照射する。共振器ミラー23は、励起光に対して低い透過率を有し、レーザ媒質24の発振光に対して高い反射率を有しており、共振器ミラー26とともにレーザ媒質24の発振光に関して光共振器を構成する。
 レーザ媒質24は、活性イオンがドープされた固体レーザ材料で形成され、励起光の照射によって発振光に関する光増幅作用を示す。レーザ媒質24として、Nd:YAG結晶やNd:YVO結晶を使用した場合、波長810nmの励起光で励起され、波長1064nmの近赤外レーザ光を発生する。Qスイッチ素子25は、光共振器のQ値を高速に変化させて高出力のパルス発振を達成する機能を有する。共振器ミラー26は、レーザ媒質24の発振光を部分的に透過する機能を有しており、基本波レーザ光の出力ミラーとして機能する。
 波長変換ユニット40は、レーザ光が伝搬する光軸に沿って、集光素子41と、非線形光学素子42と、集光素子43と、非線形光学素子44と、集光素子45などを備える。集光素子41,43,45は、レンズやミラー等で構成される。
 波長変換ユニット40では、和周波発生(SFG)、周波数逓倍、差周波発生(DFG)、光パラメトリック発振(OPG)などの波長変換手法を用いることによって、種々の波長を持つレーザ光が得られる。例えば、基本波レーザ光の波長が1064nmである場合、1064nm+1064nm=532nm(第2高調波)、1064nm+532nm=355nm(第3高調波)、532nm+532nm=266nm(第4高調波)、1064nm+266nm=213nm(第5高調波)などが得られる。
 本実施形態において、非線形光学素子42,44は、例えば、BBO、LBO、CLBO、CBO、KTP、LiNbO、MgO:LiNbO、AgGaSなどの結晶材料で構成される。前段の非線形光学素子42は、基本波レーザ光の第2高調波を発生する機能を有し、例えば、基本波レーザ光の波長が1064nmである場合、1/2の波長である532nmの可視レーザ光を発生する。後段の非線形光学素子44は、基本波レーザ光の第3高調波を発生する機能を有し、例えば、基本波レーザ光の波長が1064nmである場合、1/3の波長である355nmのUVレーザ光を発生する。
 筐体1の壁面には、例えば、石英などの光学材料で形成された出射ウインドウ2が設置され、波長変換されたレーザ光を通過させつつ、内部空間を外気から隔離している。
 なお本実施形態では、非線形光学素子42,44を基本波レーザ発振器20の光共振器の外部に配置した外部波長変換の形態を例示したが、非線形光学素子42,44を基本波レーザ発振器20の光共振器の内部に配置した内部波長変換の形態にも本発明は適用可能である。また本実施形態では、第3高調波の発生を例示したが、第4以上の高調波発生のにも本発明は適用可能である。
 筐体1の内部には、有害ガスを吸着するための吸着部5が設置される。吸着部5は、アウトガス発生の無視できる材料、例えば、金属、フッ素系樹脂または紙製など、通気性のある梱包材料で形成された容器を有し、その内部に活性炭、ゼオライト、シリカゲルまたはこれらの組合せからなる吸着材を収納している。
 筐体1の側壁には、排気口8と、給気口9とが設けられる。排気口8と給気口9には、筐体外部で閉ループになるように外気と隔絶したガス配管10が接続される。ガス配管10上には、ガス流れ方向に沿って、ポンプ11と、ガス乾燥管12と、有機物除去管13と、ガス圧調整バルブ14とが設置される。
 ポンプ11は、例えば、フッ素系樹脂隔膜を駆動させるダイヤフラムポンプなどであり、筐体1内のガスを排気口8から吸引し、ガス配管10を通って給気口9から再び供給することによって、ガスを循環させる。ガス循環方向は、有害ガスが波長変換ユニット40周辺に長く滞留しないように、波長変換ユニット40から基本波レーザ発振器20に向かう方向が好ましい。
 ガス乾燥管12は、例えば、シリカゲルを充填した密閉管として構成される。有機物除去管13は、例えば、活性炭を充填した密閉管として構成される。ガス圧調整バルブ14は、ポンプ11と給気口9との間に設けられ、筐体1内部のガス圧を調整する機能を有する。こうした閉ループガス配管系は、シリコン化合物のアウトガスを放出しない材料、例えば、金属やフッ素系材料で構成することが好ましい。
 なお、筐体1の内部ガス圧を計測するためのガス圧センサ(不図示)を設けてもよく、ポンプ11およびガス圧調整バルブ14の動作は、ガス圧センサの出力信号に基づいて、コンピュータ(不図示)などで制御することが可能である。
 このような構成によれば、筐体1の内部に、光学部品を劣化させる有害ガスを直接吸着する吸着部5を設置することによって、レーザ装置の停止中であっても電力を消費することなく筐体内部の有害ガス密度を低減できる。この種の有害ガスは、主に有機系のシリコン化合物であることが明らかとなっている。本発明者は、ヤシ殻活性炭によって直接この有害ガスの吸着効果があることを確認しており、石炭系の活性炭においても同様の効果が得られることを別途確認している。
 図2は、実際のUVレーザ発振器の筐体内に、吸着材の一例として活性炭を配置した場合と配置しない場合について、典型的な条件において筐体内部ガスに含まれる有害ガス密度の時間変化を比較したグラフである。縦軸は有害ガス密度(ng/cm)、横軸は経過日数である。装置停止中の初期の段階では、清浄な乾燥ガスで筐体内を大気圧で置換しており、有害ガスの密度は十分に低い。清浄な乾燥ガスとしては、例えば、アルゴンなどの希ガスや、乾燥空気、酸素等が使用できる。これにより筐体内部の有害ガス密度を事前に低い状態に維持することができ、長期信頼性が向上する。
 活性炭を配置しない場合(破線)、長期において有害ガスの密度は単調に増加する。これは、装置筐体内に存在する電気配線や光学素子ホルダなど、様々な部品からのアウトガスによるものと考えられ、アウトガスの少ない部品を用いても微量の有害ガス発生は避けられないのが実状である。図2中では、活性炭を配置しない場合、30日間の放置により0.8ng/cmの有害ガス密度に達している。
 別途実施している非線形光学結晶の寿命試験においては、平均出力10Wを超えるハイパワーUVレーザ発振器において、有害ガス密度が0.2ng/cm以下の領域において1000時間を超える良好な連続発振を確認している。従って、図2に示す活性炭を配置しない場合(破線)の有害ガス密度(0.8ng/cm~)では良好な長期連続動作が実現できない。
 一方、活性炭を配置した場合(実線)、有害ガスの吸着効果により、有害ガス密度の経時的増加が抑制されていることが判る。図2の例では、0.3ng/cm以下で有害ガス密度が飽和傾向にあることが確認される。1000時間超のハイパワーUV連続動作を確認したレベル(~0.2ng/cm)までの有害ガス密度の低減は達成されないまでも、活性炭の配置によって、有害ガス密度の経時的な単調増加を抑制することが可能となる。ここで、1000時間などの連続動作時間が意味するものは、非線形光学結晶への入射位置を変えずに1点で計測した時間である。そのため、所定期間経過ごとに非線形光学結晶を僅かにシフトさせ、レーザ光の入射位置を変化させる微動機構を設けることによって、シフト回数に比例して連続動作時間の延長が可能である。
 次に、活性炭配置による有害ガス抑制策に加えて、装置立上げ時の負圧調整について説明する。図1に示すレーザ装置は、筐体1の内部空間と連通した閉ループガス配管10により気密に構成されており、予め清浄な乾燥ガスによりほぼ大気圧で置換されている。本レーザ装置を立ち上げた場合、閉ループのガス配管10上に設けたポンプ11が吸引動作を開始し、閉ループガス配管10を通じてガスが環流し始める。このとき筐体1の給気口9近傍に設置したガス圧調整バルブ14は、バルブ通過後の筐体1の内部圧力が負圧になるように、予め調整しておく。本例では、大気圧約100kPaに対して筐体内部が40kPa(絶対圧)となるよう調整した。
 図3は、筐体内のガス圧力と環流ガス流量の関係の一例を示すグラフである。縦軸は筐体内のガス圧力(絶対圧表記:kPa)、横軸は環流ガス流速(mL/min)である。本例では、ガス圧調整バルブ14によってガス流速を600mL/minに予め設定することで、筐体内部圧力を約40kPaに維持することができる。この場合、本レーザ装置の立上げ直後に筐体内部の有害ガス密度が立上げ前の約40%(=40/100)に低減できる。従って、装置休止中に有害ガス密度が飽和レベルの0.3ng/cmに達していても、速やかに0.12ng/cm程度の有害ガス密度に低減することができ、0.2ng/cm以下で実績のある1000時間超レベルのハイパワーUV連続動作が可能となる。
 なお、ここでは40kPaの負圧を例示したが、少なくとも65kPaの負圧に維持できれば、筐体内部の有害ガス密度を立上げ前の約65%(=65/100)に低減できるため、レーザ装置の立上げ直後から0.2ng/cm以下の有害ガス密度が達成できる。
 また、負圧にした場合、筐体内部の部品からのアウトガスが若干増加する懸念があるが、閉ループガス配管10上に設けた有機物除去管13を通してガス環流させることにより、図4のグラフに示すように、立上げ後の筐体内有害ガス密度は時間とともに低減する。ポンプ11を約20時間連続して吸引動作させることにより、有害ガス密度は、0.04ng/cm以下という非常に低いレベルまで低下して飽和することが示される。
 また、本実施形態では、閉ループガス配管中にガス乾燥管12を配置することが好ましい。これにより環流ガスの乾燥を長期間保ち、湿気に弱い光学素子のコーティングや非線形光学結晶についての信頼性を向上させることができる。
 このように、レーザ装置の筐体内に、活性炭などの吸着材を収納した吸着部を配置し、かつ筐体内ガスをポンプによって吸引し、該吸引ガスを筐体内に戻す閉ループ配管を備え、該閉ループ配管の筐体へのガス流入部に圧力調整バルブを取り付けて装置立上げ直後に筐体内部を負圧にする構成としたため、装置休止中にガスを環流させる必要なく、更に装置立上げ後の待機時間も要しない。その結果、例えば、平均出力10Wを超えるハイパワーUVレーザ出力を1000時間以上にわたって安定に出力することが可能となる。
実施の形態2.
 図5は、本発明の実施の形態2によるレーザ装置を示す構成図である。本実施形態に係るレーザ装置は、図1に示した構成に加え、閉ループガス配管10上にガスバッファ部15を有する。このガスバッファ部15は、ポンプ11と圧力調整バルブ14間のガス配管10の内部容積を拡大するためのものであり、ポンプ11とバルブ14間であればどの位置に配置されてもよい。またこのガスバッファ部15は、ガス配管10系と同様、シリコン化合物のアウトガスを放出しない材料、例えば、よく洗浄された金属やフッ素系樹脂材料で構成することが望ましい。
 このような構成によれば、閉ループガス配管10内の容積が増大し圧力が低下することにより、同じ吸引圧力のポンプ11を使用した場合、環流ガス流速をより低く抑制できる。図3に示すように環流ガス流速を抑えると、筐体1内のガス圧をより低い圧力まで到達させることができる。つまり、実施の形態1で説明した65kPa以下の負圧を実現するポンプ11に要求される吸引能力が低くなり、低コスト化および長期信頼性の向上が実現できる。
実施の形態3.
 図6は、本実施の形態3によるレーザ装置を示す構成図である。本実施形態に係るレーザ装置は、図1に示した構成に加え、筐体の排気口8と給気口9のガス配管10側(排気口8とポンプ11間、及び圧力調整バルブ14と給気口9間)にそれぞれ開閉バルブ16、17を有する。
 このような構成によれば、筐体1内圧力を65kPa以下の負圧に維持してレーザ装置を運転している際、開閉バルブ16、17を閉じることによりポンプ11の稼動を停止しても筐体1内の負圧を維持することができる。別の場合としては、閉ループ配管10側のメンテナンスで配管内部を大気開放する際、開閉バルブ16,17を閉じておくことにより、筐体1への外気混入を防止する効果がある。
 図6では開閉バルブを2ヵ所(16、17)設ける例を示したが、圧力調整バルブ14と給気口9間の開閉バルブ17の機能は、圧力調整バルブ14が兼ねてもよい。
実施の形態4.
 図7は、本発明の実施の形態4によるレーザ装置を示す構成図である。本実施形態に係るレーザ装置は、図1に示したものと同様な構成を有するが、基本波レーザ発振器20を筐体1の外部に配置し、波長変換ユニット40を筐体1の内部に配置している点で相違する。
 この場合、装置寿命を律速するのは、UVレーザ光を発生する波長変換ユニット40である。従って、波長変換ユニット40を筐体1の内部に気密収納し、吸着部5を筐体1の内部に設置し、さらに、閉ループのガス配管10を接続し、ポンプ11、ガス乾燥管12、有機物除去管13、ガス圧調整バルブ14を設けた構成でも構わない。基本波レーザ発振器20から出射した基本波レーザ光は、筐体1の壁面に設置された入射ウインドウ3を通過して、波長変換ユニット40に入射する。
 こうした構成によれば、有害ガスのUVレーザ光分解による汚染から基本波レーザ発振器20の構成部品(例えば、符号21~26など)を保護することが可能である。また、筐体1のサイズも小型化できるため、筐体1内部の有害ガス密度をより効率的に低減できる。
 本発明は、レーザ装置の停止中であっても電力を消費することなく、そして、装置立上げ時に待機時間を要することなく、有害ガスの影響を低減できる点で、産業上極めて有用である。
 1 筐体、 2 出射ウインドウ、 3 入射ウインドウ、 5 吸着部、
 8 排気口、 9 給気口、 10 ガス配管、 11 ポンプ、
 12 ガス乾燥管、 13 有機物除去管、 14 ガス圧調整バルブ、
 15 ガスバッファ部、 16,17 開閉バルブ、
 20 基本波レーザ発振器、 21 励起光源、 22 集光素子、
 23,26 共振器ミラー、 24 レーザ媒質、 25 Qスイッチ素子、
 40 波長変換ユニット、 41,43,45 集光素子、
 42,44 非線形光学素子。

Claims (10)

  1.  レーザ光を発生するレーザ光発生部と、
     レーザ光発生部を気密収納するための筐体と、
     筐体内部に設置され、有害ガスを吸着するための吸着部と、
     筐体の排気口および給気口と連通した閉ループ配管と、
     閉ループ配管を用いて筐体内のガスを循環させるためのポンプと、
     ポンプと給気口との間に設けられ、筐体内部のガス圧を調整するためのガス圧調整バルブと、を備えたことを特徴とするレーザ装置。
  2.  吸着部は、活性炭、ゼオライトおよびシリカゲルからなるグループから選択された少なくとも1つの材料を含むことを特徴とする請求項1記載のレーザ装置。
  3.  閉ループ配管上に、有機物除去管が設けられたことを特徴とする請求項1または2記載のレーザ装置。
  4.  閉ループ配管上に、ガス乾燥管が設けられたことを特徴とする請求項1または2記載のレーザ装置。
  5.  閉ループ配管上に、ガスバッファ部が設けられたことを特徴とする請求項1または2記載のレーザ装置。
  6.  筐体の排気口と給気口の配管側に、開閉バルブが設けられたことを特徴とする請求項1または2記載のレーザ装置。
  7.  筐体内部は、装置停止中に希ガスで充満されていることを特徴とする請求項1~6のいずれかに記載のレーザ装置。
  8.  レーザ光を発生する際、ポンプの吸引動作により、筐体内ガス圧は、絶対圧65kPa以下に維持されることを特徴とする請求項1~7のいずれかに記載のレーザ装置。
  9.  筐体の外部に配置され、基本波レーザ光を発生する基本波レーザ発振器をさらに備え、
     前記レーザ光発生部は、該基本波レーザ光の高調波を発生する波長変換機能を有することを特徴とする請求項1~8のいずれかに記載のレーザ装置。
  10.  前記レーザ光発生部は、紫外レーザ光を発生することを特徴とする請求項1または9記載のレーザ装置。
PCT/JP2012/082222 2012-04-09 2012-12-12 レーザ装置 WO2013153704A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012088392A JP2015122341A (ja) 2012-04-09 2012-04-09 レーザ装置
JP2012-088392 2012-04-09

Publications (1)

Publication Number Publication Date
WO2013153704A1 true WO2013153704A1 (ja) 2013-10-17

Family

ID=49327302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082222 WO2013153704A1 (ja) 2012-04-09 2012-12-12 レーザ装置

Country Status (2)

Country Link
JP (1) JP2015122341A (ja)
WO (1) WO2013153704A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125635A3 (ja) * 2014-02-19 2015-10-15 スペクトロニクス株式会社 波長変換装置
JP7169062B2 (ja) 2017-12-14 2022-11-10 株式会社キーエンス レーザ加工装置及びレーザ発振器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2541462B (en) * 2015-08-21 2019-09-11 M Squared Lasers Ltd Purging system for a laser resonator
CN111929962B (zh) * 2020-06-29 2022-05-31 中国科学院上海光学精密机械研究所 多波长真空紫外及深紫外相干光源的产生装置与方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521868A (ja) * 1991-07-17 1993-01-29 Matsushita Electric Ind Co Ltd エキシマレーザ発振装置
JP2000124534A (ja) * 1998-10-12 2000-04-28 Komatsu Ltd ArFエキシマレーザ装置及びその狭帯域化モジュール
JP2003249702A (ja) * 2002-02-25 2003-09-05 Gigaphoton Inc レーザ装置
JP2003258337A (ja) * 2002-03-06 2003-09-12 Komatsu Ltd レーザ装置用筐体の洗浄方法
JP2004535068A (ja) * 2001-07-06 2004-11-18 インテル・コーポレーション 気密封止された外部共振器レーザ・システムおよび方法
JP2005502209A (ja) * 2001-08-29 2005-01-20 サイマー インコーポレイテッド 超狭帯域2室式高繰返し率放電ガスレーザシステム
JP2005033040A (ja) * 2003-07-07 2005-02-03 Cyber Laser Kk レーザー湿度調節装置
JP2006504252A (ja) * 2002-06-10 2006-02-02 コヒーレント・インク レーザ用閉ループパージシステム
JP2008147649A (ja) * 2006-12-05 2008-06-26 Asml Netherlands Bv ガスレーザ装置および方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521868A (ja) * 1991-07-17 1993-01-29 Matsushita Electric Ind Co Ltd エキシマレーザ発振装置
JP2000124534A (ja) * 1998-10-12 2000-04-28 Komatsu Ltd ArFエキシマレーザ装置及びその狭帯域化モジュール
JP2004535068A (ja) * 2001-07-06 2004-11-18 インテル・コーポレーション 気密封止された外部共振器レーザ・システムおよび方法
JP2005502209A (ja) * 2001-08-29 2005-01-20 サイマー インコーポレイテッド 超狭帯域2室式高繰返し率放電ガスレーザシステム
JP2003249702A (ja) * 2002-02-25 2003-09-05 Gigaphoton Inc レーザ装置
JP2003258337A (ja) * 2002-03-06 2003-09-12 Komatsu Ltd レーザ装置用筐体の洗浄方法
JP2006504252A (ja) * 2002-06-10 2006-02-02 コヒーレント・インク レーザ用閉ループパージシステム
JP2005033040A (ja) * 2003-07-07 2005-02-03 Cyber Laser Kk レーザー湿度調節装置
JP2008147649A (ja) * 2006-12-05 2008-06-26 Asml Netherlands Bv ガスレーザ装置および方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125635A3 (ja) * 2014-02-19 2015-10-15 スペクトロニクス株式会社 波長変換装置
JPWO2015125635A1 (ja) * 2014-02-19 2017-03-30 スペクトロニクス株式会社 波長変換装置
JP7169062B2 (ja) 2017-12-14 2022-11-10 株式会社キーエンス レーザ加工装置及びレーザ発振器

Also Published As

Publication number Publication date
JP2015122341A (ja) 2015-07-02

Similar Documents

Publication Publication Date Title
JP4803176B2 (ja) 固体レーザ装置
WO2013153704A1 (ja) レーザ装置
US6671303B1 (en) Closed-loop purging system for laser
US6667828B2 (en) Apparatus and method using a nonlinear optical crystal
US11165215B2 (en) Purging system for a laser system
JP2015155933A (ja) 波長変換装置、収容容器及び位相整合方法
US6816536B2 (en) Method and apparatus for in situ protection of sensitive optical materials
US7075965B2 (en) Wavelength conversion laser apparatus
US20050008047A1 (en) Laser system and laser wavelength conversion
JP2007086104A (ja) 深紫外レーザー装置
JP2020514793A (ja) 高温光学分子汚染防止ゲッターシステム
JP6322277B2 (ja) 波長変換装置
KR20200035168A (ko) 비선형 광학 결정의 인시튜 패시베이션
JP2010243559A (ja) 光源装置
JP2000066003A (ja) 光学部品の洗浄方法
JP2020046492A (ja) 波長変換装置、及び波長変換方法
JP2007123322A (ja) レーザ装置並びにレーザ装置の運転方法
JP6790779B2 (ja) 紫外線処理装置
JP2004220051A (ja) 波長変換方法、波長変換装置、およびレーザ加工機
JP4007708B2 (ja) 真空紫外レーザ
JP7169063B2 (ja) レーザ加工装置及びレーザ発振器
JP2004267951A (ja) 洗浄装置および洗浄方法
JP2007086582A (ja) レーザ光発生装置
JP2006227176A (ja) 光源装置及び光源装置のパージ方法
JP2004311542A (ja) 光学素子の脱水方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP