WO2013151134A1 - セパレータ - Google Patents

セパレータ Download PDF

Info

Publication number
WO2013151134A1
WO2013151134A1 PCT/JP2013/060333 JP2013060333W WO2013151134A1 WO 2013151134 A1 WO2013151134 A1 WO 2013151134A1 JP 2013060333 W JP2013060333 W JP 2013060333W WO 2013151134 A1 WO2013151134 A1 WO 2013151134A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
layer
separator
fiber
laminated
Prior art date
Application number
PCT/JP2013/060333
Other languages
English (en)
French (fr)
Inventor
山田 裕介
純一 日下部
留美名 小尾
岡嶋 真一
一史 加藤
Original Assignee
旭化成せんい株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成せんい株式会社 filed Critical 旭化成せんい株式会社
Priority to KR1020177002057A priority Critical patent/KR102112646B1/ko
Priority to JP2014509207A priority patent/JP6068444B2/ja
Priority to US14/390,248 priority patent/US9461290B2/en
Priority to EP13772505.7A priority patent/EP2835843B1/en
Priority to KR1020147025415A priority patent/KR20140128426A/ko
Priority to CN201380017226.6A priority patent/CN104205418B/zh
Publication of WO2013151134A1 publication Critical patent/WO2013151134A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator using a laminated nonwoven fabric having a specific configuration. More particularly, the present invention relates to a separator for an electrochemical cell, such as a primary battery, a secondary battery or a fuel cell, and a separator for an electrical energy storage device.
  • an electrochemical cell such as a primary battery, a secondary battery or a fuel cell
  • Electrochemical batteries are herein understood to be all types of primary and secondary batteries, in particular those of alkaline metal systems such as lithium, lithium ions, lithium polymers, and alkaline earth metal systems. can do.
  • the electrical energy storage device can be interpreted as an electric double layer capacitor, particularly a lithium ion capacitor.
  • Energy devices such as batteries and capacitors are required to have high functions such as high energy density and high reliability as electronic devices have become smaller and more efficient in recent years.
  • a lithium ion secondary battery has characteristics such as a high voltage, a high energy density, a long life, and a high charge rate.
  • Lithium ion secondary batteries are currently used in small electronic devices such as mobile phones / smartphones and notebook computers, and will be used in large electronic devices such as electric vehicles and hybrid vehicles. Expected.
  • a lithium ion secondary battery is generally composed of a positive electrode active material, a negative electrode active material, an electrolytic solution (electrolytic solution / electrolyte / additive), and a separator.
  • separator There are two main roles of separator. First, it is to prevent two differently charged electrodes from being in direct physical contact (short circuit). Thereby, high safety can be expressed and high reliability can be given to the product. Therefore, as a required characteristic of a separator, it has sufficient mechanical strength and may not cause a short circuit at the time of voltage load. In order not to cause a short circuit, it is necessary to have a fine fibril structure or a uniform network structure.
  • the second role of the separator is to ensure ionic conductivity between the positive electrode and the negative electrode while holding the electrolytic solution. With respect to this role, the separator is required to have high ionic conductivity in order to exhibit high capacity and high output. The required characteristics of other separators require that the overall thickness is thin and that there are many voids inside the separator.
  • porous films and nonwoven fabrics are used separators. These materials have the above-mentioned properties in common, for example, high mechanical strength, fine network structure, appropriate thickness, a large amount of voids, and the like. Therefore, a highly reliable and high performance lithium ion battery can be manufactured.
  • a porous film separator As an example of a porous film separator, a polyolefin microporous film is widely used for a separator of a lithium ion secondary battery. Its porosity is relatively high and can exhibit high rate characteristics. In addition, when a large current flows at a high temperature of 130 to 180 ° C., the porous film separator closes by melting its fine pores, thereby losing battery performance and maintaining safety. It has a so-called shutdown effect, and is used as a separator for lithium ion secondary batteries.
  • a separator made of non-woven fabric has a high porosity, so that it has high electrolyte retention, and excellent battery rate characteristics and voltage retention.
  • it has the advantage of being lightweight and capable of mass production.
  • a heat-resistant effect can be expected by molding a resin having excellent heat resistance.
  • the pore diameter can be controlled by controlling the fiber diameter, many separators made of nonwoven fabric have been studied.
  • Patent Document 1 an attempt is made to use, as a separator, a wet nonwoven fabric in which heat-resistant fibers made of a resin having a melting point or a carbonization temperature of 300 ° C. or more are fixed by a thermoplastic resin.
  • Patent Document 2 has a three-layer structure in which a nonwoven fabric layer made of ultrafine fibers having an average fiber diameter of 5 ⁇ m or less with a basis weight of 20 g / m 2 or more is used as an intermediate layer and nonwoven fabric layers having an average fiber diameter of 5 to 20 ⁇ m are stacked as upper and lower layers. Attempts have been made to use polyolefin fibers that have undergone hydrophilic treatment as separators.
  • the uniformity of the membrane of the nonwoven fabric is important to ensure the uniformity of the battery reaction.
  • a melt-blown non-woven fabric with a high degree of film uniformity is provided in the intermediate layer of a spunbond layer, which is a non-woven fabric with a low degree of film uniformity, to achieve uniformity.
  • the uniformity of the spunbond nonwoven fabric layer itself remains low, and there is a concern that the mobility of the electrolyte and the electrolyte solution retention may be lowered.
  • Patent Document 3 an attempt is made to improve the electrolyte retention by using a laminated nonwoven fabric in which meltblown nonwoven fabrics having an average fiber diameter of 0.5 to 3 ⁇ m are laminated to smooth the surface.
  • Patent Document 4 discloses a separator in which insulating particles are coated on a porous substrate.
  • separators for lithium ion secondary batteries attempts have been made to develop appropriate ion permeability, as shown in the above-mentioned patent documents, and attempts to ensure safety by preventing short circuits.
  • products using separators made of nonwoven fabric have not been widely put into practical use. This is because the separator does not sufficiently satisfy performances such as mechanical strength, electrolyte solution retention, and electrical insulation, and battery performance with high capacity and high output cannot be expressed.
  • Patent Document 4 uses a single layer nonwoven fabric composed of fibers having a large fiber diameter, so that the pore diameter of the nonwoven fabric is large, and inorganic coating for coating inorganic particles is performed. In this case, poor coating such as pinholes is likely to occur.
  • inorganic coating is applied to such a nonwoven fabric, short-circuiting can be suppressed by applying a considerable amount of slurry, but it is assumed that ion permeability decreases and discharge capacity at a high rate decreases.
  • the pore diameter of the nonwoven fabric is too small, in the case of a nonwoven fabric composed of a single layer, a portion that becomes a cavity is generated without being filled with inorganic particles up to the inside of the nonwoven fabric. If excessive voids are generated inside the inorganic coated non-woven fabric, that is, inside the separator, the uniformity of the battery reaction is reduced when the battery is used, or an internal short circuit is induced.
  • the problem to be solved by the present invention is an electric battery that can be used for electrochemical cells such as primary batteries, secondary batteries, fuel cells, and electric energy storage devices and can be stably produced. It is to provide a separator excellent in insulation, electrolyte retention, ion conductivity and the like.
  • a separator using a laminated nonwoven fabric of two or more layers having different specific fiber diameters has electrical insulation properties, electrolyte retention properties, ions or electrons. And has a structure that allows the coated particles to be suitably held inside the nonwoven fabric when performing an inorganic coating treatment.
  • the inventors have found that an electrochemical cell or an electrical energy storage device can be obtained, and have made the present invention. That is, the present invention is as follows.
  • a nonwoven fabric layer (I layer) composed of synthetic fibers having a fiber diameter of 0.1 ⁇ m or more and less than 4.0 ⁇ m, and a thermoplastic resin fiber having a fiber diameter of 4.0 ⁇ m or more and 30.0 ⁇ m or less and a nonwoven fabric layer (II layer) composed of laminated non-woven fabric of at least two layers, a basis weight of 3.0 g / m 2 or more 20.0 g / m 2 less than the separator.
  • thermoplastic resin fibers in the nonwoven fabric layer (II layer) are thermoplastic synthetic continuous fibers.
  • thermoplastic resin fibers in the nonwoven fabric layer (II layer) are thermoplastic synthetic continuous fibers.
  • the laminated nonwoven fabric is formed by integration by chemical and / or thermal bonding.
  • the separator according to any one of [1] to [5], wherein the laminated nonwoven fabric has a thickness of 10 to 50 ⁇ m.
  • the separator according to any one of [1] to [6], wherein the nonwoven fabric layer (I layer) is formed by a melt blown method.
  • the ratio (i) / (ii) of the basis weight (i) of the nonwoven fabric layer (I layer) to the basis weight (ii) of the nonwoven fabric layer (II layer) in the laminated nonwoven fabric is 1/10 to 10 /
  • the separator according to any one of [1] to [8], wherein the laminated nonwoven fabric is constituted by a nonwoven fabric laminated body having a nonwoven fabric formation coefficient of variation of less than 2.3.
  • the separator of the present invention has excellent performance in electrical insulation, electrolyte retention, ion or electron permeability, and can be stably produced.
  • FIG. 1 is a schematic view of an apparatus for producing a spunbond nonwoven fabric used in one embodiment of the present invention.
  • FIG. 3 is an enlarged view of a portion of the apparatus of FIG. 2 in an example embodiment.
  • the present invention is composed of a nonwoven fabric layer (I layer) composed of synthetic fibers having a fiber diameter of 0.1 ⁇ m or more and less than 4.0 ⁇ m and thermoplastic resin fibers having a fiber diameter of 4.0 ⁇ m or more and 30.0 ⁇ m or less.
  • a separator having a basis weight of 3.0 g / m 2 or more and less than 20 g / m 2 .
  • the separator of the present invention is a laminated nonwoven fabric and includes a nonwoven fabric layer (I layer) and a nonwoven fabric layer (II layer).
  • the laminated nonwoven fabric is a laminated nonwoven fabric having at least two layers, and a nonwoven fabric layer (I layer) composed of ultrafine fibers having a fiber diameter of 0.1 ⁇ m or more and less than 4.0 ⁇ m; And a non-woven fabric layer (II layer) composed of thermoplastic resin fibers having a size of 0 ⁇ m or more and 30.0 ⁇ m or less.
  • the separator of this invention has the outstanding mechanical strength, and is excellent in ion permeability. Moreover, it has a high barrier property, and even if it is a thin film, the isolation effect of both electrodes is made effective.
  • the nonwoven fabric layer is composed of ultrafine fibers having a fiber diameter of 0.1 ⁇ m or more and less than 4.0 ⁇ m.
  • the term “extra fine fiber” intends a fiber having a fiber diameter in the range of 0.1 ⁇ m or more and less than 4 ⁇ m.
  • the I layer may contain fibers other than the ultrafine fibers as long as the effects of the present invention are not impaired, but typically comprises only the ultrafine fibers. If the fiber diameter is less than 4 ⁇ m, the fiber gap of the nonwoven fabric layer does not become too large, so that the electrolytic solution easily enters the fiber gap, resulting in a battery separator having excellent electrolyte solution retention.
  • the fiber diameter of the nonwoven fabric layer (I layer) is preferably 0.1 to 3.8 ⁇ m, more preferably 0.2 to 3.0 ⁇ m, and still more preferably 0.3 to 2.5 ⁇ m.
  • the fiber diameter described in this specification can be evaluated by measuring the fiber diameter with a microscope.
  • the nonwoven fabric When applying the inorganic coating for applying inorganic particles to the nonwoven fabric, the nonwoven fabric contains the above-described ultrafine fibers, so that it is possible to suppress the loss of the nonwoven fabric layer due to friction in the coating process. Furthermore, the nonwoven fabric layer (I layer) composed of ultrafine fibers during inorganic coating suppresses the coating particles from coming out to the back side (back-through), so that the nonwoven fabric is suitably filled with inorganic coating particles. Is possible. For this reason, the separator of the present invention can densely fill the inside of the laminated nonwoven fabric with inorganic particles, and can suppress internal short circuit even when coated so that the basis weight is thin.
  • the battery using the separator of this invention can also improve battery performance. That is, a good inorganic coating layer can be obtained by applying an inorganic coating to the nonwoven fabric of the present invention. Since the separator of the present invention can suppress pinholes due to poor coating even when the coating amount is small, safety and high performance when using the separator can be ensured.
  • the ultrafine fiber layer (I layer) between the nonwoven fabric layers (II layer) composed of two layers of thermoplastic resin as a laminated structure
  • the ultrafine fiber layer has an effect of suppressing the see-through during inorganic coating. Therefore, the coating component can be suitably held inside one of the II layers, so that different components can be applied in the upper and lower layers. Accordingly, it is possible to coat the upper and lower layers with coating particles suitable for each electrode component of the battery.
  • the nonwoven fabric layer (II layer) is composed of thermoplastic resin fibers having a fiber diameter of 4.0 ⁇ m to 30.0 ⁇ m. If the fiber diameter is 30.0 ⁇ m or less, the fiber diameter is not too large and the ion permeability tends not to be impaired.
  • the nonwoven fabric layer (II layer) may contain fibers other than thermoplastic resin fibers having a fiber diameter of 4.0 ⁇ m or more and 30.0 ⁇ m or less as long as the effects of the present invention are not impaired. It consists only of thermoplastic resin fibers of 4.0 ⁇ m or more and 30.0 ⁇ m or less. Just as the fiber diameter in the I layer is important, the fiber diameter in the II layer is also important.
  • the fiber diameter of the fibers constituting the II layer is 30.0 ⁇ m or less, the surface smoothness becomes high, and when the I layer and the II layer are laminated so as to contact each other, the fibers constituting the I layer become the II layer. A more uniform layer arrangement is possible with no unevenness between the fibers constituting the. Thereby, in a laminated nonwoven fabric, a fiber distributes more uniformly. As a result, it is possible to suppress a local short circuit between both electrodes, a so-called fine short circuit.
  • the fiber diameter of the fibers constituting the II layer is 4.0 ⁇ m or more, the laminated nonwoven fabric has sufficient strength and the mechanical strength tends to be stable. In this sense, the fiber diameter of the fibers constituting the II layer is preferably 5.0 to 28 ⁇ m, more preferably 6.0 to 25 ⁇ m, and still more preferably 9.0 to 20 ⁇ m.
  • an ultrafine fiber nonwoven fabric layer (I layer) can be provided inside or on the surface of the constructed nonwoven fabric.
  • I layer since the fiber diameter is small, the fiber gap is small, the fibers are uniformly distributed, and the specific surface area is large.
  • the specific surface area of the ultrafine fibers is large, the electrolyte retainability is excellent and the ion permeability is excellent.
  • the I layer suppresses the permeation of the coated particles to the back surface.
  • the inside of the layer can be suitably filled with coating particles, and a more suitable coating form can be obtained.
  • the preferred range of the average flow pore size of the nonwoven fabric is in the range of 1.5 to 20 ⁇ m. If the average flow pore size indicating the denseness of the nonwoven fabric is 1.5 ⁇ m or more, the air permeability of the nonwoven fabric is reduced, and when bubbles are mixed during coating, the bubbles remain inside the nonwoven fabric without being detached and dried. There is a low possibility that a coating failure in which the bubble portion becomes a cavity later will occur. On the other hand, when the average flow pore size is 20 ⁇ m or less, there is a low possibility that the coated particles will permeate into the back of the substrate when inorganic coating is applied, and that holes will be generated on the coated surface. More preferably, it is 3.0 to 13 ⁇ m, and still more preferably 5.0 to 12 ⁇ m. In addition, the average flow hole diameter described in this specification can be measured with a palm porometer manufactured by PMI.
  • a nonwoven fabric layer (II layer) composed of thermoplastic resin fibers can be provided as a support layer for reinforcing the nonwoven fabric layer (I layer).
  • a nonwoven fabric layer (I layer) has comparatively low air permeability, there exists a possibility that the internal pressure in a battery may become high.
  • the non-woven fabric layer (I layer) with a relatively thick fiber layer (II layer), the breathability of the laminated non-woven fabric can be improved and a separator with excellent ion permeability can be provided.
  • the nonwoven fabric layer (II layer) protects the nonwoven fabric layer (I layer) from deformation and damage inferior in mechanical strength. Can be produced.
  • the I layer is essential for forming a dense structure
  • the II layer makes the laminated nonwoven fabric more stable (ie, improves the tensile strength, bending strength and surface wear of the nonwoven fabric), and This is essential for stably holding the I layer in each step.
  • the laminated nonwoven fabric having the I layer and the II layer is advantageous for producing a chemical battery or a capacitor having good performance.
  • a three-layer laminated nonwoven fabric is more preferable.
  • the laminated nonwoven fabric has a three-layer structure composed of two types of layers, the fiber diameter of the ultrafine fibers of the nonwoven fabric layer (I layer) is 0.1 ⁇ m or more and less than 4.0 ⁇ m, and the nonwoven fabric layer The fiber diameter of the thermoplastic resin fiber of (II layer) is 4.0 ⁇ m or more and 30.0 ⁇ m or less.
  • the basis weight of the laminated nonwoven fabric used as the separator is 3.0 g / m 2 or more and less than 20 g / m 2 . If the basis weight of the laminated nonwoven fabric is less than 20 g / m 2 , when a certain thickness is required for the separator, the basis weight of the laminated nonwoven fabric is not too large, and there is a tendency to sufficiently secure fiber voids. The permeability can be increased, and a high-performance separator can be produced.
  • the basis weight of the laminated nonwoven fabric is 3.0 g / m 2 or more, the mechanical strength of the slit laminated nonwoven fabric can be increased, and it is highly resistant to winding after production, tension applied during use, and handling. It tends to be easy to do. Furthermore, in order to maintain the function of preventing an electrical short circuit by the separator during a runaway reaction, sufficient piercing strength tends to be ensured. In this sense, the basis weight of the laminated nonwoven fabric is preferably 5 to 15 g / m 2 .
  • the thickness of the laminated nonwoven fabric used as a separator is preferably 10 to 50 ⁇ m. If the thickness of the laminated nonwoven fabric is 10 ⁇ m or more, the strength of the laminated nonwoven fabric slit into a short width tends to increase, and the defect rate in the slit process is small. Moreover, if thickness is 10 micrometers or more, the space
  • the laminated nonwoven fabric has a basis weight of 5 to 15 g / m 2 and a thickness of 10 to 30 ⁇ m.
  • the apparent density of the laminated nonwoven fabric used as the separator is preferably 0.17 to 0.80 g / cm 3 .
  • the apparent density is lower than 0.17 g / cm 3 , the fiber amount of the nonwoven fabric tends to be too sparse, and a product defect occurs due to breakage in a battery assembly process or an inorganic coating process. In addition, resistance to burrs generated at the electrodes is reduced, and local short-circuiting is likely to occur.
  • the apparent density is higher than 0.8 g / cm 3 , the amount of fibers becomes excessively dense inside the nonwoven fabric laminate, and the fibers are an impediment to electrolyte permeation, so that the battery performance is lowered.
  • the apparent density is preferably 0.17 to 0.8 g / cm 3 , more preferably 0.20 to 0.75 g / cm 3 , and still more preferably 0.25 to 0.70 g / cm 3 . .
  • the basis weight of each of the nonwoven fabric layer (I layer) and the nonwoven fabric layer (II layer) and the ratio of the nonwoven fabric layer (I layer) to the nonwoven fabric layer (II layer) are as follows: The range described is preferable.
  • the basis weight of the nonwoven fabric layer (I layer) is preferably 0.1 to 18.0 g / m 2 , more preferably 0.5 to 10 g / m 2 . If the basis weight of the I layer is 0.10 g / m 2 or more, the distance between the fibers does not become too large, and the electrolyte tends to easily enter the fiber gap, and as a result, a separator with excellent electrolyte retention can be produced. .
  • the fabric weight of I layer is 18.0 g / m ⁇ 2 > or less, it is easy to set the thickness of the whole laminated nonwoven fabric to a preferable range, and it is easy to set the thickness of the whole laminated nonwoven fabric to the preferable range.
  • the basis weight of the nonwoven fabric layer is preferably 0.5 to 18.0 g / m 2 , more preferably 1.0 to 15.0 g / m 2 .
  • the basis weight of the II layer is 1.0 g / m 2 or more, in the laminated nonwoven fabric, the I layer can obtain a sufficiently uniform inter-fiber distance. That is, as described in the fiber diameter regulation, it is possible to arrange the fibers constituting the I layer more uniformly between the fibers constituting the II layer. As a result, the fibers are more uniformly distributed in the laminated nonwoven fabric. Can be distributed. As a result, the hole diameter becomes uniform and short circuit can be suppressed.
  • the basis weight of the II layer is 1.0 g / m 2 or more, the laminated nonwoven fabric has good strength, the winding process is stable, and the separator does not lose its shape. On the other hand, if the basis weight of the II layer is 15.0 g / m 2 or less, it is easy to set the thickness of the entire laminated nonwoven fabric within a preferable range.
  • the ratio of the basis weight (i) of the nonwoven fabric layer (I layer) and the basis weight (ii) of the nonwoven fabric layer (II layer) in the laminated nonwoven fabric is not limited to the following.
  • the basis weight of the I layer and the II layer for example, when the II layer is on both surfaces of the laminated nonwoven fabric, two layers
  • the ratio (i) / (ii) of the total for each layer is preferably 1/10 to 10/1.
  • the thermoplastic resin fibers in the nonwoven fabric layer (II layer) are preferably thermoplastic synthetic long fibers.
  • the thermoplastic synthetic continuous fiber is a thermoplastic synthetic resin (polyalkylene terephthalate resin (PET, PBT, PTT, etc.) and derivatives thereof, polyolefin resin (PE, PP, etc.) and derivatives thereof, N6, N66.
  • Polyamide resins such as N612 and derivatives thereof; polyoxymethylene ether resins (POM, etc.), PEN, PPS, PPO, polyketone resins, polyketone resins such as PEEK, thermoplastic polyimide resins such as TPI, or these resins
  • a continuous long fiber made of a resin such as a copolymer or a mixture thereof.
  • the continuous long fiber means a fiber having a meaning defined in JIS-L0222.
  • a non-woven fabric composed of thermoplastic synthetic long fibers can have sufficient mechanical strength.
  • a nonwoven fabric composed of thermoplastic synthetic long fibers is less susceptible to lint and is more resistant to wear when slitting and when subjected to external friction.
  • thermoplastic synthetic long fiber the long fiber comprised by the crystalline resin enumerated later is mentioned, for example.
  • the crystalline resin and a thermoplastic resin having a melting point lower than that of the crystalline resin can be mixed and used.
  • fibers composed of a single resin may be mixed, or two or more resins having different melting points may be contained in one fiber.
  • a sheath core yarn comprising a core and a sheath, and the melting point of the sheath thermoplastic resin being lower than the melting point of the core thermoplastic resin can be used.
  • a sheath core yarn having a PET core and a copolymer PET sheath can be used.
  • the “crystalline resin” described in the present specification means a resin having a crystallinity of 10% or more measured by a differential scanning calorimeter (DSC) in a nonwoven fabric state.
  • DSC differential scanning calorimeter
  • ⁇ H the heat of fusion
  • Xc the crystallinity
  • Xc ( ⁇ HTm ⁇ HTcc) / ( ⁇ H0) * 100 (1)
  • Xc crystallinity (%)
  • ⁇ HTm heat of fusion at melting point (J / g)
  • ⁇ HTcc heat of crystallization (J / g)
  • ⁇ H0 heat of fusion at 100% crystallinity of resin Literature value (J / g).
  • the constituent material of the nonwoven fabric layer (I layer) is not limited as long as it is a fiber having a fiber diameter of 0.1 to 4.0 ⁇ m, and may be a thermoplastic resin, for example, a thermoplastic such as cellulose fibril. There may be no material.
  • a thermoplastic resin is preferably used similarly to the above-mentioned nonwoven fabric layer (II layer).
  • thermoplastic synthetic resins polyalkylene terephthalate resins (PET, PBT, PTT, etc.) and derivatives thereof, polyolefin resins (PE, PP, etc.) and derivatives thereof, polyamide resins such as N6, N66, N612 and the like, and Derivatives thereof: polyoxymethylene ether resins (POM, etc.), PEN, PPS, PPO, polyketone resins, polyketone resins such as PEEK, thermoplastic polyimide resins such as TPI, or copolymers based on these resins or Examples thereof include resins such as a mixture of them, etc.
  • the thermoplastic resin used for forming the nonwoven fabric layer (I layer) is appropriately selected according to the purpose of use.
  • the resin forming the nonwoven fabric layer (I layer) and the nonwoven fabric layer (II layer) constituting the laminated nonwoven fabric may be the same material or different materials, but for the purpose of more uniformly forming the laminated nonwoven fabric, the same material is used. It is preferable that When the I layer and the II layer are formed of the same material resin, it is easy to form a non-woven fabric having a more uniform fiber gap. Therefore, when such a non-woven fabric is used as a separator, it is easy to suppress a short circuit.
  • each nonwoven fabric layer used in the present invention is not limited.
  • the production method of the nonwoven fabric layer (II layer) is preferably a spunbond method, a dry method, a wet method, or the like.
  • the spunbond method there is no particular limitation, but in order to improve the uniformity of the web, for example, a method of charging fibers with a corona facility as disclosed in JP-A-11-131355, a flat plate-like dispersion, etc.
  • a device that controls the airflow such as a plate, to adjust the airflow velocity distribution in the ejector part of the ejector. By using the method of laminating, it becomes a more preferable production method.
  • the manufacturing method of a nonwoven fabric layer (I layer) can be set as manufacturing methods, such as a dry method and a wet method, or an electrospinning, a melt blown method, a centrifugal spinning method etc.
  • the nonwoven fabric layer (I layer) is particularly preferably formed by a melt blown method.
  • the fiber may be used for producing a nonwoven fabric after realizing splitting or fibrillation by beating, partial dissolution or the like.
  • a method of laminating a plurality of layers having a nonwoven fabric layer (I layer) and a nonwoven fabric layer (II layer) composed of thermoplastic resin fibers to form a laminated nonwoven fabric for example, with a particulate or fibrous adhesive
  • a method of integrating a method of integrating by thermal coupling, a method of jetting a high-speed water flow and three-dimensional entanglement.
  • the method of forming a laminated nonwoven fabric by integration by chemical bonding is specifically to use a binder adhesive, a thermoplastic adhesive, and / or a chemical binder. These adhesives and binders can be partially melted by the web manufacturing process or the subsequent process to bond the fibers to each other, thereby providing a laminated nonwoven fabric having sufficient mechanical strength as a separator.
  • Particularly preferred in forming a laminated nonwoven fabric is a method of integrating by thermal bonding.
  • the integration method by thermal bonding include integration by hot embossing (hot embossing roll method) and integration by high-temperature hot air (air-through method).
  • the integration by thermal bonding is preferable from the viewpoint of maintaining the tensile strength, bending flexibility, and piercing strength of the nonwoven fabric and maintaining heat resistance stability.
  • thermal bonding can be realized by thermally bonding two or more nonwoven fabric layers.
  • the thermal bonding step is performed, for example, by bonding using a flat roll at a temperature lower by 50 to 120 ° C. than the melting point of the thermoplastic resin (preferably a long thermoplastic resin fiber) at a linear pressure of 100 to 1000 N / cm. Can do. If the linear pressure in the thermal bonding step is less than 100 N / cm, bonding may be insufficient and it may be difficult to provide sufficient strength. On the other hand, if it exceeds 1000 N / cm, the deformation of the fiber becomes large, the apparent density becomes high, and it may be difficult to obtain the effect of the present invention.
  • the most preferable method is a method in which a meltblown nonwoven fabric layer or a spunbond nonwoven fabric layer is sequentially produced, and these are laminated and pressure-bonded with an embossing roll or a hot press roll.
  • This method is preferable for the purpose of obtaining a uniform nonwoven fabric with a low basis weight because it can form a laminated nonwoven fabric with the same material and can be produced on a continuous integrated production line.
  • the uniformity of the fiber distribution of the nonwoven fabric greatly contributes to the performance of the battery separator.
  • the coefficient of variation of formation can be used as an index of nonwoven fabric uniformity.
  • the preferable range of the coefficient of variation of formation is less than 2.3, and when the coefficient of variation of formation exceeds 2.3, using a laminated nonwoven fabric as a separator not only reduces battery performance, but also during charging and discharging. May cause a short circuit.
  • a more preferable range for developing good battery performance is less than 2.0, and a further preferable range is less than 1.7.
  • the coefficient of variation of formation is defined as follows. Measured with a formation tester (FMT-MIII). A test piece of 20 cm ⁇ 30 cm is taken, and light is irradiated from below the sample placed on the diffusion plate with a direct current low voltage (6V30W) tungsten current. A transmission image obtained by photographing a range of 18 ⁇ 25 cm with a CCD camera is decomposed into 128 ⁇ 128 pixels, the intensity of light received by each pixel is measured, and the transmittance is calculated.
  • FMT-MIII formation tester
  • the variation coefficient of formation is a value (the following formula) obtained by dividing the standard deviation ( ⁇ ) of the transmittance of each minute portion (5 mm ⁇ 5 mm) of the measurement sample by the average transmittance (E), and the variation in the unit weight of the minute unit The smaller the value, the higher the uniformity.
  • Coefficient of variation of formation ⁇ / E ⁇ 100
  • the test piece cut into an arbitrary size is pasted on a non-woven fabric having the same light transmittance obtained by cutting out the same size, and the range is 18 cm ⁇ 25 cm. After measuring the transmission image, it is possible to obtain the coefficient of variation of formation by extracting the light transmittance only at the test piece site.
  • the laminated nonwoven fabric layers can be integrated by applying an appropriate temperature and pressure with an embossing roll or a flat roll. Furthermore, relatively fine fibers obtained by the melt blown method can be penetrated into a layer (preferably a thermoplastic synthetic long-fiber nonwoven fabric layer) composed of relatively thick thermoplastic resin fibers. In this way, the fiber by the melt blown method can enter and be fixed in a layer (preferably a thermoplastic synthetic long-fiber nonwoven fabric layer) composed of thermoplastic resin fibers.
  • the nonwoven fabric layer (II layer) composed of thermoplastic resin fibers (preferably heat The voids in the plastic synthetic long-fiber nonwoven fabric layer) can be filled with the I layer, and a uniform network can be constructed. And it becomes easy to secure the appropriate interfiber distance and to form a laminated nonwoven fabric having an appropriate pore size distribution as described above. That is, according to the above-described method, in the laminated nonwoven fabric, a part of the I layer is embedded in the II layer, and the continuous I layer can be maintained. Therefore, it becomes possible to produce a high-performance separator.
  • the crystallinity of fibers formed by the meltblown method can be adjusted to a range of 5 to 40% under general meltblown spinning conditions.
  • the crystallinity can be evaluated by, for example, the method using DSC described above. Specifically, the polymer forming the laminated nonwoven fabric was measured using a viscosity tube in a constant temperature water bath having a concentration of 0.01 g / mL and a temperature of 35 ° C. when o-chlorophenol (OCP) was used as a solvent.
  • OCP o-chlorophenol
  • a PET resin and / or a PPS resin having a solution viscosity ( ⁇ sp / c) of 0.2 to 0.8 is used from the viewpoint of preferably high dimensional stability when wet. It is preferable to constitute a meltblown fiber.
  • the crystallinity of the meltblown fiber is more preferably 10 to 40%.
  • the laminated nonwoven fabric is preferably calendered.
  • a more uniform structure can be given to the laminated nonwoven fabric.
  • the melting point of the thermoplastic resin fibers preferably the thermoplastic resin long fibers
  • the laminated nonwoven fabric has good strength, and the apparent density can be in a particularly preferable range (for example, within the range described in the examples of the present specification).
  • thermoplastic resin fiber preferably thermoplastic resin long fiber
  • the difference is less than 10 ° C.
  • the apparent density tends to be too high
  • thermoplastic resin When the melting point is lower than the melting point of the fiber (preferably a long thermoplastic resin fiber) and the difference exceeds 100 ° C., sufficient strength tends not to be obtained.
  • a preferable tensile strength range is 2.5 N / 1.5 cm or more, and a more preferable range is 5 N / 1.5 cm or more.
  • a more preferable range is 8 N / 1.5 cm or more, and a particularly preferable range is 10 N / 15 mm. Within such a range, the separator is unlikely to break when the battery is wound.
  • a preferable piercing strength range is 100 g or more, and a more preferable range is 150 g or more. A more preferable range is 200 g or more.
  • the puncture strength is 50 g or more, metal deposits inside the battery and film breakage due to burrs of the positive and negative electrode materials hardly occur and internal short circuit hardly occurs.
  • an extra fine fiber layer (I layer) between the fiber layers (II layer) made of thermoplastic resin It is preferable that the structure is arranged.
  • the I layer plays the role of an adhesive layer, so that a higher strength nonwoven fabric can be obtained.
  • the laminated nonwoven fabric is hydrophilized.
  • the liquid retention of the nonwoven fabric is improved, and the electrolyte solution necessary for the electrode reaction is easily retained, so that a higher performance separator can be produced.
  • hydrophilization processing physical processing methods: that is, hydrophilization by corona treatment or plasma treatment, as well as chemical processing methods: introduction of surface functional groups (oxidation treatment, etc., sulfonic acid groups, carboxylic acids Group), water-soluble polymers (PVA, polystyrene sulfonic acid, and polyglutamic acid) and surfactants (nonionic, anionic, cationic, and amphoteric surfactants), etc.
  • the amount of treatment agent used, the amount of functional group introduced, and the like can be selected depending on the affinity with the monomer or the like for forming the solid electrolyte. However, since there is a possibility that the laminated nonwoven fabric that has been subjected to hydrophilization will likely contain moisture in the future, the amount of processing (that is, the mass of the treatment agent and the functional group to be introduced relative to the mass of the laminated nonwoven fabric) is: It is preferable that it is 3 mass% or less.
  • an inorganic composite material is composited on the laminated nonwoven fabric.
  • an inorganic composite material can be composited by a method disclosed in International Publication WO2010 / 134585.
  • a separator including an inorganic composite material layer on a laminated nonwoven fabric has an appropriate pore size and can be controlled in the range of 0.1 to 10 ⁇ m. Within this pore diameter range, a fine short-circuit can be further suppressed while maintaining excellent ion permeability, so that a high-performance separator can be produced.
  • an inorganic coating having oxide particles of elements Al, Si, and / or Zr having an average particle diameter of 0.5 to 10 ⁇ m is melted at a predetermined temperature and pores of the inorganic layer are formed.
  • examples thereof include a porous layer made of a material to be blocked, and the porous layer exists as a porous planar structure on the laminated nonwoven fabric.
  • Examples of the method for combining the inorganic material with the nonwoven fabric include impregnation, transfer, and coating.
  • inorganic particles include the following particles, which may be used alone or in combination of two or more.
  • oxide fine particles such as iron oxide, SiO2 (silica), Al2O3 (alumina), TiO2, BaTiO2, and ZrO
  • nitride fine particles such as aluminum nitride and silicon nitride
  • difficulty such as calcium fluoride, barium fluoride, and barium sulfate Soluble ion crystal particles
  • Covalent crystal particles such as silicon and diamond
  • Clay particles such as talc and montmorillonite
  • Derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, mica Substances or their artifacts; and the like.
  • conductive fine particles such as metal fine particles; oxide fine particles such as SnO 2 and tin-indium oxide (ITO); carbonaceous fine particles such as carbon black and graphite; It is also possible to use fine particles having electrical insulation properties by coating with a non-electrically conductive inorganic fine particle material.
  • a slurry in which a binder, a heat-fusible fine particle and the like are mixed in addition to the inorganic particles, and these are dispersed or dissolved in a solvent is used.
  • the solvent used in the slurry is not particularly limited as long as it can uniformly disperse inorganic fine particles and heat-meltable fine particles, and can dissolve or disperse the binder uniformly.
  • aromatic hydrocarbon such as toluene or methyl ethyl ketone can be used.
  • Organic solvents such as ketones such as methyl isobutyl ketone are preferred.
  • alcohols or propylene oxide glycol ethers may be appropriately added to these solvents for the purpose of controlling the interfacial tension.
  • the binder is water-soluble or used as an emulsion
  • water may be used as a solvent.
  • the interfacial tension can also be controlled by appropriately adding alcohols.
  • a slurry composition such as a slurry dispersed in water or an appropriate solvent is prepared using the above-mentioned slurry, if necessary, using heat-meltable fine particles and a binder, and then a blade coater, a roll coater, a die coater, and a spray coater.
  • the inorganic coating nonwoven fabric separator can be produced by using a conventionally known coating apparatus such as, but the coating method is not particularly limited.
  • FIG. 1 is a conceptual diagram showing a laminated nonwoven fabric having a three-layer structure.
  • FIG. 2 is a schematic view of an apparatus 100 for producing a spunbond nonwoven fabric used in one embodiment of the present invention.
  • This apparatus is provided in succession with a spinning nozzle 10 having a width corresponding to the production width of the nonwoven fabric, an air soccer 30 into which the filament group 20 extruded from the spinning nozzle is introduced, and the air soccer 30 without providing a gap.
  • Channel 40, corona charging channel device 50, and dispersion plate 60 In such a configuration, the filament group 20 pushed out from the spinning nozzle 10 is sent to the corona charging channel device 50 through the air soccer 30 and the channel 40, where it is charged by corona discharge and is collected on the collecting surface 80. To form a web 90.
  • FIG. 3 is an enlarged view of the dispersion plate 60 of FIG.
  • a dispersion plate is used with an inclination of 4 ° with respect to the charged filament 70 that is vertically emitted from the corona charging channel device 50.
  • the length direction is the MD direction (machine direction)
  • the width direction is a direction perpendicular to the length direction.
  • Examples 1 to 11 The laminated nonwoven fabrics of Examples 1 to 11 were produced by the following method, and performance evaluation was performed.
  • a spinning temperature 300 ° C. and heated air of 1000 Nm 3 / hr / m, the mixture was extruded toward a moving collection net and spun by a melt blown method.
  • the distance from the meltblown nozzle to the ultrafine fiber web was set to 100 mm
  • the suction force at the collection surface immediately below the meltblown nozzle was set to 0.2 kPa
  • the wind speed was set to 7 m / sec. Adjustment of the fiber diameter and crystallinity is performed by adjusting the amount of heated air.
  • a solution of general-purpose PET as a thermoplastic resin
  • a filament group was spun at a spinning temperature of 300 ° C. by a spunbond method. The fiber was spun at a speed of 4500 m / min and sprayed onto the ultrafine fiber web.
  • the fibers are charged by corona charging to about 3 ⁇ C / g to sufficiently open the filament group, and the nonwoven fabric layer (I layer) composed of ultrafine fibers / nonwoven fabric layer (II layer composed of thermoplastic resin long fibers)
  • the nonwoven fabric layer (I layer) composed of ultrafine fibers / nonwoven fabric layer (II layer composed of thermoplastic resin long fibers)
  • a laminated web consisting of The fiber diameter was adjusted by changing the traction conditions.
  • the nonwoven fabric layer (I layer) is laminated so as to have a predetermined fiber diameter and basis weight by the same method as the formation of the ultrafine fiber web as the nonwoven fabric layer (I layer). did.
  • a laminated web composed of I layer / II layer / I layer was obtained.
  • the calender roll was used to adjust the thickness to a desired thickness and the apparent density to obtain a laminated nonwoven fabric.
  • the processing conditions were changed to obtain various nonwoven fabrics (Examples 1 to 11). Table 1 shows the configuration and formation conditions of the obtained laminated nonwoven fabric.
  • Example 12 As a nonwoven fabric layer (I layer), a melt-blown fiber web to be a nonwoven fabric layer (I) layer was prepared in the same manner as in Example 1, and a co-PET having a fiber diameter of 18 ⁇ m and a fiber length of 5 mm was produced as the nonwoven fabric layer (II layer). / Short fibers having a PET sheath core structure were obtained. Specifically, it is collected by a paper making method so as to be 30 g / m 2 on a net, and after dehydration and drying, fibers are fused together by an air-through method (180 ° C., 5 m / min), and a non-woven fabric layer ( I layer) / short fiber web (II layer) was obtained.
  • the nonwoven fabric layer (I layer) produced similarly to Example 1 was laminated
  • the obtained laminated web was thermally bonded with a flat roll and a calender roll to obtain a laminated nonwoven fabric.
  • Table 1 shows the configuration and forming conditions of the laminated nonwoven fabric. In Table 1, the melting point of the short fiber having the sheath / core structure is described in the order of the sheath / core (the same applies hereinafter).
  • Example 13 PPS (Fortron manufactured by Polyplastics) was used as the thermoplastic resin.
  • the conditions for forming the nonwoven fabric are as follows.
  • Layer I Melt viscosity of resin: 670 g / 10 min (measured in the same manner as described above, measurement conditions: load 5 kg, temperature 315.6 ° C.), spinning temperature: 340 ° C., heated air temperature: 390 ° C., heated air amount : 1000 Nm 3 / hr / m.
  • Layer II Melt viscosity of resin: 70 g / 10 min (measured using a capillary rheometer, measurement conditions: load 5 kg, temperature 315.6 ° C.), spinning temperature: 320 ° C., spinning speed: 8000 m / min.
  • Table 1 shows the conditions for forming the laminated nonwoven fabric and the performance thereof. Other conditions were the same as in Example 1.
  • Table 4 shows the electrical characteristics.
  • Example 14 PP (manufactured by Nippon Polypro Co., Ltd.) was used as the thermoplastic resin.
  • the conditions for forming the nonwoven fabric are as follows.
  • Layer I Melt viscosity of resin: 1500 g / 10 min (measured in the same manner as described above, measurement conditions: load 2.1 kg, temperature 230 ° C.), spinning temperature: 295 ° C., heated air temperature: 320 ° C., heated air amount : 1050 Nm 3 / hr / m.
  • Layer II Melt viscosity of resin: 43 g / 10 min (measured in the same manner as described above, measurement conditions: load 2.1 kg, temperature 230 ° C.), spinning temperature: 230 ° C., spinning speed: 3300 m / min.
  • Table 1 shows the conditions for forming the laminated nonwoven fabric and the performance thereof. Other conditions were the same as in Example 1. In addition, Table 4 shows the electrical characteristics.
  • Example 15 1000 g of water, 1000 g of spherical silica as inorganic fine particles, and SBR latex (3 parts by mass of SBR solid content with respect to 100 parts by mass of inorganic fine particles) as a binder are placed in a container and dispersed by stirring for 1 hour with a three-one motor. Got. A nonwoven fabric obtained by the same method as in Example 1 was passed through this slurry, and the slurry was applied by pulling up and then passed through a gap at a predetermined interval and dried at 100 degrees to produce a separator.
  • Example 16 A laminated nonwoven fabric was produced by the same method as in Example 15 except that the amount of fibers was different, and obtained by applying an inorganic material by the same method as in Example 15. Table 1 shows the structure of the obtained laminated nonwoven fabric and the formation conditions thereof.
  • Example 17 Unlike Examples 1 to 11, a laminated nonwoven fabric having a two-layer structure (I layer and II layer) was used, and the other conditions were the same as those of Examples 1 to 11.
  • Table 1 shows the configuration and forming conditions of the laminated nonwoven fabric.
  • Example 18 A laminated nonwoven fabric was produced in the same manner as in Example 17, and the same method as in Example 15 was used to apply an inorganic substance having Si oxide particles.
  • Table 1 shows the structure of the obtained laminated nonwoven fabric and the formation conditions thereof.
  • Example 19 Unlike Examples 1 to 11, a laminated nonwoven fabric having a three-layer structure (II layer-I layer-II layer) including an ultrafine fiber I layer as an intermediate layer was obtained.
  • a II layer was formed by a spunbond method to obtain a web.
  • the laminated web which consists of II layer / I layer was obtained.
  • the laminated web which consists of II layer / I layer was obtained.
  • a laminated web composed of II layer / I layer / II layer was obtained.
  • Table 1 shows the structure of the obtained laminated nonwoven fabric and the formation conditions thereof.
  • Example 20 A laminated nonwoven fabric was produced in the same manner as in Example 19, and obtained in the same manner as in Example 15 by applying an inorganic substance having Si oxide particles.
  • Table 1 shows the structure of the obtained laminated nonwoven fabric and the formation conditions thereof.
  • Example 21 A laminated nonwoven fabric was produced by the same method as in Example 19 except that the amount of fibers was different, and was obtained by applying an inorganic substance having Si oxide particles by the same method as in Example 15. Table 1 shows the structure of the obtained laminated nonwoven fabric and the formation conditions thereof.
  • Example 22 to 41 As a non-woven fabric layer (II layer) composed of thermoplastic resin fibers, a plate-like dispersion (inclination angle 4 ° with respect to the filaments of the flat plate) as shown in FIG. 3 immediately after the fibers are charged to about 3 ⁇ C / g by corona charging. Laminated nonwoven fabrics were prepared in the same manner as in Examples 1 to 11 and 13 to 21 except that the apparatus was used. Table 2 shows the structure of the obtained laminated nonwoven fabric and the formation conditions thereof.
  • Example 42 and 43 A laminated nonwoven fabric was produced in the same manner as in Example 41 except that the calendar conditions were changed. Table 2 shows the structure of the obtained laminated nonwoven fabric and the formation conditions thereof.
  • Example 44 A laminated nonwoven fabric was produced in the same manner as in Example 43 except that the fiber amount was changed.
  • Table 2 shows the structure of the obtained laminated nonwoven fabric and the formation conditions thereof.
  • Example 45 to 47 A laminated nonwoven fabric was produced in the same manner as in Example 39 except that the fiber amount, fiber diameter, and calendering conditions were changed. Table 2 shows the structure of the obtained laminated nonwoven fabric and the formation conditions thereof.
  • Example 48 to 50 The nonwoven fabric obtained in Examples 45 to 47 was subjected to an inorganic coating treatment in the same manner as in Example 15 to produce a separator.
  • Table 2 shows the structure of the obtained laminated nonwoven fabric and the formation conditions thereof.
  • a spunbonded nonwoven fabric (E05025, fiber diameter 16 ⁇ m, basis weight 25 g / m 2 ) manufactured by Asahi Kasei Fiber was used as an example of a nonwoven fabric consisting only of a nonwoven fabric layer (II layer).
  • Table 3 shows the structure of the nonwoven fabric.
  • the ultrafine fiber nonwoven fabric layer (I layer) was spun by the melt blown method using the same resin as the I layer of Example 1 under the conditions of a spinning temperature of 300 ° C. and heated air of 1000 Nm 3 / hr / m. Formed by spraying on top. At this time, the distance from the melt blown nozzle to the web was set to 100 mm, the suction force at the collecting surface immediately below the melt blown nozzle was set to 0.2 kPa, and the wind speed was set to 7 m / second. Adjustment of the fiber diameter and the crystallinity was performed by changing the discharge amount to obtain a nonwoven fabric composed of only the I layer. Table 3 shows the structure of the nonwoven fabric and the formation conditions.
  • Example 3 A laminated nonwoven fabric was produced in the same manner as in Example 18 except that the amount of fibers in each layer was changed, and the total basis weight was 20 g / m 2 .
  • PET short fibers having a fiber diameter of 16 ⁇ m and a fiber length of 5 mm were collected on a net so as to be 25 g / m 2 by a papermaking method to obtain a web.
  • polyvinyl alcohol dissolution temperature: 70 ° C.
  • This web was dehydrated and dried, and thermocompression bonded with a calender roll to obtain a nonwoven fabric consisting only of a nonwoven fabric layer (II layer).
  • Table 3 shows the structure of the nonwoven fabric and the formation conditions.
  • Example 5 As the nonwoven fabric, a wet nonwoven fabric (fiber diameter: 8 ⁇ m, basis weight: 16 g / m 2 ) made of rayon fiber was used. Table 3 shows the structure of the nonwoven fabric.
  • Comparative Example 7 A short fiber nonwoven fabric was obtained in the same manner as in Comparative Example 4 except that the PET short fiber amount was 12 g / m 2 and the overall basis weight was 15 g / m 2 .
  • Comparative Example 8 A short fiber nonwoven fabric was obtained in the same manner as in Comparative Example 4 except that the PET short fiber amount was 8 g / m 2 and the total basis weight was 10 g / m 2 .
  • Comparative Example 8 A short fiber nonwoven fabric was obtained in the same manner as in Comparative Example 8. This nonwoven fabric was subjected to an inorganic coating treatment in the same manner as in Example 15.
  • the characteristics of the separator produced as described above were evaluated as follows. The results are shown in Tables 4-6. The measurement methods for the fiber diameters and melting points shown in Tables 1 to 3 were also described below ((4) and (8), respectively). The formation coefficient of variation was measured by the method described above.
  • Weight per unit area (g / m 2 ) According to the method specified in JIS L-1906, test specimens measuring 20 cm in length x 25 cm in width were sampled at 3 locations per 1 m in the width direction and 3 locations per 1 m in the length direction, for a total of 9 locations per 1 m ⁇ 1 m. It measured and calculated
  • Thickness (mm) According to the method prescribed in JIS L-1906, the thickness of 10 locations per 1 m width was measured and the average value was determined. The load was 9.8 kPa.
  • Opening hole diameter distribution (average flow hole diameter and maximum hole diameter)
  • a palm porometer (model: CFP-1200AEX) manufactured by PMI was used.
  • Sylwick manufactured by PMI was used as the immersion liquid, and the sample was immersed in the liquid and sufficiently deaerated before measurement.
  • This measuring apparatus uses a filter as a sample. When the filter is immersed in a liquid with a known surface tension and all pores of the filter are covered with the liquid film, pressure is applied to the filter, and the pressure at which the liquid film is broken and the surface tension of the liquid Measure the calculated pore size. The following formula is used for the calculation.
  • d C ⁇ r / P (Where d (unit: ⁇ m) is the pore size of the filter, r (unit: N / m) is the surface tension of the liquid, P (unit: Pa) is the pressure at which the liquid film of that pore size is broken, and C is a constant .)
  • the flow rate (wetting flow rate) when the pressure P applied to the filter immersed in the liquid is continuously changed from low pressure to high pressure is measured.
  • the flow rate is zero because the liquid film with the largest pores is not broken.
  • the pressure is increased, the liquid film with the largest pores is destroyed and a flow rate is generated (bubble point).
  • the flow rate increases with each pressure.
  • the flow rate at the pressure when the liquid film with the smallest pore is broken matches the dry flow rate (dry flow rate).
  • the cumulative filter flow rate (unit:%).
  • the pore size of the liquid film that is broken at a pressure at which the cumulative filter flow rate is 50% is referred to as the average flow pore size. This average flow pore size was taken as the average flow pore size of the laminated nonwoven fabric of the present invention.
  • the maximum pore size of the laminated nonwoven fabric of the present invention is measured by using the nonwoven fabric as the above filter sample, and the liquid film is destroyed in a range of ⁇ 2 ⁇ where the cumulative filter flow rate is 50%, that is, the pressure at which the cumulative filter flow rate is 2.3%. Of the pore diameter. Three points were measured for each sample by the above measurement method, and the average value was taken as the average flow pore size.
  • Puncture strength Except for 10 cm of each end portion of the sample (nonwoven fabric), five test pieces having a width of 1.5 cm and a length of 20 cm were cut out at a width of 1 m. A load was applied to the test piece at a compression of 100 kg cell and 50 m / min, and the load until the test piece was penetrated was defined as the piercing strength.
  • the container and the lid are insulated, the container is in contact with the negative electrode copper foil, and the lid is in contact with the positive electrode aluminum foil.
  • the separator was cut into a circle of 18 mm ⁇ , the positive electrode and the negative electrode in a 16 mm ⁇ shape, and the positive electrode, the separator, and the negative electrode were stacked in this order so that the active material surfaces of the positive electrode and the negative electrode were opposed to each other, and stored in a stainless steel container with a lid.
  • the container and the lid were insulated, and the container was in contact with the negative electrode copper foil and the lid was in contact with the positive electrode aluminum foil.
  • the non-aqueous electrolyte was poured into this container and sealed. After standing at room temperature for 1 day, the battery was charged to a battery voltage of 3.6 V at a current value of 1.1 A (1.0 C) in a 25 ° C.
  • Tables 4 to 6 show the electrical characteristics results of the coin cells obtained by these procedures.
  • the test result of the Example shown here and the comparative example was taken as the average of five coin cells.
  • PET represents polyethylene terephthalate
  • MB represents a meltblown web
  • SB represents a spunbond web
  • the battery performance according to the example of the present invention shows superior performance in at least one of the items compared to the comparative example.
  • the texture variation coefficient is good and the battery performance is high.
  • Examples of utilization of the present invention include all types of primary batteries and secondary batteries, particularly separators for electrochemical elements such as alkali metal-based, for example, lithium, lithium ion, lithium polymer, and alkaline earth metal-based. .
  • the electrical device using the separator of the present invention is suitably used in the field of various electronic devices.
  • Nonwoven fabric layer made of ultrafine fibers 2
  • Nonwoven fabric layer 3 Laminated nonwoven fabric 10
  • Spinning 20 Extruded filament 30
  • Air soccer 40 Continuous channel section 50
  • Corona charging channel device 60 Dispersing plate 70
  • Collection surface 90 Web 100 Spunbond nonwoven fabric manufacture apparatus

Abstract

 電気絶縁性、電解質保持性、イオンまたは電子の透過性に優れた性能を有し、かつ安定して生産が可能なセパレータを提供する。このセパレータは、繊維径が0.1μm以上4.0μm未満の合成繊維で構成される不織布層(I層)と、繊維径が4.0μm以上30.0μm以下を有する熱可塑性樹脂繊維で構成される不織布層(II層)とを含む、少なくとも2層の積層不織布で構成されており、目付けが3.0g/m以上20.0g/m未満である。

Description

[規則37.2に基づきISAが決定した発明の名称] セパレータ
 本発明は、特定構成の積層不織布を用いたセパレータに関する。より詳しくは、本発明は、例えば一次電池、二次電池もしくは燃料電池といった電気化学的電池用のセパレータ及び電気エネルギー貯蔵装置用のセパレータに関する。
 電気化学的電池とは、本明細書中では、全ての種類の一次電池及び二次電池、特にアルカリ金属系、例えばリチウム、リチウムイオン、リチウムポリマー、及びアルカリ土類金属系のものであると解釈することができる。
 電気エネルギー貯蔵装置とは、電気二重層キャパシタ、特にリチウムイオンキャパシタと解釈することができる。
 電池やキャパシタなどのエネルギーデバイスは、近年の電子機器小型化、高効率化に伴い、高エネルギー密度、高信頼性等の高機能化が求められている。
 特に注目を集めている蓄電デバイスには、例えばリチウムイオン二次電池がある。リチウムイオン二次電池は、高電圧、高エネルギー密度、長寿命、充電速度の速さ等の特徴を有する。リチウムイオン二次電池は、現在、携帯電話・スマートフォン、ノートパソコン等の小型電子機器で既に使用されており、今後、電気自動車、ハイブリッド自動車等の車載用途を中心とした大型電子機器においても使用が期待されている。
 リチウムイオン二次電池は、一般的に正極活物質、負極活物質、電解液(電解液/電解質/添加剤)、セパレータで構成されている。
 セパレータの役割は、大きく2つ挙げられる。まず第1に、2つの異なる帯電状態にある電極が物理的に直接接触すること(短絡)を防止することである。これにより高い安全性を発現させ、製品に高い信頼性を与えることができる。そのためにセパレータの要求特性として、十分な機械的強度を持つこと、及び電圧負荷時に短絡を引き起こさないことがある。短絡を引き起こさないためには、微細なフィブリル構造あるいは均一なネットワーク構造を有することが必要とされる。セパレータの第2の役割としては、電解液を保持しながら正極と負極との間のイオン伝導性を確保することである。この役割に関して、高容量・高出力を発現するために、セパレータには高いイオン伝導性を有することが必要とされる。他のセパレータの要求特性は、全体の厚みが薄く、且つセパレータ内部に多くの空隙部分を有していることが必要とされる。
 現在使用されているセパレータには、多孔質フィルム、不織布等がある。これらの材料は、共通して上記の性質、例えば高い機械強度、微細なネットワーク構造、適度な厚さ、多量の空隙部分等を有している。そのため、高信頼性、高性能なリチウムイオン電池が製造可能である。
 多孔質フィルムのセパレータの例としては、リチウムイオン二次電池のセパレータに関してポリオレフィン系の微多孔膜が広く使われている。その空隙率は比較的高く、高いレート特性を発現できる。また、多孔質フィルムのセパレータは、130~180℃の高温で大電流が流れた際、その微細空孔が溶解することで閉孔して、それにより電池性能が失われることで安全性が保たれる、いわゆるシャットダウン効果を持ち合わせており、リチウムイオン二次電池用セパレータとして、使用されている。
 一方、不織布からなるセパレータは、空隙率が高いため電解質の保持性が高く、電池のレート特性、電圧保持率に優れている。また軽量であり大量生産も可能である利点を持つ。また、耐熱性に優れた樹脂を成形することにより耐熱効果が期待できる。さらに、繊維径をコントロールすることにより孔径もコントロールできるため、不織布からなるセパレータは多数検討されている。
 特許文献1では、融点又は炭化温度が300℃以上の樹脂からなる耐熱性繊維が熱可塑性樹脂によって固定されている湿式不織布をセパレータとして用いる試みがなされている。
 特許文献2では、目付けが20g/m以上の、平均繊維径5μm以下の極細繊維からなる不織布層を中間層とし、平均繊維径5~20μmの不織布層を上下層として積層した3層構造の、親水化処理がなされているポリオレフィン系繊維をセパレータとして用いる試みがなされている。
 不織布をセパレータとして用いるにあたり電池反応の均一度を確保するために、不織布の膜の均一性が重要となる。特許文献2では、一般的に膜の均一度の低い不織布であるスパンボンド層の中間層に、膜の均一度の高いメルトブロウン不織布を設け、均一性を出している。しかしながらスパンボンド不織布層自体の均一度は低いままであり、電解質の易動度、電解液保持性を低下させる懸念がある。
 特許文献3では、平均繊維径が0.5~3μmであるメルトブロウン不織布を積層させて表面を平滑にした積層不織布を用いて、電解液の保持性を向上させる試みがなされている。
 また、更なるセパレータの性能向上方法も検討されている。例えば、セパレータの熱収縮による短絡を防止する技術として、特許文献4には絶縁性粒子を多孔質基材へ塗工したセパレータが開示されている。
特開2005-159283号公報 特開平11-283602号公報 国際公開WO2008/018584 国際公開WO2010/024559
 これまでリチウムイオン二次電池用セパレータとしては、上記特許文献に見られるような、適度なイオン透過性を発現させる試みや、短絡を防止することで安全性を確保する試みがなされてきた。しかしながら不織布からなるセパレータを用いた製品は、広く実用化されていない。この理由は、セパレータとして、機械強度、電解液保持性、電気絶縁性等の性能を十分満足しておらず、高容量・高出力な電池性能を発現できなかったからである。
 また絶縁層形成用スラリーを塗布するに当たり、特許文献4では繊維径の太い繊維で構成される単層の不織布を用いているため、不織布の孔径が大きく、無機粒子を塗工する無機塗工をした際にピンホールなどの塗工不良が発生しやすくなる。この様な不織布へ無機塗工する際には、スラリーを相当量塗布することによって短絡は抑制できるものの、イオンの透過性が減少し、高レートでの放電容量が低下することが想定される。逆に不織布の孔径を小さくしすぎると、単層で構成される不織布の場合、不織布内部まで無機粒子が充填されずに空洞となる部分が発生する。無機塗工不織布内部すなわちセパレータ内部に過剰の空洞部が発生すると、電池使用時に電池反応に均一度が低下したり、内部短絡を誘発したりする。
 上述の問題に鑑み、本発明が解決しようとする課題は、一次電池、二次電池、燃料電池等の電気化学的電池、及び電気エネルギー貯蔵装置に使用でき、かつ安定して生産可能な、電気絶縁性、電解質保持性、イオン伝導性等に優れたセパレータを提供することである。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、異なる特定の繊維径を有する2層以上の積層不織布を用いたセパレータが、電気絶縁性、電解質保持性、イオンまたは電子の透過性に優れた性能を有しており、かつ無機塗工処理を施す際には塗工粒子を不織布内部に好適に保持できるような構造となっており、これを用いることにより高性能な電気化学電池、あるいは電気エネルギー貯蔵装置を得られることを見出し、本発明をなすに至った。すなわち、本発明は以下の通りである。
 [1] 繊維径が0.1μm以上4.0μm未満の合成繊維で構成される不織布層(I層)と、繊維径が4.0μm以上30.0μm以下を有する熱可塑性樹脂繊維で構成される不織布層(II層)とを含む、少なくとも2層の積層不織布で構成された、目付けが3.0g/m以上20.0g/m未満のセパレータ。
 [2] 前記I層が、2つの前記II層の間に中間層として存在している、[1]に記載のセパレータ。
 [3] 前記II層が、2つの前記I層の間に中間層として存在している、[1]に記載のセパレータ。
 [4] 前記不織布層(II層)における該熱可塑性樹脂繊維が、熱可塑性合成連続長繊維である、[1]~[3]のいずれかに1つに記載のセパレータ。
 [5] 前記積層不織布が、化学的及び/または熱的結合による一体化によって形成されている、[1]~[4]のいずれかに1つに記載のセパレータ。
 [6] 前記積層不織布が、厚み10~50μmを有する[1]~[5]のいずれかに1つに記載のセパレータ。
 [7] 前記不織布層(I層)が、メルトブロウン法で形成されている、[1]~[6]のいずれか1つに記載のセパレータ。
 [8] 前記積層不織布における該不織布層(I層)の目付け(i)と前記不織布層(II層)の目付け(ii)との比(i)/(ii)が、1/10~10/1である、[1]~[7]のいずれかに1つに記載のセパレータ。
 [9] 前記積層不織布が、不織布の地合の変動係数が2.3未満の不織布積層体で構成される[1]~[8]のいずれか1つに記載のセパレータ。
 [10] 前記積層不織布がカレンダー加工されている、[1]~[9]のいずれか1つに記載のセパレータ。
 [11] 前記積層不織布が親水化加工されている、[1]~[10]のいずれか1つに記載のセパレータ。
 [12] 前記積層不織布に無機材料が複合されている、[1]~[11]のいずれか1つに記載のセパレータ。
 [13] [1]~[12]のいずれか1つに記載のセパレータを用いる、電気化学的電池又はエネルギー貯蔵装置。
 本発明のセパレータは、電気絶縁性、電解質保持性、イオンまたは電子の透過性に優れた性能を有し、かつ安定して生産が可能である。
3層構造の積層不織布を示す概念図である。 本発明の一つの実施態様で用いられるスパンボンド不織布を製造するための装置の概略図である。 実施例の態様での図2の装置の一部の拡大図である。
 以下、本発明について具体的に説明する。
 本発明は、繊維径が0.1μm以上4.0μm未満の合成繊維で構成される不織布層(I層)と、繊維径が4.0μm以上30.0μm以下を有する熱可塑性樹脂繊維で構成される不織布層(II層)とを含む、少なくとも2層の積層不織布で構成された、目付けが3.0g/m以上20g/m未満のセパレータである。
 本発明のセパレータは、積層不織布であって、不織布層(I層)及び不織布層(II層)を含む。具体的には、積層不織布は、少なくとも2層を有する積層不織布であって、繊維径0.1μm以上4.0μm未満を有する極細繊維で構成される不織布層(I層)と、繊維径4.0μm以上30.0μm以下を有する熱可塑性樹脂繊維で構成される不織布層(II層)とを有する。これにより、本発明のセパレータは、優れた機械強度を有しており、イオン透過性に優れている。また、高いバリアー性を有しており、薄膜であっても両電極の隔離効果を有効にする。
 不織布層(I層)は、繊維径0.1μm以上4.0μm未満を有する極細繊維で構成される。なお本明細書において、用語「極細繊維」とは、上記の0.1μm以上4μm未満の範囲の繊維径を有する繊維を意図している。I層は、本発明の効果を損なわない範囲で、上記極細繊維以外の繊維を含有してもよいが、典型的には上記極細繊維のみからなる。繊維径が4μm未満であれば、不織布層の繊維間隙が大きくなり過ぎないため、電解液が繊維間隙に入りやすく、結果として電解液保持性に優れた電池用セパレータとなる。またこの場合、親水化のための樹脂、あるいは孔径コントロールのための無機物を塗工するため、極細繊維不織布層(I層)の重量あたりの表面積、すなわち比表面積が大きいため、その効果を有効に発現することが出来る。一方、繊維径が0.1μm以上であると、繊維を比較的容易に形成でき、且つ形成された繊維が、表面摩擦等で毛羽立ったり、糸くずを作ったりしない傾向にある。この意味で、不織布層(I層)の繊維径は、好ましくは0.1~3.8μm、より好ましくは0.2~3.0μm、さらに好ましくは0.3~2.5μmである。なお本明細書で記載する繊維径は、マイクロスコープによる繊維直径の測定によって評価できる。
 不織布に無機粒子を塗工する無機塗工を施す際に、不織布が上記記載の極細繊維を含むことで、塗工工程での摩擦による不織布層の欠損を抑制することが可能となる。更に、無機塗工時に極細繊維で構成される不織布層(I層)が、塗工粒子が裏側に抜けること(裏抜け)を抑制するため、不織布内部に好適に無機塗工粒子を充填することが可能となる。このため、本発明のセパレータは、積層不織布内部に密に無機粒子を充填することが出来、目付量が薄くなるように塗工した際にも内部短絡を抑制することが可能となる。また、粒子塗工量を少なくすることで電解質の透過性も改善されるため、本発明のセパレータを用いた電池は電池性能も向上させることができる。すなわち本発明の不織布に無機塗工を施すことで良好な無機塗工層を得ることが出来る。本発明のセパレータは、塗工量が少なくても塗工不良によるピンホールを抑制可能であるため、セパレータ使用時の安全性及び高性能を確保可能となる。
 また積層構造として2層の熱可塑性樹脂で構成される不織布層(II層)の間に極細繊維層(I層)を配置することで、極細繊維層には無機塗工時の裏抜け抑制効果があるため一方のII層内部に塗工成分を好適に保持できるため、上下層で異なる成分を塗工することが出来る。よって電池の各極成分に適した塗工粒子を上下層で塗り分けることも可能となる。
 不織布層(II層)は、繊維径4.0μm以上30.0μm以下を有する熱可塑性樹脂繊維で構成される。繊維径が30.0μm以下であると、繊維の径が太過ぎず、イオンの透過性を阻害しない傾向にある。不織布層(II層)は、本発明の効果を損なわない範囲で、繊維径4.0μm以上30.0μm以下の熱可塑性樹脂繊維以外の繊維を含有してもよいが、典型的には繊維径4.0μm以上30.0μm以下の熱可塑性樹脂繊維のみからなる。上記I層における繊維径が重要であるのと同様、II層における繊維径も重要である。II層を構成する繊維の繊維径が30.0μm以下であれば表面平滑性が高くなり、I層とII層とを互いに接するように積層した場合に、I層を構成する繊維が、II層を構成する繊維の間に目付け斑のない、より均一な層配置が可能となる。これにより、積層不織布において、より均一に繊維が分布する。この結果、両電極間での局所的なショート、いわゆる微短絡を抑制することが可能となる。一方、II層を構成する繊維の繊維径が4.0μm以上であると、積層不織布が十分な強度を有し、機械強度が安定する傾向にある。この意味で、II層を構成する繊維の繊維径は、好ましくは5.0~28μm、より好ましくは6.0~25μm、さらに好ましくは9.0~20μmである。
 本発明のセパレータに関しては、構成されている不織布の内部又は表面に、極細繊維不織布層(I層)を設けることができる。I層においては、繊維径が小さいため、繊維間隙が小さく、繊維が均一に分布しており、さらに比表面積が大きい。このI層の繊維層を有することにより、緻密構造による高いバリアー性を発現しており、電極間の電気絶縁性に優れたセパレータを作製することができる。また、極細繊維の比表面積が大きいために、電解液の保持性に優れ、イオンの透過性に優れている。
 本発明においてII層に隣接して極細繊維不織布層(I層)を配置することで、セパレータへ無機塗工処理を施す際、I層が塗工粒子の裏面への透過を抑制することでII層内部に塗工粒子を好適に充填することが可能となり、更に好適な塗工形態とすることが出来る。
 本発明において無機塗工処理を施す場合、不織布の平均流量孔径の好ましい範囲は1.5~20μmの範囲内である。不織布の緻密性を示す平均流量孔径が1.5μm以上であれば、不織布の通気性が低下し、塗工時に気泡などが混入した際に気泡が脱離せずに不織布内部に残留して、乾燥後にその気泡部が空洞となる塗工不良が発生するおそれが低い。一方平均流量孔径が20μm以下であれば、無機塗工した際に塗工粒子が基材裏部へ透過し、塗工面に孔が発生するおそれが低い。より好ましくは3.0~13μmであり、更に好ましくは5.0~12μmである。尚本明細書で記載する平均流量孔径は、PMI社のパームポロメーターにより測定できる。
 本発明においては、不織布層(I層)を補強する支持層として、熱可塑性樹脂繊維で構成される不織布層(II層)を設けることができる。また、不織布層(I層)は、通気性が比較的低いため、電池内の内圧が高くなる懸念がある。しかし、不織布層(I層)を繊維径の比較的太い繊維層(II層)を組み合わせることにより、積層不織布の通気性を向上させることが出来、イオン透過性に優れたセパレータを与えることを可能とする。さらにセパレータ及び化学的電池、あるいはキャパシタの各生産工程において、不織布層(II層)が、機械的強度に劣る変形及び損傷から不織布層(I層)を守るため、不良率を低くして安定して生産できる。
 積層不織布において、I層は、緻密構造を形成するために必須であり、II層は、積層不織布をより安定させ(即ち、不織布の引張強度、曲げ強度及び表面磨耗性を良好にし)、かつ、I層を各工程で安定的に保持するために必須である。このような理由で、上記のI層とII層とを有する積層不織布は、良好な性能を有する化学的電池、あるいはキャパシタを製造するために有利である。
 本発明において、より良好な高性能なセパレータを製造するためには、3層からなる積層不織布がより好ましい。
 より好ましい態様においては、積層不織布が、2種類の層から構成された3層構造からなり、不織布層(I層)の極細繊維の繊維径が0.1μm以上4.0μm未満であり、不織布層(II層)の熱可塑性樹脂繊維の繊維径が4.0μm以上30.0μm以下である。
 本発明で、セパレータとして用いる積層不織布の目付けは、3.0g/m以上20g/m未満である。積層不織布の目付けが20g/m2未満であれば、セパレータに対して一定厚みが要求される場合に、積層不織布の目付けが大き過ぎず繊維空隙が十分に確保される傾向にあり、イオンあるいは電子の透過性を高くでき、高性能なセパレータを作製できる。また、積層不織布の目付けが3.0g/m以上であれば、スリットされた積層不織布の機械強度が高くでき、製造後の巻き取り、使用時に掛かる張力などに対して耐性が強く、取り扱いがしやすくなる傾向にある。さらに、暴走反応時にセパレータによる電気的短絡の防止機能を維持するために、十分な突き刺し強度が確保できる傾向にある。この意味で、積層不織布の目付けは好ましくは、5~15g/mである。
 本発明で、セパレータとして用いる積層不織布の厚みは、10~50μmであることが好ましい。積層不織布の厚みが10μm以上であれば、短幅にスリットされた積層不織布の強度が高くなる傾向にあり、スリット工程での不良率が少ない。また厚みが10μm以上であれば、電池、あるいはキャパシタを製造する工程で、電極間の間隔を十分保持することができ、物理的接触を抑制できる。一方、積層不織布の厚みが50μm以下であれば、両電極とセパレータとを巻回した時の厚みが大きくなり過ぎず、電子部品として小型の製品を得ることができる。この意味で、積層不織布の厚みはより好ましくは、10μm~30μmである。なお本明細書で記載する厚みは、JIS L-1906に準拠して測定できる。
 特に好ましい態様において、積層不織布は、目付け5~15g/m及び厚み10~30μmを有する。
 本発明で、セパレータとして用いる積層不織布の見掛け密度としては、0.17~0.80g/cmが好ましい。見かけ密度が0.17g/cmより低くとなると不織布の繊維量が疎となりすぎる傾向にあり、電池の組立工程もしくは無機塗工処理の工程などでの破断による製品不良が発生する。また電極で発生するバリに対する耐性も低くなり、局所的な短絡も発生しやすくなる。一方見かけ密度0.8g/cmより高くとなると繊維量が不織布積層体内部で過密となり、繊維が電解質透過の阻害要素となることから、電池性能が低下する。この意味で見かけ密度は0.17~0.8g/cmが好ましく、より好ましくは0.20~0.75g/cmであり、更に好ましくは0.25~0.70g/cmである。
 本発明でセパレータとして用いる積層不織布において、不織布層(I層)及び不織布層(II層)の各々の目付け、並びに、不織布層(I層)と不織布層(II層)との比率は、以下に述べる範囲であることが好ましい。
 即ち、本発明で、不織布層(I層)の目付けは、0.1~18.0g/m2であることが好ましく、0.5~10g/m2であることがより好ましい。I層の目付けが0.10g/m2以上であれば、繊維間距離が大きくなり過ぎず、電解液が繊維間隙に入りやすい傾向にあり、結果として電解液保持性に優れたセパレータが作製できる。またI層の目付けが18.0g/m2以下であれば、積層不織布全体の厚みを好ましい範囲に設定しやすく、積層不織布全体の厚みを好ましい範囲に設定しやすい。
 本発明で、不織布層(II層)の目付けは、0.5~18.0g/mであることが好ましく、1.0~15.0g/mであることがより好ましい。II層の目付けが1.0g/m以上であれば、積層不織布において、I層が十分に均一な繊維間距離を得ることができる。即ち、繊維径の規定でも述べたとおりに、I層を構成する繊維を、II層を構成する繊維の間により均一に配置することが可能であり、結果として、積層不織布においてより均一に繊維を分布させることができる。この結果、孔径が均一になり短絡を抑制できる。また、II層の目付けが1.0g/m以上であれば、積層不織布が良好な強度を有し、巻回工程が安定し、セパレ-タが型崩れしない。一方、II層の目付けが15.0g/m2以下であれば、積層不織布全体の厚みを好ましい範囲に設定しやすい。
 積層不織布における、不織布層(I層)の目付け(i)と不織布層(II層)の目付け(ii)との比は、以下に限定するものではない。ただし、積層不織布に良好な強度を与え、かつ、繊維間隙が小さい緻密構造を形成するために、I層とII層との目付け(例えばII層が積層不織布の両表面にある場合等、2層以上のI層及び/又は2層以上のII層が存在する場合には、各層についての合計)の比(i)/(ii)は、1/10~10/1であることが好ましい。(i)/(ii)が1/10よりも大きいと、I層を不織布の面方向に斑なく形成しやすい。(i)/(ii)が10/1よりも小さいと、積層不織布全体が、スリット時、巻回時、及び熱処理工程で変形しない良好な強度を得やすい。積層不織布及びこれを構成する各不織布層の厚み及び目付けは、セパレータとして必要な厚み及び目付けを確保できる範囲で適宜選ばれるべきである。
 本発明で、不織布層(II層)における熱可塑性樹脂繊維は、熱可塑性合成長繊維であることが好ましい。本明細書において、熱可塑性合成長繊維とは、熱可塑性合成樹脂(ポリアルキレンテレフタレート樹脂(PET、PBT、PTT等)及びその誘導体、ポリオレフィン系樹脂(PE、PP等)及びその誘導体、N6、N66、N612等のポリアミド系樹脂及びその誘導体;ポリオキシメチレンエーテル系樹脂(POM等)、PEN、PPS、PPO、ポリケトン樹脂、PEEK等のポリケトン系樹脂、TPI等の熱可塑性ポリイミド樹脂または、これらの樹脂を主体とする共重合体もしくはそれらの混合物などの樹脂)からなる連続長繊維をいう。ここで、連続長繊維とは、JIS-L0222で規定される意味の繊維をいう。熱可塑性合成長繊維で構成される不織布は、十分な機械強度を有することができる。また熱可塑性合成長繊維で構成される不織布は、スリット時、及び外部からの摩擦等を受けた際に、より糸くずがでにくく、磨耗性にも強い。熱可塑性合成長繊維の例としては、例えば後述で列挙する結晶性樹脂で構成される長繊維が挙げられる。一方、熱可塑性樹脂繊維として短繊維を用いる場合、例えば、その結晶性樹脂と、その結晶性樹脂より低い融点の熱可塑性樹脂とを混合して用いることが出来る。混合は単一の樹脂から構成される繊維を混ぜても良いし、1本の繊維中に融点の異なる2種以上の樹脂が含まれていても良い。例えば芯と鞘とから成り、鞘の熱可塑性樹脂の融点が芯の熱可塑性樹脂の融点より低い鞘芯糸を用いることが出来る。例えば芯がPET、鞘が共重合PETの鞘芯糸が使用できる。
 なお、本明細書で記載する「結晶性樹脂」とは、不織布の状態で示差走査熱量計(DSC)にて測定された結晶化度が10%以上である樹脂を意味する。DSCによる結晶化度の測定は、サンプル重量5mg、昇温速度10℃/min、走査温度50~300℃の測定条件として、融解熱(ΔH)を算出し結晶化度(Xc)を求める。Xcは次式より求める。
Xc=(ΔHTm-ΔHTcc)/(ΔH0)*100 (1)
ここで、Xc:結晶化度(%)、ΔHTm:融点での融解熱(J/g)、ΔHTcc:結晶化熱量(J/g)、ΔH0:樹脂の結晶化度100%時の融解熱の文献値(J/g)である。
 本発明において、不織布層(I層)の構成素材は、繊維径0.1~4.0μmを有する繊維であれば制限はなく、熱可塑性樹脂であっても良いし、例えばセルロースフィブリル等熱可塑性の無い素材であっても良い。好適には前述の不織布層(II層)と同様に熱可塑性樹脂である。具体的には、熱可塑性合成樹脂(ポリアルキレンテレフタレート樹脂(PET、PBT、PTT等)及びその誘導体、ポリオレフィン系樹脂(PE、PP等)及びその誘導体、N6、N66、N612等のポリアミド系樹脂及びその誘導体;ポリオキシメチレンエーテル系樹脂(POM等)、PEN、PPS、PPO、ポリケトン樹脂、PEEK等のポリケトン系樹脂、TPI等の熱可塑性ポリイミド樹脂、若しくはこれらの樹脂を主体とする共重合体又はそれらの混合物などの樹脂等が挙げられる。不織布層(I層)を形成するために用いる熱可塑性樹脂は、使用目的に合わせて適宜選択する。
 積層不織布を構成する不織布層(I層)及び不織布層(II層)を形成する樹脂は、同じ物質でも、異なる物質でも良いが、積層不織布をより均一に形成する目的のためには、同じ物質であることが好ましい。I層及びII層を同じ物質の樹脂で形成する場合、より均一な繊維の間隙を持つ不織布を形成しやすいため、このような不織布をセパレータとして使用した場合、短絡を抑制しやすい。
 本発明において用いる各不織布層の製造方法は限定されない。しかし、不織布層(II層)の製法は、好ましくはスパンボンド法、乾式法、湿式法等とすることができる。スパンボンド法を用いる場合、特に限定されないが、ウェブの均一性を向上させるために、例えば特開平11-131355に開示されているようなコロナ設備などにより繊維を帯電させる方法や、平板状の分散板などのような気流を制御する装置を用いてエジェクターの噴出し部分の気流の速度分布を調整するなどして、繊維を開繊させた後にウェブを吹き付けウェブの飛散を抑制しながら捕集面に積層する方法を用いることで、更に好ましい製法となる。また、不織布層(I層)の製法は、好ましくは乾式法、湿式法等の製法、又はエレクトロスピニング、メルトブロウン法、遠心紡糸法等とすることができる。不織布層を容易かつ緻密に形成できるという観点から、不織布層(I層)は、特に好ましくはメルトブロウン法で形成される。また繊維は、叩解、部分溶解等により割繊又はフィブリル化を実現した上で不織布の製造のために用いてもよい。
 不織布層(I層)と熱可塑性樹脂繊維で構成される不織布層(II層)とを有する複数層を積層して積層不織布を形成する方法としては、例えば、粒子状又は繊維状の接着剤により一体化させる方法、熱的結合により一体化させる方法、高速水流を噴射して三次元交絡させる方法等が挙げられる。
 化学的結合による一体化で積層不織布を形成する方法は、具体的にはバインダ接着剤、熱可塑性接着剤、及び/又は化学結合剤を使用することである。これら接着剤・結合剤は、ウェブ製造工程もしくは、その後の工程により部分的に溶融され、繊維を相互的に結合することができ、セパレータとして十分な機械強度を有する積層不織布を与えることができる。
 特に積層不織布を形成する上で好ましい方法は、熱的結合により一体化させる方法である。熱的結合による一体化の方法としては、熱エンボスによる一体化(熱エンボスロール方式)、及び高温の熱風による一体化(エアースルー方式)が挙げられる。熱的結合による一体化は、不織布の引張強度と曲げ柔軟性、及び突き刺し強度を維持し、耐熱安定性を維持することが出来るという観点から好ましい。
 熱的結合による一体化は、2層以上の不織布層を熱接着することにより実現できる。熱接着工程は、例えば、熱可塑性樹脂(好ましくは熱可塑性樹脂長繊維)の融点よりも50~120℃低い温度で、線圧100~1000N/cmで、フラットロールを用いての接合により行うことができる。熱接着工程における線圧が100N/cm未満であると、接着が不十分となり十分な強度を与えることが難しい場合がある。また、1000N/cmを越えると、繊維の変形が大きくなり、見掛け密度が高くなって、本発明による効果が得られにくくなる場合がある。
 最も好ましい方法は、メルトブロウン不織布層、あるいはスパンボンド不織布層を順次製造し、これらを積層して、エンボスロール又は熱プレスロールで圧着する方法である。この方法は、同一素材で積層不織布を形成できること、及び連続一体化した生産ラインで生産できることから、低目付けで均一な不織布を得ることを目的とした場合好ましい。
 また積層不織布を形成する繊維の分布に斑が存在すると、電池セパレータとして使用した際に、積層不織布を通過するリチウムイオンなどの電解質の易動度に隔たりが生ずる。電解質の易動度に隔たりが生じることで、電池反応の均一度が損なわれ、充放電時の微短絡や電池性能の低下を誘発する。よって、不織布の繊維の分布の均一性は電池セパレータの性能に大きく寄与するものとなる。
 不織布均一性の指標としては、地合の変動係数を用いることが出来る。地合の変動係数の好ましい範囲は2.3未満であり、地合の変動係数が2.3を超えた場合、積層不織布をセパレータとして用いると、電池性能が低下するだけではなく、充放電時に短絡を発生させる場合がある。良好な電池性能を発現させるためのより好ましい範囲は2.0未満であり、更に好ましい範囲は1.7未満である。
 尚、ここでは、地合の変動係数は以下のように定義する。
フォーメーションテスター(FMT-MIII)により測定する。20cm×30cmの試験片を採取し、拡散板上に置かれた試料の下から直流低電圧(6V30W)のタングステン電流で光を照射する。CCDカメラにより18×25cmの範囲を撮影した透過像を128×128の画素に分解し、各々の画素の受ける光の強さを測定し、透過率を算出する。地合の変動係数は、測定サンプルの各微小部位(5mm×5mm)の透過率の標準偏差(σ)を平均透過率(E)で除した値(下式)であり、微小単位目付のバラツキを最も端的に評しており、値が小さいほど均一性が高いといえる。
地合の変動係数=σ/E×100
 試料サイズが小さく、上記寸法で試験片が採取不可能な場合は、任意の寸法に裁断した試験片を、同様の寸法切り抜いた同等の光透過率を有する不織布上に張り合わせて18cm×25cmの範囲の透過像を測定した後に、試験片部位のみ光透過率を抽出することでも地合の変動係数を得ることが出来る。
 上記の製造方法を用いると、エンボスロール又はフラットロールにより適切な温度、圧力をかけることで各積層不織布層の一体化が可能となる。更にはメルトブロウン法による比較的細い繊維を、比較的太い熱可塑性樹脂繊維で構成される層(好ましくは熱可塑性合成長繊維不織布層)内に侵入させることが出来る。このようにして、メルトブロウン法による繊維が熱可塑性樹脂繊維で構成される層(好ましくは熱可塑性合成長繊維不織布層)内に侵入して固定されることができる。これにより、積層不織布の構造自体の強度が向上するだけでなく、不織布層(I層)が外力によって移動しにくくなるので、熱可塑性樹脂繊維で構成される不織布層(II層)(好ましくは熱可塑性合成長繊維不織布層)内の空隙をI層により埋め、均一なネットワークを構築することが出来る。そして、上記で述べた適度な繊維間距離の確保及び適度な孔径分布を有する積層不織布の形成が容易になる。即ち、上記の方法によれば、積層不織布において、I層の一部がII層にもぐり込みながら、かつ連続したI層を維持できるため、不織布の面内での、電解液の拡散性、保持性が均一となり、高性能なセパレータの作製が可能となる。
 メルトブロウン法で形成される繊維(即ちメルトブロウン繊維)の結晶化度は、一般的なメルトブロウン紡糸条件で、5~40%の範囲に調整することが可能である。なお結晶化度は、例えば上述のDSCを用いた方法で評価できる。具体的には、積層不織布を形成するポリマーは、o-クロロフェノール(OCP)を溶媒として用いたときに、濃度0.01g/mL、温度35℃の恒温水槽中の粘度管を用いて測定した溶液粘度(ηsp/c)が好ましくは0.2~0.8、さらに好ましくは0.2~0.6となるような樹脂を用いることにより、上記結晶化度を実現できる。本発明において用いる不織布においては、湿潤時の寸法安定性が高いことが好ましいという観点から、溶液粘度(ηsp/c)が0.2~0.8である、PET樹脂及び/又はPPS樹脂を用いてメルトブロウン繊維を構成することが好ましい。メルトブロウン繊維の結晶化度は10~40%とすることがより好ましい。
 本発明においては、積層不織布がカレンダー加工されていることが好ましい。この場合、積層不織布に、より均一な構造を与えることができる。具体的には、前述の熱接着工程を用いて繊維を接合した後、カレンダー加工処理として、前記の熱接着温度より10℃以上高く且つ熱可塑性樹脂繊維(好ましくは熱可塑性樹脂長繊維)の融点よりも10~100℃低い温度で、線圧100~1000N/cmでカレンダー処理する。上記のようなカレンダー加工により、積層不織布は良好な強度が得られ、見掛け密度を特に好ましい範囲(例えば本明細書の実施例の記載の範囲内)とすることができる。
 カレンダー加工処理温度が、熱可塑性樹脂繊維(好ましくは熱可塑性樹脂長繊維)の融点より低く且つその差が10℃未満である場合は、見掛け密度が高くなり過ぎる傾向があり、また、熱可塑性樹脂繊維(好ましくは熱可塑性樹脂長繊維)の融点より低く且つその差が100℃を越える場合は、十分な強度が得られにくい傾向がある。
 カレンダー加工処理における線圧が100N/cm未満であると、十分な接着が得られにくく、十分な強度が発現されにくい傾向がある。また、1000N/cmを超えると、繊維の変形が大きくなり、見掛け密度が高くなって、本発明による効果が得られにくくなる場合がある。
 電池作製時の工程性能や電池の短絡抑制の観点から、一定値以上の機械的強度が付与されている方が好ましい。
 好ましい引張強度の範囲としては2.5N/1.5cm以上であり、より好ましい範囲としては5 N/1.5cm以上である。更に好ましい範囲としては8N/1.5cm以上であり、特に好ましい範囲は、10N/15mmである。このような範囲であれば、電池を捲回する際にセパレータの破断が発生しにくい。
 好ましい突き刺し強度の範囲としては100g以上であり、より好ましい範囲としては150g以上である。更に好ましい範囲としては200g以上である。突き刺し強度が50g以上である場合、電池内部での金属析出物や、正、負極材のバリによる破膜が起こりにくく内部短絡が起こりにくい。
 電池を製造もしくは無機塗工処理をする際に工程の中で特に強度が必要とされる場合には、熱可塑性樹脂で構成される繊維層(II層)の間に極細繊維層(I層)を配置した構造である方が好ましい。本発明のような低目付不織布の場合、極細繊維層のみでは高強度を保持するのが困難となる。II層の間にI層を配置することで、I層が接着層の役割を担うため、より高強力な不織布とすることが出来る。
 本発明では、積層不織布が親水化加工されることもより好ましい。積層不織布が親水化加工されると不織布の保液性が向上し、電極反応に必要な電解液を保持しやすくなるために、より高性能なセパレータを作製できる。親水化加工としては、物理的な加工方法:即ち、コロナ処理又はプラズマ処理による親水化の他、化学的な加工方法:即ち、表面官能基の導入(酸化処理等で、スルホン酸基、カルボン酸基等を導入する)、水溶性高分子(PVA、ポリスチレンスルホン酸、及びポリグルタミン酸)並びに界面活性剤(ノニオン性、陰イオン性、陽イオン性、及び両イオン性の界面活性剤)等の処理剤による加工等が採用される。処理剤の使用量、官能基導入量等は、固体電解質を形成するためのモノマー等との親和性で選ぶことができる。但し、親水化加工された積層不織布が将来的に水分を含みやすくなる可能性があるため、加工量(即ち、積層不織布の質量に対する、上記の処理剤及び導入される官能基の質量)は、3質量%以下であることが好ましい。
 本発明では、積層不織布の上に無機複合材料が複合されていることがより好ましい。例えば、国際公開WO2010/134585に開示されているような方法で、無機複合材料を複合することができる。積層不織布上に無機複合材料層を含んだセパレータは、適度な孔径を有しており、0.1~10μmの範囲で制御可能である。この孔径範囲内であると、優れたイオン透過性を保持しながら、微短絡をより抑制できるため、高性能なセパレータの作製が可能となる。無機複合材料層としては、例えば平均粒径0.5~10μmの元素Al、Si、及び/又はZrの酸化物粒子を有する無機被覆上に、所定の温度で溶融しかつ無機層の細孔を閉塞する材料からなる多孔質層が挙げられ、該積層不織布の上に多孔質の平面構造物として存在する。不織布に無機材料を複合するための手法としては、例えば含浸、転写、塗工などが挙げられる。
 このような無機粒子の具体例としては、以下の粒子が挙げられ、これらを1種単独で用いてよく、2種以上を併用してもよい。例えば、酸化鉄、SiO2(シリカ)、Al2O3(アルミナ)、TiO2、BaTiO2、ZrOなどの酸化物微粒子;窒化アルミニウム、窒化ケイ素などの窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;タルク、モンモリロナイトなどの粘土微粒子;ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカなどの鉱物資源由来物質またはそれらの人造物;などが挙げられる。また、金属微粒子;SnO2、スズ-インジウム酸化物(ITO)などの酸化物微粒子;カーボンブラック、グラファイトなどの炭素質微粒子;などの導電性微粒子の表面を、電気絶縁性を有する材料(例えば、上記の非電気伝導性の無機微粒子を構成する材料)でコーティングすることで、電気絶縁性を持たせた微粒子であってもよい。
 無機塗工処理を施す際には、上記無機粒子に加えバインダ、熱溶融性微粒子などを混合させ、これらを溶媒に分散または溶解させたスラリーを用いる。スラリーに用いられる溶媒は、無機微粒子や、熱溶融性微粒子などを均一に分散でき、また、バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素やメチルエチルケトン、メチルイソブチルケトンなどのケトン類などの有機溶媒が好適である。なお、これらの溶媒に、界面張力を制御する目的で、アルコール類またはプロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。またバインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類を適宜加えて界面張力を制御することもできる。
 上記スラリーに、更に必要に応じて熱溶融性微粒子やバインダを用いて、水または適当な溶媒に分散させたスラリー状などの液状組成物を調製し、ブレードコーター、ロールコーター、ダイコーター、スプレーコーターなどの従来公知の塗布装置を用いることで、無機塗工不織布セパレータを作製することが出来るが、塗布方法は特に限定されない。
 図1は、3層構造の積層不織布を示す概念図である。
 図2は、本発明の一つの実施態様で用いられるスパンボンド不織布を製造するための装置100の概略図である。この装置は、不織布の製造幅に相当する幅を有する紡口10、該紡口から押し出されたフィラメント群20が導入されるエアサッカー30、該エアサッカー30に間隙を設けることなく順に連設されたチャンネル40、コロナ帯電用チャンネル装置50、及び分散板60から構成される。このような構成において、紡口10から押し出されたフィラメント群20は、エアサッカー30及びチャンネル40を経て、コロナ帯電用チャンネル装置50に送られ、ここでコロナ放電により帯電され、捕集面80上に堆積されてウェブ90を形成する。この際、分散板60を用いて気流を制御することによって、この繊維群を静電気及び空気流の流れで開繊・分散して、ウェブの均一性を高めている。図3は、図2の分散板60の拡大図である。下記の実施例22~50においては、コロナ帯電用チャネル装置50から垂直に出た帯電しているフィラメント70に対して、4°傾けて分散板を用いている。
 以下、実施例を挙げて本発明を更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、測定方法及び評価方法は次の通りである。特記がない限り、不織布において、長さ方向とはMD方向(マシン方向)であり、幅方向とは該長さ方向と垂直の方向である。
〔実施例1~11〕
 以下の方法により、実施例1~11の積層不織布を作製し、性能評価を実施した。
 極細繊維不織布層(I層)用の極細繊維ウェブを得るために、PETの溶液(OCPを溶媒として用い、温度35℃で測定した溶液粘度:ηsp/c=0.50を有するもの)を用い、紡糸温度300℃、加熱空気1000Nm3/hr/mの条件下で、移動する捕集ネットに向けて押し出し、メルトブロウン法により紡糸した。この際、メルトブロウンノズルから極細繊維ウェブまでの距離を100mmとし、メルトブロウンノズル直下の捕集面における吸引力を0.2kPa、風速を7m/secに設定した。繊維径及び結晶化度の調整は、加熱空気量を調整することにより行う。
 次に熱可塑性樹脂繊維で構成される不織布層(II層)を得るために、汎用的なPET(熱可塑性樹脂として)の溶液(OCPを溶媒として用い、温度35℃で測定した溶液粘度:ηsp/c=0.67を有する)(溶液粘度は温度35℃の恒温水槽中の粘度管で測定した。以下同じ。)を用い、スパンボンド法により、紡糸温度300℃で、フィラメント群を、紡糸速度4500m/分で紡糸し、極細繊維ウェブ上に吹き付けた。次いで、コロナ帯電で繊維を3μC/g程度帯電させてフィラメント群を十分に開繊させ、極細繊維で構成される不織布層(I層)/熱可塑性樹脂長繊維で構成される不織布層(II層)からなる積層ウェブを得た。繊維径の調整は、牽引条件を変えることにより行った。
 更に、上記で得た積層ウェブ上に、上記の不織布層(I層)としての極細繊維ウェブの形成と同様の方法で、不織布層(I層)を所定の繊維径及び目付けになるように積層した。これにより、I層/II層/I層からなる積層ウェブを得た。得られた積層ウェブを、表1に示す条件でフラットロールにて熱接着した後、カレンダーロールにて、所望の厚みとなるように厚みを調整するとともに見掛け密度を調整し、積層不織布を得た。上記の基本条件の下、加工条件を変え、各種不織布を得た(実施例1~11)。得られた積層不織布の構成及び形成条件を表1に示す。
〔実施例12〕
 不織布層(I層)として、実施例1と同様に、不織布層(I)層となるメルトブロウン繊維ウェブを作製し、不織布層(II層)として、繊維径18μm、繊維長5mmのco-PET/PET鞘芯構造の短繊維を得た。具体的には、抄造法によって、ネット上に30g/m2となるように捕集し、脱水乾燥後、エアースルー方式(180℃、5m/分)で繊維同士を融着させ、不織布層(I層)/短繊維ウェブ(II層)を得た。さらに上記で得たウェブ上に、実施例1と同様に作製した不織布層(I層)を積層させ、3層からなる積層ウェブを得た。得られた積層ウェブを、フラットロール及びカレンダーロールにて熱接着し、積層不織布を得た。積層不織布の構成及び形成条件を、表1に示す。なお表1中、鞘芯構造の短繊維の融点は、鞘/芯の順で記載している(以下同様である)。
〔実施例13〕
 熱可塑性樹脂としてPPS(ポリプラスチック社製フォートロン)を用いた。不織布を形成する条件は、以下の通りである。
 I層:樹脂の溶融粘度:670g/10分(上記と同様の方法で測定、測定条件:荷重5kg、温度315.6℃)、紡糸温度:340℃、加熱空気温度:390℃、加熱空気量:1000Nm3/hr/m。
 II層:樹脂の溶融粘度:70g/10分(キャピラリーレオメーターを用いて測定、測定条件:荷重5kg、温度315.6℃)、紡糸温度:320℃、紡糸速度:8000m/分。
 また、フラットロールによる熱接着条件は、線圧:260N/cm、ロール温度:上/下=150℃/150℃とし、カレンダー条件は、線圧:350N/cm、ロール温度:上/下=70℃/70℃とした。積層不織布を形成する条件及びその性能を、それぞれ表1に示す。その他の条件は、実施例1と同様にした。また、電気特性を、表4に示す。
〔実施例14〕
 熱可塑性樹脂としてPP(日本ポリプロ社製)を用いた。不織布を形成する条件は、以下の通りである。
 I層:樹脂の溶融粘度:1500g/10分(上記と同様の方法で測定、測定条件:荷重2.1kg、温度230℃)、紡糸温度:295℃、加熱空気温度:320℃、加熱空気量:1050Nm/hr/m。
 II層:樹脂の溶融粘度:43g/10分(上記と同様に測定、測定条件:荷重2.1kg、温度230℃)、紡糸温度:230℃、紡糸速度:3300m/分。
 また、フラットロールによる熱接着条件は、線圧:260N/cm、ロール温度:上/下=90℃/90℃、カレンダー条件は、線圧:350N/cm、ロール温度:上/下=40℃/40℃とした。積層不織布を形成する条件及びその性能を、それぞれ表1に示す。その他の条件は、実施例1と同様にした。また、電気特性を、表4に示す。
〔実施例15〕
 水1000g、無機微粒子として球状シリカ1000g、およびバインダとしてSBRラテックス(無機微粒子100質量部に対してSBR固形分が3質量部)を容器入れ、スリーワンモーターで1時間攪拌して分散させ、均一なスラリーを得た。このスラリー中に、実施例1と同等の方法で得られた不織布を通し、引き上げ塗布によりスラリーを塗布した後所定の間隔のギャップを通し、100度で乾燥して、セパレータを作製した。
〔実施例16〕
 繊維量が違うこと以外は実施例15と同様の方法で積層不織布を作製し、実施例15と同様の方法で、無機物を塗工することで得られた。得られた積層不織布の構成及びその形成条件を、表1に示す。
〔実施例17〕
 実施例1~11とは異なり、2層構造(I層及びII層)の積層不織布とし、その他は、実施例1~11と同様の条件を用いた。積層不織布の構成及び形成条件を、表1に示す。
〔実施例18〕
 実施例17と同様の方法で積層不織布を作製し、実施例15と同様の方法で、Siの酸化物粒子を有する無機物を塗工することで得られた。得られた積層不織布の構成及びその形成条件を、表1に示す。
〔実施例19〕
 実施例1~11とは異なり、極細繊維I層を中間層に含む3層構造(II層-I層-II層)の積層不織布とした。作製方法としては、まずII層をスパンボンド法により形成しウェブを得た。次に、そのII層上に、メルトブロウン法により紡糸して得られたウェブ上に吹きつけ、II層/I層からなる積層ウェブを得た。更に、上記で得た積層ウェブ上に直接、上記の不織布層(II層)の形成と同様の方法で、積層した。これにより、II層/I層/II層からなる積層ウェブを得た。その後、実施例1と同様の方法で積層不織布を作製した。得られた積層不織布の構成及びその形成条件を、表1に示す。
〔実施例20〕
 実施例19と同様の方法で積層不織布を作製し、実施例15と同様の方法で、Siの酸化物粒子を有する無機物を塗工することで得られた。得られた積層不織布の構成及びその形成条件を、表1に示す。
〔実施例21〕
 繊維量が違うこと以外は実施例19と同様の方法で積層不織布を作製し、実施例15と同様の方法で、Siの酸化物粒子を有する無機物を塗工することで得られた。得られた積層不織布の構成及びその形成条件を、表1に示す。
〔実施例22~41〕
 熱可塑性樹脂繊維で構成される不織布層(II層)として、コロナ帯電で繊維を3μC/g程度帯電させた直後に図3に示すような平板状〔平板のフィラメントに対する傾斜角4°〕の分散装置を用いたこと以外は実施例1~11,13~21と同様の方法で積層不織布を作成した。得られた積層不織布の構成及びその形成条件を、表2に示す。
〔実施例42,43〕
 カレンダー条件を変更したこと以外は実施例41と同様の方法で積層不織布を作製した。得られた積層不織布の構成及びその形成条件を、表2に示す。
〔実施例44〕
 繊維量を変更したこと以外は実施例43と同様の方法で積層不織布を作製した。得られた積層不織布の構成及びその形成条件を、表2に示す。
〔実施例45~47〕
 繊維量、繊維径及びカレンダー加工の条件を変更したこと以外は実施例39と同様の方法で積層不織布を作製した。得られた積層不織布の構成及びその形成条件を、表2に示す。
〔実施例48~50〕
 実施例45~47で得られた不織布を実施例15と同様の方法で無機塗工処理を施し、セパレータを作製した。得られた積層不織布の構成及びその形成条件を、表2に示す。
〔比較例1〕
 不織布として、旭化成せんい製のスパンボンド不織布(E05025、繊維径16μm、目付け25g/m)を用い、不織布層(II層)のみからなる不織布の例とした。不織布の構成を、表3に示す。
〔比較例2〕
 極細繊維不織布層(I層)を、実施例1のI層と同様の樹脂を用い、紡糸温度300℃、加熱空気1000Nm3/hr/mの条件下で、メルトブロウン法により紡糸して、ネット上に吹きつけることによって形成した。この際、メルトブロウンノズルからウェブまでの距離を100mmとし、メルトブロウンノズル直下の捕集面における吸引力を0.2kPa、風速を7m/秒に設定した。繊維径及び結晶化度の調整は、吐出量を変えることにより行い、I層のみからなる不織布を得た。不織布の構成及びその形成条件を、表3に示す。
〔比較例3〕
 各層の繊維量を変更する以外は、実施例18と同様の方法で積層不織布を作製し、総坪量を20g/mとした。
〔比較例4〕
 繊維径16μm、繊維長5mmのPET短繊維を、抄造法にて、25g/m2となるようにネット上に捕集してウェブを得た。なおこの際、繊維同士がばらけないように、また不織布強度を保つために、バインダとしてポリビニルアルコール(溶解温度70℃)を用い、全体の目付け量を33g/m2とした。このウェブを脱水乾燥後、カレンダーロールにて熱圧着して、不織布層(II層)のみからなる不織布を得た。不織布の構成及びその形成条件を、表3に示す。
〔比較例5〕
 不織布として、レーヨン繊維からなる湿式不織布(繊維径8μm、目付け16g/m)を用いた。不織布の構成を、表3に示す。
〔比較例6〕
 市販されているポリエチレン微多孔膜(目付け15g/m、厚さ25μm、見かけ密度0.6g/cm)を用いた。
〔比較例7〕
 PET短繊維量を12g/m、全体の目付量を15g/mとしたこと以外は比較例4同様の方法で短繊維不織布を得た。
〔比較例8〕
 PET短繊維量を8g/m、全体の目付量を10g/mとしたこと以外は比較例4同様の方法で短繊維不織布を得た。
〔比較例8〕
 比較例8と同様の方法で短繊維不織布を得た。この不織布に実施例15同様の方法で無機塗工処理を施した。
 上記の通り作製したセパレータについて、以下の通りその特性を評価した。その結果を表4~6に示す。なお、表1~3に記載した繊維径及び融点についても、以下にその測定法を記載した(それぞれ(4)及び(8))。なお、地合の変動係数については、上記に記載の方法で測定した。
 (1)目付け(g/m
 JIS L-1906に規定の方法に従い、縦20cm×横25cmの試験片を、試料の幅方向1m当たり3箇所、長さ方向1m当たり3箇所の、計1m×1m当たり9箇所採取して質量を測定し、その平均値を単位面積当たりの質量に換算して求めた。
 (2)厚み(mm)
 JIS L-1906に規定の方法に従い、幅1m当たり10箇所の厚みを測定し、その平均値を求めた。荷重は9.8kPaで行った。
 (3)見掛け密度(g/cm
 上記(1)にて測定した目付け(g/m)、上記(2)にて測定した厚み(μm)を用い、以下の式により算出した。
  見掛け密度=(目付け)/(厚み)
 (4)繊維径(μm)
 試料(不織布)の各端部10cmを除いて、試料の幅20cm毎の区域から、それぞれ1cm角の試験片を切り取った。各試験片について、マイクロスコープで繊維の直径を30点測定して、測定値の平均値(小数点第2位を四捨五入)を算出し、試料を構成する繊維の繊維径とした。
 (5)開孔径分布(平均流量孔径及び最大孔径)
 PMI社のパームポロメーター(型式:CFP-1200AEX)を用いた。測定には浸液にPMI社製のシルウィックを用い、試料を液に浸して充分に脱気した後、測定した。
 本測定装置は、フィルターを試料とする。表面張力が既知の液体にフィルターを浸し、フィルターの全ての細孔を、その液体の膜で覆った状態から、そのフィルターに圧力をかけ、液膜の破壊される圧力と液体の表面張力とから計算される細孔の孔径を測定する。計算には下記の数式を用いる。
  d=C・r/P
 (式中、d(単位:μm)はフィルターの孔径、r(単位:N/m)は液体の表面張力、P(単位:Pa)はその孔径の液膜が破壊される圧力、Cは定数である。)
 ここでは、液体に浸したフィルターにかける圧力Pを低圧から高圧に連続的に変化させた場合の流量(濡れ流量)を測定する。初期の圧力では、最も大きな細孔の液膜でも破壊されないので流量は0である。圧力を上げていくと、最も大きな細孔の液膜が破壊され、流量が発生する(バブルポイント)。さらに圧力を上げていくと、各圧力に応じて流量は増加する。最も小さな細孔の液膜が破壊されたときの圧力における流量が、乾いた状態の流量(乾き流量)と一致する。
 本測定装置による測定方法では、ある圧力における濡れ流量を、同圧力での乾き流量で除した値を累積フィルター流量(単位:%)と呼ぶ。累積フィルター流量が50%となる圧力で破壊される液膜の孔径を、平均流量孔径と呼ぶ。この平均流量孔径を、本発明の積層不織布の平均流量孔径とした。
 本発明の積層不織布の最大孔径は、不織布を上記フィルター試料として測定し、累積フィルター流量が50%の-2σの範囲、すなわち、累積フィルター流量が2.3%となる圧力で破壊される液膜の孔径とした。上記測定方法にて、各サンプルについて3点測定を行い、その平均値を平均流量孔径とした。
 (6)引張強力(kg/1.5cm)
 試料(不織布)の各端部10cmを除き、幅1.5cm×長さ20cmの試験片を、1m幅につき5箇所切り取った。試験片が破断するまで荷重を加え、MD方向の試験片の最大荷重時の強さの平均値を求めた。
 (7)突き刺し強度
 試料(不織布)の各端部10cmを除き、幅1.5cm×長さ20cmの試験片を、1m幅につき5箇所切り取った。試験片に圧縮100kgセル、50m/minにて荷重を加え、試験片が貫通されるまでの荷重を突き刺し強度とした。
 (8)融点(℃)
 下記の測定器にて測定を行い、融解ピークの導入部分における変曲点の漸近線とTgより高い温度領域でのベースラインとが交わる温度を融点とした。
 示差走査熱量計(SIIナノテクノロジー社製のDSC210)を使用し、下記の条件で測定した。
 測定雰囲気:窒素ガス50ml/分、昇温速度:10℃/分、測定温度範囲:25~300℃。
 (9)吸い上げ高さ測定
 試料(不織布)の幅方向に長い試験片(幅約2.5cm×長さ20cm)を、1m幅につき3点採取し、JIS L-1907 繊維製品の吸水性試験方法に記載のバイレック法に準じて測定を行った。吸い上げ溶液には、基準液(濡れ指数標準液 50mN/mを使用。以下、基準液とする)を使用し、10分後の吸い上げ高さを測定し、その平均値として吸い上げ高さ求めた。
 (10)接触角測定
 試料(不織布)を1m幅につき3点採取し、接触角測定器を用いて測定を行った。滴下溶液には基準液を使用し、100msの溶液と不織布の接触角を測定し、その平均値として接触角を求めた。
 次に上記手順により得られたセパレータを用いてコインセルを作製し、電気特性評価を行った。コインセルの製法、評価方法を以下に示す。
 (11)コインセルの作製
 宝泉(株)製のリチウムコバルト酸化物(LiCoO2)厚みが40μmの正極を使用し、直径1.59cmの円形に打ち抜き、また、宝泉(株)製の厚みが50μmの黒鉛負極を使用し、直径1.62cmの円形に打ち抜き、次に、各実施例・比較例のセパレータ用フィルムを直径2.4cmに打ち抜き、正極活物質と負極活物質面が対向するように、下から負極、セパレータ、正極の順に重ね、蓋付ステンレス金属製小容器に収納した。容器と蓋とは絶縁され、容器は負極の銅箔と、蓋は正極のアルミ箔と接している。この容器内にエチレンカーボネート:ジメチルカーボネート=3:7(体積比)の混合溶媒に溶質としてLiPF6を濃度1M/Lとなるように溶解させた電解液をコインセルに注入して密閉した。
 (12)レート特性評価 
 セパレータを18mmφ,上記正極及び上記負極を16mmφの円形に切り出し、正極と負極の活物質面が対向するよう、正極、セパレータ、負極の順に重ね、蓋付きステンレス金属製容器に収納した。容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミ箔と接していた。この容器内に上記非水電解液を注入して密閉した。室温にて1日放置した後、25℃雰囲気下、1.1A(1.0C)の電流値で電池電圧3.6Vまで充電し、さらに3.6Vを保持するようにして電流値を1.1Aから絞り始めるという方法で、合計3時間充電を行った。次に1.1A(1.0C)、又は11.0A(10C)の電流値で電池電圧2.0Vまで放電し、1C放電容量、又は10C放電容量を得た。
 1C放電容量に対する10C放電容量の割合を容量維持率(%)と定義し、レート特性の指標として用いた。
 (13)微短絡性の評価
 上記測定を実施した時、セパレータが短絡してしまった個数が、5個中0個であれば○、不良品が1個でもある場合×と定義した。
 これらの手順で得られたコインセルの電気特性結果を表4~6に示す。なお、ここに示した実施例及び比較例の試験結果は、コインセル5個の平均とした。
 以上の結果を表1~6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 なお、表1~3において、PETはポリエチレンテレフタレート、MBはメルトブロウンウェブ、SBはスパンボンドウェブを表す。
 表4~6から明らかなように、本発明の実施例に係る電池性能は、比較例のものに比べて少なくともいずれかの項目において優れた性能を示している。比較例8、9のように抄造紙では地合いの変動係数は良好であり電池性能は高くなるが、短繊維を用いているため高強度を保持することができず、無機塗工処理の工程や電池作製の工程で破断などの不良が発生することが懸念される。
 本発明の活用例としては、全ての種類の一次電池及び二次電池、特にアルカリ金属系、例えばリチウム、リチウムイオン、リチウムポリマー、及びアルカリ土類金属系等の電気化学素子用セパレータに利用される。
 本発明のセパレータを用いた電気デバイスは、各種電子機器の分野において好適に利用される。
 1  極細繊維からなる不織布層
 2  不織布層
 3  積層不織布
 10  紡口
 20  押出しフィラメント
 30  エアサッカー
 40  連設チャンネル部
 50  コロナ帯電用チャネル装置
 60  分散板
 70  帯電フィラメント
 80  捕集面
 90  ウェブ
 100  スパンボンド不織布製造装置

Claims (13)

  1.  繊維径が0.1μm以上4.0μm未満の合成繊維で構成される不織布層(I層)と、繊維径が4.0μm以上30.0μm以下を有する熱可塑性樹脂繊維で構成される不織布層(II層)とを含む、少なくとも2層の積層不織布で構成された、目付けが3.0g/m以上20.0g/m未満のセパレータ。
  2.  前記I層が、2つの前記II層の間に中間層として存在している、請求項1に記載のセパレータ。
  3.  前記II層が、2つの前記I層の間に中間層として存在している、請求項1に記載のセパレータ。
  4.  前記不織布層(II層)における該熱可塑性樹脂繊維が、熱可塑性合成連続長繊維である、請求項1~3のいずれかに一項に記載のセパレータ。
  5.  前記積層不織布が、化学的及び/または熱的結合による一体化によって形成されている、請求項1~4のいずれかに一項に記載のセパレータ。
  6.  前記積層不織布が、厚み10~50μmを有する請求項1~5のいずれかに一項に記載のセパレータ。
  7.  前記不織布層(I層)が、メルトブロウン法で形成されている、請求項1~6のいずれか一項に記載のセパレータ。
  8.  前記積層不織布における該不織布層(I層)の目付け(i)と前記不織布層(II層)の目付け(ii)との比(i)/(ii)が、1/10~10/1である、請求項1~7のいずれかに一項に記載のセパレータ。
  9.  前記積層不織布が、不織布の地合の変動係数が2.3未満の不織布積層体で構成される請求項1~8のいずれかに一項に記載のセパレータ。
  10.  前記積層不織布がカレンダー加工されている、請求項1~9のいずれかに一項に記載のセパレータ。
  11.  前記積層不織布が親水化加工されている、請求項1~10のいずれかに一項に記載のセパレータ。
  12.  前記積層不織布に無機材料が複合されている、請求項1~11のいずれかに一項に記載のセパレータ。
  13.  請求項1~12のいずれかに一項に記載のセパレータを用いる、電気化学的電池又はエネルギー貯蔵装置。
PCT/JP2013/060333 2012-04-04 2013-04-04 セパレータ WO2013151134A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177002057A KR102112646B1 (ko) 2012-04-04 2013-04-04 세퍼레이터
JP2014509207A JP6068444B2 (ja) 2012-04-04 2013-04-04 セパレータ
US14/390,248 US9461290B2 (en) 2012-04-04 2013-04-04 Separator
EP13772505.7A EP2835843B1 (en) 2012-04-04 2013-04-04 Separator
KR1020147025415A KR20140128426A (ko) 2012-04-04 2013-04-04 세퍼레이터
CN201380017226.6A CN104205418B (zh) 2012-04-04 2013-04-04 分隔件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-085692 2012-04-04
JP2012085692 2012-04-04

Publications (1)

Publication Number Publication Date
WO2013151134A1 true WO2013151134A1 (ja) 2013-10-10

Family

ID=49300612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060333 WO2013151134A1 (ja) 2012-04-04 2013-04-04 セパレータ

Country Status (7)

Country Link
US (1) US9461290B2 (ja)
EP (1) EP2835843B1 (ja)
JP (1) JP6068444B2 (ja)
KR (2) KR102112646B1 (ja)
CN (1) CN104205418B (ja)
TW (1) TWI618279B (ja)
WO (1) WO2013151134A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022245A (zh) * 2014-06-24 2014-09-03 中国第一汽车股份有限公司 高安全锂电池复合隔膜及其同轴静电纺丝制备法
JP2016174106A (ja) * 2015-03-17 2016-09-29 旭化成株式会社 電気二重層キャパシタ用セパレータ、及びこれを用いた電気二重層キャパシタ
JP2018006258A (ja) * 2016-07-07 2018-01-11 旭化成株式会社 鉛蓄電池用セパレータ、及びこれを用いた鉛蓄電池
JP2018037310A (ja) * 2016-08-31 2018-03-08 住友化学株式会社 非水電解液二次電池用セパレータ
JPWO2017150279A1 (ja) * 2016-02-29 2018-09-06 旭化成株式会社 鉛蓄電池用不織布セパレータ、及びこれを用いた鉛蓄電池
JP2018178337A (ja) * 2017-04-21 2018-11-15 旭化成株式会社 ポリフェニレンサルファイド不織布
CN108878744A (zh) * 2017-05-12 2018-11-23 住友化学株式会社 非水电解液二次电池用绝缘性多孔层
CN109244559A (zh) * 2018-08-24 2019-01-18 湖北锂诺新能源科技有限公司 内部防触壳锂离子极芯及电池制备方法
JP2019179678A (ja) * 2018-03-30 2019-10-17 株式会社日本触媒 電気化学素子用隔膜、及びその用途
JP2020068094A (ja) * 2018-10-23 2020-04-30 旭化成株式会社 微細パタンを有するセパレータ、捲回体および非水電解質電池
JP2020073751A (ja) * 2015-04-03 2020-05-14 旭化成株式会社 単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター
US10811658B2 (en) 2012-09-19 2020-10-20 Asahi Kasei Kabushiki Kaisha Separator and method of preparing the same, and lithium ion secondary battery
CN113540690A (zh) * 2020-04-13 2021-10-22 三星Sdi株式会社 隔板和包括隔板的锂电池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102471365B1 (ko) * 2015-03-16 2022-11-28 도오레 화인케미칼 가부시키가이샤 부직포 및 그 제조 방법
WO2016162417A1 (en) 2015-04-08 2016-10-13 Stojadinovic Jelena Woven or nonwoven web
JP6689681B2 (ja) * 2016-06-09 2020-04-28 三菱製紙株式会社 耐熱性湿式不織布
CN110892551B (zh) * 2017-07-18 2022-11-25 日本宝翎株式会社 电化学元件用隔膜
US11408125B2 (en) * 2017-09-22 2022-08-09 Tomoegawa Co., Ltd. Thermoplastic fiber sheet
US20200316906A1 (en) * 2017-12-22 2020-10-08 Asahi Kasei Kabushiki Kaisha Nonwoven Fabric and Composite Sound-Absorbing Material Using Same as Skin Material
KR102353062B1 (ko) * 2018-09-03 2022-01-19 주식회사 엘지에너지솔루션 분리막 기재가 없는 이차전지용 분리막
KR102388261B1 (ko) * 2018-10-12 2022-04-18 주식회사 엘지에너지솔루션 다공성 분리막 및 이를 포함하는 리튬 이차 전지
US11791108B2 (en) * 2019-01-14 2023-10-17 B.G. Negev Technologies & Applications Ltd., At Ben-Gurion University Electrode and a pseudo-capacitor based on the electrode
US20220376356A1 (en) * 2019-11-01 2022-11-24 Teijin Frontier Co., Ltd. Battery-separator nonwoven fabric and battery separator
CN111816824B (zh) * 2020-06-11 2021-12-21 深圳市星源材质科技股份有限公司 用作锂离子电池隔膜基膜的无纺布、隔膜以及锂离子电池
CN113725557B (zh) * 2021-09-02 2024-04-09 深圳市星源材质科技股份有限公司 锂离子电池隔膜支撑层以及锂离子电池隔膜
CN113725556B (zh) * 2021-09-02 2023-11-28 深圳市星源材质科技股份有限公司 无纺布以及电池隔膜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290627A (ja) * 1994-04-28 1995-11-07 Tonen Chem Corp 保液性に優れた不織布積層体
JPH11131335A (ja) 1997-10-28 1999-05-18 Taiyo Moshin Kk 衣服の芯地
JPH11283602A (ja) 1998-03-30 1999-10-15 Mitsubishi Paper Mills Ltd 電池用セパレータ
JP2001126698A (ja) * 1999-10-26 2001-05-11 Yuasa Corp アルカリ蓄電池用セパレータおよびその製造方法、並びにアルカリ蓄電池
JP2005159283A (ja) 2003-07-02 2005-06-16 Japan Vilene Co Ltd 湿式不織布、湿式不織布の製造方法、及び電気二重層キャパシタ用セパレータ、リチウムイオン二次電池用セパレータ、並びに電気二重層キャパシタ、リチウムイオン二次電池
WO2008018584A1 (en) 2006-08-10 2008-02-14 Mitsui Chemicals, Inc. Separator for energy device and energy device having the same
WO2010024559A2 (ko) 2008-08-25 2010-03-04 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2010134585A1 (ja) 2009-05-21 2010-11-25 旭化成イーマテリアルズ株式会社 多層多孔膜
WO2011021668A1 (ja) * 2009-08-19 2011-02-24 旭化成せんい株式会社 固体電解コンデンサ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819129B2 (ja) 1997-10-27 2006-09-06 旭化成せんい株式会社 スパンボンド不織布の製造装置および製造方法
US6905798B2 (en) 2000-05-29 2005-06-14 Mitsubishi Paper Mills Limited Separator for electrochemical device and method for producing the same
JP5449369B2 (ja) * 2009-09-07 2014-03-19 株式会社クラレ セパレータ、電気二重層キャパシタ、電池、及び積層体
KR101208698B1 (ko) * 2009-11-03 2012-12-06 주식회사 아모그린텍 내열성 및 고강도 초극세 섬유상 분리막 및 그의 제조방법과 이를 이용한 이차 전지
JP2011243558A (ja) * 2010-04-22 2011-12-01 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290627A (ja) * 1994-04-28 1995-11-07 Tonen Chem Corp 保液性に優れた不織布積層体
JPH11131335A (ja) 1997-10-28 1999-05-18 Taiyo Moshin Kk 衣服の芯地
JPH11283602A (ja) 1998-03-30 1999-10-15 Mitsubishi Paper Mills Ltd 電池用セパレータ
JP2001126698A (ja) * 1999-10-26 2001-05-11 Yuasa Corp アルカリ蓄電池用セパレータおよびその製造方法、並びにアルカリ蓄電池
JP2005159283A (ja) 2003-07-02 2005-06-16 Japan Vilene Co Ltd 湿式不織布、湿式不織布の製造方法、及び電気二重層キャパシタ用セパレータ、リチウムイオン二次電池用セパレータ、並びに電気二重層キャパシタ、リチウムイオン二次電池
WO2008018584A1 (en) 2006-08-10 2008-02-14 Mitsui Chemicals, Inc. Separator for energy device and energy device having the same
WO2010024559A2 (ko) 2008-08-25 2010-03-04 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
JP2011528842A (ja) * 2008-08-25 2011-11-24 エルジー・ケム・リミテッド 多孔性コーティング層を備えたセパレータ、その製造方法及びこれを備えた電気化学素子
WO2010134585A1 (ja) 2009-05-21 2010-11-25 旭化成イーマテリアルズ株式会社 多層多孔膜
WO2011021668A1 (ja) * 2009-08-19 2011-02-24 旭化成せんい株式会社 固体電解コンデンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2835843A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10811658B2 (en) 2012-09-19 2020-10-20 Asahi Kasei Kabushiki Kaisha Separator and method of preparing the same, and lithium ion secondary battery
CN104022245A (zh) * 2014-06-24 2014-09-03 中国第一汽车股份有限公司 高安全锂电池复合隔膜及其同轴静电纺丝制备法
JP2016174106A (ja) * 2015-03-17 2016-09-29 旭化成株式会社 電気二重層キャパシタ用セパレータ、及びこれを用いた電気二重層キャパシタ
JP2020073751A (ja) * 2015-04-03 2020-05-14 旭化成株式会社 単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター
JPWO2017150279A1 (ja) * 2016-02-29 2018-09-06 旭化成株式会社 鉛蓄電池用不織布セパレータ、及びこれを用いた鉛蓄電池
JP2018006258A (ja) * 2016-07-07 2018-01-11 旭化成株式会社 鉛蓄電池用セパレータ、及びこれを用いた鉛蓄電池
JP2018037310A (ja) * 2016-08-31 2018-03-08 住友化学株式会社 非水電解液二次電池用セパレータ
JP2018178337A (ja) * 2017-04-21 2018-11-15 旭化成株式会社 ポリフェニレンサルファイド不織布
CN108878744A (zh) * 2017-05-12 2018-11-23 住友化学株式会社 非水电解液二次电池用绝缘性多孔层
CN108878744B (zh) * 2017-05-12 2022-07-26 住友化学株式会社 非水电解液二次电池用绝缘性多孔层
JP2019179678A (ja) * 2018-03-30 2019-10-17 株式会社日本触媒 電気化学素子用隔膜、及びその用途
JP7195751B2 (ja) 2018-03-30 2022-12-26 株式会社日本触媒 電気化学素子用隔膜、及びその用途
CN109244559A (zh) * 2018-08-24 2019-01-18 湖北锂诺新能源科技有限公司 内部防触壳锂离子极芯及电池制备方法
JP2020068094A (ja) * 2018-10-23 2020-04-30 旭化成株式会社 微細パタンを有するセパレータ、捲回体および非水電解質電池
JP7215873B2 (ja) 2018-10-23 2023-01-31 旭化成株式会社 微細パタンを有するセパレータ、捲回体および非水電解質電池
CN113540690A (zh) * 2020-04-13 2021-10-22 三星Sdi株式会社 隔板和包括隔板的锂电池
CN113540690B (zh) * 2020-04-13 2024-01-05 三星Sdi株式会社 隔板和包括隔板的锂电池

Also Published As

Publication number Publication date
KR20170014009A (ko) 2017-02-07
KR20140128426A (ko) 2014-11-05
JP6068444B2 (ja) 2017-01-25
TW201403919A (zh) 2014-01-16
EP2835843B1 (en) 2017-12-20
TWI618279B (zh) 2018-03-11
EP2835843A1 (en) 2015-02-11
US9461290B2 (en) 2016-10-04
KR102112646B1 (ko) 2020-05-19
CN104205418A (zh) 2014-12-10
US20150171397A1 (en) 2015-06-18
CN104205418B (zh) 2017-07-21
JPWO2013151134A1 (ja) 2015-12-17
EP2835843A4 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP6068444B2 (ja) セパレータ
EP2666199B1 (en) Lithium battery separator with shutdown function
JP6208663B2 (ja) セパレータの製造方法、その方法で形成されたセパレータ、及びそれを含む電気化学素子
JP5470255B2 (ja) リチウムイオン二次電池用セパレータ、その製造方法、及びリチウムイオン二次電池
WO2019130994A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP6541002B2 (ja) 低収縮性単層リチウムイオンバッテリセパレータ
JP6714973B2 (ja) 水系電解液蓄電池用セパレータ、及びこれを用いた水系電解液蓄電池
JP2011035373A (ja) 蓄電デバイス用セパレータ
JP4387951B2 (ja) 有機電解液電池用セパレータとその製造方法及びこれを組み込んだ有機電解液電池
JP6513893B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
KR20180055277A (ko) 다공성 에틸렌-초산비닐 공중합체 층을 가지는 분리막 및 이의 제조방법
US20220231377A1 (en) Separator for electrochemical element
JP6347690B2 (ja) 電気化学素子用セパレータ
CN112042006B (zh) 电化学元件用隔膜
JP5912464B2 (ja) 塗工成分が担持された多孔シートの製造方法および製造装置
KR20190129814A (ko) 다공성 에틸렌-초산비닐 공중합체 층을 가지는 분리막 및 이의 제조방법
JP2022017787A (ja) セパレータ
Morin et al. Developments in nonwovens as specialist membranes in batteries and supercapacitors
WO2022220186A1 (ja) 固体電解質用支持体及びそれを含む固体電解質シート
KR101915327B1 (ko) 이차 전지용 분리막
JP2022090831A (ja) 電気化学素子用セパレータ
JP2016174106A (ja) 電気二重層キャパシタ用セパレータ、及びこれを用いた電気二重層キャパシタ
JP2005317215A (ja) 有機電解液電池用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509207

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147025415

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013772505

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14390248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE