WO2013150758A1 - 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法 - Google Patents

多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法 Download PDF

Info

Publication number
WO2013150758A1
WO2013150758A1 PCT/JP2013/002178 JP2013002178W WO2013150758A1 WO 2013150758 A1 WO2013150758 A1 WO 2013150758A1 JP 2013002178 W JP2013002178 W JP 2013002178W WO 2013150758 A1 WO2013150758 A1 WO 2013150758A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline silicon
disk
shaped sample
silicon rod
sample
Prior art date
Application number
PCT/JP2013/002178
Other languages
English (en)
French (fr)
Inventor
秀一 宮尾
岡田 淳一
祢津 茂義
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201380018491.6A priority Critical patent/CN104220867B/zh
Priority to EP13772580.0A priority patent/EP2835632A4/en
Priority to US14/389,912 priority patent/US9328429B2/en
Priority to KR1020147027519A priority patent/KR101739632B1/ko
Publication of WO2013150758A1 publication Critical patent/WO2013150758A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/34Single-crystal growth by zone-melting; Refining by zone-melting characterised by the seed, e.g. by its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/007Apparatus for preparing, pre-treating the source material to be used for crystal growth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method

Definitions

  • the present invention relates to a method for evaluating the degree of crystal orientation of polycrystalline silicon, and a method for selecting a polycrystalline silicon rod used as a raw material for producing single crystal silicon using the method. More specifically, the present invention relates to a technique for selecting a non-oriented polycrystalline silicon rod suitable for stably producing single crystal silicon.
  • Siemens method is a method of vapor deposition (deposition) of polycrystalline silicon on the surface of silicon core wire by CVD (Chemical Vapor Deposition) method by bringing silane source gas such as trichlorosilane and monosilane into contact with heated silicon core wire. It is a method to make it.
  • Patent Document 2 discloses that needle-like crystals may be precipitated in a rod during the process of manufacturing a polycrystalline silicon rod (polycrystalline silicon rod) by the Siemens method.
  • the individual crystallites do not melt uniformly according to their size due to the above-mentioned inhomogeneous microstructure, and the unmelted crystallites become solid particles as single particles through the melting zone. It has been reported that it passes through the crystal rod and is incorporated into the solidified surface of the single crystal as unmelted particles, thereby causing defect formation.
  • Patent Document 2 the sample surface cut perpendicularly to the long axis direction of the polycrystalline silicon rod is polished or polished, and after etching, the microcrystals of the structure are contrasted to such an extent that they can be visually recognized under an optical microscope.
  • the present invention has been made in view of such problems, and the object of the present invention is to select polycrystalline silicon suitable as a raw material for producing single crystal silicon with high quantitativeness and reproducibility. It is to provide a technology that contributes to stable manufacturing.
  • the method for evaluating the degree of crystal orientation of polycrystalline silicon uses the polycrystalline silicon as a plate-like sample, and is located at a position where Bragg reflection from a mirror index surface ⁇ hkl> is detected.
  • a plate-like sample is arranged, and the X-ray irradiation region defined by the slit is rotated in-plane at a rotation angle ⁇ around the center of the disc-like sample as a rotation center so that the main surface of the disk-like sample is ⁇ -scanned.
  • a chart showing the dependence of the Bragg reflection intensity from the mirror index surface ⁇ hkl> on the rotation angle ( ⁇ ) of the plate-like sample is obtained, and the degree of crystal orientation of the polycrystalline silicon is evaluated by the number of peaks appearing on the chart It is characterized by that.
  • the Miller index surface ⁇ hkl> is ⁇ 111> or ⁇ 220>.
  • the number of peaks appearing in the chart is counted when the S / N ratio is 3 or more.
  • the method for selecting a polycrystalline silicon rod according to the present invention is a method for selecting a polycrystalline silicon rod to be used as a raw material for producing single crystal silicon, wherein the polycrystalline silicon rod is deposited by chemical vapor deposition.
  • a plate-like sample is arranged, and the X-ray irradiation region defined by the slit is rotated in-plane at a rotation angle ⁇ around the center of the disc-like sample as a rotation center so that the main surface of the disk-like sample is ⁇ -scanned.
  • the Miller index surface ⁇ hkl> is ⁇ 111> or ⁇ 220>.
  • the number of peaks appearing in the chart is counted when the S / N ratio is 3 or more.
  • a region on the main surface of the disk-shaped sample is ⁇ -scanned by the in-plane rotation, and the number of peaks appearing on the chart obtained by the ⁇ -scan is 24 per unit area of the disk-shaped sample.
  • it is less than this / cm 2, it is selected as a raw material for producing single crystal silicon.
  • the region on the main surface of the disk-shaped sample is ⁇ -scanned by the in-plane rotation, and the radius of the disk-shaped sample is R 0 (mm)
  • the degree of crystal orientation of polycrystalline silicon is evaluated by the method according to the present invention, and crystal growth is carried out by the FZ method using a polycrystalline silicon rod selected as a non-defective product, or a lump obtained from a polycrystalline silicon block is obtained.
  • crystal growth is carried out by the FZ method using a polycrystalline silicon rod selected as a non-defective product, or a lump obtained from a polycrystalline silicon block is obtained.
  • FIG. 5 is an example of a chart obtained by performing the ⁇ scan measurement shown in FIG. 4 for the mirror index surfaces ⁇ 111>, ⁇ 220>, ⁇ 311>, and ⁇ 400>. It is a figure for demonstrating the outline of the other example of a measurement system at the time of calculating
  • 7 is an example of a chart obtained by performing the ⁇ scan measurement shown in FIG.
  • the present inventors are studying the improvement of the quality of polycrystalline silicon for stable production of single crystal silicon, and the degree of crystal orientation in the polycrystalline silicon rod depends on various conditions during the precipitation of polycrystalline silicon. It came to the knowledge that a difference arises. Unlike single crystal silicon, a block of polycrystalline silicon contains many crystal grains, but these many crystal grains tend to be considered to be randomly oriented. However, according to a study by the present inventors, the crystal grains contained in the polycrystalline silicon block are not necessarily completely randomly oriented.
  • a powder sample obtained by pulverizing a polycrystalline silicon block individual silicon crystal grains can be handled as being completely randomly oriented.
  • the powder sample is placed at a position where Bragg reflection from a specific mirror index surface ⁇ hkl> is detected, and the center of the sample is rotated so that the X-ray irradiation area defined by the slit scans the entire surface of the powder sample.
  • the Bragg reflection intensity is substantially constant even when rotated in-plane.
  • the Bragg reflection intensity from the mirror index surface ⁇ hkl> does not show the rotation angle dependency.
  • the present inventors collected a disk-like sample having a cross section perpendicular to the radial direction from many different polycrystalline silicon rods grown by chemical vapor deposition, as described above.
  • the rotation angle dependence of the Bragg reflection intensity from the mirror index surface ⁇ hkl> was investigated by the above method. Depending on the manufacturing conditions of the polycrystalline silicon rod, the Bragg reflection intensity from the mirror index surface ⁇ hkl> is dependent on the rotation angle. It was recognized that a peak sometimes appeared in the diffraction chart, and the fact that the shape and the number thereof depend on the production conditions was recognized.
  • the crystal grains in the polycrystalline silicon rod are not necessarily randomly oriented, and the degree of crystal orientation (random orientation) depends on various conditions at the time of polycrystalline silicon precipitation.
  • a polycrystalline silicon rod or polycrystalline silicon lump having a relatively high degree of crystal orientation is used as a raw material for producing single crystal silicon, a partial melt residue is locally generated. It has been found that this can induce dislocation generation and cause crystal line disappearance.
  • FIGS. 1A and 1B are diagrams for explaining an example of collecting a plate-like sample 20 for measuring an X-ray diffraction profile from a polycrystalline silicon rod 10 grown by chemical vapor deposition such as Siemens method. It is.
  • reference numeral 1 denotes a silicon core wire for depositing polycrystalline silicon on the surface to form a silicon rod.
  • three parts CTR: part close to the silicon core wire 1; EDG: part close to the side surface of the polycrystalline silicon rod 10) are used to confirm whether or not the crystal orientation degree of the polycrystalline silicon rod is dependent on the radial direction.
  • R / 2 The plate-like sample 20 is collected from a portion intermediate between CTR and EGD), but is not limited to the collection from such a portion.
  • the diameter of the polycrystalline silicon rod 10 illustrated in FIG. 1A is approximately 120 mm. From the side surface side of the polycrystalline silicon rod 10, a rod 11 having a diameter of approximately 20 mm and a length of approximately 60 mm is connected to the longitudinal direction of the silicon core wire 1. And cut out vertically.
  • the portion, length, and number of rods 11 to be collected may be determined as appropriate according to the diameter of the silicon rod 10 or the diameter of the rod 11 to be cut out, and from which portion of the rod 11 in which the disc-like sample 20 is cut out. Although it may be collected, it is preferably a position where the properties of the entire silicon rod 10 can be reasonably estimated.
  • the diameter of the disk-shaped sample 20 is set to approximately 20 mm for illustration only, and the diameter may be appropriately determined within a range that does not hinder the X-ray diffraction measurement.
  • the disk-shaped sample 20 collected as described above is arranged at a position where Bragg reflection from the mirror index surface ⁇ hkl> is detected, and is defined by a slit.
  • the Bragg reflection intensity from the mirror index surface ⁇ hkl> is rotated in-plane at a rotation angle ⁇ around the center of the disk-shaped sample 20 so that the line irradiation region scans the main surface of the disk-shaped sample 20 by ⁇ .
  • the chart showing the rotation angle ( ⁇ ) dependence of the disk-shaped sample 20 is obtained and selected as a raw material for producing single crystal silicon according to the number of peaks appearing on the chart.
  • FIG. 2 is a diagram for explaining an outline of an example of a measurement system when an X-ray diffraction profile from the disk-shaped sample 20 is obtained by a so-called ⁇ -2 ⁇ method.
  • the collimated X-ray beam 40 (Cu-K ⁇ ray: wavelength 1.54 mm) emitted from the slit 30 is incident on the disk-shaped sample 20 and rotates the sample while rotating the disk-shaped sample 20 in the XY plane.
  • the intensity of the diffracted X-ray beam for each angle ( ⁇ ) is detected by a detector (not shown) to obtain an X-ray diffraction chart of ⁇ -2 ⁇ .
  • FIG. 4 is a diagram for explaining an outline of a measurement system when an X-ray diffraction profile from the disk-shaped sample 20 is obtained by a so-called ⁇ scan method.
  • the angle ⁇ of the disk-shaped sample 20 is set to an angle at which Bragg reflection from the mirror index surface ⁇ 111> is detected, and in this state, a slit is defined in a region extending from the center of the disk-shaped sample 20 to the peripheral edge.
  • FIG. 5 is an example of a chart obtained by performing the ⁇ scan measurement on the mirror index surfaces ⁇ 111>, ⁇ 220>, ⁇ 311>, and ⁇ 400>.
  • the Bragg reflection intensity is substantially constant regardless of any of the above Miller index surfaces, and the Bragg reflection intensity does not depend on the rotation angle ⁇ and is the same chart as the powder sample. That is, it can be determined that the disk-shaped sample 20 has a low degree of crystal orientation (high random orientation).
  • FIG. 6 is a diagram for explaining an outline of another measurement system example for obtaining an X-ray diffraction profile from the disk-shaped sample 20 by the ⁇ scan method.
  • the disk-shaped sample is illustrated.
  • An area extending across both ends of 20 is irradiated with X-rays on a thin rectangular area defined by a slit, and the center of the disk-shaped sample 20 is scanned so that this X-ray irradiation area scans the entire surface of the disk-shaped sample 20.
  • Rotate in the YZ plane ( ⁇ 0 ° to 180 °) as the center of rotation.
  • FIG. 7 is an example of a chart obtained by performing the above ⁇ scan measurement on the mirror index surfaces ⁇ 111>, ⁇ 220>, ⁇ 311>, ⁇ 400>, which is substantially the same as that shown in FIG. The same ⁇ scan chart is obtained.
  • FIG. 8 is a diagram for explaining an outline of another example of a measurement system when an X-ray diffraction profile from the disk-shaped sample 20 is obtained by the ⁇ scan method.
  • X-rays are irradiated not on the entire main surface of the sample 20 but only on the inner peripheral region, and the center of the disk-shaped sample 20 is set as the center of rotation so that this X-ray irradiation region scans the entire surface of the disk-shaped sample 20.
  • the evaluation of the crystal orientation according to the present invention is as follows. Needless to say, it is significant not only as a method for selecting a polycrystalline silicon rod grown by the Siemens method or the like, but also as a method for evaluating the crystal orientation degree of polycrystalline silicon by an X-ray diffraction method.
  • the crystal orientation in the polycrystalline silicon rod can be determined. It is also possible to know the presence / absence or the change in crystal orientation accompanying the expansion of the diameter of the polycrystalline silicon rod.
  • the degree of crystal orientation is low (the random orientation is high)
  • the Bragg reflection intensity does not depend on the rotation angle ⁇ , and no peak is observed in the ⁇ scan chart, but it is obtained under different conditions.
  • a disc-like sample 20 collected from the obtained polycrystalline silicon rod is evaluated in the same manner as described above, a peak may appear in the ⁇ scan chart.
  • FIG. 9 shows, as an example, a ⁇ -scan chart obtained by measurement of the aspect shown in FIG. 8 with respect to the mirror index surfaces ⁇ 111> and ⁇ 220> in which strong Bragg reflection is obtained from the silicon crystal.
  • What is indicated by an arrow in the figure is a peak having an S / N ratio of 3 or more, and zero for the Miller index surface ⁇ 111> and 20 for the Miller index surface ⁇ 220> at all measurement rotation angles ⁇ 0 ° to 180 °. Book peaks were counted.
  • the number of peaks appearing in the ⁇ scan chart is 24 lines / cm 2 or less in terms of the unit area of the disk-shaped sample for both the mirror index surfaces ⁇ 111> and ⁇ 220>. Preferably there is.
  • the radius of the disc-like sample when a R 0 (mm), a value obtained by multiplying the ⁇ L in half-width (in degrees) of said peak 2 1/2 ⁇ R 0/360 ( mm / degree)
  • a heterogeneous crystal grain size mm
  • select a raw material for producing single crystal silicon that has a heterogeneous crystal grain size of less than 0.5 mm.
  • the term heterogeneous crystal grain size is used for the purpose of expressing the virtual size of crystal grains that give the above-mentioned peak in the ⁇ scan chart that should not occur in polycrystalline silicon with a low degree of crystal orientation. In other words, it is a virtual grain size of crystal grains that exist locally in an oriented state.
  • ⁇ L 2 1/2 ⁇ R 0/ 360
  • the radius of the disk-shaped sample 20 is R 0 (mm).
  • the scanning speed on the circumference of the radius R is treated as a reference, and the heterogeneous crystal grain size is calculated based on this.
  • the method of the present invention it is possible to evaluate the orientation region density at which a molten residue is likely to be locally generated from the number of peaks, and the size from the heterogeneous crystal grain size. Then, by removing the polycrystalline silicon rod or the polycrystalline silicon lump including such an alignment region from the raw material for producing single crystal silicon in advance, it is possible to contribute to stable production of single crystal silicon.
  • the entire region of the main surface of the disk-shaped sample 20 is ⁇ -scanned by in-plane rotation.
  • the radius of the circular X-ray irradiation region that is the ⁇ scan region may be adopted as the value of R 0 (mm).
  • dislocation occurs when single crystal silicon is produced from raw material even if it is polycrystalline silicon whose crystal grains are not confirmed by visual observation as disclosed in Patent Document 2.
  • the disappearance of the crystal line due to the induction of the crystallinity may occur.
  • the degree of the disappearance of the crystal line is remarkably reduced, and the method of the present invention has high quantitativeness and reproduction. It was confirmed that it has sex.
  • the number of peaks appearing in the ⁇ scan chart is 24 / cm 2 or less in terms of unit area of the disk-shaped sample for any of the mirror index surfaces ⁇ 111> and ⁇ 220>, and
  • the FZ method using a polycrystalline silicon rod having a heterogeneous crystal grain size calculated from the peak half-value width of less than 0.5 mm as a raw material, there is no single crystal line disappearance in one FZ treatment.
  • a crystalline silicon rod was obtained.
  • the disappearance of the crystal line was not recognized.
  • the number of polycrystalline silicon rods that did not cause the disappearance of crystal lines is 24 per unit area even in the disk-shaped sample (20 EDG of silicon rod B) with the largest number of peaks. Moreover, the heterogeneous crystal grain size of 0.5 mm or more has not been confirmed from any disk-shaped sample.
  • the number of peaks appearing in the ⁇ scan chart is 24 / cm 2 or less per unit area of the disk-shaped sample, and the heterogeneous crystal grain size is less than 0.5 mm.
  • the present invention provides a technology that contributes to stable production of single crystal silicon by selecting polycrystalline silicon suitable as a raw material for producing single crystal silicon with high quantitativeness and reproducibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 多結晶シリコン棒から採取された円板状試料20について評価を行うとφスキャン・チャート中にピークが現れることがある。このようなピークの本数が少ないほど、また、その半値幅が狭いほど、単結晶シリコン製造用の原料として好適である。φスキャン・チャートに現れるピークの本数は、ミラー指数面<111>および<220>の何れについても、円板状試料の単位面積当たりの換算で24本/cm以下であることが好ましい。また、円板状試料の半径をRとしたときに、ピーク半値幅にδL=21/2πR/360を乗じて得られる値を不均質結晶粒径と定義付け、該不均質結晶粒径が何れも0.5mm未満のものを単結晶シリコン製造用原料として選択することが好ましい。

Description

多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法
 本発明は、多結晶シリコンの結晶配向度を評価する方法、および、これを利用した単結晶シリコン製造用原料として用いられる多結晶シリコン棒の選択方法に関する。より具体的には、単結晶シリコンを安定的に製造するために好適な、無配向性の多結晶シリコン棒を選択するための技術に関する。
 半導体デバイス等の製造に不可欠な単結晶シリコンは、CZ法やFZ法により結晶育成され、その際の原料として多結晶シリコン棒や多結晶シリコン塊が用いられる。このような多結晶シリコン材料は多くの場合、シーメンス法により製造される(特許文献1等参照)。シーメンス法とは、トリクロロシランやモノシラン等のシラン原料ガスを加熱されたシリコン芯線に接触させることにより、該シリコン芯線の表面に多結晶シリコンをCVD(Chemical Vapor Deposition)法により気相成長(析出)させる方法である。
 例えば、CZ法で単結晶シリコンを結晶育成する際には、石英ルツボ内に多結晶シリコン塊をチャージし、これを加熱溶融させたシリコン融液に種結晶を漬けて転位線を消滅させ、無転位化させた後に所定の直径となるまで徐々に径拡大させて結晶の引上げが行われる。このとき、シリコン融液中に未溶融の多結晶シリコンが残存していると、この未溶融多結晶片が対流により固液界面近傍を漂い、転位発生を誘発して結晶線を消失させてしまう原因となる。
 また、特許文献2には、多結晶シリコンロッド(多結晶シリコン棒)をシーメンス法で製造する工程中に該ロッド中で針状結晶が析出することがあり、かかる多結晶シリコン棒を用いてFZ法による単結晶シリコン育成を行うと、上述の不均質な微細構造によって個々の晶子がその大きさに相応して均一には溶融せず、不溶融の晶子が固体粒子として溶融帯域をとおって単結晶ロッドへと通り抜けて未溶融粒子として単結晶の凝固面に組み込まれ、これにより欠陥形成が引き起こされる旨が報告されている。
 この問題に対し、特許文献2では、多結晶シリコン棒の長軸方向に対して垂直に切り出された試料面を研磨乃至ポリシングし、エッチング後に組織の微結晶を光学顕微鏡下でも視認できる程度にコントラストを高めて針状結晶のサイズとその面積割合を測定し、その測定結果に基づいてFZ単結晶シリコン育成用原料としての良否を判断する手法を提案している。
特公昭37-18861号公報 特開2008-285403号公報
 しかし、特許文献2に開示の手法のような光学顕微鏡下での視認による良否判断は、観察試料面のエッチングの程度や評価担当者の観察技量等に依存して結果に差が生じ易いことに加え、定量性や再現性にも乏しい。このため、単結晶シリコンの製造歩留まりを高める観点からは良否判断の基準を高めに設定しておく必要があり、結果として、多結晶シリコン棒の不良品率は高くなってしまう。
 また、本発明者らが検討したところによれば、特許文献2に開示の手法では良品と判定された多結晶シリコン棒を用いた場合であっても、FZ法による単結晶シリコンロッドの育成工程で転位が発生し結晶線が消失することがあることも判明した。
 従って、単結晶シリコンを高い歩留まりで安定的に製造するためには、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別する技術が求められる。
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別し、単結晶シリコンの安定的製造に寄与する技術を提供することにある。
 上記課題を解決するために、本発明に係る多結晶シリコンの結晶配向度評価方法は、前記多結晶シリコンを板状試料とし、ミラー指数面<hkl>からのブラッグ反射が検出される位置に前記板状試料を配置し、スリットにより定められるX線照射領域が前記円板状試料の主面上をφスキャンするように前記円板状試料の中心を回転中心として回転角度φで面内回転させ、前記ミラー指数面<hkl>からのブラッグ反射強度の前記板状試料の回転角度(φ)依存性を示すチャートを求め、該チャートに現れるピークの本数で多結晶シリコンの結晶配向度を評価することを特徴とする。
 好ましくは、前記ミラー指数面<hkl>は<111>又は<220>である。
 好ましくは、前記チャートに現れるピークの本数はS/N比が3以上のものがカウントされる。
 また、本発明に係る多結晶シリコン棒の選択方法は、単結晶シリコン製造用原料として用いる多結晶シリコン棒を選択するための方法であって、前記多結晶シリコン棒は化学気相法による析出で育成されたものであり、該多結晶シリコン棒の径方向に垂直な断面を主面とする円板状試料を採取し、ミラー指数面<hkl>からのブラッグ反射が検出される位置に前記円板状試料を配置し、スリットにより定められるX線照射領域が前記円板状試料の主面上をφスキャンするように前記円板状試料の中心を回転中心として回転角度φで面内回転させ、前記ミラー指数面<hkl>からのブラッグ反射強度の前記円板状試料の回転角度(φ)依存性を示すチャートを求め、該チャートに現れるピークの本数に応じて単結晶シリコン製造用原料として選択する、ことを特徴とする。
 好ましくは、前記ミラー指数面<hkl>は<111>又は<220>である。
 好ましくは、前記チャートに現れるピークの本数はS/N比が3以上のものがカウントされる。
 また、好ましくは、前記面内回転により前記円板状試料の主面上の領域をφスキャンし、該φスキャンにより得られたチャートに現れるピークの本数が前記円板状試料の単位面積当たり24本/cm以下である場合に単結晶シリコン製造用原料として選択する。
 さらに、好ましくは、前記面内回転により前記円板状試料の主面上の領域をφスキャンし、前記円板状試料の半径をR(mm)としたときに、前記ピークの半値幅(度)にδL=21/2πR/360(mm/度)を乗じて得られる値を不均質結晶粒径(mm)と定義付け、該不均質結晶粒径が何れも0.5mm未満のものを単結晶シリコン製造用原料として選択する。
 本発明に係る方法で多結晶シリコンの結晶配向度を評価し、これにより良品として選択された多結晶シリコン棒を用いてFZ法により結晶育成を行ったり、多結晶シリコンブロックから得られた塊を用いてCZ法により結晶育成することにより、部分的な溶融残りの局部的な発生が抑制され、単結晶シリコンの安定的な製造に寄与することができる。
化学気相法で析出させて育成された多結晶シリコン棒からの、X線回折測定用の板状試料の採取例について説明するための図である。 化学気相法で析出させて育成された多結晶シリコン棒からの、X線回折測定用の板状試料の採取例について説明するための図である。 円板状試料からのX線回折プロファイルを、いわゆるθ-2θ法で求める際の測定系例の概略を説明するための図である。 θ-2θのX線回折チャートの一例である。 円板状試料からのX線回折プロファイルを、いわゆるφスキャン法で求める際の測定系例の概略を説明するための図である。 図4に示したφスキャン測定をミラー指数面<111>、<220>、<311>、<400>について行って得られたチャートの一例である。 円板状試料からのX線回折プロファイルを、φスキャン法で求める際の他の測定系例の概略を説明するための図である。 図6に示したφスキャン測定をミラー指数面<111>、<220>、<311>、<400>について行って得られたチャートの一例である。 円板状試料からのX線回折プロファイルを、φスキャン法で求める際の他の測定系例の概略を説明するための図である。 シリコン結晶から強いブラッグ反射が得られるミラー指数面<111>および<220>について得られたφスキャン・チャートの一例である。 不均質結晶粒径を算出する際のδLの定義を説明するための図である。 ピークの半値幅について説明するための図である。
 以下に、図面を参照しながら本発明の実施の形態について説明する。
 本発明者らは、単結晶シリコンの製造を安定的に行うための多結晶シリコンの品質向上につき検討を進める中で、多結晶シリコン析出時の諸条件により、多結晶シリコン棒中の結晶配向度に差異が生じるという知見を得るに至った。単結晶シリコンとは異なり、多結晶シリコンのブロックは多くの結晶粒を含んでいるが、これら多くの結晶粒はそれぞれがランダムに配向しているものと考えられがちである。しかし、本発明者らが検討したところによれば、多結晶シリコンブロックに含まれる結晶粒は、必ずしも完全にはランダム配向しているわけではない。
 多結晶シリコンブロックを粉砕して得られる粉末試料では、個々のシリコン結晶粒は完全にランダム配向しているものとして取り扱うことができる。事実、特定のミラー指数面<hkl>からのブラッグ反射が検出される位置に粉末試料を配置し、スリットにより定められるX線照射領域が粉末試料の全面をスキャンするように試料の中心を回転中心として面内回転させても、ブラッグ反射強度は略一定である。換言すれば、上記ミラー指数面<hkl>からのブラッグ反射強度は、回転角度依存性を示さない。
 これに対し、本発明者らが、化学気相法による析出で育成された多くの異なる多結晶シリコン棒から径方向に垂直な断面を主面とする円板状試料を採取し、上記と同様の手法でミラー指数面<hkl>からのブラッグ反射強度の回転角度依存性を調べたところ、多結晶シリコン棒の製造条件によって、ミラー指数面<hkl>からのブラッグ反射強度に回転角度依存性が認められ、回折チャート中にピークが現れることがあり、その形状や本数も製造条件に依存するという事実が認められた。
 つまり、多結晶シリコン棒中の結晶粒は必ずしもランダム配向しておらず、結晶配向度(ランダム配向性)は多結晶シリコン析出時の諸条件に依存する。そして、結晶配向度が比較的高い(ランダム配向性が比較的低い)多結晶シリコン棒乃至多結晶シリコン塊を単結晶シリコンの製造用原料として用いると、部分的な溶融残りが局部的に生じることがあり、これが転位発生を誘発して結晶線消失の原因ともなり得ることがわかった。
 図1A及び図1Bは、シーメンス法などの化学気相法で析出させて育成された多結晶シリコン棒10からの、X線回折プロファイル測定用の板状試料20の採取例について説明するための図である。図中、符号1で示したものは、表面に多結晶シリコンを析出させてシリコン棒とするためのシリコン芯線である。なお、この例では、多結晶シリコン棒の結晶配向度の径方向依存性の有無を確認すべく3つの部位(CTR:シリコン芯線1に近い部位、EDG:多結晶シリコン棒10の側面に近い部位、R/2:CTRとEGDの中間の部位)から板状試料20を採取しているが、このような部位からの採取に限定されるものではない。
 図1Aで例示した多結晶シリコン棒10の直径は概ね120mmであり、この多結晶シリコン棒10の側面側から、直径が概ね20mmで長さが概ね60mmのロッド11を、シリコン芯線1の長手方向と垂直にくり抜く。
 そして、図1Bに図示したように、このロッド11のシリコン芯線1に近い部位(CTR)、多結晶シリコン棒10の側面に近い部位(EDG)、CTRとEGDの中間の部位(R/2)からそれぞれ、多結晶シリコン棒10の径方向に垂直な断面を主面とする厚みが概ね2mmの円板状試料(20CTR、20EDG、20R/2)を採取する。
 なお、ロッド11を採取する部位、長さ、および本数は、シリコン棒10の直径やくり抜くロッド11の直径に応じて適宜定めればよく、円板状試料20もくり抜いたロッド11のどの部位から採取してもよいが、シリコン棒10全体の性状を合理的に推定可能な位置であることが好ましい。
 また、円板状試料20の直径を概ね20mmとしたのも例示に過ぎず、直径はX線回折測定時に支障がない範囲で適当に定めればよい。
 本発明に係る多結晶シリコン棒の選択方法では、上述のようにして採取した円板状試料20をミラー指数面<hkl>からのブラッグ反射が検出される位置に配置し、スリットにより定められるX線照射領域が円板状試料20の主面上をφスキャンするように円板状試料20の中心を回転中心として回転角度φで面内回転させ、ミラー指数面<hkl>からのブラッグ反射強度の円板状試料20の回転角度(φ)依存性を示すチャートを求め、該チャートに現れるピークの本数に応じて単結晶シリコン製造用原料として選択する。
 図2は、円板状試料20からのX線回折プロファイルを、いわゆるθ-2θ法で求める際の測定系例の概略を説明するための図である。スリット30から射出されてコリメートされたX線ビーム40(Cu-Kα線:波長1.54Å)は円板状試料20に入射し、円板状試料20をXY平面内で回転させながら、試料回転角度(θ)毎の回折X線ビームの強度を検知器(不図示)で検出して、θ-2θのX線回折チャートを得る。
 図3は、上記で得られたθ-2θのX線回折チャートの例で、ミラー指数面<111>、<220>、<311>、<400>からの強いブラッグ反射がそれぞれ、2θ=28.40°、47.24°、55.98°、68.98°の位置にピークとなって現れる。
 図4は、円板状試料20からのX線回折プロファイルを、いわゆるφスキャン法で求める際の測定系の概略を説明するための図である。例えば、円板状試料20の上記θを、ミラー指数面<111>からのブラッグ反射が検出される角度とし、この状態で、円板状試料20の中心から周端に渡る領域にスリットにより定められる細い矩形の領域にX線を照射させ、このX線照射領域が円板状試料20の全面をスキャンするように円板状試料20の中心を回転中心としてYZ面内で回転(φ=0°~360°)させる。
 図5は、上記φスキャン測定を、ミラー指数面<111>、<220>、<311>、<400>について行って得られたチャートの一例である。この例では、上記何れのミラー指数面に着目してもブラッグ反射強度は略一定であり、ブラッグ反射強度は回転角φに依存せず、粉末試料と同様のチャートとなっている。つまり、この円板状試料20は、結晶配向度が低い(ランダム配向性が高い)と判断することができる。
 図6は、円板状試料20からのX線回折プロファイルをφスキャン法で求める際の他の測定系例の概略を説明するための図で、この図に示した例では、円板状試料20の両周端に渡る領域にスリットにより定められる細い矩形の領域にX線を照射させ、このX線照射領域が円板状試料20の全面をスキャンするように円板状試料20の中心を回転中心としてYZ面内で回転(φ=0°~180°)させる。
 図7は、上記φスキャン測定を、ミラー指数面<111>、<220>、<311>、<400>について行って得られたチャートの一例で、実質的に、図5に示したものと同じφスキャン・チャートが得られている。
 図8は、円板状試料20からのX線回折プロファイルをφスキャン法で求める際のもうひとつの測定系例の概略を説明するための図で、この図に示した例では、円板状試料20の主面の全体ではなく、内周領域のみにX線を照射させ、このX線照射領域が円板状試料20の全面をスキャンするように円板状試料20の中心を回転中心としてYZ面内で回転(φ=0°~180°)させる。
 このようなX線照射領域から得られるφスキャン・チャートと、上述の円板状試料20の主面全体から得られるφスキャン・チャートとの差分を求める等の処理を行うと、円板状試料20の面内での結晶配向度分布を得ることも可能となる。
 尤も、図1A~1Bに示したような態様で採取された円板状試料20については面内での結晶配向度分布は生じないと考えられるが、本発明に係る結晶配向性の評価は、シーメンス法等により育成された多結晶シリコン棒の選択方法としてのみならず、多結晶シリコンの結晶配向度をX線回折法により評価する方法としても有意であることは言うまでもないから、例えば、化学気相法による析出で育成された多結晶シリコン棒の径方向と平行に切り出された円板状試料につき面内での結晶配向度分布を求めることにより、多結晶シリコン棒内での結晶配向性の有無乃至多結晶シリコン棒の口径拡大に伴う結晶配向性の変化等を知ることも可能となる。
 上述のとおり、結晶配向度が低い(ランダム配向性が高い)場合、ブラッグ反射強度は回転角φに依存せず、φスキャン・チャート中にはピークは認められず、しかし、異なる条件下で得られた多結晶シリコン棒から採取された円板状試料20について上記と同様の評価を行うと、φスキャン・チャート中にピークが現れることがある。
 図9は、その一例で、シリコン結晶から強いブラッグ反射が得られるミラー指数面<111>および<220>について、図8に示した態様の測定により得られたφスキャン・チャートを示している。図中に矢印で示したものはS/N比が3以上のピークであり、全測定回転角φ0°~180°において、ミラー指数面<111>について0本、ミラー指数面<220>について20本のピークがカウントされた。
 本発明者らが行った実験結果の詳細については後述するが、本発明者らの検討によれば、上述の方法でカウントされるピークの本数が少ないほど、また、その半値幅が狭いほど、単結晶シリコン製造用の原料として好適である。これは、そのような多結晶シリコンは結晶配向度が低く(ランダム配向性が高く)、かかる多結晶シリコン棒乃至多結晶シリコン塊を単結晶シリコンの製造用原料として用いた場合には、部分的な溶融残りが局部的に生じ難く、その結果、転位発生の誘発に起因する結晶線消失が生じ難いからであると考えられる。
 より具体的には、φスキャン・チャートに現れるピークの本数は、ミラー指数面<111>および<220>の何れについても、円板状試料の単位面積当たりの換算で24本/cm以下であることが好ましい。
 また、円板状試料の半径をR(mm)としたときに、上記ピークの半値幅(度)にδL=21/2πR/360(mm/度)を乗じて得られる値を不均質結晶粒径(mm)と定義付け、該不均質結晶粒径が何れも0.5mm未満のものを単結晶シリコン製造用原料として選択することが好ましい。なお、この不均質結晶粒径なる用語は、結晶配向度が低い多結晶シリコンでは生じないはずのφスキャン・チャート中に上述のピークを与える結晶粒の仮想の大きさを表現する目的で用いられ、言わば、局所的に配向状態で存在する結晶粒の仮想粒径である。
 ここで、上記不均質結晶粒径の算出について説明しておく。
 図10は、不均質結晶粒径を算出する際のδL(=21/2πR/360)の定義を説明するための図で、図中に破線で示した領域は、スリットにより定められるX線照射領域である。例えば、図4や図6に示したように、面内回転により円板状試料20の主面の全領域をφスキャンする場合、円板状試料20の半径はR(mm)であるから、その面積SはS=πR であり、その半分の面積S(=S/2)となる内側領域の半径RはR=R/21/2である。
 スリットにより定められるX線照射領域は矩形であるため、半径Rよりも外側の領域は、半径Rよりも内側の領域よりも早くスキャンされることとなるが、半径Rの円周上のスキャン速度は丁度両者の中間に当たると考えてよい。そこで、本発明では、この半径Rの円周上のスキャン速度を基準として取り扱うこととし、これに基づいて上記不均質結晶粒径を算出する。
 半径Rの円周は2πRであり、これを360°で除した値δL(1°当たりの線分)はδL=2πR/360°=21/2πR/360°となる。
 図11のようなピークがあった場合、最大強度hの1/2を与える回転角度φの範囲が半値幅Δであるとすると、このピーク半値幅Δに上記δL(=21/2πR/360)を乗じて得られる値を不均質結晶粒径と定義付ける。
 本発明の方法によれば、ピークの本数から溶融残りを局部的に生じ易い配向領域密度が、また、上記不均質結晶粒径からその大きさが評価できる。そして、このような配向領域を含む多結晶シリコン棒乃至多結晶シリコン塊を予め単結晶シリコン製造用原料から排除することにより、単結晶シリコンの安定的製造に寄与することが可能となる。
 なお、上述の説明では面内回転により円板状試料20の主面の全領域をφスキャンする場合を想定したが、例えば図8に示したように、円板状試料20の主面の全体ではなく、内周領域のみにX線を照射させ、このX線照射領域が円板状試料20の全面をスキャンするように円板状試料20の中心を回転中心としてYZ面内で回転(φ=0°~180°)させた場合にも、上記不均質結晶粒径は定義付けすることができる。この場合には、上記R(mm)の値として、φスキャン領域である円形X線照射領域の半径を採用すればよい。
 ところで、本発明者らの検討によれば、特許文献2に開示されているような目視観察では結晶粒が確認されない多結晶シリコンであっても、これを原料として単結晶シリコンを製造すると転位発生の誘発に起因する結晶線消失を生じる場合があるが、後述するように、本発明の方法によれば、係る結晶線消失の程度は顕著に低くなり、本発明の方法が高い定量性と再現性を有していることが確認された。
 特に、φスキャン・チャートに現れるピークの本数が、ミラー指数面<111>および<220>の何れについても、円板状試料の単位面積当たりの換算で24本/cm以下であり、かつ、ピーク半値幅から算出される不均質結晶粒径が何れも0.5mm未満の多結晶シリコン棒を原料としてFZ法で単結晶シリコンを製造した場合、1回のFZ処理で結晶線消失がない単結晶シリコンロッドが得られた。また、このような多結晶シリコン棒を破砕して得られたシリコン塊を原料としてCZ法で単結晶シリコンの育成を行った場合にも、結晶線の消失は認められなかった。
 異なる析出条件下で育成された多結晶シリコン棒を4本準備した。これらの多結晶シリコン棒(シリコン棒A~D)のそれぞれにつき、図1Aおよび1Bで示した3つの部位から、厚みが概ね2mmの円板状試料(20CTR、20EDG、20R/2)を採取し、図6に示した測定系により、ミラー指数面<111>及び<220>のφスキャン・チャートを得た。なお、円板状試料20の直径は約20mmである。
 これらの多結晶シリコン棒から得られた円板状試料毎のピーク本数(単位面積当たりに換算)およびこれらのピークから算出された不均質結晶粒径のうちの最大値(最大粒径)、並びに、多結晶シリコン棒を用いてFZ法による単結晶シリコンロッドの育成を行った際の結晶線消失の有無を表1に纏めた。
Figure JPOXMLDOC01-appb-T000001
 表1に示したとおり、シリコン棒AおよびBにおいてはFZ法による単結晶シリコンロッドの育成を行った際の結晶線消失は認められなかった一方、シリコン棒CおよびDにおいて結晶線消失が生じている。
 結晶線消失を生じさせなかった多結晶シリコン棒は、ピーク本数が最も多くカウントされた円板状試料(シリコン棒Bの20EDG)でも単位面積当たり24本である。また、0.5mm以上の不均質結晶粒径は、何れの円板状試料からも確認されていない。
 これに対し、結晶線消失を生じさせた多結晶シリコン棒からは、単位面積当たりのピーク本数が24本を超える円板状試料が採取されており、また、多結晶シリコン棒Dからは0.5mm以上の不均質結晶粒径が確認されている。
 これらの結果より、φスキャン・チャートに現れるピークの本数が円板状試料の単位面積当たり24本/cm以下であること、また、不均質結晶粒径が何れも0.5mm未満であることを、単結晶シリコン製造用原料として選択する基準とすることができる。
 本発明は、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別し、単結晶シリコンの安定的製造に寄与する技術を提供する。
 1 シリコン芯線
 10 多結晶シリコン棒
 11 ロッド
 20 板状試料
 30 スリット
 40 X線ビーム

Claims (13)

  1.  多結晶シリコンの結晶配向度をX線回折法により評価する方法であって、
     前記多結晶シリコンを板状試料とし、
     ミラー指数面<hkl>からのブラッグ反射が検出される位置に前記板状試料を配置し、
     スリットにより定められるX線照射領域が前記円板状試料の主面上をφスキャンするように前記円板状試料の中心を回転中心として回転角度φで面内回転させ、
     前記ミラー指数面<hkl>からのブラッグ反射強度の前記板状試料の回転角度(φ)依存性を示すチャートを求め、
     該チャートに現れるピークの本数で多結晶シリコンの結晶配向度を評価する、ことを特徴とする多結晶シリコンの結晶配向度評価方法。
  2.  前記ミラー指数面<hkl>は<111>又は<220>である、請求項1に記載の多結晶シリコンの結晶配向度評価方法。
  3.  前記チャートに現れるピークの本数はS/N比が3以上のものがカウントされる、請求項1又は2に記載の多結晶シリコンの結晶配向度評価方法。
  4.  単結晶シリコン製造用原料として用いる多結晶シリコン棒を選択するための方法であって、
     前記多結晶シリコン棒は化学気相法による析出で育成されたものであり、
     該多結晶シリコン棒の径方向に垂直な断面を主面とする円板状試料を採取し、
     ミラー指数面<hkl>からのブラッグ反射が検出される位置に前記円板状試料を配置し、
     スリットにより定められるX線照射領域が前記円板状試料の主面上をφスキャンするように前記円板状試料の中心を回転中心として回転角度φで面内回転させ、
     前記ミラー指数面<hkl>からのブラッグ反射強度の前記円板状試料の回転角度(φ)依存性を示すチャートを求め、
     該チャートに現れるピークの本数に応じて単結晶シリコン製造用原料として選択する、
    ことを特徴とする多結晶シリコン棒の選択方法。
  5.  前記ミラー指数面<hkl>は<111>又は<220>である、請求項4に記載の多結晶シリコン棒の選択方法。
  6.  前記チャートに現れるピークの本数はS/N比が3以上のものがカウントされる、請求項4又は5に記載の多結晶シリコン棒の選択方法。
  7.  前記面内回転により前記円板状試料の主面上の領域をφスキャンし、該φスキャンにより得られたチャートに現れるピークの本数が前記円板状試料の単位面積当たり24本/cm以下である場合に単結晶シリコン製造用原料として選択する、請求項4又は5に記載の多結晶シリコン棒の選択方法。
  8.  前記面内回転により前記円板状試料の主面上の領域をφスキャンし、前記円板状試料の半径をR(mm)としたときに、前記ピークの半値幅(度)にδL=21/2πR/360(mm/度)を乗じて得られる値を不均質結晶粒径(mm)と定義付け、該不均質結晶粒径が何れも0.5mm未満のものを単結晶シリコン製造用原料として選択する、請求項4又は5に記載の多結晶シリコン棒の選択方法。
  9.  前記多結晶シリコン棒はシーメンス法で育成されたものである、請求項4又は5に記載の多結晶シリコン棒の選択方法。
  10.  請求項4又は5に記載の方法により選択された多結晶シリコン棒。
  11.  請求項10に記載の多結晶シリコン棒を破砕して得た多結晶シリコン塊。
  12.  請求項10に記載の多結晶シリコン棒をシリコン原料として用いる単結晶シリコンの製造方法。
  13.  請求項11に記載の多結晶シリコン塊を原料として用いる単結晶シリコンの製造方法。
PCT/JP2013/002178 2012-04-04 2013-03-29 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法 WO2013150758A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380018491.6A CN104220867B (zh) 2012-04-04 2013-03-29 多晶硅的晶体取向度评价方法以及多晶硅棒的选择方法
EP13772580.0A EP2835632A4 (en) 2012-04-04 2013-03-29 METHOD FOR EVALUATING THE CRYSTAL ORIENTATION RANGE ON POLYCRYSTALLINE SILICON, METHOD FOR SELECTION OF POLYCRYSTALLINE SILICON BARS, AND PRODUCTION METHOD FOR SINGLE CRYSTAL SILICON
US14/389,912 US9328429B2 (en) 2012-04-04 2013-03-29 Method for evaluating degree of crystal orientation in polycrystalline silicon, selection method for polycrystalline silicon rods, and production method for single crystal silicon
KR1020147027519A KR101739632B1 (ko) 2012-04-04 2013-03-29 다결정 실리콘의 결정 배향도 평가 방법, 다결정 실리콘 막대의 선택 방법, 및 단결정 실리콘의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-085528 2012-04-04
JP2012085528A JP5828795B2 (ja) 2012-04-04 2012-04-04 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法

Publications (1)

Publication Number Publication Date
WO2013150758A1 true WO2013150758A1 (ja) 2013-10-10

Family

ID=49300261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002178 WO2013150758A1 (ja) 2012-04-04 2013-03-29 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法

Country Status (7)

Country Link
US (1) US9328429B2 (ja)
EP (1) EP2835632A4 (ja)
JP (1) JP5828795B2 (ja)
KR (1) KR101739632B1 (ja)
CN (1) CN104220867B (ja)
MY (1) MY169845A (ja)
WO (1) WO2013150758A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863212A4 (en) * 2012-06-18 2015-11-11 Shinetsu Chemical Co METHOD FOR ASSESSING THE ORIENTATION RANGE OF POLYCRYSTALLINE SILICON CRYSTAL, COMPOUNDS FOR POLYCRYSTALLINE SILICON STICK, POLYCRYSTALLINE SILICON STICK, POLYCRYSTALLINE SILICON BLOCK AND METHOD OF PREPARING POLYCRYSTALLINE SILICON
WO2016103608A1 (ja) * 2014-12-25 2016-06-30 信越化学工業株式会社 多結晶シリコン棒、多結晶シリコン棒の加工方法、多結晶シリコン棒の結晶評価方法、および、fz単結晶シリコンの製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712176B2 (ja) * 2012-08-06 2015-05-07 信越化学工業株式会社 多結晶シリコン棒の選択方法、多結晶シリコン塊の製造方法、及び、単結晶シリコンの製造方法
JP6418778B2 (ja) 2014-05-07 2018-11-07 信越化学工業株式会社 多結晶シリコン棒、多結晶シリコン棒の製造方法、および、単結晶シリコン
JP6131218B2 (ja) * 2014-06-17 2017-05-17 信越化学工業株式会社 多結晶シリコン棒の表面温度の算出方法および制御方法、多結晶シリコン棒の製造方法、多結晶シリコン棒、ならびに、多結晶シリコン塊
JP6314097B2 (ja) * 2015-02-19 2018-04-18 信越化学工業株式会社 多結晶シリコン棒
JP6349290B2 (ja) * 2015-09-03 2018-06-27 信越半導体株式会社 単結晶ウェーハの表裏判定方法
JP6454248B2 (ja) 2015-09-14 2019-01-16 信越化学工業株式会社 多結晶シリコン棒
JP6416140B2 (ja) * 2016-02-12 2018-10-31 信越化学工業株式会社 多結晶シリコン棒および多結晶シリコン棒の選別方法
JP6470223B2 (ja) 2016-04-04 2019-02-13 信越化学工業株式会社 単結晶シリコンの製造方法
JP7050581B2 (ja) * 2018-06-04 2022-04-08 信越化学工業株式会社 多結晶シリコンロッドの選別方法
JP7263898B2 (ja) * 2019-04-19 2023-04-25 セイコーエプソン株式会社 液体吐出ヘッドおよびプリンター
CN110095486B (zh) * 2019-05-08 2021-12-17 中国科学院金属研究所 一种快速呈现多晶材料特定晶面分布特征的方法
EP4024036A4 (en) * 2019-08-30 2023-09-13 National Institute Of Advanced Industrial Science and Technology ORIENTATION DISTRIBUTION CALCULATION METHOD, ORIENTATION DISTRIBUTION ANALYSIS DEVICE, AND ORIENTATION DISTRIBUTION ANALYSIS PROGRAM
JP2022003004A (ja) 2020-06-23 2022-01-11 信越化学工業株式会社 ポリシリコンロッド及びポリシリコンロッド製造方法
CN114455587B (zh) * 2022-01-26 2023-07-21 何良雨 一种高纯多晶硅生产装置和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422218B2 (ja) * 1983-10-27 1992-04-16 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JP2005534028A (ja) * 2002-07-26 2005-11-10 ハイパーネックス,インコーポレイテッド テクスチャのある多結晶材料の定量的位相解析
JP2006071377A (ja) * 2004-08-31 2006-03-16 Rigaku Corp X線回折装置
JP2007240192A (ja) * 2006-03-06 2007-09-20 Rigaku Corp 多結晶材料の配向性の評価方法
JP2008249605A (ja) * 2007-03-30 2008-10-16 Rigaku Corp 結晶粒の極点図測定方法およびその装置
JP2008285403A (ja) 2007-05-16 2008-11-27 Wacker Chemie Ag 帯域引き上げ用の多結晶シリコンロッド及びその製造方法
WO2012164803A1 (ja) * 2011-06-02 2012-12-06 信越化学工業株式会社 多結晶シリコン棒の選択方法および単結晶シリコンの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422218A (ja) 1990-05-17 1992-01-27 Seiko Epson Corp 入力回路
JPH05113416A (ja) 1990-07-23 1993-05-07 Stiftung Deutsche Elektronen Synchrotron Desy 単結晶材料の異質相の析出を検査する方法
JP3887588B2 (ja) 2002-08-30 2007-02-28 株式会社リガク X線回折による応力測定法
US7972703B2 (en) 2005-03-03 2011-07-05 Ferrotec (Usa) Corporation Baffle wafers and randomly oriented polycrystalline silicon used therefor
US8049100B2 (en) * 2007-07-26 2011-11-01 Translucent, Inc. Multijunction rare earth solar cell
DE102007047210A1 (de) 2007-10-02 2009-04-09 Wacker Chemie Ag Polykristallines Silicium und Verfahren zu seiner Herstellung
JP5751748B2 (ja) 2009-09-16 2015-07-22 信越化学工業株式会社 多結晶シリコン塊群および多結晶シリコン塊群の製造方法
JP5238762B2 (ja) 2010-07-06 2013-07-17 信越化学工業株式会社 多結晶シリコン棒および多結晶シリコン棒の製造方法
JP4884553B1 (ja) 2010-08-31 2012-02-29 株式会社リガク X線分析装置および方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422218B2 (ja) * 1983-10-27 1992-04-16 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JP2005534028A (ja) * 2002-07-26 2005-11-10 ハイパーネックス,インコーポレイテッド テクスチャのある多結晶材料の定量的位相解析
JP2006071377A (ja) * 2004-08-31 2006-03-16 Rigaku Corp X線回折装置
JP2007240192A (ja) * 2006-03-06 2007-09-20 Rigaku Corp 多結晶材料の配向性の評価方法
JP2008249605A (ja) * 2007-03-30 2008-10-16 Rigaku Corp 結晶粒の極点図測定方法およびその装置
JP2008285403A (ja) 2007-05-16 2008-11-27 Wacker Chemie Ag 帯域引き上げ用の多結晶シリコンロッド及びその製造方法
WO2012164803A1 (ja) * 2011-06-02 2012-12-06 信越化学工業株式会社 多結晶シリコン棒の選択方法および単結晶シリコンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2835632A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863212A4 (en) * 2012-06-18 2015-11-11 Shinetsu Chemical Co METHOD FOR ASSESSING THE ORIENTATION RANGE OF POLYCRYSTALLINE SILICON CRYSTAL, COMPOUNDS FOR POLYCRYSTALLINE SILICON STICK, POLYCRYSTALLINE SILICON STICK, POLYCRYSTALLINE SILICON BLOCK AND METHOD OF PREPARING POLYCRYSTALLINE SILICON
US9274069B2 (en) 2012-06-18 2016-03-01 Shin-Etsu Chemical Co., Ltd. Method for evaluating degree of crystalline orientation of polycrystalline silicon, method for selecting polycrystalline silicon rod, polycrystalline silicon rod, polycrystalline silicon ingot, and method for manufacturing monocrystalline silicon
WO2016103608A1 (ja) * 2014-12-25 2016-06-30 信越化学工業株式会社 多結晶シリコン棒、多結晶シリコン棒の加工方法、多結晶シリコン棒の結晶評価方法、および、fz単結晶シリコンの製造方法
JP2016121052A (ja) * 2014-12-25 2016-07-07 信越化学工業株式会社 多結晶シリコン棒、多結晶シリコン棒の加工方法、多結晶シリコン棒の結晶評価方法、および、fz単結晶シリコンの製造方法
US10800659B2 (en) 2014-12-25 2020-10-13 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod, processing method for polycrystalline silicon rod, method for evaluating polycrystalline silicon rod, and method for producing FZ single crystal silicon
US11167994B2 (en) 2014-12-25 2021-11-09 Shin-Etsu Chemical Co., Ltd. Polycrystalline silicon rod, processing method for polycrystalline silicon rod, method for evaluating polycrystalline silicon rod, and method for producing FZ single crystal silicon

Also Published As

Publication number Publication date
CN104220867A (zh) 2014-12-17
CN104220867B (zh) 2017-03-15
US9328429B2 (en) 2016-05-03
EP2835632A4 (en) 2016-03-16
KR101739632B1 (ko) 2017-05-24
MY169845A (en) 2019-05-17
JP2013217653A (ja) 2013-10-24
EP2835632A1 (en) 2015-02-11
KR20140142267A (ko) 2014-12-11
US20150047554A1 (en) 2015-02-19
JP5828795B2 (ja) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5828795B2 (ja) 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法
JP5947248B2 (ja) 多結晶シリコン棒の選択方法
JP5897001B2 (ja) 多結晶シリコン棒の選択方法および単結晶シリコンの製造方法
US9274069B2 (en) Method for evaluating degree of crystalline orientation of polycrystalline silicon, method for selecting polycrystalline silicon rod, polycrystalline silicon rod, polycrystalline silicon ingot, and method for manufacturing monocrystalline silicon
WO2016132411A1 (ja) 多結晶シリコン棒とその製造方法およびfzシリコン単結晶
JP2022009646A (ja) 多結晶シリコン棒および多結晶シリコン棒の製造方法
JP5969956B2 (ja) 多結晶シリコンの粒径評価方法および多結晶シリコン棒の選択方法
JP5923463B2 (ja) 多結晶シリコンの結晶粒径分布の評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法
JP6470223B2 (ja) 単結晶シリコンの製造方法
JP5984741B2 (ja) 多結晶シリコン棒の選択方法、および、fz単結晶シリコンの製造方法
JP2019077568A (ja) 多結晶シリコン棒および単結晶シリコンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772580

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013772580

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013772580

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147027519

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14389912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE