WO2013147009A1 - ポリイミドフィルムの製造方法およびポリイミドフィルム - Google Patents

ポリイミドフィルムの製造方法およびポリイミドフィルム Download PDF

Info

Publication number
WO2013147009A1
WO2013147009A1 PCT/JP2013/059230 JP2013059230W WO2013147009A1 WO 2013147009 A1 WO2013147009 A1 WO 2013147009A1 JP 2013059230 W JP2013059230 W JP 2013059230W WO 2013147009 A1 WO2013147009 A1 WO 2013147009A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyimide film
organic material
precursor solution
polyimide precursor
Prior art date
Application number
PCT/JP2013/059230
Other languages
English (en)
French (fr)
Inventor
健 上木戸
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to KR1020147029889A priority Critical patent/KR20140139588A/ko
Priority to US14/389,159 priority patent/US20150091204A1/en
Priority to JP2014508022A priority patent/JP6036809B2/ja
Priority to CN201380018053.XA priority patent/CN104204044A/zh
Publication of WO2013147009A1 publication Critical patent/WO2013147009A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • B29K2079/085Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/001Flat articles, e.g. films or sheets having irregular or rough surfaces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a polyimide film having an uneven texture formed on the surface and a polyimide film, and more specifically, a method for producing a polyimide film suitably used for a solar cell substrate, a printed circuit board base substrate, and the like. And a polyimide film.
  • Polyimide film has high heat resistance and high electrical insulation, and even a thin film satisfies the rigidity, heat resistance and electrical insulation necessary for handling. For this reason, it is widely used in industrial fields, such as an electrical insulation film, a heat insulation film, and a base film of a flexible circuit board. In recent years, use for solar cell substrates and the like is also expected.
  • Patent Document 1 discloses a polyimide resin layer (A) while moving a band-shaped metal substrate, and then an average particle size of 0.1 to 1..
  • a polyimide resin layer (B) in which 100 to 500% by weight of insulating fine particles of 0 ⁇ m are blended is applied, heat treatment is performed, and the fluidized resin layer is pressed with a roll to disperse the insulating fine particles. It is disclosed that a polyimide film having an uneven shape is produced.
  • Patent Document 1 in the case of forming an uneven shape by containing insulating fine particles in a polyimide film, it is necessary to contain a large amount of insulating fine particles, resulting in a problem that the material cost increases. Moreover, when a large amount of insulating fine particles are contained in the polyimide film, the polyimide film becomes brittle and the strength may be lowered.
  • an object of the present invention is to provide a method for producing a polyimide film and a polyimide film capable of producing a polyimide film having an uneven texture formed with good productivity.
  • the method for producing a polyimide film of the present invention is a method for producing a polyimide film in which a first polyimide precursor solution containing a polyamic acid and a solvent is cast or applied to a support and heated.
  • the first polyimide precursor solution includes an organic material different from the polyamic acid and the solvent,
  • the volatilization temperature of the organic material is lower than the volatilization temperature of polyimide obtained by imidizing the polyamic acid,
  • the maximum temperature of the heating is not less than the volatilization temperature of the organic material and not more than the volatilization temperature of the polyimide,
  • the organic material is phase-separated from the phase of the polyimide precursor in the process of heating the first polyimide precursor solution cast or coated on the support to produce polyimide, and is thermally decomposed or evaporated by the heating. It removes from a polyimide film by doing.
  • the method for producing a polyimide film of the present invention it is preferable to thermally decompose or evaporate the organic material to form a crater-shaped recess in the surface layer of the polyimide film.
  • the first self-supporting film is obtained by casting or coating a first polyimide precursor solution on a support and then drying to obtain the first self-supporting film. It is preferable to peel the support film from the support and to heat the peeled first self-supporting film.
  • the support is preferably a second self-supporting film obtained by drying the second polyimide precursor solution.
  • the method for producing a polyimide film of the present invention supports the first polyimide precursor solution and the third polyimide precursor solution by overlapping them instead of casting or coating the first polyimide precursor solution on the support. After the third self-supporting film is obtained by casting or applying to the body and drying, the third self-supporting film is peeled from the support, and the peeled third self-supporting film is heated. It is preferable.
  • the organic material is at least selected from polyalkyl methacrylates such as polymethyl methacrylate and polyethyl methacrylate, polyalkyl acrylates such as poly-2-ethylhexyl acrylate and butyl polyacrylate, and cellulose acetate. One or more are preferable.
  • the organic material an organic material formed into a granular shape that is incompatible with the solvent.
  • the average particle size of the organic material is preferably 1 to 10 ⁇ m.
  • the organic material is preferably at least one selected from crosslinked methyl methacrylate particles and polystyrene particles.
  • the maximum temperature of the heating is preferably 400 to 600 ° C.
  • the organic material preferably has a volatile content at 400 ° C. of 95% by mass or more.
  • the volatile content of the polyimide at 450 ° C. is 5% by mass or less.
  • the polyimide film of the present invention is obtained by the above production method.
  • the height difference between the projections and depressions of the projections and depressions formed on the surface layer is preferably 0.1 to 5 ⁇ m.
  • the polyimide film of the present invention is a polyimide film obtained from a tetracarboxylic acid component and a diamine component, and the polyimide film is a crater-shaped recess formed from the surface toward the inside of the film in the thickness direction of the film.
  • the crater-shaped recess has a depth of more than 0 and 15 ⁇ m or less, and a diameter of more than 0 and 50 ⁇ m or less.
  • the polyimide film of the present invention is preferably a solar cell substrate or a printed circuit board base substrate.
  • the solar cell of the present invention is preferably one using the polyimide film as a solar cell substrate.
  • the printed circuit board of the present invention is preferably one in which a conductive pattern is formed on a base substrate made of the polyimide film.
  • the organic material contained in the polyimide precursor solution is removed by thermal decomposition or evaporation when the cast material of the polyimide precursor solution is heated. Crater-like depressions are formed on the surface, and irregularities are formed on the surface layer of the polyimide film.
  • the polyimide film manufactured in this way is used for a substrate for solar cells, for example, the film formability of various thin films such as an electrode layer and a photoelectric conversion layer formed on the polyimide film is well maintained. it can. For this reason, a polyimide film can be used suitably as a substrate for solar cells.
  • the adhesiveness with the electroconductive pattern formed on a polyimide film can be made high. For this reason, a polyimide film can be used suitably as a base substrate for printed circuit boards.
  • the method for producing a polyimide film of the present invention is a method for producing a polyimide film in which a first polyimide precursor solution containing a polyamic acid and a solvent is cast or applied to a support and heated, and the first polyimide precursor is produced.
  • the body solution contains a polyamic acid and an organic material different from the solvent.
  • the volatilization temperature of the organic material is lower than the volatilization temperature of polyimide obtained by imidizing the polyamic acid, and the maximum temperature of heating is the volatilization temperature of the organic material.
  • the above is characterized by being below the volatilization temperature of polyimide. This will be described in detail below.
  • the first polyimide precursor solution used in the method for producing a polyimide film of the present invention is obtained by adding an organic material to a mixture of a polyamic acid and a solvent (hereinafter sometimes referred to as a polyamic acid solution).
  • the solid content concentration (polymer component) of the first polyimide precursor solution is not particularly limited as long as it is in a viscosity range suitable for film production by casting or coating.
  • the content is preferably 10 to 30% by mass, more preferably 15 to 27% by mass, and further preferably 16 to 24% by mass.
  • the content is preferably 1 to 20% by mass, more preferably 1.5 to 15% by mass, and further preferably 2 to 10% by mass.
  • the solution viscosity of the first polyimide precursor solution may be appropriately selected according to the purpose of use (coating, casting, etc.) and the purpose of production.
  • the rotational viscosity of the first polyimide precursor solution measured at 30 ° C. is preferably 0.1 to 5000 poise from the viewpoint of workability in handling the first polyimide precursor solution. Therefore, it is desirable to carry out the polymerization reaction of the tetracarboxylic acid component and the diamine component to such an extent that the produced polyamic acid exhibits the above viscosity.
  • a polyamic acid can be produced by reacting a tetracarboxylic acid component with a diamine component.
  • a tetracarboxylic acid component For example, it can be produced by polymerizing a tetracarboxylic acid component and a diamine component in a solvent usually used for the production of polyimide.
  • the reaction temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and particularly preferably 0 to 60 ° C.
  • tetracarboxylic acid component examples include aromatic tetracarboxylic dianhydrides, aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and the like.
  • Specific examples include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′, 4,4′-oxydiphthalic dianhydride, diphenylsulfone-3 , 4,3 ′, 4′-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1, 1,3,3,3-hexafluoropropane dianhydride and the like.
  • diamine component examples include aromatic diamines, aliphatic diamines, and alicyclic diamines. Specific examples include p-phenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, m-tolidine, p-tolidine, 5-amino-2- (p-aminophenyl) benzoxazole, 4 , 4′-diaminobenzanilide, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3,3 '-Bis (3-aminophenoxy) biphenyl, 3,3'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 4,4'-bis (4-aminophenoxy) ) Biphenyl, bis [
  • Examples of the combination of the tetracarboxylic acid component and the diamine component include the following (1) to (6). These combinations are preferable from the viewpoints of mechanical properties and heat resistance.
  • solvent Any solvent may be used as long as it can dissolve the polyamic acid.
  • examples thereof include organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide and the like. These solvents may be used alone or in combination of two or more.
  • the organic material used in the present invention is different from the polyamic acid and the solvent.
  • the organic material used in the present invention occupies a certain volume by phase separation from the phase of the polyimide precursor in the production process of the polyimide by heating the first polyimide precursor solution cast or coated on the support, And it is thermally decomposed or evaporated by heating and removed from the polyimide film.
  • a crater-shaped recess is formed in the portion where the organic material was present, and thereby an unevenness is formed on the surface layer of the polyimide film.
  • the organic material as used in the field of this invention is the concept which does not contain the catalyst and dehydrating agent used in the imidation.
  • the organic material may not be completely removed and may remain in the polyimide film, but this form is included in the present invention. Will be.
  • the volatilization temperature of the organic material is preferably lower than the volatilization temperature of polyimide obtained by imidizing polyamic acid.
  • the “volatilization temperature” refers to a temperature at which the volatile content of the organic material or polyimide is 50 mass% or more.
  • the term “volatilization” means that all or a part of the organic material or polyimide becomes a volatile component by thermal decomposition, or is evaporated by heat and is scattered as a gas component, and its mass is It means to decrease.
  • the amount of volatile matter at 450 ° C. of the polyimide obtained by imidizing polyamic acid is preferably 5% by mass or less.
  • organic materials shown in the following (a) and / or (b) can be preferably used.
  • organic material shown in (a) because when added to a polyamic acid solution, it becomes a homogeneous solution and does not cause aggregation, sedimentation or separation that occurs when an insoluble matter is added.
  • organic material (a) the organic material shown in (a) is referred to as organic material (a)
  • organic material (b) the organic material shown in (b).
  • the “dissolution” of the organic material (a) “which can be dissolved in the solvent in the polyamic acid solution” means that when the organic material is added to the polyamic acid solution, the organic material dissolves in the solvent and is substantially solid. It means the state where the component disappears.
  • the organic material (a) is preferably one that dissolves 5% by mass or more in the polyamic acid solution.
  • Specific examples of the organic material (a) include polymethacrylic acid ester, polyacrylic acid ester, and cellulose compound.
  • Further specific examples of the organic material (a) include polyalkyl methacrylates such as polymethyl methacrylate and polyethyl methacrylate, polyalkyl acrylates such as poly-2-ethylhexyl acrylate and butyl polyacrylate, and cellulose acetate. Is mentioned.
  • the organic material (a) is preferably at least one selected from polymethyl methacrylate, poly-2-ethylhexyl acrylate, butyl polyacrylate, and cellulose acetate, and is selected from polymethyl methacrylate and cellulose acetate. It is more preferred that there are at least one or more.
  • the weight average molecular weight (Mw) of the organic material (a) is preferably 1,000 to 1,000,000, and more preferably 2,000 to 500,000.
  • Mw weight average molecular weight
  • the average particle diameter of the organic material (b) is preferably 1 to 10 ⁇ m, and more preferably 2 to 8 ⁇ m. If the average particle size is within the above range, it is possible to produce a polyimide film capable of forming on the surface an electrode layer having excellent film reflectivity and excellent light reflectivity and a circuit pattern having good adhesion.
  • Specific examples of the organic material (b) include crosslinked methyl methacrylate particles, polystyrene particles, and polymer material particles obtained by copolymerizing other double bond-containing monomers.
  • the organic material (b) is preferably at least one selected from crosslinked methyl methacrylate particles and polystyrene particles.
  • “incompatible with the solvent of the polyamic acid solution” in the organic material (b) means an organic material that maintains its shape when the organic material is added to the polyamic acid solution. To do. Even if a part of the organic material is dissolved, it can be preferably used as the organic material (b) as long as it contains a solid component. Even when the organic material swells, it can be preferably used by being included in the organic material that is “incompatible with the solvent of polyamic acid” as long as the shape is maintained.
  • the organic material preferably has a volatile content at 400 ° C. of 95% by mass or more, and more preferably 99% by mass or more.
  • the amount of volatile matter at 400 ° C. means a weight loss when the organic material is heated in air at 400 ° C. for 1 hour. If the volatile content at 400 ° C. is less than 95% by mass, the appearance of the polyimide film may deteriorate due to the residue of the organic material. In order to prevent the appearance from deteriorating, it must be heated at a high temperature, which may reduce the properties of the polyimide film. Moreover, there is a possibility that the manufacturing cost may be increased by increasing the temperature.
  • the organic material (a) and the organic material (b) are carboxylic acid and carboxylic anhydride for the purpose of controlling the diameter, depth, shape, and dispersibility of the crater-like recesses formed on the surface of the polyimide film. These may be modified with a functional group such as an epoxy group, amino group, or alkoxysilane. These functional groups and polyamic acid can be reacted in advance to prepare a copolymer, which can be applied, or can be applied unreacted and allowed to react during drying. Moreover, you may add a well-known dispersing agent and a compatibilizing agent.
  • the organic material may be added when the tetracarboxylic acid component and the diamine component are reacted in a solvent, or added to a polyamic acid solution obtained by reacting the tetracarboxylic acid component and the diamine component in a solvent. May be.
  • the content of the organic material is preferably 0.2 to 10% by mass, and more preferably 1 to 5% by mass.
  • the content of the organic material is less than 0.2% by mass, it becomes difficult to form crater-shaped recesses on the surface of the polyimide film, and a polyimide film capable of forming an electrode layer having excellent light reflectivity on the surface is obtained. It may be difficult.
  • content of an organic material exceeds 10 mass%, it exists in the tendency for the intensity
  • the 1st polyimide precursor solution can add a phosphorus stabilizer at the time of superposition
  • the phosphorus stabilizer include triphenyl phosphite and triphenyl phosphate.
  • the addition amount of the phosphorus stabilizer is preferably 0.01 to 1% with respect to the solid content (polymer) concentration.
  • a filler can be added to the first polyimide precursor solution.
  • the filler include inorganic fillers such as silica and alumina, and organic fillers such as polyimide particles.
  • the organic material contained in the first polyimide precursor solution is thermally decomposed and vaporized when the polyamic acid is imidized, thereby forming a crater-shaped recess on the surface of the polyimide film. Therefore, a polyimide film having irregularities formed on the surface can be obtained without using a filler.
  • the polyimide film (all polyimide) having irregularities formed on the surface without using a filler can reduce the cost of the polyimide film because it does not use a filler, and appropriately controls the shape and height of the irregularities. This can improve the slipperiness of the polyimide film surface. Moreover, when using for the use which etches a polyimide film, there also exists an effect that the residue of a filler does not remain.
  • a basic organic compound can be added to the first polyimide precursor solution for the purpose of promoting imidization.
  • the basic organic compound include imidazole, 2-imidazole, 1,2-dimethylimidazole, 2-phenylimidazole, benzimidazole, isoquinoline, substituted pyridine and the like.
  • the addition amount of the basic organic compound is preferably 0.05 to 10% by mass, more preferably 0.1 to 2% by mass with respect to the polyamic acid.
  • an imidization catalyst or the like may be added to the first polyimide precursor solution as necessary.
  • a cyclization catalyst, a dehydrating agent, or the like may be added to the first polyimide precursor solution as necessary.
  • the imidization catalyst examples include a substituted or unsubstituted nitrogen-containing heterocyclic compound, an N-oxide compound of the nitrogen-containing heterocyclic compound, a substituted or unsubstituted amino acid compound, an aromatic hydrocarbon compound having a hydroxyl group, or an aromatic Heterocyclic compounds are mentioned.
  • cyclization catalyst examples include aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines. Specific examples of the cyclization catalyst include trimethylamine, triethylamine, dimethylaniline, pyridine, ⁇ -picoline, isoquinoline, quinoline and the like.
  • dehydrating agent examples include aliphatic carboxylic acid anhydrides and aromatic carboxylic acid anhydrides. Specific examples of the dehydrating agent include acetic anhydride, propionic anhydride, butyric anhydride, formic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, picolinic anhydride, and the like.
  • a smooth base material such as a stainless steel substrate, a stainless steel belt, or a glass plate.
  • the method for casting or coating the first polyimide precursor solution containing an organic material on the support is not particularly limited, and examples thereof include a gravure coating method, a spin coating method, a silk screen method, a dip coating method, and a spray coating. Method, bar coating method, knife coating method, roll coating method, blade coating method, die coating method and the like.
  • the first polyimide precursor solution containing an organic material may be cast or coated on a support and then dried using a drying furnace.
  • the drying temperature is preferably from 100 to 200 ° C, more preferably from 120 to 180 ° C.
  • the drying time is preferably 2 to 60 minutes, more preferably 3 to 20 minutes.
  • a first self-supporting film having a self-supporting property is obtained by casting or coating a first polyimide precursor solution containing an organic material on a support and drying it. Then, the first self-supporting film is obtained. May be peeled off from the support and heated as described later. According to this method, the mass productivity of the polyimide film is excellent.
  • having self-supporting means a state having a strength that can be peeled off from the support.
  • the self-supporting film may be a single-layer film of a first self-supporting film containing an organic material, or a multilayer of two or more layers including a layer containing an organic material and a layer containing no organic material A multilayer film having a structure may be used.
  • the single-layer film can be formed by casting or applying a first polyimide precursor solution containing an organic material in the form of a film on a support, introducing it into a drying furnace, and drying.
  • the multilayer film is formed by applying a first polyimide precursor solution containing an organic material to a self-supporting film that does not contain an organic material and drying it.
  • a polyimide precursor solution containing no organic material and a first polyimide precursor solution containing an organic material are coextruded on a support using a multilayer die and dried. Or the like.
  • the coating film formed by the first polyimide precursor solution containing the organic material cast or applied to the support or the first self-supporting film peeled from the support is heated. Thereby, solvent removal and imidation are completed, and a polyimide film is obtained.
  • the organic material contained in the first polyimide precursor solution is thermally decomposed and vaporized, whereby a crater-like recess is formed on the surface of the polyimide film, and an unevenness is formed on the surface layer of the polyimide film.
  • the crater-shaped recess means a recess having a circular or elliptical shape formed by breaking spherical or granular bubbles, the bottom surface being curved almost smoothly, and the peripheral edge of the opening being slightly raised. .
  • the heating means a known heating furnace (cure furnace) may be mentioned.
  • the imidization of the polymer and the evaporation / removal of the solvent are preferably gradually performed in about 0.05 to 5 hours, particularly preferably in 0.1 to 3 hours. It is appropriate to do.
  • this heating method is preferably performed stepwise.
  • the first heat treatment is performed at a relatively low temperature of about 100 ° C. to about 170 ° C. for about 0.5 to 30 minutes
  • the second heat treatment is performed at a temperature of 170 ° C. to 220 ° C. for about 0.5 to 30 minutes.
  • the third heat treatment is preferably performed at a high temperature of 220 ° C. to 400 ° C. for about 0.5 to 30 minutes.
  • the fourth high-temperature heat treatment may be performed at a high temperature of 400 ° C. to 550 ° C., preferably 450 to 520 ° C.
  • the maximum heating temperature is not less than the volatilization temperature of the organic material contained in the first polyimide precursor solution and not more than the volatilization temperature of the polyimide obtained by imidizing polyamic acid.
  • a polyimide obtained by imidizing a polyamic acid corresponds to a polyimide obtained by imidizing the polyamic acid of the first polyimide precursor solution.
  • the volatilization temperature of the organic material is, for example, 200 to 400 ° C. depending on the type of the organic material.
  • the volatilization temperature of polyimide obtained by imidizing polyamic acid is, for example, 300 to 600 ° C., although it depends on the type of polyamic acid.
  • the kind of organic material and polyimide is selected in the range of the volatilization temperature of the organic material and polyimide.
  • the volatile content of polyimide at 450 ° C. is preferably 5% by mass or less.
  • the volatilization temperature of the organic material is approximately 300 to 400 ° C.
  • the polyimide is obtained by imidizing a polyamic acid composed of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine, the volatilization temperature of the polyimide is 550. ⁇ 650 ° C.
  • the maximum heating temperature is preferably 400 to 600 ° C., more preferably 430 to 550 ° C.
  • pin ends, clips, frames, etc. are used to fix at least the edges in the direction perpendicular to the longitudinal direction of the long solidified film, that is, the width direction of the film. If necessary, the heat treatment may be performed by expanding or contracting in the width direction or the length direction.
  • a second self-supporting film is used as a support, and a first polyimide precursor solution containing an organic material is applied onto the second self-supporting film.
  • the second self-supporting film may be obtained by drying the second polyimide precursor solution. This will be described in detail below.
  • the second polyimide precursor solution a solution containing polyamic acid and a solvent is used.
  • the polyamic acid and the solvent those similar to the first polyimide precursor solution described above can be used.
  • the type of polyamic acid and solvent used for the second polyimide precursor solution may be the same as or different from the first polyimide precursor solution described above.
  • an imidization catalyst, a cyclization catalyst, a dehydrating agent, and the like may be added to the second polyimide precursor solution as necessary in order to promote imidization.
  • a second polyimide precursor solution is cast or coated on a support and dried to form a second self-supporting film having self-support.
  • a support it is preferable to use a smooth base material such as a stainless steel substrate, a stainless steel belt, or a glass plate.
  • having self-supporting means a state having a strength that can be peeled off from the support.
  • a drying means a known drying furnace may be mentioned.
  • the drying conditions (heating conditions) for forming the second self-supporting film are not particularly limited, but the drying temperature is preferably 100 to 200 ° C, more preferably 120 to 180 ° C.
  • the drying time is preferably 2 to 60 minutes, more preferably 3 to 20 minutes.
  • the first polyimide precursor solution containing an organic material is cast or applied on the second self-supporting film formed in this manner.
  • the casting or application of the first polyimide precursor solution may be performed on the entire surface or a part of one side or both sides after the second self-supporting film is peeled off from the support. You may carry out to the whole surface or a part of surface which does not contact the support body of a self-supporting film.
  • the coating film formed by the first polyimide precursor solution cast or applied on the second self-supporting film is heated, dried and cured
  • the organic material is thermally decomposed and vaporized, thereby forming crater-like recesses on the surface of the polyimide film.
  • the solid content concentration (polymer component) of the first polyimide precursor solution is not particularly limited as long as it is in a viscosity range suitable for film production by coating. 1 to 20% by mass is preferable, 1.5 to 15% by mass is more preferable, and 2 to 10% by mass is further preferable.
  • the rotational viscosity of the first polyimide precursor solution at 30 ° C. is preferably 1 to 30 centipoise, and more preferably 2 to 10 centipoise. When the rotational viscosity is within the above range, the coating workability is good.
  • the method for applying the first polyimide precursor solution to the second self-supporting film is not particularly limited, and for example, a bar coater method, a gravure coater method, a die coater method or the like can be employed.
  • the coating amount of the first polyimide precursor solution is preferably 1 ⁇ 30 g / m 2, more preferably 3 ⁇ 25g / m 2, particularly preferably 5 ⁇ 20g / m 2.
  • the coating amount is less than 1 g / m 2 , it may be difficult to apply uniformly, and the organic material may be sparse, so that unevenness may not be effectively formed on the surface layer of the polyimide film.
  • the coating amount exceeds 30 g / m 2 , the liquid drips during coating, and the coating tends to be non-uniform.
  • the coating film of the first polyimide precursor solution cast or applied on the second self-supporting film is dried by heating.
  • a publicly known drying furnace is mentioned as a heating means.
  • the heating and drying conditions are not particularly limited, but it is preferable to heat at a temperature of 60 to 180 ° C. for about 0.5 to 60 minutes, more preferably at 80 to 150 ° C. for 1 to 5 minutes.
  • the peeling method is not particularly limited, and examples thereof include a method in which the self-supporting film is cooled and peeled by applying a tension through a roll.
  • the self-supporting film having a multilayer structure in which a layer containing an organic material and a layer not containing an organic material are laminated, which is peeled off from the support, is heated in the same manner as in the first embodiment to remove the solvent and imidize. Is completed to obtain a polyimide film.
  • the organic material contained in the first polyimide precursor solution is thermally decomposed and vaporized, a crater-shaped recess is formed on the surface of the polyimide film, and an unevenness is formed on the surface layer of the polyimide film.
  • this method it can suppress that the recessed part which penetrates the front and back of a polyimide film is formed, and a crater-shaped recessed part can be effectively formed only in the surface layer. Furthermore, the strength of the polyimide film can be increased.
  • ⁇ Third embodiment> instead of casting or applying the first polyimide precursor solution to the support, the first polyimide precursor solution and the third polyimide precursor solution are cast or applied to the overlapping support. Then, after obtaining a third self-supporting film by drying, the third self-supporting film is peeled from the support, and the peeled third self-supporting film is heated to produce a polyimide film. To do.
  • the third polyimide precursor solution a solution containing a polyamic acid and a solvent is used.
  • the polyamic acid and the solvent those similar to the first polyimide precursor solution described above can be used.
  • the type of polyamic acid and solvent used for the third polyimide precursor solution may be the same as or different from the first polyimide precursor solution described above.
  • the method of applying the first polyimide precursor solution and the third polyimide precursor solution to the support in an overlapping manner is, for example, applying the third polyimide precursor solution to the support, and then applying the third polyimide precursor solution.
  • Examples thereof include a method of applying a first polyimide precursor solution on a polyimide precursor, a coextrusion-casting film forming method (also simply referred to as a multilayer extrusion method), and the like.
  • a smooth base material such as a stainless steel substrate, a stainless steel belt, or a glass plate.
  • the form in which the first polyimide precursor solution and the third polyimide precursor solution are overlaid and cast on the support can be performed by a known method.
  • a method described in JP-A-3-180343 Japanese Patent Publication No. 7-102661
  • a first polyimide precursor solution and a third polyimide precursor solution are supplied to an extrusion molding die, overlaid on a support, and cast on a support surface such as a stainless steel mirror surface or a belt surface.
  • the method of casting is mentioned.
  • the polyimide precursor solution in contact with the support is not particularly limited to either the first polyimide precursor solution or the third polyimide precursor solution.
  • the first polyimide precursor solution and the third polyimide precursor are superposed on the third polyimide precursor solution so that the third polyimide precursor solution is in contact with the support. It is preferable that the body solutions are stacked and cast on a support.
  • the thickness of the layer formed from the first polyimide precursor solution is preferably 0.5 to 5 ⁇ m, for example.
  • the thickness of the layer formed from the third polyimide precursor solution is preferably 5 to 50 ⁇ m, for example.
  • the third self-supporting film peeled from the support is heated in the same manner as in the first embodiment to complete the solvent removal and imidization to obtain a polyimide film.
  • the organic material contained in the first polyimide precursor solution is thermally decomposed and vaporized, a crater-shaped recess is formed on the surface of the polyimide film, and an unevenness is formed on the surface layer of the polyimide film.
  • the second embodiment it is possible to suppress the formation of a recess that penetrates the front and back surfaces of the polyimide film, and it is possible to effectively form a crater-like recess only on the surface layer. Furthermore, the strength of the polyimide film can be increased.
  • the polyimide film of the present invention is obtained by the above-described production method, and as shown in FIGS. 1 and 2, crater-shaped recesses are formed on the surface layer, and unevenness is formed on the surface layer of the polyimide film. Yes.
  • the thickness of the polyimide film is preferably 5 to 75 ⁇ m, for example.
  • the depth of the crater-like recess formed on the polyimide film surface is more than 0 and 15 ⁇ m or less, preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m, particularly preferably 0.2 to 1.5 ⁇ m. preferable.
  • the diameter of the recess is more than 0 and 50 ⁇ m or less, preferably 0.1 to 20 ⁇ m, more preferably 0.1 to 5 ⁇ m, still more preferably 0.1 to 3 ⁇ m, and particularly preferably 0.1 to 2 ⁇ m.
  • the average value (average crater diameter) of the diameters of the recesses is preferably more than 0 and 25 ⁇ m or less, more preferably 0.5 to 2.5 ⁇ m.
  • the diameter of the recess means the horizontal length of the recess.
  • the value obtained by dividing the average crater diameter of the recess by the depth of the recess is preferably 1.5 to 3, more preferably 2 to 2.5. preferable.
  • the polyimide film of the present invention includes a tape substrate such as a TAB tape and a COF tape, a cover substrate such as a chip member such as an IC chip, a liquid crystal display, an organic electroluminescence display, an electronic paper, a solar cell, and a printed circuit board. It can be used as a raw material for electronic parts and electronic devices such as a base substrate and a cover base material.
  • this polyimide film is excellent in heat resistance, insulation, film forming properties of various thin films, and can form an electrode layer with excellent light reflectivity on the surface, so that it is particularly suitably used as a substrate for solar cells.
  • the polyimide film obtained by the production method of the present invention is used as a solar cell substrate, and an electrode layer, a photoelectric conversion layer, and a transparent electrode layer are sequentially formed on the polyimide film to form a solar cell. Due to the uneven shape formed on the surface, incident light can be diffusely reflected and efficiently confined in the photoelectric conversion layer without impairing the film formability and adhesion of various thin films, thereby increasing the light utilization efficiency. A solar cell with improved power generation efficiency can be obtained.
  • an electrode layer is formed on a polyimide film as a substrate.
  • the electrode layer may be a conductive material layer, but is usually a metal layer, preferably a Mo layer.
  • the electrode layer can be formed by sputtering or vapor deposition.
  • an electrode layer is formed on the surface on which irregularities are formed on the surface layer.
  • a base metal layer can be provided between the polyimide film as the substrate and the electrode layer.
  • the base metal layer can be formed by, for example, a metalizing method such as a sputtering method or a vapor deposition method.
  • a protective layer is formed on the back surface of the substrate (the surface opposite to the side on which the electrode layer is formed).
  • the protective layer preferably has a linear expansion coefficient at 25 to 500 ° C. of about 1 to 20 ppm / ° C., particularly preferably about 1 to 10 ppm / ° C.
  • the protective layer is not particularly limited, and examples thereof include a metal layer.
  • the same material as the electrode layer is preferable, and a Mo layer is more preferable.
  • the protective layer can be formed by a sputtering method or a vapor deposition method.
  • the protective layer may be provided as necessary.
  • the polyimide film of the present invention is used as a substrate, the occurrence of cracks in the electrode layer and the semiconductor layer may be sufficiently suppressed without providing the protective layer.
  • the order of forming the protective layer and the electrode layer is not particularly limited. Although the electrode layer may be formed after forming the protective layer, it is preferable to form the protective layer after forming the electrode layer. When the electrode layer and the protective layer are formed in this order, in other words, when the previously laminated metal layer is used as an electrode, the generation of cracks in the electrode layer and the semiconductor layer may be reduced.
  • a thin film layer containing an Ib group element, an IIIb group element, and a VIb group element is formed on the electrode layer.
  • This thin film layer is typically a thin film composed only of a group Ib element, a group IIIb element, and a group VIb element, and becomes a light absorption layer of a solar cell by a subsequent heat treatment.
  • the Ib group element Cu is preferable.
  • the group IIIb element is preferably at least one element selected from the group consisting of In and Ga.
  • the group VIb element is preferably at least one element selected from the group consisting of Se and S.
  • the thin film layer can be formed by vapor deposition or sputtering.
  • the substrate temperature when forming the thin film layer is, for example, about room temperature (about 20 ° C.) to about 400 ° C., which is lower than the maximum temperature in the subsequent heat treatment.
  • the thin film layer may be a multilayer film composed of a plurality of layers.
  • a layer containing a group Ia element such as Li, Na, or K, or another layer may be formed.
  • the layer containing a group Ia element include a layer made of Na 2 S, NaF, Na 2 O 2 , Li 2 S, or LiF. These layers can be formed by vapor deposition or sputtering.
  • the thin film layer is heat-treated to form a semiconductor layer (chalcopyrite structure semiconductor layer) containing a group Ib element, a group IIIb element, and a group VIb element.
  • This semiconductor layer functions as a light absorption layer of the solar cell.
  • the heat treatment for converting the thin film layer into the semiconductor layer is preferably performed in a nitrogen gas, oxygen gas or argon gas atmosphere. Or it is preferable to carry out in a steam atmosphere containing at least one element selected from the group consisting of Se and S.
  • the thin film layer is preferably heated at a rate of temperature in the range of 10 ° C./second to 50 ° C./second, in the range of 500 ° C. to 550 ° C., preferably in the range of 500 ° C. to 540 ° C., more preferably After heating to a temperature in the range of 500 ° C. to 520 ° C., it is preferable to hold at a temperature in this range, preferably for 10 seconds to 5 minutes. Thereafter, the thin film layer is naturally cooled, or the thin film layer is cooled at a rate slower than natural cooling by using a heater.
  • the semiconductor layer to be formed is, for example, CuInSe 2 , Cu (In, Ga) Se 2 , or CuIn (S, Se) 2 or Cu (In, Ga) (S, in which a part of these Se is replaced with S. Se) Two semiconductor layers.
  • the semiconductor layer can be formed as follows.
  • a thin film layer containing no group VIb element and containing a group Ib element and a group IIIb element typically a thin film consisting only of the group Ib element and the group IIIb element.
  • the heat treatment for converting the thin film layer into a semiconductor layer is performed in an atmosphere containing a VIb group element, preferably in at least one vapor atmosphere selected from the group consisting of Se and S, whereby an Ib group element is obtained.
  • a semiconductor layer containing a group IIIb element and a group VIb element can be formed.
  • the method for forming the thin film layer and the heat treatment conditions are the same as described above.
  • a window layer (or buffer layer) and an upper electrode layer are laminated in order according to a known method, and a takeout electrode and a solar cell are manufactured.
  • a layer made of CdS, ZnO, or Zn (O, S) can be used.
  • the window layer may be two or more layers.
  • a transparent electrode such as ITO or ZnO: Al can be used.
  • An antireflection film such as MgF 2 may be provided on the upper electrode layer.
  • each layer is not particularly limited, and can be selected as appropriate.
  • a CIS solar cell can be manufactured by a roll-to-roll method.
  • a conductive pattern is formed on the surface of the polyimide film.
  • a method for forming a conductive pattern for example, there is a method in which a pattern is printed on a polyimide film with an ink or paste mixed with metal particles, and a conductive pattern is formed through a subsequent process such as heat treatment as necessary. Can be mentioned.
  • This method is characterized in that there is no waste of removing the conductive layer other than the pattern portion unlike the conventional subtractive method, and there is little influence on the environment.
  • the polyimide film obtained in the present invention is excellent in heat resistance, insulation, and film forming properties of various thin films. Further, since the surface roughness is increased by the unevenness of the surface and an anchor effect is obtained, the adhesion of the conductive pattern is improved. It is good.
  • inks or pastes containing metal nanoparticles provided for forming a known or commercially available conductive pattern can be widely used.
  • examples thereof include a silver paste “MDot-SLP / H” (trade name) manufactured by Mitsuboshi Belting, “NPS typeHP” (trade name) manufactured by Harima Chemicals, and “CA-2503-4” (trade name) manufactured by Daiken Chemical.
  • a silver paste “MDot-SLP / H” (trade name) manufactured by Mitsuboshi Belting is suitably used because of its adhesion to the condensate film (sol-gel film).
  • Silver or copper is preferably used as the metal of the metal nanoparticles.
  • the film thickness after firing of the ink or paste containing metal particles is not particularly limited, but is preferably 0.1 to 30 ⁇ m, more preferably 0.3 to 20 ⁇ m, and particularly preferably 0.5 to 15 ⁇ m.
  • the film thickness after baking is thinner than 0.1 ⁇ m, sufficient performance as a wiring material may not be obtained.
  • the film thickness after baking is thicker than 30 micrometers, a crack may enter.
  • the ink or paste containing the metal particles can be printed on the polyimide film by various printing methods or coating methods to form a pattern.
  • any linear pattern or surface using various types of ink-jet printing methods such as arbitrary linear pattern formation using a dispenser printing method capable of performing linear application, thermal, piezo, micro pump, static electricity, etc.
  • a pattern can be formed.
  • a pattern as a surface which continued to the whole surface or part of polyimide film using well-known various coating methods, such as a gravure roll system, a slot die system, and a spin coat system.
  • the pattern may be formed as an intermittent surface on the entire surface or a part of the polyimide film using an intermittent coating die coater or the like.
  • a pattern may be formed by using a dip coating method (also referred to as a dip method) and attaching an ink or paste containing metal particles to the entire polyimide film.
  • an ink or paste containing metal particles may be directly attached to the entire surface or a part of the surface of the polyimide film.
  • More preferable printing methods include an inkjet printing method, a flexographic printing method, a gravure printing method, a reverse offset printing method, a sheet-fed screen printing method, and a rotary screen printing method.
  • a conductive pattern can be formed by firing.
  • the firing conditions are considerably limited depending on the type of polyimide film to be used, but the higher the temperature, the better the pattern strength increases due to excellent conductivity and the progress of sintering. For example, it is preferable to fire at 150 to 550 ° C., and more preferable to fire at 200 to 300 ° C. in view of realizing superior conductivity and productivity.
  • an electroless metal plating layer may be formed by performing electroless plating on a conductive pattern formed on a polyimide film.
  • the metal used is not limited as long as it is a metal that can be electrolessly plated.
  • an electroless nickel plating layer can be formed by an electroless nickel plating process that is generally widely known.
  • the electroplating may be performed on the electroless metal plating layer to form the electroplating layer.
  • the metal used for the electroplating may be the same as or different from the metal of the electroless metal plating layer. It may be.
  • the printed circuit board according to the present invention has high adhesion to the base substrate of the conductive pattern and can obtain excellent conductivity.
  • This printed circuit board is used as a transparent electromagnetic wave shield that is used by being bonded to various flat display panels such as plasma display panels, aircraft liquid crystal panels, and car navigation liquid crystal panels. It can also be used as various antennas used for RFID, wireless LAN, power feeding by electromagnetic induction, electromagnetic wave absorption, and the like. Furthermore, it can be used to manufacture bus circuits and address electrodes used in various flat display panels, or electronic circuits that are produced by repeatedly printing a large number of times using a combination of semiconductor ink, resistance ink, and dielectric ink. .
  • Preparation of second polyimide precursor solution> (Preparation Example 1-1) Paraphenylenediamine (hereinafter referred to as “PPD”) as a diamine component was added to N, N-dimethylacetamide (hereinafter referred to as “DMAc”) and dissolved by stirring. To the resulting solution, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter referred to as “s-BPDA”) as a tetracarboxylic acid component is gradually added to obtain a second polyimide precursor. Solution 1 was obtained. The solid content concentration was 18% by mass.
  • DADE 4,4′-diaminodiphenyl ether
  • PMDA pyromellitic dianhydride
  • Preparation Example 2-1 Polymethylmethacrylate (Wako Pure Chemical Industries, Ltd., first grade reagent, weight average molecular weight) dissolved in solvent, DMAc, s-BPDA as tetracarboxylic acid component, PPD as diamine component, and organic material as solvent (Mw) about 100,000) is added to 2.5 parts by mass with respect to 100 parts by mass of the total mass of DMAc, s-BPDA and PPD, and stirred for 1 hour, and then the first polyimide precursor containing an organic material Solution 1 was prepared.
  • Mw organic material as solvent
  • the content of polyamic acid in the first polyimide precursor solution 1 containing an organic material was 2.5% by mass, and the content of polymethyl methacrylate was 2.5% by mass. This solution was uniform, and it was confirmed that polymethyl methacrylate was completely dissolved.
  • the polymethyl methacrylate used had a volatile content at 400 ° C. of approximately 100% by mass.
  • PMMA polymethyl methacrylate
  • Preparation Example 2-2 In Preparation Example 2-1, as an organic material, cellulose acetate dissolved in a solvent instead of polymethyl methacrylate (Wako Pure Chemical Industries, Ltd., first grade reagent, weight average molecular weight (Mw) of about 150,000) was used.
  • a first polyimide precursor solution 2 containing an organic material was prepared in the same manner as Preparation Example 2-1, except that 2.5 parts by mass was added.
  • the content of polyamic acid in the first polyimide precursor solution 2 containing an organic material was 2.5% by mass, and the content of cellulose acetate was 2.5% by mass. This solution was uniform, and it was confirmed that polymethyl methacrylate was completely dissolved.
  • the volatile matter amount of the used cellulose acetate at 400 ° C. was 99.2% by mass.
  • Preparation Example 2-3 In Preparation Example 2-1, as the organic material, instead of polymethyl methacrylate, crosslinked methyl methacrylate spherical particles that are incompatible with the solvent (average particle size 5 ⁇ m, manufactured by Sekisui Plastics Co., Ltd., trade name “Tech A first polyimide precursor solution 3 containing an organic material was prepared in the same manner as in Preparation Example 2-1, except that 2.5 parts by mass of the polymer MBX-5 ") was added. The content of the polyamic acid in the first polyimide precursor solution 3 containing an organic material was 2.5% by mass, and the content of the crosslinked methyl methacrylate spherical particles was 2.5% by mass.
  • This solution was in the form of a slurry, and it was confirmed that the crosslinked methyl methacrylate spherical particles were present while maintaining the spherical shape.
  • the volatile content of the used crosslinked polymethyl methacrylate spherical particles at 400 ° C. was 99.8% by mass.
  • Preparation Example 2-4 A first polyimide precursor solution 4 containing no organic material was prepared in the same manner as in Preparation Example 2-1, except that no organic material was used in Preparation Example 2-1.
  • Preparation Example 2-5 In the same manner as in Preparation Example 2-1, except that the polyamic acid content was 3.5% by mass and the polymethyl methacrylate content was 1.5% by mass, A polyimide precursor solution 5 was prepared. This solution was uniform, and it was confirmed that polymethyl methacrylate was completely dissolved.
  • Preparation Example 2-6 In the same manner as in Preparation Example 2-5, except that polymethyl methacrylate (Wako Pure Chemical Industries, Ltd., reagent) having a weight average molecular weight (Mw) controlled to 100,000 was used in Preparation Example 2-5, A first polyimide precursor solution 6 was prepared. This solution was uniform, and it was confirmed that polymethyl methacrylate was completely dissolved. The polymethyl methacrylate used had a volatile content at 400 ° C. of approximately 100% by mass.
  • Preparation Example 2--7 In the same manner as in Preparation Example 2-5, except that polymethyl methacrylate (Wako Pure Chemical Industries, Ltd., reagent) having a weight average molecular weight (Mw) controlled to 350,000 was used in Preparation Example 2-5, A first polyimide precursor solution 7 was prepared. This solution was transparent and it was confirmed that polymethyl methacrylate was completely dissolved, but it was separated into two phases. When stirred, it became a fine emulsion and was stable in the emulsion for a while. The polymethyl methacrylate used had a volatile content at 400 ° C. of approximately 100% by mass.
  • Preparation Example 2-8 In the same manner as in Preparation Example 2-5, except that polymethyl methacrylate (Wako Pure Chemical Industries, Ltd., reagent) having a weight average molecular weight (Mw) controlled to 75,000 was used in Preparation Example 2-5, A first polyimide precursor solution 8 was prepared. This solution was uniform, and it was confirmed that polymethyl methacrylate was completely dissolved. The polymethyl methacrylate used had a volatile content at 400 ° C. of approximately 100% by mass.
  • Preparation Example 2-11 In Preparation Example 2-1, as an organic material, carboxyl group-containing polyacrylic acid-2-ethylhexyl dissolved in a solvent instead of polymethyl methacrylate (manufactured by Soken Chemical Co., Ltd .: Actflow CB3060, weight average molecular weight ( Mw)
  • Mw weight average molecular weight
  • the content of polyamic acid in the first polyimide precursor solution 11 containing an organic material was 2.5% by mass, and the content of 2-ethylhexyl polyacrylate was 2.5% by mass. It was confirmed that this solution was uniform and 2-ethylhexyl polyacrylate was completely dissolved.
  • the volatile content of polyethyl acrylate-2-ethylhexyl used at 400 ° C. was 99.5% by mass.
  • Preparation Example 2-12 In Preparation Example 2-11, as an organic material, 2-ethylhexyl carboxylate containing carboxyl group having a weight average molecular weight (Mw) of about 3,000 and an acid value of 98 mgOH / g (manufactured by Soken Chemical Co., Ltd .: Actflow CB3098)
  • a first polyimide precursor solution 12 containing an organic material was prepared in the same manner as Preparation Example 2-11 except that was used.
  • the content of polyamic acid in the first polyimide precursor solution 12 containing an organic material was 2.5% by mass, and the content of 2-ethylhexyl carboxylate-containing polyacrylic acid was 2.5% by mass.
  • Preparation Example 2-13 As an organic material, a silyl group-containing polybutyl acrylate that dissolves in a solvent instead of polymethyl methacrylate (manufactured by Soken Chemical Co., Ltd .: Actflow NE1000, weight average molecular weight (Mw) of about 3
  • the first polyimide precursor solution 13 containing an organic material was prepared in the same manner as in Preparation Example 2-1, except that 2.5 parts by mass of 1,000,7% silyl group) was added.
  • the content of the polyamic acid in the first polyimide precursor solution 13 containing an organic material was 2.5% by mass, and the content of the silyl group-containing polybutyl acrylate was 2.5% by mass. This solution was uniform and it was confirmed that the silyl group-containing polybutyl acrylate was completely dissolved.
  • the volatile content in 400 degreeC of the used silyl group containing polybutyl acrylate was 98.1 mass%.
  • Preparation Example 2-14 In Preparation Example 2-1, as in Preparation Example 2-1, except that DADE was used as a raw material instead of PPD as a diamine component, and PMDA was used as a raw material instead of s-BPDA as a tetracarboxylic acid component A first polyimide precursor solution 14 containing an organic material was prepared.
  • Preparation Example 2-15 PPD and DADE (molar ratio 20:80) were used as raw materials instead of PPD as diamine components, and BPDA and PMDA (molar ratio 20:20) instead of s-BPDA were used as tetracarboxylic acid components.
  • a first polyimide precursor solution 15 containing an organic material was prepared in the same manner as in Preparation Example 2-1, except that 80) was used as a raw material.
  • Example 1 The second polyimide precursor solution containing the organic material produced in Preparation Example 1-1 was cast on a glass plate so that the thickness after final drying was 50 ⁇ m, and dried at 120 ° C. for 20 minutes to obtain the second A self-supporting film was prepared.
  • the first polyimide precursor solution 1 obtained in Preparation Example 2-1 was applied to this second self-supporting film with a bar coater so as to be 12 g / m 2 and dried at 120 ° C. for 2 minutes. Then, it was peeled from the glass plate. The peeled film was stretched to a four-way tenter, and heat-dried and imidized in the order of 150 ° C. ⁇ 2 minutes, 200 ° C.
  • Example 2 In Example 1, Example 1 was used except that instead of the first polyimide precursor solution 1 containing an organic material, the first polyimide precursor solution 2 containing an organic material obtained in Preparation Example 2-2 was used. The same operation as 1 was performed and the polyimide film was manufactured. Crater-like recesses having a diameter of about 1 to 20 ⁇ m were formed on the surface of the obtained polyimide film.
  • Example 3 In Example 1, Example 1 was used except that instead of the first polyimide precursor solution 1 containing an organic material, the first polyimide precursor solution 3 containing an organic material obtained in Preparation Example 2-3 was used. The same operation as 1 was performed and the polyimide film was manufactured. Crater-like recesses having a diameter of about 10 to 50 ⁇ m were formed on the surface of the obtained polyimide film. The observation image (1000 times) of the scanning electron microscope (SEM) of a polyimide film is shown in FIG.
  • SEM scanning electron microscope
  • Example 4 In Example 1, the same operation as in Example 1 was performed except that the second polyimide precursor solution was cast on a glass plate so that the thickness of the obtained polyimide film after final drying was 25 ⁇ m. A polyimide film was manufactured. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.5 to 2 ⁇ m were formed.
  • Example 5 In Example 4, instead of the first polyimide precursor solution 1, the same operation as in Example 4 was performed except that the first polyimide precursor solution 6 obtained in Preparation Example 2-6 was used. A polyimide film was produced. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.5 to 2 ⁇ m were formed.
  • Example 6 In Example 4, the same operation as in Example 4 was performed except that the first polyimide precursor solution 7 obtained in Preparation Example 2-7 was used instead of the first polyimide precursor solution 1. A polyimide film was produced. Crater-like recesses having a diameter of about 1 to 20 ⁇ m were formed on the surface of the obtained polyimide film.
  • Example 7 In Example 4, instead of the first polyimide precursor solution 1, the same operation as in Example 4 was performed except that the first polyimide precursor solution 8 obtained in Preparation Example 2-8 was used. A polyimide film was produced. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.5 to 2 ⁇ m were formed.
  • Example 8 In Example 4, instead of the first polyimide precursor solution 1, the same operation as in Example 4 was performed except that the first polyimide precursor solution 9 obtained in Preparation Example 2-9 was used. A polyimide film was produced. On the surface of the obtained polyimide film, crater-shaped fine recesses having a diameter of about 0.8 to 5 ⁇ m were formed.
  • Example 9 The second polyimide precursor solution produced in Preparation Example 1-1 was continuously cast from the slit of the T-die mold so that the thickness of the obtained polyimide film after final drying was 50 ⁇ m, and was then dried in a drying furnace. A thin film was formed by extrusion onto a smooth metal support. The thin film was heated at 130 ° C. for 10 minutes and then peeled off from the support to obtain a self-supporting film. On this self-supporting film, the first polyimide precursor solution 1 obtained in Preparation Example 2-1 was continuously applied at a thickness of 14 g / m 3 and dried at 80 ° C. for 2 minutes.
  • Example 10 The first polyimide precursor solution produced in Preparation Example 2-10 was cast on a glass plate so that the thickness after final drying was 50 ⁇ m, and dried at 120 ° C. for 20 minutes to form a self-supporting film. did. After peeling this self-supporting film from the glass plate, it is stretched to a four-way tenter, and heat-dried and imidized in the order of 150 ° C. ⁇ 2 minutes, 200 ° C. ⁇ 2 minutes, 250 ° C. ⁇ 2 minutes, 450 ° C. ⁇ 2 minutes. The polyimide film was manufactured. Crater-like recesses having a diameter of about 3 to 20 ⁇ m were formed on the surface of the obtained polyimide film.
  • Example 11 In Example 4, the same operation as in Example 4 was performed except that the first polyimide precursor solution 11 obtained in Preparation Example 2-11 was used instead of the first polyimide precursor solution 1. A polyimide film was produced. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.3 to 2 ⁇ m were formed.
  • Example 12 In Example 4, the same operation as in Example 4 was performed except that the first polyimide precursor solution 12 obtained in Preparation Example 2-12 was used instead of the first polyimide precursor solution 1. A polyimide film was produced. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.3 to 3 ⁇ m were formed.
  • Example 13 In Example 4, instead of the first polyimide precursor solution 1, the same operation as in Example 4 was performed except that the first polyimide precursor solution 13 obtained in Preparation Example 2-13 was used. A polyimide film was produced. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.3 to 2 ⁇ m were formed.
  • Example 14 In Example 4, instead of the first polyimide precursor solution 1, the same operation as in Example 4 was performed except that the second polyimide precursor solution 14 obtained in Preparation Example 2-14 was used. A polyimide film was produced. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.3 to 2 ⁇ m were formed.
  • Example 15 In Example 4, the same operation as in Example 4 was performed except that the second polyimide precursor solution 15 obtained in Preparation Example 2-15 was used instead of the first polyimide precursor solution 1. A polyimide film was produced. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.3 to 2 ⁇ m were formed.
  • Example 16 In Example 4, the same procedure as in Example 4 was used, except that the second polyimide precursor solution 2 (PMDA-DADE) obtained in Preparation Example 1-2 was used instead of the second polyimide precursor solution 1. Then, a polyimide film was produced. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.1 to 2 ⁇ m were formed.
  • the second polyimide precursor solution 2 PMDA-DADE
  • Example 17 In Example 4, instead of the second polyimide precursor solution 1, the second polyimide precursor solution 2 (PMDA-DADE) obtained in Preparation Example 1-2 was used, and the first polyimide precursor solution 1 A polyimide film was produced in the same manner as in Example 4, except that the first polyimide precursor solution 14 (PMDA-DADE) obtained in Preparation Example 2-14 was used. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.1 to 2 ⁇ m were formed.
  • Example 18 In Example 4, instead of the second polyimide precursor solution 1, the second polyimide precursor solution 3 (PMDA-s-BPDA-DADE-PPD) obtained in Preparation Example 1-3 was used. The same operation as in Example 4 was performed to produce a polyimide film. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.1 to 2 ⁇ m were formed.
  • Example 19 In Example 4, instead of the second polyimide precursor solution 1, the second polyimide precursor solution 3 (PMDA-s-BPDA-DADE-PPD) obtained in Preparation Example 1-3 was used.
  • Example 4 was the same as Example 4 except that the first polyimide precursor solution 15 (PMDA-s-BPDA-DADE-PPD) obtained in Preparation Example 2-15 was used instead of the polyimide precursor solution 1 of The operation was performed to produce a polyimide film. On the surface of the obtained polyimide film, crater-like fine recesses having a diameter of about 0.1 to 2 ⁇ m were formed.
  • Example 1 In Example 1, instead of the first polyimide precursor solution 1 containing an organic material, the same operation as in Example 1 was performed except that the first polyimide precursor solution 4 not containing an organic material was used. A polyimide film was produced. The surface of the obtained polyimide film maintained flatness, and a crater-like fine uneven shape was not formed.
  • Table 1 summarizes the shape of the crater portion of the polyimide films of Examples 1 to 19.
  • Example 20 An ink containing silver nanoparticles (manufactured by Samsung Belt Co., Ltd., Mdot) was printed on the polyimide film formed with the crater-like fine recesses obtained in Example 12, and baked at 250 ° C. for 30 minutes.
  • the obtained polyimide-silver composite was evaluated for adhesion by a cross-cut peel test in accordance with JISK5400. As a result, it was confirmed that the peeled portion was 0/100 and was completely adhered.
  • Comparative Example 2 A polyimide-silver composite was prepared in the same manner as in Example 23 using the polyimide film without craters formed in Comparative Example 1, and a cross-cut peel test was performed. As a result, the peeled portion was 100/100, and the entire surface was peeled off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

 表面に凹凸形状のテクスチャが形成されたポリイミドフィルムの製造方法を提供する。 ポリアミック酸と溶媒とを含む第1のポリイミド前駆体溶液を支持体に流延または塗布し加熱するポリイミドフィルムの製造方法であって、第1のポリイミド前駆体溶液は、ポリアミック酸及び前記溶媒とは異なる有機材料を含み、有機材料の揮発温度は、ポリアミック酸をイミド化して得られるポリイミドの揮発温度よりも低く、加熱の最高温度は、有機材料の揮発温度以上でポリイミドの揮発温度以下であり、有機材料は、支持体に流延または塗布した第1のポリイミド前駆体溶液を加熱してポリイミドを生成する過程において、ポリイミド前駆体の相から相分離し、前記加熱により熱分解または蒸発することによりポリイミドフィルムから除去される。

Description

ポリイミドフィルムの製造方法およびポリイミドフィルム
 本発明は、表面に凹凸形状のテクスチャが形成されたポリイミドフィルムの製造方法およびポリイミドフィルムに関し、更に詳しくは、太陽電池基板やプリンテッド回路基板用ベース基板などに好適に用いられるポリイミドフィルムの製造方法およびポリイミドフィルムに関する。
 ポリイミドフィルムは、高耐熱性、高電気絶縁性を有し、薄手のフィルムであっても取扱上必要な剛性や耐熱性や電気絶縁性が満たされる。このため、電気絶縁フィルム、断熱性フィルム、フレキシブル回路基板のベースフィルム等、産業分野において幅広く使用されている。また、近年においては、太陽電池基板等への利用も期待されている。
 表面に凹凸形状が形成されたポリイミドフィルムの製造方法として、例えば、特許文献1には、帯状金属基板を移動させながらポリイミド系樹脂層(A)、次いで、平均粒径が0.1~1.0μmの絶縁性微粒子が100~500重量%配合されたポリイミド系樹脂層(B)を塗布し、更に、加熱処理を行い流動状態の樹脂層をロールで加圧して絶縁性微粒子を分散させて、凹凸形状が形成されたポリイミドフィルムを製造することが開示されている。
特開2000-91606号公報
 しかしながら、特許文献1のように、ポリイミドフィルムに絶縁性微粒子を含有させて凹凸形状を形成する場合、絶縁性微粒子を大量に含有させる必要があり、材料コストが嵩む問題があった。また、ポリイミドフィルムに絶縁性微粒子を大量に含有させると、ポリイミドフィルムが脆化して強度が低下するおそれがあった。
 よって、本発明の目的は、凹凸形状のテクスチャが形成されたポリイミドフィルムを生産性よく製造できるポリイミドフィルムの製造方法およびポリイミドフィルムを提供することにある。
 本発明のポリイミドフィルムの製造方法は、ポリアミック酸と、溶媒とを含む第1のポリイミド前駆体溶液を支持体に流延または塗布し加熱するポリイミドフィルムの製造方法であって、
 前記第1のポリイミド前駆体溶液は、前記ポリアミック酸および溶媒とは異なる有機材料を含み、
 前記有機材料の揮発温度は、前記ポリアミック酸をイミド化して得られるポリイミドの揮発温度よりも低く、
 前記加熱の最高温度は、前記有機材料の揮発温度以上で前記ポリイミドの揮発温度以下であり、
 前記有機材料は、前記支持体に流延または塗布した前記第1のポリイミド前駆体溶液を加熱してポリイミドを生成する過程において、ポリイミド前駆体の相から相分離し、前記加熱により熱分解または蒸発することによりポリイミドフィルムから除去されることを特徴とする。
 本発明のポリイミドフィルムの製造方法は、前記有機材料を熱分解または蒸発させて、前記ポリイミドフィルムの表層に、クレーター状の凹部を形成することが好ましい。
 本発明のポリイミドフィルムの製造方法は、第1のポリイミド前駆体溶液を支持体上に流延または塗布した後、乾燥することにより第1の自己支持性フィルムを得た後、前記第1の自己支持性フィルムを支持体から剥離し、剥離した第1の自己支持性フィルムを加熱することが好ましい。
 本発明のポリイミドフィルムの製造方法は、前記支持体は、第2のポリイミド前駆体溶液を乾燥することにより得られる第2の自己支持性フィルムであることが好ましい。
 本発明のポリイミドフィルムの製造方法は、第1のポリイミド前駆体溶液を支持体に流延または塗布する代わりに、第1のポリイミド前駆体溶液と、第3のポリイミド前駆体溶液とを重ねて支持体に流延または塗布し乾燥することにより第3の自己支持性フィルムを得た後、前記第3の自己支持性フィルムを支持体から剥離し、剥離した第3の自己支持性フィルムを加熱することが好ましい。
 本発明のポリイミドフィルムの製造方法は、前記有機材料として、前記溶媒に対して溶解するものを用いることが好ましい。この態様において、前記有機材料は、ポリメタクリル酸メチル、ポリメタクリル酸エチルなどのポリメタクリル酸アルキル、ポリアクリル酸―2-エチルヘキシル、ポリアクリル酸ブチルなどのポリアクリル酸アルキルおよび酢酸セルロースから選ばれる少なくとも1種以上であることが好ましい。
 本発明のポリイミドフィルムの製造方法は、前記有機材料として、前記溶媒に対して相溶しない、粒状に成形された有機材料を用いることが好ましい。また、前記有機材料の平均粒径は、1~10μmであることが好ましい。さらに、前記有機材料は、架橋メタクリル酸メチル粒子およびポリスチレン粒子から選ばれる少なくとも1種以上であることが好ましい。
 本発明のポリイミドフィルムの製造方法は、前記加熱の最高温度は、400~600℃であることが好ましい。
 本発明のポリイミドフィルムの製造方法は、前記有機材料の400℃における揮発分量は、95質量%以上であることが好ましい。
 本発明のポリイミドフィルムの製造方法は、前記ポリイミドの450℃での揮発分量が5質量%以下であることが好ましい。
 また、本発明のポリイミドフィルムは、上記製造方法で得られたものであることを特徴とする。表層に形成された凹凸の、凸部と凹部の高低差は、0.1~5μmであることが好ましい。
 また、本発明のポリイミドフィルムは、テトラカルボン酸成分とジアミン成分とから得られるポリイミドフィルムであって、前記ポリイミドフィルムは、フィルムの厚み方向に表面からフィルム内部に向かって形成されたクレーター状の凹部を備え、前記クレーター状の凹部は、深さが0を超え15μm以下であり、直径が0を超え50μm以下であることを特徴とする。
 本発明のポリイミドフィルムは、太陽電池用基板またはプリンテッド回路基板用ベース基板であることが好ましい。
 本発明の太陽電池は、前記ポリイミドフィルムを太陽電池用基板として用いたものであることが好ましい。
 本発明のプリンテッド回路基板は、前記ポリイミドフィルムからなるベース基板に導電性パターンが形成されたものであることが好ましい。
 本発明のポリイミドフィルムの製造方法によれば、ポリイミド前駆体溶液に含まれる有機材料が、ポリイミド前駆体溶液の流延物を加熱する際に熱分解または蒸発することにより除去されて、ポリイミドフィルムの表面にクレーター状の凹部が形成されて、ポリイミドフィルムの表層に凹凸が形成される。
 また、加熱後のポリイミドフィルムは、有機材料がほぼ揮発しているので、有機材料によるポリイミドフィルムの脆化のおそれが無く、強度に優れたポリイミドフィルムを得ることができる。
 そして、このようにして製造されるポリイミドフィルムは、例えば太陽電池用基板等に用いた際、ポリイミドフィルム上に成膜される電極層や光電変換層等の各種薄膜の成膜性を良好に維持できる。このため、ポリイミドフィルムを太陽電池用基板として好適に用いることができる。また、このようにして製造されるポリイミドフィルムは、例えばプリンテッド回路基板に用いた際、ポリイミドフィルム上に形成される導電性パターンとの密着性を高くできる。このため、ポリイミドフィルムをプリンテッド回路基板用ベース基板として好適に用いることができる。
実施例1のポリイミドフィルムのSEM観測結果(8000倍)の図である。 実施例3のポリイミドフィルムのSEM観測結果(1000倍)の図である。
 本発明のポリイミドフィルムの製造方法は、ポリアミック酸と、溶媒とを含む第1のポリイミド前駆体溶液を支持体に流延または塗布し加熱するポリイミドフィルムの製造方法であって、第1のポリイミド前駆体溶液は、ポリアミック酸および溶媒とは異なる有機材料を含み、有機材料の揮発温度は、ポリアミック酸をイミド化して得られるポリイミドの揮発温度よりも低く、加熱の最高温度は、有機材料の揮発温度以上でポリイミドの揮発温度以下であることを特徴とする。以下、詳しく説明する。
 [第1のポリイミド前駆体溶液]
 本発明のポリイミドフィルムの製造方法で用いる第1のポリイミド前駆体溶液は、ポリアミック酸と溶媒との混合物(以下、ポリアミック酸溶液ということがある)に、有機材料が添加されてなるものである。
 第1のポリイミド前駆体溶液の固形分濃度(ポリマー成分)は、流延または塗布によるフィルム製造に適した粘度範囲となる濃度であれば特に限定されない。例えば、流延によりフィルムを製造する場合は10~30質量%が好ましく、15~27質量%がより好ましく、16~24質量%がさらに好ましい。また、塗布によりフィルムを製造する場合は、1~20質量%が好ましく、1.5~15質量%がより好ましく、2~10質量%がさらに好ましい。
 第1のポリイミド前駆体溶液の溶液粘度は、使用する目的(塗布、流延など)や製造する目的に応じて適宜選択すればよい。例えば、第1のポリイミド前駆体溶液の30℃で測定した回転粘度は、第1のポリイミド前駆体溶液を取り扱う作業性の観点から、0.1~5000ポイズであることが好ましい。したがって、生成するポリアミック酸が上記のような粘度を示す程度にまで、テトラカルボン酸成分とジアミン成分の重合反応を実施することが望ましい。
 以下、第1のポリイミド前駆体溶液の各成分について説明する。
 (ポリアミック酸)
 ポリアミック酸は、テトラカルボン酸成分とジアミン成分とを反応させて製造できる。例えば、テトラカルボン酸成分とジアミン成分とを、ポリイミドの製造に通常使用される溶媒中で重合して製造することができる。反応温度は、100℃以下が好ましく、80℃以下がより好ましく、0~60℃が特に好ましい。
 上記テトラカルボン酸成分としては、芳香族テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物等が挙げられる。具体例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物等が挙げられる。
 上記ジアミン成分としては、芳香族ジアミン、脂肪族ジアミン、脂環式ジアミン等が挙げられる。具体例としては、p-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、m-トリジン、p-トリジン、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、4,4’-ジアミノベンズアニリド、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,3’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔3-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン等が挙げられる。
 テトラカルボン酸成分とジアミン成分との組み合わせの一例としては、以下の(1)~(6)が挙げられる。これら組み合わせは、機械的特性、耐熱性の観点から好ましい。
 (1) 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、p-フェニレンジアミンとの組み合わせ。
 (2) 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、p-フェニレンジアミンと、4,4-ジアミノジフェニルエ-テルとの組み合わせ。
 (3)ピロメリット酸二無水物と、p-フェニレンジアミンとの組み合わせ。
 (4)ピロメリット酸二無水物と、p-フェニレンジアミンと、4,4-ジアミノジフェニルエ-テルとの組み合わせ。
 (5)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、ピロメリット酸二無水物と、p-フェニレンジアミンとの組み合わせ。
 (6)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、ピロメリット酸二無水物と、p-フェニレンジアミンと、4,4-ジアミノジフェニルエ-テルとの組み合わせ。
 (溶媒)
 溶媒は、ポリアミック酸を溶解できるものであればよい。例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド等の有機溶媒が挙げられる。これらの溶媒は単独で用いてもよく、2種以上を併用してもよい。
 (有機材料)
 本発明で用いられる有機材料は、ポリアミック酸および溶媒とは異なるものである。本発明で用いられる有機材料は、支持体に流延または塗布した第1のポリイミド前駆体溶液を加熱してポリイミドの生成過程において、ポリイミド前駆体の相から相分離して一定の体積を占め、かつ、加熱により熱分解または蒸発してポリイミドフィルムから除去されるものである。有機材料がポリイミドフィルムから除去されることにより、有機材料が存在していた部分に、クレーター状の凹部が形成され、これによって、ポリイミドフィルムの表層に凹凸が形成される。本発明でいう有機材料とは、イミド化の際に用いられる触媒や脱水剤を含まない概念である。また、有機材料が加熱により熱分解または蒸発することによりポリイミドフィルムから除去される際に、有機材料が完全に除去されず、ポリイミドフィルムに若干残存する場合もあるが、この形態は本発明に含まれることとする。
 有機材料の揮発温度は、ポリアミック酸をイミド化して得られるポリイミドの揮発温度よりも低いことが好ましい。ここで、「揮発温度」とは、有機材料またはポリイミドの揮発分量が50質量%以上になる温度をいう。また、本発明において「揮発」とは、有機材料またはポリイミドの全部または一部が熱分解によって揮発性の成分となること、または熱により蒸発することなど、気体成分となって飛散し、質量が減少することをいう。
 ポリアミック酸をイミド化して得られるポリイミドの450℃での揮発分量は、5質量%以下であることが好ましい。
 本発明において、有機材料としては、以下の(a)及び/又は(b)に示す有機材料を好ましく用いることができる。
 (a)ポリアミック酸溶液中の溶媒に対して溶解しうる有機材料。
 (b)ポリアミック酸溶液中の溶媒に対して相溶しない、粒状に成形された有機材料。
 特に好ましくは、ポリアミック酸溶液に添加した場合、均一溶液となり、不溶分を加えた場合に発生する凝集、沈降、分離が発生しないことから、(a)に示す有機材料である。以下、(a)に示す有機材料を、有機材料(a)といい、(b)に示す有機材料を、有機材料(b)という。
 有機材料(a)の、「ポリアミック酸溶液中の溶媒に対して溶解しうる」の「溶解」とは、ポリアミック酸溶液に有機材料を添加すると、有機材料が溶媒に溶け出し、実質的に固体成分がなくなる状態のことをいう。
 有機材料(a)は、ポリアミック酸溶液に5質量%以上溶解するものが好ましい。有機材料(a)の具体例としては、ポリメタクリル酸エステル、ポリアクリル酸エステルまたはセルロース化合物などが挙げられる。有機材料(a)のさらなる具体例としては、ポリメタクリル酸メチル、ポリメタクリル酸エチルなどのポリメタクリル酸アルキル、ポリアクリル酸―2-エチルヘキシル、ポリアクリル酸ブチルなどのポリアクリル酸アルキル、酢酸セルロース等が挙げられる。有機材料(a)は、ポリメタクリル酸メチル、ポリアクリル酸―2-エチルヘキシル、ポリアクリル酸ブチルおよび酢酸セルロースから選ばれる少なくとも1種以上であることが好ましく、ポリメタクリル酸メチルおよび酢酸セルロースから選ばれる少なくとも1種以上であることがより好ましい。
 有機材料(a)の重量平均分子量(Mw)は、1,000~1,000,000が好ましく、2,000~500,000がより好ましい。重量平均分子量の大きい有機材料を用いることにより、凹部の深さや、直径を大きくできる。重量平均分子量の小さな有機材料を用いることにより、凹部の深さや直径を小さくできる。
 有機材料(b)の平均粒径は、1~10μmが好ましく、2~8μmがより好ましい。平均粒径が上記範囲内であれば、各種薄膜の成膜性が良好で、光反射性に優れる電極層や、密着性の良い回路パターンを表面に形成可能なポリイミドフィルムを製造できる。有機材料(b)の具体例としては、架橋メタクリル酸メチル粒子、ポリスチレン粒子、その他二重結合含有モノマーを共重合させた高分子材料粒子等が挙げられる。有機材料(b)は、架橋メタクリル酸メチル粒子およびポリスチレン粒子から選ばれる少なくとも1種以上であることが好ましい。
 なお、本発明において、有機材料(b)の、「ポリアミック酸溶液の溶媒に対して相溶しない」とは、ポリアミック酸溶液に有機材料を添加した場合に、形状を保つ有機材料のことを意味する。有機材料の一部が溶解していても、固体成分が含まれていれば、有機材料(b)として好ましく使用できる。有機材料が膨潤する場合でも、形状が維持されれば、「ポリアミック酸の溶媒に対して相溶しない」有機材料に含まれ、好ましく使用できる。
 有機材料は、400℃での揮発分量が95質量%以上であることが好ましく、99質量%%以上であることがより好ましい。ここで、400℃での揮発分量は、有機材料を空気中で400℃、1時間加熱したときの重量減少をいう。400℃での揮発分量が95質量%未満であると、有機材料の残分によってポリイミドフィルムの外観が悪化する場合がある。外観の悪化を防ぐためには、高温で加熱しなければならず、ポリイミドフィルムの特性に低下させる可能性がある。また、高温にすることによって製造コストの上昇にもつながる可能性がある。
 有機材料(a)及び有機材料(b)は、ポリイミドフィルムの表面に形成されるクレーター状の凹部の直径、深さ、形状、分散性を制御することを目的に、カルボン酸、カルボン酸無水物、エポキシ基、アミノ基、アルコキシシランなどの官能基で変性して用いても良い。これらの官能基とポリアミック酸をあらかじめ反応させて共重合体を作成して塗工したり、未反応のまま塗工して乾燥時に反応させることもできる。また、公知の分散剤や相溶化剤を添加してもよい。
 有機材料は、前記テトラカルボン酸成分とジアミン成分とを溶媒中で反応させる際に添加しても良いし、テトラカルボン酸成分とジアミン成分とを溶媒中で反応させて得られるポリアミック酸溶液に添加してもよい。
 第1のポリイミド前駆体溶液において、有機材料の含有量は、0.2~10質量%が好ましく、1~5質量%がより好ましい。有機材料の含有量が0.2質量%未満であると、ポリイミドフィルムの表面にクレーター状の凹部が形成され難くなり、光反射性に優れる電極層などを表面に形成可能なポリイミドフィルムが得られ難くなる場合がある。また、有機材料の含有量が10質量%を超えると、ポリイミドフィルムの強度が低下する傾向にある。また、溶液が高粘度になりすぎて取り扱いが困難となる場合がある。
 (その他成分)
 本発明において、第1のポリイミド前駆体溶液は、ポリアミック酸溶液のゲル化を制限する目的で、リン系安定剤をポリアミック酸の重合時に添加することができる。リン系安定剤としては、例えば、亜リン酸トリフェニル、リン酸トリフェニル等が挙げられる。リン系安定剤の添加量は、固形分(ポリマー)濃度に対して0.01~1%が好ましい。
 また、第1のポリイミド前駆体溶液には、フィラーを添加することができる。フィラーとしては、シリカ、アルミナなどの無機フィラー、ポリイミド粒子などの有機フィラーが挙げられる。なお、本発明においては、第1のポリイミド前駆体溶液に含まれる有機材料が、ポリアミック酸のイミド化時に熱分解して気化し、それによって、ポリイミドフィルムの表面にクレーター状の凹部が形成されるので、フィラーを用いることなく、フィラーレスで表面に凹凸が形成されたポリイミドフィルムを得ることができる。フィラーを用いることなく表面に凹凸が形成されたポリイミドフィルム(オールポリイミド)によれは、フィラーを用いないためポリイミドフィルムのコストダウンを図ることができ、さらに凹凸の形状や高さを適切に制御することによりポリイミドフィルム表面の易滑性を向上させることがきる。また、ポリイミドフィルムをエッチングする用途に使用する場合、フィラーの残渣が残らないという効果もある。
 また、第1のポリイミド前駆体溶液には、イミド化促進の目的で、塩基性有機化合物を添加することができる。塩基性有機化合物としては、例えば、イミダゾール、2-イミダゾール、1,2-ジメチルイミダゾール、2-フェニルイミダゾール、ベンズイミダゾール、イソキノリン、置換ピリジンなどが挙げられる。塩基性有機化合物の添加量は、ポリアミック酸に対して0.05~10質量%が好ましく、0.1~2質量%がより好ましい。
 また、第1のポリイミド前駆体溶液を熱イミド化によりイミド化を完結させる場合、第1のポリイミド前駆体溶液には、イミド化触媒等を必要に応じて加えてもよい。また、第1のポリイミド前駆体溶液を化学イミド化によりイミド化を完結させる場合、第1のポリイミド前駆体溶液には、環化触媒、脱水剤等を必要に応じて加えてもよい。
 上記イミド化触媒としては、置換もしくは非置換の含窒素複素環化合物、該含窒素複素環化合物のN-オキシド化合物、置換もしくは非置換のアミノ酸化合物、ヒドロキシル基を有する芳香族炭化水素化合物または芳香族複素環状化合物が挙げられる。
 上記環化触媒としては、脂肪族第3級アミン、芳香族第3級アミン、複素環第3級アミン等が挙げられる。環化触媒の具体例としては、トリメチルアミン、トリエチルアミン、ジメチルアニリン、ピリジン、β-ピコリン、イソキノリン、キノリン等が挙げられる。
 上記脱水剤としては、脂肪族カルボン酸無水物、芳香族カルボン酸無水物等が挙げられる。脱水剤の具体例としては、無水酢酸、無水プロピオン酸、無水酪酸、ギ酸無水物、無水コハク酸、無水マレイン酸、無水フタル酸、安息香酸無水物、無水ピコリン酸等が挙げられる。
 [ポリイミドフィルムの製造方法]
 <第一の実施形態>
 本発明のポリイミドフィルムの製造方法は、有機材料を含む第1のポリイミド前駆体溶液を、支持体に流延または塗布する。
 この実施形態では、支持体としては、平滑な基材を用いることが好ましく、例えばステンレス基板、ステンレスベルト、ガラス板などが使用される。
 有機材料を含む第1のポリイミド前駆体溶液を、支持体に流延または塗布する方法としては、特に制限はなく、例えば、グラビアコート法、スピンコート法、シルクスクリーン法、ディップコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法などが挙げられる。
 有機材料を含む第1のポリイミド前駆体溶液を支持体に流延または塗布した後、乾燥炉を用いて乾燥しても良い。乾燥温度は100~200℃が好ましく、より好ましくは120~180℃である。また、乾燥時間は2~60分が好ましく、より好ましくは3~20分間である。
 有機材料を含む第1のポリイミド前駆体溶液を支持体上に流延または塗布し、乾燥することにより自己支持性を有する第1の自己支持性フィルムを得た後、第1の自己支持性フィルムを支持体から剥離し、後で述べる加熱を行っても良い。この方法によればポリイミドフィルムの量産性に優れている。ここで、自己支持性を有するとは、支持体から剥離することができる程度の強度を有する状態を意味する。
 自己支持性フィルムは、有機材料を含む第1の自己支持性フィルムの単層フィルムであってもよく、あるいは、有機材料を含む層と有機材料を含まない層との2層あるいはそれ以上の多層構造からなる多層フィルムでもよい。
 上記単層フィルムは、有機材料を含む第1のポリイミド前駆体溶液を支持体上にフィルム状に流延又は塗布し、乾燥炉等に導入して乾燥することで形成することができる。
 上記多層フィルムは、後述する第二の実施形態に示すように、有機材料を含まない自己支持性フィルムに、有機材料を含む第1のポリイミド前駆体溶液を塗工し乾燥して形成する方法や、後述する第三の実施形態に示すように、有機材料を含まないポリイミド前駆体溶液と有機材料を含む第1のポリイミド前駆体溶液とを多層ダイスを用いて支持体上に共押出し、乾燥して形成する方法などで形成できる。
 次に、支持体に流延または塗布した有機材料を含む第1のポリイミド前駆体溶液によって形成される塗膜又は、前述の支持体から剥離した第1の自己支持性フィルムを加熱する。これにより溶媒除去とイミド化を完結させて、ポリイミドフィルムを得る。その際、第1のポリイミド前駆体溶液に含まれる有機材料が熱分解して気化し、それによって、ポリイミドフィルムの表面にクレーター状の凹部が形成され、ポリイミドフィルムの表層に凹凸が形成される。ここで、クレーター状の凹部とは、球状または粒状の泡が破壊して形成されたような、円形又は楕円形状で、底面がほぼ滑らかに湾曲し、開口周縁がやや盛り上がった形状の凹部をいう。
 加熱手段としては公知の加熱炉(キュア炉)が挙げられる。加熱方法の一例として、約100℃~400℃の温度で、ポリマーのイミド化および溶媒の蒸発・除去を、好ましくは約0.05~5時間、特に好ましくは0.1~3時間で徐々に行うことが適当である。特に、この加熱方法は段階的に行うことが好ましい。例えば、約100℃~約170℃の比較的低い温度で約0.5~30分間第一次加熱処理し、次いで170℃~220℃の温度で約0.5~30分間第二次加熱処理し、その後、220℃~400℃の高温で約0.5~30分間第三次加熱処理することが好ましい。必要であれば、400℃~550℃、好ましくは450~520℃の高い温度で第四次高温加熱処理してもよい。
 本発明では、加熱の最高温度は、第1のポリイミド前駆体溶液に含まれる有機材料の揮発温度以上であって、かつ、ポリアミック酸をイミド化して得られるポリイミドの揮発温度以下である。ここで、「ポリアミック酸をイミド化して得られるポリイミド」とは、第1のポリイミド前駆体溶液のポリアミック酸をイミド化して得られるポリイミドに相当する。有機材料の揮発温度は、有機材料の種類に依るが、例えば200~400℃である。また、ポリアミック酸をイミド化して得られるポリイミドの揮発温度は、ポリアミック酸の種類に依るが、例えば300~600℃である。有機材料とポリイミドの揮発温度の範囲で、有機材料とポリイミドの種類が選択される。本発明において、ポリイミドの450℃での揮発分量は、5質量%以下が好ましい。
 例えば、有機材料がポリメタクリル酸メチルの場合、有機材料の揮発温度はおおむね300~400℃である。また、ポリイミドが、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、p-フェニレンジアミンとで構成されるポリアミック酸をイミド化して得られるものの場合、ポリイミドの揮発温度は550~650℃である。
 本発明において、加熱の最高温度は、400~600℃が好ましく、より好ましくは430~550℃である。
 イミド化完結のための加熱処理の際、キュア炉中においては、ピンテンタ、クリップ、枠などで、少なくとも長尺の固化フィルムの長手方向に直角の方向、すなわちフィルムの幅方向の両端縁を固定し、必要に応じて幅方向、又は長さ方向に拡縮して加熱処理を行っても良い。
 <第二の実施形態>
 この実施形態では、支持体として第2の自己支持性フィルムを用い、有機材料を含む第1のポリイミド前駆体溶液を、第2の自己支持性フィルム上に塗布する。第2の自己支持性フィルムは、第2のポリイミド前駆体溶液を乾燥することにより得られるようにしても良い。以下に詳細に説明する。
 第2のポリイミド前駆体溶液は、ポリアミック酸と、溶媒とを含有するものを用いる。ポリアミック酸、溶媒は、上述した第1のポリイミド前駆体溶液と同様のものを用いることができる。第2のポリイミド前駆体溶液に用いるポリアミック酸、溶媒の種類は、上述した第1のポリイミド前駆体溶液と同じであってもよく、異なっても良い。第2のポリイミド前駆体溶液には、第1のポリイミド前駆体溶液と同様、イミド化を促進するため、イミド化触媒、環化触媒、脱水剤等を必要に応じて加えてもよい。
 第2のポリイミド前駆体溶液を支持体上に流延または塗布し、乾燥して、自己支持性を有する第2の自己支持性フィルムを形成する。支持体としては、平滑な基材を用いることが好ましく、例えばステンレス基板、ステンレスベルト、ガラス板などが使用される。ここで、自己支持性を有するとは、支持体から剥離することができる程度の強度を有する状態を意味する。乾燥手段としては公知の乾燥炉が挙げられる。
 第2の自己支持性フィルムを形成するための乾燥条件(加熱条件)は、特に限定はないが、乾燥温度は100~200℃が好ましく、より好ましくは120~180℃である。また、乾燥時間は2~60分が好ましく、より好ましくは3~20分間である。
 この実施形態では、このようにして形成した第2の自己支持性フィルム上に、有機材料を含む第1のポリイミド前駆体溶液を流延または塗布する。第1のポリイミド前駆体溶液の流延または塗布は、第2の自己支持性フィルムを支持体から剥離した後の片面または両面の全面または一部に行っても良く、剥離する前の第2の自己支持性フィルムの支持体とは接しない面の全面または一部に行っても良い。
 第2の自己支持性フィルム上に流延または塗布された第1のポリイミド前駆体溶液によって形成される塗膜を加熱して、乾燥及び硬化する際に、第1のポリイミド前駆体溶液に含まれる有機材料が熱分解して気化し、それによって、ポリイミドフィルムの表面にクレーター状の凹部が形成される。
 第1のポリイミド前駆体溶液の固形分濃度(ポリマー成分)は、塗布によるフィルム製造に適した粘度範囲となる濃度であれば特に限定されない。1~20質量%が好ましく、1.5~15質量%がより好ましく、2~10質量%がさらに好ましい。
 第1のポリイミド前駆体溶液の30℃での回転粘度は、1~30センチポイズが好ましく、2~10センチポイズがより好ましい。回転粘度が上記範囲内であれば、塗工作業性が良好である。
 第1のポリイミド前駆体溶液の第2の自己支持性フィルムへの塗布方法は、特に限定されないが、例えば、バーコーター法、グラビアコーター法、ダイコーター法等の方法が採用できる。
 第1のポリイミド前駆体溶液の塗布量は、1~30g/mが好ましく、3~25g/mがより好ましく、5~20g/mが特に好ましい。上記塗布量が1g/m未満であると、均一に塗布することが難しくなると共に、有機材料がまばらとなって、ポリイミドフィルムの表層に凹凸を効果的に形成できない場合がある。また、上記塗布量が30g/mを超えると、塗工時に液が垂れる、塗工が不均一となる傾向にある。
 次に、第2の自己支持性フィルム上に流延または塗布した第1のポリイミド前駆体溶液の塗膜を加熱乾燥する。加熱手段としては公知の乾燥炉が挙げられる。
 加熱乾燥条件は、特に限定はないが、温度60~180℃で、0.5~60分間程度加熱することが好ましく、より好ましくは、80~150℃で、1~5分間加熱する。
 次に、第2の自己支持性フィルムを、支持体から剥離する。剥離方法は特に限定はなく、自己支持性フィルムを冷却し、ロールを介して張力を与えて剥離する方法があげられる。
 次に、支持体から剥離した、有機材料を含む層と有機材料を含まない層とが積層した多層構造の自己支持性フィルムを第一の実施形態と同様にして加熱し、溶媒除去とイミド化を完結させて、ポリイミドフィルムを得る。その際、第1のポリイミド前駆体溶液に含まれる有機材料が熱分解して気化するので、ポリイミドフィルムの表面にクレーター状の凹部が形成されて、ポリイミドフィルムの表層に凹凸が形成される。この方法によれば、ポリイミドフィルムの表裏面を貫通するような凹部が形成されることを抑制でき、表層のみに効果的にクレーター状の凹部を形成できる。更には、ポリイミドフィルムの強度を高めることができる。
 <第三の実施形態>
 この実施形態では、第1のポリイミド前駆体溶液を支持体に流延または塗布する代わりに、第1のポリイミド前駆体溶液と、第3のポリイミド前駆体溶液とを重ね支持体に流延または塗布し、乾燥することにより第3の自己支持性フィルムを得た後、前記第3の自己支持性フィルムを支持体から剥離し、剥離した第3の自己支持性フィルムを加熱してポリイミドフィルムを製造する。
 第3のポリイミド前駆体溶液は、ポリアミック酸、溶媒を含有するものを用いる。ポリアミック酸、溶媒は、上述した第1のポリイミド前駆体溶液と同様のものを用いることができる。第3のポリイミド前駆体溶液に用いるポリアミック酸、溶媒の種類は、上述した第1のポリイミド前駆体溶液と同じであっても良く、異なっても良い。
 第1のポリイミド前駆体溶液と、第3のポリイミド前駆体溶液とを重ね支持体に塗布する方法は、例えば、第3のポリイミド前駆体溶液を支持体に塗布し、次に塗布した第3のポリイミド前駆体の上に第1のポリイミド前駆体溶液を塗布する方法、共押出し-流延製膜法(単に、多層押出法ともいう)等が挙げられる。支持体としては、平滑な基材を用いることが好ましく、例えばステンレス基板、ステンレスベルト、ガラス板などが使用される。
 第1のポリイミド前駆体溶液と、第3のポリイミド前駆体溶液とを重ね支持体に流延する形態は、公知の方法で行うことが出来る。例えば特開平3-180343号公報(特公平7-102661号公報)に記載されている方法などを用いることができる。例えば、第1のポリイミド前駆体溶液と、第3のポリイミド前駆体溶液とを、押出し成形用ダイスに供給し、支持体上に重ねてキャストしてこれをステンレス鏡面、ベルト面等の支持体面上に流延する方法が挙げられる。支持体に接するポリイミド前駆体溶液は、第1のポリイミド前駆体溶液、または第3のポリイミド前駆体溶液のいずれも特に制限されない。第3のポリイミド前駆体溶液が支持体に接するように、第3のポリイミド前駆体溶液の上に第1のポリイミド前駆体溶液を重なるように、第1のポリイミド前駆体溶液と第3のポリイミド前駆体溶液を重ねて支持体上にキャストすることが好ましい。
 第1のポリイミド前駆体溶液から形成される層の厚みは、例えば0.5~5μmが好ましい。また、第3のポリイミド前駆体溶液から形成される層の厚みは、例えば5~50μmが好ましい。これにより、100~200℃で半硬化状態または乾燥状態とする第3の自己支持性フィルムを得ることができる。
 そして、支持体から剥離した第3の自己支持性フィルムを第一の実施形態と同様にして加熱し、溶媒除去とイミド化を完結させてポリイミドフィルムを得る。その際、第1のポリイミド前駆体溶液に含まれる有機材料が熱分解して気化するので、ポリイミドフィルムの表面にクレーター状の凹部が形成されて、ポリイミドフィルムの表層に凹凸が形成される。
 この形態によれば、第二の実施形態と同様、ポリイミドフィルムの表裏面を貫通するような凹部が形成されることを抑制でき、表層のみに効果的にクレーター状の凹部を形成できる。更には、ポリイミドフィルムの強度を高めることができる。
 [ポリイミドフィルム]
 本発明のポリイミドフィルムは、上記の製造方法により得られたものであって、図1および図2に示すように表層にクレーター状の凹部が形成されて、ポリイミドフィルムの表層に凹凸が形成されている。
 ポリイミドフィルムの厚みは、例えば5~75μmが好ましい。ポリイミドフィルム表面に形成されるクレーター状の凹部の深さは、0を超え15μm以下であり、0.1~5μmが好ましく、0.1~2μmがより好ましく、0.2~1.5μmが特に好ましい。凹部の直径は0を超え50μm以下であり、0.1~20μmが好ましく、0.1~5μmがより好ましく、0.1~3μmが更に好ましく、0.1~2μmが特に好ましい。
 また、凹部の直径の平均値(平均クレーター径)は、0を超え25μm以下が好ましく、0.5~2.5μmがより好ましい。なお、本発明において、凹部の直径とは、凹部の水平方向の長さのことをいう。
 また、凹部の平均クレーター径を、凹部の深さで除した値(平均クレーター径(μm)/凹部の深さ(μm))は、1.5~3が好ましく、2~2.5がより好ましい。
 本発明のポリイミドフィルムは、TAB用テープ、COF用テープ等のテープ基材、ICチップ等のチップ部材等のカバー基材、液晶ディスプレー、有機エレクトロルミネッセンスディスプレー、電子ペーパー、太陽電池、プリンテッド回路基板等のベース基板やカバー基材等の電子部品や電子機器類の素材として用いることができる。
 なかでも、このポリイミドフィルムは、耐熱性、絶縁性、各種薄膜の成膜性に優れ、更には、表面に光反射性に優れる電極層を形成できるので、太陽電池用基板として特に好適に用いることができる。すなわち、本発明の製造方法によって得られるポリイミドフィルムを太陽電池用基板として用い、該ポリイミドフィルム上に、電極層、光電変換層、透明電極層を順次形成して太陽電池とすることで、ポリイミドフィルム表面に形成された凹凸形状により、各種薄膜の成膜性及び密着性を損なうことなく、入射光を乱反射して光電変換層内に効率よく閉じ込めて光の利用効率を高めることができ、それによって発電効率を向上した太陽電池を得ることができる。
 また、ポリイミドフィルム上に印刷されるインク等との密着性を高くできるので、プリンテッド回路基板用ベース基板として好適に用いることができる。
 [ポリイミドフィルムを用いた太陽電池]
 以下、本発明で得られたポリイミドフィルムを太陽電池用基板として用いた太陽電池の製造方法について、CIS系太陽電池を例に挙げて説明する。
 まず、基板であるポリイミドフィルム上に電極層を形成する。電極層は、導電性材料層であればよいが、通常、金属層であり、好ましくはMo層である。電極層は、スパッタリング法や蒸着法によって成膜して形成することができる。前記第二の実施形態や第三の実施形態の製造方法で得られた多層のポリイミドフィルムの場合は、例えば表層に凹凸が形成された面に電極層を形成する。
 また、必要に応じて、基板であるポリイミドフィルムと電極層の間に下地金属層を設けることもできる。下地金属層は、例えばスパッタリング法や、蒸着法などのメタライジング法によって形成することができる。
 次に、基板の裏面(電極層を形成した側とは反対側の面)に、保護層を形成する。保護層は、25~500℃の線膨張係数が1~20ppm/℃程度のものが好ましく、1~10ppm/℃程度のものが特に好ましい。このような保護層を設けることにより、電極層や半導体層のクラックの発生、基板の反りの発生を効果的に抑制することができる。
 保護層は、特に限定されるものではないが、金属層が挙げられ、特に電極層と同じ材料が好ましく、Mo層がより好ましい。保護層は、スパッタリング法や蒸着法によって形成することができる。
 保護層は必要に応じて設ければよく、本発明のポリイミドフィルムを基板として用いた場合、保護層を設けなくても、電極層や半導体層のクラックの発生を十分に抑制できることもある。
 保護層と電極層の形成順序は特に限定は無い。保護層を形成した後に電極層を形成してもよいが、電極層を形成した後に保護層を形成することが好ましい。電極層、保護層の順に形成する方が、言い換えると、先に積層した金属層を電極として使用する方が、電極層や半導体層のクラックの発生が少なくなることがある。
 次に、電極層上に、Ib族元素とIIIb族元素とVIb族元素とを含む薄膜層を形成する。この薄膜層は、典型的には、Ib族元素とIIIb族元素とVIb族元素のみからなる薄膜であり、後の熱処理によって太陽電池の光吸収層となる。Ib族元素としては、Cuが好ましい。IIIb族元素としては、InおよびGaからなる群より選ばれる少なくとも1つの元素が好ましい。VIb族元素としては、SeおよびSからなる群より選ばれる少なくとも1つの元素が好ましい。
 薄膜層は、蒸着法やスパッタリング法によって形成することができる。薄膜層を形成する際の基板温度は、例えば室温(20℃程度)~400℃程度であり、後の熱処理における最高温度よりも低い温度である。薄膜層は、複数の層からなる多層膜であってもよい。
 電極層と薄膜層の間には、例えば、Li、Na、KなどのIa族元素を含む層や、他の層を形成してもよい。Ia族元素を含む層としては、例えば、NaS、NaF、Na、LiSまたはLiFからなる層が挙げられる。これらの層は、蒸着法やスパッタリング法によって形成することができる。
 次に、薄膜層を熱処理して、Ib族元素とIIIb族元素とVIb族元素とを含む半導体層(カルコパイライト構造半導体層)を形成する。この半導体層が太陽電池の光吸収層として機能する。
 薄膜層を半導体層に変換するための熱処理は、窒素ガス、酸素ガスまたはアルゴンガス雰囲気中で行うことが好ましい。あるいは、SeおよびSからなる群より選ばれる少なくとも1つ元素を含有する蒸気雰囲気中で行うことが好ましい。
 熱処理は、薄膜層を、好ましくは10℃/秒~50℃/秒の範囲内の昇温速度で、500℃~550℃の範囲内、好ましくは500℃~540℃の範囲内、さらに好ましくは500℃~520℃の範囲内の温度にまで加熱した後、好ましくは10秒~5分間、この範囲内の温度で保持することが好ましい。その後、薄膜層を自然冷却するか、または、ヒータを用いて自然冷却よりも遅い速度で薄膜層を冷却する。
 このようにして、光吸収層となるIb族元素とIIIb族元素とVIb族元素とを含む半導体層を形成する。形成される半導体層は、例えば、CuInSe、Cu(In,Ga)Se、またはこれらのSeの一部をSで置換したCuIn(S,Se)、Cu(In,Ga)(S,Se)半導体層である。
 また、半導体層は、次のようにして形成することもできる。
 電極層上に、VIb族元素を含まない、Ib族元素とIIIb族元素とを含む薄膜層、典型的には、Ib族元素とIIIb族元素のみからなる薄膜を形成する。そして、この薄膜層を半導体層に変換するための熱処理を、VIb族元素を含む雰囲気中で、好ましくはSeおよびSからなる群より選ばれる少なくとも1つの蒸気雰囲気中で行うことで、Ib族元素とIIIb族元素とVIb族元素とを含む半導体層を形成することができる。なお、薄膜層の形成方法および熱処理条件は上記と同様である。
 半導体層を形成した後は、公知の方法に従って、窓層(またはバッファ層)、上部電極層を順に積層し、取り出し電極およびを形成して太陽電池を製造する。窓層としては、例えばCdSや、ZnO、Zn(O,S)からなる層を用いることができる。窓層は2層以上としてもよい。上部電極層としては、例えばITO、ZnO:Al等の透明電極を用いることができる。上部電極層上には、MgF等の反射防止膜を設けることもできる。
 なお、各層の構成や形成方法については特に限定されず、適宜選択することができる。本発明では、基板として、可撓性のポリイミドフィルムを用いるので、ロール・ツー・ロール方式によりCIS系太陽電池を製造することができる。
 [ポリイミドフィルムをベース基板として用いたプリンテッド回路基板]
 次に、本発明で得られたポリイミドフィルムをベース基板として用いたプリンテッド回路基板の製造方法について説明する。
 ポリイミドフィルムの表面に、導電性パターンを形成する。導電性パターンの形成方法としては、例えば、金属粒子を配合したインクやペーストなどで、ポリイミドフィルム上にパターンを印刷し、必要に応じて熱処理などの後工程を経て導電性パターンを形成する方法が挙げられる。この方法は、従来のサブトラクティブ法のようにパターン部分以外の導電層を除去するという無駄がなく、環境への影響も少ないという特徴がある。本発明で得られたポリイミドフィルムは、耐熱性、絶縁性、各種薄膜の成膜性に優れ、更には、表面の凹凸により表面積の増加、アンカー効果が得られるため、導電性パターンの密着性が良好である。
 金属粒子を配合したインクあるいはペーストとしては、公知あるいは市販の導電性パターンを形成するために供されている金属ナノ粒子が含まれるインクあるいはペーストを広く用いることが出来る。例えば、三ツ星ベルト製銀ペースト「MDot-SLP/H」(商品名)、ハリマ化成製「NPS typeHP」(商品名)、大研化学製「CA-2503-4」(商品名)が挙げられる。この中で、縮合物の膜(ゾルゲル膜)との密着性から、三ツ星ベルト製銀ペースト「MDot-SLP/H」(商品名)が好適に用いられる。金属ナノ粒子の金属は、銀又は銅が好適に用いられる。
 金属粒子を配合したインクあるいはペーストの焼成後の膜厚は、特に限定は無いが、好ましくは0.1~30μmであり、より好ましくは0.3~20μmであり、特に好ましくは0.5~15μmである。金属粒子を配合したインクあるいはペーストの焼成後の膜厚が、0.1μmより薄い場合は、配線材料としての十分な性能が得られない場合がある。また、焼成後の膜厚が30μmより厚い場合はクラックが入ることがある。
 本発明において、金属粒子を配合したインクあるいはペーストは、様々な印刷方法あるいは塗布方式により、ポリイミドフィルム上に印刷してパターン形成できる。例えば、線状の塗布を行うことが出来るディスペンサー印刷方法を用いた任意の線状のパターン形成、サーマル、ピエゾ、マイクロポンプ、静電気等の各種方式のインクジェット印刷方法を用いた任意の線状あるいは面状のパターン形成、凸版印刷方法、フレキソ印刷方法、平版印刷方法、凹版印刷方法、グラビア印刷方法、反転オフセット印刷方法、枚葉スクリーン印刷方法、ロータリースクリーン印刷方法等の公知の各種印刷方法により任意のパターンを形成することができる。また、グラビアロール方式、スロットダイ方式、スピンコート方式等、公知の各種塗布方式を用い、ポリイミドフィルムの全面あるいは一部に連続した面としてパターンを形成してもよい。また、間欠塗工ダイコーター等を用いポリイミドフィルムの全面あるいは一部に断続した面としてパターンを形成してもよい。また、浸漬塗布方法(ディップ方式ともいわれる)を用い、ポリイミドフィルム全体に金属粒子を配合したインクあるいはペーストを付着させてパターンを形成してもよい。また、ポリイミドフィルムの全面または一部の面に、直接金属粒子を含むインクあるいはペーストを付着させてもよい。より好ましい印刷方法としては、インクジェット印刷方法、フレキソ印刷方法、グラビア印刷方法、反転オフセット印刷方法、枚葉スクリーン印刷方法、ロータリースクリーン印刷方法を挙げることができる。
 これらの方法によりパターン形成した後、焼成することで導電性パターンを形成できる。焼成条件としては、使用するポリイミドフィルムの種類によってかなり限定されるものの、優れた導電性および焼結の進行によってパターンの強度が増すため、高温であればあるほどよい。例えば、150~550℃で焼成することが好ましく、より優れた導電性の実現と生産性を鑑み、200~300℃で焼成することがより好ましい。
 また、ポリイミドフィルム上に形成した導電性パターンに対して、無電解めっきを行って無電解金属めっき層を形成しても良い。これにより、導電性パターンの導電率をさらに向上させることができる。この際、用いる金属は、無電解めっき可能な金属であれば何ら制限されることは無い。例えば、ニッケルの場合、一般的に広く知られている無電解ニッケルめっきプロセスにより、無電解ニッケルめっき層を形成することが出来る。また、無電解金属めっき層上に、電解めっきを行って、電解めっき層を形成してもよい、電解めっきに用いる金属は、無電解金属めっき層の金属と同じであっても良く、異なるものであっても良い。
 本発明に係るプリンテッド回路基板は、導電性パターンのベース基板に対する密着性が高く、かつ優れた導電性を得ることが出来る。このプリンテッド回路基板は、プラズマディスプレイパネル、航空機用液晶パネル、カーナビゲーション用液晶パネル等、各種のフラットディスプレイパネルに貼合して用いられる透明電磁波シールドとして用いられる。また、RFID、無線LAN、電磁誘導による給電、電磁波吸収等に用いられる種々のアンテナとしても用いることが出来る。さらには、各種フラットディスプレイパネルに用いられるバス電極やアドレス電極、あるいは半導体インクや抵抗インク、誘電体インクを併用し多数回の印刷を重ね作製される電子回路等を製造するために用いることができる。
 以下、実施例及び比較例を用いて、本発明の効果を説明する。
 (1)揮発分量の測定方法
 40mlのアルミホイルシャーレに試料を約0.5g採取し、熱風式オーブンで400℃、450℃又は480℃で1時間加熱し、重量の減少を測定することによって求めた。
 (2)有機材料の揮発温度
 以下の調製例2-1、2-5~2-10、2-14、2-15のポリイミド前駆体溶液に含まれるポリメタクリル酸メチル、以下の調製例2-11、2-12のポリイミド前駆体溶液に含まれるポリアクリル酸―2-エチルヘキシル、以下の調製例2-13のポリイミド前駆体溶液に含まれるポリアクリル酸ブチル、以下の調製例2-2のポリイミド前駆体溶液に含まれる酢酸セルロースおよび、以下の調製例2-3のポリイミド前駆体溶液に含まれる架橋メタクリル酸球状粒子について、上記の方法で400℃での揮発分量を測定したところ、それぞれ、ほぼ100質量%、99.5質量%、98.1質量%、99.2質量%、99.8質量%であり、全て揮発温度が400℃以下であることを確認した。
 (3)ポリアミック酸をイミド化して得られるポリイミドの揮発温度
 以下の調製例2-1~2-15のポリイミド前駆体溶液に含まれるポリアミック酸をイミド化して得られたポリイミドについて、450℃で揮発分量を測定したところ、5質量%以下であり、ポリイミドの揮発温度は450℃以上であることを確認した。また、以下の調製例2-1~2-8、2-11、2-12、2-13のポリイミド前駆体溶液に含まれるポリアミック酸をイミド化して得られたポリイミドである、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、パラフェニレンジアミンとから得られたポリイミドについて、480℃で揮発分量を測定したところ、3.2質量%であり、このポリイミドの揮発温度は480℃以上であることを確認した。
 (4)ポリイミドフィルムのクレーター状の凹部の測定
 ・クレーター状の凹部の直径
 走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製S-3400N)を用いて、5000倍の倍率で表面写真を撮影し、目視で、クレーター径の範囲を評価した。
 ・平均クレーター径および平均クレーター深さ
 三次元非接触表面形状測定装置(株式会社菱化システム製マイクロマップMM3200-M100)を使用して、50倍の倍率で表面形状を測定した。0.1μm以上の深さを持つものをクレーターと判定、抽出し、その平均クレーター径、平均クレーター深さを計算した。
 <第2のポリイミド前駆体溶液の調製>
 (調製例1-1)
 N,N-ジメチルアセトアミド(以下、「DMAc」と記す)に、ジアミン成分としてパラフェニレンジアミン(以下、「PPD」と記す)を加えて攪拌溶解した。得られた溶液に、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、「s-BPDA」と記す)を徐々に加え、第2のポリイミド前駆体溶液1を得た。固形分濃度は18質量%であった。
 (調整例1-2)
 DMAcに、ジアミン成分として4,4’-ジアミノジフェニルエーテル(以下、「DADE」と記す)を加えて攪拌溶解した。得られた溶液に、テトラカルボン酸成分としてピロメリット酸二無水物(以下、「PMDA」と記す)を徐々に加え、第2のポリイミド前駆体溶液2を得た。固形分濃度は18質量%であった。
 (調整例1-3)
 DMAcに、ジアミン成分として、PPDとDADEを、モル比が20:80になるように加えて攪拌溶解した。得られた溶液に、テトラカルボン酸成分として、s-BPDAとPMDAをモル比20:80になるように徐々に加え、第2のポリイミド前駆体溶液3を得た。固形分濃度は18質量%であった。
 <第1のポリイミド前駆体溶液の調製>
 (調製例2-1)
 溶媒であるDMAcに、テトラカルボン酸成分としてs-BPDAと、ジアミン成分としてPPDと、有機材料として、溶媒に対して溶解するポリメタクリル酸メチル(和光純薬工業株式会社、試薬一級、重量平均分子量(Mw)約100,000)をDMAc、s-BPDAおよびPPDの総質量100質量部に対して2.5質量部とを加え、1時間攪拌して、有機材料を含む第1のポリイミド前駆体溶液1を調製した。有機材料を含む第1のポリイミド前駆体溶液1のポリアミック酸の含有量は2.5質量%で、ポリメタクリル酸メチルの含有量は2.5質量%であった。この溶液は均一で、ポリメタクリル酸メチルが完全に溶解していることが確認できた。また、使用したポリメタクリル酸メチルの400℃での揮発分量は、ほぼ100質量%であった。以下、ポリメタクリル酸メチルを「PMMA」と記することがある。
 (調製例2-2)
 調製例2-1において、有機材料として、ポリメタクリル酸メチルの代わりに、溶媒に対して溶解する酢酸セルロース(和光純薬工業株式会社、試薬一級、重量平均分子量(Mw)約150,000)を2.5質量部加えた以外は、調製例2-1と同様にして、有機材料を含む第1のポリイミド前駆体溶液2を調製した。有機材料を含む第1のポリイミド前駆体溶液2のポリアミック酸の含有量は2.5質量%で、酢酸セルロースの含有量は2.5質量%であった。この溶液は均一で、ポリメタクリル酸メチルが完全に溶解していることが確認できた。また、使用した酢酸セルロースの400℃での揮発分量は、99.2質量%であった。
 (調製例2-3)
 調製例2-1において、有機材料として、ポリメタクリル酸メチルの代わりに、溶媒に対して相溶しない架橋メタクリル酸メチル球状粒子(平均粒径5μm、積水化成品工業株式会社製、商品名「テクポリマーMBX-5」)を2.5質量部加えた以外は、調製例2-1と同様にして、有機材料を含む第1のポリイミド前駆体溶液3を調製した。有機材料を含む第1のポリイミド前駆体溶液3のポリアミック酸の含有量は2.5質量%で、架橋メタクリル酸メチル球状粒子の含有量は2.5質量%であった。この溶液はスラリー状で、架橋メタクリル酸メチル球状粒子が球状の形体を保ったまま存在していることが確認できた。また、使用した架橋ポリメタクリル酸メチル球状粒子の400℃での揮発分量は、99.8質量%であった。
 (調製例2-4)
 調製例2-1において、有機材料を使用しなかった以外は、調製例2-1と同様にして、有機材料を含まない第1のポリイミド前駆体溶液4を調製した。
 (調製例2-5)
 調製例2-1において、ポリアミック酸の含有量を3.5質量%で、ポリメタクリル酸メチルの含有量を1.5質量%とした以外は、調製例2-1と同様にして、第1のポリイミド前駆体溶液5を調製した。この溶液は均一で、ポリメタクリル酸メチルが完全に溶解していることが確認できた。
 (調製例2-6)
 調製例2-5において、重量平均分子量(Mw)を100,000に制御したポリメタクリル酸メチル(和光純薬工業株式会社、試薬)を使用した以外は、調整例2-5と同様にして、第1のポリイミド前駆体溶液6を調整した。この溶液は均一で、ポリメタクリル酸メチルが完全に溶解していることが確認できた。また、使用したポリメタクリル酸メチルの400℃での揮発分量は、ほぼ100質量%であった。
 (調製例2-7)
 調製例2-5において、重量平均分子量(Mw)を350,000に制御したポリメタクリル酸メチル(和光純薬工業株式会社、試薬)を使用した以外は、調整例2-5と同様にして、第1のポリイミド前駆体溶液7を調整した。この溶液は、透明でポリメタクリル酸メチルが完全に溶解していることが確認できたが、2相に分離していた。撹拌すると細かいエマルジョン状態になり、しばらくはエマルジョン状態で安定であった。また、使用したポリメタクリル酸メチルの400℃での揮発分量は、ほぼ100質量%であった。
 (調製例2-8)
 調製例2-5において、重量平均分子量(Mw)を75,000に制御したポリメタクリル酸メチル(和光純薬工業株式会社、試薬)を使用した以外は、調整例2-5と同様にして、第1のポリイミド前駆体溶液8を調整した。この溶液は均一で、ポリメタクリル酸メチルが完全に溶解していることが確認できた。また、使用したポリメタクリル酸メチルの400℃での揮発分量は、ほぼ100質量%であった。
 (調整例2-9)
 DMAc95質量部に、テトラカルボン酸成分として2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(以下、「a-BPDA」と記す)を2.1質量部、ジアミン成分としてDADEを1.4質量部、有機材料としてポリメタクリル酸メチル(和光純薬工業株式会社、試薬一級、重量平均分子量(Mw)約100,000)を1.5質量部加え、1時間攪拌して、第1のポリイミド前駆体溶液9を調製した。この溶液は均一で、ポリメタクリル酸メチルが完全に溶解していることが確認できた。
 (調整例2-10)
 DMAcに、ジアミン成分としてPPDと、有機材料としてポリメタクリル酸メチル(和光純薬工業株式会社、試薬、重量平均分子量(Mw)約100,000)を加えて攪拌溶解した。得られた溶液に、テトラカルボン酸成分としてs-BPDAを徐々に加え、第1のポリイミド前駆体溶液10を得た。ポリアミック酸濃度は12.6質量%、ポリメタクリル酸メチル濃度は5.4質量%であった。
 (調製例2-11)
 調製例2-1において、有機材料として、ポリメタクリル酸メチルの代わりに、溶媒に対して溶解するカルボキシル基含有ポリアクリル酸-2-エチルヘキシル(綜研化学株式会社製:アクトフローCB3060、重量平均分子量(Mw)約3,000、酸価60mgKOH/g)を2.5質量部加えた以外は、調製例2-1と同様にして、有機材料を含む第1のポリイミド前駆体溶液11を調製した。有機材料を含む第1のポリイミド前駆体溶液11のポリアミック酸の含有量は2.5質量%で、ポリアクリル酸-2-エチルヘキシルの含有量は2.5質量%であった。この溶液は均一で、ポリアクリル酸-2-エチルヘキシルが完全に溶解していることが確認できた。また、使用したポリアクリル酸-2-エチルヘキシルの400℃での揮発分量は、99.5質量%であった。
 (調製例2-12)
 調製例2-11において、有機材料として、重量平均分子量(Mw)が約3,000、酸価98mgOH/gのカルボキシル基含有ポリアクリル酸-2-エチルヘキシル(綜研化学株式会社製:アクトフローCB3098)を使用した以外は、調整例2-11と同様にして、有機材料を含む第1のポリイミド前駆体溶液12を調製した。有機材料を含む第1のポリイミド前駆体溶液12のポリアミック酸の含有量は2.5質量%で、カルボキシル基含有ポリアクリル酸-2-エチルヘキシルの含有量は2.5質量%であった。この溶液は均一で、カルボキシル基含有ポリアクリル酸-2-エチルヘキシルが完全に溶解していることが確認できた。また、使用したカルボキシル基含有ポリアクリル酸-2-エチルヘキシルの400℃での揮発分量は、99.5質量%であった。
 (調製例2-13)
 調製例2-1において、有機材料として、ポリメタクリル酸メチルの代わりに溶媒に対して溶解するシリル基含有ポリアクリル酸ブチル(綜研化学株式会社製:アクトフローNE1000、重量平均分子量(Mw)約3,000、シリル基7%)を2.5質量部加えた以外は、調製例2-1と同様にして、有機材料を含む第1のポリイミド前駆体溶液13を調製した。有機材料を含む第1のポリイミド前駆体溶液13のポリアミック酸の含有量は2.5質量%で、シリル基含有ポリアクリル酸ブチルの含有量は2.5質量%であった。この溶液は均一で、シリル基含有ポリアクリル酸ブチルが完全に溶解していることが確認できた。また、使用したシリル基含有ポリアクリル酸ブチルの400℃での揮発分量は、98.1質量%であった。
 (調製例2-14)
 調製例2-1において、ジアミン成分として、PPDの代わりにDADEを原料に用い、テトラカルボン酸成分として、s-BPDAの代わりにPMDAを原料に用いた以外は調整例2-1と同様にして、有機材料を含む第1のポリイミド前駆体溶液14を調製した。
 (調製例2-15)
 調製例2-1において、ジアミン成分として、PPDの代わりにPPDとDADE(モル比20:80)を原料に用い、テトラカルボン酸成分として、s-BPDAの代わりにBPDAとPMDA(モル比20:80)を原料に用いた以外は調整例2-1と同様にして、有機材料を含む第1のポリイミド前駆体溶液15を調製した。
 <ポリイミドフィルムの製造>
 (実施例1)
 調製例1-1で製造した有機材料を含む第2のポリイミド前駆体溶液を、最終乾燥後の厚みが50μmになるようにガラス板上に流延し、120℃で20分乾燥して第2の自己支持性フィルムを作成した。この第2の自己支持性フィルムに、調整例2-1で得られた第1のポリイミド前駆体溶液1を、12g/mとなるようにバーコーターで塗工し、120℃で2分乾燥させた後、ガラス板から剥離した。剥離したフィルムを四方テンターに張替え、150℃×2分、200℃×2分、250℃×2分、450℃×2分の順で加熱乾燥、イミド化を行い、ポリイミドフィルムを製造した。最高加熱温度は450℃であった。得られたポリイミドフィルムの厚みは30μmであった。ポリイミドフィルムの表面には、直径1~20μm程度のクレーター状の凹部が形成されていた。ポリイミドフィルムの走査型電子顕微鏡(SEM)の観察画像(8000倍)を図1に示す。
 (実施例2)
 実施例1において、有機材料を含む第1のポリイミド前駆体溶液1の代わりに、調整例2-2で得られた有機材料を含む第1のポリイミド前駆体溶液2を用いた以外は、実施例1と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径1~20μm程度のクレーター状の凹部が形成されていた。
 (実施例3)
 実施例1において、有機材料を含む第1のポリイミド前駆体溶液1の代わりに、調整例2-3で得られた有機材料を含む第1のポリイミド前駆体溶液3を用いた以外は、実施例1と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径10~50μm程度のクレーター状の凹部が形成されていた。ポリイミドフィルムの走査型電子顕微鏡(SEM)の観察画像(1000倍)を図2に示す。
 (実施例4)
 実施例1において、第2のポリイミド前駆体溶液を、最終乾燥後の得られたポリイミドフィルムの厚みが25μmになるようにガラス板上に流延した以外は、実施例1と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.5~2μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例5)
 実施例4において、第1のポリイミド前駆体溶液1の代わりに、調整例2-6で得られた第1のポリイミド前駆体溶液6を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.5~2μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例6)
 実施例4において、第1のポリイミド前駆体溶液1の代わりに、調整例2-7で得られた第1のポリイミド前駆体溶液7を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径1~20μm程度のクレーター状の凹部が形成されていた。
 (実施例7)
 実施例4において、第1のポリイミド前駆体溶液1の代わりに、調整例2-8で得られた第1のポリイミド前駆体溶液8を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.5~2μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例8)
 実施例4において、第1のポリイミド前駆体溶液1の代わりに、調整例2-9で得られた第1のポリイミド前駆体溶液9を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.8~5μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例9)
 調製例1-1で製造した第2のポリイミド前駆体溶液を、最終乾燥後の得られたポリイミドフィルムの厚みが50μmになるようにTダイ金型のスリットから連続的にキャスティングし、乾燥炉中の平滑な金属支持体上に押出して、薄膜を形成した。この薄膜を130℃で10分間加熱後、支持体から剥離して自己支持性フィルムを得た。
 この自己支持性フィルムの上に、調整例2-1で得られた第1のポリイミド前駆体溶液1を14g/m厚みで、連続的に塗布し、80℃で2分間乾燥した。この乾燥フィルムの幅方向の両端部を把持して連続加熱炉へ挿入し、200℃から徐々に昇温し、総滞留時間5分、炉内における最高加熱温度が500℃程度となる条件で当該フィルムを加熱、イミド化して、長尺状ポリイミドフィルムを連続的に製造した。
 得られたポリイミドフィルムの表面には、直径0.8~2.5μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例10)
 調製例2-10で製造した第1のポリイミド前駆体溶液を、最終乾燥後の厚みが50μmになるようにガラス板上に流延し、120℃で20分乾燥して自己支持性フィルムを作成した。この自己支持性フィルムをガラス板から剥離した後、四方テンターに張替え、150℃×2分、200℃×2分、250℃×2分、450℃×2分の順で加熱乾燥、イミド化を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径3~20μm程度のクレーター状の凹部が形成されていた。
 (実施例11)
 実施例4において、第1のポリイミド前駆体溶液1の代わりに、調整例2-11で得られた第1のポリイミド前駆体溶液11を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.3~2μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例12)
 実施例4において、第1のポリイミド前駆体溶液1の代わりに、調整例2-12で得られた第1のポリイミド前駆体溶液12を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.3~3μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例13)
 実施例4において、第1のポリイミド前駆体溶液1の代わりに、調整例2-13で得られた第1のポリイミド前駆体溶液13を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.3~2μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例14)
 実施例4において、第1のポリイミド前駆体溶液1の代わりに、調整例2-14で得られた第2のポリイミド前駆体溶液14を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.3~2μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例15)
 実施例4において、第1のポリイミド前駆体溶液1の代わりに、調整例2-15で得られた第2のポリイミド前駆体溶液15を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.3~2μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例16)
 実施例4において、第2のポリイミド前駆体溶液1の代わりに、調整例1-2で得られた第2のポリイミド前駆体溶液2(PMDA-DADE)を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.1~2μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例17)
 実施例4において、第2のポリイミド前駆体溶液1の代わりに、調整例1-2で得られた第2のポリイミド前駆体溶液2(PMDA-DADE)を用い、第1のポリイミド前駆体溶液1の代わりに、調整例2-14で得られた第1のポリイミド前駆体溶液14(PMDA-DADE)を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.1~2μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例18)
 実施例4において、第2のポリイミド前駆体溶液1の代わりに、調整例1-3で得られた第2のポリイミド前駆体溶液3(PMDA-s-BPDA-DADE-PPD)を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.1~2μm程度のクレーター状の微細な凹部が形成されていた。
 (実施例19)
 実施例4において、第2のポリイミド前駆体溶液1の代わりに、調整例1-3で得られた第2のポリイミド前駆体溶液3(PMDA-s-BPDA-DADE-PPD)を用い、第1のポリイミド前駆体溶液1の代わりに、調整例2-15で得られた第1のポリイミド前駆体溶液15(PMDA-s-BPDA-DADE-PPD)を用いた以外は、実施例4と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面には、直径0.1~2μm程度のクレーター状の微細な凹部が形成されていた。
 (比較例1)
 実施例1において、有機材料を含む第1のポリイミド前駆体溶液1の代わりに、有機材料を含まない第1のポリイミド前駆体溶液4を用いた以外は、実施例1と同様の操作を行い、ポリイミドフィルムを製造した。得られたポリイミドフィルムの表面は平面性を維持しており、クレーター状の微細な凹凸形状が形成されなかった。
 実施例1~19のポリイミドフィルムのクレーター部の形状について、表1にまとめて記す。
Figure JPOXMLDOC01-appb-T000001
 (実施例20)
 実施例12で得られたクレーター状の微細な凹部が形成されているポリイミドフィルムに、銀ナノ粒子(三星ベルト社製、Mdot)を含むインクを印刷し、250℃で30分間焼成した。得られたポリイミド-銀複合体をJISK5400に従い碁盤目剥離試験で密着性を評価した。その結果、剥離部分は0/100であり完全に密着していることが確認できた。
 (比較例2)
 比較例1で得られた、クレーターが形成されていないポリイミドフィルムを用いて、実施例23と同様にしてポリイミド-銀複合体を調製し、碁盤目剥離試験を行った。その結果、剥離部分は100/100であり、全面剥離した。

Claims (20)

  1.  ポリアミック酸と溶媒とを含む第1のポリイミド前駆体溶液を支持体に流延または塗布し加熱するポリイミドフィルムの製造方法であって、
     前記第1のポリイミド前駆体溶液は、前記ポリアミック酸及び前記溶媒とは異なる有機材料を含み、
     前記有機材料の揮発温度は、前記ポリアミック酸をイミド化して得られるポリイミドの揮発温度よりも低く、
     前記加熱の最高温度は、前記有機材料の揮発温度以上で前記ポリイミドの揮発温度以下であり、
     前記有機材料は、前記支持体に流延または塗布した前記第1のポリイミド前駆体溶液を加熱してポリイミドを生成する過程において、ポリイミド前駆体の相から相分離し、前記加熱により熱分解または蒸発することによりポリイミドフィルムから除去されることを特徴とする表層に凹凸が形成されたポリイミドフィルムの製造方法。
  2.  前記有機材料を熱分解または蒸発させて、前記ポリイミドフィルムの表層に、クレーター状の凹部を形成する請求項1記載のポリイミドフィルムの製造方法。
  3.  前記第1のポリイミド前駆体溶液を支持体上に流延または塗布した後、乾燥することにより第1の自己支持性フィルムを得た後、前記第1の自己支持性フィルムを支持体から剥離し、剥離した第1の自己支持性フィルムを加熱する請求項1又は2に記載のポリイミドフィルムの製造方法。
  4.  前記支持体は、第2のポリイミド前駆体溶液を乾燥することにより得られる第2の自己支持性フィルムである請求項1又は2に記載のポリイミドフィルムの製造方法。
  5.  第1のポリイミド前駆体溶液を支持体に流延または塗布する代わりに、第1のポリイミド前駆体溶液と、第3のポリイミド前駆体溶液とを重ねて支持体に流延または塗布し乾燥することにより第3の自己支持性フィルムを得た後、前記第3の自己支持性フィルムを支持体から剥離し、剥離した第3の自己支持性フィルムを加熱する請求項1又は2に記載のポリイミドフィルムの製造方法。
  6.  前記有機材料として、前記溶媒に対して溶解するものを用いる請求項1~5のいずれか1項に記載のポリイミドフィルムの製造方法。
  7.  前記有機材料は、ポリメタクリル酸メチル、ポリアクリル酸―2-エチルヘキシル、ポリアクリル酸ブチルおよび酢酸セルロースから選ばれる少なくとも1種以上である請求項6記載のポリイミドフィルムの製造方法。
  8.  前記有機材料として、前記溶媒に対して相溶しない、粒状に成形された有機材料を用いる請求項1~5のいずれか1項に記載のポリイミドフィルムの製造方法。
  9.  前記有機材料の平均粒径は、1~10μmである請求項8記載のポリイミドフィルムの製造方法。
  10.  前記有機材料は、架橋メタクリル酸メチル粒子およびポリスチレン粒子から選ばれる少なくとも1種以上である請求項8又は9記載のポリイミドフィルムの製造方法。
  11.  前記加熱の最高温度は、400~600℃である請求項1~10のいずれか1項に記載のポリイミドフィルムの製造方法。
  12.  前記有機材料の400℃における揮発分量は、95質量%以上である請求項1~11のいずれか1項に記載のポリイミドフィルムの製造方法。
  13.  前記ポリイミドの450℃での揮発分量は、5質量%以下である請求項1~12のいずれか1項に記載のポリイミドフィルムの製造方法。
  14. 請求項1~13のいずれか1項に記載の製造方法で得られたポリイミドフィルム。
  15.  表層に形成された凹凸の、凸部と凹部の高低差は、0.1~5μmである請求項14記載のポリイミドフィルム。
  16.  テトラカルボン酸成分とジアミン成分とから得られるポリイミドフィルムであって、
     前記ポリイミドフィルムは、フィルムの厚み方向に表面からフィルム内部に向かって形成されたクレーター状の凹部を備え、
     前記クレーター状の凹部は、深さが0を超え15μmであり、直径が0を超え50μm以下であることを特徴とするポリイミドフィルム。
  17.  前記ポリイミドフィルムが、太陽電池用基板である請求項14~16のいずれか1項に記載のポリイミドフィルム。
  18.  前記ポリイミドフィルムが、プリンテッド回路基板用ベース基板である請求項14~16のいずれか1項に記載のポリイミドフィルム。
  19.  請求項17に記載のポリイミドフィルムを太陽電池用基板として用いた太陽電池。
  20.  請求項18に記載のポリイミドフィルムからなるベース基板に導電性パターンが形成されたプリンテッド回路基板。
PCT/JP2013/059230 2012-03-29 2013-03-28 ポリイミドフィルムの製造方法およびポリイミドフィルム WO2013147009A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147029889A KR20140139588A (ko) 2012-03-29 2013-03-28 폴리이미드 필름의 제조방법 및 폴리이미드 필름
US14/389,159 US20150091204A1 (en) 2012-03-29 2013-03-28 Method for producing polyimide film, and polyimide film
JP2014508022A JP6036809B2 (ja) 2012-03-29 2013-03-28 ポリイミドフィルムの製造方法およびポリイミドフィルム
CN201380018053.XA CN104204044A (zh) 2012-03-29 2013-03-28 聚酰亚胺薄膜的制造方法及聚酰亚胺薄膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-077758 2012-03-29
JP2012077758 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013147009A1 true WO2013147009A1 (ja) 2013-10-03

Family

ID=49260257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059230 WO2013147009A1 (ja) 2012-03-29 2013-03-28 ポリイミドフィルムの製造方法およびポリイミドフィルム

Country Status (6)

Country Link
US (1) US20150091204A1 (ja)
JP (1) JP6036809B2 (ja)
KR (1) KR20140139588A (ja)
CN (1) CN104204044A (ja)
TW (1) TW201345972A (ja)
WO (1) WO2013147009A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062965A (ja) * 2014-09-16 2016-04-25 宇部興産株式会社 フレキシブルデバイスの製造方法
JP2016183333A (ja) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 樹脂粒子分散ポリイミド前駆体溶液の製造方法、樹脂粒子分散ポリイミド前駆体溶液、樹脂粒子含有ポリイミドフィルム、多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム
JP2019123864A (ja) * 2018-01-17 2019-07-25 東レ株式会社 樹脂組成物、硬化膜、硬化膜のレリーフパターンの製造方法、電子部品、半導体装置、電子部品の製造方法、半導体装置の製造方法
JPWO2019182113A1 (ja) * 2018-03-23 2021-04-08 積水化成品工業株式会社 ビニル系樹脂粒子及びその製造方法
CN113497360A (zh) * 2021-05-24 2021-10-12 西安空间无线电技术研究所 零透射太阳屏及星载天线反射器高精度型面控制热控结构
US11260635B2 (en) 2017-02-13 2022-03-01 Tokyo Ohka Kogyo Co., Ltd. Resin composition, method for producing cured article, cured article, flexible substrate, and flexible display

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9707722B2 (en) * 2015-03-26 2017-07-18 Fuji Xerox Co., Ltd. Method for producing porous polyimide film, and porous polyimide film
CN106058069B (zh) * 2016-04-07 2019-03-01 上海大学 顶发射发光器件及其制备方法
CN109439208A (zh) * 2016-08-02 2019-03-08 南通凯英薄膜技术有限公司 一种高韧性聚酰亚胺材料及其应用
KR102079423B1 (ko) * 2016-10-31 2020-02-19 주식회사 엘지화학 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
CN108986665B (zh) * 2018-07-24 2020-10-27 武汉华星光电半导体显示技术有限公司 柔性薄膜制作方法、柔性薄膜、显示面板及电子设备
CN109355627A (zh) * 2018-11-28 2019-02-19 北京铂阳顶荣光伏科技有限公司 镀膜装置
CN110224002A (zh) * 2019-06-18 2019-09-10 京东方科技集团股份有限公司 一种microLED面板制备方法及制备设备
CN112812335B (zh) * 2020-12-23 2022-10-04 宁波长阳科技股份有限公司 一种高尺寸稳定和力学强度的无色透明聚酰亚胺膜及其制备方法
CN114967321B (zh) * 2022-06-21 2023-03-07 广东工业大学 一种光敏聚酰亚胺衍生氮掺杂碳图案及其制备方法和应用
CN115506156B (zh) * 2022-08-31 2024-05-24 西北工业大学 一种柔性高强度电加热与电磁屏蔽复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313055A (ja) * 1993-04-27 1994-11-08 Ube Ind Ltd 粗面化ポリイミドフィルムの製造法
JP2004051972A (ja) * 2002-05-30 2004-02-19 Sekisui Chem Co Ltd 樹脂シート
JP2008111074A (ja) * 2006-10-31 2008-05-15 Toyobo Co Ltd ポリイミドフィルム及び太陽電池
JP2009263658A (ja) * 2008-03-31 2009-11-12 Fujifilm Corp 光学フィルム、及びその製造方法、ならびにそれを有する偏光板、及び画像表示装置
JP2011165832A (ja) * 2010-02-08 2011-08-25 Ube Industries Ltd 光電変換層形成用耐熱フィルムおよびそれを用いる太陽電池
WO2012050072A1 (ja) * 2010-10-13 2012-04-19 東洋紡績株式会社 ポリイミドフィルムとその製造方法、積層体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3716409B2 (ja) * 1999-12-15 2005-11-16 東レ・デュポン株式会社 Fpc用粗面化芳香族ポリイミドフィルムおよびその製造方法
JP3716407B2 (ja) * 2000-08-24 2005-11-16 東レ・デュポン株式会社 Fpc用粗面化芳香族ポリイミドフィルムおよびその製造方法
JP2004189981A (ja) * 2002-12-13 2004-07-08 Kanegafuchi Chem Ind Co Ltd 熱可塑性ポリイミド樹脂材料および積層体およびプリント配線板の製造方法
JP2007050301A (ja) * 2004-04-02 2007-03-01 Aruze Corp 遊技機
CN101168598B (zh) * 2007-10-08 2010-06-02 江阴市云达电子新材料有限公司 高导热性、低热膨胀系数的超厚聚酰亚胺薄膜的制备方法
US8420211B2 (en) * 2008-10-02 2013-04-16 Ube Industries, Ltd. Porous polyimide membrane and process for production of same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313055A (ja) * 1993-04-27 1994-11-08 Ube Ind Ltd 粗面化ポリイミドフィルムの製造法
JP2004051972A (ja) * 2002-05-30 2004-02-19 Sekisui Chem Co Ltd 樹脂シート
JP2008111074A (ja) * 2006-10-31 2008-05-15 Toyobo Co Ltd ポリイミドフィルム及び太陽電池
JP2009263658A (ja) * 2008-03-31 2009-11-12 Fujifilm Corp 光学フィルム、及びその製造方法、ならびにそれを有する偏光板、及び画像表示装置
JP2011165832A (ja) * 2010-02-08 2011-08-25 Ube Industries Ltd 光電変換層形成用耐熱フィルムおよびそれを用いる太陽電池
WO2012050072A1 (ja) * 2010-10-13 2012-04-19 東洋紡績株式会社 ポリイミドフィルムとその製造方法、積層体の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062965A (ja) * 2014-09-16 2016-04-25 宇部興産株式会社 フレキシブルデバイスの製造方法
JP2016183333A (ja) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 樹脂粒子分散ポリイミド前駆体溶液の製造方法、樹脂粒子分散ポリイミド前駆体溶液、樹脂粒子含有ポリイミドフィルム、多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム
JP2020109189A (ja) * 2015-03-26 2020-07-16 富士ゼロックス株式会社 樹脂粒子分散ポリイミド前駆体溶液の製造方法、樹脂粒子分散ポリイミド前駆体溶液、樹脂粒子含有ポリイミドフィルム、多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム
US11260635B2 (en) 2017-02-13 2022-03-01 Tokyo Ohka Kogyo Co., Ltd. Resin composition, method for producing cured article, cured article, flexible substrate, and flexible display
JP2019123864A (ja) * 2018-01-17 2019-07-25 東レ株式会社 樹脂組成物、硬化膜、硬化膜のレリーフパターンの製造方法、電子部品、半導体装置、電子部品の製造方法、半導体装置の製造方法
JP7363030B2 (ja) 2018-01-17 2023-10-18 東レ株式会社 樹脂組成物、硬化膜、硬化膜のレリーフパターンの製造方法、電子部品、半導体装置、電子部品の製造方法、半導体装置の製造方法
JPWO2019182113A1 (ja) * 2018-03-23 2021-04-08 積水化成品工業株式会社 ビニル系樹脂粒子及びその製造方法
JP7263318B2 (ja) 2018-03-23 2023-04-24 積水化成品工業株式会社 ビニル系樹脂粒子及びその製造方法
CN113497360A (zh) * 2021-05-24 2021-10-12 西安空间无线电技术研究所 零透射太阳屏及星载天线反射器高精度型面控制热控结构

Also Published As

Publication number Publication date
TW201345972A (zh) 2013-11-16
KR20140139588A (ko) 2014-12-05
JP6036809B2 (ja) 2016-11-30
JPWO2013147009A1 (ja) 2015-12-14
US20150091204A1 (en) 2015-04-02
CN104204044A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
JP6036809B2 (ja) ポリイミドフィルムの製造方法およびポリイミドフィルム
JP5880658B2 (ja) ポリイミドフィルム、およびこれらのポリイミド積層体、ポリイミド金属積層体
KR20110031293A (ko) 폭방향의 선팽창 계수가 반송 방향의 선팽창 계수보다 작은 방향족 폴리이미드 필름의 제조 방법
JP5713242B2 (ja) フレキシブル金属張積層体
KR100811586B1 (ko) 폴리이미드와 도체층을 포함하는 적층체, 이의 제조방법 및 이를 사용한 다층 배선판
JPWO2003097725A1 (ja) ポリイミドフィルムおよびその製造方法、並びにポリイミドフィルムを用いたポリイミド/金属積層体
WO2016013627A1 (ja) 多層ポリイミドフィルム、多層ポリイミドフィルムの製造方法、それを用いたポリイミド積層体、及びそれらに用いられる共重合ポリイミド
JP5609891B2 (ja) ポリイミドフィルムの製造方法、およびポリイミドフィルム
TW202225270A (zh) 非熱塑性聚醯亞胺膜、多層聚醯亞胺膜、及金屬貼合積層板
JP2002316386A (ja) 銅張積層体およびその製造方法
JP2008111074A (ja) ポリイミドフィルム及び太陽電池
US20130199771A1 (en) Heat-dissipating substrate for led
US10743418B2 (en) Thinned flexible polyimide substrate and method for manufacturing the same
JP2007131005A (ja) ポリイミド/金属積層体並びにそれを用いた電気・電子機器用基盤、磁気記録用基盤、太陽電池用基盤、宇宙空間航行用機材の被覆フィルム、及びフィルム状抵抗体
JP2000326442A (ja) ポリイミド/金属積層体並びにそれを用いた電気・電子機器用基盤、磁気記録用基盤、太陽電池用基盤、宇宙空間航行用機材の被覆フィルム、及びフィルム状抵抗体
JP6776087B2 (ja) 金属張積層板の製造方法及び回路基板の製造方法
JP2011046099A (ja) 樹脂/金属積層体およびcis系太陽電池
JP2010267691A (ja) メタライジング用ポリイミドフィルムおよび金属積層ポリイミドフィルム
JP5499555B2 (ja) ポリイミドフィルムおよびポリイミドフィルムの製造方法
JP2004315601A (ja) 接着性の改良されたポリイミドフィルム、その製造法および積層体
JP2006281517A (ja) フレキシブル銅張積層板の製造方法
JP2006316232A (ja) 接着フィルムおよびその製造方法
KR20150078688A (ko) 폴리이미드 적층체와 그 제조방법 및 태양전지
TWI654076B (zh) 導體層之形成方法、及利用該形成方法的多層配線基板之製造方法
KR20040084029A (ko) 양면 금속 적층판 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508022

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14389159

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147029889

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13767754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE