WO2013146791A1 - 酸化チタンペースト - Google Patents

酸化チタンペースト Download PDF

Info

Publication number
WO2013146791A1
WO2013146791A1 PCT/JP2013/058816 JP2013058816W WO2013146791A1 WO 2013146791 A1 WO2013146791 A1 WO 2013146791A1 JP 2013058816 W JP2013058816 W JP 2013058816W WO 2013146791 A1 WO2013146791 A1 WO 2013146791A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide paste
meth
paste
dye
Prior art date
Application number
PCT/JP2013/058816
Other languages
English (en)
French (fr)
Inventor
佐々木 拓
麻由美 堀木
聡 羽根田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020147014940A priority Critical patent/KR102030862B1/ko
Priority to EP13767414.9A priority patent/EP2837599A4/en
Priority to CN201380018090.0A priority patent/CN104220377B/zh
Priority to US14/387,964 priority patent/US20150047709A1/en
Publication of WO2013146791A1 publication Critical patent/WO2013146791A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3676Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is a titanium oxide paste which is excellent in printability and capable of producing a porous titanium oxide layer having high porosity and few surface impurities even at low temperature firing, and porous oxidation using the titanium oxide paste
  • the present invention relates to a method of producing a titanium laminate and a dye-sensitized solar cell.
  • dye-sensitized solar cells are considered to be strong candidates for next-generation solar cells because they can be manufactured relatively easily, raw materials are cheap, and high photoelectric conversion efficiency can be obtained.
  • a layer of titanium oxide is used as an electrode material.
  • This titanium oxide layer 1) adsorbs the sensitizing dye, 2) accepts electron injection from the excited sensitizing dye, 3) transports the electron to the conductive layer, 4) electron transfers (reduction) from iodide ion to the dye It has the role of providing reaction sites and 5) light scattering and light confinement, etc., and is one of the most important factors that determine the performance of a solar cell.
  • the titanium oxide layer is required to be porous, and the surface area thereof should be as large as possible, and the impurities on the surface should be as small as possible.
  • a paste containing titanium oxide particles and an organic binder is printed on a substrate, the solvent is volatilized, and then a high temperature baking treatment is performed. A method of eliminating the organic binder is used. As a result, it is possible to obtain a porous film in which a large number of fine voids exist in the layer while the titanium oxide particles are sintered to one another.
  • ethylcellulose is generally used from the viewpoint of the dispersion retention of the titanium oxide particles and the printability such as the viscosity of the paste.
  • high-temperature firing treatment exceeding 500 ° C. is required, and there is a problem that resin substrates, the need for which is increasing in recent years for cost reduction, can not be used. there were.
  • the low temperature firing treatment since the residue of the organic binder remains on the surface of the titanium oxide particles, the sensitizing dye can not be adsorbed, and there is also a problem that the photoelectric conversion efficiency is significantly reduced.
  • Patent Document 1 discloses performing a baking process at a low temperature using a paste in which the content of the organic binder is reduced.
  • the paste described in Patent Document 1 has a low viscosity, and it is difficult to maintain the shape during printing, so that the film thickness becomes uneven, the end shape collapses, and when printed in fine wiring There was a problem that coalescence of
  • the dispersion medium may be volatilized before printing to increase the viscosity, which may change the printability, and the problem of stable production is also new.
  • the present invention is a titanium oxide paste which is excellent in printability and capable of producing a porous titanium oxide layer having high porosity and few surface impurities even at low temperature firing, and porous oxidation using the titanium oxide paste It aims at providing a manufacturing method of a titanium layered product, and a dye-sensitized solar cell.
  • the present invention is a titanium oxide paste containing titanium oxide fine particles, (meth) acrylic resin, and an organic solvent, having a viscosity of 15 to 50 Pa ⁇ s, a thixo ratio of 2 or more, and under the atmosphere.
  • the content of the (meth) acrylic resin and the organic solvent after heating from 25 ° C. to 300 ° C. at a temperature rising rate of 10 ° C./min is 1% by weight or less.
  • the present inventors contain titanium oxide fine particles, a (meth) acrylic resin, and an organic solvent, and set the viscosity, thixo ratio, and content of the organic component after heating within a predetermined range.
  • a porous titanium oxide layer having high porosity and few surface impurities even at low temperature baking while maintaining printability, and thus, for example, as a material for a dye-sensitized solar cell
  • high photoelectric conversion efficiency can be realized.
  • the dye-sensitized solar cell obtained using such a titanium oxide paste also discovered that it became possible to fully adsorb a sensitizing dye in a short time, and came to complete this invention.
  • the titanium oxide paste of the present invention contains titanium oxide fine particles. Titanium oxide can be suitably used because of its wide band gap and relatively abundant resources.
  • titanium oxide fine particles for example, titanium oxide fine particles of rutile type, titanium oxide fine particles of anatase type, titanium oxide fine particles of brookite type, titanium oxide fine particles obtained by modifying these crystalline titanium oxides, etc. can be used.
  • the lower limit of the average particle diameter of the titanium oxide fine particles is preferably 1 nm, preferably 50 nm, more preferably 5 nm, and still more preferably 25 nm.
  • the porous titanium oxide layer obtained will have a sufficient specific surface area.
  • recombination of electrons and holes can be prevented.
  • two or more types of fine particles having different particle size distributions may be mixed.
  • the preferable lower limit of the addition amount of the titanium oxide fine particles is 5% by weight, and the preferable upper limit is 75% by weight with respect to the titanium oxide paste.
  • the addition amount is less than 5% by weight, a porous titanium oxide layer having a sufficient thickness may not be obtained, and when it exceeds 75% by weight, the viscosity of the paste increases and printing can not be performed smoothly. is there.
  • a more preferred lower limit is 10% by weight, and a more preferred upper limit is 50% by weight.
  • a more preferable lower limit is 20% by weight, and a still more preferable upper limit is 35% by weight.
  • the titanium oxide paste of the present invention contains a (meth) acrylic resin. Since the said (meth) acrylic resin is excellent in low-temperature decomposability
  • the (meth) acrylic resin is not particularly limited as long as it decomposes at a low temperature of about 300 ° C.
  • a polymer comprising at least one selected from the group consisting of (meth) acrylic monomers having a polyoxyalkylene structure is preferably used.
  • (meth) acrylate means acrylate or methacrylate.
  • the (meth) acrylic resin is preferably a polymer of (meth) acrylate having 2 or more carbon atoms in the ester residue, or a polymer of (meth) acrylate having a branched alkyl group in the ester residue.
  • polyisobutyl methacrylate isobutyl methacrylate polymer
  • Tg glass transition temperature
  • the lower limit of the weight average molecular weight of the (meth) acrylic resin in terms of polystyrene conversion is 5,000, and the upper limit is 500000.
  • the upper limit of the weight average molecular weight is preferably 100,000, and more preferably 50,000.
  • the measurement of the weight average molecular weight by polystyrene conversion can be obtained by performing GPC measurement using, for example, a column LF-804 (manufactured by SHOKO Co., Ltd.) as a column.
  • the content of the (meth) acrylic resin in the titanium oxide paste of the present invention is not particularly limited, but the preferable lower limit is 10% by weight, and the preferable upper limit is 50% by weight. If the content of the (meth) acrylic resin is less than 10% by weight, sufficient viscosity may not be obtained for the titanium oxide paste, and the printability may decrease. If it exceeds 50% by weight, the titanium oxide paste The viscosity and adhesion may be too high, resulting in poor printability.
  • the content of the (meth) acrylic resin is preferably smaller than that of the titanium oxide fine particles. When the amount of the (meth) acrylic resin is larger than that of the titanium oxide fine particles, the residual amount of the (meth) acrylic resin after heating may be increased.
  • a binder resin in addition to the above (meth) acrylic resin, another small amount of a binder resin may be added within a range that does not leave surface impurities even at low temperature firing.
  • the binder resin include polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyethylene glycol, polystyrene, polylactic acid and the like.
  • the titanium oxide paste of the present invention contains an organic solvent.
  • the organic solvent is preferably one having excellent solubility and high polarity of (meth) acrylic resin, for example, terpene solvents such as ⁇ -terpineol and ⁇ -terpineol, alcohol solvents such as ethanol and isopropyl alcohol, diol And polyhydric alcohol solvents such as triol, mixed solvents such as the above-mentioned alcohol solvents / hydrocarbons, and hetero compounds such as dimethylformamide, dimethyl sulfoxide, tetrahydrofuran and the like. Among them, terpene solvents are preferable.
  • the organic solvent preferably has a boiling point of 100 to 300 ° C.
  • the boiling point of the organic solvent is less than 100 ° C.
  • the obtained titanium oxide paste is easily dried during printing, and problems may occur when used for continuous printing for a long time.
  • the said boiling point exceeds 300 degreeC, the drying property in the drying process after printing will fall in the obtained titanium oxide paste.
  • the said boiling point means the boiling point in a normal pressure.
  • the preferable lower limit of the content of the organic solvent is 55% by weight, and the preferable upper limit is 74% by weight. If the content of the organic solvent is less than 55% by weight, the resulting titanium oxide paste may have a high viscosity and a poor printability. When the content of the organic solvent exceeds 74% by weight, the viscosity of the obtained titanium oxide paste may be too low and the printability may be deteriorated.
  • a more preferred lower limit is 60% by weight, and a more preferred upper limit is 70% by weight.
  • the titanium oxide paste of the present invention has a viscosity lower limit of 15 Pa ⁇ s and an upper limit of 50 Pa ⁇ s.
  • the viscosity is less than 15 Pa ⁇ s, shape retention during printing becomes difficult.
  • the viscosity exceeds 50 Pa ⁇ s, the obtained titanium oxide paste becomes inferior in coatability.
  • the preferable lower limit of the viscosity is 17.5 Pa ⁇ s, and the preferable upper limit is 45 Pa ⁇ s.
  • the said viscosity measures dynamic viscosity in 25 degreeC and 10 rpm shear using E-type viscosity meter.
  • the lower limit of the thixo ratio is 2.
  • the preferred lower limit of the thixo ratio is 2.25, and the preferred upper limit is 5.
  • the thixo ratio can be determined by dividing the kinematic viscosity at 25 ° C. and 0.5 rpm shear by the kinematic viscosity at 5 rpm shear using an E-type viscometer.
  • the titanium oxide paste of the present invention preferably has a viscosity change rate of 105% or less when the squeegee operation is repeated 25 times under normal temperature and air atmosphere. If the viscosity change rate exceeds 105%, the printability may change, making stable production difficult.
  • the above viscosity change rate is the ratio of viscosity before and after the operation of placing the titanium oxide paste on glass, spreading the titanium oxide paste thinly on the glass surface using a rubber squeegee, and scraping the paste 25 times.
  • the viscosity is the viscosity measured at 25 ° C. and 10 rpm shear using an E-type viscometer.
  • the content of the (meth) acrylic resin and the organic solvent after heating from 25 ° C. to 300 ° C. at a temperature rising rate of 10 ° C./min in an air atmosphere is 1% by weight or less. Since the titanium oxide paste of the present invention has few surface impurities after heating, bonding (necking) between fine particles is likely to occur, and as a result, it becomes possible to reduce the resistance between particles, so that the dye-sensitized solar When used as a material of a battery, high photoelectric conversion efficiency can be realized. When the content is more than 1% by weight, impurities remain on the surface of the titanium oxide fine particles, so that the sensitizing dye can not be adsorbed. In addition, the said content is content with respect to a titanium oxide fine particle.
  • the titanium oxide paste of the present invention is not only excellent in printability, but it is also possible to suitably manufacture a porous titanium oxide layer having high porosity and few surface impurities even at low temperature firing.
  • the titanium oxide paste of the present invention is excellent in compatibility with the organic solvent generally used for cleaning the screen plate and can be sufficiently cleaned and removed after use, thereby reducing clogging of the screen plate. It is possible to perform screen printing stably and for a long time.
  • the titanium oxide paste of the present invention is used as a material of a dye-sensitized solar cell, the sensitizing dye can be sufficiently adsorbed in a short time, and the obtained dye-sensitized solar cell has high photoelectric conversion Efficiency can be realized.
  • a method of manufacturing the titanium oxide paste of the present invention a method having a mixing step of mixing titanium oxide fine particles, a (meth) acrylic resin, and an organic solvent can be used.
  • the mixing method include a method of mixing using a 2-roll mill, 3-roll mill, beads mill, bead mill, ball mill, disper, planetary mixer, rotation / revolution stirring device, kneader, extruder, mix rotor, stirrer, etc. Can be mentioned.
  • the titanium oxide fine particles are sintered by printing the titanium oxide paste of the present invention on a substrate, forming a titanium oxide paste layer on the substrate, and firing the titanium oxide paste layer.
  • the method for producing a porous titanium oxide laminate is also one of the present invention, comprising the step of forming a porous titanium oxide layer on the substrate.
  • the method for producing a porous titanium oxide laminate of the present invention comprises the steps of printing the titanium oxide paste of the present invention on a substrate and forming a titanium oxide paste layer on the substrate. Although it does not specifically limit as method to print the said titanium oxide paste on a base material, It is preferable to use the screen-printing method.
  • the titanium oxide paste on a substrate, as the substrate, for example, when used for dye-sensitized solar cell applications, it is coated on the transparent conductive layer of a transparent substrate on which a transparent conductive layer is formed. It does by working.
  • the transparent substrate is not particularly limited as long as it is a transparent substrate, and examples thereof include glass substrates such as silicate glass. Further, the glass substrate may be chemically and thermally reinforced. Furthermore, various plastic substrates and the like may be used as long as light transparency can be secured.
  • the thickness of the transparent substrate is preferably 0.1 to 10 mm, and more preferably 0.3 to 5 mm.
  • the transparent conductive layer examples include a layer formed of a conductive metal oxide of In 2 O 3 or SnO 2 , and a layer formed of a conductive material such as metal.
  • a conductive metal oxide e.g., In 2 O 3: Sn ( ITO), SnO 2: Sb, SnO 2: F, ZnO: Al, ZnO: F, CdSnO 4 , and the like.
  • the method for producing a porous titanium oxide laminate of the present invention comprises the steps of sintering the above-mentioned titanium oxide fine particles to form a porous titanium oxide layer on the above-mentioned base material.
  • the sintering of the titanium oxide fine particles can be appropriately adjusted in temperature, time, atmosphere and the like depending on the type of the substrate to be coated and the like. For example, it is preferable to carry out in the atmosphere or in an inert gas atmosphere at about 50 to 800 ° C. for about 10 seconds to 12 hours. Also, drying and calcination may be performed once at a single temperature or twice or more at different temperatures.
  • a step of adsorbing a sensitizing dye to the porous titanium oxide laminate thus obtained is carried out, and it is placed opposite to the counter electrode, and an electrolyte layer is formed between these electrodes, thereby achieving dye sensitization.
  • Solar cells can be manufactured.
  • the dye-sensitized solar cell thus obtained can achieve high photoelectric conversion efficiency.
  • Examples of the method of adsorbing the sensitizing dye include a method of immersing and removing the alcohol after immersing the porous titanium oxide laminate in an alcohol solution containing the sensitizing dye.
  • the sensitizing dye examples include ruthenium dyes such as ruthenium-tris, ruthenium-bis type ruthenium dyes, phthalocyanines, porphyrins, cyanidin dyes, merocyanine dyes, rhodamine dyes, xanthene dyes, triphenylmethane dyes and the like.
  • ruthenium dyes such as ruthenium-tris, ruthenium-bis type ruthenium dyes, phthalocyanines, porphyrins, cyanidin dyes, merocyanine dyes, rhodamine dyes, xanthene dyes, triphenylmethane dyes and the like.
  • a titanium oxide paste capable of producing a porous titanium oxide layer excellent in printability and having high porosity and few surface impurities even at low temperature firing, and porosity using the titanium oxide paste It is possible to provide a method for producing a high quality titanium oxide laminate and a dye-sensitized solar cell.
  • FIG. 7 is a photomicrograph taken of the shape of the porous titanium oxide layer obtained in Example 2. It is the microscope picture which image
  • FIG. It is the microscope picture which image
  • FIG. It is a sample of a smooth sintered film in film-formability evaluation after repeated printing. It is a sample of the sintered film which has an unevenness
  • Example 1 (Preparation of titanium oxide paste) Using a bead mill to obtain the composition shown in Table 1, using titanium oxide fine particles having an average particle size of 20 nm, an isobutyl methacrylate polymer (weight average molecular weight 50000) as an organic binder, and ⁇ -terpineol (boiling point 219 ° C.) as an organic solvent. A titanium oxide paste was produced by uniformly mixing.
  • the obtained titanium oxide paste was printed in a square shape of 5 mm square on a 25 mm square FTO transparent electrode-formed glass substrate, and fired at 300 ° C. for 1 hour to obtain a porous titanium oxide layer.
  • the printing conditions were finely adjusted such that the thickness of the obtained porous titanium oxide layer was 10 ⁇ m.
  • Example 2 A titanium oxide paste was prepared in the same manner as in Example 1 except that the amounts of the titanium oxide fine particles, the organic binder and the organic solvent were changed so as to obtain the composition shown in Table 1 in (Preparation of titanium oxide paste). A high quality titanium oxide layer and a dye-sensitized solar cell were obtained.
  • the organic solvent in addition to ⁇ -terpineol (boiling point 219 ° C.), 2,4-diethyl-1,5-pentanediol (PD-9, boiling point 264 ° C.) and ethanol (boiling point 78 ° C.) were used.
  • Example 1 In Example 1 (preparation of titanium oxide paste), ethyl cellulose (manufactured by Wako Pure Chemical Industries, 45% ethoxy, 10 cP) is used as the organic binder instead of the isobutyl methacrylate polymer so that the composition in Table 1 can be obtained.
  • a titanium oxide paste, a porous titanium oxide layer, and a dye-sensitized solar cell were obtained in the same manner as in Example 1 except that the respective components were changed.
  • a titanium oxide paste was prepared in the same manner as in Example 1 except that the amounts of the titanium oxide fine particles, the organic binder and the organic solvent were changed so as to obtain the composition shown in Table 1 in (Preparation of titanium oxide paste). A high quality titanium oxide layer and a dye-sensitized solar cell were obtained.
  • the viscosity is measured by measuring the kinematic viscosity of the obtained titanium oxide paste at 25 ° C. and 10 rpm shear using an E-type viscometer (TVE 25H, manufactured by Toki Sangyo Co., Ltd.) did.
  • the thixo ratio was determined by dividing the kinematic viscosity at 0.5 rpm shear by the kinematic viscosity at 5 rpm shear.
  • the obtained titanium oxide paste is placed on glass, and the viscosity measurement is also performed after repeating the operation of thinly spreading the titanium oxide paste on the glass surface using a rubber squeegee and scraping it 25 times. The viscosity change rate before and after the squeegee was calculated.
  • the mobility of holes in the obtained porous titanium oxide layer is measured using a Hall effect measuring machine (ResiTest 8300, manufactured by Toyo Corporation), and an alternative evaluation of the necking state is performed. went.
  • the hole mobility of the titanium oxide crystal is 10 cm 2 / V ⁇ s or more, and the closer it is, ie, the larger the value, the more the necking progresses, which means that the interparticle resistance is reduced.
  • Table 1 the numerical values normalized with the hole mobility in Comparative Example 1 as 1.00 are shown.
  • Example 1 preparation of dye-sensitized solar cell
  • the dye adsorption amount after immersion for 12 hours was evaluated after the immersion for 6 hours when the dye adsorption amount after immersion was 1.00.
  • dye adsorption amount was measured by the method similar to "(4) pigment
  • a titanium oxide paste capable of producing a porous titanium oxide layer excellent in printability and having high porosity and few surface impurities even at low temperature firing, and porosity using the titanium oxide paste It is possible to provide a method for producing a high quality titanium oxide laminate and a dye-sensitized solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本発明は、印刷性に優れ、低温焼成でも空孔率が高く表面の不純物が少ない多孔質酸化チタン層を製造することが可能な酸化チタンペースト、及び、該酸化チタンペーストを用いた多孔質酸化チタン積層体の製造方法、及び、色素増感太陽電池を提供することを目的とする。 本発明は、酸化チタン微粒子と、(メタ)アクリル樹脂と、有機溶媒とを含有する酸化チタンペーストであって、粘度が15~50Pa・s、チキソ比が2以上であり、かつ、大気雰囲気下において25℃から300℃まで10℃/分の昇温速度で加熱した後の(メタ)アクリル樹脂及び有機溶媒の含有量が1重量%以下である酸化チタンペーストである。

Description

酸化チタンペースト
本発明は、印刷性に優れ、低温焼成でも空孔率が高く表面の不純物が少ない多孔質酸化チタン層を製造することが可能な酸化チタンペースト、及び、該酸化チタンペーストを用いた多孔質酸化チタン積層体の製造方法、及び、色素増感太陽電池に関する。
化石燃料の枯渇問題や地球温暖化問題を背景に、クリーンエネルギー源としての太陽電池が、近年大変注目されてきており、研究開発が盛んに行なわれるようになってきている。
従来、実用化されてきたのは、単結晶Si、多結晶Si、アモルファスSi等に代表されるシリコン系太陽電池であるが、高価であることや原料Siの不足問題等が表面化するにつれて、次世代太陽電池への要求が高まりつつある。
これに対応する太陽電池として有機系太陽電池が近年注目を浴びており、その中でも特に色素増感太陽電池が注目されている。色素増感太陽電池は、比較的容易に製造でき、原材料が安く、かつ高い光電変換効率を得られるため、次世代太陽電池の有力候補と考えられている。色素増感太陽電池においては、従来、電極材料として酸化チタンを層状に形成したものが用いられている。この酸化チタン層は、1)増感色素の吸着、2)励起した増感色素からの電子注入受け入れ、3)導電層への電子輸送、4)ヨウ化物イオンから色素への電子移動(還元)反応場の提供、並びに、5)光散乱及び光閉じこめ等の役割を持っており、太陽電池の性能を決めるもっとも重要な因子の一つである。
このうち、「1)増感色素の吸着」については、光電変換効率を向上させるため、より多くの増感色素を吸着させることが必要となる。従って、酸化チタン層は多孔質状であることが求められ、その表面積をできるだけ大きくし、表面の不純物をなるべく少なくすることが求められる。通常、このような多孔質の酸化チタン層を形成する方法としては、酸化チタン粒子と有機バインダとを含有するペーストを基材上に印刷し、溶剤を揮発させた後、更に高温焼成処理にて有機バインダを消失させる方法が用いられている。これにより、酸化チタン粒子同士が焼結しつつ、多数の微細な空隙が層中に存在する多孔質膜を得ることが出来る。
このような酸化チタン粒子を含有するペーストに使用される有機バインダとしては、酸化チタン粒子の分散保持性やペーストの粘度等の印刷性の観点からエチルセルロースが一般的に使用されている。しかしながら、エチルセルロースを完全に消失させるためには、500℃を超えるような高温焼成処理が必要であり、近年更なるコストダウンのためにニーズが高まっている樹脂基材を用いることができないという問題があった。また、低温焼成処理を行った場合は、酸化チタン粒子表面に有機バインダの残渣が残ってしまうため増感色素を吸着することが出来ず、光電変換効率が著しく低下するという問題もあった。
これに対して、例えば、特許文献1には、有機バインダの含有量を低減させたペーストを用いて低温での焼成処理を行うことが開示されている。しかしながら、特許文献1に記載のペーストは粘度が低く、印刷時の形状保持が困難であり、膜厚の不均一化や端部形状の崩壊、また、微細配線状に印刷した際には配線同士の合着が起こるという問題があった。
更に、有機バインダとしてエチルセルロースを使用する場合、溶媒としては低級アルコールや、低級アルコールとテルピネオール等の高粘度溶媒との混合溶媒が用いられるが、ペースト印刷時には、長い間外気に曝されたり、版やスキージといった装置から強いせん断等の外力を受けたりするため、印刷前に分散媒が揮発して粘度が高くなることで印刷性が変化してしまうことがあり、安定した生産が難しいという問題も新たに生じていた。
一方、色素増感太陽電池では、光電変換効率の向上のため、可能な限り多くの増感色素を担持させることが好ましいが、従来の有機バインダを含有するペーストを用いた場合、充分な量の増感色素を担持できなかったり、増感色素の担持に長期間を要したりするという問題があった。
特許第4801899号公報
本発明は、印刷性に優れ、低温焼成でも空孔率が高く表面の不純物が少ない多孔質酸化チタン層を製造することが可能な酸化チタンペースト、及び、該酸化チタンペーストを用いた多孔質酸化チタン積層体の製造方法、及び、色素増感太陽電池を提供することを目的とする。
本発明は、酸化チタン微粒子と、(メタ)アクリル樹脂と、有機溶媒とを含有する酸化チタンペーストであって、粘度が15~50Pa・s、チキソ比が2以上であり、かつ、大気雰囲気下において25℃から300℃まで10℃/分の昇温速度で加熱した後の(メタ)アクリル樹脂及び有機溶媒の含有量が1重量%以下である酸化チタンペーストである。
以下に本発明を詳述する。
本発明者らは、鋭意検討の結果、酸化チタン微粒子と(メタ)アクリル樹脂と有機溶媒とを含有し、かつ、粘度、チキソ比及び加熱後の有機成分の含有量を所定の範囲内とすることで、印刷性を保持しつつ、低温焼成でも空孔率が高く表面の不純物が少ない多孔質酸化チタン層を製造することが可能となることから、例えば、色素増感太陽電池の材料として用いた場合に、高い光電変換効率を実現できることを見出した。
また、このような酸化チタンペーストを用いて得られる色素増感太陽電池は、短時間で増感色素を充分に吸着させることが可能となることも見出し、本発明を完成させるに至った。
本発明の酸化チタンペーストは、酸化チタン微粒子を含有する。酸化チタンは、バンドギャップが広く、資源も比較的に豊富にあるという理由から、好適に使用することができる。
上記酸化チタン微粒子としては、例えば、通常ルチル型の酸化チタン微粒子、アナターゼ型の酸化チタン微粒子、ブルッカイト型の酸化チタン微粒子及びこれら結晶性酸化チタンを修飾した酸化チタン微粒子等を用いることができる。
上記酸化チタン微粒子の平均粒子径は、好ましい下限が1nm、好ましい上限が50nmであり、より好ましい下限は5nm、より好ましい上限は25nmである。上記範囲内とすることで、得られる多孔質酸化チタン層が充分な比表面積を有するものとなる。また、電子と正孔の再結合を防ぐことができる。また、粒子径分布の異なる2種類以上の微粒子を混合してもよい。
上記酸化チタン微粒子の添加量の好ましい下限は酸化チタンペーストに対して5重量%、好ましい上限は75重量%である。上記添加量が5重量%未満であると、十分な厚みの多孔質酸化チタン層を得ることができないことがあり、75重量%を超えると、ペーストの粘度が上昇して平滑に印刷できないことがある。より好ましい下限は10重量%、より好ましい上限は50重量%である。更に好ましい下限は20重量%、更に好ましい上限は35重量%である。
本発明の酸化チタンペーストは、(メタ)アクリル樹脂を含有する。上記(メタ)アクリル樹脂は、低温分解性に優れることから、低温焼成を行う場合でも有機残渣量が少ない酸化チタンペーストとすることができる。また、(メタ)アクリル樹脂は低粘度特性であることから、作業環境において溶媒揮発が起きても粘度特性の変化を大幅に抑えることができるため、安定した印刷を行うことができる。
上記(メタ)アクリル樹脂としては300℃程度の低温で分解するものであれば特に限定されないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート及びポリオキシアルキレン構造を有する(メタ)アクリルモノマーからなる群より選択される少なくとも1種からなる重合体が好適に用いられる。ここで、例えば(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。
上記(メタ)アクリル樹脂としては、エステル残基の炭素数が2以上の(メタ)アクリレートの重合体、エステル残基に分岐状のアルキル基を有する(メタ)アクリレートの重合体が好ましい。なかでも、少ない樹脂の量で高い粘度を得ることができることから、ガラス転移温度(Tg)が高く、かつ、低温脱脂性に優れるメチルメタクリレートの重合体であるポリイソブチルメタクリレート(イソブチルメタクリレート重合体)が好適である。
上記(メタ)アクリル樹脂のポリスチレン換算による重量平均分子量の下限は5000、上限は500000である。上記重量平均分子量が5000未満であると、充分な粘度を発現することができないために印刷用途に適さず、500000を超えると、本発明の酸化チタンペーストの粘着力が高くなり、延糸が発生したりし、印刷性が低下する。上記重量平均分子量の好ましい上限は100000であり、より好ましい上限は50000である。なお、ポリスチレン換算による重量平均分子量の測定は、カラムとして例えばカラムLF-804(SHOKO社製)を用いてGPC測定を行うことで得ることができる。
本発明の酸化チタンペーストにおける(メタ)アクリル樹脂の含有量としては特に限定されないが、好ましい下限は10重量%、好ましい上限は50重量%である。上記(メタ)アクリル樹脂の含有量が10重量%未満であると、酸化チタンペーストに充分な粘度が得られず、印刷性が低下することがあり、50重量%を超えると、酸化チタンペーストの粘度、粘着力が高くなりすぎて印刷性が悪くなることがある。
なお、上記(メタ)アクリル樹脂は、上記酸化チタン微粒子よりも少ない含有量であることが好ましい。上記(メタ)アクリル樹脂が、上記酸化チタン微粒子よりも多くなると、加熱後の(メタ)アクリル樹脂残留量が多くなることがある。
本発明の酸化チタンペーストは、上記(メタ)アクリル樹脂に加えて、低温焼成でも表面の不純物が残らない程度の範囲内において他の少量のバインダ樹脂を添加してもよい。上記バインダ樹脂としては、例えば、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリエチレングリコール、ポリスチレン、ポリ乳酸等が挙げられる。
本発明の酸化チタンペーストは、有機溶媒を含有する。上記有機溶媒としては、(メタ)アクリル樹脂の溶解性に優れ、極性が高いものが好ましく、例えば、α-テレピネオール、γ-テレピネオール等のテルペン系溶剤、エタノール、イソプロピルアルコール等のアルコール系溶剤、ジオール、トリオール等の多価アルコール系溶剤、上記アルコール系溶媒/炭化水素等の混合溶媒、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン等のへテロ化合物等が挙げられる。なかでも、テルペン系溶剤が好ましい。
上記有機溶媒は、沸点が100~300℃であることが好ましい。上記有機溶媒の沸点が100℃未満であると、得られる酸化チタンペーストは、印刷中に乾燥しやすく、長時間の連続印刷に用いる場合には不具合が生じることがある。上記沸点が300℃を超えると、得られる酸化チタンペーストは、印刷後の乾燥工程における乾燥性が低下する。なお、上記沸点は、常圧における沸点を意味する。
上記有機溶媒の含有量の好ましい下限は55重量%、好ましい上限は74重量%である。上記有機溶媒の含有量が55重量%未満であると、得られる酸化チタンペーストは、粘度が高くなり、印刷性が悪くなることがある。上記有機溶媒の含有量が74重量%を超えると、得られる酸化チタンペーストの粘度が低くなりすぎて印刷性が悪くなることがある。より好ましい下限は60重量%、より好ましい上限は70重量%である。
本発明の酸化チタンペーストは、粘度の下限が15Pa・s、上限が50Pa・sである。上記粘度が15Pa・s未満であると、印刷時の形状保持が困難となる。上記粘度が50Pa・sを超えると、得られる酸化チタンペーストが塗工性に劣るものとなる。上記粘度の好ましい下限は17.5Pa・s、好ましい上限は45Pa・sである。
なお、上記粘度は、E型粘度計を用いて25℃、10rpmせん断時における動粘度を測定したものである。
本発明の酸化チタンペーストは、チキソ比の下限が2である。上記チキソ比が2未満であると、印刷後の形状保持が難しく、膜厚の不均一化や端部形状の崩壊、また、微細配線状に印刷した際には配線同士の合着が起こる。上記チキソ比の好ましい下限は2.25、好ましい上限は5である。なお、上記チキソ比は、E型粘度計を用いて25℃、0.5rpmせん断時の動粘度を5rpmせん断時の動粘度で割ることによって求めることができる。
本発明の酸化チタンペーストは、常温、大気雰囲気下において、スキージ操作を25回繰り返した場合の粘度変化率が105%以下であることが好ましい。上記粘度変化率が105%を超えると、印刷性が変化してしまうことがあり、安定した生産が難しくなる。
なお、上記粘度変化率は、酸化チタンペーストをガラス上に乗せ、ゴム製スキージを用いてガラス表面に酸化チタンペーストを薄く延ばし、また擦り取るという操作を25回繰り返した前後の粘度の比率であり、粘度は、E型粘度計を用いて25℃、10rpmせん断時における動粘度を測定したものである。
本発明の酸化チタンペーストは、大気雰囲気下において25℃から300℃まで10℃/分の昇温速度で加熱した後の(メタ)アクリル樹脂及び有機溶媒の含有量が1重量%以下である。
本発明の酸化チタンペーストは、加熱後の表面不純物が少ないことから、微粒子間の結合(ネッキング)が起こりやすく、その結果、粒子間抵抗を低減することが可能となることから、色素増感太陽電池の材料として用いた場合に、高い光電変換効率を実現することができる。
上記含有量が1重量%を超えると、酸化チタン微粒子表面に不純物が残ってしまうため増感色素を吸着することが出来ない。なお、上記含有量は、酸化チタン微粒子に対する含有量である。
本発明の酸化チタンペーストは、印刷性に優れるだけでなく、低温焼成でも空孔率が高く表面の不純物が少ない多孔質酸化チタン層を好適に製造することが可能となる。
また、本発明の酸化チタンペーストは、スクリーン版の洗浄に一般的に使用される有機溶剤との相溶性に優れ、使用後に充分に洗浄除去することができることから、スクリーン版の目詰まりを低減することができ、スクリーン印刷を安定して長期間行うことが可能となる。
更に、本発明の酸化チタンペーストは、色素増感太陽電池の材料として用いた場合、短時間で増感色素を充分に吸着させることが可能となり、得られる色素増感太陽電池は、高い光電変換効率を実現することができる。
本発明の酸化チタンペーストを製造する方法としては、酸化チタン微粒子と、(メタ)アクリル樹脂と、有機溶媒とを混合する混合工程を有する方法を用いることができる。上記混合の手段としては、例えば、2本ロールミル、3本ロールミル、ビーズミル、ボールミル、ディスパー、プラネタリーミキサー、自転公転式攪拌装置、ニーダー、押し出し機、ミックスローター、スターラー等を用いて混合する方法等が挙げられる。
本発明の酸化チタンペーストを基材上に印刷し、該基材上に酸化チタンペースト層を形成する工程と、前記酸化チタンペースト層を焼成処理することにより、前記酸化チタン微粒子を焼結させて、前記基材上に多孔質酸化チタン層を形成する工程とを有することを特徴とする多孔質酸化チタン積層体の製造方法もまた本発明の1つである。
本発明の多孔質酸化チタン積層体の製造方法は、本発明の酸化チタンペーストを基材上に印刷し、該基材上に酸化チタンペースト層を形成する工程を有する。
上記酸化チタンペーストを基材上に印刷する方法としては特に限定されないが、スクリーン印刷法を用いることが好ましい。
上記スクリーン印刷法による工程におけるスクリーン版の目開きの大きさ、スキージアタック角、スキージ速度、スキージ押圧力等については、適宜設定することが好ましい。
上記酸化チタンペーストを基材上に印刷する工程において、上記基材としては、例えば、色素増感太陽電池用途に使用する場合は、透明導電層を形成した透明基板の該透明導電層上に塗工することによって行う。
上記透明基板としては、透明な基板であれば特に限定されないが、珪酸塩ガラス等のガラス基板等が挙げられる。また、上記ガラス基板は、化学的、熱的に強化させたものを用いてもよい。更に、光透過性を確保できれば、種々のプラスチック基板等を使用してもよい。
上記透明基板の厚さは、0.1~10mmが好ましく、0.3~5mmがより好ましい。
上記透明導電層としては、InやSnOの導電性金属酸化物からなる層や金属等の導電性材料からなる層が挙げられる。上記導電性金属酸化物としては、例えば、In:Sn(ITO)、SnO:Sb、SnO:F、ZnO:Al、ZnO:F、CdSnO等が挙げられる。
本発明の多孔質酸化チタン積層体の製造方法は、上記酸化チタン微粒子を焼結させて、上記基材上に多孔質酸化チタン層を形成する工程を有する。
上記酸化チタン微粒子の焼結は、塗工する基板の種類等により、温度、時間、雰囲気等を適宜調整することができる。例えば、大気下又は不活性ガス雰囲気下、50~800℃程度の範囲内で、10秒~12時間程度行うことが好ましい。また、乾燥及び焼成は、単一の温度で1回又は温度を変化させて2回以上行ってもよい。
このようにして得られた多孔質酸化チタン積層体に増感色素を吸着させる工程を行い、対向電極と対向させて設置し、これらの電極の間に電解質層を形成することで、色素増感太陽電池セルを製造することができる。このようにして得られた色素増感太陽電池は、高い光電変換効率を達成することができる。上記増感色素を吸着する方法としては、例えば、増感色素を含むアルコール溶液に、上記多孔質酸化チタン積層体を浸漬した後、アルコールを乾燥除去する方法等が挙げられる。
上記増感色素としては、ルテニウム-トリス、ルテニウム-ビス型のルテニウム色素、フタロシアニンやポルフィリン、シアニジン色素、メロシアニン色素、ローダミン色素、キサンテン系色素、トリフェニルメタン色素等の有機色素が挙げられる。
本発明によれば、印刷性に優れ、低温焼成でも空孔率が高く表面の不純物が少ない多孔質酸化チタン層を製造することが可能な酸化チタンペースト、及び、該酸化チタンペーストを用いた多孔質酸化チタン積層体の製造方法、及び、色素増感太陽電池を提供できる。
実施例2で得られた多孔質酸化チタン層の形状を撮影した顕微鏡写真である。 比較例3で得られた多孔質酸化チタン層の形状を撮影した顕微鏡写真である。 比較例6で得られた多孔質酸化チタン層の形状を撮影した顕微鏡写真である。 繰り返し印刷後の成膜性評価において、平滑な焼結膜のサンプルである。 繰り返し印刷後の成膜性評価において、凹凸を有する焼結膜のサンプルである。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
(実施例1)
(酸化チタンペーストの作製)
平均粒子径が20nmの酸化チタン微粒子、有機バインダとしてイソブチルメタクリレート重合体(重量平均分子量50000)、有機溶媒としてα-テルピネオール(沸点219℃)を用い、表1の組成となるようにビーズミルを用いて均一に混合することにより酸化チタンペーストを作製した。
(多孔質酸化チタン層の形成)
得られた酸化チタンペーストを、25mm角のFTO透明電極形成済みガラス基板上に、5mm角の正方形状に印刷し、300℃で1時間焼成することにより多孔質酸化チタン層を得た。なお、得られた多孔質酸化チタン層の厚みが10μmとなるよう、印刷条件の微調整を行った。
(色素増感太陽電池の作製)
得られた多孔質酸化チタン層付き基板を、Ru錯体色素(N719)のアセトニトリル:t-ブタノール=1:1溶液(濃度0.3mM)中に1日浸漬することにより、多孔質酸化チタン層表面に増感色素を吸着させた。
次に、この基板上に、一方向を除いて多孔質酸化チタン層を取り囲むように厚さ30μmのハイミラン製フィルムを載せ、更にその上から白金電極を蒸着したガラス基板を乗せ、その隙間にヨウ化リチウム及びヨウ素のアセトニトリル溶液を注入、封止することで色素増感太陽電池を得た。
(実施例2~6)
実施例1の(酸化チタンペーストの作製)において、表1の組成となるように酸化チタン微粒子、有機バインダ、有機溶媒の量を変更した以外は、実施例1と同様にして酸化チタンペースト、多孔質酸化チタン層、色素増感太陽電池を得た。
なお、有機溶媒としては、α-テルピネオール(沸点219℃)のほか、2,4-ジエチル-1,5-ペンタンジオール(PD-9、沸点264℃)、エタノール(沸点78℃)を用いた。
(比較例1、2)
実施例1の(酸化チタンペーストの作製)において、有機バインダとしてイソブチルメタクリレート重合体に代えて、エチルセルロース(和光純薬工業社製、45%エトキシ、10cP)を用い、表1の組成となるように各成分を変更した以外は、実施例1と同様にして酸化チタンペースト、多孔質酸化チタン層、色素増感太陽電池を得た。
(比較例3~9)
実施例1の(酸化チタンペーストの作製)において、表1の組成となるように酸化チタン微粒子、有機バインダ、有機溶媒の量を変更した以外は、実施例1と同様にして酸化チタンペースト、多孔質酸化チタン層、色素増感太陽電池を得た。
<評価>
実施例及び比較例で得られた酸化チタンペースト、多孔質酸化チタン層、色素増感太陽電池について以下の評価を行った。結果を表1に示した。
(1)粘度及びチキソ比の測定
得られた酸化チタンペーストを、E型粘度計(TVE25H、東機産業社製)を用いて25℃、10rpmせん断時における動粘度を測定することで粘度を測定した。
また、0.5rpmせん断時の動粘度を5rpmせん断時の動粘度で割ることによってチキソ比を求めた。なお、粘度については、得られた酸化チタンペーストをガラス上に乗せ、ゴム製スキージを用いてガラス表面に酸化チタンペーストを薄く延ばし、また擦り取るという操作を25回繰り返した後の粘度測定も行い、スキージ前後での粘度変化率を算出した。
(2)焼成後の残渣量測定
得られた酸化チタンペーストを、TG:熱重量測定(TG/DTA6300、SII社製)を用いて大気雰囲気下、10℃/分の昇温速度で300℃まで加熱した際における、酸化チタンペースト中の酸化チタン微粒子の固形分量と得られたTGの残分量との差分から、酸化チタン重量に対する残渣成分量(焼成後の(メタ)アクリル樹脂及び有機溶媒の含有量)を求めた。
(3)多孔質酸化チタン層の形状評価
得られた多孔質酸化チタン層の端部を、光学顕微鏡(ME600、ニコン社製)を用いて観察し、形状が保持されている場合は「○」、形状が崩れている場合は「×」として評価を行った。なお、実施例2で得られた多孔質酸化チタン層の形状を撮影した顕微鏡写真を図1、比較例3で得られた多孔質酸化チタン層の形状を撮影した顕微鏡写真を図2、比較例6で得られた多孔質酸化チタン層の形状を撮影した顕微鏡写真を図3に示す。
(4)多孔質酸化チタン層の色素吸着量測定
実施例1の(色素増感太陽電池の作製)において、得られた増感色素を吸着させた多孔質酸化チタン層を、水酸化カリウム溶液中に浸漬することで増感色素を脱着させ、その脱着液の吸光スペクトルを分光光度計(U-3000、日立製作所社製)を用いて測定することで、色素吸着量を測定した。なお、表1には、比較例1の500nmにおける吸収スペクトルの大きさを1.00として規格化した数値を示した。
(5)多孔質酸化チタン層の移動度測定
得られた多孔質酸化チタン層のホール移動度を、ホール効果測定機(ResiTest8300、東陽テクニカ社製)を用いて測定し、ネッキング状態の代替評価を行った。なお、酸化チタン結晶体のホール移動度は10cm/V・s以上であり、これに近い、すなわち値の大きいほどネッキングが進行しており、粒子間抵抗が低減していることを表す。
なお、表1には、比較例1におけるホール移動度を1.00として規格化した数値を示した。
(6)色素増感太陽電池の性能評価
得られた色素増感太陽電池の電極間に、電源(236モデル、KEITHLEY社製)を接続し、100mW/cmの強度のソーラーシミュレータ(山下電装社製)を用いて、色素増感太陽電池の光電変換効率を測定した。なお、表1には、比較例1の変換効率、短絡電流密度を1.00として規格化した数値を示した。なお、変換効率については、得られた酸化チタンペーストをガラス上に乗せ、ゴム製スキージを用いてガラス表面に酸化チタンペーストを薄く延ばし、また擦り取るという操作を25回繰り返した後の酸化チタンペーストを用いた場合についても測定を行い、変換効率の変化率を算出した。
(7)色素吸着時間
実施例1の(色素増感太陽電池の作製)において、Ru錯体色素(N719)のアセトニトリル:t-ブタノール=1:1溶液(濃度0.3mM)中に1日(24時間)浸漬した後の色素吸着量を1.00とした場合における、6時間浸漬後、12時間浸漬後の色素吸着量を評価した。なお、色素吸着量は、「(4)多孔質酸化チタン層の色素吸着量測定」と同様の方法で測定した。
(8)繰り返し印刷後の成膜性
得られた酸化チタンペーストを用いて100回連続でスクリーン印刷した後、イソプロピルアルコールで洗浄を行うサイクルを10回繰り返した。その後、焼成後の膜厚が10μmとなるように印刷及び焼成を行い、焼結膜の形状を光学顕微鏡にて観察した。
図4のように平滑な焼結膜が得られる場合を「○」、図5のように凹凸を有する焼結膜が得られる場合を「×」として評価を行った。なお、焼結膜に凹凸が形成されるのは、スクリーン版の目詰まりによって、スクリーンメッシュの跡が残ったことによるものと考えられる。
Figure JPOXMLDOC01-appb-T000001
本発明によれば、印刷性に優れ、低温焼成でも空孔率が高く表面の不純物が少ない多孔質酸化チタン層を製造することが可能な酸化チタンペースト、及び、該酸化チタンペーストを用いた多孔質酸化チタン積層体の製造方法、及び、色素増感太陽電池を提供できる。

Claims (5)

  1. 酸化チタン微粒子と、(メタ)アクリル樹脂と、有機溶媒とを含有する酸化チタンペーストであって、粘度が15~50Pa・s、チキソ比が2以上であり、かつ、大気雰囲気下において25℃から300℃まで10℃/分の昇温速度で加熱した後の(メタ)アクリル樹脂及び有機溶媒の含有量が1重量%以下であることを特徴とする酸化チタンペースト。
  2. (メタ)アクリル樹脂は、ポリイソブチルメタクリレートであることを特徴とする請求項1記載の酸化チタンペースト。
  3. 有機溶媒は、沸点が100~300℃であることを特徴とする請求項1又は2記載の酸化チタンペースト。
  4. 請求項1、2又は3記載の酸化チタンペーストを基材上に印刷し、該基材上に酸化チタンペースト層を形成する工程と、前記酸化チタンペースト層を焼成処理することにより、前記酸化チタン微粒子を焼結させて、前記基材上に多孔質酸化チタン層を形成する工程とを有することを特徴とする多孔質酸化チタン積層体の製造方法。
  5. 請求項4記載の多孔質酸化チタン積層体の製造方法を用いて製造された多孔質酸化チタン積層体を用いてなることを特徴とする色素増感太陽電池。
     
PCT/JP2013/058816 2012-03-30 2013-03-26 酸化チタンペースト WO2013146791A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147014940A KR102030862B1 (ko) 2012-03-30 2013-03-26 산화티탄 페이스트
EP13767414.9A EP2837599A4 (en) 2012-03-30 2013-03-26 titanium oxide paste
CN201380018090.0A CN104220377B (zh) 2012-03-30 2013-03-26 氧化钛糊剂
US14/387,964 US20150047709A1 (en) 2012-03-30 2013-03-26 Titanium oxide paste

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012082653 2012-03-30
JP2012-082653 2012-03-30
JP2012-167534 2012-07-27
JP2012167534 2012-07-27
JP2012-212963 2012-09-26
JP2012212963A JP5982243B2 (ja) 2012-03-30 2012-09-26 酸化チタンペースト

Publications (1)

Publication Number Publication Date
WO2013146791A1 true WO2013146791A1 (ja) 2013-10-03

Family

ID=49260042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058816 WO2013146791A1 (ja) 2012-03-30 2013-03-26 酸化チタンペースト

Country Status (6)

Country Link
US (1) US20150047709A1 (ja)
EP (1) EP2837599A4 (ja)
JP (1) JP5982243B2 (ja)
KR (1) KR102030862B1 (ja)
CN (1) CN104220377B (ja)
WO (1) WO2013146791A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344759B2 (ja) * 2014-04-01 2018-06-20 学校法人東京理科大学 酸化物ナノ粒子含有ペースト、色素増感太陽電池用光電極、および色素増感太陽電池
JP6641667B2 (ja) * 2015-03-03 2020-02-05 株式会社リコー 塗工液、太陽電池用構造体、太陽電池、及び太陽電池用構造体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055845A1 (ja) * 2008-11-12 2010-05-20 積水化学工業株式会社 金属酸化物微粒子分散スラリー
JP2011181281A (ja) * 2010-02-26 2011-09-15 Sekisui Chem Co Ltd 加熱消滅性樹脂粒子、酸化チタン含有ペースト、多孔質酸化チタン積層体の製造方法、多孔質酸化チタン積層体及び色素増感太陽電池
JP4801899B2 (ja) 2004-12-10 2011-10-26 学校法人桐蔭学園 塗膜形成用組成物、それを用いて得られる電極及び光電変換素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071881A (en) * 1976-03-30 1978-01-31 E. I. Du Pont De Nemours And Company Dielectric compositions of magnesium titanate and devices thereof
WO2004017452A1 (ja) * 2002-08-13 2004-02-26 Bridgestone Corporation 色素増感型太陽電池の改良
US20050183769A1 (en) * 2003-11-10 2005-08-25 Hiroki Nakagawa Method of producing substrate for dye-sensitized solar cell and dye-sensitized solar cell
JP4960666B2 (ja) * 2006-08-17 2012-06-27 積水化学工業株式会社 無機微粒子分散ペースト組成物
KR20070100192A (ko) * 2007-07-30 2007-10-10 (주)디오 저온 산화티타늄 페이스트를 이용한 감응형 태양전지
JP2010118158A (ja) * 2008-11-11 2010-05-27 Samsung Yokohama Research Institute Co Ltd 光電変換素子用ペースト組成物、光電変換素子用多孔質膜の製造方法及び光電変換素子
JP5507954B2 (ja) * 2009-10-19 2014-05-28 三星エスディアイ株式会社 ガラスペースト組成物、電極基板とその製造方法、及び色素増感型太陽電池
JP2011181282A (ja) * 2010-02-26 2011-09-15 Sekisui Chem Co Ltd 多孔質層含有積層体の製造方法
JP2011210553A (ja) * 2010-03-30 2011-10-20 Sekisui Chem Co Ltd 酸化チタンペースト、多孔質酸化チタン積層体の製造方法、多孔質酸化チタン積層体及び色素増感太陽電池
CN102372303A (zh) * 2010-08-13 2012-03-14 林宽锯 金属氧化物网状结构材料,太阳能电池元件及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801899B2 (ja) 2004-12-10 2011-10-26 学校法人桐蔭学園 塗膜形成用組成物、それを用いて得られる電極及び光電変換素子
WO2010055845A1 (ja) * 2008-11-12 2010-05-20 積水化学工業株式会社 金属酸化物微粒子分散スラリー
JP2011181281A (ja) * 2010-02-26 2011-09-15 Sekisui Chem Co Ltd 加熱消滅性樹脂粒子、酸化チタン含有ペースト、多孔質酸化チタン積層体の製造方法、多孔質酸化チタン積層体及び色素増感太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2837599A4

Also Published As

Publication number Publication date
CN104220377B (zh) 2017-10-20
JP5982243B2 (ja) 2016-08-31
US20150047709A1 (en) 2015-02-19
CN104220377A (zh) 2014-12-17
EP2837599A1 (en) 2015-02-18
KR102030862B1 (ko) 2019-10-10
KR20140141569A (ko) 2014-12-10
EP2837599A4 (en) 2015-12-09
JP2014040557A (ja) 2014-03-06

Similar Documents

Publication Publication Date Title
KR101146667B1 (ko) 금속산화물 페이스트 조성물 및 그를 이용한 반도체 전극의제조방법
CN102779566B (zh) 晶体硅太阳能电池正面用无铅导电银浆
CN102360584B (zh) 含有炭黑助剂的光伏电池用导电浆料及其制备方法
TW201303895A (zh) 用於形成電極之銀膠組成物及其製備方法
JP6042932B2 (ja) 鉛フリーのガラスフリットを含む導電ペースト
CN103778993A (zh) 太阳能电池电极用银浆料组合物
Sun et al. Improvement of wettability of Te-modified lead-free glass frit and its effect to front side silver paste in crystalline silicon solar cells
WO2013146791A1 (ja) 酸化チタンペースト
JP5617051B1 (ja) 有機無機ハイブリッド太陽電池の製造方法及び有機無機ハイブリッド太陽電池
JPWO2015141541A1 (ja) 光電変換用正極、正極形成用スラリー及びこれらの製造方法
KR20110128264A (ko) 금속산화물 페이스트 조성물 및 그를 이용한 반도체 전극의 제조방법
JP6266981B2 (ja) 多孔質酸化チタン積層体の製造方法
KR20130043709A (ko) 잉크젯 인쇄용 전극조성물 및 이를 이용한 염료감응 태양전지용 전극 제조방법
KR101097752B1 (ko) 기능기가 증가된 광촉매 및 그 제조방법, 상기 광촉매를 포함하는 염료감응형 태양전지의 반도체 전극용 페이스트 조성물과 그 제조방법, 및 이를 이용한 염료감응형 태양전지 및 그 제조방법
JP5703088B2 (ja) 色素増感太陽電池電極形成用ペースト
JP2014040362A (ja) 酸化チタンペースト
JP5703087B2 (ja) 色素増感太陽電池用光電極
JP2014189459A (ja) 多孔質酸化チタン積層体の製造方法
JP6391334B2 (ja) 多孔質酸化チタン積層体の製造方法
JP2004153030A (ja) 半導体膜形成用塗布液、それを用いた半導体膜の製造方法及びそれを用いて得られる太陽電池
CN113571338A (zh) 半导体电极层形成用分散液和半导体电极层
CN104282357A (zh) 一种纳米低银含晶硅太阳能用背银导体浆料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147014940

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387964

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013767414

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE