WO2013146340A1 - インバータ装置 - Google Patents

インバータ装置 Download PDF

Info

Publication number
WO2013146340A1
WO2013146340A1 PCT/JP2013/057373 JP2013057373W WO2013146340A1 WO 2013146340 A1 WO2013146340 A1 WO 2013146340A1 JP 2013057373 W JP2013057373 W JP 2013057373W WO 2013146340 A1 WO2013146340 A1 WO 2013146340A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch element
active filter
circuit
inverter device
Prior art date
Application number
PCT/JP2013/057373
Other languages
English (en)
French (fr)
Inventor
植木浩一
伊東淳一
大沼喜也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201380015701.6A priority Critical patent/CN104205605B/zh
Priority to EP13767893.4A priority patent/EP2833536A4/en
Priority to JP2014507688A priority patent/JP5958531B2/ja
Publication of WO2013146340A1 publication Critical patent/WO2013146340A1/ja
Priority to US14/474,620 priority patent/US9148072B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0093Converters characterised by their input or output configuration wherein the output is created by adding a regulated voltage to or subtracting it from an unregulated input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an inverter device that converts an input DC voltage into an AC voltage and outputs the AC voltage.
  • Patent Document 1 discloses an AC power supply device including two inverter circuits.
  • the AC power supply device described in Patent Document 1 alternately drives two inverter circuits to create a sine wave half-wave voltage, outputs a positive voltage from one inverter circuit, and generates a negative voltage from the other inverter circuit. Outputs AC voltage.
  • the AC power supply device described in Patent Document 1 generates a positive half cycle and a negative half cycle of the output AC voltage using two inverter circuits.
  • a smoothing capacitor is provided in the previous stage (input side) of the inverter circuit.
  • the current flowing to the AC load via the inverter circuit becomes a full-wave rectified waveform having a frequency twice as high as the commercial power supply frequency, and accordingly, a ripple of the frequency is generated in the input voltage to the inverter circuit.
  • the smoothing capacitor is provided to suppress the ripple of the input voltage.
  • a capacitor having a large capacity is required to suppress the ripple of the input voltage, and for example, an electrolytic capacitor is used.
  • an electrolytic capacitor since the electrolytic capacitor has a short life, there is a problem that the life of the device is limited. For this reason, it is desirable to use, as a smoothing capacitor, a small-capacitance capacitor, such as a film capacitor, which has a small secular change without using a large-capacity capacitor, for example, an electrolytic capacitor.
  • a small-capacitance capacitor such as a film capacitor, which has a small secular change without using a large-capacity capacitor, for example, an electrolytic capacitor.
  • an object of the present invention is to provide an inverter device that can sufficiently suppress the ripple of the input voltage of the inverter circuit without using a large-capacity smoothing capacitor.
  • An inverter device includes: an active filter circuit that boosts and smoothes a DC voltage of an input power supply; and an inverter circuit that converts the DC voltage boosted and smoothed by the active filter circuit into an AC voltage, the active filter
  • the circuit includes a buffer capacitor connected between the input unit and the output unit, a rectifier element, a first end connected to the input unit, and a second end connected to the output unit via the rectifier element.
  • the switching control circuit controls a charging voltage of the buffer capacitor by PWM control of the switch element so that a voltage ripple of an output voltage of the active filter circuit is suppressed.
  • the voltage of the smoothing capacitor provided at the input part of the active filter circuit varies depending on the current supplied from the active filter circuit to the AC load via the inverter circuit, but the switch element is turned on / off by PWM control. By doing this, the output voltage fluctuation of the active filter circuit, that is, the input voltage fluctuation to the inverter circuit is suppressed.
  • the rectifying element is a diode, switching control is unnecessary, so that the circuit configuration can be simplified.
  • the rectifying element is a MOSFET or IGBT (Insulated Gate Bipolar Transistor), conduction loss can be reduced.
  • the switch element is a MOSFET or IGBT
  • conduction loss can be reduced.
  • IGBT high-speed operation is possible and the breakdown tolerance is large, so that high reliability can be achieved.
  • the rectifier element and the switch element are a part of a plurality of power switch elements built in an IPM (Intelligent Power Module), the number of mounted parts is reduced and the cost of the parts is reduced, so that the size and cost can be reduced. I can plan.
  • the inverter circuit includes four switch elements bridge-connected, and these switch elements are power switch elements built in the IPM, the number of mounted parts is further reduced and the cost of parts is further reduced. Cost reduction can be achieved.
  • An insulated DC-DC converter may be provided between the active filter circuit and the input power supply.
  • the input power supply and the inverter circuit can be insulated.
  • the capacity of the smoothing capacitor connected to the previous stage (input side) of the active filter circuit can be reduced.
  • FIG. 1 is a circuit diagram of an inverter device according to a first embodiment.
  • Configuration diagram of first control circuit Configuration diagram of second control circuit
  • the figure which shows the waveform of the output voltage of the inverter device The figure which shows the gate signal waveform of each switch when the phase angle of an output voltage is 0 degree
  • the figure which shows the gate signal waveform of each switch in case the phase angle of an output voltage is 45 degrees
  • the figure which shows the gate signal waveform of each switch in case the phase angle of an output voltage is 90 degrees
  • Diagram showing simulation conditions and numerical results Current waveform diagram of simulation result of condition (1) Voltage waveform diagram of simulation result of condition (1) Is current waveform diagram of simulation result of condition (2) Voltage waveform diagram of simulation result of condition (2) Current waveform diagram of simulation result of condition (3) Voltage waveform diagram of simulation result of condition (3) Circuit diagram of the inverter device according to the second embodiment Circuit diagram of inverter device according to embodiment 3
  • FIG. 1 is a circuit diagram of an inverter device according to the first embodiment.
  • the inverter device 1 according to the present embodiment is used in, for example, a solar power generation system.
  • the output terminals P 0 (+) and P 0 ( ⁇ ) of the inverter device 1 are connected to a system load, for example.
  • the inverter device 1 converts DC power converted from solar energy into AC power and outputs the AC power to an AC load.
  • the inverter device 1 according to this embodiment outputs a 200 V AC voltage having a frequency of 50 Hz to an AC load.
  • the inverter device 1 includes an active filter circuit 10 and an inverter circuit 20.
  • a DC power supply Vdc and a smoothing capacitor C1 are connected to the previous stage (input side) of the active filter circuit 10.
  • the DC power source Vdc is, for example, a solar battery panel.
  • Vin the input voltage from the DC power supply Vdc to the active filter circuit 10 is represented by Vin.
  • Capacitor C1 smoothes Vin.
  • the active filter circuit 10 includes a buffer capacitor Cdc (hereinafter simply referred to as a capacitor Cdc) connected between an input unit and an output unit, and a rectifying element 11S.
  • the input part is a connection point on the high potential side between the DC power supply Vdc and the active filter circuit 10
  • the output part is a connection point on the high potential side between the active filter circuit 10 and the inverter circuit 20.
  • an inductor L1 having a first end connected to the input unit and a second end connected to the output unit via the rectifying element 11S, and a switching element connected between the second end of the inductor L1 and the ground line 12S and the 1st control circuit 30 which is a switching control circuit of switch element 12S.
  • the rectifying element 11S and the switch element 12S are IGBTs, each having a body diode.
  • the collector of the rectifying element 11S is connected to the output side of the capacitor Cdc.
  • the inductor L1 is connected to the input side of the capacitor Cdc and the emitter of the rectifying element 11S.
  • the switch element 12S has a collector connected to the emitter of the rectifying element 11S and an emitter connected to the low potential side line of the active filter circuit 10.
  • the low potential side line is a line connected to the low potential side of the DC power supply Vdc.
  • the rectifier element 11S and the switch element 12S are PWM (PulsePWMWidth Modulation) controlled by the first control circuit 30.
  • the rectifier element 11S and the switch element 12S are alternately turned on / off by the first control circuit 30 (complementarily).
  • Switching element 12S is turned on, if the rectifying element 11S is off, the path of the inductor L1 and the switching element 12S current I 11 flows.
  • the current I 11 energy is stored in inductor L1.
  • Switching element 12S is turned off, the rectifying element 11S is turned on, the inductor L1, a closed loop of the rectifying element 11S and capacitor Cdc current I 12 flows.
  • the current I 12 the capacitor Cdc is charged.
  • the output voltage Vout1 is a voltage obtained by adding the charging voltage Vcdc to the input voltage Vin.
  • the inverter circuit 20 is connected to the subsequent stage (output side) of the active filter circuit 10, and generates and outputs a positive half cycle and a negative half cycle of the AC voltage from the output voltage Vout1 from the active filter circuit 10.
  • a series circuit of a switch element 21S and a switch element 22S and a series circuit of a switch element 23S and a switch element 24S are connected in parallel. These series circuits are connected between the high potential side line and the low potential side line so that the switch elements 21S and 23S are on the high side and the switch elements 22S and 24S are on the low side.
  • Each of the switch elements 21S, 22S, 23S, 24S is PWM-controlled by the second control circuit 40.
  • Each of the switch elements 21S, 22S, 23S, 24S has a body diode.
  • connection point of the switch elements 21S and 22S is connected to the output terminal P 0 (+) via the inductor L2.
  • the switch elements 23S and 24S are connected to the output terminal P 0 ( ⁇ ).
  • An AC load is connected to the output terminals P 0 (+) and P 0 ( ⁇ ), and an AC voltage output from the inverter device 1 is applied to the AC load.
  • the inverter circuit 20 uses the output voltage Vout1 from the active filter circuit 10 as a power supply voltage, turns on and off the switch element 21S and the switch element 24S, and turns on and off the switch element 22S and the switch element 23S, thereby generating positive and negative AC voltages. Output. Specifically, when the switch element 21S and the switch element 24S are on and the switch element 22S and the switch element 23S are off, the current I2 + flows through the AC load. When the switch element 22S and the switch element 23S are on and the switch element 21S and the switch element 24S are off, a current I 2 ⁇ flows through the AC load.
  • FIG. 2 is a configuration diagram of the first control circuit 30.
  • the current flowing through the inductor L1 is assumed to be IL1 .
  • the first control circuit 30 performs PWM control on the rectifier element 11S and the switch element 12S at a frequency of 10 kHz so that the charging voltage Vcdc of the capacitor Cdc becomes the command voltage (target voltage) Vcdc *.
  • the subtractor 31 calculates an error between the charging voltage Vcdc of the capacitor Cdc and the command voltage Vcdc *.
  • the PI controller 32 calculates a command current I L1 * that should flow through the inductor L1 by PI control (proportional integration control) based on the error calculated by the subtractor 31.
  • the subtractor 33 calculates an error between the target current I L1 * and the current I L1 flowing through the inductor L1.
  • the PI controller 34 calculates a command voltage V L1 * to be applied to the inductor L1 by PI control based on the error calculated by the subtractor 33.
  • the comparator 35 compares the result of the PI controller 34 with a triangular wave having a frequency of 10 kHz and outputs a PWM wave.
  • the PWM wave output from the comparator 35 is input to the rectifying element 11S.
  • a PWM wave obtained by inverting the PWM wave output from the comparator 35 by the inverter 36 is input to the switch element 12
  • FIG. 3 is a configuration diagram of the second control circuit 40.
  • the second control circuit 40 performs PWM control of the switch elements 21S, 22S, 23S, and 24S at a frequency of 5 kHz so that the output current Iout2 of the inverter circuit 20 becomes the command current (target current) Iout2 *.
  • the multiplier 41 multiplies the command current Iout2 * by the frequency to be set (in this embodiment, the frequency of the AC load is 50 Hz), and outputs the result to the subtractor.
  • the subtractor 42 calculates an error between the output of the multiplier 41 and the output current Iout2 from the inverter circuit 20, and outputs the error to the PI controller 43.
  • the PI controller 43 obtains the command current I L2 * by PI control based on this error.
  • the command current I L2 * is a current that is going to flow through the inductor L2.
  • the comparator 44 outputs a PWM wave for generating a positive half cycle of the AC voltage.
  • the comparator 44 compares the output of the PI controller 43 with a triangular wave having a frequency of 5 kHz to generate a PWM wave.
  • the PWM wave output from the comparator 44 is input to the switch element 21S.
  • a PWM wave obtained by inverting the PWM wave output from the comparator 44 by the inverter 45 is input to the switch element 24S.
  • the comparator 47 outputs a PWM wave.
  • Multiplier 46 multiplies the output of PI controller 43 by ⁇ 1 and outputs the result to comparator 47. Therefore, the output signal of the multiplier 46 is input to the comparator 47.
  • the comparator 47 compares the output signal of the multiplier 46 with a triangular wave with a frequency of 5 kHz to generate a PWM wave.
  • the PWM wave output from the comparator 47 is input to the switch element 23S.
  • a PWM wave obtained by inverting the PWM wave output from the comparator 47 by the inverter 48 is input to the switch element 22S.
  • FIG. 4 is a waveform diagram of the output voltage Vout2 of the inverter device 1.
  • the first control circuit 30 and the second control circuit 40 perform PWM control with different duty ratios according to the phase angle ⁇ of the voltage Vout2.
  • PWM control in the vicinity of each of the phase angles ⁇ of the waveform of the voltage Vout2 shown in FIG. 4 being 0 °, 45 °, and 90 ° will be described.
  • FIG. 5 is a diagram showing the gate signal waveform of each switch element when the phase angle ⁇ of the output voltage Vout2 is around 0 °.
  • FIG. 6 is a diagram showing the gate signal waveform of each switch element when the phase angle ⁇ of the output voltage Vout2 is around 45 °.
  • FIG. 7 is a diagram showing the gate signal waveform of each switch element when the phase angle ⁇ of the output voltage Vout2 is around 90 °. 5, 6, and 7, the vertical axis represents the voltage applied to the gate, and the horizontal axis represents time.
  • the duty ratio of the gate signal (PWM wave) output from the first control circuit 30 to the rectifying element 11S and the switching element 12S changes according to the command voltage Vcdc * and the input voltage Vin.
  • the amplitude (Peak todcPeak) of the command voltage Vcdc * is set to 95.5 [V].
  • Vin is kept constant, and the degree of ripple of the input current Iin is confirmed.
  • Vin varies according to the internal resistance of the input power supply, the capacitance of the smoothing capacitor C1, and the input current Iin.
  • the on-duty ratios of the switch elements 21S and 23S of the inverter circuit 20 and the on-duty ratios of the switch elements 22S and 24S are substantially the same.
  • the on-duty ratio of the switch elements 21S and 23S of the inverter circuit 20 is larger than the on-duty ratio of the switch elements 22S and 24S.
  • the current waveform and voltage waveform of the inverter device 1 configured as described above and in which each switch element is PWM-controlled will be described.
  • the simulation conditions were such that the output voltage Vout1 of the active filter circuit 10 was 400 [V] on average and the output voltage Vout2 of the inverter circuit 20 was an AC voltage 240 [V] having a frequency of 50 [Hz].
  • the capacitor C1 in FIG. 1 is 100 [ ⁇ F]
  • the capacitor Cdc is 50 [ ⁇ F]
  • the inductor L1 is 6 [mH]
  • the inductor L2 is 36 [mH].
  • the rectifier element 11S and the switch element 12S are PWM-controlled at a frequency of 10 kHz
  • the switch elements 21S, 22S, 23S, and 24S are PWM-controlled at a frequency of 5 kHz.
  • FIG. 8 is a diagram showing simulation conditions and numerical values of the results.
  • FIG. 8 shows the simulation conditions and the numerical values of the results for each of the conditions (1), (2), and (3).
  • 9A is a current waveform diagram of the simulation result of the condition (1)
  • FIG. 9B is a voltage waveform diagram of the simulation result of the condition (1).
  • FIG. 10A is a current waveform diagram of the simulation result of the condition (2)
  • FIG. 10B is a voltage waveform diagram of the simulation result of the condition (2).
  • FIG. 11A is a current waveform diagram of the simulation result of the condition (3)
  • FIG. 11B is a voltage waveform diagram of the simulation result of the condition (3).
  • an input voltage Vin of 150 [V] is input to the active filter circuit 10.
  • the input current Iin to the active filter circuit 10 is a current including pulsation with an average of 2.0 [A].
  • the current Icdc, the current IL1, and the output current Iout1 are each a current including pulsation.
  • the current Icdc is a maximum current of 1.26 [A] (see FIG. 8), and a current including pulsation flows by switching of the switch element 12S.
  • the current I L1 is about 4.1 [A] (see FIG. 8) at the maximum, and always flows in the same direction.
  • the current Iout1 is about 1.26 [A] at the same maximum as the current Icdc.
  • the switching elements 21S, 22S, 23S, and 24S controlled to be turned on and off generate an alternating current having a positive half cycle and a negative half cycle from the output of the active filter circuit 10, and output the current Iout2 from the inverter circuit 20. Is done.
  • a voltage from ⁇ 150 [V] to about 200 [V] is applied to the inductor L1.
  • a voltage Vcdc of about 250 [V] is applied to the capacitor Cdc.
  • the voltage Vcdc has an AC waveform with an amplitude of 76.4 [V] (see FIG. 8) centering on 250 [V].
  • the output voltage Vout1 of the active filter circuit 10 is a voltage obtained by adding the voltage Vin and the voltage Vcdc. That is, the voltage Vout1 is about 400 [V].
  • the switching elements 21S, 22S, 23S, and 24S that are controlled to be turned on and off generate an alternating voltage having a positive half cycle and a negative half cycle from the output of the active filter circuit 10, and output a voltage Vout2 from the inverter circuit 20. Is done.
  • the input current Iin to the active filter circuit 10 is a current including pulsation with an average of 1.5 [A].
  • the current Icdc, the current IL1, and the output current Iout1 are each a current including pulsation.
  • the current Icdc is a maximum current of 1.5 [A] (see FIG. 8), and a current including pulsation flows by switching of the switch element 12S.
  • the current I L1 is about 4.0 [A] at maximum (see FIG. 8), and always flows in the same direction.
  • the current Iout1 is about 1.5 [A] at the same maximum as the current Icdc.
  • the switching elements 21S, 22S, 23S, and 24S controlled to be turned on and off generate an alternating current having a positive half cycle and a negative half cycle from the output of the active filter circuit 10, and output the current Iout2 from the inverter circuit 20. Is done.
  • a voltage from ⁇ 200 [V] to about 200 [V] is applied to the inductor L1.
  • a voltage Vcdc of about 200 [V] is applied to the capacitor Cdc.
  • the voltage Vcdc has an AC waveform with an amplitude of 95.5 [V] (see FIG. 8) centering on 200 [V].
  • the output voltage Vout1 of the active filter circuit 10 is a voltage obtained by adding the voltage Vin and the voltage Vcdc. That is, the voltage Vout1 is about 400 [V].
  • the switching elements 21S, 22S, 23S, and 24S that are controlled to be turned on and off generate an alternating voltage having a positive half cycle and a negative half cycle from the output of the active filter circuit 10, and output a voltage Vout2 from the inverter circuit 20. Is done.
  • the input current Iin to the active filter circuit 10 is a current including pulsation with an average of 1.25 [A].
  • the current Icdc is a maximum current of 1.6 [A] (see FIG. 8), and a current including pulsation flows by switching of the switch element 12S.
  • the current I L1 is about 3.7 [A] (see FIG. 8) at the maximum, and always flows in the same direction.
  • the current Iout1 is about 1.6 [A] at the same maximum as the current Icdc.
  • the switching elements 21S, 22S, 23S, and 24S controlled to be turned on and off generate an alternating current having a positive half cycle and a negative half cycle from the output of the active filter circuit 10, and output the current Iout2 from the inverter circuit 20. Is done.
  • a voltage from ⁇ 250 [V] to about 200 [V] is applied to the inductor L1.
  • a voltage Vcdc of about 150 [V] is applied to the capacitor Cdc.
  • the voltage Vcdc has an AC waveform with an amplitude of 127.32 [V] (see FIG. 8) centering on 150 [V].
  • the output voltage Vout1 of the active filter circuit 10 is a voltage obtained by adding the voltage Vin and the voltage Vcdc. That is, the voltage Vout1 is about 400 [V].
  • the switching elements 21S, 22S, 23S, and 24S that are controlled to be turned on and off generate an alternating voltage having a positive half cycle and a negative half cycle from the output of the active filter circuit 10, and output a voltage Vout2 from the inverter circuit 20. Is done.
  • the pulsation of the input current Iin is reduced by appropriately controlling the voltage of the capacitor Cdc of the active filter circuit 10. This is due to energy transfer (buffering action) in the inductor L1 and the capacitor Cdc of the active filter circuit 10. Therefore, it is not necessary to increase the capacity of the smoothing capacitor C1 in order to reduce the ripple of the direct current input to the active filter circuit 10. Further, since Iin flows even when Iout1 is close to 0, electric power can be effectively extracted from the DC power supply Vdc. That is, when the DC power source Vdc is a solar cell panel, DC power can be effectively used from solar energy.
  • an IPM Intelligent Power Module in which six IGBTs are configured as one module can be used. That is, four of the six IGBTs can be used as the switch elements 21S, 22S, 23S, and 24S of the inverter circuit, and the remaining two can be used as the rectifier element 11S and the switch element 12S of the active filter circuit.
  • the second embodiment of the present invention will be described below.
  • the second embodiment is different in that the rectifying element 11S according to the first embodiment is configured by a diode and each switch element is configured by a MOSFET.
  • FIG. 12 is a circuit diagram of the inverter device according to the second embodiment.
  • the inverter device 1 ⁇ / b> A according to the second embodiment includes an active filter circuit 11 and an inverter circuit 21.
  • the active filter circuit 11 includes a capacitor Cdc, an inductor L1, a diode (rectifier element of the present invention) D1, and a switch element 3S.
  • the capacitor Cdc is connected in series to the high potential side line of the active filter circuit 10.
  • the cathode of the diode D1 is connected to the output side of the capacitor Cdc.
  • the inductor L1 is connected between the input side of the capacitor Cdc and the anode of the diode D1.
  • the switch element 3S has a drain connected to the anode of the diode D1, and a source connected to the low potential side line of the active filter circuit 10.
  • the switch element 3S is PWM-controlled by the first control circuit 31.
  • the on / off control of the switch element 3S is the same as that of the switch element 12S according to the first embodiment.
  • the switch element 3S is PWM controlled by the first control circuit 31, whereby the capacitor Cdc is charged.
  • a path of the inductor L1 and the switching element 3S current I 11 flows.
  • the current I 11 electric energy is accumulated in the inductor L1.
  • the switch element 3S is turned off, the inductor L1, a closed loop path of the diode D1 and capacitor Cdc current I 12 flows.
  • the current I 12 current electrical energy is output from the inductor L1 stored are added.
  • the current I 12 the capacitor Cdc is charged.
  • a switch element 41S and a switch element 42S connected in series and a switch element 43S and a switch element 44S connected in series are connected in parallel.
  • the switch element 41S has a drain connected to the high potential side line of the inverter circuit 20, and a source connected to the drain of the switch element 42S.
  • the source of the switch element 42S is connected to the low potential side line of the inverter circuit 20.
  • the switch element 43S has a drain connected to the high potential side line of the inverter circuit 20, and a source connected to the drain of the switch element 44S.
  • the source of the switch element 44S is connected to the low potential side line of the inverter circuit 20.
  • Each of the switch element 41S, the switch element 42S, the switch element 43S, and the switch element 44S is PWM-controlled by the second control circuit 41.
  • the on / off control of each switch element 41S, 42S, 43S, 44S is the same as the switch element 21S, 22S, 23S, 24S according to the first embodiment.
  • the same effect as in the first embodiment can be obtained. Further, by using the diode D1 as the rectifying element, the switching control is not necessary, so that the circuit configuration can be simplified.
  • a MOSFET may be used instead of the diode D1.
  • an IPM Intelligent Power Module
  • an IPM Intelligent Power Module
  • six MOSFET elements can be used. That is, four of the six MOSFETs can be used as switch elements of the inverter circuit, and the remaining two can be used as rectifier elements and switch elements of the active filter circuit.
  • FIG. 13 is a circuit diagram of the inverter device according to the third embodiment.
  • the active filter circuit 11 and the inverter circuit 21 included in the inverter device 1B are the same as those in the second embodiment.
  • the inverter device 1B may have a configuration including the active filter circuit 10 and the inverter circuit 20 according to the first embodiment.
  • a full bridge circuit is configured by switch elements 51S, 52S, 53S, and 54S using MOSFETs.
  • a control circuit is connected to the gate of each switch element 51S, 52S, 53S, 54S, and PWM control is performed.
  • the primary winding np of the insulation transformer T is connected to the output of the full bridge circuit via the capacitor C3.
  • the capacitor C3 and the primary winding np constitute a resonance circuit.
  • a diode bridge rectifier circuit including diodes D11, D12, D13, and D14 is connected to the secondary side of the insulating transformer T. In this way, a resonance type full bridge converter is configured.
  • An inductor L3, a smoothing capacitor C1, and an active filter circuit 11 are connected to the subsequent stage of the insulation type DC-DC converter 13.
  • the output voltage of the DC power supply Vdc is input to the capacitor C1 via the insulation type DC-DC converter 13, so that the active filter circuit is compared with the case where the DC power supply Vdc is directly connected to the capacitor C1. 11 can be supplied with a stable voltage.
  • Maximum power control (MPPT control: Max Power) by operating the isolated DC-DC converter (resonance type full bridge converter) 13 without control, that is, by driving the switch element with a duty ratio of approximately 50% across the dead time. Point Tracking). That is, when the input power source is a solar cell panel, in order to extract the maximum power from the solar cell, it is necessary to control the voltage so that the product of the current and the voltage is maximized. Since this IV (current-voltage) characteristic changes depending on the solar radiation intensity and the module temperature, it is important to always automatically follow the optimum voltage in order to obtain the maximum power. Therefore, the maximum power can be extracted from the solar cell by the maximum power control (MPPT control) performed by the insulated DC-DC converter 13.
  • MPPT control maximum power control
  • the specific configuration of the inverter device according to each of the embodiments described above can be changed as appropriate.
  • it can take various forms such as an intermediate voltage clamp method, a flying capacitor method, and a cascade method. sell.
  • the operations and effects described in the above-described embodiments are merely a list of the most preferable operations and effects resulting from the present invention, and the operations and effects according to the present invention are limited to those described in the above-described embodiments. It is not something.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

直流電圧Vinを昇圧及び平滑するアクティブフィルタ回路(10)の出力電圧Vout1を、インバータ回路(20)で交流電圧へ変換する。アクティブフィルタ回路(10)は、入出力部の間に接続されたコンデンサ(Cdc)および整流素子(11S)を備えている。また、一端が入力部に接続され、他端が整流素子(11S)を介して出力部に接続されたインダクタ(L1)と、その他端と低電位側ラインとの間に接続されたスイッチ素子(12S)と、それの第1制御回路(30)とを有している。インダクタ(L1)は、スイッチ素子(12S)の導通時にエネルギーを蓄積し、スイッチ素子(12S)の遮断時にエネルギーを放出する。整流素子(11S)は、インダクタ(L1)の蓄積エネルギーの放出方向に導通する。これにより、大容量の平滑コンデンサを用いることなくインバータ回路の入力電圧のリップルを充分に抑制できるようにしたインバータ装置を提供する。

Description

インバータ装置
 本発明は、入力された直流電圧を交流電圧に変換して出力するインバータ装置に関する。
 特許文献1には、二つのインバータ回路を備えた交流電源装置が開示されている。特許文献1に記載の交流電源装置は、二つのインバータ回路をそれぞれ交互に駆動して正弦波の半波電圧を作り、一方のインバータ回路から正電圧を出力し、他方のインバータ回路から負電圧を出力して、交流電圧を出力している。換言すれば、特許文献1に記載の交流電源装置は、二つのインバータ回路を用いて、出力する交流電圧の正の半周期と負の半周期とを生成している。
特開昭61-251480号公報
 ところで、特許文献1に記載の交流電源装置も含む一般的なインバータ装置においては、インバータ回路の前段(入力側)に平滑コンデンサが設けられている。インバータ回路を介して交流負荷に流れる電流が商用電源周波数の2倍の周波数の全波整流波形となって、これに伴いインバータ回路への入力電圧に前記周波数のリップルが生じる。入力電圧が変動すると、インバータ回路の制御が困難になるだけでなく、交流負荷が電力系統(グリッド)である場合、電力系統に正弦波電流が伝送できなくなり、電圧波形歪が生じる原因となる。前記平滑コンデンサは入力電圧のリップルを抑制するために設けられる。この入力電圧のリップルを抑制しようとするほど大容量のコンデンサが必要となり、例えば電解コンデンサが用いられることになる。しかしながら、電解コンデンサは寿命が短いため、装置の寿命も制限されるといった問題がある。このため、大容量のコンデンサ、例えば電解コンデンサを用いないで、経年変化が小さい例えばフィルムコンデンサなどの小容量のコンデンサを平滑用のコンデンサとして用いることが望まれる。しかし、フィルムコンデンサなどの小容量のコンデンサを平滑コンデンサとして用いても充分なリップル抑制効果が得られない。
 そこで、本発明の目的は、大容量の平滑コンデンサを用いることなくインバータ回路の入力電圧のリップルを充分に抑制できるようにしたインバータ装置を提供することにある。
 本発明に係るインバータ装置は、入力電源の直流電圧を昇圧及び平滑するアクティブフィルタ回路と、前記アクティブフィルタ回路が昇圧及び平滑した直流電圧を交流電圧へ変換するインバータ回路と、を備え、前記アクティブフィルタ回路は、入力部と出力部との間に接続されたバッファコンデンサと、整流素子と、第1端が前記入力部に接続され、第2端が整流素子を介して前記出力部に接続されたインダクタと、前記インダクタの前記第2端と低電位側ラインとの間に接続されたスイッチ素子と、前記スイッチ素子のスイッチング制御回路と、を有し、前記インダクタは、前記スイッチ素子の導通時にエネルギーを蓄積し、前記スイッチ素子の遮断時にエネルギーを放出し、前記整流素子は、前記インダクタの蓄積エネルギーを放出する方向に導通するものであることを特徴とする。
 この構成によれば、インバータ装置から出力される交流電圧が零付近の期間であっても、スイッチ素子のスイッチングによりインダクタにエネルギーを蓄積させ、それをバッファコンデンサの充電電圧として入力電源の直流電圧が充電される。そして、インバータ装置から出力される交流電圧が最大値付近の期間であるときに、コンデンサの電荷が放電される。このアクティブフィルタの作用によって、インバータ回路への入力電圧のリップルが低減されるため、アクティブフィルタ回路の前段(入力側)に接続される平滑コンデンサの容量を小さくすることができる。したがって、大容量の平滑コンデンサを必要とせず、例えば、電解コンデンサではなく経年変化が小さい例えばフィルムコンデンサ等を用いることができる。また、交流負荷に流れる電流が零付近の期間であっても入力電源から電流を入力され、交流負荷に流れる電流が最大値付近の期間では、バッファコンデンサからインバータ回路を介して交流負荷へ電流が出力される、したがって、入力電源から直流電力を有効に取り出せる。
 前記スイッチング制御回路は、前記アクティブフィルタ回路の出力電圧の電圧リップルが抑制されるように、前記スイッチ素子のPWM制御により前記バッファコンデンサの充電電圧を制御するものであることが好ましい。
 アクティブフィルタ回路からインバータ回路を介して交流負荷へ供給される電流に応じて、アクティブフィルタ回路の入力部に設けられている平滑コンデンサの電圧は変動するが、前記スイッチ素子をPWM制御によりオン/オフすることにより、アクティブフィルタ回路の出力電圧、すなわちインバータ回路への入力電圧変動が抑制される。
 前記整流素子がダイオードであれば、スイッチング制御が不要であるので、回路構成が簡素化できる。
 前記整流素子がMOSFETまたはIGBT(Insulated Gate Bipolar Transistor)であれば、導通損失が低減できる。
 前記スイッチ素子がMOSFETまたはIGBTであれば、導通損失が低減できる。特に、IGBTを用いることで、高速動作が可能で、破壊耐量が大きいため、高信頼性化できる。
 前記整流素子及び前記スイッチ素子がIPM(Intelligent Power Module)に内蔵される複数の電力スイッチ素子の一部であれば、実装部品点数が少なくなり、且つ部品コストが下がるので、小型、低コスト化が図れる。
 前記インバータ回路がブリッジ接続された4つのスイッチ素子を備え、これらのスイッチ素子が前記IPMに内蔵される電力スイッチ素子であれば、さらに実装部品点数が少なくなり、且つ部品コストが下がるので、さらなる小型、低コスト化が図れる。
 前記アクティブフィルタ回路と前記入力電源との間に絶縁型DC-DCコンバータを備えてもよい。この構成により、入力電源とインバータ回路とを絶縁できる。
 本発明によれば、アクティブフィルタの作用によって、インバータ回路への入力電圧のリップルが低減されるため、アクティブフィルタ回路の前段(入力側)に接続される平滑コンデンサの容量を小さくすることができる。
実施形態1に係るインバータ装置の回路図 第1制御回路の構成図 第2制御回路の構成図 インバータ装置の出力電圧の波形を示す図 出力電圧の位相角が0°における各スイッチのゲート信号波形を示す図 出力電圧の位相角が45°における各スイッチのゲート信号波形を示す図 出力電圧の位相角が90°における各スイッチのゲート信号波形を示す図 シミュレーション条件及び結果の数値を示す図 条件(1)のシミュレーション結果の電流波形図 条件(1)のシミュレーション結果の電圧波形図 は条件(2)のシミュレーション結果の電流波形図 条件(2)のシミュレーション結果の電圧波形図 条件(3)のシミュレーション結果の電流波形図 条件(3)のシミュレーション結果の電圧波形図 実施形態2に係るインバータ装置の回路図 実施形態3に係るインバータ装置の回路図
(実施形態1)
 図1は実施形態1に係るインバータ装置の回路図である。本実施形態に係るインバータ装置1は、例えば太陽光発電システムに用いられる。インバータ装置1の出力端子P(+),P(-)は、例えば系統負荷に接続される。インバータ装置1は、太陽光エネルギーから変換された直流電力を交流電力に変換し、交流負荷へ出力する。本実施形態に係るインバータ装置1は、周波数50Hzの200Vの交流電圧を交流負荷へ出力する。
 インバータ装置1はアクティブフィルタ回路10及びインバータ回路20を備えている。アクティブフィルタ回路10の前段(入力側)には直流電源Vdc及び平滑コンデンサC1が接続されている。直流電源Vdcは、例えば太陽電池パネルである。以下では、直流電源Vdcからアクティブフィルタ回路10への入力電圧をVinで表す。コンデンサC1はVinを平滑する。
 アクティブフィルタ回路10は、入力部と出力部との間に接続されたバッファコンデンサCdc(以下、単にコンデンサCdcという。)と、整流素子11Sを備えている。ここで入力部とは直流電源Vdcとアクティブフィルタ回路10との高電位側の接続点であり、出力部とはアクティブフィルタ回路10とインバータ回路20との高電位側の接続点である。また、第1端が入力部に接続され、第2端が整流素子11Sを介して出力部に接続されたインダクタL1と、インダクタL1の第2端とグランドラインとの間に接続されたスイッチ素子12Sと、スイッチ素子12Sのスイッチング制御回路である第1制御回路30とを備えている。
 本実施形態に係る整流素子11S及びスイッチ素子12SはIGBTであり、それぞれボディーダイオードを有している。コンデンサCdcの出力側に整流素子11Sのコレクタが接続されている。インダクタL1は、コンデンサCdcの入力側及び整流素子11Sのエミッタに接続されている。スイッチ素子12Sは、コレクタが整流素子11Sのエミッタに接続され、エミッタがアクティブフィルタ回路10の低電位側ラインに接続されている。低電位側ラインとは直流電源Vdcの低電位側に接続されるラインである。整流素子11S及びスイッチ素子12Sは第1制御回路30によりPWM(Pulse Width Modulation)制御される。
 整流素子11S及びスイッチ素子12Sは第1制御回路30により交互に(相補的に)オン/オフされる。スイッチ素子12Sがオン、整流素子11Sがオフの場合、インダクタL1及びスイッチ素子12Sの経路を電流I11が流れる。この電流I11により、インダクタL1にはエネルギーが蓄えられる。スイッチ素子12Sがオフ、整流素子11Sがオンとなると、インダクタL1、整流素子11S及びコンデンサCdcの閉ループを電流I12が流れる。この電流I12により、コンデンサCdcは充電される。コンデンサCdcの充電電圧をVcdc、アクティブフィルタ回路10の出力電圧をVout1で表すと、出力電圧Vout1は入力電圧Vinに充電電圧Vcdcが加算された電圧である。
 インバータ回路20はアクティブフィルタ回路10の後段(出力側)に接続され、アクティブフィルタ回路10からの出力電圧Vout1から、交流電圧の正の半周期と負の半周期を生成して出力する。インバータ回路20は、スイッチ素子21S及びスイッチ素子22Sの直列回路と、スイッチ素子23S及びスイッチ素子24Sの直列回路とが並列接続されている。そして、これらの直列回路は、スイッチ素子21S,23Sがハイサイド、スイッチ素子22S,24Sがローサイドとなるように、高電位側ラインと低電位側ラインとの間に接続されている。スイッチ素子21S,22S,23S,24Sのそれぞれは第2制御回路40によりPWM制御される。また、スイッチ素子21S,22S,23S,24Sのそれぞれは、ボディーダイオードを有している。
 また、スイッチ素子21S,22Sの接続点はインダクタL2を介して出力端子P(+)に接続されている。スイッチ素子23S,24Sは出力端子P(-)に接続されている。出力端子P(+),P(-)には交流負荷が接続され、インバータ装置1から出力される交流電圧が交流負荷に印加される。
 インバータ回路20は、アクティブフィルタ回路10からの出力電圧Vout1を電源電圧とし、スイッチ素子21S及びスイッチ素子24Sをオンオフし、また、スイッチ素子22S及びスイッチ素子23Sをオンオフすることで、正負の交流電圧を出力する。具体的には、スイッチ素子21S及びスイッチ素子24Sがオンで、スイッチ素子22S及びスイッチ素子23Sがオフのとき、交流負荷に電流I2+が流れる。スイッチ素子22S及びスイッチ素子23Sがオンで、スイッチ素子21S及びスイッチ素子24Sがオフのとき、交流負荷に電流I2-が流れる。
 以下に、第1制御回路30及び第2制御回路40について説明する。
 図2は第1制御回路30の構成図である。以下、インダクタL1に流れる電流はIL1とする。第1制御回路30は、コンデンサCdcの充電電圧Vcdcが指令電圧(目標電圧)Vcdc*となるように、周波数10kHzで整流素子11S及びスイッチ素子12SをPWM制御する。
 減算器31は、コンデンサCdcの充電電圧Vcdcと指令電圧Vcdc*との誤差を算出する。PI制御器32は、減算器31が算出した誤差に基づくPI制御(比例積分制御)により、インダクタL1に流れるべき指令電流IL1*を算出する。減算器33は、目標電流IL1*とインダクタL1に流れる電流IL1との誤差を算出する。PI制御器34は、減算器33が算出した誤差に基づくPI制御により、インダクタL1に印加されるべき指令電圧VL1*を算出する。コンパレータ35は、PI制御器34による結果と、周波数10kHzの三角波とを比較してPWM波を出力する。整流素子11Sには、コンパレータ35が出力したPWM波が入力される。スイッチ素子12Sには、コンパレータ35が出力したPWM波が反転器36により反転されたPWM波が入力される。
 図3は第2制御回路40の構成図である。第2制御回路40は、インバータ回路20の出力電流Iout2が指令電流(目標電流)Iout2*となるように、5kHzの周波数でスイッチ素子21S,22S,23S,24SをPWM制御する。
 乗算器41は、指令電流Iout2*と、設定すべき周波数(本実施形態では交流負荷の周波数50Hz)とを乗算し、減算器42へ出力する。減算器42は、乗算器41の出力と、インバータ回路20からの出力電流Iout2との誤差を算出し、PI制御器43へ出力する。PI制御器43は、この誤差に基づくPI制御により指令電流IL2*を求める。指令電流IL2*は、インダクタL2に流そうとする電流である。
 コンパレータ44は、交流電圧の正の半周期を生成するためのPWM波を出力する。コンパレータ44は、PI制御器43の出力と、周波数5kHzの三角波とを比較してPWM波を生成する。スイッチ素子21Sには、コンパレータ44が出力したPWM波が入力される。スイッチ素子24Sには、コンパレータ44が出力したPWM波が反転器45により反転されたPWM波が入力される。
 コンパレータ47は、PWM波を出力する。乗算器46は、PI制御器43の出力と-1とを乗算してコンパレータ47へ出力する。従って、コンパレータ47には、乗算器46の出力信号が入力される。そして、コンパレータ47は、乗算器46の出力信号と、周波数5kHzの三角波とを比較してPWM波を生成する。スイッチ素子23Sには、コンパレータ47が出力したPWM波が入力される。スイッチ素子22Sには、コンパレータ47が出力したPWM波が反転器48により反転されたPWM波が入力される。
 以下に、第1制御回路30が整流素子11S及びスイッチ素子12Sへ出力するゲート信号、及び第2制御回路40がスイッチ素子21S,22S,23S,24Sへ出力するゲート信号について説明する。
 図4は、インバータ装置1の出力電圧Vout2の波形図である。本実施形態では、第1制御回路30及び第2制御回路40は電圧Vout2の位相角φに応じて異なるデューティ比のPWM制御を行う。以下、図4に示す電圧Vout2の波形の位相角φが0°、45°、90°の各付近におけるPWM制御について説明する。
 図5は、出力電圧Vout2の位相角φが0°付近における各スイッチ素子のゲート信号波形を示す図である。図6は、出力電圧Vout2の位相角φが45°付近における各スイッチ素子のゲート信号波形を示す図である。図7は、出力電圧Vout2の位相角φが90°付近における各スイッチ素子のゲート信号波形を示す図である。図5、図6及び図7において、縦軸はゲートへ印加される電圧、横軸は時間である。
 上述したように、第1制御回路30が整流素子11S及びスイッチ素子12Sへ出力するゲート信号(PWM波)は、指令電圧Vcdc*及び入力電圧Vinに応じてデューティ比が変化する。図5、図6及び図7に示す波形では、指令電圧Vcdc*の振幅(Peak to Peak)が95.5[V]となるよう設定されている。このシミュレーションでは、入力電圧Vinを一定にし、入力電流Iinのリップルの程度を確認している。実際には、入力電源の内部抵抗、平滑コンデンサC1の容量及び入力電流Iinに応じてVinが変動するが、入力電流Iinのリップルが抑制されていることで、入力電圧Vinの変動の抑制効果を確認できる。このシミュレーションでは上述のとおり入力電圧Vinを一定にしているので、指令電圧Vcdc*に応じたデューティ比の変化量は少なく、ほぼ同じデューティ比となっている。そのため、図5、図6及び図7に示す整流素子11S及びスイッチ素子12Sへのゲート信号電圧波形はほぼ同じである。
 また、位相角φ=0°付近の場合、インバータ回路20のスイッチ素子21S,23Sのオンデューティ比と、スイッチ素子22S,24Sのオンデューティ比とは略同じとなる。位相角φが45°、90°と大きくなるに伴い、インバータ回路20のスイッチ素子21S,23Sのオンデューティ比は、スイッチ素子22S,24Sのオンデューティ比より大きくなっている。
 次に、上述のように構成され、各スイッチ素子がPWM制御されたインバータ装置1の電流波形及び電圧波形を説明する。以下では、インバータ装置1で行ったシミュレーションの結果を示す。シミュレーションの条件として、アクティブフィルタ回路10の出力電圧Vout1は平均400[V]、インバータ回路20の出力電圧Vout2は、周波数50[Hz]の交流電圧240[V]となるようにした。また、図1のコンデンサC1を100[μF]、コンデンサCdcを50[μF]、インダクタL1を6[mH]、インダクタL2を36[mH]とする。そして、周波数10kHzで整流素子11S及びスイッチ素子12SそれぞれをPWM制御し、周波数5kHzでスイッチ素子21S,22S,23S,24SそれぞれをPWM制御している。
 図8はシミュレーション条件及び結果の数値を示す図である。図8では、条件(1)、条件(2)、条件(3)それぞれの場合のシミュレーション条件及び結果の数値を示す。図9Aは条件(1)のシミュレーション結果の電流波形図であり、図9Bは条件(1)のシミュレーション結果の電圧波形図である。図10Aは条件(2)のシミュレーション結果の電流波形図であり、図10Bは条件(2)のシミュレーション結果の電圧波形図である。図11Aは条件(3)のシミュレーション結果の電流波形図であり、図11Bは条件(3)のシミュレーション結果の電圧波形図である。
 図8において、シミュレーション条件として、入力電圧Vin、コンデンサCdcの充電電圧Vcdcの平均値Vcdcave、コンデンサCdcの充電電圧Vcdcの振幅(Peak To Peak)ΔVcdc、アクティブフィルタ回路10の出力電力Pout[W]を与えている。シミュレーション結果として、Icdc[A]は、コンデンサCdcを流れる電流であり、IL1はインダクタL1を流れる電流である。図9、図10及び図11の各グラフの横軸は時間[s]である。
 条件(1)では、150[V]の入力電圧Vinがアクティブフィルタ回路10に入力されている。この場合、アクティブフィルタ回路10への入力電流Iinは平均2.0[A]とする脈動を含んだ電流となる。また、整流素子11S及びスイッチ素子12Sがオンオフ制御されることにより、電流Icdc、電流IL1及び出力電流Iout1それぞれは脈動を含んだ電流となる。電流Icdcは最大1.26[A](図8参照)の電流であり、スイッチ素子12Sのスイッチングによって脈動を含んだ電流が流れる。電流IL1は最大約4.1[A](図8参照)であり、常に同方向に流れる。電流Iout1は、電流Icdcと同じ最大約1.26[A]である。また、オンオフ制御されたスイッチ素子21S,22S,23S,24Sにより、アクティブフィルタ回路10の出力から正の半周期及び負の半周期からなる交流電流が生成されて、インバータ回路20から電流Iout2が出力される。
 また、条件(1)では、インダクタL1には-150[V]から約200[V]までの電圧が印加される。コンデンサCdcには、約250[V]の電圧Vcdcが印加される。具体的には、電圧Vcdcは、250[V]を中心に、振幅76.4[V](図8参照)とする交流波形となる。アクティブフィルタ回路10の出力電圧Vout1は、電圧Vinと電圧Vcdcとが加算された電圧となる。すなわち、電圧Vout1は、約400[V]となる。また、オンオフ制御されたスイッチ素子21S,22S,23S,24Sにより、アクティブフィルタ回路10の出力から正の半周期及び負の半周期からなる交流電圧が生成されて、インバータ回路20から電圧Vout2が出力される。
 条件(2)では、200[V]の入力電圧Vinがアクティブフィルタ回路10に入力されている。この場合、アクティブフィルタ回路10への入力電流Iinは平均1.5[A]とする脈動を含んだ電流となる。また、整流素子11S及びスイッチ素子12Sがオンオフ制御されることにより、電流Icdc、電流IL1及び出力電流Iout1それぞれは脈動を含んだ電流となる。電流Icdcは最大1.5[A](図8参照)の電流であり、スイッチ素子12Sのスイッチングによって脈動を含んだ電流が流れる。電流IL1は最大約4.0[A](図8参照)であり、常に同方向に流れる。電流Iout1は、電流Icdcと同じ最大約1.5[A]である。また、オンオフ制御されたスイッチ素子21S,22S,23S,24Sにより、アクティブフィルタ回路10の出力から正の半周期及び負の半周期からなる交流電流が生成されて、インバータ回路20から電流Iout2が出力される。
 また、条件(2)では、インダクタL1には-200[V]から約200[V]までの電圧が印加される。コンデンサCdcには、約200[V]の電圧Vcdcが印加される。具体的には、電圧Vcdcは200[V]を中心に、振幅95.5[V](図8参照)とする交流波形となる。アクティブフィルタ回路10の出力電圧Vout1は、電圧Vinと電圧Vcdcとが加算された電圧となる。すなわち、電圧Vout1は、約400[V]となる。また、オンオフ制御されたスイッチ素子21S,22S,23S,24Sにより、アクティブフィルタ回路10の出力から正の半周期及び負の半周期からなる交流電圧が生成されて、インバータ回路20から電圧Vout2が出力される。
 条件(3)では、250[V]の入力電圧Vinがアクティブフィルタ回路10に入力されている。この場合、アクティブフィルタ回路10への入力電流Iinは平均1.25[A]とする脈動を含んだ電流となる。整流素子11S及びスイッチ素子12Sがオンオフ制御されることにより、電流Icdc、電流IL1及び出力電流Iout1それぞれは脈動を含んだ電流となる。電流Icdcは最大1.6[A](図8参照)の電流であり、スイッチ素子12Sのスイッチングによって脈動を含んだ電流が流れる。電流IL1は最大約3.7[A](図8参照)であり、常に同方向に流れる。電流Iout1は、電流Icdcと同じ最大約1.6[A]である。また、オンオフ制御されたスイッチ素子21S,22S,23S,24Sにより、アクティブフィルタ回路10の出力から正の半周期及び負の半周期からなる交流電流が生成されて、インバータ回路20から電流Iout2が出力される。
 また、条件(3)では、インダクタL1には-250[V]から約200[V]までの電圧が印加される。コンデンサCdcには、約150[V]の電圧Vcdcが印加される。具体的には、電圧Vcdcは150[V]を中心に、振幅127.32[V](図8参照)とする交流波形となる。アクティブフィルタ回路10の出力電圧Vout1は、電圧Vinと電圧Vcdcとが加算された電圧となる。すなわち、電圧Vout1は、約400[V]となる。また、オンオフ制御されたスイッチ素子21S,22S,23S,24Sにより、アクティブフィルタ回路10の出力から正の半周期及び負の半周期からなる交流電圧が生成されて、インバータ回路20から電圧Vout2が出力される。
 以上のシミュレーション結果の各波形から判るように、アクティブフィルタ回路10のコンデンサCdcの電圧を適切に制御することで、入力電流Iinの脈動を低減している。これは、アクティブフィルタ回路10のインダクタL1及びコンデンサCdcでのエネルギーの移動(バッファリング作用)によるものである。従って、アクティブフィルタ回路10に入力される直流電流のリップルを低減するために、平滑コンデンサC1の容量を大きくする必要がない。また、Iout1が0付近の位相角でもIinが流れるので、直流電源Vdcから有効に電力を取り出せる。すなわち、直流電源Vdcが太陽電池パネルである場合に、太陽光エネルギーから直流電力を有効に利用することができる。
 なお、本実施形態において、6個のIGBTが一つのモジュールとして構成されたIPM(Intelligent Power Module)を用いることができる。すなわち、6個のIGBTのうち4個をインバータ回路のスイッチ素子21S,22S,23S,24Sとして用い、残り2個をアクティブフィルタ回路の整流素子11Sとスイッチ素子12Sとして用いることができる。
(実施形態2)
 以下に、本発明の実施形態2について説明する。実施形態2は、実施形態1に係る整流素子11Sをダイオードで構成している点、及び各スイッチ素子をMOSFETで構成している点で相違する。
 図12は実施形態2に係るインバータ装置の回路図である。実施形態2に係るインバータ装置1Aは、アクティブフィルタ回路11及びインバータ回路21を備えている。アクティブフィルタ回路11は、コンデンサCdc、インダクタL1、ダイオード(本発明の整流素子)D1及びスイッチ素子3Sを備えている。コンデンサCdcは、アクティブフィルタ回路10の高電位側ラインに直列接続されている。コンデンサCdcの出力側には、ダイオードD1のカソードが接続されている。インダクタL1は、コンデンサCdcの入力側及びダイオードD1のアノードの間に接続されている。スイッチ素子3Sは、ドレインがダイオードD1のアノードに接続され、ソースがアクティブフィルタ回路10の低電位側ラインに接続されている。スイッチ素子3Sは第1制御回路31によりPWM制御される。
 スイッチ素子3Sのオンオフ制御は、実施形態1に係るスイッチ素子12Sと同様である。スイッチ素子3Sが第1制御回路31によりPWM制御されることで、コンデンサCdcは充電される。スイッチ素子3Sがオンの場合、インダクタL1及びスイッチ素子3Sの経路を電流I11が流れる。この電流I11により、インダクタL1には電気エネルギーが蓄えられる。スイッチ素子3Sがオフとなると、インダクタL1、ダイオードD1及びコンデンサCdcの閉ループ経路を電流I12が流れる。電流I12には、電気エネルギーが蓄えられたインダクタL1から出力される電流が加算される。この電流I12により、コンデンサCdcは充電される。
 インバータ回路21は、直列接続されたスイッチ素子41S及びスイッチ素子42Sと、直列接続されたスイッチ素子43S及びスイッチ素子44Sとが並列接続されている。詳しくは、スイッチ素子41Sはドレインがインバータ回路20の高電位側ラインに接続され、ソースがスイッチ素子42Sのドレインに接続されている。スイッチ素子42Sはソースがインバータ回路20の低電位側ラインに接続されている。また、スイッチ素子43Sはドレインがインバータ回路20の高電位側ラインに接続され、ソースがスイッチ素子44Sのドレインに接続されている。スイッチ素子44Sはソースがインバータ回路20の低電位側ラインに接続されている。スイッチ素子41S、スイッチ素子42S、スイッチ素子43S及びスイッチ素子44Sそれぞれは、第2制御回路41によりPWM制御される。各スイッチ素子41S,42S,43S,44Sのオンオフ制御は、実施形態1に係るスイッチ素子21S,22S,23S,24Sと同様である。
 このように、スイッチ素子にMOSFETを用いても、実施形態1と同様の効果が得られる。また、整流素子にダイオードD1を用いることで、そのスイッチング制御が不要となるので、回路構成が簡素化できる。
 なお、本実施形態において、ダイオードD1に替えてMOSFETを用いてもよい。この場合、6個のMOSFETの素子で一つのモジュールとして構成されたIPM(Intelligent Power Module)を用いることができる。すなわち、6個のMOSFETの4個をインバータ回路のスイッチ素子に用い、残り2個をアクティブフィルタ回路の整流素子とスイッチ素子として用いることができる。
(実施形態3)
 以下に、本発明の実施形態3について説明する。本実施形態に係るインバータ装置は、実施形態2の平滑コンデンサC1の前段(入力側)と、直流電源Vcdとの間に絶縁型DC-DCコンバータが設けられたものである。
 図13は実施形態3に係るインバータ装置の回路図である。インバータ装置1Bが備えるアクティブフィルタ回路11及びインバータ回路21は実施形態2と同様である。なお、インバータ装置1Bは、実施形態1に係るアクティブフィルタ回路10及びインバータ回路20を備える構成であってもよい。
 絶縁型DC-DCコンバータ13の1次側には、MOSFETによるスイッチ素子51S,52S,53S,54Sでフルブリッジ回路が構成されている。各スイッチ素子51S,52S,53S,54Sのゲートには制御回路が接続され、PWM制御される。
 フルブリッジ回路の出力にはコンデンサC3を介して絶縁トランスTの一次巻線npが接続されている。このコンデンサC3と一次巻線npとで共振回路が構成されている。絶縁トランスTの二次側には、ダイオードD11,D12,D13,D14によるダイオードブリッジ整流回路が接続されている。このようにして共振形フルブリッジコンバータが構成されている。そして、この絶縁型DC-DCコンバータ13の後段に、インダクタL3、平滑コンデンサC1及びアクティブフィルタ回路11が接続されている。
 このインバータ装置1Bにおいて、フルブリッジ回路のスイッチ素子51S,54Sの組合せ及びスイッチ素子53S,52Sの組合せの一方が同時にオン、他方が同時にオフとなる状態が繰り返されることで、コンデンサC3等で構成される共振回路による共振電流が、絶縁トランスTの一次巻線npに流れる。絶縁トランスTの一次巻線npに電流が流れると、絶縁トランスTの二次巻線nsに起電力が生じ、絶縁トランスTの二次側へ電力が伝達される。二次側に伝達された電力は、ダイオードブリッジ整流回路により整流されて、平滑コンデンサC1へ出力される。アクティブフィルタ回路11及びインバータ回路21の動作は、実施形態1,2と同じである。
 本実施形態では、直流電源Vdcの出力電圧が絶縁型DC-DCコンバータ13を介して、コンデンサC1へ入力されることで、コンデンサC1に直流電源Vdcを直接接続した場合と比べて、アクティブフィルタ回路11へ安定した電圧の供給が可能となる。
 絶縁型DC-DCコンバータ(共振形フルブリッジコンバータ)13を無制御で動作させる、つまりデッドタイムを挟んでほぼデューティ比50%でスイッチ素子を駆動させることで、最大電力制御(MPPT制御:Max Power Point Tracking)ができる。すなわち、入力電源が太陽電池パネルである場合に、太陽電池から最大電力を取り出すためには、電流と電圧の積が最大になるように電圧を制御する必要がある。このI-V(電流-電圧)特性は、日射強度やモジュール温度によって変化してしまうため、最大電力を得るためには常に最適な電圧を自動で追従することが重要である。そこで、絶縁型DC-DCコンバータ13が最大電力制御(MPPT制御)することで、太陽電池から最大電力を取り出すことができる。
 なお、上述した各実施形態に係るインバータ装置の具体的構成などは、適宜設計変更可能であり、例えば、マルチレベルであれば、中間電圧クランプ方式やフライングキャパシタ方式、カスケード方式など種々の形態をとりうる。上述の実施形態に記載された作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、上述の実施形態に記載されたものに限定されるものではない。
1-インバータ装置
10-アクティブフィルタ回路
11S-整流素子
12S-スイッチ素子
21S,22S,23S,24S-スイッチ素子
20-インバータ回路
30-第1制御回路
40-第2制御回路
C1-平滑コンデンサ
Cdc-コンデンサ
D1-ダイオード
L1,L2-インダクタ
Vdc-直流電源
(+),P(-)-出力端子

Claims (8)

  1.  入力電源の直流電圧を昇圧及び平滑するアクティブフィルタ回路と、前記アクティブフィルタ回路が昇圧及び平滑した直流電圧を交流電圧へ変換するインバータ回路と、を備え、
     前記アクティブフィルタ回路は、
     入力部と出力部との間に接続されたバッファコンデンサと、
     整流素子と、
     第1端が前記入力部に接続され、第2端が整流素子を介して前記出力部に接続されたインダクタと、
     前記インダクタの前記第2端と低電位側ラインとの間に接続されたスイッチ素子と、
     前記スイッチ素子のスイッチング制御回路と、を有し、
     前記インダクタは、前記スイッチ素子の導通時にエネルギーを蓄積し、前記スイッチ素子の遮断時にエネルギーを放出し、前記整流素子は、前記インダクタの蓄積エネルギーを放出する方向に導通するものである、
    インバータ装置。
  2.  前記スイッチング制御回路は、前記アクティブフィルタ回路の出力電圧の電圧リップルが抑制されるように、前記スイッチ素子のPWM制御により前記バッファコンデンサの充電電圧を制御する、請求項1に記載のインバータ装置。
  3.  前記整流素子はダイオードである、請求項1又は2に記載のインバータ装置。
  4.  前記整流素子はMOSFETまたはIGBT(Insulated Gate Bipolar Transistor)であり、前記スイッチング制御回路は前記整流素子と前記スイッチ素子とを相補的に駆動する、請求項1又は2に記載のインバータ装置。
  5.  前記スイッチ素子はMOSFETまたはIGBTである、請求項1から4の何れかに記載のインバータ装置。
  6.  前記整流素子及び前記スイッチ素子はIPM(Intelligent Power Module)に内蔵される複数の電力スイッチ素子の一部である、請求項1又は2に記載のインバータ装置。
  7.  前記インバータ回路はブリッジ接続された4つのスイッチ素子を備え、これらのスイッチ素子は前記IPMに内蔵される電力スイッチ素子である、請求項6に記載のインバータ装置。
  8.  前記アクティブフィルタ回路と前記入力電源との間に接続された絶縁型DC-DCコンバータをさらに備える、請求項1から7の何れかに記載のインバータ装置。
PCT/JP2013/057373 2012-03-26 2013-03-15 インバータ装置 WO2013146340A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380015701.6A CN104205605B (zh) 2012-03-26 2013-03-15 逆变器装置
EP13767893.4A EP2833536A4 (en) 2012-03-26 2013-03-15 INVERTER DEVICE
JP2014507688A JP5958531B2 (ja) 2012-03-26 2013-03-15 インバータ装置
US14/474,620 US9148072B2 (en) 2012-03-26 2014-09-02 Inverter apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012068572 2012-03-26
JP2012-068572 2012-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/474,620 Continuation US9148072B2 (en) 2012-03-26 2014-09-02 Inverter apparatus

Publications (1)

Publication Number Publication Date
WO2013146340A1 true WO2013146340A1 (ja) 2013-10-03

Family

ID=49259601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057373 WO2013146340A1 (ja) 2012-03-26 2013-03-15 インバータ装置

Country Status (5)

Country Link
US (1) US9148072B2 (ja)
EP (1) EP2833536A4 (ja)
JP (1) JP5958531B2 (ja)
CN (1) CN104205605B (ja)
WO (1) WO2013146340A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734509A (zh) * 2013-12-18 2015-06-24 英飞凌科技股份有限公司 用于功率转换器的系统和方法
CN105048837A (zh) * 2014-04-16 2015-11-11 Ls产电株式会社 用于并网逆变器系统的控制器
JP5874800B1 (ja) * 2014-10-15 2016-03-02 ダイキン工業株式会社 直接型電力変換器用制御装置
WO2018131384A1 (ja) * 2017-01-11 2018-07-19 株式会社村田製作所 電力変換器
US11135028B2 (en) 2015-10-31 2021-10-05 Children's National Medical Center Soft surgical tools

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172088B2 (ja) * 2014-08-19 2017-08-02 株式会社デンソー 共振電流制限装置
FR3034929B1 (fr) 2015-04-08 2019-03-22 Schneider Electric Industries Sas Systeme de filtrage actif
US10177657B2 (en) * 2015-04-16 2019-01-08 Cirrus Logic, Inc. Reconfigurable switched mode converter
US20160329805A1 (en) * 2015-05-05 2016-11-10 Schneider Electric It Corporation Series active ripple filter
WO2017038294A1 (ja) * 2015-08-28 2017-03-09 株式会社村田製作所 Dc-dcコンバータ
EP3365964A4 (en) * 2015-10-23 2019-05-29 The University of Hong Kong READY-TO-USE SWITCHING CAP FOR CONTINUOUS VOLTAGE CONNECTIONS IN POWER ELECTRONIC SYSTEMS AND CONTINUOUS CURRENT ELECTRICAL NETWORKS
TWI647900B (zh) * 2016-03-16 2019-01-11 邱煌仁 換流裝置及其控制方法
US10569301B2 (en) * 2017-06-23 2020-02-25 Ulc Robotics, Inc. Power supply for electromagnetic acoustic transducer (EMAT) sensors
CN109274281B (zh) * 2017-07-12 2021-04-02 丰郅(上海)新能源科技有限公司 光伏并网逆变器低频输入脉动电流的抑制系统及抑制方法
US11159097B2 (en) * 2018-11-08 2021-10-26 Redx Technology Australia Pty Ltd FWS DC-AC grid connected inverter
JP7377172B2 (ja) * 2020-06-17 2023-11-09 ダイヤゼブラ電機株式会社 電力変換装置
JP7377171B2 (ja) * 2020-06-17 2023-11-09 ダイヤゼブラ電機株式会社 電力変換装置
US11979093B2 (en) * 2021-09-14 2024-05-07 Enphase Energy, Inc. Resonant parallel triple active bridge converter
WO2024056449A1 (en) * 2022-09-15 2024-03-21 Signify Holding B.V. Improvements of high frequency pfc converters
CN117294125A (zh) * 2023-11-24 2023-12-26 电子科技大学(深圳)高等研究院 一种镜像导通的对称式buck有源滤波变换器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251480A (ja) 1985-04-25 1986-11-08 Nippon Electric Ind Co Ltd 交流電源装置
JP2007213904A (ja) * 2006-02-08 2007-08-23 Mitsubishi Electric Corp 電源投入検出回路及び放電灯点灯装置
JP2010035377A (ja) * 2008-07-31 2010-02-12 Hitachi Appliances Inc 電力変換装置および電力変換装置の制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548165A (en) * 1994-07-18 1996-08-20 Regents Of The University Of Minnesota Hybrid filter for reducing distortion in a power system
US6636107B2 (en) * 2000-03-28 2003-10-21 International Rectifier Corporation Active filter for reduction of common mode current
JP2004104901A (ja) 2002-09-09 2004-04-02 Nec Tokin Corp 高力率スイッチング電源
US7463500B2 (en) * 2003-02-21 2008-12-09 Xantrex Technology, Inc. Monopolar DC to bipolar DC to AC converter
KR20080017031A (ko) * 2005-05-17 2008-02-25 지멘스 에너지 앤드 오토메이션 인코포레이티드 멀티 레벨 액티브 필터
GB2454389B (en) * 2006-01-13 2009-08-26 Enecsys Ltd Power conditioning unit
US8405367B2 (en) * 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
JP2008148529A (ja) * 2006-12-13 2008-06-26 Toyota Motor Corp 電圧変換装置
FR2913827A1 (fr) * 2007-03-13 2008-09-19 Centre Nat Rech Scient Dispositif de filtrage actif pour une alimentation de puissance
SE537227C2 (sv) * 2012-07-06 2015-03-10 Comsys Ab Resonansomriktare

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251480A (ja) 1985-04-25 1986-11-08 Nippon Electric Ind Co Ltd 交流電源装置
JP2007213904A (ja) * 2006-02-08 2007-08-23 Mitsubishi Electric Corp 電源投入検出回路及び放電灯点灯装置
JP2010035377A (ja) * 2008-07-31 2010-02-12 Hitachi Appliances Inc 電力変換装置および電力変換装置の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833536A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734509A (zh) * 2013-12-18 2015-06-24 英飞凌科技股份有限公司 用于功率转换器的系统和方法
US9793823B2 (en) 2014-04-16 2017-10-17 Lsis Co., Ltd Controller for grid tied inverter system
CN105048837A (zh) * 2014-04-16 2015-11-11 Ls产电株式会社 用于并网逆变器系统的控制器
EP2933915A3 (en) * 2014-04-16 2015-12-30 LSIS Co., Ltd. Controller for grid tied inverter system
KR101797270B1 (ko) * 2014-04-16 2017-11-13 엘에스산전 주식회사 계통연계형 인버터 시스템의 제어장치
JP5874800B1 (ja) * 2014-10-15 2016-03-02 ダイキン工業株式会社 直接型電力変換器用制御装置
CN107078658A (zh) * 2014-10-15 2017-08-18 大金工业株式会社 直接型电力转换器用控制装置
AU2015331503B2 (en) * 2014-10-15 2017-11-09 Daikin Industries, Ltd. Control device for direct power converter
WO2016060039A1 (ja) * 2014-10-15 2016-04-21 ダイキン工業株式会社 直接型電力変換器用制御装置
US9906156B2 (en) 2014-10-15 2018-02-27 Daikin Industries, Ltd. Direct-power-converter control device
CN107078658B (zh) * 2014-10-15 2019-04-23 大金工业株式会社 直接型电力转换器用控制装置
US11135028B2 (en) 2015-10-31 2021-10-05 Children's National Medical Center Soft surgical tools
WO2018131384A1 (ja) * 2017-01-11 2018-07-19 株式会社村田製作所 電力変換器
JPWO2018131384A1 (ja) * 2017-01-11 2019-11-07 株式会社村田製作所 電力変換器
US10622914B2 (en) 2017-01-11 2020-04-14 Murata Manufacturing Co., Ltd. Multi-stage DC-AC inverter

Also Published As

Publication number Publication date
US9148072B2 (en) 2015-09-29
US20140369090A1 (en) 2014-12-18
CN104205605B (zh) 2017-03-08
JPWO2013146340A1 (ja) 2015-12-10
JP5958531B2 (ja) 2016-08-02
EP2833536A4 (en) 2015-12-16
CN104205605A (zh) 2014-12-10
EP2833536A1 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5958531B2 (ja) インバータ装置
JP5575235B2 (ja) 電力変換装置
US8503204B2 (en) Power converter circuit
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
JP5538658B2 (ja) 電力変換装置
US9184674B2 (en) Power conversion apparatus that provides power conversion between AC and DC power
US10044278B2 (en) Power conversion device
US9531250B2 (en) Power conversion device and refrigeration/air-conditioning system
EP3553928B1 (en) Snubber circuit and power conversion system using same
Vinnikov et al. New bi-directional DC/DC converter for supercapacitor interfacing in high-power applications
US20120092909A1 (en) Power conversion apparatus
CN111600499A (zh) 交直流双向变换装置及其控制方法
KR102149393B1 (ko) 태양전지 제어장치 및 제어 방법
JP2013085347A (ja) 交流直流変換器
JP5063731B2 (ja) 電源装置
US11088634B2 (en) Inverter with AC forward bridge and improved DC/DC topology
TW201501458A (zh) 交流-直流電力轉換裝置及其控制方法
US9490637B2 (en) Power converting apparatus
Busquets-Monge et al. Diode-clamped multilevel converters with integrable gate-driver power-supply circuits
US11736025B2 (en) Electrical power conversion apparatus
Singh et al. Three-phase electric drive with modified electronic smoothing inductor
Kumar et al. Estimation of Power Losses in Interleaved Buck-Boost Converter for EV Charging Applications
Rahman et al. Single Phase AC-DC Hybrid Boost-SEPIC (HBS) Converter for Improver Power Quality at High Duty Cycle and HBS Converter with Three Phase Inverter Integrated with a LCL Filter
CN113890198A (zh) 一种基于直流降压和输出电流控制的电感线圈充放电源
Bodhle et al. Embeded control of Z-Source inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013767893

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014507688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE