WO2013146292A1 - レンズ、レンズユニット、およびレンズの製造方法 - Google Patents
レンズ、レンズユニット、およびレンズの製造方法 Download PDFInfo
- Publication number
- WO2013146292A1 WO2013146292A1 PCT/JP2013/057167 JP2013057167W WO2013146292A1 WO 2013146292 A1 WO2013146292 A1 WO 2013146292A1 JP 2013057167 W JP2013057167 W JP 2013057167W WO 2013146292 A1 WO2013146292 A1 WO 2013146292A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical axis
- molding
- flange
- axis direction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/56—Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
- B29C45/561—Injection-compression moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/0048—Moulds for lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/021—Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/022—Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/025—Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/56—Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
- B29C45/561—Injection-compression moulding
- B29C2045/5635—Mould integrated compression drive means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
- B29L2011/0016—Lenses
Definitions
- the present invention relates to a lens, a lens unit, and a method for manufacturing a lens.
- a lens unit in which the lens is held is configured in a lens holding frame having an attachment reference, and the lens unit is mounted in the optical device.
- a holding hole for inserting a lens is provided in the lens holding frame, and a lens side surface, which is the outer peripheral surface of the lens, is fitted to the inner peripheral surface of the holding hole so that the diameter orthogonal to the optical axis is obtained.
- the position of the lens with respect to the lens holding frame is fixed by, for example, bonding.
- a conical abutment surface is provided on the inner side of the lens side surface, and the lenses are brought into abutment with each other with the conical abutment surface, so that the lens in the optical axis direction and the direction orthogonal to the optical axis.
- Positioning each other, and fitting one lens outer peripheral surface of the plurality of lens assemblies with the lens frames (lens holding frames), and orthogonal to the optical axis of the lens assembly and the lens frame A method for positioning a plastic lens is described.
- the above-described conventional lens unit has the following problems.
- the technique of adjusting the eccentricity by fitting the lens side surface with the lens holding frame for example, when configuring a lens unit having an allowable eccentricity of 0.005 mm or less, the outer diameter of the lens outer peripheral surface, light
- the sum of the amount of eccentricity with respect to the shaft and the processing error of the inner diameter of the inner peripheral surface of the lens holding frame needs to be less than the allowable amount of eccentricity. For this reason, there is a problem that even if the adjustment cost is reduced due to the non-adjustment, the manufacturing cost of the lens and the lens holding frame increases.
- the technique described in Patent Document 1 even in a lens unit having a plurality of lenses, since only one lens is fitted to the lens holding frame, the processing accuracy of the other lens side surfaces is relaxed. However, since the processing accuracy of the lens fitted to the lens holding frame is required to be high, there is a problem in that the component manufacturing cost increases. Moreover, in the lens by resin molding like patent document 1, the mold member which transfers the shape of a lens surface is movable with respect to the mold member which transfers the shape of a lens side surface so that mold release of a molded product becomes easy. Since it is configured as a nested mold, an eccentric variation corresponding to the fitting gap between the two mold members occurs between the lens side surface of the molded product and the optical axis. For this reason, the technique described in Patent Document 1 has a problem that it is difficult to configure a lens unit having an allowable eccentricity of 0.005 mm or less, for example.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a lens capable of forming a radial positioning portion with high accuracy and a method for manufacturing the lens. Another object of the present invention is to provide a lens unit that can reduce eccentricity even without adjustment.
- the lens according to the first aspect of the present invention includes a lens surface portion and a lens outer edge portion formed on the outer peripheral side of the lens surface portion on end surfaces of both end portions in the direction along the optical axis, and the lens outer edge portion.
- a lens side surface that is an outermost surface in a direction perpendicular to the optical axis adjacent to the lens, and can be incorporated into a lens holding frame that covers the lens side surface from the outer peripheral side, and the lenses formed on the end surfaces of the both ends, respectively.
- At least one of the outer edge portions is provided with an optical axis direction positioning portion provided in one plane orthogonal to the optical axis, and at least one of the outer edge portions of each lens has an inner circumference from the lens side surface.
- a positioning protrusion is formed which protrudes in a direction along the optical axis from a position on the side and has a radial positioning portion provided in a fixed positional relationship with the optical axis in a direction orthogonal to the optical axis.
- the positioning protrusion may have the optical axis direction positioning portion.
- the lens according to the first aspect or the second aspect a lens fitting part for fitting the radial positioning part of the lens, and the lens
- a lens holding frame having an optical axis direction reference surface that abuts the optical axis direction positioning portion, and a lens housing hole portion having an outer shape larger than the outer shape of the lens side surface of the lens, The lens is fitted into the lens fitting portion, and abutted against the optical axis direction reference surface and positioned.
- the lens unit according to a fourth aspect of the present invention is the lens unit according to the third aspect, wherein a plurality of the lenses are provided, and the optical axis direction reference surface is located at one of the plurality of lenses in the optical axis direction positioning portion.
- Each of the plurality of lenses in contact with each other is fitted into one or more of the lens fitting portions, and the lenses arranged adjacent to each other are positioned in the optical axis direction provided on the end surfaces facing each other. Positioning in the direction along the optical axis may be performed by bringing the parts into contact with each other.
- a method for manufacturing a lens comprising: forming a mold assembly; and molding the outer shape of the lens according to the first aspect or the second aspect with the mold assembly.
- Forming the material, and the mold assembly transfers at least a part of the outer edge of the lens and the shape of the lens surface portion of one of the end surfaces of the both end portions.
- the first mold member, the second mold member that transfers at least a part of the outer edge of the lens, and the shape of the lens surface, the other of the end surfaces, and the shape of at least the lens side surface are transferred.
- a radial positioning portion molding surface for transferring the shape of the radial positioning portion is either the first molding member or the second molding die member. Shaped to be provided on one side It is.
- the first molding die member or the second molding die member provided with the radial positioning portion molding surface includes the radial positioning portion.
- a molding surface for molding the lens surface portion of the end surface provided with may be further provided.
- the positioning portion is provided on the lens side surface in order to provide the positioning protrusion having the radial positioning portion that protrudes in parallel with the optical axis from the position on the inner peripheral side than the lens side surface.
- the radial positioning portion can be easily formed with high accuracy.
- the lens unit it is possible to reduce the eccentricity even if there is no adjustment by fitting the radial positioning portion of the lens to the lens holding frame.
- FIG. 1A is a cross-sectional view including an optical axis schematically showing an example of a lens unit according to the first embodiment of the present invention.
- FIG. 1B is a right side view including an optical axis schematically showing an example of the lens unit according to the first embodiment of the present invention.
- FIG. 2A is a left side view schematically showing the first lens of the lens unit according to the first embodiment of the present invention.
- FIG. 2B is a cross-sectional view including an optical axis schematically showing the first lens of the lens unit according to the first embodiment of the present invention.
- FIG. 1A is a cross-sectional view including an optical axis schematically showing an example of a lens unit according to the first embodiment of the present invention.
- FIG. 2C is a right side view schematically showing the first lens of the lens unit according to the first embodiment of the present invention.
- FIG. 3 is a cross-sectional view schematically showing a mold structure for manufacturing the first lens of the first embodiment of the present invention.
- FIG. 4A is a cross-sectional view including an optical axis schematically showing the second lens of the lens unit according to the first embodiment of the present invention.
- FIG. 4B is a right side view including an optical axis schematically showing the second lens of the lens unit according to the first embodiment of the present invention.
- FIG. 5A is a schematic right side view of the lens holding frame of the lens unit according to the first embodiment of the present invention.
- FIG. 5B is a cross-sectional view including a schematic central axis of the lens holding frame of the lens unit according to the first embodiment of the present invention.
- FIG. 6 is a schematic left side view of the lens holding frame of the lens unit according to the first embodiment of the present invention.
- the direction along the axial line is the axial direction
- the direction of circling around the axial line is the circumferential direction
- a direction along a line intersecting the axis in a plane orthogonal to the axis is referred to as a radial direction.
- the direction along the optical axis may be referred to as the optical axis direction.
- the direction away from the axis may be referred to as a radially outward (outside), and the direction approaching the axis may be referred to as a radially inward (inside).
- the lens unit 1 of the present embodiment includes a first lens 2 (lens), a second lens 3 (lens), and a lens frame 4 (lens holding frame).
- the first lens 2 is positioned so that the optical axis O 2 thereof is substantially aligned (including the case of alignment) with the unit center axis P of the lens frame 4, and is pressed in the axial direction of the lens frame 4.
- the lens unit 1 has been positioned.
- the second lens 3 is positioned so that its optical axis O 3 is substantially aligned (including the case where it is aligned) with the unit center axis P, and is brought into contact with the first lens 2 so that the optical axis O 3 is aligned in the optical axis direction. It is positioned. In this state, the relative positions of the second lens 3 and the lens frame 4 are fixed by the bonding portion 6.
- the bonding part 6 is formed, for example, by curing an adhesive such as a UV curable adhesive, a two-component adhesive, or a thermosetting adhesive.
- the first lens 2 is one of a pair of lenses held by the lens unit 1.
- the first lens 2 includes a convex first lens surface 2a (lens surface portion) and a concave second lens surface 2b (lens surface portion). And have.
- the first lens 2 is a meniscus lens provided with a flange portion 2c on the outer peripheral side.
- the positive / negative of the refractive power of the first lens 2 can be appropriately set according to the design specifications based on the application of the lens unit 1.
- the first lens surface 2a is formed in a range of diameter d 2a around the optical axis O 2.
- the second lens surface 2b is formed in a range of diameter d 2b around the optical axis O 2.
- the first lens surface 2a, the second lens surface 2b constitutes a lens surface portion of the end surface of both end portions in the direction along the optical axis O 2.
- the first lens 2 may be formed by cutting and polishing a glass material.
- the first lens 2 is formed by molding a synthetic resin.
- the draft angle is omitted as appropriate.
- it demonstrates as a shape when a draft is ignored.
- the dimensions of the holes and shafts that fit into each other are the dimensions of the range used for fitting and insertion, and the holes are the minimum dimensions so that there is no hindrance to fitting even if there is a draft.
- the shaft portion represents the maximum dimension.
- the flange portion 2c is a plate-like portion extending radially outward from the outer periphery of the first lens surface 2a and the second lens surface 2b, and has an outer diameter smaller than that of the convex portion 2p and the convex portion 2p.
- the concave portions 2n are alternately formed in the circumferential direction. In the present embodiment, the convex portion 2p and the concave portion 2n are provided at three locations at equal positions in the circumferential direction.
- the circumferential range in which the convex portion 2p and the concave portion 2n are formed is a range where the convex portion 2p is less than the central angle of 60 °, and the concave portion 2n exceeds the central angle of 60 °.
- the outer peripheral surface 2m R which is the outermost surface in the radial direction of the concave portion 2n is formed as a cylindrical surface having a radius D 2m / 2 (where D 2m > d 2a and D 2m > d 2b ) with the optical axis O 2 as the center.
- the lens side surface 2f R which is the outermost surface in the radial direction of the convex portion 2p is formed as a cylindrical surface having a radius D 2f / 2 (where D 2f > D 2m ) with the optical axis O 2 as the center. 2 constitutes the outermost surface in the radial direction.
- the first flange surface 2r A On the surface of the first lens surface 2a side of the flange portion 2c, as a lens outer edge portion formed on the outer peripheral side of the lens surface, toward the outer side from the inner peripheral side, the first flange surface 2r A inner peripheral side formed Has been. Especially the convex portions 2p, on the inner peripheral side more outer peripheral side than the first flange surface 2r A is a similarly lens outer edge periphery side first flange surface 2s A is formed.
- first protrusion 2g protruding in the optical axis direction is formed.
- the lens outer edge includes a first protrusion 2g.
- the first flange surface 2r A inner peripheral side is adjacent to the outer periphery of the first lens surface 2a, a surface that is extended in a direction crossing the optical axis O 2, in each recess 2n and the convex portions 2p Is provided.
- first flange surface 2r A inner peripheral side is a plane orthogonal to the optical axis O 2.
- a first abutting surface 2h A (optical axis direction positioning portion) aligned on one plane orthogonal to the optical axis O 2 is formed at the leading end of each first protrusion 2g in the protruding direction. That is, the first abutting surface 2h A, are provided on one plane perpendicular to the optical axis O 2.
- the position of the first abutting surface 2h A in the optical axis direction is in a fixed positional relationship with respect to the first lens surface 2a. For this reason, the first abutting surface 2h A constitutes an optical axis direction positioning portion in the first lens 2.
- the first flange surface 2s A outer peripheral side is a surface which extended in a direction crossing the optical axis O 2 between the first protrusion 2g and the lens side surface 2f R at each convex portion 2p.
- the outer peripheral side first flange surface 2s A a plane orthogonal to the optical axis O 2.
- the first flange surface 2s A outer peripheral side may be a plane aligned with the inner periphery side first flange surface 2r A, it may not be aligned with the inner periphery side first flange surface 2r A.
- the second lens surface 2b side of the surface of the flange portion 2c, as a lens outer edge portion formed on the outer peripheral side of the lens surface, toward the outer side from the inner circumferential side, inner circumferential side second flange surface 2t A is formed Has been.
- the convex portions 2p, on the inner peripheral side more outer peripheral side of the second flange face 2t A is a similarly lens outer edge periphery side second flange surface 2u A is formed.
- a second protrusion 2i (positioning protrusion) is formed so as to protrude in the optical axis direction.
- the lens outer edge includes a second protrusion 2i.
- the second flange surface 2t A inner peripheral side is adjacent to the outer periphery of the second lens surface 2b, a surface that is extended in a direction crossing the optical axis O 2, in each recess 2n and the convex portions 2p Is provided.
- the second flange surface 2t A inner peripheral side is a plane orthogonal to the optical axis O 2.
- a reference cylindrical surface 2j R (radial positioning portion) that is a cylindrical surface of / 2 is formed.
- the reference cylindrical surface 2j R has a draft, it is preferable to make it smaller than the draft of other portions, and it is more preferable that the reference cylindrical surface 2j R be a straight surface having no draft.
- Each 2nd projection part 2i is formed in the position which divides the circumferential direction into 3 parts corresponding to the arrangement position of flange part 2c.
- the reference cylindrical hole 2j R once fitted in the cylindrical surface of diameter D 2j, the optical axis O 2 is aligned with the central axis of the cylindrical surface, the radial direction of the first lens 2 with respect to the cylindrical surface Can be positioned.
- the second abutting surface 2k A which is aligned in a plane perpendicular to the optical axis O 2 (optical axis direction positioning portion) is formed. That is, the second abutting surface 2k A, are provided on one plane perpendicular to the optical axis O 2. Position in the optical axis direction of the second abutting surface 2k A is in fixed alignment with the second lens surface 2b, Therefore, constitute another optical axis direction positioning portion of the first lens 2 Yes.
- each second abutting surface 2k A is aligned with a plane parallel to the plane with which each first abutting surface 2h A is aligned, and is separated by a certain distance in the optical axis direction. Has been.
- the outer peripheral side second flange surface 2u A is a surface that is extended in a direction crossing the optical axis O 2 between the second protruding portions 2i and the lens side surface 2f R at each convex portion 2p.
- the second flange surface 2u A outer peripheral side is a plane orthogonal to the optical axis O 2.
- the second flange surface 2u A outer peripheral side may be a plane aligned with the inner circumferential side second flange surface 2t A, it may not be aligned with the inner circumferential side second flange surface 2t A.
- the reference cylindrical surface 2j R protrudes in a direction along the optical axis O 2 from a position on the inner peripheral side with respect to the lens side surface 2f R at one of the lens outer edges, and is orthogonal to the optical axis O 2 .
- a radial positioning portion is also provided in a certain positional relationship with the optical axis O 2 in the direction.
- the first lens 2 constitutes a core mold with a mold member 11 (first mold member) and a mold member 13 (third mold member) constituting a cavity mold. It can be manufactured by molding using a molding die assembly 10 including a molding die member 12 (second molding die member). In the mold assembly 10, the drawing direction is a direction along the optical axis O 2 of the first lens 2.
- the molding die member 11 is a member that becomes a movable nesting die of the molding die member 13 to be described later.
- the side surface of the mold member 11 has a mold sliding surface 11b that fits with the mold member 13 and advances and retreats in the pulling direction. Therefore, the molding surface 11a, the lens forming surfaces 11a 1 to transfer the shape of the first lens surface 2a, the axial positioning part forming surface to transfer the shape of the first abutting surface 2h A of the first protrusion 2g 11a 2 is formed as a continuous surface.
- the position of the axial positioning portion molding surface 11a 2 with respect to the top of the lens molding surface 11a 1 is kept constant. Further, it is possible to finish by performing mold modified during production of the mold member 11, the positional relationship relative to the surface vertex of the lens forming surface 11a 1 of the axial positioning portion molding surface 11a 2 with high accuracy.
- the mold member 12 transfers the shapes of the second lens surface 2b, the inner peripheral second flange surface 2t A , the second protrusion 2i, and the outer peripheral second flange surface 2u A to the distal end side toward the molding space S. It has the molding surface part 12a to do. On the outer peripheral side of the molding surface portion 12a, there is a mold matching surface 12b that comes into contact with a molding die member 13 to be described later.
- the axial positioning portion forming surface 12a 3 for transferring the shape of the second abutment surface 2k a of the second protrusion 2i is formed as a surface of a series.
- the positional relationship between the radial positioning portion molding surface 12a 2 and the axial positioning portion molding surface 12a 3 and the top of the lens molding surface 12a 1 is highly accurate. Can be finished. It is preferable that the radial positioning portion molding surface 12a 2 has a straight shape without a draft or a slope smaller than the draft of other portions.
- Mold member 13 an outer peripheral portion molded to transfer the mold sliding surface 13a which constitutes the hole portion for holding the mold member 11 slidably, the shape of the outer peripheral side first flange surface 2s A and the lens side surface 2f R It has the surface 13c and the type
- the mold assembly 10 having such a configuration is positioned so that the central axes of the lens molding surfaces 11a 1 and 12a 1 forming the optical axis O 2 can achieve a predetermined eccentric tolerance as a single lens. It is matched.
- a molding space S corresponding to the outer shape of the first lens 2 is formed with the mold closed.
- the first lens 2 can be molded by introducing molding resin (molding material) from the gate portion G into the space S and performing molding.
- the lens molding surface 11a 1 and the axial positioning portion molding surface 11a 2 are formed on the molding surface portion 11a, so that the positional relationship between the first lens surface 2a and the first abutting surface 2h A in the molded product is increased. High accuracy is maintained.
- the lens molding surface 12a 1 , the radial positioning portion molding surface 12a 2 , and the axial positioning portion molding surface 12a 3 are formed on the molding surface portion 12a, so that the second lens surface 2b in the molded product and the reference cylinder are formed.
- the positional relationship between the surface 2j R and the second butting surface 2k A is maintained with high accuracy.
- the second lens 3 is the other of the pair of lenses that are coaxially disposed facing the second lens surface 2 b of the first lens 2 and held by the lens unit 1.
- the second lens 3 has a first lens surface 3a (lens surface portion) made of a concave surface and a second lens surface 3b (lens surface portion) made of a convex surface.
- the meniscus lens is provided with a flange portion 3c on the outer peripheral side.
- the positive / negative of the refractive power of the second lens 3 can be appropriately set according to the design specifications based on the application of the lens unit 1.
- the first lens surface 3a is formed in a range of diameter d 3a around the optical axis O 3.
- the second lens surface 3b is formed in a range of a diameter d 3b with the optical axis O 3 as the center.
- the first lens surface 3a, the second lens surface 3b constitute a lens surface portion of the end surface of both end portions in the direction along the optical axis O 3.
- the second lens 3 may be formed by cutting and polishing a glass material, but in the present embodiment, the second lens 3 is formed by molding a synthetic resin.
- the flange portion 3c is a plate-like portion that extends radially outward from the outer periphery of the first lens surface 3a and the second lens surface 3b.
- convex portions 3p having the maximum outer diameter of the second lens 3 and concave portions 3n having an outer diameter smaller than the convex portions 3p are alternately formed in the circumferential direction.
- the convex portion 3 p and the concave portion 3 n are provided at three positions at positions that equally divide the circumferential direction.
- the circumferential range in which the convex portion 3p and the concave portion 3n are formed is a range in which the convex portion 3p is less than a central angle of 60 °, and the concave portion 3n is a range in which the central angle exceeds 60 °.
- the outer peripheral surface 3m R which is the outermost surface in the radial direction of the concave portion 3n is a cylindrical surface having a radius D 3m / 2 (where D 3m > d 3a and D 3m > d 3b ) with the optical axis O 3 as the center. It is formed as.
- the lens side surface 3f R which is the outermost surface in the radial direction of the convex portion 3p is formed as a cylindrical surface having a radius D 3f / 2 (where D 3f > D 3m ) with the optical axis O 3 as the center. 3 constitutes the outermost surface in the radial direction.
- the flange part 3c comprises the lens outer edge part formed in the outer peripheral side of the lens surface part.
- the diameter D3f of the outermost surface of the second lens 3 is not particularly limited, in the present embodiment, as an example, the diameter D3f will be described as being larger than the diameter D2f of the outermost surface of the first lens 2.
- a first flange surface 3h A (optical axis direction positioning portion) which is a flat surface extending in a direction orthogonal to the optical axis O 3 is formed.
- the first flange surface 3h A as shown in FIG. 1A, when incorporated into the lens frame 4, the second abutting surface 2k A of the first lens 2 is provided in a contactable position. Position in the optical axis direction of the first flange surface 3h A is in fixed alignment with the first lens surface 3a. For this reason, the first flange surface 3 h A constitutes an optical axis direction positioning portion in the second lens 3.
- the inner surface from the inner peripheral side toward the outer peripheral side is formed on the surface of the flange portion 3 c on the second lens surface 3 b side.
- second flange face 3t a circumferential side is formed, in particular of the convex portions 3p, the inner circumference side to the further outer peripheral side of the second flange face 3t a, the outer peripheral side second flange which is also a lens outer edge Surface 3u A is formed.
- each convex part 3p between the inner peripheral second flange surface 3t A and the outer peripheral second flange surface 3u A , the inner peripheral second flange surface 3t A and the outer peripheral second flange surface 3u A are provided. Projection portions 3i (positioning projections) projecting in the optical axis direction are formed.
- Second flange face 3t A inner peripheral side is adjacent to the outer periphery of the second lens surface 3b, a surface that is extended in a direction crossing the optical axis O 3, in each recess 3n and the convex portions 3p Is provided.
- the second flange surface 3t A inner peripheral side is a plane orthogonal to the optical axis O 3.
- a reference cylindrical surface 3j R (radial positioning portion) that is a cylindrical surface is formed.
- the reference cylindrical surface 3j R has a draft, it is preferable to make it smaller than the draft of other portions, and it is more preferable that the reference cylindrical surface 3j R be a straight surface having no draft.
- Each protrusion 3i is formed at a position that divides the circumferential direction into three equal parts corresponding to the arrangement position of the flange 3c.
- each reference cylindrical surface 3j R is fitted into a cylindrical surface having a diameter D 3j , the optical axis O 3 is aligned with the central axis of the cylindrical surface, and the radial direction of the second lens 3 with respect to the cylindrical surface Can be positioned.
- tip surface 3k A in the projecting direction of the tip of the protrusions 3i, which is aligned in a plane perpendicular to the optical axis O 3 tip surface 3k A is formed.
- Tip surface 3k A in this embodiment, is not used as an abutment surface, such as positioning, the tip surface 3k A need not be aligned on one plane.
- the second lens 3 is an example in which the optical axis direction positioning portion is provided only on one end face in the optical axis direction.
- the optical axis for positioning in the optical axis direction can be obtained by aligning the front end surface 3k A with a plane orthogonal to the optical axis O 3 in the same manner as the second abutting surface 2k A of the first lens 2. It can also be used as a direction positioning part.
- the outer peripheral side second flange surface 3u A is a surface that is extended in a direction crossing the optical axis O 3 between the projections 3i and a lens side surface 3f R at each convex portion 3p.
- the second flange surface 3u A outer peripheral side is a plane orthogonal to the optical axis O 3.
- the second flange surface 3u A outer peripheral side may be a plane aligned with the inner circumferential side second flange face 3t A, it may not be aligned with the inner circumferential side second flange face 3t A.
- the reference cylindrical surface 3j R protrudes in a direction along the optical axis O 3 from a position on the inner peripheral side with respect to the lens side surface 3f R on one of the outer edge portions of the lens, and is orthogonal to the optical axis O 3 . also constitutes a radial positioning portion provided in a predetermined positional relationship with the optical axis O 3 in the direction.
- the second lens 3 is different from the first lens 2 in that the dimensions are different, the unevenness of the first lens surface 3a and the second lens surface 3b is different, and the first protrusion 2g. Except for the point provided with the first flange surface 3h A , it has substantially the same outer shape. For this reason, it can be molded by the same mold configuration as that of the first lens 2.
- the lens frame 4 is a lens holding frame into which the first lens 2 and the second lens 3 are incorporated. As shown in FIGS. 5A and 5B, the lens frame 4 is a cylindrical member having a through hole at the center, and has one axial end.
- the lens receiving portion 4a for holding the first lens 2 in the optical axis direction is provided in the portion.
- Lens receiving portion 4a is composed of a plate-shaped portion which is extended toward the outer circumferential side radially inward of the lens frame 4, an opening 4c R to secure the ray passing area with respect to the first lens 2, the unit center axis P And is formed coaxially.
- an optical axis direction receiving surface 4b A (optical axis direction reference surface) composed of a plane orthogonal to the unit center axis P is a first abutting surface 2h of the first lens 2. It is provided in a range where it can come into contact with A. Further, on the outer peripheral side of the optical axis receiving surface 4b A, the first lens housing opening portion 4d R consisting of substantially cylindrical bore portion which becomes successively larger diameter toward the axial end, the second lens housing bore A portion 4g R and an opening 4j R are formed.
- the first lens accommodation hole 4d R hole diameter a larger diameter than the maximum outer diameter D 2f of the first lens 2, the axial length with respect to the optical axis direction receiving surface 4b A is, the first lens 2 It is longer than the distance from the first butting surface 2h A to the outer peripheral second flange surface 2u A.
- the size of the hole diameter of the first lens housing hole 4d R is, for example, a size that does not contact the molding burr that may occur in the first lens 2, the burr removal work of the first lens 2 is simplified. This is preferable because it can be performed. With this configuration, the inside of the first lens housing hole 4d R, it is possible to accommodate without contact with the first lens 2 in the radial and axial directions.
- the hole diameter of the second lens housing hole 4g R is larger than the maximum outer diameter D 3f of the second lens 3.
- the axial length of the second lens housing hole 4g R is longer than the distance from the first flange surface 3h A to the outer peripheral side second flange surface 3u A.
- the position of the axial direction of the second lens housing hole 4g R, as shown in FIG. 1A, in a state where the second lens 3 is positioned in the axial direction with respect to the first lens 2, the lens side 3f R is The second lens receiving hole 4g R is a position facing the intermediate portion in the axial direction.
- Opening 4j R is the other end of the aperture of the lens frame 4 can be appropriately sized to secure the ray passing area with respect to the second lens 3.
- it is constituted by a cylindrical surface having a diameter larger than the second lens accommodation hole 4g R.
- the first lens 2 was extended radially inward at three positions corresponding to the three flanges 2c.
- An arc plate-like lens fitting portion 4e is provided.
- the range of the circumferential direction of each lens fitting part 4e is provided in the range of 60 degrees of central angles.
- the inner peripheral portion of the lens fitting portions 4e, for positioning the first lens 2 and the inner fitting is allowed each reference cylindrical hole 2j R of the first lens 2 in the radial direction, the center unit center axis P
- a radial positioning surface 4f R made of a cylindrical surface having a radius D 4e / 2 is formed.
- the dimension D4e is set so as to satisfy the following expression (1).
- ⁇ 2 is an allowable value of the eccentric amount due to the assembly error of the first lens 2, and is 2 ⁇ m, for example.
- each lens fitting portion 4h is a range of a central angle of 60 °, and is the same angle region as the lens fitting portion 4e is provided (see FIG. 4B). ).
- the center unit center axis P A radial positioning surface 4i R made of a cylindrical surface having a radius D 4h / 2 is formed.
- the dimension D 4h is set so as to satisfy the following expression (2).
- ⁇ 3 is an allowable amount of eccentricity due to an assembly error of the second lens 3, and is 2 ⁇ m, for example.
- the lens frame 4 can be formed, for example, by cutting a metal or a synthetic resin, or by molding using a metal material or a synthetic resin material. In this embodiment, resin molding is adopted.
- the hole portions 4k and 4m shown in FIGS. 5B and 6 are hole portions for preventing the lens fitting portions 4e and 4h from being undercut.
- the molding surface for transferring the shape of the lens receiving portion 4a and the radial positioning surfaces 4f R and 4i R can be formed in the core mold. For this reason, since all are shape
- the first lens surface 2a has the opening 4j.
- the first lens 2 is disposed so as to face R and each convex portion 2p is positioned between adjacent lens fitting portions 4e of the lens frame 4.
- the first lens 2, insert toward the opening 4j R side in the optical axis direction receiving surface 4b A are brought into contact with the first abutment surface 2h A in the optical axis direction receiving surface 4b A, the One lens 2 is rotated about 60 ° in the circumferential direction.
- the first abutting surface 2h A comes into contact with the optical axis direction receiving surface 4b A of the lens receiving portion 4a, and each convex portion 2p is covered with each lens fitting portion 4e. in stop state omission axially it is accommodated in the first lens housing hole 4d R.
- the reference cylindrical hole 2j R because they are fitted to each lens fitting portion 4e, the first lens 2 is positioned with respect to the unit center axis P, radially [delta] 2 following placement error Is done.
- the second lens 3 is arranged so that the first lens surface 3 a faces the opening 4 j R and each convex portion 3 p is positioned between adjacent lens fitting portions 4 h of the lens frame 4. Then, the second lens 3, aperture 4j from R side toward the second abutment surface 2k A insert, the second lens from abut the first flange surface 3h A Second abutting surface 2k A 3 is rotated about 60 ° in the circumferential direction. Accordingly, in the second lens 3, each convex portion 3p is covered with each lens fitting portion 4h in a state where the first flange surface 3h A is in contact with the second abutting surface 2k A of the first lens 2.
- the second lens accommodation hole 4g R it is housed in the second lens accommodation hole 4g R in a state of being retained in the axial direction.
- the reference cylindrical hole 3j R because they are fitted to each lens fitting portion 4h, the second lens 3 is positioned with respect to the unit center axis P, radially [delta] 3 following placement error Is done.
- the second lens 3 is pressed in the axial direction toward the first lens 2 to bring the lens receiving portion 4a and the first abutting surface 2h A into contact with each other in the axial direction, and the second abutting surface.
- the 2k A and the first flange surface 3h A are brought into contact with each other in the axial direction to perform positioning in the optical axis direction.
- an adhesive is applied and cured so as to straddle each protrusion 3 i and the lens fitting portion 4 h, thereby forming the adhesive portion 6.
- the bonding portion 6 is formed at the center in the circumferential direction of each projection 3i and each lens fitting portion 4h in FIG. 1B.
- the application shape and the number of the bonding portions 6 can be appropriately changed according to the required bonding strength.
- a plurality of the protrusions 3i and the lens fitting portion 4h may be separated from each other in the circumferential direction, or may be formed in an arc shape along the circumferential direction. In this way, the lens unit 1 is assembled.
- the lens spacing of the first lens 2 and the second lens 3 is determined by the positional accuracy of the first abutting surface 2h A and the first flange surface 3h A of the second protrusion 2i.
- the first butting surface 2h A (first flange surface 3h A ) has the same molding die member (first molding) having a molding surface that transfers the shape of the second lens surface 2b (first lens surface 3a).
- first molding molding die member having a molding surface that transfers the shape of the second lens surface 2b (first lens surface 3a).
- the lens surface interval between the second lens surface 2b and the first lens surface 3a is determined only by the component accuracy of the first lens 2 and the second lens 3 without using the lens frame 4, and therefore assembled without adjustment. Can also reduce the assembly error.
- the eccentric by an assembly error of the first lens 2 and the second lens 3, the fitting clearance between the reference cylindrical hole 2j R and the radial positioning surface 4f R, and reference cylindrical hole 3j R and the radial positioning surface 4i It is determined by the fitting gap with R.
- the reference cylindrical surface 2j R (reference cylindrical surface 3j R ) has the same molding die member (first lens 2) having a molding surface that transfers the shape of the second lens surface 2b (second lens surface 3b).
- first lens 2 first lens 2 having a molding surface that transfers the shape of the second lens surface 2b (second lens surface 3b).
- radial positioning is performed using the lens side surface 2 f R to which the shape is transferred by the molding surface formed on the molding die member 13.
- the lens surface portion and the radial positioning portion are formed by molding surfaces on separate molding die members, and the molding die members move relative to each other, so the first lens surface 2a and the second lens surface
- the positional accuracy of the lens side surface 2f R with respect to 2b is inferior. That is, the mold member 11 that molds the first lens surface 2a and the mold member 12 that molds the second lens surface 2b suppress the eccentricity between the first lens surface 2a and the second lens surface 2b. It is aligned with high accuracy.
- the lens frame 4 is provided with the first lens housing hole 4d R and the second lens housing hole 4g R so as not to come into contact with the convex portions 2p and 3p during assembly. Therefore, the inner peripheral side first flange surface 2r A , the outer peripheral side first flange surface 2s A , the lens side surface 2f R , the inner peripheral side second flange surface 2t A , the outer peripheral side second flange surface 2u A , and the first flange surface 3h.
- the shape errors of A , the lens side surface 3f R , the inner peripheral second flange surface 3t A , and the outer peripheral second flange surface 3u A do not affect the assembly error.
- the radial positioning portion can be easily formed with high accuracy.
- the eccentricity can be reduced even when there is no adjustment by fitting the radial positioning portions of the first lens 2 and the second lens 3 to the lens fitting portion of the lens frame 4. Can do. For this reason, the component cost of the 1st lens 2 and the 2nd lens 3, and the assembly cost of the lens unit 1 can be reduced.
- 7A, 7B, and 7C are a left side view, a cross-sectional view including an optical axis, and a right side view schematically showing a lens of a modified example of the first embodiment of the present invention.
- the first lens 22 (lens) of this modification is formed on the first protrusion 2g and the second protrusion 2i of the first lens 2 of the first embodiment. Instead, a first protrusion 22g and a second protrusion 22i (positioning protrusion) are provided. Accordingly, the first lens 22 includes a first flange surface 22r A (lens outer edge portion) instead of the inner periphery side first flange surface 2r A and the outer periphery side first flange surface 2s A. A second flange surface 22t A (lens outer edge) is provided in place of the two flange surfaces 2t A and the outer peripheral second flange surface 2u A.
- the lens unit 21 of this modification can be configured.
- a description will be given centering on differences from the first embodiment.
- the first protrusion portion 22g is above protrusion inner peripheral side first flange surface 2r A similar plane of the first embodiment is projected from the first flange surface 22r A was extended to the lens side surface 2f R
- the outer shape seen from the optical axis direction is circular.
- a first abutting surface 22h A (optical axis direction positioning) whose position in the optical axis direction is the same as that of the first abutting surface 2h A of the first projecting portion 2g is provided at the distal end portion of the first projecting portion 22g in the projecting direction. Part) is formed.
- Position on the first flange surface 22r A of the first protruding portion 22g, if capable of abutting position to the lens receiving portion 4a, is not particularly limited. In this modification, as one example, it is provided in the position where the circumferential direction of the center of the first abutting surface 2h A in the first embodiment.
- Second protrusion 22i is above protrusion inner peripheral side second flange surface 2t A similar plane of the first embodiment is projected from the second flange surface 22t A was extended to the lens side surface 2f R
- the outer shape seen from the optical axis direction is circular.
- a reference side surface portion 22j R (radial direction) aligned with a virtual cylindrical surface having a radius D 2j / 2 centered on the optical axis O 2 is provided on a side surface portion that is the outermost portion in the radial direction. Positioning part) is formed.
- Reference side portion 22j R as in the present embodiment, the case of forming the second protrusion 22i in a cylindrical shape, a generatrix of the cylinder in contact with the virtual cylinder surface, the radial positioning surface 4f R and line contactable It has a different shape.
- the cross-sectional shape of the second protrusion 22i is not limited to a circle, and may be, for example, a shape in which a cylindrical surface aligned with the virtual cylindrical surface is provided on the outer peripheral side surface. In this case, such a cylindrical surface of the side, it is possible to contact the radial positioning surface 4f R.
- a second abutment surface 22k A which is aligned in a plane perpendicular to the optical axis O 2 (optical axis direction positioning portion) is, the first embodiment It is formed at the same position and the second abutment surface 2k a form.
- the lens unit 21 can be assembled by being incorporated in the lens frame 4 in the same manner as the first lens 2 of the first embodiment.
- the first abutting surface 22h A and the second abutting surface 22k A constitute the optical axis direction positioning portion in the same manner as the first abutting surface 2h A and the second abutting surface 2k A.
- the side surface portion 22j R forms a radial positioning portion similarly to the reference cylindrical surface 2j R , and has the same functions and effects as those of the first embodiment.
- first abutment surface 22h A the area of the second abutment surface 22k A, the first abutment surface 2h A of the first embodiment, the second abutment surface 2k A Therefore, positioning in the optical axis direction can be performed in a state closer to receiving three points. For this reason, positioning with higher accuracy is possible.
- the mold correction of the mold member becomes easier. It becomes easy to manufacture with high accuracy.
- a second protrusion 22i in a columnar shape certainly in line contact when in contact with the radial positioning surface 4f R.
- the 2nd projection part 22i can reduce a volume compared with the 2nd projection part 2i, the influence on the shaping
- FIG. 8 is a cross-sectional view including an optical axis schematically showing an example of a lens unit according to the second embodiment of the present invention.
- FIGS. 9A and 9B are a cross-sectional view including an optical axis schematically showing the first lens of the lens unit according to the second embodiment of the present invention, and a right side view.
- 10A and 10B are a left side view schematically showing a second lens of the lens unit according to the second embodiment of the present invention, and a cross-sectional view including the optical axis.
- 11A and 11B are a cross-sectional view including a central axis of a lens holding frame of a lens unit according to a second embodiment of the present invention, and a schematic right side view.
- the lens unit 31 of the present embodiment replaces the first lens 2, the second lens 3, and the lens frame 4 of the first embodiment with a first lens 32 (lens) and a second lens.
- a lens 33 (lens) and a lens frame 34 (lens holding frame) are provided. Since the configuration of the lens surface portions of the first lens 32 and the second lens 33 is the same as that of the first embodiment, hereinafter, the optical axes of the first lens 32 and the second lens 33 are also the optical axis O 2 , respectively. Indicated as O 3 .
- the first lens 32 is positioned so that its optical axis O 2 is substantially aligned (including the case where it is aligned) with the unit center axis Q of the lens frame 34, and the lens frame 34 in the optical axis direction. Is positioned by being pressed against.
- the second lens 33 is positioned so that the optical axis O 3 thereof is substantially aligned with the unit center axis Q (including the case of alignment), and is in contact with the first lens 32 in the optical axis direction. Is positioned.
- the relative positions of the first lens 32 and the second lens 33 are fixed by the adhesive portions 36A and 36B formed across the outermost peripheral portion and the inner peripheral surface of the lens frame 34. Yes.
- the adhesive portions 36A and 36B are formed by curing the same adhesive as that of the adhesive portion 6 of the first embodiment.
- the first lens 32 is one of a pair of lenses held by the lens unit 31, and as shown in FIGS. 9A and 9B, a lens surface portion composed of a first lens surface 2a and a second lens surface 2b.
- the flange part 32c extended in disk shape is provided in the outer peripheral side.
- the flange portion 32c includes a first flange surface 32A extending radially outward from the outer periphery of the first lens surface 2a, and a cylindrical lens side surface 32f R constituting the radially outermost surface of the first lens 32. It is surrounded by the second flange surface 32t a was extended to the lens side surface 32f R radially outward from the outer periphery of the second lens surface 2b (the lens outer edge).
- the lens side surface 32f R is formed of a cylindrical surface having a radius D 32f / 2 (D 32f > d 2a , D 32f > d 2b ) centered on the optical axis O 2 .
- annular protrusion 32i positioning projections
- cylindrical projection portion 32 g is provided on the second flange surface 32t A.
- the annular projecting portion 32 i is a projecting portion provided for positioning in the radial direction with respect to the lens frame 34, and an annular cross section projects in the optical axis direction.
- the reference cylindrical surface 32j R radial positioning portion that is the outer peripheral surface of the annular protrusion 32i has a radius of D 32j / 2 (where d 2b ⁇ D 32j ⁇ D 32f ) with the optical axis O 2 as the center. It is a cylindrical surface.
- a second abutment surface 32k A which is aligned in a plane perpendicular to the optical axis O 2 (optical axis direction positioning portion) is formed.
- the second abutment surface 32k A by assembling abutted against the second lens 33 is a portion for positioning the optical axis of the second lens 33 with respect to the first lens 32.
- Position in the optical axis direction of the second abutment surface 32k A is a relationship between the position of the abutment surface 33k A second lens 33 to be described later, advance the distance between the second lens surface 2b and the first lens surface 3a It is a position that can be set to a predetermined lens surface interval.
- the projection height to the second flange surface 32t A is, the about half Become dimension of the projecting height of the second protrusion 2i in the first embodiment is preferred.
- the cylindrical protrusion 32g is a protrusion in which the circular cross section of the cylindrical protrusion 32g protrudes in the optical axis direction.
- the cylindrical protrusion 32g is on the second flange surface 32t A, between the reference cylindrical hole 32j R and the lens side surface 32f R, are provided in the circumferential direction in three places three equal parts .
- the tip of the projecting direction of the cylindrical projections 32g while being aligned in a plane perpendicular to the optical axis O 2, the amount of projection of the optical axis direction from the second flange surface 32t A toric protrusion 32i A smaller first abutting surface 32h A (optical axis direction positioning portion) is formed.
- the second lens 33 is the other of the pair of lenses held by the lens unit 21, and as shown in FIGS. 10A and 10B, a lens surface portion configured by the first lens surface 3a and the second lens surface 3b.
- the flange part 33c extended in the disk shape is provided in the outer peripheral side.
- the flange portion 33c is a cylindrical surface that constitutes the first flange surface 33r A (lens outer edge portion) extending radially outward from the outer periphery of the first lens surface 3a and the radially outermost surface of the second lens 33.
- a lens side surface 33f R of is surrounded by a second flange surface 33t a which is extended radially outward to the lens side surface 33f R from the outer periphery of the second lens surface 3b.
- the lens side surface 33f R is formed of a cylindrical surface having a radius D 33f / 2 (where D 33f > D 32j ) with the optical axis O 3 as the center.
- the annular protrusion 33i is a protrusion provided for positioning in the radial direction with respect to the lens frame 34, and an annular cross section protrudes in the optical axis direction.
- the reference cylindrical surface 33j R radial direction positioning portion that is the outer peripheral surface of the annular protrusion 33i is a cylindrical surface having a radius of D 32j / 2 with the optical axis O 3 as the center. That is, in the present embodiment, the outer diameters of the reference cylindrical surfaces 32j R and 33j R are the same.
- the optical axis O 3 is aligned in a plane perpendicular to the abutment surface 33k A (optical axis direction positioning portion) is formed.
- Abutment surface 33k A by assembling pressed against the second abutment surface 32k A of the first lens 32 is a portion for positioning the optical axis of the second lens 33 with respect to the first lens 32.
- the position of the optical axis direction of the second abutment surface 32k A includes a protrusion height of the annular protrusion 32i of the first lens 32, the sum of the projection height of the annular protrusion 33i, the first It sets so that it may become equal to the protrusion height of the 2nd projection part 2i of embodiment.
- Such first lens 32 and second lens 33 can be manufactured in the same manner as the first lens 2 and the second lens 3 of the first embodiment.
- the lens frame 34 is a lens holding frame into which the first lens 32 and the second lens 33 are incorporated. Further, as shown in FIGS. 11A and 11B, the lens frame 34 is a cylindrical member having a through hole in the center, and houses the first lens 32 from one end side in the axial direction toward the other end side.
- the inner diameters of the first lens accommodation hole 34d R and the second lens accommodation hole 34g are larger than the outer diameter including the lens side faces 32f R and 33f R , respectively.
- the first lens 32 is positioned in the optical axis direction and positioned in the radial direction, and the second lens 33 is further moved in the radial direction.
- a lens receiving portion 34e that protrudes radially inward is provided.
- the lens receiving portion 34e includes an axial receiving surface 34b A (optical axis direction reference surface) formed of a plane orthogonal to the unit center axis Q on one end side in the axial direction, and the reference cylindrical surfaces 32j R and 33j R at the center.
- the radial positioning surface 34f R giving inner fitting is provided through axially. If the positioning in the radial direction is possible, the radial positioning surface 34f R is a cylindrical surface that is continuous in the circumferential direction, or is intermittently connected in the circumferential direction to the reference cylindrical surfaces 32j R and 33j R to make point contact, line contact, or surface contact. It is possible to adopt an appropriate surface capable of. In the present embodiment, the radial positioning surface 34f R employs a cylindrical surface of radius D 34f / 2 around the unit center axis Q. The dimension D 34f is a value that satisfies the following expression (3).
- ⁇ min is an allowable value of ⁇ 2 and ⁇ 3 which is not larger.
- the thickness dimension of the lens receiving portion 34e in the axial direction is the same as that of the first abutting surface 32h A in a state where the second abutting surface 32k A and the abutting surface 33k A are in contact with each other. a dimension greater than the distance in the optical axis direction between the first flange surface 33r a.
- Such a lens frame 34 can be manufactured in the same manner as the lens frame 4.
- the first lens receiving hole portion of the lens frame 34 is used.
- the first lens 32 is inserted into 34d R, and the annular protrusion 32i is fitted into the radial positioning surface 34f R.
- the optical axis O 2 of the first lens 32 is positioned in the radial direction so as to be substantially aligned with the unit center axis Q of the lens frame 34 (including when aligned).
- the first lens 32 is positioned in the radial direction with respect to the unit center axis Q with an arrangement error of ⁇ min or less.
- the first abutting surface 32h A comes into contact with the axial receiving surface 34b A , so that the first lens 32 is positioned relative to the lens frame 34 in the optical axis direction. Is done.
- the second abutment surface 32k A are located in the middle portion in the thickness direction of the lens receiving portion 34e.
- the second lens 33 is inserted from the opening 34j R side in a state in which this positioning state is held using an appropriate holding jig (not shown) or the like, and the annular protrusion 33i is set to the radial positioning surface. It is fitted to 34f R, the abutment surface 33k a, to abut against the second abutment surface 32k a of the first lens 32. Thereby, the second lens 33 is accommodated in the second lens accommodation hole 34g in a state of being positioned in the optical axis direction with respect to the first lens 32.
- the second lens 33 is positioned in the radial direction with respect to the unit center axis Q with an arrangement error of ⁇ min or less.
- a first flange surface 33r A of the second lens 33, the lens receiving portion 34e are spaced apart from one another.
- an adhesive is applied and cured so as to straddle the lens side surface 32f R (33f R ) and the first lens accommodation hole 34d R (second lens accommodation hole 34g).
- an adhesive portion 36A (36B) is formed.
- the application method of the bonding portions 36A and 36B can be applied in an appropriate dot shape, line shape, or the like, similarly to the bonding portion 6 of the first embodiment. In this way, the lens unit 31 is assembled.
- the lens unit 31 is different from the lens unit 1 of the first embodiment in the insertion direction at the time of assembly, but the first abutting surface 2h A and the second abutment surface which are the optical axis direction positioning portions of the first embodiment.
- a first abutting surface 32h A , a second abutting surface 32k A , and an abutting surface 33k A are provided.
- reference cylindrical surfaces 32j R and 33j R are provided corresponding to the reference cylindrical surfaces 2j R and 3j R which are the radial positioning portions of the first embodiment. For this reason, as in the first embodiment, the assembly error can be reduced even when assembled without adjustment.
- the lens unit is composed of two lenses.
- the number of lenses constituting the lens unit may be one, or three or more.
- the structure of may be sufficient.
- the optical axis direction positioning portion and the radial direction positioning portion may be formed on the lens one by one.
- each tip surface 3k A of the second lens 3 the optical axis as with the second abutting surface 2k A of the first lens 2 orthogonal to O 3 was formed to align with one plane, and to set in consideration of the lens surface distance between the distal end surface 3k a in the optical axis direction position 3rd lens, a second lens 3 A lens provided with the same optical axis direction positioning part and radial direction positioning part will be added.
- the lens sandwiched between the two lenses may be provided with an optical axis direction positioning portion and a radial direction positioning portion on both end faces in the optical axis direction.
- the lens is a meniscus lens
- the lens fitted into the lens unit may be a biconvex lens or a biconcave lens.
- the lens is not limited to a single lens, and may be a cemented lens.
- the lens outer edge portion is configured by the end faces at both ends in the optical axis direction of the flange portion.
- the lens outer edge portion is outside the optical effective region. You may be comprised by the lens surface.
- the components described in the above embodiments and modifications can be implemented by appropriately combining or deleting them within the scope of the technical idea of the present invention.
- the lens unit 1 to the three lenses constituting the third piece of the lens, the same structure of the lens and the second lens 33, the reference cylindrical hole 33j R, radial positioning together causing fitted to the surface 4i R, may be a structure in which contact with the optical axis direction front end surface 3k a of the abutting surface 33k a second lens 3.
- the positioning portion is provided on the lens side surface in order to provide the positioning protrusion having the radial positioning portion that protrudes in parallel with the optical axis from the position on the inner peripheral side than the lens side surface.
- the radial positioning portion can be easily formed with high accuracy.
- eccentricity can be reduced even if it is unadjusted by fitting the radial direction positioning part of the lens of this invention to a lens holding frame.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Lens Barrels (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
光軸に沿う方向の両端部の端面に、第1レンズ面、第2レンズ面と、これらの外周側に形成されたレンズ外縁部とを有するとともに、レンズ外縁部に隣接して光軸に直交する方向の最外面となるレンズ側面を有し、レンズ保持枠に組み込み可能に設けられた第1レンズである。第1レンズは、レンズ外縁部の少なくとも一方に、光軸に直交する一平面内に設けられた第1突き当て面が設けられ、レンズ外縁部の少なくとも一方に、レンズ側面よりも内周側の位置から光軸に沿う方向に突出され、光軸と直交する方向において光軸と一定の位置関係に設けられた基準円筒面を有する第2突起部が形成されている。
Description
本発明は、レンズ、レンズユニット、およびレンズの製造方法に関する。
本願は、2012年03月29日に、日本に出願された特願2012-075926号に基づき優先権を主張し、その内容をここに援用する。
本願は、2012年03月29日に、日本に出願された特願2012-075926号に基づき優先権を主張し、その内容をここに援用する。
従来、光学機器においてレンズを使用する場合、取り付け基準を有するレンズ保持枠に、レンズを保持させたレンズユニットを構成し、このレンズユニットを光学機器の装置内に取り付ける。
このようなレンズユニットでは、レンズ保持枠にレンズを挿入する保持穴が設けられ、この保持穴の内周面にレンズの外周面であるレンズ側面を嵌合させることにより、光軸に直交する径方向の位置を位置決めしてから、例えば接着等によって、レンズ保持枠に対するレンズの位置を固定している。
この場合、無調整で組立を行うには、保持穴の内径とレンズの外径との差を偏心の許容範囲内に収める必要がある。
例えば、特許文献1には、プラスチックレンズにおいて、レンズ側面より内側に円錐当接面を設け、レンズ同士をこれら円錐当接面で当接させて、光軸方向および光軸と直交する方向のレンズ同士の位置決めを行い、これら複数のレンズの組立体の内の1つのレンズ外周面を鏡枠(レンズ保持枠)同士と嵌合させてレンズの組立体と鏡枠との光軸に直交する方向の位置決めを行うようにしたプラスチックレンズの位置決め方法が記載されている。
このようなレンズユニットでは、レンズ保持枠にレンズを挿入する保持穴が設けられ、この保持穴の内周面にレンズの外周面であるレンズ側面を嵌合させることにより、光軸に直交する径方向の位置を位置決めしてから、例えば接着等によって、レンズ保持枠に対するレンズの位置を固定している。
この場合、無調整で組立を行うには、保持穴の内径とレンズの外径との差を偏心の許容範囲内に収める必要がある。
例えば、特許文献1には、プラスチックレンズにおいて、レンズ側面より内側に円錐当接面を設け、レンズ同士をこれら円錐当接面で当接させて、光軸方向および光軸と直交する方向のレンズ同士の位置決めを行い、これら複数のレンズの組立体の内の1つのレンズ外周面を鏡枠(レンズ保持枠)同士と嵌合させてレンズの組立体と鏡枠との光軸に直交する方向の位置決めを行うようにしたプラスチックレンズの位置決め方法が記載されている。
しかしながら、上記の従来技術のレンズユニットには、以下のような問題がある。
レンズ側面とレンズ保持枠との嵌合によって、偏心調整を無調整とする技術では、例えば、許容偏心量が0.005mm以下のようなレンズユニットを構成する場合、レンズ外周面の外径、光軸に対する偏心量と、レンズ保持枠の内周面の内径の加工誤差との合計を、許容偏心量以下とする必要がある。このため、無調整化によって、調整コストが低減されても、レンズやレンズ保持枠の製造コストが増大してしまうという問題がある。
特許文献1に記載の技術によれば、複数のレンズを有するレンズユニットであっても、レンズ保持枠と嵌合するレンズは1つのみであるため、それ以外のレンズ側面面の加工精度を緩めることができるものの、レンズ保持枠と嵌合するレンズの加工精度は高精度が要求されるため、部品製造コストが増大してしまうという問題がある。
また、特許文献1のような樹脂成形によるレンズでは、成形品の離型が容易となるように、レンズ面の形状を転写する成形型部材を、レンズ側面の形状を転写する成形型部材に対する可動入れ子型として構成するため、成形品のレンズ側面と、光軸との間には、2つの成形型部材間の嵌合隙間に相当する偏心のバラツキが生じる。このため、特許文献1に記載の技術では、例えば、許容偏心量が0.005mm以下のようなレンズユニットを構成することは困難であるという問題がある。
本発明は、上記のような問題に鑑みてなされたものであり、径方向位置決め部を精度よく容易に形成することができるレンズ、およびレンズの製造方法を提供することを目的とする。
また、本発明は、無調整であっても偏心を低減することができるレンズユニットを提供することを目的とする。
本発明の第1の態様に係るレンズは、光軸に沿う方向の両端部の端面に、レンズ面部と、前記レンズ面部の外周側に形成されたレンズ外縁部とを有するとともに、前記レンズ外縁部に隣接して前記光軸に直交する方向の最外面となるレンズ側面を備え、前記レンズ側面を外周側から覆うレンズ保持枠に組み込み可能であり、前記両端部の端面にそれぞれ形成された前記レンズ外縁部のうちの少なくとも一方に、前記光軸に直交する一平面内に設けられた光軸方向位置決め部が設けられ、前記各レンズ外縁部のうちの少なくとも一方に、前記レンズ側面よりも内周側の位置から前記光軸に沿う方向に突出され、前記光軸と直交する方向において前記光軸と一定の位置関係に設けられた径方向位置決め部を有する位置決め突起が形成されている。
本発明の第2の態様では、上記第1の態様において、前記位置決め突起は、前記光軸方向位置決め部を有していてもよい。
本発明の第3の態様のレンズユニットでは、上記の第1の態様、または、上記第2の態様のレンズと、前記レンズの前記径方向位置決め部を嵌合させるレンズ嵌合部と、前記レンズの前記光軸方向位置決め部を当接させる光軸方向基準面と、前記レンズの前記レンズ側面の外形よりも大きい外形の穴を有するレンズ収容穴部と、を有するレンズ保持枠と、を備え、前記レンズが、前記レンズ嵌合部に嵌合され、前記光軸方向基準面に当接されて、位置決めされている。
本発明の第4の態様のレンズユニットでは、上記第3の態様において、前記レンズが複数備えられ、前記光軸方向基準面は、複数の前記レンズのうちの一つの前記光軸方向位置決め部に当接し、複数の前記レンズのそれぞれは、1以上の前記レンズ嵌合部に嵌合され、互いに隣接して配置される前記レンズ同士は、互いに対向する前記端面に設けられた前記光軸方向位置決め部同士が当接されることにより、前記光軸に沿う方向の位置決めがなされていてもよい。
本発明の第5の態様のレンズの製造方法は、成形型組立体を形成する工程と、上記第1の態様、または、上記第2の態様のレンズの外形を、前記成形型組立体によって成形材料を成形して形成する工程と、を備え、前記成形型組立体は、前記両端部の前記端面のうちの一方の、前記レンズ外縁部の少なくとも一部、および前記レンズ面部の形状を転写する第1の成形型部材と、前記端面のうちの他方の、前記レンズ外縁部の少なくとも一部、および前記レンズ面部の形状を転写する第2の成形型部材と、少なくとも前記レンズ側面の形状を転写する第3の成形型部材と、を備え、且つ、前記径方向位置決め部の形状を転写する径方向位置決め部成形面が、前記第1の成形型部材及び前記第2の成形型部材のいずれか一方に設けられるように形成される。
本発明の第6の態様では、上記第5の態様において、前記径方向位置決め部成形面が設けられた前記第1の成形型部材または前記第2の成形型部材には、前記径方向位置決め部が設けられた前記端面の前記レンズ面部を成形するための成形面がさらに設けられていてもよい。
上記のレンズおよびレンズの製造方法によれば、レンズ側面よりも内周側の位置から光軸と平行に突出された径方向位置決め部を有する位置決め突起を設けるため、位置決め部をレンズ側面に設ける場合に比べて、径方向位置決め部を精度よく容易に形成することができるという効果を奏する。
また、上記のレンズユニットによれば、上記のレンズの径方向位置決め部をレンズ保持枠に嵌合させることにより、無調整であっても偏心を低減することができるという効果を奏する。
以下では、本発明の実施形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。
[第1の実施形態]
本発明の第1の実施形態のレンズ、レンズ保持枠、およびレンズユニットについて説明する。
図1Aは、本発明の第1の実施形態のレンズユニットの一例を模式的に示す光軸を含む断面図である。図1Bは、本発明の第1の実施形態のレンズユニットの一例を模式的に示す光軸を含む右側面図である。図2Aは、本発明の第1の実施形態のレンズユニットの第1レンズを模式的に示す左側面図である。図2Bは、本発明の第1の実施形態のレンズユニットの第1レンズを模式的に示す光軸を含む断面図である。図2Cは、本発明の第1の実施形態のレンズユニットの第1レンズを模式的に示す右側面図である。図3は、本発明の第1の実施形態の第1レンズを製造する成形型構造を模式的に示す断面図である。図4Aは、本発明の第1の実施形態のレンズユニットの第2レンズを模式的に示す光軸を含む断面図である。図4Bは、本発明の第1の実施形態のレンズユニットの第2レンズを模式的に示す光軸を含む右側面図である。図5Aは、本発明の第1の実施形態のレンズユニットのレンズ保持枠の模式的な右側面図である。図5Bは、本発明の第1の実施形態のレンズユニットのレンズ保持枠の模式的な中心軸を含む断面図である。図6は、本発明の第1の実施形態のレンズユニットのレンズ保持枠の模式的な左側面図である。
本明細書では、光軸や中心軸線等の軸線が特定できる軸状、筒状等の部材に対する相対位置について説明する場合に、軸線に沿う方向を軸方向、軸線回りに周回する方向を周方向、軸線に直交する平面において軸線に交差する線に沿う方向を径方向と称する。また、特に、光軸に沿う方向を光軸方向と称する場合がある。また、径方向においては、軸線から離れる方を径方向外方(外側)、軸線に近づく方を径方向内方(内側)と称する場合がある。
本実施形態のレンズユニット1は、図1A、図1Bに示すように、第1レンズ2(レンズ)、第2レンズ3(レンズ)、および鏡枠4(レンズ保持枠)を備える。
レンズユニット1内では、第1レンズ2は、その光軸O2が鏡枠4のユニット中心軸線Pに略整列する(整列する場合も含む)ように位置決めされ、鏡枠4の軸方向に押し付けられて位置決めされている。
また、第2レンズ3は、その光軸O3がユニット中心軸線Pに略整列する(整列する場合も含む)ように位置決めされ、第1レンズ2と当接されることにより、光軸方向に位置決めされている。また、この状態で、接着部6によって、第2レンズ3と鏡枠4との互いの相対位置が固定されている。
接着部6は、例えば、UV硬化型接着剤、二液性接着剤、熱硬化性接着剤等の接着剤を硬化させることにより形成されている。
第1レンズ2は、レンズユニット1に保持される一対のレンズのうちの一方である。本実施形態では、第1レンズ2は、図2A、図2B、図2Cに示すように、凸面からなる第1レンズ面2a(レンズ面部)と、凹面からなる第2レンズ面2b(レンズ面部)とを有する。また、第1レンズ2は、外周側にフランジ部2cが設けられたメニスカスレンズである。
第1レンズ2の屈折力の正負は、レンズユニット1の用途に基づいた設計仕様に応じて適宜設定することができる。
また、第1レンズ面2aは、光軸O2を中心とした直径d2aの範囲に形成されている。また、第2レンズ面2bは、光軸O2を中心とした直径d2bの範囲に形成されている。
第1レンズ面2a、第2レンズ面2bは、光軸O2に沿う方向の両端部の端面のレンズ面部を構成している。
第1レンズ2は、ガラス材料を切削、研磨して形成してもよいが、本実施形態では、合成樹脂のモールド成形によって形成されている。ただし、図面では、抜き勾配の図示は適宜省略している。また、以下の説明では、抜き勾配を無視した場合の形状として説明する。互いに嵌り合う穴部および軸部の寸法は、特に断らない限り、嵌合や挿入に用いられる範囲の寸法を意味し、抜き勾配があっても嵌合に支障がないように穴部は最小寸法、軸部は最大寸法を表す。
フランジ部2cは、第1レンズ面2aおよび第2レンズ面2bの外周から径方向外方に延ばされた板状部分であり、凸状部2pと、凸状部2pよりも外径が小さい凹状部2nとが、周方向に交替に形成されている。
本実施形態では、凸状部2pおよび凹状部2nは、周方向を等分する位置にそれぞれ3箇所ずつ設けられている。凸状部2pおよび凹状部2nが形成された周方向の範囲は、凸状部2pが中心角60°未満の範囲であり、凹状部2nが中心角60°を越える範囲である。
凹状部2nの径方向の最外面である外周面2mRは、光軸O2を中心とする半径D2m/2(ただし、D2m>d2a、D2m>d2b)の円筒面として形成されている。
凸状部2pの径方向の最外面であるレンズ側面2fRは、光軸O2を中心とする半径D2f/2(ただし、D2f>D2m)の円筒面として形成され、第1レンズ2における径方向の最外面を構成している。
フランジ部2cの第1レンズ面2a側の表面には、レンズ面部の外周側に形成されたレンズ外縁部として、内周側から外周側に向かって、内周側第1フランジ面2rAが形成されている。特に各凸状部2pの、内周側第1フランジ面2rAよりもさらに外周側には、同じくレンズ外縁部である外周側第1フランジ面2sAが形成されている。また、各凸状部2pにおいて、内周側第1フランジ面2rAおよび外周側第1フランジ面2sAの間には、内周側第1フランジ面2rAおよび外周側第1フランジ面2sAから光軸方向に突出された第1突起部2gが形成されている。レンズ外縁部は、第1突起部2gを備えている。
内周側第1フランジ面2rAは、第1レンズ面2aの外周に隣接し、光軸O2に交差する方向に延ばされた面であり、各凹状部2nおよび各凸状部2pに設けられている。本実施形態では、内周側第1フランジ面2rAは、光軸O2に直交する平面である。
第1突起部2gの光軸方向から見た外形は、図2Aに示すように、光軸O2を中心とした円弧帯状とされている。
また、各第1突起部2gの突出方向の先端には、光軸O2に直交する一平面に整列された第1突き当て面2hA(光軸方向位置決め部)が形成されている。すなわち、第1突き当て面2hAは、光軸O2に直交する一平面内に設けられている。
第1突き当て面2hAの光軸方向の位置は、第1レンズ面2aに対して一定の位置関係にある。このため、第1突き当て面2hAは第1レンズ2における光軸方向位置決め部を構成している。
外周側第1フランジ面2sAは、各凸状部2pにおいて第1突起部2gとレンズ側面2fRとの間で光軸O2に交差する方向に延ばされた面である。本実施形態では、外周側第1フランジ面2sAは、光軸O2に直交する平面である。
また、外周側第1フランジ面2sAは、内周側第1フランジ面2rAと整列する平面であってもよいし、内周側第1フランジ面2rAと整列していなくてもよい。
フランジ部2cの第2レンズ面2b側の表面には、レンズ面部の外周側に形成されたレンズ外縁部として、内周側から外周側に向かって、内周側第2フランジ面2tAが形成されている。特に各凸状部2pの、内周側第2フランジ面2tAよりもさらに外周側には、同じくレンズ外縁部である外周側第2フランジ面2uAが形成されている。また、各凸状部2pにおいて、内周側第2フランジ面2tAおよび外周側第2フランジ面2uAの間には、内周側第2フランジ面2tAおよび外周側第2フランジ面2uAから光軸方向に突出された第2突起部2i(位置決め突起)が形成されている。レンズ外縁部は、第2突起部2iを備えている。
内周側第2フランジ面2tAは、第2レンズ面2bの外周に隣接し、光軸O2に交差する方向に延ばされた面であり、各凹状部2nおよび各凸状部2pに設けられている。本実施形態では、内周側第2フランジ面2tAは、光軸O2に直交する平面である。
第2突起部2iの光軸方向から見た外形は、図2Cに示すように、光軸O2を中心とした円弧帯状とされ、外周部に、光軸O2を中心とした半径D2j/2の円筒面である基準円筒面2jR(径方向位置決め部)が形成されている。
基準円筒面2jRは、抜き勾配を有する場合、他の部位の抜き勾配よりも小さくしておくことが好ましく、抜き勾配を有しないストレート面とすることがより好ましい。
各第2突起部2iは、フランジ部2cの配置位置に対応して、周方向を3等分する位置に形成されている。このため、各基準円筒面2jRは、直径D2jの円筒面に内嵌されると、光軸O2は、この円筒面の中心軸線に整列し、円筒面に対する第1レンズ2の径方向の位置決めが可能である。
また、各第2突起部2iの突出方向の先端には、光軸O2に直交する一平面に整列された第2突き当て面2kA(光軸方向位置決め部)が形成されている。すなわち、第2突き当て面2kAは、光軸O2に直交する一平面内に設けられている。
第2突き当て面2kAの光軸方向の位置は、第2レンズ面2bに対して一定の位置関係にあり、このため、第1レンズ2におけるもう一つの光軸方向位置決め部を構成している。
また、このような構成により、各第2突き当て面2kAは、各第1突き当て面2hAが整列する平面に平行な平面に整列しており、かつ、光軸方向に一定距離だけ離間されている。
外周側第2フランジ面2uAは、各凸状部2pにおいて第2突起部2iとレンズ側面2fRとの間で光軸O2に交差する方向に延ばされた面である。本実施形態では、外周側第2フランジ面2uAは、光軸O2に直交する平面である。
また、外周側第2フランジ面2uAは、内周側第2フランジ面2tAと整列する平面であってもよいし、内周側第2フランジ面2tAと整列していなくてもよい。
このような構成により、基準円筒面2jRは、レンズ外縁部の一方において、レンズ側面2fRよりも内周側の位置から光軸O2に沿う方向に突出され、光軸O2と直交する方向において光軸O2と一定の位置関係にも設けられた径方向位置決め部を構成している。
ここで、第1レンズ2を製造する成形型構成の一例について説明する。
第1レンズ2は、図3に示すように、キャビティ型を構成する成形型部材11(第1の成形型部材)および成形型部材13(第3の成形型部材)と、コア型を構成する成形型部材12(第2の成形型部材)とを備える成形型組立体10を用いた成形によって製造することができる。
成形型組立体10では、抜き方向が、第1レンズ2の光軸O2に沿う方向である。
成形型部材11は、後述する成形型部材13の可動入れ子型となる部材であり、成形空間Sに向かう先端側に、第1レンズ面2a、内周側第1フランジ面2rA、および第1突起部2gの形状を転写する成形面部11aを有している。また、成形型部材11の側面に、成形型部材13と嵌合して抜き方向に進退するための型摺動面11bを有している。
このため、成形面部11aには、第1レンズ面2aの形状を転写するレンズ成形面11a1と、第1突起部2gの第1突き当て面2hAの形状を転写する軸方向位置決め部成形面11a2とが一続きの面として形成されている。これにより、軸方向位置決め部成形面11a2のレンズ成形面11a1の面頂に対する位置が一定に保たれている。また、成形型部材11の製造時に型修正を行うことにより、軸方向位置決め部成形面11a2のレンズ成形面11a1の面頂に対する位置関係を高精度に仕上げることができる。
成形型部材12は、成形空間Sに向かう先端側に、第2レンズ面2b、内周側第2フランジ面2tA、第2突起部2i、および外周側第2フランジ面2uAの形状を転写する成形面部12aを有している。この成形面部12aの外周側に、後述する成形型部材13に当接する型合わせ面12bを有している。
このため、成形面部12aには、第2レンズ面2bの形状を転写するレンズ成形面12a1と、第2突起部2iの基準円筒面2jRの形状を転写する径方向位置決め部成形面12a2と、第2突起部2iの第2突き当て面2kAの形状を転写する軸方向位置決め部成形面12a3とが一続きの面として形成されている。これにより、径方向位置決め部成形面12a2および軸方向位置決め部成形面12a3と、レンズ成形面12a1の面頂に対する位置および光軸O2に対する位置、姿勢が一定に保たれている。また、成形型部材12の製造時に型修正を行うことにより、径方向位置決め部成形面12a2および軸方向位置決め部成形面12a3と、レンズ成形面12a1の面頂に対する位置関係を高精度に仕上げることができる。
径方向位置決め部成形面12a2は、抜き勾配を設けないストレート形状にするか、または、他の部位の抜き勾配よりも小さな勾配とすることが好ましい。
成形型部材13は、成形型部材11を摺動可能に保持する穴部を構成する型摺動面13aと、外周側第1フランジ面2sAおよびレンズ側面2fRの形状を転写する外周部成形面13c、成形型部材12の型合わせ面12bと当接する型合わせ面13bとを有している。
また、外周部成形面13cには、成形空間Sに成形用樹脂を導入するゲート部Gが設けられている。
このような構成の成形型組立体10は、光軸O2を形成するレンズ成形面11a1、12a1の各中心軸が、予め決められたレンズ単体としての偏心許容値を達成できるように位置合わせされている。
図3に示すように、型を閉じた状態で、第1レンズ2の外形に対応する成形空間Sが形成される。ゲート部Gから空間Sに成形用樹脂(成形材料)を導入して成形を行うことにより、第1レンズ2を成形することができる。
その際、成形面部11aに、レンズ成形面11a1、軸方向位置決め部成形面11a2が形成されることで、成形品における第1レンズ面2aと第1突き当て面2hAとの位置関係が高精度に保たれる。
また、成形面部12aに、レンズ成形面12a1、径方向位置決め部成形面12a2、および軸方向位置決め部成形面12a3が形成されることで、成形品における第2レンズ面2bと、基準円筒面2jRおよび第2突き当て面2kAとの位置関係が高精度に保たれる。
次に、第2レンズ3について説明する。
第2レンズ3は、図1Aに示すように、第1レンズ2の第2レンズ面2bに対向して同軸に配置されて、レンズユニット1に保持される一対のレンズのうちの他方である。
本実施形態では、第2レンズ3は、図4A、図4Bに示すように、凹面からなる第1レンズ面3a(レンズ面部)と、凸面からなる第2レンズ面3b(レンズ面部)とを有し、外周側にフランジ部3cが設けられたメニスカスレンズである。
第2レンズ3の屈折力の正負は、レンズユニット1の用途に基づいた設計仕様に応じて適宜設定することができる。
また、第1レンズ面3aは、光軸O3を中心とした直径d3aの範囲に形成されている。また、第2レンズ面3bは、光軸O3を中心とした直径d3bの範囲に形成されている。
第1レンズ面3a、第2レンズ面3bは、光軸O3に沿う方向の両端部の端面のレンズ面部を構成している。
第2レンズ3は、第1レンズ2と同様、ガラス材料を切削、研磨して形成してもよいが、本実施形態では、合成樹脂のモールド成形によって形成されている。
フランジ部3cは、第1レンズ面3aおよび第2レンズ面3bの外周から径方向外方に延ばされた板状部分である。第2レンズ3には、第2レンズ3の最大外径を有する凸状部3pと、凸状部3pよりも外径が小さい凹状部3nとが、周方向に交替に形成されている。
本実施形態では、第1レンズ2と同様、凸状部3pおよび凹状部3nは、周方向を等分する位置にそれぞれ3箇所ずつ設けられている。凸状部3pおよび凹状部3nが形成された周方向の範囲は、凸状部3pが中心角60°未満の範囲であり、凹状部3nが中心角60°を越える範囲である。
凹状部3nの径方向の最外面である外周面3mRは、光軸O3を中心とする半径D3m/2(ただし、D3m>d3a、D3m>d3b)とされた円筒面として形成されている。
凸状部3pの径方向の最外面であるレンズ側面3fRは、光軸O3を中心とする半径D3f/2(ただし、D3f>D3m)の円筒面として形成され、第2レンズ3における径方向の最外面を構成している。
また、フランジ部3cは、レンズ面部の外周側に形成されたレンズ外縁部を構成している。
第2レンズ3の最外面の直径D3fは、特に限定されないが、本実施形態では、一例として、第1レンズ2の最外面の直径D2fよりも大径であるものとして説明する。
フランジ部3cの第1レンズ面3a側の表面には、光軸O3に直交する方向に延ばされた平面である第1フランジ面3hA(光軸方向位置決め部)が形成されている。
第1フランジ面3hAは、図1Aに示すように、鏡枠4に組み込んだときに、第1レンズ2の第2突き当て面2kAが当接可能な位置に設けられている。
第1フランジ面3hAの光軸方向の位置は、第1レンズ面3aに対して一定の位置関係にある。このため、第1フランジ面3hAは第2レンズ3における光軸方向位置決め部を構成している。
フランジ部3cの第2レンズ面3b側の表面には、図4A、図4Bに示すように、レンズ面部の外周側に形成されたレンズ外縁部として、内周側から外周側に向かって、内周側第2フランジ面3tAが形成されており、特に各凸状部3pの、内周側第2フランジ面3tAよりもさらに外周側には、同じくレンズ外縁部である外周側第2フランジ面3uAが形成されている。また、各凸状部3pにおいて、内周側第2フランジ面3tAおよび外周側第2フランジ面3uAの間には、内周側第2フランジ面3tAおよび外周側第2フランジ面3uAから光軸方向に突出された突起部3i(位置決め突起)が形成されている。
内周側第2フランジ面3tAは、第2レンズ面3bの外周に隣接し、光軸O3に交差する方向に延ばされた面であり、各凹状部3nおよび各凸状部3pに設けられている。本実施形態では、内周側第2フランジ面3tAは、光軸O3に直交する平面である。
突起部3iの光軸方向から見た外形は、図4Bに示すように、光軸O3を中心とした円弧帯状とされ、外周部に、光軸O3を中心とした半径D3j/2の円筒面である基準円筒面3jR(径方向位置決め部)が形成されている。
基準円筒面3jRは、抜き勾配を有する場合、他の部位の抜き勾配よりも小さくしておくことが好ましく、抜き勾配を有しないストレート面とすることがより好ましい。
各突起部3iは、フランジ部3cの配置位置に対応して、周方向を3等分する位置に形成されている。このため、各基準円筒面3jRは、直径D3jの円筒面に内嵌されると、光軸O3は、この円筒面の中心軸線に整列し、円筒面に対する第2レンズ3の径方向の位置決めが可能である。
また、各突起部3iの突出方向の先端には、光軸O3に直交する一平面に整列された先端面3kAが形成されている。先端面3kAは、本実施形態では、位置決めなどの突き当て面としては用いないため、各先端面3kAは一平面に整列させる必要はない。
このため、第2レンズ3は、光軸方向位置決め部が、光軸方向の一方の端面のみに設けられた場合の例である。
ただし、先端面3kAを、第1レンズ2の第2突き当て面2kAと同様に、光軸O3に直交する一平面に整列させておけば、光軸方向の位置決めのための光軸方向位置決め部として用いることも可能である。
外周側第2フランジ面3uAは、各凸状部3pにおいて突起部3iとレンズ側面3fRとの間で光軸O3に交差する方向に延ばされた面である。本実施形態では、外周側第2フランジ面3uAは、光軸O3に直交する平面である。
また、外周側第2フランジ面3uAは、内周側第2フランジ面3tAと整列する平面であってもよいし、内周側第2フランジ面3tAと整列していなくてもよい。
このような構成により、基準円筒面3jRは、レンズ外縁部の一方において、レンズ側面3fRよりも内周側の位置から光軸O3に沿う方向に突出され、光軸O3と直交する方向において光軸O3と一定の位置関係にも設けられた径方向位置決め部を構成している。
このように、第2レンズ3は、第1レンズ2と、寸法が相違する点、第1レンズ面3a、第2レンズ面3bの凹凸が相違する点、および第1突起部2gに代えて、第1フランジ面3hAを備える点を除くと、略同様の外形形状を有している。
このため、第1レンズ2と同様の成形型構成によって、成形することができる。
鏡枠4は、第1レンズ2および第2レンズ3を組み込むレンズ保持枠であって、図5A、図5Bに示すように、中心部に貫通孔を有する筒状部材であり、軸方向の一端部に第1レンズ2を光軸方向に保持するレンズ受け部4aを備える。
レンズ受け部4aは、鏡枠4の外周側から径方向内側に向かって延ばされた板状部から構成され、第1レンズ2に対する光線通過域を確保する開口4cRが、ユニット中心軸線Pと同軸に形成されている。
レンズ受け部4aの軸方向他端側には、ユニット中心軸線Pに直交する平面からなる光軸方向受け面4bA(光軸方向基準面)が、第1レンズ2の第1突き当て面2hAと当接可能な範囲に設けられている。
また、光軸方向受け面4bAの外周側には、軸方向他端側に向かって順次大径となる略円筒状の穴部からなる第1レンズ収容穴部4dR、第2レンズ収容穴部4gR、および開口4jRが形成されている。
第1レンズ収容穴部4dRは、穴径が第1レンズ2の最大外径D2fよりも大径とされ、光軸方向受け面4bAに対する軸方向の長さが、第1レンズ2の第1突き当て面2hAから外周側第2フランジ面2uAまでの距離よりも長い。
第1レンズ収容穴部4dRの穴径の大きさは、例えば、第1レンズ2に発生しうる成形バリが当接しない程度の寸法とすれば、第1レンズ2のバリ除去作業を簡素化することができるため好ましい。
このような構成により、第1レンズ収容穴部4dRの内部には、第1レンズ2を径方向および軸方向に当接させることなく収容することが可能である。
第2レンズ収容穴部4gRの穴径が第2レンズ3の最大外径D3fよりも大きい。第2レンズ収容穴部4gRの軸方向の長さは、第1フランジ面3hAから外周側第2フランジ面3uAまでの距離よりも長くなっている。また、第2レンズ収容穴部4gRの軸方向の位置は、図1Aに示すように、第2レンズ3が第1レンズ2に対して軸方向に位置決めされた状態で、レンズ側面3fRが、第2レンズ収容穴部4gRの軸方向の中間部で対向する位置である。
第2レンズ収容穴部4gRの穴径の大きさは、第1レンズ収容穴部4dRと同様、第2レンズ3の成形バリが当接しない程度の寸法とすることが好ましい。
このような構成により、第2レンズ収容穴部4gRの内部には、第2レンズ3を径方向および軸方向に当接させることなく収容することが可能である。
開口4jRは、鏡枠4の他端側の開口であり、第2レンズ3に対する光線通過域を確保する適宜の大きさにすることができる。本実施形態では、第2レンズ収容穴部4gRよりも大径の円筒面で構成されている。
第1レンズ収容穴部4dRと第2レンズ収容穴部4gRとの間には、第1レンズ2の3つのフランジ部2cに対応する3箇所の位置に、径方向内側に延ばされた円弧板状のレンズ嵌合部4eが設けられている。本実施形態では、各レンズ嵌合部4eの周方向の範囲は、中心角60°の範囲に設けられている。
また、各レンズ嵌合部4eの内周部には、第1レンズ2の各基準円筒面2jRを内嵌させて第1レンズ2を径方向に位置決めするため、ユニット中心軸線Pを中心とする半径D4e/2の円筒面からなる径方向位置決め面4fRが形成されている。寸法D4eは、次式(1)を満たすように設定する。
D2j≦D4e≦D2j+δ2 ・・・(1)
ここで、δ2は、第1レンズ2の組み付け誤差による偏心量の許容値であり、例えば、2μmである。
また、第2レンズ収容穴部4gRと開口4jRとの間には、第2レンズ3の3つのフランジ部3cに対応する3箇所の位置に、径方向内側に延ばされた円弧板状のレンズ嵌合部4hが設けられている。本実施形態では、各レンズ嵌合部4hの周方向の範囲は、中心角60°の範囲であって、かつレンズ嵌合部4eが設けられたのと同一の角度領域である(図4B参照)。
また、各レンズ嵌合部4hの内周部には、第2レンズ3の各基準円筒面3jRを内嵌させて第2レンズ3を径方向に位置決めするため、ユニット中心軸線Pを中心とする半径D4h/2の円筒面からなる径方向位置決め面4iRが形成されている。寸法D4hは、次式(2)を満たすように設定する。
D3j≦D4h≦D3j+δ3 ・・・(2)
ここで、δ3は、第2レンズ3の組み付け誤差による許容偏心量であり、例えば、2μmである。
鏡枠4は、例えば、金属や合成樹脂の切削や、金属材料や合成樹脂材料を用いた成形により形成することができる。
本実施形態では、樹脂モールド成形を採用している。図5B、図6に示す穴部4k、4mは、それぞれレンズ嵌合部4e、4hをアンダーカット形状としないための穴部である。
本実施形態の形状の鏡枠4では、レンズ受け部4a、径方向位置決め面4fR、4iRの形状を転写する成形面はコア成形型に形成することができる。このため、いずれも同一の成形型部材に形成された成形面で成形されるため、相互の位置関係を高精度に保持することができる。
このような構成の鏡枠4に、第1レンズ2および第2レンズ3を組み込んで、図1A、図1Bに示すようなレンズユニット1を組み立てるには、まず、第1レンズ面2aが開口4jRに対向し、各凸状部2pが鏡枠4の隣り合うレンズ嵌合部4eの間に位置するように、第1レンズ2を配置する。そして、この第1レンズ2を、開口4jR側から光軸方向受け面4bAに向けて挿入し、光軸方向受け面4bAに第1突き当て面2hAを当接させてから、第1レンズ2を周方向に約60°回転させる。
これにより、第1レンズ2は、レンズ受け部4aの光軸方向受け面4bAに第1突き当て面2hAが当接するとともに、各凸状部2pが各レンズ嵌合部4eで覆われて軸方向に抜け止めされた状態で第1レンズ収容穴部4dRに収容される。
このとき、各基準円筒面2jRは、各レンズ嵌合部4eに内嵌されているため、第1レンズ2は、ユニット中心軸線Pに対して、δ2以下の配置誤差で径方向に位置決めされる。
次に、第1レンズ面3aが開口4jRに対向し、各凸状部3pが鏡枠4の隣り合うレンズ嵌合部4hの間に位置するように、第2レンズ3を配置する。そして、この第2レンズ3を、開口4jR側から第2突き当て面2kAに向けて挿入し、第2突き当て面2kAに第1フランジ面3hAを当接させてから第2レンズ3を周方向に約60°回転させる。
これにより、第2レンズ3は、第1レンズ2の第2突き当て面2kAに第1フランジ面3hAが当接した状態で、各凸状部3pが各レンズ嵌合部4hで覆われ、軸方向に抜け止めされた状態で第2レンズ収容穴部4gRに収容される。
このとき、各基準円筒面3jRは、各レンズ嵌合部4hに内嵌されているため、第2レンズ3は、ユニット中心軸線Pに対して、δ3以下の配置誤差で径方向に位置決めされる。
次に、第2レンズ3を第1レンズ2側に向かって軸方向に押圧し,レンズ受け部4aと第1突き当て面2hAとを互いに軸方向に当接させるとともに、第2突き当て面2kAと第1フランジ面3hAとを互いに軸方向に当接させて、光軸方向の位置決めを行う。
次に、この状態を保持して、各突起部3iと、レンズ嵌合部4hとにまたがるように接着剤を塗布して硬化させ、接着部6を形成する。
接着部6は、本実施形態では、図1Bには、各突起部3iおよび各レンズ嵌合部4hの周方向の中心部に形成している。ただし、接着部6の塗布形状や個数は、必要な接着強度に応じて適宜変更することが可能である。例えば、1つの突起部3iおよびレンズ嵌合部4h上で周方向に離間して複数形成してもよいし、周方向に沿う円弧状に形成してもよい。
このようにして、レンズユニット1が組み立てられる。
レンズユニット1によれば、第1レンズ2および第2レンズ3のレンズ面間隔は、第2突起部2iの第1突き当て面2hAおよび第1フランジ面3hAの位置精度によって決まる。
本実施形態では、第1突き当て面2hA(第1フランジ面3hA)は、第2レンズ面2b(第1レンズ面3a)の形状を転写する成形面を有する同一の成形型部材(第1レンズ2の場合は上述の成形型部材12)によって成形されるため、成形型部材の製造時に精度よく位置出しされた位置関係が保持され、成形ごとの寸法バラツキを低減できる。
このため、第2レンズ面2bと第1レンズ面3aとのレンズ面間隔が、鏡枠4を介することなく第1レンズ2および第2レンズ3の部品精度のみで決まるため、無調整で組み立てても組み付け誤差を低減することができる。
また、第1レンズ2および第2レンズ3の組み付け誤差による偏心は、基準円筒面2jRと径方向位置決め面4fRとの間の嵌合隙間、および基準円筒面3jRと径方向位置決め面4iRとの間の嵌合隙間によって決まる。
本実施形態では、基準円筒面2jR(基準円筒面3jR)は、第2レンズ面2b(第2レンズ面3b)の形状を転写する成形面を有する同一の成形型部材(第1レンズ2の場合は上述の成形型部材12)によって成形されるため、成形型部材の製造時に精度よく位置出しされた位置関係が保持され、成形ごとの寸法バラツキを低減できる。
このため、無調整で組み立てても、偏心を一定の許容値以下に収めることができる。
本実施形態と異なる場合の例と比較するため、例えば、第1レンズ2において、成形型部材13に形成された成形面によって形状が転写されるレンズ側面2fRを用いて径方向の位置決めを行う場合を考える。この場合、レンズ面部と径方向位置決め部とが、別々の成形型部材上の成形面で形成され、しかも、それぞれの成形型部材が互いに相対移動するため、第1レンズ面2a、第2レンズ面2bに対するレンズ側面2fRの位置精度が劣ってしまう。
すなわち、第1レンズ面2aを成形する成形型部材11と、第2レンズ面2bを成形する成形型部材12とは、第1レンズ面2a、第2レンズ面2bの間の偏心を抑制し、高精度に位置合わせされている。しかしながら、レンズ側面2fRを成形する成形型部材13は、成形型部材11と摺動移動する必要があるため、特に径方向の位置精度が摺動隙間の範囲で変化してしまう。このため、レンズ側面2fRを径方向の位置決め部として用いると、偏心量のバラツキが大きくなってしまう。
これに対して、本実施形態ではこのような原因による偏心量のバラツキは生じない。
また、本実施形態では、鏡枠4に、第1レンズ収容穴部4dR、第2レンズ収容穴部4gRが、組立時に凸状部2p、3pと当接しない大きさに設けられているため、内周側第1フランジ面2rA、外周側第1フランジ面2sA、レンズ側面2fR、内周側第2フランジ面2tA、外周側第2フランジ面2uA、第1フランジ面3hA、レンズ側面3fR、内周側第2フランジ面3tA、外周側第2フランジ面3uAの形状誤差は、組み付け誤差に影響しない。
このように、第1レンズ2、第2レンズ3によれば、レンズ側面よりも内周側の位置から光軸と平行に突出された径方向位置決め部を有する位置決め突起が形成されているため、位置決め部をレンズ側面に設ける場合に比べて、径方向位置決め部を精度よく容易に形成することができる。
また、レンズユニット1によれば、第1レンズ2、第2レンズ3の径方向位置決め部を鏡枠4のレンズ嵌合部に嵌合させることにより、無調整であっても偏心を低減することができる。
このため、第1レンズ2、第2レンズ3の部品コストや、レンズユニット1の組立コストを低減することができる。
[変形例]
次に、本実施形態の変形例のレンズおよびレンズユニットについて説明する。
図7A、図7B、図7Cは、本発明の第1の実施形態の変形例のレンズを模式的に示す左側面図、光軸を含む断面図、および右側面図である。
本変形例の第1レンズ22(レンズ)は、図7A、図7B、図7Cに示すように、上記第1の実施形態の第1レンズ2の第1突起部2g、第2突起部2iに代えて、第1突起部22g、第2突起部22i(位置決め突起)を備えている。これに伴って、第1レンズ22は、内周側第1フランジ面2rA、外周側第1フランジ面2sAに代えて第1フランジ面22rA(レンズ外縁部)を備え、内周側第2フランジ面2tA、外周側第2フランジ面2uAに代えて第2フランジ面22tA(レンズ外縁部)を備える。
第1レンズ22は、上記第1の実施形態の第1レンズ2に代えて、鏡枠4に組み込むことにより、図1Aに示すように、本変形例のレンズユニット21を構成することができる。
以下、上記第1の実施形態と異なる点を中心に説明する。
第1突起部22gは、上記第1の実施形態の内周側第1フランジ面2rAと同様な平面がレンズ側面2fRまで延ばされた第1フランジ面22rAから突出された突起部であり、光軸方向から見た外形が円状である。第1突起部22gの突出方向の先端部には、光軸方向の位置が第1突起部2gの第1突き当て面2hAと同一とされた第1突き当て面22hA(光軸方向位置決め部)が形成されている。
第1突起部22gの第1フランジ面22rA上の位置は、レンズ受け部4aに当接可能な位置であれば、特に限定されない。本変形例では、一例として、上記第1の実施形態における第1突き当て面2hAの周方向の中心となる位置に設けられている。
第2突起部22iは、上記第1の実施形態の内周側第2フランジ面2tAと同様な平面がレンズ側面2fRまで延ばされた第2フランジ面22tAから突出された突起部であり、光軸方向から見た外形が円状である。
各第2突起部22iおいて、径方向の最外部となる側面部には、光軸O2を中心とした半径D2j/2の仮想円筒面に整列された基準側面部22jR(径方向位置決め部)が形成されている。
基準側面部22jRは、本実施形態のように、第2突起部22iを円柱状に形成する場合には、仮想円筒面と接する円柱の母線であり、径方向位置決め面4fRと線接触可能な形状を有している。
ただし、第2突起部22iの断面形状は、円形には限定されず、例えば、外周側の側面に仮想円筒面に整列する円筒面が設けられた形状としてもよい。この場合には、このような円筒面状の側面によって、径方向位置決め面4fRと接触することが可能である。
また、各第2突起部22iの突出方向の先端には、光軸O2に直交する一平面に整列された第2突き当て面22kA(光軸方向位置決め部)が、上記第1の実施形態の第2突き当て面2kAと同様な位置に形成されている。
このような第1レンズ22によれば、上記第1の実施形態の第1レンズ2と同様にして、鏡枠4に組み込むことにより、レンズユニット21を組み立てることができる。
その際、第1突き当て面22hA、第2突き当て面22kAは、第1突き当て面2hA、第2突き当て面2kAと同様に光軸方向位置決め部を構成しており、基準側面部22jRは、基準円筒面2jRと同様に径方向位置決め部を構成しており、上記第1の実施形態と同様の作用効果を備える。
特に、本変形例では、第1突き当て面22hA、第2突き当て面22kAの面積を、上記第1の実施形態の第1突き当て面2hA、第2突き当て面2kAに比べて狭くすることができるため、より3点受けに近い状態で光軸方向の位置決めを行うことができる。このため、より高精度な位置決めが可能となる。
また、第1突起部22g、第2突起部22iを円柱状に形成することで、第1レンズ22を成形する場合に、成形型部材の型修正がより容易となるため、成形型部材をより高精度に製造しやすくなる。
また、第2突起部22iを円柱状に形成することで、径方向位置決め面4fRと接触する際に確実に線接触する。これにより、径方向の位置が周方向の3点によって決まるため、高精度な位置決めが可能になる。
また、第2突起部22iは、第2突起部2iに比べて、体積を低減できるため、第1レンズ面2a、第2レンズ面2bに対する成形上の影響を低減することができる。このため、第2突起部2iと比べて、より第2レンズ面2bに近い位置に設けることが可能となるため、より小型化が可能となる。
[第2の実施形態]
次に、本発明の第2の実施形態のレンズ、レンズ保持枠、およびレンズユニットについて説明する。
図8は、本発明の第2の実施形態のレンズユニットの一例を模式的に示す光軸を含む断面図である。図9A、図9Bは、本発明の第2の実施形態のレンズユニットの第1レンズを模式的に示す光軸を含む断面図、および右側面図である。図10A、図10Bは、本発明の第2の実施形態のレンズユニットの第2レンズを模式的に示す左側面図、および光軸を含む断面図である。図11A、図11Bは、本発明の第2の実施形態のレンズユニットのレンズ保持枠の中心軸を含む断面図、および模式的な右側面図である。
本実施形態のレンズユニット31は、図8に示すように、上記第1の実施形態の第1レンズ2、第2レンズ3、鏡枠4に代えて、第1レンズ32(レンズ)、第2レンズ33(レンズ)、および鏡枠34(レンズ保持枠)を備える。
第1レンズ32、第2レンズ33のレンズ面部の構成は、上記第1の実施形態と同様としているため、以下では、第1レンズ32、第2レンズ33の光軸もそれぞれ光軸O2、O3と表記する。
レンズユニット31内では、第1レンズ32は、その光軸O2が鏡枠34のユニット中心軸線Qに略整列する(整列する場合も含む)ように位置決めされ、光軸方向には鏡枠34に押し付けられて位置決めされている。
また、第2レンズ33は、その光軸O3がユニット中心軸線Qに略整列する(整列する場合も含む)ように位置決めされ、光軸方向には、第1レンズ32と当接されることにより、位置決めされている。
第1レンズ32、第2レンズ33は、この状態で、それぞれの最外周部と鏡枠34の内周面とにまたがって形成された接着部36A、36Bによって、それぞれの相対位置が固定されている。
接着部36A、36Bは、上記第1の実施形態の接着部6と同様の接着剤を硬化させることにより形成されている。
第1レンズ32は、レンズユニット31に保持される一対のレンズのうちの一方であり、図9A、図9Bに示すように、第1レンズ面2aおよび第2レンズ面2bで構成されるレンズ面部の外周側に、円板状に延ばされたフランジ部32cが設けられている。
フランジ部32cは、第1レンズ面2aの外周から径方向外側に延ばされた第1フランジ面32Aと、第1レンズ32の径方向の最外面を構成する円筒面状のレンズ側面32fRと、第2レンズ面2bの外周から径方向外側にレンズ側面32fRまで延ばされた第2フランジ面32tA(レンズ外縁部)とで囲まれている。
レンズ側面32fRは、光軸O2を中心とする半径D32f/2(ただし、D32f>d2a、D32f>d2b)の円筒面からなる。
また、第2フランジ面32tA上には、円環状突起部32i(位置決め突起)と、円柱状突起部32gとが設けられている。
円環状突起部32iは、鏡枠34に対する径方向の位置決めを行うために設けられた突起部であり、円環状の断面が光軸方向に突出されている。
円環状突起部32iの外周面である基準円筒面32jR(径方向位置決め部)は、光軸O2を中心として半径がD32j/2(ただし、d2b<D32j<D32f)とされた円筒面である。
円環状突起部32iの突出方向の先端には、光軸O2に直交する一平面に整列された第2突き当て面32kA(光軸方向位置決め部)が形成されている。
第2突き当て面32kAは、第2レンズ33を突き当てて組み立てることにより、第1レンズ32に対する第2レンズ33の光軸方向の位置決めを行う部位である。
第2突き当て面32kAの光軸方向の位置は、後述する第2レンズ33の突き当て面33kAの位置との関係で、第2レンズ面2bと第1レンズ面3aとの間隔を予め決められたレンズ面間隔に設定できる位置である。
例えば、第2フランジ面32tAに対する突出高さが、上記第1の実施形態における第2突起部2iの突出高さの半分程度になる寸法が好適である。
円柱状突起部32gは、この円柱状突起部32gの円断面が光軸方向に突出された突起部である。円柱状突起部32gを鏡枠34に突き当てて組み立てることにより、鏡枠34に対する第1レンズ32の光軸方向の位置決めを行うことが可能である。
本実施形態では、円柱状突起部32gは、第2フランジ面32tA上において、基準円筒面32jRとレンズ側面32fRとの間において、周方向を3等分する3箇所に設けられている。
各円柱状突起部32gの突出方向の先端には、光軸O2に直交する一平面に整列されるとともに、第2フランジ面32tAからの光軸方向の突出量が円環状突起部32iに比べて小さい第1突き当て面32hA(光軸方向位置決め部)が形成されている。
第2レンズ33は、レンズユニット21に保持される一対のレンズのうちの他方であり、図10A、図10Bに示すように、第1レンズ面3aおよび第2レンズ面3bで構成されるレンズ面部の外周側に、円板状に延ばされたフランジ部33cが設けられている。
フランジ部33cは、第1レンズ面3aの外周から径方向外側に延ばされた第1フランジ面33rA(レンズ外縁部)と、第2レンズ33の径方向の最外面を構成する円筒面状のレンズ側面33fRと、第2レンズ面3bの外周から径方向外側にレンズ側面33fRまで延ばされた第2フランジ面33tAとで囲まれている。
レンズ側面33fRは、光軸O3を中心とする半径D33f/2(ただし、D33f>D32j)の円筒面からなる。
また、第1フランジ面33rA上には、円環状突起部33i(位置決め突起)が設けられている。
円環状突起部33iは、鏡枠34に対する径方向の位置決めを行うために設けられた突起部であり、円環状の断面が光軸方向に突出されている。
円環状突起部33iの外周面である基準円筒面33jR(径方向位置決め部)は、光軸O3を中心として半径がD32j/2とされた円筒面である。すなわち、本実施形態では、基準円筒面32jR、33jRの外径は同一寸法とされている。
円環状突起部33iの突出方向の先端には、光軸O3に直交する一平面に整列された突き当て面33kA(光軸方向位置決め部)が形成されている。
突き当て面33kAは、第1レンズ32の第2突き当て面32kAに突き当てて組み立てることにより、第1レンズ32に対する第2レンズ33の光軸方向の位置決めを行う部位である。
このため、第2突き当て面32kAの光軸方向の位置は、第1レンズ32の円環状突起部32iの突出高さと、円環状突起部33iの突出高さとの和が、上記第1の実施形態の第2突起部2iの突出高さに等しくなるように設定する。
このような第1レンズ32、第2レンズ33は、上記第1の実施形態の第1レンズ2、第2レンズ3と同様にして製造することができる。
成形によって製造する場合には、少なくとも円環状突起部32i、33iの成形面と、第2レンズ面2b、第1レンズ面3aの成形面とは、同一の成形型部材に形成することが好ましい。
鏡枠34は、第1レンズ32および第2レンズ33を組み込むレンズ保持枠である。また、鏡枠34は、図11A、図11Bに示すように、中心部に貫通孔を有する筒状部材であり、軸方向の一端側から他端側に向かって、第1レンズ32を収容する円筒穴部からなる第1レンズ収容穴部34dRと、第2レンズ33を収容する円筒穴部からなる第2レンズ収容穴部34gと、第2レンズ33に対する光線通過域を確保する第2レンズ収容穴部34gよりも大径の開口34jRとが、ユニット中心軸線Qと同軸に形成されている。
第1レンズ収容穴部34dR、第2レンズ収容穴部34gの内径は、それぞれレンズ側面32fR、33fRを含む外径よりも大きい。
第1レンズ収容穴部34dRと第2レンズ収容穴部34gとの間には、第1レンズ32を光軸方向に位置決めするとともに径方向に位置決めし、さらに、第2レンズ33を径方向に位置決めするため、径方向内側に向かって突出されたレンズ受け部34eが設けられている。
レンズ受け部34eは、軸方向の一端側に、ユニット中心軸線Qに直交する平面からなる軸方向受け面34bA(光軸方向基準面)を備え、中心部に基準円筒面32jR、33jRを内嵌させる径方向位置決め面34fRが軸方向に貫通して設けられている。
径方向位置決め面34fRは、径方向の位置決めが可能であれば、周方向に連続する円筒面、または周方向に断続して基準円筒面32jR、33jRと点接触、線接触、面接触が可能な適宜の面を採用することができる。
本実施形態では、径方向位置決め面34fRは、ユニット中心軸線Qを中心とする半径D34f/2の円筒面を採用している。寸法D34fは、次式(3)を満たす値とする。
D32j≦D34f≦D32j+δmin ・・・(3)
ここで、δminは、δ2、δ3のうち大きくない方の許容値である。
また、レンズ受け部34eの軸方向の厚さ寸法は、図8に示すように、第2突き当て面32kA、突き当て面33kAが当接した状態で、第1突き当て面32hAと第1フランジ面33rAとの光軸方向の距離よりも大きな寸法である。
このような鏡枠34は、鏡枠4と同様にして製造することができる。
このような構成の鏡枠34に、第1レンズ32および第2レンズ33を組み込んで、図8A、図8Bに示すようなレンズユニット31を組み立てるには、鏡枠34の第1レンズ収容穴部34dRに第1レンズ32を挿入して、円環状突起部32iを径方向位置決め面34fRに内嵌させる。これにより、第1レンズ32の光軸O2が、鏡枠34のユニット中心軸線Qに略整列する(整列する場合も含む)ように、径方向に位置決めされる。
このとき、基準円筒面32jRは、径方向位置決め面34fRに内嵌されているため、第1レンズ32は、ユニット中心軸線Qに対して、δmin以下の配置誤差で径方向に位置決めされる。
さらに第1レンズ32の挿入を続けると、第1突き当て面32hAが軸方向受け面34bAに当接されることにより、第1レンズ32が、鏡枠34に対して光軸方向に位置決めされる。
このとき、第2突き当て面32kAは、レンズ受け部34eの厚さ方向の中間部に位置している。
次に、例えば、図示略の適宜の保持治具などを用いてこの位置決め状態を保持した状態で、開口34jR側から、第2レンズ33を挿入し、円環状突起部33iを径方向位置決め面34fRに内嵌させ、突き当て面33kAを、第1レンズ32の第2突き当て面32kAに当接させる。
これにより、第2レンズ33は、第1レンズ32に対して光軸方向に位置決めされた状態で、第2レンズ収容穴部34g内に収容される。
このとき、基準円筒面33jRは、径方向位置決め面34fRに内嵌されているため、第2レンズ33は、ユニット中心軸線Qに対して、δmin以下の配置誤差で径方向に位置決めされる。また、第2レンズ33の第1フランジ面33rAと、レンズ受け部34eとは互いに離間されている。
次に、この状態を保持して、レンズ側面32fR(33fR)と、第1レンズ収容穴部34dR(第2レンズ収容穴部34g)とにまたがるように接着剤を塗布して硬化させ、図8に示すように、接着部36A(36B)を形成する。
ここで、接着部36A、36Bの塗布方法は、上記第1の実施形態の接着部6と同様に適宜の点状、線状等の塗布が可能である。
このようにして、レンズユニット31が組み立てられる。
レンズユニット31は、上記第1の実施形態のレンズユニット1と、組立時の挿入方向は異なるが、上記第1の実施形態の光軸方向位置決め部である第1突き当て面2hA、第2突き当て面2kA、第1フランジ面3hAに対応して、第1突き当て面32hA、第2突き当て面32kA、突き当て面33kAを備える。また、上記第1の実施形態の径方向位置決め部である基準円筒面2jR、3jRに対応して、基準円筒面32jR、33jRを備える。このため、上記第1の実施形態と同様に、無調整で組み立てても組み付け誤差を低減することができる。
上記の各実施形態、変形例の説明では、一例として、レンズユニットが2つのレンズから構成される場合の例で説明したが、レンズユニットを構成するレンズは、1枚でもよいし、3枚以上の構成でもよい。
1つのレンズでレンズユニットを構成する場合、レンズには、光軸方向位置決め部と径方向位置決め部とをそれぞれ1つずつ形成しておけばよい。
また、3枚以上の構成とする場合、例えば、上記第1の実施形態では、第2レンズ3の各先端面3kAを、第1レンズ2の第2突き当て面2kAと同様に光軸O3に直交する一平面に整列するように形成し、かつ先端面3kAの光軸方向の位置を3枚目のレンズとのレンズ面間距離を考慮して設定し、第2レンズ3と同様の光軸方向位置決め部、径方向位置決め部を設けたレンズを追加していく。これにより、3枚以上の適宜のレンズ構成に対応できる。
また、第2の実施形態の構成でも3枚以上に対応することは容易である。この場合、2つのレンズに挟まれるレンズは、光軸方向の両端面にそれぞれ光軸方向位置決め部および径方向位置決め部を備えるようにすればよい。
また、上記の各実施形態、変形例の説明では、レンズがメニスカスレンズの場合の例で説明したが、レンズユニットに嵌め込むレンズは、両凸レンズ、両凹レンズでもよい。また、レンズは、単レンズに限定されるものではなく、接合レンズであってもよい。
また、上記の各実施形態、変形例の説明では、レンズ外縁部がフランジ部の光軸方向の両端の端面で構成される場合の例で説明したが、レンズ外縁部は、光学有効領域外のレンズ面で構成されていてもよい。
また、上記の各実施形態、変形例の説明では、レンズが成形によって形成される場合の例で説明したが、切削、研磨によって形成される場合でも、レンズ側面によって径方向の位置決めを行う場合に比べて、レンズ側面より内側の位置決め突起に径方向位置決め部を形成する。これにより、高精度の加工領域を低減することができるため、容易かつ低コストで製造することが可能になる。
また、上記の各実施形態、および変形例で説明した構成要素は、本発明の技術的思想の範囲で適宜組み合わせたり、削除したりして実施することができる。
例えば、上記第1の実施形態と第2の実施形態とを組み合わせて実施してもよい。すなわち、一例を挙げると、レンズユニット1を3枚のレンズ構成にする場合い、3枚目のレンズを、第2レンズ33と同様の構成のレンズとし、基準円筒面33jRを、径方向位置決め面4iRに内嵌させるとともに、突き当て面33kAを第2レンズ3の先端面3kAに光軸方向に当接させた構成とすることが可能である。
上記のレンズおよびレンズの製造方法によれば、レンズ側面よりも内周側の位置から光軸と平行に突出された径方向位置決め部を有する位置決め突起を設けるため、位置決め部をレンズ側面に設ける場合に比べて、径方向位置決め部を精度よく容易に形成することができるという効果を奏する。
また、上記のレンズユニットによれば、本発明のレンズの径方向位置決め部をレンズ保持枠に嵌合させることにより、無調整であっても偏心を低減することができるという効果を奏する。
また、上記のレンズユニットによれば、本発明のレンズの径方向位置決め部をレンズ保持枠に嵌合させることにより、無調整であっても偏心を低減することができるという効果を奏する。
1、21、31 レンズユニット
2、22、32 第1レンズ(レンズ)
2a、3a 第1レンズ面(レンズ面部)
2b、3b 第2レンズ面(レンズ面部)
2c、3c、32c、33c フランジ部
2rA 内周側第1フランジ面(レンズ外縁部)
2sA 外内周側第1フランジ面(レンズ外縁部)
2tA、3tA 内周側第2フランジ面(レンズ外縁部)2uA、3uA 外周側第2フランジ面(レンズ外縁部)2fR、3fR、32fR、33fR レンズ側面2g、22g 第1突起部
2hA、32hA 第1突き当て面(光軸方向位置決め部)2i、22i 第2突起部(位置決め突起)
2jR、3jR、32jR、33jR 基準円筒面(径方向位置決め部)2kA、22kA、32kA 第2突き当て面(光軸方向位置決め部)2n、3n 凹状部
2p、3p 凸状部
3、33 第2レンズ3(レンズ)
3hA 第1フランジ面(光軸方向位置決め部)
3i 突起部(位置決め突起)
3kA 先端面
4、34 鏡枠(レンズ保持枠)
4a、34e レンズ受け部
4bA、34bA 光軸方向受け面(光軸方向基準面)4dR、34dR 第1レンズ収容穴部4e、4h レンズ嵌合部
4fR、4iR、34fR、 径方向位置決め面4g、34g 第2レンズ収容穴部
6、36A、36B 接着部
10 成形型組立体
11 成形型部材(第1の成形型部材)
11a1、12a1 レンズ成形面
11a2、12a3 軸方向位置決め部成形面11a、12a 成形面部
12 成形型部材(第2の成形型部材)
12a2 径方向位置決め部成形面
13 成形型部材(第3の成形型部材)
22jR 基準側面部(径方向位置決め部)
22rA、33rA 第1フランジ面(レンズ外縁部)22tA、32tA 第2フランジ面(レンズ外縁部)32g 円柱状突起部
32i、33i 円環状突起部(位置決め突起)
33kA 突き当て面(光軸方向位置決め部)
O2、O3 光軸
P、Q ユニット中心軸線
2、22、32 第1レンズ(レンズ)
2a、3a 第1レンズ面(レンズ面部)
2b、3b 第2レンズ面(レンズ面部)
2c、3c、32c、33c フランジ部
2rA 内周側第1フランジ面(レンズ外縁部)
2sA 外内周側第1フランジ面(レンズ外縁部)
2tA、3tA 内周側第2フランジ面(レンズ外縁部)2uA、3uA 外周側第2フランジ面(レンズ外縁部)2fR、3fR、32fR、33fR レンズ側面2g、22g 第1突起部
2hA、32hA 第1突き当て面(光軸方向位置決め部)2i、22i 第2突起部(位置決め突起)
2jR、3jR、32jR、33jR 基準円筒面(径方向位置決め部)2kA、22kA、32kA 第2突き当て面(光軸方向位置決め部)2n、3n 凹状部
2p、3p 凸状部
3、33 第2レンズ3(レンズ)
3hA 第1フランジ面(光軸方向位置決め部)
3i 突起部(位置決め突起)
3kA 先端面
4、34 鏡枠(レンズ保持枠)
4a、34e レンズ受け部
4bA、34bA 光軸方向受け面(光軸方向基準面)4dR、34dR 第1レンズ収容穴部4e、4h レンズ嵌合部
4fR、4iR、34fR、 径方向位置決め面4g、34g 第2レンズ収容穴部
6、36A、36B 接着部
10 成形型組立体
11 成形型部材(第1の成形型部材)
11a1、12a1 レンズ成形面
11a2、12a3 軸方向位置決め部成形面11a、12a 成形面部
12 成形型部材(第2の成形型部材)
12a2 径方向位置決め部成形面
13 成形型部材(第3の成形型部材)
22jR 基準側面部(径方向位置決め部)
22rA、33rA 第1フランジ面(レンズ外縁部)22tA、32tA 第2フランジ面(レンズ外縁部)32g 円柱状突起部
32i、33i 円環状突起部(位置決め突起)
33kA 突き当て面(光軸方向位置決め部)
O2、O3 光軸
P、Q ユニット中心軸線
Claims (6)
-
光軸に沿う方向の両端部の端面に、レンズ面部と、前記レンズ面部の外周側に形成されたレンズ外縁部とを有するとともに、前記レンズ外縁部に隣接して前記光軸に直交する方向の最外面となるレンズ側面を備え、
前記レンズ側面を外周側から覆うレンズ保持枠に組み込み可能であり、
前記両端部の端面にそれぞれ形成された前記レンズ外縁部のうちの少なくとも一方に、前記光軸に直交する一平面内に設けられた光軸方向位置決め部が設けられ、
前記各レンズ外縁部のうちの少なくとも一方に、前記レンズ側面よりも内周側の位置から前記光軸に沿う方向に突出され、前記光軸と直交する方向において前記光軸と一定の位置関係に設けられた径方向位置決め部を有する位置決め突起が形成されている
レンズ。 - 前記位置決め突起は、前記光軸方向位置決め部を有する
請求項1に記載のレンズ。 - 請求項1または2に記載のレンズと、
前記レンズの前記径方向位置決め部を嵌合させるレンズ嵌合部と、前記レンズの前記光軸方向位置決め部を当接させる光軸方向基準面と、前記レンズの前記レンズ側面の外形よりも大きい外形の穴を有するレンズ収容穴部と、を有するレンズ保持枠と、
を備え、
前記レンズが、前記レンズ嵌合部に嵌合され、前記光軸方向基準面に当接されて、位置決めされている
レンズユニット。 - 前記レンズが複数備えられ、
前記光軸方向基準面は、複数の前記レンズのうちの一つの前記光軸方向位置決め部に当接し、
前記複数のレンズのそれぞれは、複数の前記レンズ嵌合部に嵌合され、
互いに隣接して配置される前記レンズ同士は、互いに対向する前記端面に設けられた前記光軸方向位置決め部同士が当接されることにより、前記光軸に沿う方向の位置決めがなされている
請求項3に記載のレンズユニット。 - 成形型組立体を形成する工程と、
請求項1または2に記載のレンズの外形を、前記成形型組立体によって成形材料を成形して形成する工程と、を備え、
前記成形型組立体は、
前記両端部の前記端面のうちの一方の、前記レンズ外縁部の少なくとも一部、および前記レンズ面部の形状を転写する第1の成形型部材と、
前記端面のうちの他方の、前記レンズ外縁部の少なくとも一部、および前記レンズ面部の形状を転写する第2の成形型部材と、
少なくとも前記レンズ側面の形状を転写する第3の成形型部材と、を備え、且つ、
前記径方向位置決め部の形状を転写する径方向位置決め部成形面が、前記第1の成形型部材及び前記第2の成形型部材のいずれか一方に設けられるように形成される
レンズの製造方法。 - 前記径方向位置決め部成形面が設けられた前記第1の成形型部材または前記第2の成形型部材には、前記径方向位置決め部が設けられた前記端面の前記レンズ面部を成形するための成形面がさらに設けられている
請求項5に記載のレンズの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380003708.6A CN104024904A (zh) | 2012-03-29 | 2013-03-14 | 透镜、透镜单元以及透镜的制造方法 |
US14/277,862 US20140247488A1 (en) | 2012-03-29 | 2014-05-15 | Lens, lens unit, and lens manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012075926A JP2013205693A (ja) | 2012-03-29 | 2012-03-29 | レンズ、レンズユニット、およびレンズの製造方法 |
JP2012-075926 | 2012-03-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/277,862 Continuation US20140247488A1 (en) | 2012-03-29 | 2014-05-15 | Lens, lens unit, and lens manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146292A1 true WO2013146292A1 (ja) | 2013-10-03 |
Family
ID=49259555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057167 WO2013146292A1 (ja) | 2012-03-29 | 2013-03-14 | レンズ、レンズユニット、およびレンズの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140247488A1 (ja) |
JP (1) | JP2013205693A (ja) |
CN (1) | CN104024904A (ja) |
WO (1) | WO2013146292A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150323756A1 (en) * | 2014-05-09 | 2015-11-12 | Genius Electronic Optical Co., Ltd. | Optical lens and a method for manufacturing the same |
JP7528644B2 (ja) | 2020-08-31 | 2024-08-06 | セイコーエプソン株式会社 | レンズ、光学系、プロジェクター、および撮像装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101231517B1 (ko) * | 2011-09-19 | 2013-02-07 | 엘지이노텍 주식회사 | 카메라 모듈 |
JP2016085409A (ja) * | 2014-10-28 | 2016-05-19 | オリンパス株式会社 | レンズ保持枠、レンズ組立体、およびレンズ組立体の組立方法 |
WO2016084390A1 (ja) * | 2014-11-27 | 2016-06-02 | 京セラ株式会社 | レンズ、レンズユニット及び撮像装置 |
WO2017169644A1 (ja) * | 2016-03-29 | 2017-10-05 | 富士フイルム株式会社 | レンズユニット |
CN112166358B (zh) * | 2018-05-30 | 2022-07-26 | 宁波舜宇光电信息有限公司 | 光学镜头、摄像模组及其组装方法 |
JP7259316B2 (ja) * | 2018-12-19 | 2023-04-18 | 株式会社デンソー | レンズモジュール及び車両用撮像装置 |
JP7438209B2 (ja) * | 2019-06-10 | 2024-02-26 | 株式会社小糸製作所 | 光学ユニットおよび車両用灯具 |
CN110764214A (zh) * | 2019-12-05 | 2020-02-07 | 浙江舜宇光学有限公司 | 光学成像系统及显示装置 |
CN221726270U (zh) * | 2023-02-17 | 2024-09-17 | 大立光电股份有限公司 | 塑胶透镜、光学成像模块及电子装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002200654A (ja) * | 2000-12-28 | 2002-07-16 | Konica Corp | 光学素子の製造方法及び光学素子 |
JP2009080463A (ja) * | 2007-09-07 | 2009-04-16 | Sharp Corp | 組合せレンズ、レンズユニット、撮像装置および光学機器 |
JP2011237618A (ja) * | 2010-05-11 | 2011-11-24 | Fujifilm Corp | レンズユニット |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10307247A (ja) * | 1997-05-02 | 1998-11-17 | Asahi Optical Co Ltd | プラスチック成形レンズ |
JP3861887B2 (ja) * | 2004-05-25 | 2006-12-27 | コニカミノルタオプト株式会社 | 組レンズ |
CN102103244A (zh) * | 2009-12-22 | 2011-06-22 | 鸿富锦精密工业(深圳)有限公司 | 镜头模组 |
-
2012
- 2012-03-29 JP JP2012075926A patent/JP2013205693A/ja active Pending
-
2013
- 2013-03-14 WO PCT/JP2013/057167 patent/WO2013146292A1/ja active Application Filing
- 2013-03-14 CN CN201380003708.6A patent/CN104024904A/zh active Pending
-
2014
- 2014-05-15 US US14/277,862 patent/US20140247488A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002200654A (ja) * | 2000-12-28 | 2002-07-16 | Konica Corp | 光学素子の製造方法及び光学素子 |
JP2009080463A (ja) * | 2007-09-07 | 2009-04-16 | Sharp Corp | 組合せレンズ、レンズユニット、撮像装置および光学機器 |
JP2011237618A (ja) * | 2010-05-11 | 2011-11-24 | Fujifilm Corp | レンズユニット |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150323756A1 (en) * | 2014-05-09 | 2015-11-12 | Genius Electronic Optical Co., Ltd. | Optical lens and a method for manufacturing the same |
JP7528644B2 (ja) | 2020-08-31 | 2024-08-06 | セイコーエプソン株式会社 | レンズ、光学系、プロジェクター、および撮像装置 |
Also Published As
Publication number | Publication date |
---|---|
US20140247488A1 (en) | 2014-09-04 |
JP2013205693A (ja) | 2013-10-07 |
CN104024904A (zh) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013146292A1 (ja) | レンズ、レンズユニット、およびレンズの製造方法 | |
CN107850748B (zh) | 具有可平移对中的套筒的光学组件 | |
JP2009163120A (ja) | 撮像装置用レンズの連結方法及びその連結方法を用いたレンズユニット並びにそのレンズユニットを内蔵した撮像装置 | |
WO2014162770A1 (ja) | モールドレンズのレンズユニット構造とモールドレンズの成形型 | |
US8876409B2 (en) | Optical device | |
CN109975941A (zh) | 镜头单元及模具的制造方法 | |
US20040125470A1 (en) | Lens assembly for an optical system | |
JP4823755B2 (ja) | レンズシステム組立方法および間隔設定冶具 | |
JP6533961B2 (ja) | レンズ鏡筒および光軸調整方法 | |
JP2005258329A (ja) | 複合レンズおよびそれの成形金型 | |
WO2017022500A1 (ja) | 光学組立体の接着固定方法および光学組立体 | |
JP2001290047A (ja) | つば部材及びフェルール | |
KR20140136726A (ko) | 카메라모듈용 렌즈유닛 | |
JP4465876B2 (ja) | 複合レンズ、複合レンズの組立方法、固定絞りおよび固定絞りの成形方法 | |
JP2008188815A (ja) | レンズ成形用金型 | |
JP2007188034A (ja) | レンズ保持装置 | |
US20100073782A1 (en) | Optical lens | |
JPH08327870A (ja) | レンズ鏡筒およびレンズ系の偏芯調整方法 | |
CN112292621B (zh) | 光学部件和光学部件的制造方法 | |
JP4603420B2 (ja) | 成形用金型およびその製造方法 | |
CN104181645A (zh) | 校准工具、校准方法、光纤插芯组件和光纤连接器 | |
JP2013113986A (ja) | レンズユニットおよびレンズユニットの組立方法 | |
JP2008030160A (ja) | 円形レンズの心取り方法と該方法を用いた円形レンズの製造方法 | |
CN221746322U (zh) | 光学透镜以及光学透镜阵列 | |
JP4027399B2 (ja) | レンズ保持装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13769760 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13769760 Country of ref document: EP Kind code of ref document: A1 |