WO2013145974A1 - 無段変速機及びその油圧制御方法 - Google Patents

無段変速機及びその油圧制御方法 Download PDF

Info

Publication number
WO2013145974A1
WO2013145974A1 PCT/JP2013/054414 JP2013054414W WO2013145974A1 WO 2013145974 A1 WO2013145974 A1 WO 2013145974A1 JP 2013054414 W JP2013054414 W JP 2013054414W WO 2013145974 A1 WO2013145974 A1 WO 2013145974A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
primary
lower limit
continuously variable
primary pressure
Prior art date
Application number
PCT/JP2013/054414
Other languages
English (en)
French (fr)
Inventor
高橋 誠一郎
岳 江口
智洋 歌川
雄太 石鍋
徹也 泉
隆浩 小林
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to KR1020147026548A priority Critical patent/KR101585368B1/ko
Priority to JP2014507528A priority patent/JP5903487B2/ja
Priority to CN201380013863.6A priority patent/CN104185752B/zh
Priority to US14/387,414 priority patent/US9133930B2/en
Priority to EP13768782.8A priority patent/EP2833025A4/en
Publication of WO2013145974A1 publication Critical patent/WO2013145974A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66231Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed
    • F16H61/66236Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66231Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed
    • F16H61/6624Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed using only hydraulical and mechanical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • F16H2061/66277Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing by optimising the clamping force exerted on the endless flexible member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H2061/6629Detection of slip for determining level of wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members

Definitions

  • the present invention relates to hydraulic control of a continuously variable transmission.
  • CVT continuously variable transmission
  • a gear ratio is changed steplessly by changing a width of a groove of both pulleys.
  • a low reverse shift is performed in which the gear ratio is changed toward the lowest level during deceleration, thereby ensuring the re-startability of the vehicle (JP63-74736A).
  • One way to improve the fuel efficiency of vehicles equipped with CVT is to reduce the size of the oil pump that is the hydraulic power source of the transmission. If the oil pump is downsized, the engine power consumed to drive the oil pump will be reduced, and the oil pump and transmission internal friction will be reduced by reducing the discharge pressure of the oil pump. Can be improved.
  • FIG. 6 shows a state in which the brake pedal is depressed at time ta, the vehicle decelerates, and Low return shift is performed.
  • a required secondary pressure that is a secondary pressure required to maintain the gear ratio is calculated according to the gear ratio of the CVT. Then, the required secondary pressure is converted into the primary balance pressure based on the pressure receiving area ratio between the primary pulley and the secondary pulley (X1 in the figure), and the target primary pressure is calculated by subtracting the necessary differential thrust required for shifting from the primary balance pressure. (X2 in the figure).
  • the target primary pressure becomes lower than the primary pressure lower limit determined from the belt slip limit (after time tb)
  • the target primary pressure is limited to the primary pressure lower limit (X3 in the figure).
  • the required secondary pressure is corrected to increase (X4 in the figure).
  • the primary pressure lower limit value is based on a theoretical torque capacity formula (described later), and the minimum pressure is limited to a predetermined value regardless of the running conditions.
  • An object of the present invention is to further improve fuel efficiency by reducing the size of an oil pump while improving LOW return performance in a continuously variable transmission that performs Low return shift.
  • a primary pulley, a secondary pulley, and a belt wound between them are provided, and a pulley pressing force is supplied to the primary pressure supplied to the primary pulley and the secondary pulley. It is a continuously variable transmission determined by the secondary pressure, and it is determined whether or not a low return shift is performed to change the gear ratio of the continuously variable transmission toward the lowest level when the vehicle is decelerated.
  • a continuously variable transmission that calculates a primary pressure actual measurement lower limit value at which the belt actually starts to slide based on a gear ratio of the machine, and sets a lower limit value of the primary pressure target value in the Low return shift to the primary pressure actual measurement lower limit value.
  • a machine is provided.
  • a primary pulley, a secondary pulley, and a belt wound between them are provided, and a pulley pressing force is supplied to the primary pressure and the secondary pulley supplied to the primary pulley.
  • a method of controlling the hydraulic pressure of the continuously variable transmission determined by the secondary pressure, and determining whether or not a low reverse shift is performed to change the gear ratio of the continuously variable transmission toward the lowest level when the vehicle is decelerated.
  • a primary pressure actual measurement lower limit value at which the belt actually starts to slip based on a gear ratio of the continuously variable transmission is calculated, and a lower limit value of the primary pressure target value in the low return shift is set as the primary pressure actual measurement lower limit value.
  • a hydraulic control method is provided.
  • FIG. 1 is a schematic configuration diagram of a continuously variable transmission.
  • FIG. 2 is a shift map of the continuously variable transmission.
  • FIG. 3 is a flowchart showing the content of the hydraulic pressure drop control during the low return shift.
  • FIG. 4 is a table for calculating the required secondary pressure.
  • FIG. 5 is a time chart showing a state when the hydraulic pressure lowering control at the time of Low return shifting is performed.
  • FIG. 6 is a time chart of the comparative example.
  • FIG. 1 shows a schematic configuration of a continuously variable transmission (hereinafter referred to as “CVT”) 1.
  • CVT continuously variable transmission
  • the primary pulley 2 and the secondary pulley 3 are arranged so that the grooves of both are aligned, and a belt 4 is stretched over the grooves of the pulleys 2 and 3.
  • An engine 5 is arranged coaxially with the primary pulley 2, and a torque converter 6 and a forward / reverse switching mechanism 7 are provided between the engine 5 and the primary pulley 2 in order from the engine 5 side.
  • the torque converter 6 includes a pump impeller 6a connected to the output shaft of the engine 5, a turbine runner 6b connected to the input shaft of the forward / reverse switching mechanism 7, a stator 6c, and a lock-up clutch 6d.
  • the forward / reverse switching mechanism 7 includes a double pinion planetary gear set 7a as a main component, its sun gear is coupled to the turbine runner 6b of the torque converter 6, and the carrier is coupled to the primary pulley 2.
  • the forward / reverse switching mechanism 7 further includes a starting clutch 7b that directly connects the sun gear and the carrier of the double pinion planetary gear set 7a, and a reverse brake 7c that fixes the ring gear.
  • the starting clutch 7b When the starting clutch 7b is engaged, the input rotation via the torque converter 6 from the engine 5 is directly transmitted to the primary pulley 2, and when the reverse brake 7c is engaged, the input rotation via the torque converter 6 from the engine 5 is reversed. Is transmitted to the primary pulley 2.
  • the rotation of the primary pulley 2 is transmitted to the secondary pulley 3 via the belt 4, and the rotation of the secondary pulley 3 is transmitted to the driving wheel (not shown) via the output shaft 8, the gear set 9 and the differential gear device 10.
  • one of the conical plates forming the grooves of the primary pulley 2 and the secondary pulley 3 is a fixed conical plate 2a, 3a.
  • the other conical plates 2b and 3b are movable conical plates that can be displaced in the axial direction.
  • the speed change is performed by changing the groove width of the pulleys 2 and 3 by the differential pressure between the primary pressure Ppri and the secondary pressure Psec, and continuously changing the winding arc diameter of the belt 4 around the pulleys 2 and 3. .
  • the primary pressure Ppri and the secondary pressure Psec are controlled by the shift control hydraulic circuit 11 together with the hydraulic pressure supplied to the start clutch 7b that is engaged when the forward travel range is selected and the reverse brake 7c that is engaged when the reverse travel range is selected.
  • the shift control hydraulic circuit 11 performs control in response to a signal from the transmission controller 12.
  • the transmission controller 12 includes a signal from the input rotation speed sensor 13 that detects the actual input rotation speed Nin of the CVT 1, a signal from the vehicle speed sensor 14 that detects the output rotation speed of the CVT 1, that is, the vehicle speed VSP, and the primary pressure.
  • a signal from the primary pressure sensor 15p for detecting Ppri, a signal from the secondary pressure sensor 15s for detecting the secondary pressure Psec, a signal from the accelerator opening sensor 16 for detecting the accelerator opening APO, and a select lever position are detected.
  • the selection range signal from the inhibitor switch 17 that performs, the signal from the brake switch 18 that detects whether or not the brake pedal is depressed, and the operating state of the engine 5 from the engine controller 19 that controls the engine 5 (engine speed Ne, engine Torque, fuel injection time, cooling water temperature Signal are inputted regarding MPe etc.).
  • the transmission controller 12 sets a target input rotation speed tNin corresponding to the vehicle speed VSP and the accelerator opening APO with reference to the shift map shown in FIG. 2, and the actual input rotation speed Nin follows the target input rotation speed tNin.
  • the primary pressure Ppri and the secondary pressure Psec are controlled so that the pulley pressing force necessary for transmitting the input torque of the CVT 1 determined by the engine torque and the torque converter torque ratio is obtained.
  • theoretical lower limit value a lower limit value (hereinafter referred to as “theoretical lower limit value”) calculated by the following equation is set for the primary pressure Ppri and the secondary pressure Psec, and the primary pressure Ppri and the secondary pressure Psec are usually theoretical. It is restricted so as not to be lower than the lower limit value.
  • Theoretical lower limit (T cos ⁇ ) / (2 ⁇ R) T: Transfer torque ⁇ : Sheave angle of pulley ⁇ : Coefficient of friction between belt and pulley R: Contact radius between belt and pulley
  • the primary pressure Ppri can be lowered below the theoretical lower limit value, except immediately before or during a steady shift where the gear ratio does not change.
  • the transmission controller 12 performs the hydraulic pressure drop control during the low return shift described below to lower the primary pressure Ppri below the theoretical lower limit value, thereby reducing the LOW return performance of the vehicle on which the CVT 1 is mounted. While improving, it becomes possible to further improve fuel consumption by downsizing the oil pump.
  • FIG. 3 is a flowchart showing the contents of the hydraulic pressure drop control during the low return shift performed by the transmission controller 12. The contents of this control and its operation and effects will be described with reference to this.
  • the time chart shown in FIG. The time chart shown in FIG. 5 shows a state when the hydraulic pressure drop control is performed at the time of Low return shift.
  • the transmission controller 12 determines whether or not a low return shift is being performed. When the accelerator opening is zero and the brake pedal is depressed, or when the accelerator opening is zero and the vehicle deceleration is greater than a predetermined value (when climbing), the transmission controller 12 is in the low return shift. The process proceeds to S2. Otherwise, the process ends.
  • the transmission controller 12 determines whether lock-up is in progress.
  • the lockup clutch 6d is engaged when the vehicle speed VSP becomes higher than a predetermined lockup start vehicle speed, and is released when the vehicle speed VSP becomes lower than a predetermined lockup release vehicle speed ( ⁇ lockup start vehicle speed). Based on this, it can be determined whether the lockup is in progress.
  • the process proceeds to S3 and subsequent steps so as to lower the primary pressure Ppri below the primary pressure theoretical lower limit. If it is determined that the lock-up is not being performed, the process proceeds to S9 in order to return the primary pressure Ppri, which has been lowered below the primary theoretical lower limit value in the processes after S3, to the primary pressure theoretical lower limit value.
  • the transmission controller 12 calculates the primary pressure theoretical lower limit value.
  • the transmission controller 12 calculates the primary pressure actual measurement lower limit value.
  • the primary pressure actual measurement lower limit value is a primary pressure Ppri at which the belt 3 actually starts to slide, and is calculated with reference to a map obtained in advance through experiments based on the deceleration and speed ratio of the vehicle.
  • the primary pressure actual measurement lower limit value is set to a lower value as the deceleration of the vehicle is larger and the gear ratio is lower.
  • the transmission controller 12 calculates the secondary pressure Psec necessary to maintain the gear ratio at that time with reference to the table shown in FIG. Although the required primary pressure is also shown in FIG. 4, it is not used in the hydraulic pressure drop control during the low return shift.
  • the transmission controller 12 adds the difference (Y1 in FIG. 5) between the primary pressure theoretical lower limit value and the primary pressure actual measurement lower limit value to the required secondary pressure (Y2 in FIG. 5), and calculates the corrected required secondary pressure. To do. Then, the transmission controller 12 controls the secondary pressure Psec so that the secondary pressure Psec becomes the necessary secondary pressure after correction. Specifically, a solenoid valve that regulates the secondary pressure Psec is controlled.
  • the transmission controller 12 detects the actual secondary pressure Psec obtained as a result of controlling the secondary pressure Psec in S ⁇ b> 6 by the secondary pressure sensor 15 s, and compares this with the pressure receiving area ratio of the primary pulley 2 and the secondary pulley 3. Based on this, the primary balance pressure is converted (Y3 in FIG. 5).
  • the transmission controller 12 calculates a target primary pressure by subtracting a difference thrust necessary for downshifting (a value obtained by dividing the necessary difference thrust by the pressure receiving area of the primary pulley 2) from the primary balance pressure (FIG. 5). Middle Y4).
  • the target primary pressure is lower than the primary pressure theoretical lower limit value, but is higher than the primary pressure actual measurement lower limit value, and thus is not limited by the primary pressure actual measurement lower limit value.
  • the transmission controller 12 controls the primary pressure Ppri so that the primary pressure Ppri becomes the target primary pressure. Specifically, a solenoid valve that regulates the primary pressure Ppri is controlled.
  • the actual secondary pressure is increased to the necessary secondary pressure after correction. It is possible to reduce the target primary pressure to the primary pressure actual measurement lower limit by changing the primary pressure theoretical lower limit to the primary pressure actual measurement lower limit.
  • the primary pressure Ppri for obtaining the required differential thrust from the actual secondary pressure Psec is calculated by increasing the actual secondary pressure until the oil amount balance is actually insufficient. The purpose is to do.
  • the actual secondary pressure Psec does not increase to the required secondary pressure after correction due to an actual shortage of the oil balance, but the target primary pressure obtained by subtracting the necessary differential thrust from here is the primary pressure. Since it is higher than the actual measurement lower limit value, the primary pressure Ppri can be lowered to the target primary pressure.
  • the secondary pressure at the time of low return shifting can be lowered relatively by lowering the lower limit value of the primary pressure (or a sufficient secondary pressure cannot be secured). This also makes it possible to obtain the differential thrust necessary for gear shifting), thereby reducing the size of the oil pump and improving fuel consumption.
  • the necessary differential thrust can be obtained without reducing the primary pressure.
  • the primary pressure is reduced to the lower limit even when the oil balance is actually insufficient and the actual secondary pressure Psec does not increase to the required secondary pressure after correction (time t2 to t3 in FIG. 5). By doing so, the necessary differential thrust can be ensured, and the gear ratio of CVT1 can be quickly returned to the lowest level.
  • the transmission controller 12 brings the target primary pressure closer to the primary pressure theoretical lower limit value with a predetermined ramp gradient and after correction.
  • the required secondary pressure is brought close to the required secondary pressure with a predetermined ramp gradient, thereby controlling the primary pressure theoretical lower limit value and the required secondary pressure, respectively.
  • the relative slip between the belt and the pulley is affected by the dynamic friction coefficient between the belt and the pulley even when the lower limit of the primary pressure is lowered during a shift transition where the gear ratio fluctuates.
  • the friction coefficient between the belt and the pulley shifts from the dynamic friction coefficient to the static friction coefficient. Since there is a possibility that relative slip occurs between the pulley and the belt, LOW returnability is prevented while preventing the belt 3 from slipping which may be caused by lowering the primary pressure lower limit value below the theoretical value in this region. Can be improved.
  • times t3 to t4 correspond.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 変速機コントローラは、車両減速時に無段変速機の変速比を最Lowに向けて変更するLow戻し変速を行っているか判断し、車両の減速度及び無段変速機の変速比に基づきベルトが実際に滑り始めるプライマリ圧実測下限値を算出し、Low戻し変速におけるプライマリ圧の目標値の下限値をプライマリ圧実測下限値に設定する。

Description

無段変速機及びその油圧制御方法
 本発明は、無段変速機の油圧制御に関する。
 プライマリプーリとセカンダリプーリとの間にベルトを巻き掛け、両プーリの溝の幅を変更することによって変速比を無段階に変更する無段変速機(以下、「CVT」という。)においては、車両減速時に変速比を最Lowに向けて変更するLow戻し変速が行われ、これにより、車両の再発進性を確保している(JP63-74736A)。
 CVTを搭載した車両の燃費を向上させる方法の一つとして、変速機の油圧源であるオイルポンプを小型化する方法がある。オイルポンプを小型化すれば、オイルポンプの駆動に消費されるエンジンの動力が少なくなり、また、オイルポンプの吐出圧が下がることによって、オイルポンプ及び変速機内部のフリクションが小さくなり、車両の燃費を向上させることができる。
 しかしながら、オイルポンプの小型化を進めていくと、上記Low戻し変速において、変速速度が遅くなり、変速比が最Lowまで変更できない、又は、最Lowまで変更するのに要する時間が長くなるという問題(Low戻し不良)が生じることがわかった。
 この問題が生じる理由について図6を参照しながら説明する。図6は、時刻taでブレーキペダルが踏み込まれて車両が減速し、Low戻し変速が行われる様子を示している。
 この例では、まず、CVTの変速比に応じて、当該変速比を維持するのに必要なセカンダリ圧である必要セカンダリ圧が演算される。そして、プライマリプーリとセカンダリプーリの受圧面積比に基づき必要セカンダリ圧をプライマリバランス圧に換算し(図中X1)、プライマリバランス圧から変速に必要な必要差推力分を減じて目標プライマリ圧を演算する(図中X2)。
 目標プライマリ圧が、ベルト滑り限界から決まるプライマリ圧下限値よりも低くなると(時刻tb以降)、目標プライマリ圧がプライマリ圧下限値に制限される(図中X3)。そして、この制限によって不足する差推力を補うために、必要セカンダリ圧が増大補正される(図中X4)。
 ここで、油量収支が十分で実セカンダリ圧を補正後必要セカンダリ圧まで上げることができれば必要差推力が得られ、Low戻し不良が発生することはない。
 しかしながら、オイルポンプ吐出能力が低く、油量収支が不足する場合は、実セカンダリ圧が補正後必要セカンダリ圧まで上がらず(図中X5)、必要差推力が得られない。また、プライマリ圧下限値は、理論上のトルク容量式(後述)に基づき、走行条件によらず、最低圧を所定の値に制限してしまっていた。この結果、油量収支が実際に不足する場合には、変速速度が遅くなり、変速比が最Lowまで戻ることなく車両が停車してしまう(図中X6)。
 本発明の目的は、Low戻し変速を行う無段変速機において、LOW戻り性を向上させつつ、オイルポンプの小型化によって燃費をさらに向上させることである。
 本発明のある態様によれば、プライマリプーリと、セカンダリプーリと、これらの間に巻き掛けられるベルトとを備え、プーリ押し付け力が前記プライマリプーリに供給されるプライマリ圧及び前記セカンダリプーリに供給されるセカンダリ圧によって決まる無段変速機であって、車両減速時に前記無段変速機の変速比を最Lowに向けて変更するLow戻し変速を行っているか判断し、車両の減速度及び前記無段変速機の変速比に基づき前記ベルトが実際に滑り始めるプライマリ圧実測下限値を算出し、前記Low戻し変速における前記プライマリ圧の目標値の下限値を前記プライマリ圧実測下限値に設定する、無段変速機が提供される。
 本発明の別の態様によれば、プライマリプーリと、セカンダリプーリと、これらの間に巻き掛けられるベルトとを備え、プーリ押し付け力が前記プライマリプーリに供給されるプライマリ圧及び前記セカンダリプーリに供給されるセカンダリ圧によって決まる無段変速機の油圧制御方法であって、車両減速時に前記無段変速機の変速比を最Lowに向けて変更するLow戻し変速を行っているか判断し、車両の減速度及び前記無段変速機の変速比に基づき前記ベルトが実際に滑り始めるプライマリ圧実測下限値を算出し、前記Low戻し変速における前記プライマリ圧の目標値の下限値を前記プライマリ圧実測下限値に設定する、油圧制御方法が提供される。
 これらの態様によれば、プライマリ圧の下限値を低下させることにより、相対的にLow戻し変速時のセカンダリ圧を下げることができ(若しくは、充分なセカンダリ圧の確保ができなくても、変速に必要な差推力を得ることが可能となり)、LOW戻り性を向上させつつ、オイルポンプの小型化によって燃費をさらに向上させることができる。
 本発明の実施形態及び本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、無段変速機の概略構成図である。 図2は、無段変速機の変速マップである。 図3は、Low戻し変速時の油圧降下制御の内容を示したフローチャートである。 図4は、必要セカンダリ圧を演算するためのテーブルである。 図5は、Low戻し変速時の油圧降下制御が行われるときの様子を示したタイムチャートである。 図6は、比較例のタイムチャートである。
 図1は、無段変速機(以下、「CVT」という。)1の概略構成を示している。プライマリプーリ2及びセカンダリプーリ3が両者の溝が整列するよう配置され、これらプーリ2、3の溝にはベルト4が掛け渡されている。プライマリプーリ2と同軸にエンジン5が配置され、エンジン5とプライマリプーリ2の間には、エンジン5の側から順に、トルクコンバータ6、前後進切換え機構7が設けられている。
 トルクコンバータ6は、エンジン5の出力軸に連結されるポンプインペラ6a、前後進切換え機構7の入力軸に連結されるタービンランナ6b、ステータ6c及びロックアップクラッチ6dを備える。
 前後進切換え機構7は、ダブルピニオン遊星歯車組7aを主たる構成要素とし、そのサンギヤはトルクコンバータ6のタービンランナ6bに結合され、キャリアはプライマリプーリ2に結合される。前後進切換え機構7は、さらに、ダブルピニオン遊星歯車組7aのサンギヤ及びキャリア間を直結する発進クラッチ7b、及びリングギヤを固定する後進ブレーキ7cを備える。そして、発進クラッチ7bの締結時には、エンジン5からトルクコンバータ6を経由した入力回転がそのままプライマリプーリ2に伝達され、後進ブレーキ7cの締結時には、エンジン5からトルクコンバータ6を経由した入力回転が逆転され、プライマリプーリ2へと伝達される。
 プライマリプーリ2の回転はベルト4を介してセカンダリプーリ3に伝達され、セカンダリプーリ3の回転は、出力軸8、歯車組9及びディファレンシャルギヤ装置10を経て図示しない駆動輪へと伝達される。
 上記の動力伝達中にプライマリプーリ2及びセカンダリプーリ3間の変速比を変更可能にするために、プライマリプーリ2及びセカンダリプーリ3の溝を形成する円錐板のうち一方を固定円錐板2a、3aとし、他方の円錐板2b、3bを軸線方向へ変位可能な可動円錐板としている。
 これら可動円錐板2b、3bは、ライン圧を元圧として作り出したプライマリ圧Ppri及びセカンダリ圧Psecをプライマリプーリ室2c及びセカンダリプーリ室3cに供給することにより固定円錐板2a、3aに向けて付勢され、これによりベルト4を円錐板に摩擦係合させてプライマリプーリ2及びセカンダリプーリ3間での動力伝達が行われる。
 変速は、プライマリ圧Ppri及びセカンダリ圧Psec間の差圧により両プーリ2、3の溝の幅を変化させ、プーリ2、3に対するベルト4の巻き掛け円弧径を連続的に変化させることによって行われる。
 プライマリ圧Ppri及びセカンダリ圧Psecは、前進走行レンジの選択時に締結する発進クラッチ7b、及び後進走行レンジの選択時に締結する後進ブレーキ7cへの供給油圧と共に変速制御油圧回路11によって制御される。変速制御油圧回路11は変速機コントローラ12からの信号に応答して制御を行う。
 変速機コントローラ12には、CVT1の実入力回転速度Ninを検出する入力回転速度センサ13からの信号と、CVT1の出力回転速度、すなわち、車速VSPを検出する車速センサ14からの信号と、プライマリ圧Ppriを検出するプライマリ圧センサ15pからの信号と、セカンダリ圧Psecを検出するセカンダリ圧センサ15sからの信号と、アクセル開度APOを検出するアクセル開度センサ16からの信号と、セレクトレバー位置を検出するインヒビタスイッチ17からの選択レンジ信号と、ブレーキペダルの踏み込みの有無を検出するブレーキスイッチ18からの信号と、エンジン5を制御するエンジンコントローラ19からのエンジン5の運転状態(エンジン回転速度Ne、エンジントルク、燃料噴時間、冷却水温TMPe等)に関する信号とが入力される。
 変速機コントローラ12は、図2に示す変速マップを参照して、車速VSPとアクセル開度APOに対応する目標入力回転速度tNinを設定し、実入力回転速度Ninが目標入力回転速度tNinに追従するように、また、エンジントルク及びトルクコンバータトルク比によって決まるCVT1の入力トルクを伝達するのに必要なプーリ押し付け力が得られるように、プライマリ圧Ppri及びセカンダリ圧Psecを制御する。
 このとき、プライマリ圧Ppri及びセカンダリ圧Psecには、次式で演算される下限値(以下、「理論下限値」という。)が設定されており、プライマリ圧Ppri及びセカンダリ圧Psecは、通常は理論下限値よりも低くならないように制限される。
  理論下限値=(Tcosθ)/(2μR)
  T:伝達トルク
  α:プーリのシーブ角
  μ:ベルトとプーリとの間の摩擦係数
  R:ベルトとプーリとの接触半径
 そして、一方が理論下限値に制限される場合は、他方の圧を上げて、プライマリプーリ2とセカンダリプーリ3との間で変速に必要な差推力が確保されるようにする。
 さらに、アクセルが解放されて、ブレーキが踏み込まれる、又は、登坂時等で、車両が減速し、図2のAPO=0/8の線に沿ってCVT1が最Lowに向けてダウンシフトするLow戻し変速時であって、停車直前または変速比が変動しない変速定常時(最Low)には、プライマリ圧理論下限値よりも低下させることによって発生する可能性のあるベルト滑りを抑制するために、停車直前または変速比が変動しない変速定常時を除き、プライマリ圧Ppriを上記理論下限値よりも下げることが可能である。
 そこで、変速機コントローラ12は、以下に説明するLow戻し変速時の油圧降下制御を行うことにより、プライマリ圧Ppriを上記理論下限値よりも下げ、これによってCVT1が搭載される車両のLOW戻り性を向上させつつ、オイルポンプの小型化によって燃費をさらに向上させることが可能となる。
 図3は、変速機コントローラ12が行うLow戻し変速時の油圧降下制御の内容を示したフローチャートである。これを参照しながら本制御の内容及びその作用効果について説明する。説明中、適宜、図5に示すタイムチャートを参照する。図5に示すタイムチャートは、Low戻し変速時の油圧降下制御が行われるときの様子を示している。
 まず、S1では、変速機コントローラ12は、Low戻し変速中か判断する。アクセル開度ゼロかつブレーキペダルが踏み込まれている場合、又は、アクセル開度ゼロかつ車両の減速度が所定値よりも大きい場合(登坂時)は、変速機コントローラ12はLow戻し変速中であると判断し、処理がS2に進む。そうでない場合は処理が終了する。
 S2では、変速機コントローラ12は、ロックアップ中か判断する。ロックアップクラッチ6dは、車速VSPが所定のロックアップ開始車速よりも高くなると締結され、車速VSPが所定のロックアップ解除車速(<ロックアップ開始車速)よりも低くなると解放されるので、車速VSPに基づきロックアップ中か判断することができる。
 ロックアップ中と判断された場合は、プライマリ圧Ppriをプライマリ圧理論下限値よりも下げるべく、処理がS3以降に進む。ロックアップ中でないと判断された場合は、S3以降の処理でプライマリ理論下限値未満に下がったプライマリ圧Ppriをプライマリ圧理論下限値まで戻すべく、処理がS9に進む。
 図5では、時刻t1でブレーキペダルが踏み込まれ、Low戻し変速が開始されている。
 S3では、変速機コントローラ12は、プライマリ圧理論下限値を演算する。プライマリ圧理論下限値は、上記の通り、伝達トルク(=エンジン回転速度Ne及びアクセル開度APOに基づきエンジントルクマップを参照して演算されるエンジン5のトルク)、プライマリプーリ2のシーブ角(固定値)、ベルト3とプライマリプーリ2との間の摩擦係数(固定値)、ベルト3とプライマリプーリ2との接触半径(変速比に応じて決まる値)によって演算することができる。
 S4では、変速機コントローラ12は、プライマリ圧実測下限値を演算する。プライマリ圧実測下限値は、ベルト3が実際に滑り始めるプライマリ圧Ppriであり、車両の減速度と変速比とに基づき、予め実験によって求めておいたマップを参照して演算される。プライマリ圧実測下限値は、車両の減速度が大きいほど、また、変速比がLow側であるほど低い値に設定される。
 S5では、変速機コントローラ12は、その時点の変速比を維持するのに必要なセカンダリ圧Psecを図4に示すテーブルを参照して演算する。なお、図4には必要プライマリ圧も図示されているが、Low戻し変速時の油圧降下制御では使用しない。
 S6では、変速機コントローラ12は、プライマリ圧理論下限値とプライマリ圧実測下限値との差(図5中Y1)を必要セカンダリ圧に加算し(図5中Y2)、修正後必要セカンダリ圧を演算する。そして、変速機コントローラ12は、セカンダリ圧Psecが修正後必要セカンダリ圧になるように、セカンダリ圧Psecを制御する。具体的には、セカンダリ圧Psecを調圧するソレノイドバルブを制御する。
 S7では、変速機コントローラ12は、S6でセカンダリ圧Psecを制御した結果、得られる実セカンダリ圧Psecをセカンダリ圧センサ15sによって検出し、これとプライマリプーリ2とセカンダリプーリ3の受圧面積の比とに基づきプライマリバランス圧に換算する(図5中Y3)。
 S8では、変速機コントローラ12は、プライマリバランス圧からダウンシフトに必要な差推力分(必要な差推力をプライマリプーリ2の受圧面積で割った値)を引き、目標プライマリ圧を演算する(図5中Y4)。目標プライマリ圧は、プライマリ圧理論下限値よりも低くなるが、プライマリ圧実測下限値よりも高いため、プライマリ圧実測下限値によって制限されることはない。そして、変速機コントローラ12は、プライマリ圧Ppriが目標プライマリ圧になるようにプライマリ圧Ppriを制御する。具体的には、プライマリ圧Ppriを調圧するソレノイドバルブを制御する。
 図5では、時刻t1からt2までは、油量収支が実際に不足していないため、実セカンダリ圧を補正後必要セカンダリ圧まで上昇させる。これは、プライマリ圧理論下限値をプライマリ圧実測下限値に変更することにより、目標プライマリ圧をプライマリ圧実測下限値まで低下させることが可能であるが、プライマリ圧を低下させることによって発生する懸念のあるベルト滑りの発生を抑制するために、油量収支が実際に不足するまでの間、セ実カンダリ圧を上昇させ、実セカンダリ圧Psecから必要となる差推力を得るためのプライマリ圧Ppriを算出することを目的としている。
 時刻t2以降、油量収支が実際に不足することにより、実セカンダリ圧Psecが補正後必要セカンダリ圧まで上がらなくなっているが、ここから必要な差推力分を引いて得られる目標プライマリ圧はプライマリ圧実測下限値よりも高いので、プライマリ圧Ppriを目標プライマリ圧まで下げることができる。
 すなわち、S3~S8の制御によれば、プライマリ圧の下限値を低下させることにより、相対的にLow戻し変速時のセカンダリ圧を下げることができ(若しくは、充分なセカンダリ圧の確保ができなくても、変速に必要な差推力を得ることが可能となり)、これによってオイルポンプの小型化が図れ、燃費向上が達成できる。
 また、S3~S8の制御によれば、実セカンダリ圧Psecから目標プライマリ圧を算出することで、実セカンダリ圧Psecを可能な限り高められる領域では、プライマリ圧を低下させずに必要な差推力を確保しつつ、油量収支が実際に不足し、実セカンダリ圧Psecが補正後必要セカンダリ圧まで上がらなくなるような状況(図5中時刻t2~t3)になっても、プライマリ圧を下限値まで低下させることで必要な差推力を確保することができ、CVT1の変速比を速やかに最Lowまで戻すことができる。
 一方、S2で、停車直前または変速比が変動しない変速定常時と判断されて進むS9では、変速機コントローラ12は、目標プライマリ圧をプライマリ圧理論下限値に所定のランプ勾配で近づけるとともに、補正後必要セカンダリ圧を必要セカンダリ圧に所定のランプ勾配で近づけることで、それぞれプライマリ圧理論下限値、必要セカンダリ圧に制御する。
 これによって、変速比が変動する変速過渡時には、プライマリ圧下限値を低下させた場合であっても、ベルトとプーリとの間の動摩擦係数の影響で、ベルトとプーリとの間の相対的な滑りが抑制されるが、停車直前または変速比が実際に変化しない変速定常時(最ロー)の場合においては、ベルトとプーリとの間の摩擦係数が、動摩擦係数から静摩擦係数へ移行することで、プーリとベルトとの間に相対滑りが発生する可能性があるため、本領域でプライマリ圧下限値を理論値より低下させることによって発生する懸念のあるベルト3の滑りを防止しつつ、LOW戻り性を向上させることができる。図5では、時刻t3~t4が対応する。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は日本国特許庁に2012年3月28日に出願された特願2012-74925号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (6)

  1.  プライマリプーリと、セカンダリプーリと、これらの間に巻き掛けられるベルトとを備え、プーリ押し付け力が前記プライマリプーリに供給されるプライマリ圧及び前記セカンダリプーリに供給されるセカンダリ圧によって決まる無段変速機であって、
     車両減速時に前記無段変速機の変速比を最Lowに向けて変更するLow戻し変速を行っているか判断するLow戻し変速判断手段と、
     車両の減速度及び前記無段変速機の変速比に基づき前記ベルトが実際に滑り始めるプライマリ圧実測下限値を算出する実測下限値演算手段と、
    を備え、
     前記Low戻し変速における前記プライマリ圧の目標値の下限値を前記プライマリ圧実測下限値に設定する、
    無段変速機。
  2.  請求項1に記載の無段変速機であって、
     前記Low戻し変速を行っていると判断された場合に、
     前記無段変速機の変速比を維持するのに必要な必要セカンダリ圧を演算し、
     プライマリ圧理論目標値と前記プライマリ圧実測下限値との差分を演算し、
     前記必要セカンダリ圧に前記差分を加算することで補正後必要セカンダリ圧を演算し、
     実セカンダリ圧が前記補正後必要セカンダリ圧になるように前記実セカンダリ圧を制御し、
     前記実セカンダリ圧から目標プライマリ圧を演算する、
    無段変速機。
  3.  請求項2に記載の無段変速機であって、
     車速が下がって停車直前若しくは変速比が最ローである状態が検知された後は、前記プライマリ圧を前記プライマリ圧理論下限値に制御する、
    無段変速機。
  4.  プライマリプーリと、セカンダリプーリと、これらの間に巻き掛けられるベルトとを備え、プーリ押し付け力が前記プライマリプーリに供給されるプライマリ圧及び前記セカンダリプーリに供給されるセカンダリ圧によって決まる無段変速機の油圧制御方法であって、
     車両減速時に前記無段変速機の変速比を最Lowに向けて変更するLow戻し変速を行っているか判断し、
     車両の減速度及び前記無段変速機の変速比に基づき前記ベルトが実際に滑り始めるプライマリ圧実測下限値を算出し、
    前記Low戻し変速における前記プライマリ圧の目標値の下限値を前記プライマリ圧実測下限値に設定する、
    油圧制御方法。
  5.  請求項4に記載の油圧制御方法であって、
     前記Low戻し変速を行っていると判断された場合に、
     前記無段変速機の変速比を維持するのに必要な必要セカンダリ圧を演算し、
     プライマリ圧理論目標値と前記プライマリ圧実測下限値との差分を演算し、
     前記必要セカンダリ圧に前記差分を加算することで補正後必要セカンダリ圧を演算し、
     実セカンダリ圧が前記補正後必要セカンダリ圧になるように前記実セカンダリ圧を制御し、
     前記実セカンダリ圧から目標プライマリ圧を演算する、
    油圧制御方法。
  6.  請求項5に記載の油圧制御方法であって、
     車速が下がって停車直前若しくは変速比が最ローである状態が検知された後は、前記プライマリ圧を前記プライマリ圧理論下限値に制御する、
    油圧制御方法。
PCT/JP2013/054414 2012-03-28 2013-02-21 無段変速機及びその油圧制御方法 WO2013145974A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147026548A KR101585368B1 (ko) 2012-03-28 2013-02-21 무단 변속기 및 그 유압 제어 방법
JP2014507528A JP5903487B2 (ja) 2012-03-28 2013-02-21 無段変速機及びその油圧制御方法
CN201380013863.6A CN104185752B (zh) 2012-03-28 2013-02-21 无级变速器及其液压控制方法
US14/387,414 US9133930B2 (en) 2012-03-28 2013-02-21 Continuously variable transmission and its hydraulic pressure control method
EP13768782.8A EP2833025A4 (en) 2012-03-28 2013-02-21 STAGE-FREE TRANSMISSION AND LINE PRESSURE CONTROL PROCEDURE THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012074925 2012-03-28
JP2012-074925 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013145974A1 true WO2013145974A1 (ja) 2013-10-03

Family

ID=49259254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054414 WO2013145974A1 (ja) 2012-03-28 2013-02-21 無段変速機及びその油圧制御方法

Country Status (6)

Country Link
US (1) US9133930B2 (ja)
EP (1) EP2833025A4 (ja)
JP (1) JP5903487B2 (ja)
KR (1) KR101585368B1 (ja)
CN (1) CN104185752B (ja)
WO (1) WO2013145974A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190013912A (ko) 2016-07-01 2019-02-11 쟈트코 가부시키가이샤 하이브리드 차량의 제어 장치
WO2020059339A1 (ja) * 2018-09-21 2020-03-26 ジヤトコ株式会社 ベルト式無段変速機

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101936535B1 (ko) * 2015-03-23 2019-01-08 쟈트코 가부시키가이샤 차량 제어 장치 및 차량의 제어 방법
JP6547010B2 (ja) * 2016-01-19 2019-07-17 ジヤトコ株式会社 車両の制御装置、及び車両の制御方法
JP6414151B2 (ja) * 2016-07-07 2018-10-31 トヨタ自動車株式会社 ベルト式無段変速機の制御装置
JP6859631B2 (ja) * 2016-08-29 2021-04-14 日産自動車株式会社 無段変速機の制御方法及び制御装置
JP6911711B2 (ja) * 2017-10-31 2021-07-28 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP7003653B2 (ja) * 2017-12-27 2022-02-10 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP6879196B2 (ja) * 2017-12-27 2021-06-02 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
US10900563B2 (en) * 2018-06-14 2021-01-26 Kawasaki Jukogyo Kabushiki Kaisha Utility vehicle
JP7241124B2 (ja) * 2021-04-21 2023-03-16 本田技研工業株式会社 車両用無段変速機の制御装置及び制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374736A (ja) 1986-09-18 1988-04-05 Toyota Motor Corp 車両用ベルト式無段変速機の変速比制御方法
JP2008051317A (ja) * 2006-08-28 2008-03-06 Toyota Motor Corp 車両用無段変速機の油圧制御装置
JP2008128370A (ja) * 2006-11-21 2008-06-05 Jatco Ltd 無段変速機の制御装置
WO2012017536A1 (ja) * 2010-08-05 2012-02-09 トヨタ自動車株式会社 車両用無段変速機の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2990801B2 (ja) * 1991-03-29 1999-12-13 三菱自動車工業株式会社 内燃機関と連続可変変速機との制御装置
JP4107484B2 (ja) * 2002-09-27 2008-06-25 ジヤトコ株式会社 Vベルト式無段自動変速機の変速制御装置
JP2007224992A (ja) * 2006-02-22 2007-09-06 Toyota Central Res & Dev Lab Inc ベルト式無段変速機の制御装置
JP4344379B2 (ja) * 2006-12-06 2009-10-14 ジヤトコ株式会社 無段変速機の制御装置
JP4755970B2 (ja) * 2006-12-15 2011-08-24 ジヤトコ株式会社 ベルト式無段変速機の変速制御装置
JP4344380B2 (ja) * 2006-12-26 2009-10-14 ジヤトコ株式会社 無段変速機の制御装置
JP2010276153A (ja) * 2009-05-29 2010-12-09 Toyota Motor Corp 車両用無段変速機
EP2833028B1 (en) * 2012-03-28 2017-08-23 Jatco Ltd Continuously variable transmission and hydraulic pressure control method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374736A (ja) 1986-09-18 1988-04-05 Toyota Motor Corp 車両用ベルト式無段変速機の変速比制御方法
JP2008051317A (ja) * 2006-08-28 2008-03-06 Toyota Motor Corp 車両用無段変速機の油圧制御装置
JP2008128370A (ja) * 2006-11-21 2008-06-05 Jatco Ltd 無段変速機の制御装置
WO2012017536A1 (ja) * 2010-08-05 2012-02-09 トヨタ自動車株式会社 車両用無段変速機の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833025A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190013912A (ko) 2016-07-01 2019-02-11 쟈트코 가부시키가이샤 하이브리드 차량의 제어 장치
US11193584B2 (en) 2016-07-01 2021-12-07 Jatco Ltd Hybrid vehicle control device
WO2020059339A1 (ja) * 2018-09-21 2020-03-26 ジヤトコ株式会社 ベルト式無段変速機
CN112955681A (zh) * 2018-09-21 2021-06-11 加特可株式会社 带式无级变速器
CN112955681B (zh) * 2018-09-21 2022-01-25 加特可株式会社 带式无级变速器
US11326691B2 (en) 2018-09-21 2022-05-10 Jatco Ltd Belt-type continuously variable transmission

Also Published As

Publication number Publication date
EP2833025A4 (en) 2016-07-20
EP2833025A1 (en) 2015-02-04
KR101585368B1 (ko) 2016-01-13
US20150081181A1 (en) 2015-03-19
CN104185752B (zh) 2016-05-11
KR20140137382A (ko) 2014-12-02
US9133930B2 (en) 2015-09-15
CN104185752A (zh) 2014-12-03
JP5903487B2 (ja) 2016-04-13
JPWO2013145974A1 (ja) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5903487B2 (ja) 無段変速機及びその油圧制御方法
JP4344380B2 (ja) 無段変速機の制御装置
JP4344379B2 (ja) 無段変速機の制御装置
JP5542607B2 (ja) コーストストップ車両及びコーストストップ方法
JP5234171B2 (ja) 駆動力制御装置
WO2013031409A1 (ja) コーストストップ車両
JP2004125011A (ja) Vベルト式無段変速機のスリップ防止装置
JP2013204722A (ja) ベルト式無段変速機の変速制御装置
JP5815121B2 (ja) 無段変速機及びその油圧制御方法
CN110388433B (zh) 车辆用动力传递装置的控制装置
WO2016017271A1 (ja) 無段変速機及びその制御方法
WO2013145972A1 (ja) 無段変速機及びその油圧制御方法
JP6960545B2 (ja) ベルト式無段変速機
JP2007270933A (ja) 無段変速機の制御装置
WO2016017201A1 (ja) 車両の制御装置及び制御方法
JP2017137945A (ja) 車両の制御装置、及び車両の制御方法
JP6568754B2 (ja) 車両用駆動装置及び車両用駆動装置の制御方法
JP6019051B2 (ja) ベルト無段変速機及びその制御方法
JP2006090442A (ja) 無段変速機の制御装置
WO2020054263A1 (ja) 自動変速機の油圧制御装置および油圧制御方法
JP2017024582A (ja) 車両用駆動装置及び車両用駆動装置の制御方法
JP2019090464A (ja) 変速機の制御装置
KR20120128937A (ko) 무단변속기의 제어장치 및 방법
JP2017160976A (ja) 車両のクラッチ制御装置及び車両のクラッチ制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380013863.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507528

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013768782

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147026548

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387414

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE