WO2013145680A1 - コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法 - Google Patents
コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法 Download PDFInfo
- Publication number
- WO2013145680A1 WO2013145680A1 PCT/JP2013/001982 JP2013001982W WO2013145680A1 WO 2013145680 A1 WO2013145680 A1 WO 2013145680A1 JP 2013001982 W JP2013001982 W JP 2013001982W WO 2013145680 A1 WO2013145680 A1 WO 2013145680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coal
- coke
- mixture
- semi
- surface tension
- Prior art date
Links
- 239000003245 coal Substances 0.000 title claims abstract description 584
- 239000000571 coke Substances 0.000 title claims abstract description 328
- 239000000203 mixture Substances 0.000 title claims abstract description 286
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 238000002156 mixing Methods 0.000 claims abstract description 76
- 238000000034 method Methods 0.000 claims description 69
- 230000003993 interaction Effects 0.000 claims description 10
- 238000012935 Averaging Methods 0.000 claims description 8
- 238000005188 flotation Methods 0.000 claims description 7
- 238000013329 compounding Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 description 25
- 239000002245 particle Substances 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 17
- 238000001816 cooling Methods 0.000 description 16
- 238000009826 distribution Methods 0.000 description 16
- 239000000126 substance Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 10
- 239000011261 inert gas Substances 0.000 description 9
- 238000000197 pyrolysis Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 238000004939 coking Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 239000004079 vitrinite Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010981 drying operation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012835 hanging drop method Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/02—Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
- C10L5/04—Raw material of mineral origin to be used; Pretreatment thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/02—Combustion or pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/24—Mixing, stirring of fuel components
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
- G01N13/02—Investigating surface tension of liquids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/22—Fuels; Explosives
- G01N33/222—Solid fuels, e.g. coal
Definitions
- the present invention relates to a method for preparing a coal mixture for producing coke, and in particular, focusing on the surface tension of a heat-treated product obtained by heat-treating coal contained in the coal mixture (hereinafter referred to as “semi-coke” where appropriate).
- the present invention relates to a method for preparing a coal mixture that adjusts the blending ratio of coal contained in the mixture.
- the present invention also relates to a coal mixture produced by this preparation method, and a coke production method for producing coke by dry distillation of this coal mixture.
- coke used as a blast furnace raw material for producing hot metal in a blast furnace is desirably high strength. This is because when the strength of the coke is low, it is pulverized in the blast furnace, the air permeability of the blast furnace is hindered, and stable hot metal production cannot be performed.
- the strength of the generated coke is affected by the selection method of raw coal, pre-treatment method, dry distillation conditions, fire extinguishing conditions, post-treatment conditions, etc. .
- the conditions related to equipment and operating conditions are difficult to change greatly due to equipment restrictions, so the selection of raw coal is recognized as the most important factor for adjusting coke quality.
- Non-Patent Document 1 As a raw material blending method for obtaining coke having a desired strength, various methods including the method described in Non-Patent Document 1 are known, all of which are produced based on the properties of the raw material to be blended. A method of determining a preferred formulation by predicting the strength of the slag is used.
- Coal compatibility refers to the property that a plurality of coals in the blended coal interact with each other, and the compatibility of this coal, for example, as shown in Patent Document 1 and Non-Patent Document 2, It is known that additivity may not be established between the strength of coke obtained from only each coal in the blended coal and the strength of coke obtained from the blended coal. If a mechanism for expressing this “compatibility” effect is known, it becomes possible to produce high-strength coke by combining compatible coals. However, in the prior art, the cause of the “compatibility” effect has not been elucidated, and what kind of coal mixture should be supplied in order to realize a combination of coals with “good” compatibility, It is not known how it can be obtained.
- the present inventors have studied various methods, focusing on the surface tension of coal, which has not been focused in the conventional coke production technology, or the surface tension of semi-coke obtained by heat treating coal. As a result, it was found that the compatibility effect between coals can be expressed as desired by using the difference in surface tension value between semi-coke obtained from multiple coals. In addition, the surface tension of semi-coke is desired.
- the present inventors have found a method for adjusting to the value of and a method for selecting the desired value, and have completed the present invention.
- the gist of the present invention for solving the above problems is as follows.
- a method for preparing a coal mixture for coke production, which is used as at least part of a blended coal for coke production, comprising two or more types of coal having different surface tensions, and obtained from the coal mixture The preparation method of the coal mixture for coke manufacture which adjusts the compounding rate of each said coal by using the surface tension value of the semi-coke mixture obtained as a parameter
- index The surface tension value of each of the two or more types of semi-coke obtained by heat-treating each of the coals, with the surface tension value of the semi-coke mixture weighted by the blending ratio of each coal contained in the coal mixture.
- the surface tension value of the semi-coke mixture is in a range of ⁇ 1.5 mN / m from the surface tension value of semi-coke obtained by heat-treating the remaining blended coal excluding the coal mixture from the blended coal.
- the surface tension value of semi-coke obtained by heat-treating the remaining blended coal is included in the remaining blended coal, with each blending ratio of at least two types of coal included in the remaining blended coal as a weight.
- a surface tension value of semi-coke obtained by heat-treating the remaining blended coal is obtained by heat-treating one type of coal having the maximum content among at least one type of coal contained in the remaining blended coal.
- the surface tension value of semi-coke obtained by heat-treating the remaining blended coal is obtained by heat-treating a plurality of types of coal in which the total mass content of the remaining blended coal is 50% by mass or more.
- the blending ratio of each coal in the coal mixture is adjusted so that the semi-coke mixture has a surface tension value such that the interfacial tension between the semi-coke and the semi-coke mixture is 0.03 mN / m or less.
- ⁇ A is the surface tension value of semi-coke obtained by heat-treating the single type of coal
- ⁇ B is the surface tension value of the semi-coke mixture
- ⁇ AB is the interfacial tension
- ⁇ is a constant.
- a method for preparing a coal mixture for coke production that prepares a coal mixture containing two or more types of coal used as at least a part of a blended coal for coke production, When trying to use the coal mixture as a part of the blended coal, in advance, determine the blend ratio of the coal mixture in the blended coal, Determine the type and blending ratio of coal contained in the remaining blended coal excluding the coal mixture in the blended coal, Coal mixture for producing coke is to adjust the blending ratio of each coal in the coal mixture so that the interfacial tension ( ⁇ blend ) of semi-coke obtained by heat treating the blended coal is 0.03 mN / m or less. Preparation method.
- [14] The method for preparing a coal mixture for coke production according to any one of [1] to [13], wherein the surface tension is measured by a film flotation method.
- [15] A coal mixture produced by the preparation method according to any one of [1] to [14].
- [16] A coke production method in which a coal blend containing the coal mixture according to the above [15] is produced and coke is produced by dry distillation of the coal blend.
- the present invention is based on the fact that the surface tension of a semi-coke mixture obtained by heat-treating a coal mixture containing two or more types of coal represents the compatibility of coal in the production of coke. was completed based on the method of preparing.
- a coal mixture that is a desirable raw material for producing coke having a desired strength.
- a coal mixture suitable for use as at least a part of the raw material for coke can be prepared.
- the graph which shows the relationship between surface tension value difference and the coke strength of the coke produced
- the present inventors speculated that the coal adhesion phenomenon may affect the compatibility between coals and the strength of coke. Based on this inference, as a result of studying factors involved in coal adhesion, the present inventors adjusted the blending ratio of each coal using the surface tension value of the semi-coke mixture obtained from the coal mixture as an index, It has been found that the adhesive strength when the coal mixture is coked can be adjusted.
- the surface tension value of the semi-coke mixture is the remaining blended coal excluding the coal mixture in the blended coal. It is possible to further improve the adhesion strength between coals by adjusting the blending ratio of each coal in the coal mixture so that it falls within a specific range from the surface tension value of semi-coke obtained from coal contained in I got the knowledge that
- the inventors experimentally confirmed the relationship between the difference in the surface tension of semi-coke obtained by heat-treating different types of coal and the coke strength.
- the inventors also experimentally confirmed the relationship between the interfacial tension and coke strength because the interfacial tension between the substances to be bonded is represented by a difference in surface tension.
- the heating temperature at which the coal is heated is based on the idea that surface tension has an effect on the adhesion between the coal particles, and the coal starts to soften and melt, adhere and solidify until the coking temperature is completed. It is considered that the temperature range, that is, 350 ° C. or higher at which softening and melting starts to 800 ° C. at which coking is completed is appropriate. However, at a heating temperature of 350 to 800 ° C., the temperature particularly contributing to adhesion is 350 to 550 ° C. which is the temperature during softening and melting, and the adhesion structure is considered to be determined around 500 ° C. For this reason, the heating temperature is preferably 480 to 520 ° C., particularly around 500 ° C. Heating is preferably performed in an inert gas atmosphere (for example, nitrogen, argon, helium, etc.) that does not react with coal.
- an inert gas atmosphere for example, nitrogen, argon, helium, etc.
- Cooling is preferably performed in an inert gas atmosphere that does not react with the sample. Moreover, in cooling the coal after dry distillation, it is preferable to quench rapidly at a cooling rate of 10 ° C./sec or more. The reason for the rapid cooling is to maintain the molecular structure in the softened and melted state, and it is considered that a cooling rate of 10 ° C./sec or more, which is considered that the molecular structure does not change, is necessary.
- Examples of the rapid cooling method include a method using liquid nitrogen, ice water, water, an inert gas such as nitrogen gas, and the like, and it is desirable to perform rapid cooling using liquid nitrogen. This is because gas cooling takes time to cool down to the inside of the sample and the cooling rate is distributed, or cooling with ice water or water affects the measurement of surface tension due to moisture adhesion. It is.
- the heat treatment operation applied to coal is as follows.
- the coal is pulverized.
- the pulverization particle size of coal is pulverized to 250 ⁇ m or less, which is the pulverization particle size in the industrial analysis of coal described in JIS M8812, from the viewpoint of producing a homogeneous sample from coal with non-uniform structure, properties, etc. Desirably, it is desirable to pulverize to 200 ⁇ m or less.
- B The coal pulverized in the operation (a) is heated at an appropriate heating rate while blocking air or in an inert gas. What is necessary is just to heat coal to the temperature within the range of 350-800 degreeC mentioned above.
- a method for measuring the surface tension of a substance will be described.
- Known methods for measuring surface tension include the sessile drop method, the capillary rise method, the maximum bubble pressure method, the liquid weight method, the hanging drop method, the ring method, the plate (Wilhelmy) method, the expansion / contraction method, and the sliding method.
- Coal is composed of various molecular structures, and its surface tension is expected to be non-uniform. , 20 (1987), 153, can be used.
- This method can be applied in the same manner to a coal or a semi-coke obtained from the coal, and a surface tension distribution can be obtained using a finely pulverized sample. The average value of the obtained surface tension distribution can be used as the representative value of the surface tension of the sample.
- the liquid used in the film flotation method has a surface tension value in the range of 20 to 73 mN / m in coal and coal when softened and melted. Good.
- a liquid having a surface tension of 20 to 73 mN / m can be prepared from an aqueous solution of these organic solvents.
- the particle size of the sample for measuring the surface tension it is desirable to measure the surface tension when the contact angle is almost equal to 0 ° from the measurement principle, because the contact angle increases as the particle size of the crushed sample particles increases.
- the surface tension distribution can be obtained by dropping the sample particles into liquids having various surface tensions, obtaining the mass ratio of the sample particles suspended with respect to each liquid, and expressing the result in a frequency distribution curve.
- Coal is pulverized to a particle size of 200 ⁇ m or less and heated to 500 ° C. at 3 ° C./min in an inert gas atmosphere (dry distillation operation). The heating rate is set to 3 ° C./min since the heating rate when coke is produced in the coke oven is about 3 ° C./min. 2. Quench the heated coal with liquid nitrogen (cooling operation). 3. After rapid cooling, the coal is further pulverized to a particle size of 150 ⁇ m or less and dried in a dry inert gas stream at 120 ° C. for 2 hours (drying operation).
- the drying method may be any method that can remove moisture adhering to the surface.
- a method of drying under reduced pressure may be employed.
- the dried inert gas is obtained by passing the gas through a packed bed of a desiccant such as silica gel.
- the average value of the surface tension distribution obtained as described above can be used, but the standard deviation of the surface tension distribution, the surface tension of the peak value of the surface tension distribution, the maximum of the surface tension distribution. It is also possible to use surface tension, minimum surface tension, distribution function of surface tension distribution, etc., taking into account surface tension distribution, for example, the representative value of the surface tension of the sample should be the maximum surface tension of the surface tension distribution Is also possible.
- the surface tension value of coal or semi-coke refers to the average value of the surface tension distribution.
- the average value of the surface tension distribution (average value of ⁇ : ⁇ ave) is expressed by the following equation.
- the present inventors have found that the interfacial tension between coal or semi-coke blended in the blended coal for coke production is low. It has been found that the strength of coke tends to increase as the difference is smaller, that is, the difference in surface tension value is smaller. Based on this, it is inferred that it is desirable that the surface tension of coal (semi-coke) used as coke raw material is as close as possible and that the interfacial tension at different coal interfaces is reduced (the difference in surface tension is reduced). Is done.
- the present inventors select a preferred coal brand (type) and adjust the surface tension of the selected coal or semi-coke obtained from the coal. Therefore, it is considered that coke with higher strength can be produced than selecting raw coal without considering the effect of surface tension from a given brand or type.
- the present inventors examined means for adjusting the surface tension of coal and semi-coke supplied from a coal supplier.
- the inventors have noted that even though the coal supplied is handled as a single brand or type of coal, it is actually a mixture of coal produced from multiple coal seams.
- the surface tension of each coal layer and the semi-coke obtained by heat treatment thereof was investigated.
- the surface tension of coal of similar quality produced from the same mine is often greatly different. This means that coal that has been treated as one brand or type of coal in the past has not been able to produce products from coal seams that have similar properties in the conventional quality evaluation indices (carbonization degree, fluidity, elemental composition, etc.).
- the surface tension value of the semi-coke mixture may be set to, for example, the coal The value calculated
- a method for adjusting the blending ratio of each coal in the coal mixture based on the value obtained by the weighted average is, for example, as follows. 1. For example, it is determined that the coal mixture consists of coals A and B. Assume a coal mixture in which coal A and coal B are mixed. The surface tension value of semi-coke obtained from coal A of a coal seam is a, and the surface tension value of semi-coke obtained from coal B of another coal bed is b. 2. Assume the blending ratio of coal A and coal B in the assumed coal mixture. 3. A weighted average of the surface tension values of semi-coke A obtained by heat treatment of coal A and semi-coke B obtained by heat treatment of coal B is obtained by weighting the assumed blending ratio.
- the mass-weighted average value of semi-coke obtained therefrom is represented by (a + b) / 2). 4).
- This 3 Since the value obtained by is approximately the surface tension value of the semi-coke mixture, this value is used as the surface tension value of the semi-coke mixture.
- the mixing ratio of coal from each coal bed may be determined using the surface tension value of the semi-coke mixture as an index. That is, when preparing a coal mixture, what is necessary is just to adjust the compounding rate of each coal in the coal mixture.
- the surface tension value of the semi-coke mixture obtained by heat-treating the coal mixture may be measured to adjust the mixing ratio (mixing ratio).
- the surface tension value of the semi-coke mixture is obtained as a weighted average value of the surface tension values of each semi-coke obtained from each coal, weighted by the blending ratio of each coal in the coal mixture, or from the coal mixture It is determined from the actual measured value of the surface tension of the resulting semi-coke mixture.
- One brand of coal in the present invention is defined as a unit of coking coal managed as a single lot when it arrives at a coke manufacturing plant.
- the representative analysis value obtained by sampling from that lot is used to express the properties of the entire lot, or when it is loaded into a coal yard as a single lot, Including the case where it is traded as a single lot or brand name in the purchase contract.
- the coal mixture in the present invention refers to a coal mixture obtained by mixing two or more types of coal having different surface tensions, for example, a coal mixture prepared by mixing two or more types of coal obtained from different coal seams. May be treated as one brand of coal or a mixture of several brands of coal may be prepared.
- the semi-coke mixture in this invention shall point out the semi-coke obtained by heat-processing a coal mixture.
- preparation of the coal mixture in this invention can be performed in the step before receiving coal in the factory which manufactures coke. If a coal mixture having a predetermined quality is prepared before arrival at a coke factory, for example, in a coal mine or at the time of shipment from a shipping place, the burden of blending management, transportation, and storage in the coke factory is reduced.
- the surface tension value of the semi-coke mixture adjusted as described above as an index in the case of using the coal mixture for blended coal, a method for adjusting the blending ratio of each coal in the coal mixture will be described in detail.
- the same heat treatment condition means that the temperature, time, atmosphere and the like are the same, but regarding the temperature, a characteristic temperature of softening and melting (for example, the maximum flow temperature or resolidification temperature) can also be used.
- the range of values that the surface tension of the coal mixture or semi-coke mixture should take is 20 to 60 mN / m.
- the target value that the surface tension value A of the semi-coke mixture obtained from the coal mixture should take is when preparing the coal blend for coke production. And determined according to the coal contained in the remaining blended coal excluding the coal mixture in the blended coal. That is, at least one type of coal included in the remaining blended coal is determined in advance, and further, the surface tension value B of semi-coke obtained from the coal included in the remaining blended coal is measured, and the surface tension value A is It is preferable to adjust the blending ratio of each coal in the coal mixture so that the surface tension value B is in the range of ⁇ 1.5 mN / m.
- the content of the coal mixture with respect to the blended coal is set to 2.0 to 98.0% by mass. If the content of the coal mixture is 2.0 to 98.0% by mass, the interaction between the coal mixture and the remaining blended coal is considered to affect the coke strength. It is significant in that the coke strength is maintained by suppressing the difference from the surface tension value B within a predetermined range.
- the range of the target value of the surface tension value A of the semi-coke mixture As a result of studying various blends by the present inventors, when the difference between the surface tension value A and the surface tension value B exceeds 1.5 mN / m, This is based on the fact that the strength of the coke produced is significantly reduced. If the surface tension value A is close to the surface tension value B, the coke strength is higher than the coke obtained otherwise, which is suitable as a raw material for producing coke.
- the surface tension values A and B are weights obtained by weighting each surface tension value of semi-coke obtained from at least two kinds of coal constituting the coal mixture or the remaining blended coal, with the blending ratio of each coal as a weight. It may be a value obtained by averaging, or may be a surface tension value measured for semi-coke obtained by heat-treating a coal mixture or the remaining blended coal. In addition to the weighted average value, a simple average value may be used as an index, particularly when the blending ratio is a value close to each coal.
- the surface tension value B of semi-coke obtained from coal contained in the remaining blended coal may be estimated based on the use of coal brands in the factory for the past several months to several years.
- a weighted average value may be calculated from the estimated surface tension value.
- the surface tension value A of the semi-coke mixture is the remaining blended coal.
- ⁇ 1 from the value obtained by weighted averaging the surface tension values of each of the semi-coke obtained from a plurality of types of coal having a mass of 50% by mass or more, with the blending ratio of each coal contained in the remaining blended coal as a weight
- the blending ratio of each coal in the coal mixture can be adjusted so as to be in the range of 0.5 mN / m.
- the weighted average value of the surface tension of semi-coke obtained from the three types of coal becomes the target value of the surface tension value A of the semi-coke mixture.
- the coke obtained from the blended coal thus obtained has a higher strength.
- the interfacial tension between the semi-coke obtained from the coal contained in the remaining blended coal and the semi-coke mixture obtained from the coal mixture It is also possible to adjust the blending ratio of each coal in the coal mixture using the value as an index or the interfacial tension value of semi-coke obtained from blended coal as an index.
- the interfacial tension between the two substances can be measured, but the interfacial tension value can also be obtained from the surface tension value of each substance.
- the interfacial tension ⁇ AB between the substances A and B can be obtained from the surface tension value ⁇ A of the substance A and the surface tension value ⁇ B of the substance B, and the following Grifalco-Good It is represented by the equation (Gifalco-Good).
- ⁇ is an interaction coefficient
- the interaction coefficient ⁇ can be obtained by experiments and is known to vary depending on the substances A and B.
- Lee and Newman (D. Li, A. W. Neumann) et al. Assume that the value of the interaction coefficient ⁇ increases as the surface tension values ⁇ A and ⁇ B of the substances A and B increase,
- the following formula, which is an extension of formula (2), is proposed.
- ⁇ is a constant derived by experiment. Lee and Newman et al. Calculate ⁇ as 0.0001247 (m 2 / mJ) 2 . Therefore, when the substance A is semi-coke A obtained from coal A and the substance B is semi-coke B obtained from coal B, the interfacial tension ⁇ AB between the semi-coke A and B is the surface tension ⁇ of the semi-coke A and B. It can be said that it can be derived by measuring A 1 and ⁇ B and substituting the surface tension value into the equation (2) or (3).
- equation (2) the value of interaction coefficient ⁇ must be obtained from experiments, and therefore the value of interaction coefficient ⁇ is estimated in the sense of simplifying the derivation of interfacial tension. Is preferably used.
- the surface tension value of the semi-coke obtained from the remaining blended coal is ⁇ A
- the surface tension value of the semi-coke mixture obtained from the coal mixture is ⁇ B
- the interfacial tension can be calculated by the above formula (2) or (3).
- the surface tension value of semi-coke obtained from the remaining blended coal the surface tension value of semi-coke obtained from a single type of coal having a mass content of 50% by mass or more of the remaining blended coal is ⁇ A, and semi-coke. If the surface tension value of the mixture is ⁇ B , the interfacial tension value ⁇ AB between the semi-coke obtained from the single type of coal and the semi-coke mixture is calculated.
- the surface tension value of the semi-coke obtained from the remaining blended coal the surface tension value of each of the plurality of types of semi-coke obtained from the plurality of types of coal having a total mass content of 50% by mass or more, The value obtained by weighted averaging the blending ratio of coal is ⁇ A , or the surface tension value of multiple types of semi-coke is measured, and the measured value is ⁇ A. If the surface tension value of the mixture is ⁇ B , the interfacial tension value ⁇ AB between a plurality of types of semi-coke and semi-coke mixture can also be calculated.
- the interfacial tension value between the semi-coke obtained from the single type of coal and the semi-coke mixture obtained from the coal mixture, or the multiple types of semi-coke obtained from the multiple types of coal Each of the coals in the coal mixture such that the semi-coke mixture has a surface tension value such that the interfacial tension value is 0.03 mN / m or less. It is preferable to adjust the blending ratio.
- the interfacial tension of semi-coke obtained from the blended coal can also be calculated.
- the blending ratio is w i (representing the blending ratio of 1, 2,..., I,... N coal)
- the coal is obtained from i coal. Since the existence probability of the ij interface formed by semi-coke obtained from semi-coke and j-coal is expressed by the product of w i and w j , the interfacial tension at the interface of these semi-coke is expressed as ⁇ ij Then, the interfacial tension ⁇ blend of the semi-coke can be expressed by the following equation.
- w i and w j are set to be different for each coal in the blend coal. It is expressed as a blending rate.
- the blending ratio of each coal in the coal mixture is adjusted by the following procedure. 1. The blending ratio of the coal mixture in the blended coal is determined, the number n of coal types and the blending ratio w i included in the remaining blended coal are determined, and the type and blending ratio of the coal in the remaining blended coal are known. Put it in a state. 2. ⁇ ij is obtained as an interfacial tension value at each interface of semi-coke obtained from i-coal and j-coal. This interfacial tension value can be obtained by the above equation (2) or (3). 3.
- the value of the interfacial tension ⁇ blend of semi-coke obtained from blended coal is obtained using the above equation (4).
- the blending ratio of each coal in the coal mixture can be adjusted so that the value of the interfacial tension ⁇ blend of the semi-coke obtained from the obtained blended coal is 0.03 mN / m or less. Thereby, high intensity
- the amount of all coal used and the surface tension value of semi-coke obtained from the coal are known. It may be necessary to make assumptions or to make decisions partially uncertain, and even in that case, the present invention is applicable and provides the best coke quality among known information. Can be given.
- a coal for producing coke As described above, according to the method of the present invention, as a coal for producing coke, a coal mixture having a preferable quality that takes into account compatibility between coals, which was impossible with the conventional method, can be obtained. By using it, high-strength coke can be produced.
- various characteristics of semi-coke obtained by heat-treating coal composing the coal mixture were measured. These various characteristics include, in addition to the surface tension value used in the present invention, characteristic values that are not particularly necessary for carrying out the present invention, vitrinite average maximum reflectance Ro, and Gieseler maximum fluidity MF. Vitrinite average maximum reflectance Ro of each coal was measured in accordance with JIS M8816, and Gieseller maximum fluidity MF was measured in accordance with JIS M8801. In addition, although each coal was obtained from the same coal mine, since the produced coal seams were different, the surface tensions were different.
- the coal heat-treated in an inert gas at 500 ° C. is immersed in liquid nitrogen together with the heat-treated container, rapidly cooled, ground to 150 ⁇ m or less at room temperature, and dried in a nitrogen stream at 120 ° C. for 2 hours, Semi-coke was obtained.
- Semi-coke obtained from each coal was used as a sample for measuring the surface tension by the film flotation method.
- the surface tension distribution of each semi-coke was measured, and the average value of the surface tension values in the distribution was used as the representative value of the surface tension of the sample.
- An ethanol aqueous solution was used as the liquid used for the surface tension measurement.
- Coal composing the coal mixture was coal obtained from six types of coal seams. For each of the coals, Ro was 1.09 to 1.12, log MF was 2.50 to 2.60, and the surface tension value of the semi-coke of each coal was 36.0 to 42.5 mN / m. Table 1 shows the properties of these six types of coal (Coal 1 to Coal 6).
- the composition of the coal of the remaining blended coal was determined in the case of using a coal mixture of 20% by mass of the blended coal for producing coke.
- the composition of the remaining blended coal uses the average value of Ro and log MF of six samples of coal in the coal mixture, and the weight of Ro of each individual coal included in the entire blended coal composed of the remaining blended coal and the coal mixture. The average was 1.10 and the weighted average of logMF was 2.50.
- Table 2 shows the blending ratio (dry basis mass%) of each coal in the remaining blended coal. At this time, the weighted average value of the surface tension of semi-coke obtained from each coal contained in the remaining blended coal was 40.5 mN / m.
- the surface tension value of the semi-coke mixture obtained from the coal mixture is used as an index, that is, the surface tension value of the semi-coke mixture is 40.5 ⁇ 1.5 mN / m (in the range of 39.0 to 42.0). ), The blending ratio of the coal mixture was adjusted.
- the surface tension of the semi-coke mixture calculated by blending three types of coal with surface tension values of 40.1, 40.6, and 42.5 mN / m among the semi-cokes obtained from the six types of coal. These three types of coal were mixed to prepare a coal mixture so that the weighted average value of 40.5 mN / m was obtained (coal mixture 1). The surface tension of the semi-coke mixture obtained from this coal mixture was measured and found to be 40.6 mN / m.
- Coal mixture 1 was mixed with 20% [dry basis mass%] and the remaining blended coal having the composition shown in Table 2 was mixed with 80 [dry basis mass%] to obtain a coal blend for coke production.
- Coal blend is 100 weight% particle size the content of particles smaller than 3 mm, by adjusting the water to 8 wt%, filling the coal blend 16kg bulk density 750 kg / m 3, was dry distilled in an electric furnace. After dry distillation at a furnace wall temperature of 1100 ° C. for 6 hours, nitrogen cooling was performed, and drum strength was measured. The drum strength DI 150/15 index was measured in accordance with the rotational strength test method of JIS K2151. The strength of the obtained coke (JIS DI150 / 15) was 85.0, which was a level that does not cause a problem for use in a blast furnace.
- This value of 40.4 is not significantly different from the weighted average value 40.5 mN / m of the surface tension of semi-coke obtained from all the coals in the remaining blended coal. It was within the range of 1.5 mN / m. Therefore, based on the criteria of Example 2 of the present invention, the coal mixture that is the basis of the semi-coke mixture prepared and used in Example 1 of the invention and having a weighted average value of 40.6 mN / m is high strength coke. It can be said that it is preferable to produce
- Example 3 In the same manner as in Example 1 of the present invention, the surface tension of semi-coke was measured to produce coke.
- the surface tension of the semi-coke mixture was changed by changing the mixing ratio of coal (coal 1 to coal 6) obtained from the six types of coal beds described in Example 1 of the present invention, and the remaining blended coal
- the change in coke strength when the difference between the weighted average value of the surface tension of semi-coke obtained from each coal contained and the surface tension value of the semi-coke mixture (surface tension value difference) was investigated.
- Table 3 shows the coal properties determined by the blending ratio of coals 1 to 6 and the weighted average in the prepared coal mixture.
- Table 4 shows the strength of coke produced by blending the coal mixture 20 [% by mass] and the remaining blended coal 80 [% by mass] in the same manner as in Example 1 of the present invention.
- Table 4 further shows the difference in surface tension between the semi-coke mixture obtained from the coal mixture and the semi-coke obtained from the remaining blended coal, the interfacial tension ⁇ AB between them, and the interface of the semi-coke obtained from the blended coal. The tension ⁇ blend is shown.
- the strength of coke based on ISO18894 after CO 2 reaction was also measured.
- FIG. 1 shows changes in the coke strength index JIS DI150 / 15 due to the difference in surface tension value.
- the interfacial tension value ⁇ AB shown in Table 4 is the above-mentioned formula (3), the weighted average value of the surface tension of semi-coke obtained from each coal contained in the remaining blended coal is ⁇ A , and the semi-coke mixture The surface tension value was obtained by substituting ⁇ B.
- the interfacial tension ⁇ blend shown in Table 4 is expressed by the following formula (4): the blending ratio of each coal constituting the coal mixture, the surface tension value of semi-coke obtained from each coal, and each coal in the remaining blended coal And the surface tension value of semi-coke obtained from each coal was determined by substitution.
- Table 4 shows that the coke strength is high when the interfacial tension ⁇ AB is 0.036 mN / m or less (particularly ⁇ AB is 0.028 ( ⁇ 0.03) mN / m or less). Similarly, regarding the interfacial tension ⁇ blend , the coke strength is high when the value is 0.029 ( ⁇ 0.03) mN / m or less.
- Example 1 of the present invention When coke was produced using this coal mixture under the same conditions as Example 1 of the present invention, the strength of the obtained coke was 83.2, which was lower than that of Example 1 of the present invention.
- the Ro and log MF values of the three types of coal of the present invention example 1 and the comparative example were almost the same, the reason why the strength decreased was that the surface tension of the semi-coke mixture and the remaining blended coal This is because the difference in the surface tension of semi-coke obtained from the coal of the other coal is large, and the blending ratio of each coal was not adjusted using the weighted average value of the surface tension of semi-coke obtained from each coal in the coal mixture as an index. It is.
- a coal mixture composed of a plurality of coals is used as a part of coal for producing coke
- a semi-coke mixture obtained by mixing semi-coke obtained from coal in the coal mixture.
- a coal mixture composed of a plurality of coals is used as a part of coal for producing coke
- a semi-coke mixture obtained by mixing semi-coke obtained from coal in the coal mixture.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Coke Industry (AREA)
Abstract
Description
[1]コークス製造用の配合炭の少なくとも一部として用いられる、表面張力が異なる2種以上の石炭を含む石炭混合物を調製するコークス製造用石炭混合物の調製方法であって、前記石炭混合物から得られるセミコークス混合物の表面張力値を指標として前記各石炭の配合率を調整するコークス製造用石炭混合物の調製方法。
[2]前記セミコークス混合物の表面張力値を、石炭混合物に含まれる各石炭の配合率を重みにして、前記各石炭を熱処理して得られる2種以上のセミコークスの各々の表面張力値を加重平均することで、求められる値とする上記[1]に記載のコークス製造用石炭混合物の調製方法。
[3]前記セミコークス混合物の表面張力値が、前記配合炭から前記石炭混合物を除く残部配合炭を熱処理して得られるセミコークスの表面張力値から±1.5mN/mの範囲となるように、前記石炭混合物中の各石炭の配合率を調整する上記[1]または上記[2]に記載のコークス製造用石炭混合物の調製方法。
[4]前記残部配合炭を熱処理して得られるセミコークスの表面張力値を、前記残部配合炭に含まれる少なくとも2種の石炭の各々の配合率を重みにして、前記残部配合炭に含まれる2種以上の石炭を熱処理して得られるセミコークスの各々の表面張力値を加重平均することで、求められる値とする上記[3]に記載のコークス製造用石炭混合物の調製方法。
[5]前記残部配合炭を熱処理して得られるセミコークスの表面張力値を、前記残部配合炭に含まれる少なくとも1種の石炭のうち最大の含有量となる1種の石炭を熱処理して得られるセミコークスの表面張力値とする上記[3]に記載のコークス製造用石炭混合物の調製方法。
[6]前記残部配合炭を熱処理して得られるセミコークスの表面張力値を、前記残部配合炭のうちの質量含有率の合計が50質量%以上となる複数種の石炭を熱処理して得られる複数種のセミコークスの表面張力値を、前記複数種の石炭の配合率を重みにして加重平均することで求められる値とする上記[3]に記載のコークス製造用石炭混合物の調製方法。
[7]コークス製造用の配合炭から前記石炭混合物を除いた残部配合炭に含まれる少なくとも1種の石炭のうち、質量含有率が50質量%以上である単一種の石炭を熱処理して得られるセミコークスと前記セミコークス混合物との間の界面張力が、0.03mN/m以下となるような表面張力値を前記セミコークス混合物が有するように、前記石炭混合物中の各石炭の配合率を調整する上記[1]または上記[2]に記載のコークス製造用石炭混合物の調製方法。
[8]下記(2)式によって、前記界面張力値を算出する上記[7]に記載のコークス製造用石炭混合物の調製方法。
γB:前記セミコークス混合物の表面張力値、γAB:前記界面張力、φ:相互作用係数、である。
[9]下記(3)式によって、前記界面張力値を算出する上記[7]に記載のコークス製造用石炭混合物の調製方法。
γB:前記セミコークス混合物の表面張力値、γAB:前記界面張力、β:定数、である。
[10]コークス製造用の配合炭から前記石炭混合物を除いた残部配合炭のうちの質量含有率の合計が50質量%以上となる複数種の石炭を熱処理して得られる複数種のセミコークスと前記セミコークス混合物との間の界面張力が、0.03mN/m以下となるような表面張力値を前記セミコークス混合物が有するように、前記石炭混合物中の各石炭の配合率を調整する上記[1]または上記[2]に記載のコークス製造用石炭混合物の調製方法。
[11]上記(2)式によって、前記界面張力値を算出する上記[10]に記載のコークス製造用石炭混合物の調製方法。
但し、γA:前記複数種のセミコークスの表面張力値、γB:前記セミコークス混合物の表面張力値、γAB:前記界面張力、φ:相互作用係数、である。
[12]上記(3)式によって、前記界面張力値を算出する上記[10]に記載のコークス製造用石炭混合物の調製方法。
但し、γA:前記複数種のセミコークスの表面張力値、γB:前記セミコークス混合物の表面張力値、γAB:前記界面張力、β:定数、である。
[13]コークス製造用の配合炭の少なくとも一部として用いられる、2種以上の石炭を含む石炭混合物を調製するコークス製造用石炭混合物の調製方法であって、
前記配合炭の一部として前記石炭混合物を用いようとする場合に、あらかじめ、前記配合炭における前記石炭混合物配合割合を決定するとともに、
前記配合炭中の前記石炭混合物を除く残部配合炭に含まれる石炭の種類と配合率を決定し、
前記配合炭を熱処理して得られるセミコークスの界面張力(γblend)が0.03mN/m以下となるように、前記石炭混合物中の各石炭の配合率を調整することをコークス製造用石炭混合物の調製方法。
[14]前記表面張力は、フィルム・フローテーション法により測定される上記[1]ないし上記[13]のいずれかに記載のコークス製造用石炭混合物の調製方法。
[15]上記[1]ないし上記[14]のいずれかに記載の調製方法により製造された石炭混合物。
[16]上記[15]に記載の石炭混合物を含む配合炭を作製し、前記配合炭を乾留してコークスを製造するコークス製造方法。
(a)石炭を粉砕する。石炭の粉砕粒度は、組織、性状などが不均一である石炭から均質な試料を作製するという観点から、JIS M8812に記載されている石炭の工業分析における粉砕粒度である250μm以下に石炭を粉砕することが望ましく、さらに細かい200μm以下に粉砕することが望ましい。
(b)操作(a)で粉砕した石炭を、空気を遮断してあるいは不活性ガス中で、適当な加熱速度で加熱する。前述の350~800℃の範囲内の温度まで石炭を加熱すればよい。また、コークス炉においてコークスが製造されるときの加熱速度に応じて、この加熱速度を決めることが最も好適である。
(c)操作(b)で加熱した石炭を冷却する。この冷却では、上述の方法で急冷することが望ましい。
1.石炭を粒径200μm以下に粉砕し、不活性ガス雰囲気中、3℃/minで500℃まで加熱する(乾留操作)。加熱速度は、コークス炉においてコークスが製造されるときの加熱速度が約3℃/minであるため3℃/minとしている。
2.加熱した石炭を液体窒素で急冷する(冷却操作)。
3.急冷の後に、石炭を更に、粒径150μm以下に粉砕し、乾燥された不活性ガス気流中120℃で2時間乾燥する(乾燥操作)。なお、乾燥方法については表面に付着した水分を除去できる方法ならばどのような方法でも構わず、例えば、窒素、アルゴンなどの不活性ガス中で100~200℃に加熱する方法の他にも、真空乾燥してもよいし、減圧下で乾燥する方法なども採用できる。なお、乾燥した不活性ガスは、ガスを、シリカゲルなどの乾燥剤の充填層を通過させることで得られる。
表面張力分布の平均値(γの平均値:γave)は、次の式で表される。
1.例えば、石炭混合物が石炭A及びBからなると決定する。石炭Aと石炭Bとが混合されてなる石炭混合物を想定する。ある炭層の石炭Aから得られるセミコークスの表面張力値をaとし、別の炭層の石炭Bから得られるセミコークスの表面張力値をbとする。
2.想定する石炭混合物の石炭A及び石炭Bの配合率を仮定する。
3.仮定した配合率を重みにして、石炭Aを熱処理して得られるセミコークスAと石炭B熱処理して得られるセミコークスBの表面張力値を質量加重平均した値を求める。例えば、石炭Aと石炭Bとが等量に混合されてなる石炭混合物の場合には、それらから得られるセミコークスの質量加重平均した値は(a+b)/2)で表される。
4.この3.で求まる値は、概ねセミコークス混合物の表面張力値となるので、この値を、セミコークス混合物の表面張力値とする。このセミコークス混合物の表面張力値を指標として、それぞれの炭層からの石炭の混合比を決めればよい。すなわち、石炭混合物を調製する際に、その石炭混合物中の各石炭の配合率を調整すればよい。
また、リーとニューマン(D.Li、A.W.Neumann)らは、相互作用係数φの値が物質A、Bの表面張力値γA、γBの値が離れるほど大きくなると仮定し、上記(2)式を拡張した下記の式を提案している。
1.配合炭における石炭混合物の配合割合を決定するとともに、残部配合炭に含まれる石炭の種類数nと配合率wiを決定して、残部配合炭中の石炭の種類と配合率が知られている状態にする。
2.i炭とj炭から得られるセミコークスの各々の界面における界面張力値をγijを求める。この界面張力値は、上記(2)式または(3)式により求めることが可能である。
3.上記(4)式を用いて、配合炭から得られるセミコークスの界面張力γblendの値を求める。求めた配合炭から得られるセミコークスの界面張力γblendの値を0.03mN/m以下となるように、石炭混合物中の各石炭の配合率を調整することもできる。これにより、高強度のコークスを製造することができる。
表面張力が異なる2種以上の石炭を混合して石炭混合物を作製した。この作製される石炭混合物をコークス製造用の配合炭の一部に用いる際に、石炭混合物に含まれる石炭から得られるセミコークス混合物の表面張力値が、配合炭から石炭混合物を除く残部配合炭に含まれる石炭から得られるセミコークスの表面張力の加重平均値から所定の範囲内になるように、石炭混合物に含まれる各石炭の配合率を調整した。この配合率が調整された石炭混合物を配合炭に用いて、コークスを製造した。
上記において、残部配合炭のうち、最大配合量となる単一種の石炭(E炭)から得られるセミコークスの表面張力値は40.2mN/mであり、残部配合炭に含まれる全ての石炭の表面張力の加重平均値40.5mN/mに対して大きな差はなかった。また、残部配合炭のうち配合比率の高い銘柄から順に、残部配合炭中の質量含有率の合計が55質量%になるまで選んだ複数種の石炭(E炭とI炭)から得られる複数種のセミコークスの表面張力の加重平均値は40.4mN/mであった。この40.4の値は、残部配合炭中の全ての石炭から得られるセミコークスの表面張力の加重平均値40.5mN/mに対して大きな差はなく、その加重平均値40.5から±1.5mN/mの範囲内であった。従って、本発明例2の基準に基づいても、本発明例1で調製、使用した表面張力の加重平均値40.6mN/mとなるセミコークス混合物の元となる石炭混合物は、高強度のコークスを製造するために好ましいものであると言える。
本発明例1と同様にセミコークスの表面張力の測定を行ない、コークスを製造した。本発明例3では、本発明例1で述べた6種類の炭層から得られる石炭(石炭1~石炭6)の混合率を変えることによりセミコークス混合物の表面張力を変化させて、残部配合炭に含まれる各石炭から得られるセミコークスの表面張力の加重平均値とセミコークス混合物の表面張力値との差(表面張力値差)を変化させた場合のコークス強度変化を調査した。調製した石炭混合物における石炭1~6の配合比率と加重平均により求めた石炭性状を表3に示す。また、この石炭混合物20[質量%]と残部配合炭80[質量%]を混合して得た配合炭から本発明例1と同様の方法で製造したコークスの強度を表4に示す。表4には、更に、石炭混合物から得られるセミコークス混合物と残部配合炭から得られるセミコークスとの表面張力差、これらの間の界面張力γAB、及び、配合炭から得られるセミコークスの界面張力γblend を示してある。なお、本発明例においてはISO18894に準拠したコークスのCO2反応後強度も測定した。図1に、表面張力値差による、そのコークス強度指数JIS DI150/15の変化を示す。
本発明例1で用いた石炭混合物の代わりに、3種類の石炭(石炭1~3)を混合して石炭混合物を調製した。但し、混合する際に、特段に、その石炭混合物を熱処理して得られるセミコークス混合物の表面張力値を指標とせずに、ビトリニット平均最大反射率Roとギーセラー最高流動度の常用対数値logMFとに基づき石炭混合物と残部配合炭とを配合した。すなわち、配合炭全体に含まれる個々の石炭のRoの加重平均が1.10、logMFの加重平均が2.55となる配合炭を得た。
Claims (16)
- コークス製造用の配合炭の少なくとも一部として用いられる、表面張力が異なる2種以上の石炭を含む石炭混合物を調製するコークス製造用石炭混合物の調製方法であって、
前記石炭混合物から得られるセミコークス混合物の表面張力値を指標として前記各石炭の配合率を調整するコークス製造用石炭混合物の調製方法。 - 前記セミコークス混合物の表面張力値を、石炭混合物に含まれる各石炭の配合率を重みにして、前記各石炭を熱処理して得られる2種以上のセミコークスの各々の表面張力値を加重平均することで、求められる値とする請求項1に記載のコークス製造用石炭混合物の調製方法。
- 前記セミコークス混合物の表面張力値が、前記配合炭から前記石炭混合物を除く残部配合炭を熱処理して得られるセミコークスの表面張力値から±1.5mN/mの範囲となるように、前記石炭混合物中の各石炭の配合率を調整する請求項1または請求項2に記載のコークス製造用石炭混合物の調製方法。
- 前記残部配合炭を熱処理して得られるセミコークスの表面張力値を、前記残部配合炭に含まれる少なくとも2種の石炭の各々の配合率を重みにして、前記残部配合炭に含まれる2種以上の石炭を熱処理して得られるセミコークスの各々の表面張力値を加重平均することで、求められる値とする請求項3に記載のコークス製造用石炭混合物の調製方法。
- 前記残部配合炭を熱処理して得られるセミコークスの表面張力値を、前記残部配合炭に含まれる少なくとも1種の石炭のうち最大の含有量となる1種の石炭を熱処理して得られるセミコークスの表面張力値とする請求項3に記載のコークス製造用石炭混合物の調製方法。
- 前記残部配合炭を熱処理して得られるセミコークスの表面張力値を、前記残部配合炭のうちの質量含有率の合計が50質量%以上となる複数種の石炭を熱処理して得られる複数種のセミコークスの表面張力値を、前記複数種の石炭の配合率を重みにして加重平均することで求められる値とする請求項3に記載のコークス製造用石炭混合物の調製方法。
- コークス製造用の配合炭から前記石炭混合物を除いた残部配合炭に含まれる少なくとも1種の石炭のうち、質量含有率が50質量%以上である単一種の石炭を熱処理して得られるセミコークスと前記セミコークス混合物との間の界面張力が、0.03mN/m以下となるような表面張力値を前記セミコークス混合物が有するように、前記石炭混合物中の各石炭の配合率を調整する請求項1または請求項2に記載のコークス製造用石炭混合物の調製方法。
- コークス製造用の配合炭から前記石炭混合物を除いた残部配合炭のうちの質量含有率の合計が50質量%以上となる複数種の石炭を熱処理して得られる複数種のセミコークスと前記セミコークス混合物との間の界面張力が、0.03mN/m以下となるような表面張力値を前記セミコークス混合物が有するように、前記石炭混合物中の各石炭の配合率を調整する請求項1または請求項2に記載のコークス製造用石炭混合物の調製方法。
- コークス製造用の配合炭の少なくとも一部として用いられる、2種以上の石炭を含む石炭混合物を調製するコークス製造用石炭混合物の調製方法であって、
前記配合炭の一部として前記石炭混合物を用いようとする場合に、あらかじめ、前記配合炭における前記石炭混合物配合割合を決定するとともに、
前記配合炭中の前記石炭混合物を除く残部配合炭に含まれる石炭の種類と配合率を決定し、
前記配合炭を熱処理して得られるセミコークスの界面張力(γblend)が0.03mN/m以下となるように、前記石炭混合物中の各石炭の配合率を調整することをコークス製造用石炭混合物の調製方法。 - 前記表面張力は、フィルム・フローテーション法により測定される請求項1ないし請求項13のいずれかに記載のコークス製造用石炭混合物の調製方法。
- 請求項1ないし請求項14のいずれかに記載の調製方法により製造された石炭混合物。
- 請求項15に記載の石炭混合物を含む配合炭を作製し、前記配合炭を乾留してコークスを製造するコークス製造方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014507421A JP5737473B2 (ja) | 2012-03-27 | 2013-03-25 | コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法 |
RU2014143015/05A RU2604629C2 (ru) | 2012-03-27 | 2013-03-25 | Способ приготовления смеси углей для производства кокса, смесь углей и способ производства кокса |
PL13768491T PL2832824T3 (pl) | 2012-03-27 | 2013-03-25 | Sposób wytwarzania mieszaniny węgli do produkcji koksu i sposób wytwarzania koksu |
US14/388,578 US10144891B2 (en) | 2012-03-27 | 2013-03-25 | Method for preparing coal mixture for cokemaking, coal mixture, and method for producing coke |
PL15002657T PL2980187T3 (pl) | 2012-03-27 | 2013-03-25 | Sposób wytwarzania mieszaniny węgli do produkcji koksu, mieszanina węgli, i sposób wytwarzania koksu |
CN201380016889.6A CN104204140B (zh) | 2012-03-27 | 2013-03-25 | 用于制造焦炭的煤混合物的制备方法及煤混合物、以及焦炭制造方法 |
EP13768491.6A EP2832824B1 (en) | 2012-03-27 | 2013-03-25 | Preparation method for coal mixture for coke production and coke production method |
EP15002657.3A EP2980187B1 (en) | 2012-03-27 | 2013-03-25 | Preparation method for coal mixture for coke production, coal mixture, and coke production method |
AU2013238851A AU2013238851B2 (en) | 2012-03-27 | 2013-03-25 | Method for preparing coal mixture for cokemaking, coal mixture, and method for producing coke |
CA2866569A CA2866569C (en) | 2012-03-27 | 2013-03-25 | Method for preparing coal mixture for cokemaking, coal mixture, and method for producing coke |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012071517 | 2012-03-27 | ||
JP2012-071517 | 2012-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013145680A1 true WO2013145680A1 (ja) | 2013-10-03 |
Family
ID=49258985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/001982 WO2013145680A1 (ja) | 2012-03-27 | 2013-03-25 | コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10144891B2 (ja) |
EP (2) | EP2980187B1 (ja) |
JP (1) | JP5737473B2 (ja) |
AU (1) | AU2013238851B2 (ja) |
CA (1) | CA2866569C (ja) |
PL (2) | PL2980187T3 (ja) |
RU (1) | RU2604629C2 (ja) |
WO (1) | WO2013145680A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020179576A1 (ja) | 2019-03-04 | 2020-09-10 | Jfeスチール株式会社 | 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法 |
WO2021085146A1 (ja) * | 2019-10-28 | 2021-05-06 | Jfeスチール株式会社 | 石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法 |
RU2782524C1 (ru) * | 2019-03-04 | 2022-10-28 | ДжФЕ СТИЛ КОРПОРЕЙШН | Способ оценки качества угля, способы приготовления угольной смеси и способ получения кокса |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019017888A1 (en) * | 2017-07-18 | 2019-01-24 | Ekocoke, Llc | ADAPTABLE COKE PRODUCTION |
JP6822621B1 (ja) | 2019-03-28 | 2021-01-27 | Jfeスチール株式会社 | 石炭混合物の製造方法およびコークスの製造方法 |
CN114555759B (zh) | 2019-10-28 | 2024-05-17 | 杰富意钢铁株式会社 | 煤的表面张力推定方法和焦炭的制造方法 |
CN114901782B (zh) * | 2020-01-07 | 2024-05-03 | 杰富意钢铁株式会社 | 混煤的制造方法和焦炭的制造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08176553A (ja) * | 1994-12-22 | 1996-07-09 | Kawasaki Steel Corp | 非・微粘結炭の流動性等推定方法 |
JPH09255966A (ja) | 1996-03-21 | 1997-09-30 | Kawasaki Steel Corp | 配合炭のコークス特性推定方法 |
JP2005281355A (ja) * | 2004-03-29 | 2005-10-13 | Jfe Steel Kk | 配合炭のコークス強度推定方法及びコークスの製造方法 |
WO2013054526A1 (ja) * | 2011-10-14 | 2013-04-18 | Jfeスチール株式会社 | コークスの製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4135983A (en) | 1970-12-28 | 1979-01-23 | Kureha Kagaku Kogyo Kabushiki Kaisha | Method for improving coking property of coal for use in production of cokes |
JP5045039B2 (ja) * | 2006-09-14 | 2012-10-10 | Jfeスチール株式会社 | 高強度コークスの製造方法 |
JP5071578B2 (ja) | 2010-09-01 | 2012-11-14 | Jfeスチール株式会社 | コークス製造用石炭の調製方法 |
-
2013
- 2013-03-25 EP EP15002657.3A patent/EP2980187B1/en active Active
- 2013-03-25 AU AU2013238851A patent/AU2013238851B2/en active Active
- 2013-03-25 JP JP2014507421A patent/JP5737473B2/ja active Active
- 2013-03-25 RU RU2014143015/05A patent/RU2604629C2/ru active
- 2013-03-25 US US14/388,578 patent/US10144891B2/en active Active
- 2013-03-25 WO PCT/JP2013/001982 patent/WO2013145680A1/ja active Application Filing
- 2013-03-25 PL PL15002657T patent/PL2980187T3/pl unknown
- 2013-03-25 EP EP13768491.6A patent/EP2832824B1/en active Active
- 2013-03-25 CA CA2866569A patent/CA2866569C/en active Active
- 2013-03-25 PL PL13768491T patent/PL2832824T3/pl unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08176553A (ja) * | 1994-12-22 | 1996-07-09 | Kawasaki Steel Corp | 非・微粘結炭の流動性等推定方法 |
JPH09255966A (ja) | 1996-03-21 | 1997-09-30 | Kawasaki Steel Corp | 配合炭のコークス特性推定方法 |
JP2005281355A (ja) * | 2004-03-29 | 2005-10-13 | Jfe Steel Kk | 配合炭のコークス強度推定方法及びコークスの製造方法 |
WO2013054526A1 (ja) * | 2011-10-14 | 2013-04-18 | Jfeスチール株式会社 | コークスの製造方法 |
Non-Patent Citations (4)
Title |
---|
D.W. FUERSTENAU, INTERNATIONAL JOURNAL OF MINERAL PROCESSING, vol. 20, 1987, pages 153 |
MIYAZU; OKUYAMA; SUZUKI; FUKUYAMA; MORI, NIPPON KOKAN TECHNICAL REPORT, vol. 67, 1975, pages 1 |
SAKAMOTO; IGAWA, CAMP-ISIJ, vol. 11, 1998, pages 689 |
See also references of EP2832824A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020179576A1 (ja) | 2019-03-04 | 2020-09-10 | Jfeスチール株式会社 | 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法 |
JPWO2020179576A1 (ja) * | 2019-03-04 | 2021-03-11 | Jfeスチール株式会社 | 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法 |
KR20210118189A (ko) | 2019-03-04 | 2021-09-29 | 제이에프이 스틸 가부시키가이샤 | 석탄의 평가 방법 및 배합탄의 조제 방법 그리고 코크스의 제조 방법 |
RU2782524C1 (ru) * | 2019-03-04 | 2022-10-28 | ДжФЕ СТИЛ КОРПОРЕЙШН | Способ оценки качества угля, способы приготовления угольной смеси и способ получения кокса |
WO2021085146A1 (ja) * | 2019-10-28 | 2021-05-06 | Jfeスチール株式会社 | 石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法 |
JPWO2021085146A1 (ja) * | 2019-10-28 | 2021-12-16 | Jfeスチール株式会社 | 石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法 |
JP7010419B2 (ja) | 2019-10-28 | 2022-01-26 | Jfeスチール株式会社 | 石炭のイナート組織の表面張力推定方法、石炭の表面張力推定方法およびコークスの製造方法 |
RU2803512C1 (ru) * | 2019-10-28 | 2023-09-14 | ДжФЕ СТИЛ КОРПОРЕЙШН | Способ оценки поверхностного натяжения инертных компонентов угля, способ оценки поверхностного натяжения угля и способ получения кокса |
KR102720002B1 (ko) | 2019-10-28 | 2024-10-18 | 제이에프이 스틸 가부시키가이샤 | 석탄의 이너트 조직의 표면 장력 추정 방법, 석탄의 표면 장력 추정 방법 및 코크스의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
AU2013238851B2 (en) | 2015-11-12 |
CN104204140A (zh) | 2014-12-10 |
PL2980187T3 (pl) | 2021-07-12 |
PL2832824T3 (pl) | 2020-11-02 |
RU2014143015A (ru) | 2016-05-20 |
JPWO2013145680A1 (ja) | 2015-12-10 |
US20150040468A1 (en) | 2015-02-12 |
CA2866569A1 (en) | 2013-10-03 |
JP5737473B2 (ja) | 2015-06-17 |
EP2832824B1 (en) | 2020-05-06 |
EP2832824A1 (en) | 2015-02-04 |
US10144891B2 (en) | 2018-12-04 |
EP2832824A4 (en) | 2015-04-22 |
EP2980187B1 (en) | 2021-01-13 |
RU2604629C2 (ru) | 2016-12-10 |
AU2013238851A1 (en) | 2014-10-09 |
CA2866569C (en) | 2016-09-13 |
EP2980187A1 (en) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5737473B2 (ja) | コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法 | |
US9845439B2 (en) | Method for blending coals for cokemaking and method for producing coke | |
JP5582271B2 (ja) | 石炭間の接着性の評価方法 | |
JP6044708B2 (ja) | 石炭の風化度の評価方法、風化石炭のコークス化性の評価方法、及び、石炭の風化度の管理方法、並びに、コークスの製造方法 | |
WO2013145678A1 (ja) | 石炭の配合方法及び配合炭、並びに、コークス製造方法 | |
JP5975191B2 (ja) | 石炭混合物、及び、石炭混合物の製造方法、並びに、コークスの製造方法 | |
KR102549785B1 (ko) | 석탄의 평가 방법 및 배합탄의 조제 방법 그리고 코크스의 제조 방법 | |
JP5578293B2 (ja) | コークス製造用石炭の調製方法 | |
JP6265015B2 (ja) | コークス製造方法 | |
JP2014218647A (ja) | 石炭間の接着性の評価方法 | |
JP7160218B2 (ja) | 配合炭の製造方法およびコークスの製造方法 | |
CN104204140B (zh) | 用于制造焦炭的煤混合物的制备方法及煤混合物、以及焦炭制造方法 | |
JP6760410B2 (ja) | コークスの製造方法 | |
CN114556079B (zh) | 煤的惰质组组织的表面张力推定方法、煤的表面张力推定方法和焦炭的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13768491 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014507421 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2866569 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14388578 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2013238851 Country of ref document: AU Date of ref document: 20130325 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014143015 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013768491 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |