WO2013145679A1 - コークス製造用石炭の配合方法及びコークスの製造方法 - Google Patents

コークス製造用石炭の配合方法及びコークスの製造方法 Download PDF

Info

Publication number
WO2013145679A1
WO2013145679A1 PCT/JP2013/001981 JP2013001981W WO2013145679A1 WO 2013145679 A1 WO2013145679 A1 WO 2013145679A1 JP 2013001981 W JP2013001981 W JP 2013001981W WO 2013145679 A1 WO2013145679 A1 WO 2013145679A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
coke
surface tension
strength
blending
Prior art date
Application number
PCT/JP2013/001981
Other languages
English (en)
French (fr)
Inventor
下山 泉
孝思 庵屋敷
深田 喜代志
藤本 英和
山本 哲也
広行 角
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to IN1713MUN2014 priority Critical patent/IN2014MN01713A/en
Priority to CN201380017619.7A priority patent/CN104245889B/zh
Priority to US14/387,742 priority patent/US9845439B2/en
Priority to EP13767265.5A priority patent/EP2832822B1/en
Priority to JP2014507420A priority patent/JP5626496B2/ja
Priority to KR1020147026669A priority patent/KR101623877B1/ko
Publication of WO2013145679A1 publication Critical patent/WO2013145679A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/60Measuring or analysing fractions, components or impurities or process conditions during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2300/00Mixture of two or more additives covered by the same group of C10L1/00 - C10L1/308
    • C10L2300/20Mixture of two components

Definitions

  • the present invention estimates the strength of coke produced from blended coal composed of a plurality of types of coal of different brands, and blends coal for coke production to obtain high strength coke based on the estimated coke strength.
  • the present invention relates to a method and a method for producing coke having high strength from an optimally blended coal.
  • coke used as a raw material when producing hot metal in a blast furnace is desirably high in strength. This is because if the strength of the coke is low, the coke is pulverized in the blast furnace, the air permeability of the blast furnace is hindered, and stable hot metal production cannot be performed.
  • the strength of the generated coke is affected by the selection method of raw coal, pre-treatment method, dry distillation conditions, fire extinguishing conditions, post-treatment conditions, etc. Receive.
  • the conditions related to equipment and operations are difficult to change due to equipment restrictions, so the selection of raw coal is recognized as the most important factor in controlling coke quality. Yes.
  • Non-Patent Document 1 As a method for blending raw material coal for obtaining coke having a desired strength, various methods including the method described in Non-Patent Document 1 are known. A method of predicting the strength of coke generated based on the above and determining the blending of raw coal so that the predicted strength becomes high is adopted.
  • the characteristic values used for the estimation of compatibility in Patent Document 1 are the characteristic values used for estimation of conventional coke strength, such as maximum fluidity (MF), average reflectance (Ro), and total active ingredient amount (TR). Therefore, it is insufficient to evaluate the compatibility effect that cannot be explained by the conventional method.
  • the present invention has been made in view of the above circumstances, and its purpose is to quantitatively clarify the compatibility between coals in coke production, estimate coke strength in consideration of compatibility, and consider compatibility It is to provide a technology capable of selecting a raw coal based on the coke strength and mixing the raw coal to produce a coke having a desired strength.
  • the present inventors diligently studied to solve the above problems. As a result, it was found that the surface tension of heat-treated coal well expresses the compatibility of coal in coke production.
  • the heat-treated coal is obtained by heating coal in an inert gas atmosphere to 350 ° C. to 800 ° C. and then cooling in an inert atmosphere, and is hereinafter also referred to as semi-coke.
  • Coal compatibility is the degree of good combination when blending coal, and in the present invention, coal that does not increase or hardly change the strength of coke produced by the combination is compatible with coal.
  • Coal that reduces the strength of coke produced when combined is defined as incompatible coal.
  • a method for blending coal for coke production in which a plurality of types of coal are mixed to prepare a blended coal used for the production of coke, which is based on the difference in surface tension of coal obtained by heat-treating the plurality of types of coal.
  • a method for blending coal for coke production which determines the type and blending ratio of coal to be blended.
  • the surface tension of the coal obtained by heat-treating all the coals of the blended coal composed of a plurality of types of coal is not less than (average value ⁇ 1.5) mN / m of the surface tension of each of the heat-treated coals, and (Average value + 1.5)
  • the method for blending coal for coke production according to [1], wherein coal that falls within a range of mN / m or less is selected and blended.
  • the coal constituting 70 mass% or more is the surface tension of each heat-treated coal and the heat-treated coal obtained from all the coals constituting the blended coal.
  • the total value S of the difference in surface tension obtained by the following formula (1) is 1.0 mN.
  • w i and w j are the blending ratios of coal i and coal j
  • ⁇ ij is the absolute value of the difference in surface tension between coals heat-treated with coal i and coal j, respectively
  • n is the coal blended Is a number.
  • a method for estimating coke strength wherein the strength of the coke is predicted.
  • a method for blending coal for producing coke characterized in that: [11] Coke produced when coke is produced by measuring the surface tension of each of a plurality of types of coal and mixing the plurality of types of coal based on the measured difference in surface tension of each of the coals.
  • the method for selecting coal for coke production is characterized by predicting the strength of the coke and selecting the coal for coke so as to increase the strength of the coke produced.
  • [12] The coke strength estimation method according to [7], wherein the surface tension is measured after heat-treating the coal.
  • the strength of coke produced when coke is produced by mixing a plurality of types of coal is accurately determined. It becomes possible to predict, and it becomes possible to select and determine the coal to be blended so that the strength of the coke to be produced becomes high, and it is possible to produce high strength coke.
  • a polar solvent dissolves a polar substance well
  • a nonpolar solvent dissolves a nonpolar substance well.
  • the coal is once melted and re-solidified by heating, and in the process of forming coke, different coals need to be bonded to form a strong coke structure.
  • the present inventors have determined that the surface tension after cooling the coal once heat treated at 350 to 800 ° C. which is not less than the softening and melting temperature of the coal and not more than the coking temperature, preferably It was found that the adhesion strength between coals can be expressed well by using the surface tension after rapid cooling to room temperature, and these adhesion phenomena also affect the strength of coke. It has also been found that the surface tension can be estimated from the surface tension of raw material coal.
  • a method for measuring the surface tension of coal or a heat-treated product thereof a known method, for example, a film flotation method (see DWFuerstenau, International Journal of Mineral Processing, 20 (1987), p.153) is used. it can. This method can be applied in the same manner regardless of whether it is a coal or a heat-treated product (semi-coke), and the surface tension distribution can be obtained using a finely pulverized sample.
  • the film flotation method means that when the pulverized sample particles are dropped from the gas phase onto the surface of the liquid and the sample particles are immersed in the liquid (when the contact angle is substantially equal to 0 °), the sample particles
  • the surface tension is measured by applying the idea that the surface tension of the liquid is equal to the surface tension of the liquid.
  • Surface tension distribution can be obtained by dropping sample particles into various liquids having different surface tensions, obtaining mass ratios of the sample particles suspended with respect to the respective liquids, and expressing the results in a frequency distribution curve.
  • the average value of the obtained surface tension distribution can be used as a representative value of the surface tension of the sample.
  • the average value of the surface tension distribution of each sample is referred to as the surface tension value of each sample.
  • a value taking into account the surface tension distribution (such as a standard deviation of the distribution) can be used as the representative value.
  • the surface tension measurement by the film flotation method is preferably performed as follows.
  • the liquid used in the film flotation method the surface tension value of coal and coal during softening and melting is distributed in the range of 20 to 73 mN / m. Therefore, a liquid having a surface tension within this range may be used.
  • an organic solvent such as ethanol, methanol, propanol, tert-butanol, or acetone
  • a liquid having a surface tension of 20 to 73 mN / m can be prepared from an aqueous solution of these organic solvents.
  • the particle size of the sample for measuring the surface tension it is desirable to measure the surface tension when the contact angle is substantially equal to 0 ° from the measurement principle described above, and the contact angle increases as the particle size of the crushed sample particles increases. Since it increases, the smaller the particle size, the better. However, when the particle size of the sample particles is less than 53 ⁇ m, the sample particles are likely to aggregate. Therefore, in order to prevent this aggregation, the sample particles are preferably adjusted to a particle size of 53 to 150 ⁇ m.
  • Coal is pulverized to a particle size of 200 ⁇ m or less, heated to 500 ° C. at 3 ° C./min in an inert gas atmosphere, quenched with liquid nitrogen, pulverized to 150 ⁇ m or less, and dried in an inert gas stream at 120 ° C. This is a method using a method of drying for 2 hours.
  • the pulverized particle size of coal is preferably 250 ⁇ m or less, which is the pulverized particle size in the industrial analysis of coal described in JIS M8812, from the viewpoint of producing a homogeneous sample from coal having a non-uniform structure and properties.
  • the heating rate is 3 ° C./min because the heating rate when coke is produced in a coke oven is about 3 ° C./min. However, the heating rate when coke to be evaluated by surface tension is produced. It is desirable to change according to.
  • the reason why it is preferable to heat the coal in an inert gas atmosphere is to prevent alteration due to the reaction between the coal and the gas. Examples of the inert gas include nitrogen, helium, argon, etc. A gas that does not react can be used.
  • the heating temperature (maximum temperature in the heat treatment) is preferably 350 ° C. or higher at which the coal starts softening and melting, and is preferably in a temperature range of 800 ° C. or lower where coking is completed.
  • the softening and melting temperature range of coal used for coke production is about 350 ° C. to 550 ° C., and it is considered that the adhesion structure is determined at 480 to 520 ° C. Therefore, the heat treatment temperature is preferably about 500 ° C.
  • the value of surface tension is previously calculated
  • the difference in surface tension of semi-coke obtained by heat-treating each coal is taken. If the value is large, the compatibility is bad, and if the difference value is small, the compatibility is good. Is determined. As a result of examining various blends, it was found that when the difference in surface tension between the two types of coal was 1.5 mN / m or more, the strength of the coke produced was significantly reduced. As the threshold value for determination, the above value of 1.5 mN / m can be used.
  • the compatibility with the surface tension of coal after heat treatment it is most desirable to compare the values at the same heat treatment temperature as the surface tension value of each coal.
  • the average value of tension can also be used for determination.
  • the surface tension value at the softening and melting characteristic temperature (for example, maximum flow temperature, softening start temperature, resolidification temperature) can be compared for each coal.
  • the measured value of the surface tension of the semi-coke of the mixture is used as the surface tension value of the semi-coke obtained from the mixture of two or more types of coal.
  • an average value of surface tension values of semi-coke obtained from each coal in the mixture may be used.
  • the compatibility between coals can be quantitatively evaluated, so that the coke strength can be predicted based on the evaluation. This can be achieved, for example, by adding a correction term including surface tension to a conventionally used strength prediction formula. Further, based on the compatibility evaluation, it is possible to select a desirable coal brand and determine its blending ratio so that the strength of the produced coke is increased. It is possible to produce high-strength coke by dry-distilling the blended coal composed of the selected coal brands. Here, the strength of the coke to increase the strength can be appropriately determined from the furnace capacity of the blast furnace, operating conditions, and the like.
  • the following index based on the difference in surface tension. That is, when there are n types of coal in the blended coal, when the blending ratio is w i (representing the blending ratio of 1, 2,..., I,. The existence probability of the ij interface formed by is expressed by the product of the blending ratio w i and the blending ratio w j , so that the absolute value of the difference in surface tension between the charcoal i and charcoal is ⁇ ij If so, the following formula (1) can be used as the index S of the difference in surface tension of the blended coal.
  • coal constituting 70% by mass or more is each coal
  • the absolute value of the difference between the surface tension of semi-coke obtained by heat-treating and the average value of the surface tension of semi-coke obtained from all coals constituting the blended coal falls within the range of 0.8 mN / m or less.
  • the surface tension value of semi-coke obtained from all coals falls within the range of ⁇ 1.5 mN / m of the average value of the semi-coke surface tension obtained by heat-treating each coal. It was confirmed that high-strength coke can be obtained by doing so.
  • the average value of the surface tension of semi-coke obtained from all coals constituting the blended coal is obtained by weighted average of the surface tension values of semi-coke obtained from each coal by the blending ratio of each coal. Preferably obtained.
  • the difference in surface tension described above also affects the interfacial tension at the bonding interface. That is, qualitatively, the adhesive strength at the interface between two substances is affected by the interfacial tension, and it can be said that the greater the interfacial tension, the weaker the adhesive strength. Therefore, the value of the interfacial tension can be used in place of the surface tension difference.
  • a method of estimating from the surface tension value of each substance is also known, not only to obtain the difference in surface tension, It is also possible to obtain the value of the interfacial tension based on a more accurate estimation theory and to perform compatibility estimation similar to the above using the interfacial tension.
  • compatibility between coals for producing coke is clearly shown based on the difference in surface tension of semi-coke obtained by heat treatment of coal. Based on this knowledge, the following judgment is possible. For example, when purchasing coal, it is possible to select and purchase a coal brand that is compatible with other brands of coal currently in use and is expected to produce high-strength coke when coke is produced. It becomes possible. In addition, when selling coal, by selling it to a purchaser who regularly uses a brand compatible with the coal, high-strength coke can be produced at the factory. Moreover, when using coal, high intensity
  • coal used as a raw material for coke as a sample this coal is pulverized to a particle size of 200 ⁇ m or less and charged into a graphite container, and is heated in an inert gas atmosphere (nitrogen) at 3 ° C./min to 500 ° C. by an electric furnace. Heat, immerse the entire container in liquid nitrogen and quench, then smash the generated semi-coke to 150 ⁇ m or less and dry in a dry inert gas stream at 120 ° C. for 2 hours to produce a semi-coke sample for surface tension measurement did. The surface tension distribution of each sample was measured by the film flotation method.
  • nitrogen nitrogen
  • the heating rate was 3 ° C./min because the heating rate when coke was produced in the coke oven was about 3 ° C./min.
  • the liquid used for the surface tension measurement by the film flotation method was an ethanol solution that was inexpensive and easy to handle. Based on the distribution of surface tension obtained from the film flotation method, the average value was used as the representative value of the surface tension of the sample.
  • the base coal blend a coal blend consisting of five brands of coal was prepared.
  • the surface tension value of the blended coal was an actual measurement value of 40.1 mN / m, and the weighted average value of the surface tension of each coal brand was 40.2 mN / m.
  • coal A having a surface tension of 40.1 mN / m and coal B having a surface tension of 37.5 mN / m were prepared as brand coals not included in the blended coal. .
  • coal A and coal B were blended at different blending ratios to prepare blended coal.
  • the blended charcoal was adjusted so that the content of particles having a particle size of 3 mm or less was 100% by mass and the water content was 8% by mass. 16 kg of this blended charcoal was charged to a bulk density of 750 kg / m 3 and dry-distilled in an electric furnace. After dry distillation at a furnace wall temperature of 1100 ° C. for 6 hours, nitrogen cooling was performed, and drum strength was measured.
  • the drum strength DI150 / 6 index is 6 mm or more after a coke with a particle size of 25 mm or more is charged into a predetermined drum tester conforming to the rotational strength test method of JIS K2151, and the drum is rotated 150 rpm at a rotation speed of 15 rpm.
  • This is a drum strength index obtained by measuring the mass ratio of coke and measuring the ratio to the charged amount ⁇ 100.
  • FIG. 1 shows the difference ( ⁇ DI) between the strength of the coke obtained at this time (DI150 / 6 index) and the strength of the coke produced from the base blend coal alone.
  • the composition of the coal in the base blend coal is slightly changed, and the vitrinite average maximum reflectance (average value of Ro) of the blended coal to which coal A or coal B is added.
  • the surface tension of the base coal blend slightly changed due to a slightly different blending composition, but the value was within a range of ⁇ 0.5 mN / m with respect to the value of the base coal blend.
  • the compounding rate of coal A or coal B is a ratio with respect to the total amount of coal, and the balance is base blended coal.
  • the coke strength is determined by the weighted average value of vitrinite average maximum reflectance of blended coal (average value of Ro, JIS M8816 compliant) and maximum fluidity MF of Gisela plastometer (JIS M8801). It is known that it is determined by a weighted average value of common logarithm values (logMF) of (compliance). Therefore, in this test, it is reasonable to estimate that the strength of the coke produced is approximately the same without affecting the blending ratio of coal A and coal B.
  • logMF common logarithm values
  • the surface tension value of the base blend coal is 0.7 mN / m lower than in the case of Example 1, and is actually 39.4 mN / m.
  • the base blend coal and the coal B to be added The difference in surface tension was smaller than the difference between the base blended coal and coal B in the case of blending b.
  • the strength of the coke obtained from the b 'blend was investigated, the strength was improved by 0.5 points compared to the case of the b blend.
  • the inventors examined the relationship between the difference in surface tension of semi-coke and the adhesive strength between coals.
  • the coals (EM) shown in Table 1 were selected, and the adhesive strength between the two coal types in the combinations shown in Table 2 was measured by the following method. 1. As shown in Table 2, two types of coal were mixed well at a mass ratio of 1: 1, and the coal was pulverized to 70 ⁇ m or less. 2. The amount of coal was adjusted so that the molded product had a diameter of 6.6 mm and a thickness of 2.5 mm, and the coal was charged into a mold having a hole with a diameter of 6.6 mm. 3. A molded product was prepared by applying a load of 14 MPa to the mold for 10 seconds. Ten molded products were prepared for each type of blended coal.
  • the bulk density of the moldings was different depending on the coal brand, and their values were in the range of 860 to 920 kg / m 3 .
  • Ten molded articles were placed in a powder coke packed bed adjusted to 1 mm or less and subjected to dry distillation using an electric furnace. The powder coke was filled in an iron container of 200 mm ⁇ 200 mm ⁇ H 500 mm.
  • the dry distillation conditions were dry distillation to 1000 ° C. at 3 ° C./min in a nitrogen atmosphere, and cooling in a nitrogen atmosphere after dry distillation.
  • the compressive strength was measured using an autograph manufactured by Shimadzu Corporation. A load was applied in the thickness direction of the measurement sample, and the load at break was measured.
  • the pressure obtained by dividing the load by the area of the load application surface of the measurement sample was defined as the adhesive strength.
  • the compressive strength and the area of the load application surface of 10 measurement samples of one level were measured, and the average of the respective adhesive strengths was defined as the adhesive strength at that level.
  • the measurement results are shown in Table 2.
  • the compressive strength reflects not only the adhesive strength at the interface, but also the strength of coke itself obtained from each coal alone and the adhesive strength between plain coals, but the coal is pulverized to increase the interface.
  • FIG. 2 is a graph showing the relationship between the difference in surface tension ( ⁇ ) [mN / m] of each coal and the adhesive strength [MPa].
  • surface tension
  • FIG. 2 shows that the strength is low.
  • the correlation between the difference in surface tension and the compressive strength is good. This is especially true for coal with small MF, because it is likely to be coke in such a form that the melted coal simply comes into contact rather than forming an interface where the coal melts and melts. Presumed to be. From FIG.
  • the surface tension of the semi-coke obtained from each coal shown in Table 3 is obtained by the same method as in Example 1.
  • the Ro and log MF of the coal blend are weighted based on the coal blending ratio of Ro and log MF of the coal used in the blending.
  • a value obtained by averaging, and a surface tension average value ⁇ ave of blended coal are values obtained by weighted averaging the surface tension values of semi-coke obtained from each coal based on the blending ratio.
  • Coal blending ratio and coke strength where the surface tension value of semi-coke falls within the range of ⁇ ave +1.5 [mN / m] or less and ⁇ ave -1.5 [mN / m] or more.
  • the relationship is shown in FIG. According to FIG. 3, all the coals are blended so that the surface tension of the semi-coke falls within the range of ⁇ ave +1.5 [mN / m] or less and ⁇ ave ⁇ 1.5 [mN / m] or more.
  • Example 1 shows the results of investigating the relationship between the blending ratio of coal in the range of ⁇ 0.8 [mN / m] or more (also shown in Table 3) and coke strength. From FIG.
  • 70% by mass or more of the coal in the blended coal has a surface tension of semi-coke of ⁇ ave +0.8 [mN / m] or less and ⁇ ave ⁇ 0.8 [mN / m] or more. It is understood that by blending so as to enter the range, strength reduction due to the compatibility of coal is suppressed and high strength coke can be produced. That is, if 70% by mass or more of coal in the blended coal is close to the average value of surface tension, even if about 30% by mass of coal out of the range is included, there is no problem in the production of high strength coke. I understand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Coke Industry (AREA)

Abstract

 コークス製造における石炭間の相性を定量的に明らかにし、相性を考慮してコークス強度を推定し、また、相性を考慮したコークス強度に基づいて原料石炭を選定し、かつ配合し、望ましい強度のコークスを製造することのできる技術を提供する。 複数の種類の石炭を混合して製造されるコークスの強度を、前記複数の種類の熱処理した石炭の表面張力の差に基づいて予測し、配合する石炭の種類と配合率を決定する、コークス製造用石炭の配合方法である。

Description

コークス製造用石炭の配合方法及びコークスの製造方法
 本発明は、銘柄の異なる複数の種類の石炭で構成される配合炭から製造されるコークスの強度を推定し、推定されるコークス強度に基づく強度の高いコークスを得るためのコークス製造用石炭の配合方法、及び、最適に配合された配合炭から強度の高いコークスを製造する方法に関する。
 高炉において溶銑を製造する際に原料として用いられるコークスは、強度の高いものが望ましいことが、広く知られている。これは、コークスの強度が低いと高炉内でコークスが粉化し、高炉の通気性が阻害され、安定的な溶銑の生産が行えなくなるためである。
 室炉式コークス炉を用いて石炭を乾留して製鉄用コークスを製造する場合、生成するコークスの強度は、原料石炭の選択方法、事前処理方法、乾留条件、消火条件、事後処理条件などの影響を受ける。これらの条件の中で、設備や操業に係わる条件は設備的制約があるために大きく変更することが難しいことから、原料石炭の選択がコークス品質を制御する上で最も重要な要素と認識されている。
 所望する強度を有するコークスを得るための原料石炭の配合方法としては、非特許文献1に述べられている方法を始めとして種々の方法が知られているが、いずれも、配合する原料石炭の性状に基づいて生成するコークスの強度を予測し、予測される強度が高くなるように原料石炭の配合を決定する方法が採用されている。
 しかしながら、従来の配合決定方法においては、往々にしてコークス強度が正確に推定できない場合があることが知られている。その例としては、「石炭の相性(compatibility)」と呼ばれている効果が挙げられ、例えば特許文献1に示すように、配合する前の石炭単味から得られるコークスの強度と、配合炭から得られるコークスの強度に加成性が成立しない場合があることが知られている。このような「相性」効果が発生する原因を探るべく、種々の検討が行われているが、確実に「相性」を予測し、「相性」の良い石炭の組み合わせを明確化することのできる技術は未だ未確立である。
特開平9-255966号公報
宮津ら、日本鋼管技報、第67巻(1975年)、p.1
 上記のように石炭の相性については不明な点が多く、配合炭から製造したコークスが予測した強度に達しない場合が発生していた。特許文献1に記載の技術であっても、多数の石炭の組合せのそれぞれについて、実験的に相性を求めることは簡便性に欠ける。さらに、特許文献1で相性の推定に用いられる特性値が最高流動度(MF)、平均反射率(Ro)、全活性成分量(TR)など、従来のコークス強度の推定に用いられる特性値であるため、従来の方法で説明できない相性効果を評価するためには不十分である。
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、コークス製造における石炭間の相性を定量的に明らかにし、相性を考慮してコークス強度を推定し、また、相性を考慮したコークス強度に基づいて原料石炭を選定し、原料石炭をかつ配合し、望ましい強度のコークスを製造することのできる技術を提供することである。
 本発明者らは、上記課題を解決するべく鋭意検討した。その結果、熱処理した石炭の表面張力が、コークス製造における石炭の相性をよく表現することを知見した。ここで、熱処理した石炭とは、石炭を不活性ガス雰囲気下で350℃~800℃に加熱後不活性雰囲気下で冷却して得たものであり、以下セミコークスとも言う。なお、石炭の相性とは、石炭を配合する際の組み合わせの良好さの度合いであり、本発明では、組み合わせることで製造されるコークスの強度が増加またはほとんど変化しないような石炭を相性の良い石炭と定義し、組み合わせることで製造されるコークスの強度が低下するような石炭を相性の悪い石炭と定義する。
 本発明は上記知見に基づきなされたものであり、その要旨は以下のとおりである。
[1]複数の種類の石炭を混合してコークスの製造に用いる配合炭を調製するコークス製造用石炭の配合方法であって、前記複数の種類の石炭を熱処理した石炭の表面張力の差に基づいて、配合する石炭の種類および配合率を決定する、コークス製造用石炭の配合方法。
[2]複数の種類の石炭の混合物に対し、さらに石炭を混合してコークスを製造する場合において、前記複数の種類の石炭の混合物を熱処理した石炭の表面張力と、前記さらに混合する石炭を熱処理した石炭の表面張力との差が1.5mN/m以下となるように石炭を選択し、該選択した石炭を混合する、[1]に記載のコークス製造用石炭の配合方法。
[3]複数の種類の石炭からなる配合炭のすべての石炭を、それぞれ熱処理した石炭の表面張力が、前記それぞれの熱処理した石炭の表面張力の(平均値-1.5)mN/m以上かつ(平均値+1.5)mN/m以下の範囲に入る石炭を選択して配合する、[1]に記載のコークス製造用石炭の配合方法。
[4]複数の種類の石炭からなる配合炭のうちで、70質量%以上を構成する石炭は、それぞれの熱処理した石炭の表面張力と配合炭を構成する全ての石炭から得られる熱処理した石炭の表面張力の平均値との差の絶対値が0.8mN/m以下の範囲内に入るように石炭を配合する、[1]または[3]に記載のコークス製造用石炭の配合方法。
[5]配合炭を構成する複数の種類の石炭を熱処理した石炭の表面張力と、それぞれの石炭の配合率から、下記(1)式で求められる表面張力の差の合計値Sが1.0mN/m以下となるように石炭を配合する、[1]ないし[4]に記載のコークス製造用石炭の配合方法。
Figure JPOXMLDOC01-appb-M000001
ここで、wiとwjは石炭iと石炭jの配合比率であり、Δγijは石炭iと石炭jをそれぞれ熱処理した石炭の表面張力の差の絶対値であり、nは配合する石炭の数である。
[6][1]ないし[5]のいずれか1項に記載のコークス製造用石炭の配合方法で配合された石炭を乾留してコークスを製造する、コークスの製造方法。
 なお、本発明においては、以下のような実施も可能である。
[7]複数の種類の石炭の表面張力をそれぞれ測定し、測定したそれぞれの石炭の表面張力の差に基づいて、前記複数の種類の石炭を混合してコークスを製造した場合に製造されるコークスの強度を予測することを特徴とする、コークス強度の推定方法。
[8]複数の種類の石炭の表面張力をそれぞれ測定し、測定したそれぞれの石炭の表面張力の差に基づいて、前記複数の種類の石炭を混合してコークスを製造した場合に製造されるコークスの強度を予測し、製造されるコークスの強度が高くなるように配合する石炭を決定することを特徴とする、コークス製造用石炭の配合方法。
[9]1種類の石炭または複数の種類の石炭の混合物に対し、さらに石炭を混合してコークスを製造する場合において、前記1種類の石炭または複数の種類の石炭の混合物の表面張力との差が1.5mN/m以下となる石炭を選択し、選択した石炭を混合する石炭として使用することを特徴とする、コークス製造用石炭の配合方法。
[10]複数の種類の石炭からなる配合炭のうちで、80質量%以上を構成する石炭は、それぞれの表面張力の差の絶対値が3.0mN/m以下の範囲内に入るように石炭を配合することを特徴とする、コークス製造用石炭の配合方法。
[11]複数の種類の石炭の表面張力をそれぞれ測定し、測定したそれぞれの石炭の表面張力の差に基づいて、前記複数の種類の石炭を混合してコークスを製造した場合に製造されるコークスの強度を予測し、製造されるコークスの強度が高くなるようにコークス用石炭を選定することを特徴とする、コークス製造用石炭の選定方法。
[12]前記石炭を熱処理した後に前記表面張力を測定することを特徴とする、上記[7]に記載のコークス強度の推定方法。
[13]前記石炭を熱処理した後に前記表面張力を測定することを特徴とする、上記[8]ないし上記[10]のいずれか1項に記載のコークス製造用石炭の配合方法。
[14]前記石炭を熱処理した後に前記表面張力を測定することを特徴とする、上記[11]に記載のコークス製造用石炭の選定方法。
[15]上記[8]、上記[9]、上記[10]、上記[13]のいずれか1項に記載のコークス製造用石炭の配合方法で配合された石炭を乾留してコークスを製造することを特徴する、コークスの製造方法。
 本発明によれば、原料として用いる石炭間の相性を表面張力に基づいて定量的に評価するので、複数の種類の石炭を混合してコークスを製造した場合に製造されるコークスの強度を正確に予測することが可能となり、また、製造されるコークスの強度が高くなるように配合する石炭を選定しかつ決定することが可能となり、さらには高強度のコークスを製造することが可能となる。
表面張力の差が小さい石炭A、及び、表面張力の差が大きい石炭Bを添加した場合のコークス強度の変化を示す図である。 それぞれの石炭の表面張力の差(Δγ)[mN/m]と接着強度[MPa]との関係を示す図である。 セミコークスの表面張力値が、γave+1.5[mN/m]以下、かつγave-1.5[mN/m]以上の範囲に入る石炭の配合比率とコークス強度の関係を示す図である。 セミコークスの表面張力値が、γave+0.8[mN/m]以下、かつγave-0.8[mN/m]以上の範囲に入る石炭の配合比率とコークス強度の関係を示す図である。 セミコークスの表面張力値の差の合計Sとコークス強度の関係を示す図である。
 一般に、極性溶媒は極性物質をよく溶解し、無極性溶媒は無極性物質をよく溶解することが知られている。固体物質においても同様に、化学的特性の異なる2種の物質が接着した場合、その特性(例えば表面張力値など)が近似しているほど接着の強度は高くなる。石炭がコークス化する過程では、加熱により石炭が一旦溶融して再固化し、コークスが生成する過程において、異なる石炭同士が接着して強固なコークス構造を形成する必要がある。
 従来の考え方では、この接着構造は石炭同士の融着によって形成されるものと考え、石炭の溶融性(例えばギーセラー最高流動度MF)が重要な役割を担っているとされてきた。これに対し、本発明者らは、異種の石炭が接着する現象自体に着目し、この接着の強さもコークスの強度に何らかの影響を及ぼしているのではないかと考えて検討を行った。その結果、表面張力の差とコークス強度との関係を実験的に確認することができた。
 上記の接着現象を検討する場合、実際に石炭が軟化溶融している温度(350℃~550℃)において溶融物の表面張力を測定し、その値を利用することが望ましいと考えられる。しかしながら、こうした高温域での表面張力の測定方法は知られていない。そこで、本発明者らは種々の代替法を検討した結果、一旦、石炭の軟化溶融温度以上コークス化温度以下である350~800℃で熱処理した石炭を常温に冷却した後の表面張力、好ましくは常温に急冷却した後の表面張力を用いることで石炭間の接着強度をよく表現でき、これらの接着現象がコークスの強度にも影響を及ぼすことを見出した。また、上記表面張力は、原料石炭の表面張力から推定可能であることも見出した。
 すなわち、異種の石炭を熱処理して得られるセミコークスの表面張力の差が小さいほど、その石炭を混合して製造したコークスの強度が高くなり、表面張力の差が大きいほど、コークス強度が低くなる傾向が認められた。この新たな知見に基づき、本発明は完成に至った。以下にその詳細を説明する。
 石炭またはその熱処理物の表面張力の測定方法としては、公知の方法、例えばフィルムフローテーション法(D.W.Fuerstenau、International Journal of Mineral Processing、20巻(1987年)、p.153を参照)を用いることができる。この方法は、石炭であってもその熱処理物(セミコークス)であっても同様に適用することができ、微粉砕した試料を用いて、表面張力の分布を求めることができる方法である。ここで、フィルムフローテーション法とは、粉砕した試料粒子を気相中から液体の表面上に落下させて、試料粒子が液体に浸漬するとき(接触角がほぼ0°に等しいとき)、試料粒子の表面張力と液体の表面張力とが等しいとする考え方を応用して表面張力を測定する方法である。表面張力が異なる種々の液体に試料粒子を落下させ、それぞれの液体に対して浮遊した試料粒子の質量割合を求め、その結果を頻度分布曲線に表すことで、表面張力分布を得ることができる。
 得られた表面張力の分布の平均値を、その試料の表面張力の代表値とすることができる。以下、各試料の表面張力分布の平均値を、それぞれの試料の表面張力値と呼ぶ。また、表面張力の分布を考慮した値(分布の標準偏差など)を代表値とすることもできる。石炭の熱処理物を試料として表面張力を測定する場合には、熱処理温度をその試料が軟化溶融する温度域に設定することが好ましい。
 フィルムフローテーション法による表面張力の測定は次のように行なうことが好ましい。フィルムフローテーション法で用いる液体は、石炭及び軟化溶融時の石炭の表面張力値が20~73mN/mの範囲に分布していることから、この範囲内の表面張力を有する液体を用いればよい。例えば、エタノール、メタノール、プロパノール、tert-ブタノール、アセトンなどの有機溶媒を用いて、これらの有機溶媒の水溶液から20~73mN/mの表面張力を有する液体を作製することが可能である。表面張力を測定するサンプルの粒度については、前述の測定原理から、接触角がほぼ0°に等しいときの表面張力を測定することが望ましく、粉砕した試料粒子の粒径が大きくなるにつれて接触角が増加するので、粒径は小さいほど望ましい。しかし、試料粒子の粒径が53μm未満の場合は凝集しやすいことから、この凝集を防止するために試料粒子は粒径53~150μmに調整することが好ましい。
 石炭を熱処理してセミコークス試料を作成する方法の一例としては次のような条件が好ましい。石炭を粒径200μm以下に粉砕し、不活性ガス雰囲気中で3℃/minで500℃まで加熱し、液体窒素で急冷後、150μm以下に粉砕し、乾燥された不活性ガス気流中120℃で2時間乾燥する方法を用いる方法である。石炭の粉砕粒度は、組織、性状などが不均一である石炭から均質な試料を作製するという観点から、JIS M8812に記載されている石炭の工業分析における粉砕粒度である250μm以下が望ましい。加熱速度は、コークス炉においてコークスが製造されるときの加熱速度が約3℃/minであるので3℃/minとしたが、表面張力による評価の対象となるコークスが製造されるときの加熱速度に応じて変えることが望ましい。石炭の加熱を不活性ガス雰囲気中で行なうことが好ましい理由は、石炭とガスとの反応による変質を防止するためであり、不活性ガスとしては、窒素、ヘリウム、アルゴンなど、加熱中に石炭と反応しないガスを用いることができる。加熱温度(熱処理における最高温度)は石炭が軟化溶融を開始する350℃以上で、コークス化が完了するといわれている800℃以下の温度域とすることが好ましい。一般にコークス製造に用いられる石炭の軟化溶融温度域は350℃~550℃程度であり、480~520℃で接着構造が決まると考えられるため、熱処理温度は500℃近傍の温度とすることが好ましい。また、加熱終了後の冷却も、不活性ガス雰囲気中で行なうことが好ましい。これは冷却中における石炭とガスの反応を防止するためである。また、加熱状態における石炭の分子構造をなるべく維持した状態で冷却するために、10℃/分以上の速度で急冷することが好ましい。乾燥方法については表面に付着した水分を除去できる方法ならばどのような方法でも構わず、窒素、アルゴンなどの不活性ガス中で100~200℃に加熱する方法の他にも、減圧下で乾燥する方法なども採用できる。
 コークス製造用原料として用いる石炭について、品種(種類)毎に、上記方法によって表面張力の値を予め求めておく。2種の石炭の相性を判定する場合には、それぞれの石炭を熱処理して得たセミコークスの表面張力の差をとり、その値が大きければ相性が悪く、差の値が小さければ相性が良いと判定する。種々の配合について検討した結果、2種の石炭の表面張力値の差が1.5mN/m以上となると、生成するコークスの強度が著しく低下することが認められたことから、相性の良し悪しを判定する閾値としては、上記の1.5mN/mの値を用いることが可能である。
 熱処理した後の石炭の表面張力で相性を判定する場合には、それぞれの石炭の表面張力値としては、同じ熱処理温度での値同士を比較することが最も望ましいが、或る温度域での表面張力の平均値を判定に用いることもできる。また、石炭毎に、軟化溶融特性温度(例えば、最高流動温度、軟化開始温度、再固化温度)での表面張力値を比較することもできる。或る石炭と2種以上の石炭の混合物との相性を評価する場合には、2種以上の石炭混合物から得られるセミコークスの表面張力値としてその混合物のセミコークスの表面張力の実測値を用いてもよいし、混合物中のそれぞれの石炭から得られるセミコークスの表面張力値の平均値(組成を考慮した加重平均値が好ましい)を用いてもよい。
 このようにして、石炭間の相性が定量的に評価できるので、その評価に基づいて、コークス強度を予測することが可能となる。これは、例えば従来用いられている強度の予測式に表面張力を含む修正項を付加することによって可能である。また、相性の評価に基づいて、製造されるコークスの強度が高くなるように、望ましい石炭銘柄を選択し、その配合率を決定することが可能となる。そうして選択された石炭銘柄から構成される配合炭を乾留することで高強度のコークスを製造することが可能となる。ここで、強度が高くなるようにするコークスの強度は、高炉の炉容や操業条件等から適宜定めることができる。
 複数の石炭からなる配合炭を乾留して得られるコークスの強度を予測する場合、表面張力の差に基づく、次の指標を用いることが好ましい。すなわち、配合炭中にn種類の石炭が存在する場合に、その配合率をwi(1、2、…、i、…、n炭の配合率を表す)とするとき、i炭とj炭によって形成されるi-j界面の存在確率は、配合率wiと配合率wjとの積で表されることから、i炭とj炭との表面張力の差の絶対値をΔγijとすれば、配合炭の表面張力の差の指標Sとして、下記の(1)式で表す式を用いることができる。
Figure JPOXMLDOC01-appb-M000002
 また、複数の石炭からなる配合炭を乾留して得られたコークスの強度を調査した結果、複数の種類の石炭からなる配合炭のうちで、70質量%以上を構成する石炭は、それぞれの石炭を熱処理して得られるセミコークスの表面張力と、配合炭を構成する全ての石炭から得られるセミコークスの表面張力の平均値との差の絶対値が0.8mN/m以下の範囲内に入るように各種石炭を配合することで、強度の高いコークスが得られることが確認できた。また、すべての石炭から得られるセミコークスの表面張力値が、それぞれの石炭を熱処理して得られるセミコークスの表面張力の平均値の±1.5mN/mの範囲に入るように各種石炭を配合することによっても強度の高いコークスが得られることが確認できた。なお、この際、配合炭を構成する全ての石炭から得られるセミコークスの表面張力の平均値は、それぞれの石炭から得られるセミコークスの表面張力値を、それぞれの石炭の配合比率で加重平均して求めることが好ましい。
 なお、上記の表面張力の差は接着界面における界面張力にも影響する。すなわち、定性的には2種の物質の界面の接着強度は、その界面張力に影響され、界面張力が大きいほど、接着強度が弱くなるということがいえる。従って、上記表面張力差の代わりに界面張力の値を用いることもできる。2種の物質の界面張力については、その測定を行うことも可能ではあるが、個々の物質の表面張力の値から推算する方法も知られており、単に表面張力の差を求めるだけでなく、より精度の高い推定理論に基づいて界面張力の値を求め、その界面張力を用いて上記と同様の相性推定を行うことも可能である。
 なお、上記説明は、コークス原料用の大部分を占める石炭について本発明を適用した例を示したが、それ以外の配合原料、たとえばオイルコークス類、ピッチ類、その他有機物類に対する適用も原理的に可能である。
 以上のようにして、石炭の熱処理により得られるセミコークスの表面張力の差に基づけばコークス製造用石炭間における相性が明確に示される。この知見に基づくことにより、以下に示す判断が可能になる。例えば、石炭の購入にあたり、現在使用している他の銘柄の石炭と相性が良く、コークスを製造した場合に高強度のコークスが製造できると予想されるような石炭銘柄を選んで購入することが可能となる。また、石炭を販売する場合には、その石炭と相性のよい銘柄を常用している購入先に販売することで、その工場において高強度のコークスを製造可能とさせることができる。また、石炭を使用する場合においては、可能な限り相性の良い(表面張力値の近い)石炭を組み合わせて使用することにより、高強度のコークスを製造することができる。また、表面張力の差を指標とすることで、配合炭から生成するコークスの強度をより正確に予測できるようになり、コークス強度の制御精度が向上し、高炉操業の安定にも寄与する。
 このように、石炭またはその熱処理物の表面張力値を利用することにより、従来の方法では不可能であった石炭間の相性の定量的評価が可能になったことで、購買及び使用における石炭の効果的な選定が可能になるという効果が得られる。
 コークス原料用として用いる石炭を試料として、この石炭を粒径200μm以下に粉砕して黒鉛製の容器に装入し、不活性ガス雰囲気(窒素)中で3℃/minで500℃まで電気炉により加熱し、液体窒素に容器ごと浸漬して急冷後、生成したセミコークスを150μm以下に粉砕し、乾燥された不活性ガス気流中120℃で2時間乾燥し、表面張力測定用セミコークス試料を作製した。フィルムフローテーション法により、それぞれの試料の表面張力の分布を測定した。加熱速度は、コークス炉においてコークスが製造されるときの加熱速度が約3℃/minであるので、3℃/minとした。フィルムフローテーション法での表面張力測定に利用する液体には、安価かつ取り扱いが簡便なエタノール水溶液を用いた。フィルムフローテーション法から得られる表面張力の分布に基づき、その平均値をその試料の表面張力の代表値とした。
 ベースの配合炭としては、5銘柄の石炭からなる配合炭を準備した。このとき、この配合炭の表面張力の値は実測値40.1mN/mで、各石炭銘柄の表面張力の加重平均値は40.2mN/mであった。このベースの配合炭に対し、当該配合炭に含まれない銘柄の石炭として、表面張力が40.1mN/mである石炭Aと、表面張力が37.5mN/mである石炭Bとを用意した。
 ベースの配合炭に対し、配合率を変えて石炭A及び石炭Bをそれぞれ配合し、配合炭を調製した。配合炭は、粒度を3mm以下の粒子の含有率が100質量%、水分を8質量%に調整した。この配合炭16kgを嵩密度750kg/m3に充填し、電気炉で乾留した。炉壁温度1100℃で6時間乾留後、窒素冷却し、ドラム強度を測定した。ドラム強度DI150/6指数はJIS K2151の回転強度試験法に準拠した所定のドラム試験機に粒径25mm以上のコークスを装入し、ドラムの回転速度15rpmで150回転させた後の粒径6mm以上のコークスの質量割合を測定し、装入量に対する比率×100として得たドラム強度指数である。このときに得られたコークスの強度(DI150/6指数)と、ベース配合炭のみから製造したコークスの強度との差(ΔDI)を図1に示す。なお、石炭Aまたは石炭Bを配合する場合には、ベース配合炭中の石炭の構成を若干変えて、石炭Aまたは石炭Bを添加した配合炭のビトリニット平均最大反射率(Roの平均値)の加重平均値が1.01%、ギーセラープラストメータの最高流動度(logMF)の加重平均値が2.35(単位=log(MF/ddpm))となるように調整した。その際、配合構成が若干異なることによりベース配合炭の表面張力が若干変動したが、その値は、上記ベース配合炭の値に対し、±0.5mN/mの範囲内の変動であった。尚、石炭Aまたは石炭Bの配合率は全量の石炭に対する比率であり、残部がベース配合炭である。
 従来のコークス強度推定の考え方によれば、コークス強度は、配合炭のビトリニット平均最大反射率(Roの平均値、JIS M8816準拠)の加重平均値とギーセラープラストメータの最高流動度MF(JIS M8801準拠)の常用対数値(logMF)の加重平均値とで決定されることが知られている。従って、この試験においては、製造されるコークスの強度は、石炭A及び石炭Bの配合率に影響することなく概略同程度と推定するのが妥当である。しかしながら図1によれば、ベース配合炭と表面張力値の近い石炭Aを添加した場合には、コークス強度の変化が比較的小さかったのに対し、ベース配合炭と表面張力が大きく異なる石炭Bを配合した場合には、配合率が高くなるほど強度低下を起こすことが明らかとなった。
 この結果は、石炭を混合した場合の「相性」が顕著に現われている例である。すなわち、ベース配合炭に対し、石炭Aは相性が良く(配合により強度低下しない)、石炭Bは相性が悪い(配合により強度低下する)と判断される。このとき、表面張力の差を調べてみると、石炭A配合の場合には石炭Aとベース配合炭との表面張力の差が小さく、石炭B配合の場合には石炭Bとベース配合炭との表面張力の差が大きくなっている。
 これらの結果から、表面張力の差は石炭の相性の良し悪しを判断するための指標となることが明らかとなった。
 実施例1で用いた、石炭Bを30質量%配合した条件において(b配合と呼ぶ)、ベース配合炭のうちの表面張力値が40.9mN/mの石炭(石炭C)を、表面張力値が39.1mN/mの石炭Dに置換した(b’配合と呼ぶ)。なお、石炭Cと石炭Dは、ビトリニット平均最大反射率(Roの平均値)及びギーセラープラストメータの最高流動度の常用対数値(logMF)がほぼ同じ石炭であり、石炭Dはもともとのベース配合炭には含まれない石炭である。
 この変更によりベース配合炭の表面張力値は実施例1の場合よりも0.7mN/m低下し、実測値で39.4mN/mとなり、b’配合では、ベース配合炭と添加する石炭Bとの表面張力の差が、b配合の場合でのベース配合炭と石炭Bとの差よりも小さくなった。b’配合から得られたコークスの強度を調査したところ、b配合の場合に比べて、強度が0.5ポイント向上した。
 この結果からも、配合する石炭の表面張力値の差が小さいほど強度が向上することが明らかとなった。また、この結果より、石炭Bの性質そのものが悪いために実施例1において石炭Bの配合によって強度低下を引き起こしたわけではなく、石炭の組み合わせの良し悪しによってコークス強度に影響が現れたものと結論づけることができる。
 実施例1と2から、複数の石炭をそれぞれ熱処理して得られるセミコークスの表面張力の差が大きいほど、それらの石炭の混合物を乾留して製造したコークスの強度が低下すること、および、セミコークスの表面張力の差の大きな石炭の配合率が大きいほど、強度低下は大きくなることが明らかとなった。しかし、この例のみでは、表面張力の差がどの程度大きいと強度低下が顕著となるかは明らかでない。
 そこで発明者らは、セミコークスの表面張力の差と、石炭間の接着強度との関係を検討した。表1に示す石炭(E~M)を選定し、表2に示す組合せにおける2炭種間の接着強度を以下の方法で測定した。
1.表2に示すように2種類の石炭を質量比1:1の割合でよく混合し、石炭を70μm以下に粉砕した。
2.成形物の寸法が直径6.6mm、厚さ2.5mmとなるよう石炭量を調整し、直径6.6mmの孔を持つモールドへ石炭を装入した。
3.モールドに対して、14MPaの荷重を10秒間付加して成形物を作成した。1種類の配合炭あたり10個の成形物を作成した。
  成形物の嵩密度は石炭銘柄により異なっており、それらの値は860から920kg/mの範囲にあった。成形物は、1mm以下に調整された粉コークス充填層に10個配置し、電気炉を用いて乾留した。粉コークスは200mm×200mm×H500mmの鉄製容器に充填した。乾留条件は、窒素雰囲気下で、3℃/minで1000℃まで乾留し、乾留後は窒素雰囲気下で冷却した。圧縮強度の測定は島津製作所製のオートグラフを用いて行った。測定試料の厚さ方向に荷重をかけ、破壊時の荷重を測定した。荷重を測定試料の荷重付加面の面積で除した圧力を接着強度とした。1水準10個の測定試料の圧縮強度、荷重付加面の面積を測定し、それぞれの接着強度の平均をその水準の接着強度とした。測定結果を表2に示す。この接着強度の試験方法においては、2種の石炭が混合されていることから、試料中にはそれらの石炭の多数の界面が存在する。圧縮強度はその界面における接着強度のみならず、それぞれの石炭のみから得られるコークス自体の強度や、単味石炭同士の接着強度も反映したものとなるが、石炭を微粉砕して界面を増大させていることおよび、確率的に石炭粒子の接触点の1/2が異種石炭間の界面となることから、界面の接着性を反映した強度となるものと考えられる。また、それぞれの石炭から得られたセミコークスの表面張力の差の絶対値(Δγ)も表2に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 
図2は、それぞれの石炭の表面張力の差(Δγ)[mN/m]と接着強度[MPa]との関係を示したグラフである。図2に示すように、2つのセミコークスの表面張力の差Δγが小さいほど強度が高く、2種の石炭間の接着性が良好であることが示され、表面張力の差が大きい組合せでは接着強度が低いことがわかる。特に、MFの小さい石炭同士(2種の平均logMFが概ね2以下の組み合わせ)の強度においては、表面張力の差と圧縮強度の相関がよくなっている。これは、MFが小さい石炭では、石炭が溶融して溶け合った界面を形成するよりも、単純に溶けた石炭同士が接触するような形態のコークスとなりやすいためにこのような傾向が顕著になったものと推測される。図2より、表面張力の差Δγが1.5を超えると、顕著な強度低下が認められる。従って、ある石炭に別の石炭を混合しようとする場合には、両者の石炭から得られるセミコークスの表面張力の値の差を1.5mN/m以下にすることによって、強度低下を抑止することができることがわかる。
  次に、表面張力の差による相性評価の方法に基づいて多銘柄の石炭を配合して強度の高いコークスを製造する好適な方法を検討した。多銘柄配合において、表面張力の差を小さくするためには、表面張力の値が、ある上下限値で決まる範囲の間に入るような石炭を選定すればよいと考えられる。
 表3に示す13種類の石炭を用い、配合炭のビトリニット平均最大反射率Ro、キーセラー最高流動度の常用対数値logMFがほぼ一定となるような4種類の配合炭を調製した。その配合炭を実施例1と同じ方法で乾留して得たコークスの強度を調査した。本実施例では、コークス強度はJIS K2151に準拠し、コークスを装入したドラムを150回転後、15mm以上のコークスの質量に基づいて算出したDI150/15強度指数を測定した。また、ISO18894に準拠してコークスのCO反応後強度CSRも求めた。CSRはDIと同様の傾向を示した。表3に示す各石炭から得られるセミコークスの表面張力は実施例1と同じ方法で求め、配合炭のRo、logMFは、配合に用いた石炭のRo、logMFを石炭の配合比率に基づいて加重平均して求めた値、配合炭の表面張力平均値γaveは各石炭から得られたセミコークスの表面張力値を配合比率に基づいて加重平均した値である。
 ここで、表面張力の好ましい範囲を決定するため、配合炭を構成する各石炭から得られるセミコークスの表面張力の平均値(γave)から、上下に所定の値だけ離れた上限値と下限値を設定し、セミコークスの表面張力値がその上限値と下限値の間に入る石炭の配合比率と、その配合炭から得られるコークス強度の関係を調査した。
 セミコークスの表面張力値が、γave+1.5[mN/m]以下、かつγave-1.5[mN/m]以上の範囲に入る石炭の配合比率(表3に併記)とコークス強度の関係を図3に示す。図3より、すべての石炭を、そのセミコークスの表面張力がγave+1.5[mN/m]以下、かつγave-1.5[mN/m]以上の範囲に入るように配合することで、石炭の相性による強度低下を抑止し、高強度のコークスが製造可能であることがわかる。
 しかし、実施例1より、表面張力の差が大きな石炭であってもその配合率が少なければ強度低下は軽微であることが示唆される。そこで、表面張力の平均値(γave)に比べて差の大きな石炭の配合比率上限を定める目的で、セミコークスの表面張力値が、γave+0.8[mN/m]以下、かつγave-0.8[mN/m]以上の範囲に入る石炭の配合比率(表3に併記)とコークス強度の関係を調査した結果を図4に示す。図4より、配合炭中の70質量%以上の石炭が、そのセミコークスの表面張力がγave+0.8[mN/m]以下、かつγave-0.8[mN/m]以上の範囲に入るように配合することで、石炭の相性による強度低下を抑止し、高強度のコークスが製造可能であることがわかる。すなわち、配合炭中の70質量%以上の石炭が表面張力の平均値に近い種類であれば、その範囲を外れる石炭が30質量%程度含まれていても高強度コークスの製造に支障がないことがわかる。
 表面張力の差に基づいて石炭の配合を決定する別の方法として、式(1)に示した各銘柄から得られるセミコークスの表面張力値の差の合計Sを用いる場合の好適な条件を調査した。それぞれの配合について求めたSの値も表3に示す。Sとコークス強度の関係を示した図5より、Sを1.0[mN/m]以下になるように石炭の種類と配合率を決定して配合することで高強度のコークスの製造が可能であることがわかる。
Figure JPOXMLDOC01-appb-T000003
 
石炭α、石炭βについて、熱処理温度を変えて実施例1の方法と同様にセミコークス試料を調製し、その表面張力を測定した。その結果を表4に示す。表4より、350℃以上の温度域において、熱処理温度が高くなるほど、表面張力の値が大きくなる傾向が認められる。しかし、同一の熱処理温度における2種のセミコークスの表面張力の差はほぼ一定であり、セミコークスを調製する温度を変えても異なる石炭についての表面張力の大小関係は変わらなかった。従って、セミコークスを調製する際の熱処理温度は、350℃~800℃の範囲であれば、本発明の方法は有効である。なお、このような表面張力の熱処理温度依存性を考慮すると、配合に用いるすべての石炭は実質的に同一の熱処理温度で処理して、表面張力を評価すべきである。
Figure JPOXMLDOC01-appb-T000004
 

Claims (6)

  1.  複数の種類の石炭を混合してコークスの製造に用いる配合炭を調製するコークス製造用石炭の配合方法であって、前記複数の種類の石炭を熱処理した石炭の表面張力の差に基づいて、配合する石炭の種類および配合率を決定する、コークス製造用石炭の配合方法。
  2.  複数の種類の石炭の混合物に対し、さらに石炭を混合してコークスを製造する場合において、前記複数の種類の石炭の混合物を熱処理した石炭の表面張力と、前記さらに混合する石炭を熱処理した石炭の表面張力との差が1.5mN/m以下となるように石炭を選択し、該選択した石炭を混合する、請求項1に記載のコークス製造用石炭の配合方法。
  3.  複数の種類のすべての石炭において、それぞれ熱処理した石炭の表面張力が、前記それぞれの熱処理した石炭の表面張力の(平均値-1.5)mN/m以上かつ(平均値+1.5)mN/m以下の範囲に入るように石炭を選択して配合する、請求項1に記載のコークス製造用石炭の配合方法。
  4.  複数の種類の石炭のうちで、70質量%以上を構成する石炭において、それぞれの熱処理した石炭の表面張力とすべての熱処理した石炭の表面張力の平均値との差の絶対値が0.8mN/m以下の範囲内に入るように石炭を配合する、請求項1または請求項3に記載のコークス製造用石炭の配合方法。
  5.  配合炭を構成する複数の種類の石炭を熱処理した石炭の表面張力と、それぞれの石炭の配合率から、下記(1)式で求められる表面張力の差の合計値Sが1.0mN/m以下となるように石炭を配合する、請求項1ないし請求項4に記載のコークス製造用石炭の配合方法。
    Figure JPOXMLDOC01-appb-M000003
      
     ここで、wiとwjは石炭iと石炭jの配合比率であり、Δγijは石炭iと石炭jをそれぞれ熱処理した石炭の表面張力の差の絶対値であり、nは配合する石炭の数である。
  6.  請求項1ないし請求項5のいずれか1項に記載のコークス製造用石炭の配合方法で配合された石炭を乾留してコークスを製造する、コークスの製造方法。
PCT/JP2013/001981 2012-03-27 2013-03-25 コークス製造用石炭の配合方法及びコークスの製造方法 WO2013145679A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
IN1713MUN2014 IN2014MN01713A (ja) 2012-03-27 2013-03-25
CN201380017619.7A CN104245889B (zh) 2012-03-27 2013-03-25 焦炭制造用煤的配合方法及焦炭的制造方法
US14/387,742 US9845439B2 (en) 2012-03-27 2013-03-25 Method for blending coals for cokemaking and method for producing coke
EP13767265.5A EP2832822B1 (en) 2012-03-27 2013-03-25 Coal blending method for coke production, production method for coke
JP2014507420A JP5626496B2 (ja) 2012-03-27 2013-03-25 コークス製造用石炭の配合方法及びコークスの製造方法
KR1020147026669A KR101623877B1 (ko) 2012-03-27 2013-03-25 코크스 제조용 석탄의 배합 방법 및 코크스의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012071515 2012-03-27
JP2012-071515 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013145679A1 true WO2013145679A1 (ja) 2013-10-03

Family

ID=49258984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001981 WO2013145679A1 (ja) 2012-03-27 2013-03-25 コークス製造用石炭の配合方法及びコークスの製造方法

Country Status (8)

Country Link
US (1) US9845439B2 (ja)
EP (1) EP2832822B1 (ja)
JP (1) JP5626496B2 (ja)
KR (1) KR101623877B1 (ja)
CN (1) CN104245889B (ja)
IN (1) IN2014MN01713A (ja)
TW (1) TWI486432B (ja)
WO (1) WO2013145679A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179576A1 (ja) * 2019-03-04 2020-09-10 Jfeスチール株式会社 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法
WO2021140947A1 (ja) * 2020-01-07 2021-07-15 Jfeスチール株式会社 配合炭の製造方法およびコークスの製造方法
TWI748706B (zh) * 2019-10-28 2021-12-01 日商Jfe鋼鐵股份有限公司 煤炭的表面張力推測方法以及焦炭的製造方法
TWI793466B (zh) * 2019-10-28 2023-02-21 日商Jfe鋼鐵股份有限公司 煤炭的惰性組織的表面張力推測方法、煤炭的表面張力推測方法以及焦炭的製造方法
US20240150667A1 (en) * 2022-11-04 2024-05-09 Suncoke Technology And Development Llc Coal blends, foundry coke products, and associated systems, devices, and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9417175B2 (en) 2013-08-01 2016-08-16 University Of Tulsa Method and device for determining solid particle surface energy
CA3124590C (en) 2018-12-28 2023-08-22 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
CN112080311B (zh) * 2020-08-17 2022-03-29 山西阳光焦化集团股份有限公司 一种大量配入瘦煤生产一级冶金焦的炼焦配煤及炼焦方法
EP4334421A1 (en) * 2021-05-04 2024-03-13 Suncoke Technology and Development LLC Foundry coke products, and associated systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176553A (ja) * 1994-12-22 1996-07-09 Kawasaki Steel Corp 非・微粘結炭の流動性等推定方法
JPH09255966A (ja) 1996-03-21 1997-09-30 Kawasaki Steel Corp 配合炭のコークス特性推定方法
JP2005281355A (ja) * 2004-03-29 2005-10-13 Jfe Steel Kk 配合炭のコークス強度推定方法及びコークスの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4017360B2 (ja) 2001-05-30 2007-12-05 新日本製鐵株式会社 活性炭の製造方法
JP5045039B2 (ja) 2006-09-14 2012-10-10 Jfeスチール株式会社 高強度コークスの製造方法
JP5438277B2 (ja) * 2008-03-11 2014-03-12 株式会社神戸製鋼所 コークスの製造方法、および銑鉄の製造方法
JP5071578B2 (ja) * 2010-09-01 2012-11-14 Jfeスチール株式会社 コークス製造用石炭の調製方法
RU2570875C1 (ru) * 2011-10-14 2015-12-10 ДжФЕ СТИЛ КОРПОРЕЙШН Способ производства кокса

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176553A (ja) * 1994-12-22 1996-07-09 Kawasaki Steel Corp 非・微粘結炭の流動性等推定方法
JPH09255966A (ja) 1996-03-21 1997-09-30 Kawasaki Steel Corp 配合炭のコークス特性推定方法
JP2005281355A (ja) * 2004-03-29 2005-10-13 Jfe Steel Kk 配合炭のコークス強度推定方法及びコークスの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. W. FUERSTENAU, INTERNATIONAL JOURNAL OF MINERAL PROCESSING, vol. 20, 1987, pages 153
MIYAZU ET AL., NIPPON KOKAN TECHNICAL REPORT, vol. 67, 1975, pages 1
See also references of EP2832822A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179576A1 (ja) * 2019-03-04 2020-09-10 Jfeスチール株式会社 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法
JPWO2020179576A1 (ja) * 2019-03-04 2021-03-11 Jfeスチール株式会社 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法
KR20210118189A (ko) * 2019-03-04 2021-09-29 제이에프이 스틸 가부시키가이샤 석탄의 평가 방법 및 배합탄의 조제 방법 그리고 코크스의 제조 방법
KR102549785B1 (ko) 2019-03-04 2023-06-29 제이에프이 스틸 가부시키가이샤 석탄의 평가 방법 및 배합탄의 조제 방법 그리고 코크스의 제조 방법
US12110457B2 (en) 2019-10-28 2024-10-08 Jfe Steel Corporation Method of estimating surface tension of coal inert material, method of estimating surface tension of coal, and method of producing coke
US12037546B2 (en) 2019-10-28 2024-07-16 Jfe Steel Corporation Method of estimating surface tension of coal and method of producing coke
TWI748706B (zh) * 2019-10-28 2021-12-01 日商Jfe鋼鐵股份有限公司 煤炭的表面張力推測方法以及焦炭的製造方法
TWI793466B (zh) * 2019-10-28 2023-02-21 日商Jfe鋼鐵股份有限公司 煤炭的惰性組織的表面張力推測方法、煤炭的表面張力推測方法以及焦炭的製造方法
CN114901782A (zh) * 2020-01-07 2022-08-12 杰富意钢铁株式会社 混煤的制造方法和焦炭的制造方法
JP7160218B2 (ja) 2020-01-07 2022-10-25 Jfeスチール株式会社 配合炭の製造方法およびコークスの製造方法
KR20220106829A (ko) * 2020-01-07 2022-07-29 제이에프이 스틸 가부시키가이샤 배합탄의 제조 방법 및 코크스의 제조 방법
TWI759055B (zh) * 2020-01-07 2022-03-21 日商Jfe鋼鐵股份有限公司 摻合碳之製造方法及焦碳之製造方法
CN114901782B (zh) * 2020-01-07 2024-05-03 杰富意钢铁株式会社 混煤的制造方法和焦炭的制造方法
JPWO2021140947A1 (ja) * 2020-01-07 2021-07-15
KR102693373B1 (ko) 2020-01-07 2024-08-07 제이에프이 스틸 가부시키가이샤 배합탄의 제조 방법 및 코크스의 제조 방법
WO2021140947A1 (ja) * 2020-01-07 2021-07-15 Jfeスチール株式会社 配合炭の製造方法およびコークスの製造方法
US20240150667A1 (en) * 2022-11-04 2024-05-09 Suncoke Technology And Development Llc Coal blends, foundry coke products, and associated systems, devices, and methods
US12110458B2 (en) * 2022-11-04 2024-10-08 Suncoke Technology And Development Llc Coal blends, foundry coke products, and associated systems, devices, and methods

Also Published As

Publication number Publication date
EP2832822A4 (en) 2015-04-22
EP2832822A1 (en) 2015-02-04
US20150075962A1 (en) 2015-03-19
TW201343890A (zh) 2013-11-01
US9845439B2 (en) 2017-12-19
JPWO2013145679A1 (ja) 2015-12-10
KR20140138207A (ko) 2014-12-03
EP2832822B1 (en) 2020-06-17
KR101623877B1 (ko) 2016-05-24
CN104245889B (zh) 2017-03-08
TWI486432B (zh) 2015-06-01
JP5626496B2 (ja) 2014-11-19
IN2014MN01713A (ja) 2015-05-29
CN104245889A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5626496B2 (ja) コークス製造用石炭の配合方法及びコークスの製造方法
JP5582271B2 (ja) 石炭間の接着性の評価方法
JP5686223B2 (ja) 石炭の配合方法及び配合炭、並びに、コークス製造方法
TW201319239A (zh) 焦炭的製造方法
JP5975191B2 (ja) 石炭混合物、及び、石炭混合物の製造方法、並びに、コークスの製造方法
JP5737473B2 (ja) コークス製造用石炭混合物の調製方法及び石炭混合物、並びに、コークス製造方法
JP6856178B2 (ja) 石炭の評価方法及び配合炭の調製方法並びにコークスの製造方法
TWI608092B (zh) Coal evaluation method and coke production method
JP6036891B2 (ja) コークスの製造方法
JP5895963B2 (ja) 石炭間の接着性の評価方法、コークス強度の推定方法、コークス製造用石炭の配合方法、コークス製造用石炭の選定方法、及びコークスの製造方法
JP5854075B2 (ja) コークス製造用石炭の配合方法、及びコークスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507420

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147026669

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387742

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013767265

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE