WO2013145151A1 - ハニカム構造体の製造方法、及び、押出成形用金型 - Google Patents

ハニカム構造体の製造方法、及び、押出成形用金型 Download PDF

Info

Publication number
WO2013145151A1
WO2013145151A1 PCT/JP2012/058128 JP2012058128W WO2013145151A1 WO 2013145151 A1 WO2013145151 A1 WO 2013145151A1 JP 2012058128 W JP2012058128 W JP 2012058128W WO 2013145151 A1 WO2013145151 A1 WO 2013145151A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
honeycomb
mold
extrusion
supply hole
Prior art date
Application number
PCT/JP2012/058128
Other languages
English (en)
French (fr)
Inventor
佐藤 雅也
茂治 石川
弘可 後藤
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2012/058128 priority Critical patent/WO2013145151A1/ja
Priority to EP12873013.2A priority patent/EP2832513A4/en
Publication of WO2013145151A1 publication Critical patent/WO2013145151A1/ja
Priority to US14/497,805 priority patent/US20150008625A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/24Making specific metal objects by operations not covered by a single other subclass or a group in this subclass dies
    • B23P15/243Honeycomb dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/269For multi-channeled structures, e.g. honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • B29D24/002Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
    • B29D24/005Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled the structure having joined ribs, e.g. honeycomb
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2103/00Use of resin-bonded materials as moulding material
    • B29K2103/04Inorganic materials
    • B29K2103/06Metal powders, metal carbides or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • B29L2022/005Hollow articles having dividing walls, e.g. additional elements placed between object parts
    • B29L2022/007Hollow articles having dividing walls, e.g. additional elements placed between object parts integrally moulded or formed

Definitions

  • the present invention relates to a method for manufacturing a honeycomb structure and an extrusion mold.
  • Particulates such as soot (hereinafter also referred to as PM) and other harmful components contained in exhaust gas discharged from internal combustion engines such as vehicles such as buses and trucks or construction machinery may cause harm to the environment and the human body. It has become a problem recently. Accordingly, various honeycomb structures made of porous ceramics have been proposed as honeycomb filters that collect PM in exhaust gas and purify the exhaust gas.
  • a ceramic raw material is extruded using an extrusion mold to produce a honeycomb formed body in which a large number of cells are arranged in parallel in the longitudinal direction with a cell wall therebetween. is doing.
  • An extrusion mold for producing a honeycomb formed body is provided with a raw material supply hole for supplying a ceramic raw material, and a material connected to the raw material supply hole, and the ceramic raw material is formed into the shape of the honeycomb formed body.
  • a mold having a molding groove for the purpose is known.
  • Patent Document 1 discloses a ceramic honeycomb extrusion die (extrusion) in which a ceramic clay (ceramic raw material) is supplied to a clay supply hole (raw material supply hole) and a forming groove to wear the surface of the clay passage.
  • a molding die is disclosed.
  • Patent Document 2 discloses a honeycomb structure forming die (extrusion molding die) having a convex curved surface at a location where a clay introduction hole (raw material supply hole) and a clay extrusion slit (forming groove) communicate with each other. It is disclosed.
  • the extrusion mold for producing the honeycomb molded body is required to have a structure in which fluid (that is, ceramic raw material) can easily flow.
  • fluid that is, ceramic raw material
  • the flow resistance of the ceramic clay is made uniform by wearing the surface of the clay passage.
  • a convex curved surface is provided at a location where the clay introduction hole and the clay extrusion slit communicate with each other, thereby smoothly shifting from the clay introduction hole to the clay extrusion slit. I have to.
  • the extrusion mold is required not to impair the moldability even if the molding speed is increased.
  • a method for manufacturing a honeycomb structure using an extrusion mold is required to improve both the formability and productivity of the honeycomb formed body.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a honeycomb structure excellent in formability and productivity of a honeycomb formed body. Another object of the present invention is to provide an extrusion mold used in the method for manufacturing the honeycomb structure.
  • the extrusion mold includes a mold body having a raw material introduction side and a molded body extrusion side, A raw material supply hole for supplying the ceramic raw material is formed on the raw material introduction side of the mold body, Forming grooves for forming the ceramic raw material into the shape of the honeycomb formed body are formed on the extrusion side of the formed body of the mold body, Between the raw material supply hole and the molding groove, a connecting portion that communicates the raw material supply hole and the molding groove is formed, In a cross section parallel to the direction of extruding the ceramic raw material, the connecting portion includes a curved portion
  • the method for manufacturing a honeycomb structured body according to claim 1 is characterized in that a honeycomb formed body is manufactured by extruding a ceramic raw material using an extrusion mold having the above-described configuration.
  • a curved portion is provided at a position where the connecting portion and the forming groove are connected in a cross section parallel to the direction in which the ceramic raw material is extruded. This curved portion can facilitate the flow of the ceramic raw material from the raw material supply hole to the forming groove, as in the conventional extrusion mold described in Patent Document 1 and Patent Document 2.
  • the length of the connecting portion in a direction parallel to the direction of extruding the ceramic raw material is a
  • the direction perpendicular to the direction of extruding the ceramic raw material X is the width of the raw material supply hole at the location where it is connected to the connecting portion
  • y is the width of the forming groove corresponding to the thickness of the cell wall or outer peripheral wall of the honeycomb formed body in the direction perpendicular to the direction of extruding the ceramic raw material
  • B (xy) / 2
  • a portion satisfying 2.0 ⁇ a / b is included.
  • the length a of the connecting portion in the direction parallel to the direction of extruding the ceramic raw material corresponds to the distance in the direction parallel to the direction of extruding the ceramic raw material until the transition from the raw material supply hole to the forming groove.
  • “the length a of the connecting portion in the direction parallel to the direction in which the ceramic raw material is extruded” is also simply referred to as “the length a of the connecting portion”.
  • the length b indicated by (xy) / 2 corresponds to the distance in the direction perpendicular to the direction in which the ceramic raw material is extruded from the raw material supply hole to the forming groove.
  • the length b is also referred to as “distance b between the raw material supply hole and the forming groove”.
  • the length a of the connecting portion is relatively small, or the distance b between the raw material supply hole and the forming groove is relatively large.
  • the length “a” of the connecting portion is relatively small, the ceramic raw material does not easily flow from the raw material supply hole to the forming groove, so that the ceramic raw material is easily clogged in the mold. Therefore, when the forming speed is increased, the honeycomb formed body is likely to be cracked or deformed.
  • the ceramic raw material is clogged in the molding groove or the like even when the molding speed is high. It is possible to prevent the honeycomb formed body from being cracked or deformed due to the above. As a result, both the formability and productivity of the honeycomb formed body can be improved.
  • the portion satisfying 2.0 ⁇ a / b in the extrusion mold is an area of 50% or more of the mold body.
  • a region of 50% or more of the mold body of the extrusion mold satisfies 2.0 ⁇ a / b, and the entire mold body is 2.0. It is not necessary to satisfy ⁇ a / b.
  • the portion satisfying 2.0 ⁇ a / b is less than 50% of the mold body, there are few portions where the ceramic raw material easily flows from the raw material supply hole to the forming groove. In addition, the effect of improving productivity cannot be obtained sufficiently.
  • a portion satisfying 2.0 ⁇ a / b in the extrusion mold has a cross section perpendicular to a direction in which the ceramic raw material of the mold body is extruded. It includes a half area from the center to the outer periphery of the cross section. That is, in the method for manufacturing a honeycomb structured body according to claim 3, the ceramic raw material easily flows from the raw material supply hole to the forming groove in the central portion rather than the outer peripheral portion of the die body.
  • the outer peripheral wall of the honeycomb formed body is mainly formed. In general, the outer peripheral wall of the honeycomb formed body is thicker than the cell wall.
  • the ceramic raw material tends to flow in the outer peripheral portion of the mold body even if 2.0 ⁇ a / b is not satisfied. Therefore, in the method for manufacturing a honeycomb structured body according to claim 3, the moldability and production of the honeycomb molded body can be achieved even if the entire die body of the extrusion mold does not satisfy 2.0 ⁇ a / b. Both can be improved.
  • the portion satisfying 2.0 ⁇ a / b in the extrusion mold satisfies 2.0 ⁇ a / b ⁇ 4.0.
  • the formability and productivity of the honeycomb formed body can be further improved.
  • a / b> 4.0 the length a of the connecting portion is relatively large, or the distance b between the raw material supply hole and the forming groove is relatively small.
  • the width x of the raw material supply hole becomes a value close to the width y of the forming groove (in other words, the width x of the raw material supply hole is small).
  • the resistance of the raw material supply holes is increased, and the formability and productivity of the honeycomb formed body are deteriorated. As a result, the extrusion mold is easily damaged, and the life of the extrusion mold is shortened. On the other hand, when the length “a” of the connecting portion is relatively large, the resistance to the ceramic raw material increases, and the formability and productivity of the honeycomb formed body deteriorate.
  • the width of the forming groove corresponding to the thickness of the cell wall of the honeycomb formed body is 0.1 to 0.2 mm. is there.
  • the width of the forming groove corresponding to the thickness of the outer peripheral wall of the honeycomb formed body is 0.2 to 0.00. 5 mm.
  • the ceramic raw material tends to be clogged because the width of the forming groove is generally small.
  • an extrusion mold having a curved portion and including a portion satisfying 2.0 ⁇ a / b is used, the ceramic raw material easily flows from the raw material supply hole to the forming groove. It can prevent that a crack or a deformation
  • the curved portion is formed by fluid polishing.
  • fluid polishing an extrusion mold having a curved portion and a portion satisfying 2.0 ⁇ a / b can be easily produced.
  • a main component of a constituent material of the honeycomb formed body is silicon carbide.
  • a ceramic raw material mainly composed of hard silicon carbide the mold for extrusion molding is likely to be worn, so that the size of the molded body varies greatly.
  • an extrusion mold having a curved portion and including a portion satisfying 2.0 ⁇ a / b is used, the ceramic raw material easily flows from the raw material supply hole to the forming groove. It can prevent that a crack or a deformation
  • a so-called aggregated honeycomb structure can be preferably manufactured.
  • the extrusion mold according to claim 10 This is an extrusion mold used for producing a honeycomb formed body in which a large number of cells are arranged in parallel in the longitudinal direction across a cell wall by extruding a ceramic raw material, and an outer peripheral wall is formed around the cell.
  • the extrusion mold includes a mold body having a raw material introduction side and a molded body extrusion side, A raw material supply hole for supplying the ceramic raw material is formed on the raw material introduction side of the mold body, Forming grooves for forming the ceramic raw material into the shape of the honeycomb formed body are formed on the extrusion side of the formed body of the mold body, Between the raw material supply hole and the molding groove, a connecting portion that communicates the raw material supply hole and the molding groove is formed, In a cross section parallel to the direction of extruding the ceramic raw material, the connecting portion includes a curved portion provided at a location connected to the forming groove, a straight portion from the curved portion toward the raw material supply hole, and The length of the connecting portion in the direction parallel to the direction of extruding the ceramic raw material is a, the width of the raw material supply hole at the location connected to the connecting portion in the direction perpendicular to the direction of extruding the ceramic raw material is x, When the width of the forming groove corresponding to the
  • the portion satisfying 2.0 ⁇ a / b is an area of 50% or more of the mold body.
  • the portion satisfying 2.0 ⁇ a / b is 1 from the center of the cross section perpendicular to the direction of extruding the ceramic raw material of the mold body to the outer periphery of the cross section. / 2 region is included.
  • the portion satisfying 2.0 ⁇ a / b satisfies 2.0 ⁇ a / b ⁇ 4.0.
  • the width of the forming groove corresponding to the thickness of the cell wall of the honeycomb formed body is 0.1 to 0.2 mm.
  • the width of the forming groove corresponding to the thickness of the outer peripheral wall of the honeycomb formed body is 0.2 to 0.5 mm.
  • the curved portion is formed by fluid polishing.
  • a main component of a constituent material of the honeycomb formed body is silicon carbide.
  • the ceramic raw material is formed into a molding groove even when the molding speed is high. It is possible to prevent the honeycomb formed body from being cracked or deformed due to clogging. Therefore, when the extrusion molding die according to claims 10 to 17 is used for manufacturing a honeycomb structure, both the moldability and productivity of the honeycomb molded body can be improved.
  • FIG. 1 is a cross-sectional view schematically showing an example of an extrusion mold according to the first embodiment of the present invention.
  • FIG. 2A is an enlarged front view of a mold main body constituting the extrusion mold shown in FIG. 1
  • FIG. 2B is a rear view of the mold main body.
  • FIG. 3 is a partially enlarged view of a mold main body constituting the extrusion mold shown in FIG.
  • FIG. 4 is a cross-sectional view in a direction perpendicular to the direction in which the ceramic raw material of the mold body constituting the extrusion mold shown in FIG. 1 is extruded.
  • FIG. 1 is a cross-sectional view schematically showing an example of an extrusion mold according to the first embodiment of the present invention.
  • FIG. 2A is an enlarged front view of a mold main body constituting the extrusion mold shown in FIG. 1
  • FIG. 2B is a rear view of the mold main body.
  • FIG. 3 is a partially enlarged view of
  • FIG. 5 is a perspective view schematically showing a state in which a honeycomb formed body is produced using an extrusion molding apparatus including the extrusion molding die according to the first embodiment of the present invention.
  • Fig.6 (a) is a perspective view which shows typically an example of the honeycomb molded body which concerns on 1st embodiment of this invention
  • FIG.6 (b) is C of the honeycomb molded body shown to Fig.6 (a).
  • FIG. Fig.7 (a) is a perspective view which shows typically an example of the honeycomb fired body which concerns on 1st embodiment of this invention
  • FIG.7 (b) is D of the honeycomb fired body shown to Fig.7 (a).
  • FIG. FIG. 8 is a perspective view schematically showing an example of the honeycomb structure according to the first embodiment of the present invention.
  • FIG. 9 is a graph showing the relationship between the a / b ratio and the molding speed in Examples 1 to 3 and Comparative Examples 1 and 2.
  • the present inventors have studied a method in which cracking or deformation does not occur in the obtained honeycomb formed body even when the forming speed is increased. And as a solution which has not been recognized by the conventional extrusion mold described in Patent Document 1 and Patent Document 2, the present inventors have made an extrusion mold in a cross section parallel to the direction in which the ceramic raw material is extruded. We paid attention to the difference between the width of the raw material supply hole of the mold and the width of the forming groove. As a result, the present inventors set the ratio of the distance in the parallel direction to the distance perpendicular to the direction of extruding the ceramic raw material to a predetermined value until the ceramic raw material moves from the raw material supply hole to the forming groove. Thus, it was found that the ceramic raw material can be more easily flowed from the raw material supply hole to the forming groove, and the present invention has been completed.
  • the manufacturing method of the honeycomb structure according to the first embodiment of the present invention A step of producing a honeycomb formed body in which a large number of cells are juxtaposed in the longitudinal direction across a cell wall and an outer peripheral wall is formed by extruding a ceramic raw material using an extrusion mold, A step of producing a honeycomb fired body by firing the honeycomb formed body; Producing a ceramic block using at least one honeycomb fired body, comprising:
  • the extrusion mold includes a mold body having a raw material introduction side and a molded body extrusion side, A raw material supply hole for supplying the ceramic raw material is formed on the raw material introduction side of the mold body, Forming grooves for forming the ceramic raw material into the shape of the honeycomb formed body are formed on the extrusion side of the formed body of the mold body, Between the raw material supply hole and the molding groove, a connecting portion that communicates the raw material supply hole and the molding groove is formed, In a cross section parallel to the direction of extruding the ceramic raw material, the connecting portion includes
  • FIG. 1 is a cross-sectional view schematically showing an example of an extrusion mold according to the first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of an extrusion mold in a direction parallel to a direction in which a ceramic raw material is extruded. In FIG. 1, the direction of extruding the ceramic raw material is indicated by an arrow.
  • An extrusion mold 100 shown in FIG. 1 includes a mold body 10 having a raw material introduction side A and a molded body extrusion side B, and an outer frame 20 for fixing the mold body 10.
  • the outer frame should just be provided as needed.
  • a raw material supply hole 11 is formed in the raw material introduction side A of the mold body 10 in order to supply a ceramic raw material.
  • a molding groove 12 is formed on the molded body extrusion side B opposite to the raw material introduction side A of the mold body 10 in order to form the ceramic raw material that has passed through the raw material supply holes 11 into the shape of the honeycomb molded body.
  • a connecting portion 13 is formed between the raw material supply hole 11 and the forming groove 12. The raw material supply hole 11 and the molding groove 12 communicate with each other inside the mold main body 10 via the connecting portion 13.
  • FIG. 2A is an enlarged front view of a mold main body constituting the extrusion mold shown in FIG. 1, and FIG. 2B is a rear view of the mold main body.
  • the forming groove 12 has a slit width corresponding to the thickness of the cell wall or the outer peripheral wall of the honeycomb formed body (honeycomb structure). For example, it is provided in a lattice shape.
  • the raw material supply holes 11 are normally provided corresponding to positions where the forming grooves 12 such as a lattice shape intersect.
  • the connecting portion in the cross section parallel to the direction in which the ceramic raw material is extruded, is provided with a curved portion provided at a location where the connecting portion is connected to the forming groove, and raw material is supplied from the curved portion And a straight portion toward the hole.
  • the length of the connecting portion in the direction parallel to the direction of extruding the ceramic raw material is a, the connecting portion in the direction perpendicular to the direction of extruding the ceramic raw material,
  • the width of the raw material supply hole at the connecting portion is x
  • the width of the forming groove in the direction perpendicular to the direction of extruding the ceramic raw material is y
  • b (xy) / 2, 2.0 ⁇ a / It is characterized by including a portion satisfying b.
  • FIG. 3 is a partially enlarged view of a mold main body constituting the extrusion mold shown in FIG.
  • the connecting portion 13 includes a curved portion 13 a provided at a location where the forming groove 12 is connected, and a straight portion 13 b directed from the curved portion 13 a to the raw material supply hole 11.
  • the connecting portion 13 is provided with a curved portion 13c at a location where it is connected to the raw material supply hole 11, but the curved portion 13c may not be provided.
  • the connection part 13 may be comprised from the curve part 13a and the linear part 13b.
  • the intersection of the inner surface of the forming groove 12 and the curved portion 13a of the connecting portion 13, and the inner surface of the raw material supply hole 11 and the curved portion of the connecting portion 13 The length between the intersections with 13c (the length indicated by the arrow a in FIG. 3) is the length of the connecting portion 13.
  • the curve part 13c is not provided in the connection part 13
  • the shorter length is set as the length a of the connecting portion 13.
  • the portion from the raw material introduction side A of the mold body 10 to the curved portion 13 c (the straight portion 13 b when the curved portion 13 c is not provided) of the connecting portion 13 is the raw material supply hole 11.
  • a portion from the molded body extrusion side surface B of the mold body 10 to the curved portion 13 a of the connecting portion 13 is defined as a molding groove 12.
  • the length of the connecting portion 13 in the direction parallel to the direction of extruding the ceramic raw material is a, and the raw material supply at the location connected to the connecting portion 13 in the direction perpendicular to the direction of extruding the ceramic raw material
  • the width of the hole 11 is x
  • the width of the raw material supply hole 11 on the raw material introduction side A of the mold body 10 (the length indicated by the arrow x in FIG.
  • the width of the molding groove 12 (the length indicated by the arrow y in FIG. 3) on the molded body extrusion side surface B of the mold body 10 is the width of the molding groove 12 in the direction perpendicular to the direction in which the ceramic raw material is extruded. To do.
  • the length a of the connecting portion 13 in the direction parallel to the direction of extruding the ceramic raw material corresponds to the distance in the direction parallel to the direction of extruding the ceramic raw material until the transition from the raw material supply hole 11 to the forming groove 12. To do.
  • the length b indicated by (xy) / 2 is equal to the raw material supply hole 11. This corresponds to the distance in the direction perpendicular to the direction in which the ceramic raw material is extruded from when it is transferred to the forming groove 12.
  • the ceramic raw material can easily flow from the raw material supply hole to the forming groove by setting 2.0 ⁇ a / b.
  • a / b ⁇ 2.0
  • the length a of the connecting portion is relatively small, or the distance b between the raw material supply hole and the forming groove is relatively large.
  • the ceramic raw material does not easily flow from the raw material supply hole to the forming groove, so that the ceramic raw material is easily clogged in the mold. Therefore, when the forming speed is increased, the honeycomb formed body is likely to be cracked or deformed.
  • the portion satisfying 2.0 ⁇ a / b preferably satisfies 2.0 ⁇ a / b ⁇ 4.0, more preferably satisfies 2.5 ⁇ a / b ⁇ 4.0. It is further desirable to satisfy 0 ⁇ a / b ⁇ 4.0.
  • a / b> 4.0 the length a of the connecting portion is relatively large, or the distance b between the raw material supply hole and the forming groove is relatively small.
  • the width x of the raw material supply hole becomes a value close to the width y of the forming groove (in other words, the width x of the raw material supply hole is small).
  • the resistance of the raw material supply holes is increased, and the formability and productivity of the honeycomb formed body are deteriorated. As a result, the extrusion mold is easily damaged, and the life of the extrusion mold is shortened. On the other hand, when the length “a” of the connecting portion is relatively large, the resistance to the ceramic raw material increases, and the formability and productivity of the honeycomb formed body deteriorate.
  • the entire mold body may not satisfy 2.0 ⁇ a / b, and a part of the mold body may be 2.0 ⁇ a.
  • the portion satisfying 2.0 ⁇ a / b is desirably a region of 50% or more of the mold body, and more desirably a region of 70% or more.
  • the portion satisfying 2.0 ⁇ a / b is more preferably a region of 50% to 100% of the mold body, and particularly preferably a region of 70% to 100%. If the portion satisfying 2.0 ⁇ a / b is an area of less than 50% of the die body, there are few portions where the ceramic raw material easily flows from the raw material supply hole to the forming groove. The effect of improving is not sufficiently obtained.
  • the portion satisfying 2.0 ⁇ a / b is the portion of the cross section from the center of the cross section perpendicular to the direction of extruding the ceramic raw material of the mold body. It is desirable to include a half area up to the outer periphery. In this case, both the moldability and productivity of the honeycomb molded body can be improved even if the entire mold body of the extrusion mold does not satisfy 2.0 ⁇ a / b.
  • FIG. 4 is a cross-sectional view in a direction perpendicular to the direction in which the ceramic raw material of the mold body constituting the extrusion mold shown in FIG. 1 is extruded.
  • a half region from the center of the cross section perpendicular to the direction of extruding the ceramic raw material of the mold main body to the outer periphery of the cross section means that the cross section of the mold main body 10 is the mold main body. 10 including the center on the cross section of 10 (in FIG.
  • FIG. 4 illustrates the case where the cross-sectional shape of the mold body is a quadrangle (square). However, regardless of the cross-sectional shape of the mold body, “the ceramic raw material of the mold body is extruded” “1/2 region from the center of the cross section perpendicular to the direction to the outer periphery of the cross section” is determined.
  • the width of the molding groove corresponding to the thickness of the cell wall of the honeycomb molded body is 0.1 to 0.2 mm. Is desirable.
  • the width of the molding groove corresponding to the thickness of the outer peripheral wall of the honeycomb molded body is 0.2 to 0.5 mm. Is desirable.
  • the width of the forming groove corresponding to the thickness of the outer peripheral wall of the honeycomb formed body is more desirably larger than the width of the forming groove corresponding to the thickness of the cell wall of the honeycomb formed body.
  • the width of the forming groove corresponding to the thickness of the cell wall of the honeycomb formed body is 0.1 to 0.2 mm, and the width of the forming groove corresponding to the thickness of the outer peripheral wall of the honeycomb formed body is 0.2.
  • the ceramic raw material tends to be clogged because the width of the forming groove is generally small.
  • an extrusion mold having a curved portion and including a portion satisfying 2.0 ⁇ a / b is used, the ceramic raw material easily flows from the raw material supply hole to the forming groove. It can prevent that a crack or a deformation
  • the width of the raw material supply hole is not particularly limited, but is desirably 1.0 to 1.5 mm.
  • the width of the raw material supply hole means the inner diameter of the raw material supply hole.
  • a base material constituting the mold body is cut to form a raw material supply hole and a forming groove communicating with the raw material supply hole.
  • the material of the base constituting the mold body is not particularly limited, but it is desirable to use cemented carbide, tool steel, tool steel for hot mold, or the like.
  • the method of forming the raw material supply holes is not particularly limited, and examples thereof include a method of cutting the base body to form a raw material supply hole having a desired inner diameter by machining using an end mill or a drill. It is done.
  • the method for forming the forming groove is not particularly limited. For example, after forming the raw material supply holes, a dicing machine using a grindstone containing diamond or the like from the side opposite to the portion where the raw material supply holes are formed. For example, a method of forming a forming groove having a desired slit width by cutting the base body by machining by the method described above.
  • a predetermined number of grooves having a desired shape such as a lattice shape may be provided at predetermined intervals.
  • the raw material supply holes may be normally formed corresponding to the position of the intersection of the molding grooves from the surface of the base opposite to the surface on which the molding grooves are formed.
  • a connecting portion is formed between the raw material supply hole and the forming groove.
  • the method for forming the connecting portion is not particularly limited, and examples thereof include a method for forming the connecting portion by fluid polishing, electric discharge machining, electrolytic processing, machining, or the like. In these, it is desirable to form a connection part by fluid polishing. When fluid polishing is used, an extrusion mold having a curved portion and a portion satisfying 2.0 ⁇ a / b can be easily produced.
  • an abrasive containing a silicon carbide (SiC) grain-containing abrasive which is a material having a hardness higher than that of the base material, is used as a raw material in the same manner as the ceramic raw material.
  • the ratio of the length a of the connecting portion to the length b is a condition of fluid polishing (for example, particle size, polishing time, polishing pressure). Or by changing the polishing temperature or the like). For example, the a / b ratio can be increased by increasing the polishing time.
  • FIG. 5 is a perspective view schematically showing a state in which a honeycomb formed body is produced using an extrusion molding apparatus including the extrusion molding die according to the first embodiment of the present invention.
  • an extrusion mold 100 is provided at the tip of a casing 210, and the molded body 300 is continuously extruded through the extrusion mold 100.
  • a screw (not shown) is provided inside the casing 210, and mixing of the ceramic raw material and pushing of the ceramic raw material into the extrusion mold 100 are performed by this screw.
  • a molded body 300 in which a large number of cells are arranged side by side in the longitudinal direction across the cell wall and an outer peripheral wall is formed around the cell wall is continuously produced.
  • the continuously extended formed body 300 is cut into a predetermined length to form a honeycomb formed body.
  • the ceramic raw material is put into the casing 210.
  • the ceramic raw material is further kneaded inside the extrusion molding apparatus 200 and is gradually pushed toward the end by being pushed by a screw blade (not shown). Then, after the ceramic raw material is extruded through the forming groove in the extrusion mold 100, it is cut into a predetermined length.
  • a wet mixture (ceramic raw material) containing ceramic powder and a binder is prepared.
  • a wet mixture for manufacturing a honeycomb formed body is prepared by mixing ceramic powder, an organic binder, a liquid plasticizer, a lubricant, and water.
  • nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride
  • carbide ceramics such as silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide
  • oxide ceramics such as alumina, zirconia, cordierite, mullite, silica, and aluminum titanate.
  • the main component of the constituent material of the honeycomb formed body non-oxide ceramics are preferable, and silicon carbide is particularly preferable. It is because it is excellent in heat resistance, mechanical strength, thermal conductivity and the like.
  • the main component is silicon carbide means that the ceramic powder contains 60% by weight or more of silicon carbide.
  • the main component is silicon carbide, not only silicon carbide but also silicon-bonded silicon carbide is included. The same applies to the main components of constituent materials other than silicon carbide.
  • a honeycomb formed body having a predetermined shape is manufactured by extruding the wet mixture (ceramic raw material). At this time, extrusion is performed using the extrusion mold according to the first embodiment of the present invention.
  • FIG.6 (a) is a perspective view which shows typically an example of the honeycomb molded body which concerns on 1st embodiment of this invention
  • FIG.6 (b) is C of the honeycomb molded body shown to Fig.6 (a).
  • an outer peripheral wall 33 is formed around the periphery.
  • the honeycomb molded body is dried using a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like, whereby a dried honeycomb molded body is obtained. Is made. Further, the dried honeycomb molded body is subjected to a degreasing process (for example, 200 to 500 ° C.) and a firing process (for example, 1400 to 2300 ° C.) under predetermined conditions. By passing through the above steps, a honeycomb fired body in which a large number of cells are juxtaposed in the longitudinal direction across the cell wall and an outer peripheral wall is formed around the cell can be manufactured. In addition, the conditions currently used when manufacturing a honeycomb fired body can be applied to the degreasing treatment and firing treatment conditions of the dried honeycomb molded body.
  • a degreasing process for example, 200 to 500 ° C.
  • a firing process for example, 1400 to 2300 ° C.
  • a honeycomb fired body in which either one end of the cell is sealed can be manufactured.
  • a predetermined amount of a sealing material paste as a sealing material is filled in a predetermined end portion of the cell of the dried body of the honeycomb formed body to seal the cell.
  • a honeycomb fired body in which either one end of the cell is sealed can be manufactured.
  • the wet mixture can be used as the sealing material paste.
  • FIG.7 (a) is a perspective view which shows typically an example of the honeycomb fired body which concerns on 1st embodiment of this invention
  • FIG.7 (b) is D of the honeycomb fired body shown to Fig.7 (a).
  • FIG. in the honeycomb fired body 40 shown in FIGS. 7 (a) and 7 (b) a large number of cells 41 are arranged in parallel in the longitudinal direction (in the direction of arrow d in FIG. 7 (a)) with a cell wall 42 therebetween.
  • an outer peripheral wall 43 is formed around the periphery.
  • One end of the cell 41 is sealed with a sealing material 44. Accordingly, the exhaust gas G (in FIG. 7B, the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by an arrow in FIG.
  • the honeycomb structure including the honeycomb fired body in which either one end of the cell is sealed can be suitably used as a ceramic filter.
  • a honeycomb structure including a honeycomb fired body in which neither end of the cell is sealed can be suitably used as a catalyst carrier.
  • a ceramic block is produced using at least one honeycomb fired body.
  • a method for producing a ceramic block in which a plurality of honeycomb fired bodies are bundled through an adhesive layer will be described.
  • an adhesive paste serving as an adhesive layer is applied to each predetermined side surface of the honeycomb fired body to form an adhesive paste layer, and another honeycomb fired body is sequentially placed on the adhesive paste layer.
  • the process of laminating is repeated to produce an aggregate of honeycomb fired bodies.
  • the aggregate of honeycomb fired bodies is heated to dry and solidify the adhesive paste layer to form an adhesive layer, thereby producing a ceramic block.
  • the adhesive paste for example, a paste made of an inorganic binder, an organic binder, and inorganic particles is used.
  • the adhesive paste may further contain inorganic fibers and / or whiskers.
  • the ceramic block is cut. Specifically, a ceramic block whose outer periphery is processed into a columnar shape is manufactured by cutting the outer periphery of the ceramic block using a diamond cutter or the like.
  • an outer peripheral coating material paste is applied to the outer peripheral surface of the cylindrical ceramic block, and dried and solidified to form an outer peripheral coating layer.
  • the said adhesive paste can be used as an outer periphery coating material paste.
  • a paste having a composition different from that of the adhesive paste may be used as the outer periphery coating material paste.
  • the outer peripheral coat layer is not necessarily provided, and may be provided as necessary.
  • a honeycomb structure can be manufactured by the above process.
  • FIG. 8 is a perspective view schematically showing an example of the honeycomb structure according to the first embodiment of the present invention.
  • a plurality of honeycomb fired bodies 40 are bundled together through an adhesive layer 51 to form a ceramic block 53, and an outer peripheral coat layer 52 is formed on the outer periphery of the ceramic block 53.
  • the outer periphery coating layer should just be formed as needed.
  • Such a honeycomb structure in which a plurality of honeycomb fired bodies are bundled is also referred to as an aggregated honeycomb structure.
  • a curved portion is provided at a location where the connecting portion and the forming groove are connected in a cross section parallel to the direction in which the ceramic raw material is extruded. This curved portion can facilitate the flow of the ceramic raw material from the raw material supply hole to the forming groove. Therefore, even when the molding speed is high, the ceramic raw material is less likely to be clogged with the molding grooves.
  • the length of the connecting portion in the direction parallel to the direction of extruding the ceramic raw material is a, and the connecting portion in the direction perpendicular to the direction of extruding the ceramic raw material is connected.
  • X is the width of the raw material supply hole at the location
  • y is the width of the forming groove corresponding to the thickness of the cell wall or outer peripheral wall of the honeycomb formed body in the direction perpendicular to the direction of extruding the ceramic raw material.
  • a portion satisfying 2.0 ⁇ a / b is included. Therefore, the ceramic raw material can be more easily flowed from the raw material supply hole to the forming groove. Therefore, even when the molding speed is high, the ceramic raw material is less likely to be clogged by the molding grooves.
  • the method for manufacturing a honeycomb structure of the present embodiment is characterized in that a honeycomb formed body is manufactured by extruding a ceramic raw material using the extrusion mold of the present embodiment. Therefore, even when the forming speed is high, it is possible to prevent the honeycomb formed body from being cracked or deformed due to clogging of the ceramic raw material into the forming grooves and the like. As a result, both the formability and productivity of the honeycomb formed body can be improved.
  • Example 1 First, the cemented carbide was used as a base, and raw material supply holes and forming grooves were formed on both sides of the base.
  • the width of the forming groove corresponding to the thickness of the cell wall of the honeycomb formed body is 0.18 mm
  • the width of the forming groove corresponding to the thickness of the outer peripheral wall of the honeycomb formed body is 0.30 mm
  • the depth of the forming groove is It was 2 mm.
  • the inner diameter of the raw material supply hole was 1.2 mm
  • the depth of the raw material supply hole was 10 mm.
  • An extrusion mold including the mold body produced as described above and an outer frame for fixing the mold body to the tip of the extrusion molding apparatus was produced.
  • the fluid polishing conditions were abrasive material: SiC, abrasive particle size: 25 to 35 ⁇ m, and polishing time: 40 hours.
  • the fluid polishing was performed by repeatedly introducing the abrasive into the raw material supply holes and extruding from the forming grooves.
  • the extrusion mold was attached to an extrusion molding apparatus.
  • a wet mixture (ceramic raw material) containing silicon carbide as a main component is put into an extrusion molding apparatus and continuously extruded at a pressure of 70 kgf / cm 2 (6.86 MPa). Produced. Thereafter, the formed body was cut to prepare a honeycomb formed body. Under the present circumstances, the length (distance which advanced in the extrusion direction) of the molded object extruded from an extrusion molding apparatus for 1 minute was measured, and the measured value was made into molding speed. The molding speed in Example 1 was 2912 mm / min. Further, when the obtained honeycomb formed body was visually confirmed, no cracks or deformation occurred in the honeycomb formed body.
  • the wet mixture mainly composed of silicon carbide includes 54.6% by weight of silicon carbide coarse powder having an average particle diameter of 22 ⁇ m and 23.4% by weight of fine powder of silicon carbide having an average particle diameter of 0.5 ⁇ m.
  • the organic binder methylcellulose
  • the lubricant Unilube made by NOF Corporation
  • glycerin 1.2% by weight
  • water 13.9% with respect to the obtained mixture.
  • the honeycomb molded body was dried by using a microwave dryer to prepare a dried body of the honeycomb molded body. Then, the sealing material paste was filled in the predetermined cell which the dry body of the honeycomb molded body had, and the cell was sealed. The wet mixture was used as a sealing material paste. After sealing the cells, the dried honeycomb molded body filled with the plug paste was again dried using a dryer.
  • the honeycomb fired body manufactured in Example 1 has a porosity of 42%, an average pore diameter of 9 ⁇ m, a size of 34.3 mm ⁇ 34.3 mm ⁇ 200 mm, and the number of cells (cell density) of 24 ⁇ 24 / unit.
  • the cell wall thickness is 0.18 mm, and the outer peripheral wall thickness is 0.30 mm.
  • Examples 2 and 3 and Comparative Examples 1 and 2 When producing extrusion molds, mold bodies with different a / b ratios were produced by changing the conditions of fluid polishing (polishing time). Specifically, the polishing times in Examples 2-3 and Comparative Examples 1-2 were 48 hours, 70 hours, 0 hours, and 20 hours, respectively. Other conditions are the same as in the first embodiment.
  • a honeycomb formed body was produced in the same manner as in Example 1 except that an extrusion mold having each mold body was used. Further, in the same manner as in Example 1, the respective molding speeds were measured.
  • the molding speeds in Examples 2 to 3 and Comparative Examples 1 to 2 were 3382 mm / min, 4912 mm / min, 1146 mm / min, and 2441 mm / min, respectively. Further, when the obtained honeycomb formed body was visually confirmed, no cracks or deformation occurred in the honeycomb formed body.
  • honeycomb fired body was produced.
  • the honeycomb fired bodies produced in Examples 2 to 3 and Comparative Examples 1 to 2 have a porosity of 42%, an average pore diameter of 9 ⁇ m, and a size of 34.3 mm ⁇ 34.3 mm ⁇ 200 mm, the number of cells (cell density) is 24 ⁇ 24 / unit, the cell wall thickness is 0.18 mm, and the outer peripheral wall thickness is 0.30 mm.
  • the molding speed was a high value of 2500 mm / min or more. Accordingly, it has been found that a honeycomb formed body can be produced without generating cracks or deformation even when the forming speed is high. If the forming speed is 2500 mm / min or more, it is considered that the manufacturing efficiency of the honeycomb structure is at a sufficient level.
  • Comparative Examples 1 and 2 Although no cracks or deformation occurred in the obtained honeycomb formed bodies, the forming speed was a low value of less than 2500 mm / min. Therefore, it is considered that in Comparative Examples 1 and 2, the honeycomb structure cannot be efficiently manufactured as compared with Examples 1 and 3.
  • the molding speed is to be increased using the extrusion molds in Comparative Examples 1 and 2, it is necessary to increase the pressure during molding. However, when the pressure at the time of forming increases, it is considered that the possibility that the honeycomb formed body is cracked or deformed increases accordingly.
  • a ceramic block may be manufactured using one honeycomb fired body. That is, you may manufacture the honeycomb structure which consists of one honeycomb fired body. Such a honeycomb structure made of one honeycomb fired body is also referred to as an integral honeycomb structure.
  • the size of the honeycomb formed body formed by extrusion is larger than the size of the honeycomb formed body described in the first embodiment of the present invention, and the outer shape thereof is different. Otherwise, the honeycomb formed body is manufactured in the same manner as in the first embodiment of the present invention. That is, a honeycomb molded body using an extrusion mold having the same configuration as that of the extrusion mold according to the first embodiment of the present invention, except that it has a cross-sectional shape corresponding to the shape of the obtained honeycomb molded body. Can be produced.
  • honeycomb structure is composed of one honeycomb fired body, it is not necessary to prepare an aggregate of honeycomb fired bodies. Moreover, when producing a columnar honeycomb molded body, it is not necessary to cut the outer periphery of the ceramic block.
  • honeycomb fired bodies having different cross-sectional shapes are manufactured, and the honeycomb fired bodies are combined with each other through the adhesive layer.
  • honeycomb fired bodies having different cross-sectional shapes can be produced by changing the shape of the extrusion forming mold, respectively. Also in this case, using an extrusion mold having the same configuration as the extrusion mold according to the first embodiment of the present invention, except that it has a cross-sectional shape corresponding to the shape of the obtained honeycomb molded body. What is necessary is just to produce a honeycomb formed body.
  • each honeycomb fired body is temporarily fixed in a mold having the same shape as the shape of the ceramic block (or aggregate of honeycomb fired bodies) to be produced, and the adhesive paste is placed between the honeycomb fired bodies. You may carry out by the method of inject
  • the shape of the honeycomb structure to be manufactured is not limited to a columnar shape, but an arbitrary column shape such as an elliptical column shape, a long column shape, or a polygonal column shape. If it is.
  • the area of the portion where the honeycomb formed body is extruded is desirably 900 to 1600 mm 2 (diameter 30 to 40 mm).
  • the shape of the raw material supply hole of the mold body is not particularly limited.
  • the cross-sectional shape parallel to the direction of extruding the ceramic raw material is rectangular, tapered.
  • a shape, a trapezoidal shape, etc. can be mentioned.
  • it is desirable that the cross-sectional shape is rectangular because the raw material supply holes can be easily formed.
  • the shape of the molding groove of the mold body is not particularly limited.
  • the cross-sectional shape parallel to the direction in which the ceramic raw material is extruded is rectangular.
  • a taper shape etc. can be mentioned.
  • the cross-sectional shape is rectangular in that the formation of the forming groove is easy.
  • the cross-sectional shape of the molding groove is rectangular. Also, the ceramic raw material can easily flow from the raw material supply hole to the forming groove.
  • the porosity of the honeycomb fired body constituting the honeycomb structure is not particularly limited. 60% is desirable. When the porosity of the honeycomb fired body is less than 35%, the honeycomb fired body is likely to be clogged. On the other hand, when the porosity of the honeycomb fired body exceeds 60%, the strength of the honeycomb fired body is reduced, and the honeycomb fired body is easily broken.
  • the average pore diameter of the honeycomb fired body constituting the honeycomb structure is 5 to 30 ⁇ m. It is desirable to be. If the average pore diameter of the honeycomb fired body is less than 5 ⁇ m, the honeycomb fired body is likely to be clogged. On the other hand, when the average pore diameter of the honeycomb fired body exceeds 30 ⁇ m, the particulates pass through the pores of the honeycomb fired body, the honeycomb fired body cannot collect the particulates, and the honeycomb structure functions as a filter. Can not do it.
  • the porosity and pore diameter can be measured by a mercury intrusion method that is a conventionally known method.
  • the cell density in the cross section of the honeycomb fired body constituting the honeycomb structure to be manufactured is not particularly limited, but a desirable lower limit is 31.0 cells / cm 2 ( 200 pieces / inch 2 ), a desirable upper limit is 93.0 pieces / cm 2 (600 pieces / inch 2 ), a more desirable lower limit is 38.8 pieces / cm 2 (250 pieces / inch 2 ), and a more desirable upper limit is 77.5 / cm 2 (500 / inch 2 ).
  • the thickness of the cell wall of the honeycomb fired body constituting the manufactured honeycomb structured body is not particularly limited, but is 0.1 to 0.4 mm. It is desirable that If the cell wall thickness is less than 0.1 mm, the cell wall thickness becomes too thin, and the strength of the honeycomb fired body cannot be maintained. On the other hand, when the thickness of the cell wall exceeds 0.4 mm, the pressure loss of the honeycomb structure tends to increase.
  • the thickness of the outer peripheral wall of the honeycomb fired body constituting the honeycomb structure to be manufactured may be the same as the thickness of the cell wall. Although it may be thicker than the thickness, it is desirable that it is thicker than the thickness of the cell wall from the viewpoint of the strength of the honeycomb fired body.
  • the thickness of the outer peripheral wall of the honeycomb fired body is larger than the thickness of the cell wall, the thickness of the outer peripheral wall is desirably 1.3 to 3.0 times the thickness of the cell wall.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb fired body of each cell of the honeycomb fired body constituting the honeycomb structure to be manufactured is not particularly limited.
  • any shape such as a circle, an ellipse, a quadrangle, a pentagon, a hexagon, a trapezoid, and an octagon may be used.
  • Various shapes may be mixed.
  • the particle size of the ceramic powder used in the method for manufacturing a honeycomb structure according to the embodiment of the present invention is not particularly limited, but it is preferable that the ceramic powder has less shrinkage in the subsequent firing step, and has an average particle size of, for example, about 3 to 70 ⁇ m.
  • a combination of 100 parts by weight of the powder having 5 to 65 parts by weight of the powder having an average particle diameter of 0.1 to 1.0 ⁇ m is preferable.
  • the ceramic powder may be subjected to oxidation treatment.
  • organic binder contained in the wet mixture used for the manufacturing method of the honeycomb structure which concerns on embodiment of this invention.
  • methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol etc. are mentioned. Of these, methylcellulose is desirable.
  • the blending amount of the organic binder is usually preferably 1 to 10 parts by weight with respect to 100 parts by weight of the ceramic powder.
  • plasticizer contained in the said wet mixture
  • glycerol etc.
  • lubricant agent contained in the said wet mixture
  • polyoxyalkylene type compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether, etc.
  • specific examples of the lubricant include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether.
  • the plasticizer and the lubricant may not be contained in the wet mixture.
  • a dispersion medium liquid may be used.
  • the dispersion medium liquid include water, an organic solvent such as benzene, and an alcohol such as methanol.
  • a molding aid may be added to the wet mixture.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide-based ceramics, spherical acrylic particles, and graphite may be added to the wet mixture as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • Examples of the inorganic binder contained in the adhesive paste and the outer periphery coating material paste include silica sol and alumina sol. These may be used alone or in combination of two or more. Among inorganic binders, silica sol is desirable.
  • organic binder contained in the adhesive paste and the outer periphery coating material paste examples include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among organic binders, carboxymethylcellulose is desirable.
  • Examples of the inorganic particles contained in the adhesive paste and the outer periphery coating material paste include carbide particles and nitride particles. Specific examples include silicon carbide particles, silicon nitride particles, and boron nitride particles. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide particles having excellent thermal conductivity are desirable.
  • Examples of the inorganic fibers and / or whiskers contained in the adhesive paste and the outer periphery coating material paste include inorganic fibers and / or whiskers made of silica-alumina, mullite, alumina, silica, and the like. These may be used alone or in combination of two or more. Among inorganic fibers, alumina fibers are desirable.
  • the inorganic fiber may be a biosoluble fiber.
  • a pore-forming agent such as balloons, spherical acrylic particles, and graphite, which are fine hollow spheres containing oxide ceramics, may be added to the adhesive paste and the outer peripheral coating material paste as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are preferred.
  • a catalyst for purifying exhaust gas may be supported on the cell walls of the honeycomb fired body constituting the honeycomb structure to be manufactured.
  • a noble metal such as platinum, palladium, or rhodium is desirable.
  • alkali metals such as potassium and sodium, alkaline earth metals such as barium, zeolite, and the like can be used. These catalysts may be used alone or in combination of two or more.
  • the connecting portion includes a curved portion provided at a location where the connecting portion is connected to the forming groove, and a straight portion from the curved portion toward the raw material supply hole, and 2.0 ⁇
  • Extruding a ceramic raw material using an extrusion mold including a portion satisfying a / b is an essential component.
  • the connecting portion includes a curved portion provided at a location where the connecting portion is connected to the forming groove, and a straight portion from the curved portion toward the raw material supply hole, and 2.0 It is an essential component to include a portion satisfying ⁇ a / b.
  • the essential components include various configurations described in detail in the first embodiment of the present invention and other embodiments (for example, the shape of the mold body constituting the extrusion mold, and the resulting honeycomb molded body The desired effect can be obtained by appropriately combining the shape and the manufacturing process of the honeycomb structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

本発明のハニカム構造体の製造方法は、押出成形用金型を用いてセラミック原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設され、周囲に外周壁が形成されたハニカム成形体を作製する工程と、上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する工程と、少なくとも1つのハニカム焼成体を用いてセラミックブロックを作製する工程とを含むハニカム構造体の製造方法であって、上記押出成形用金型は、原料導入側面及び成形体押出側面を有する金型本体を備え、上記金型本体の上記原料導入側面には、上記セラミック原料を供給するための原料供給孔が形成されており、上記金型本体の上記成形体押出側面には、上記セラミック原料を上記ハニカム成形体の形状に成形するための成形溝が形成されており、上記原料供給孔及び上記成形溝の間には、上記原料供給孔及び上記成形溝を連通する連結部が形成されており、上記セラミック原料を押し出す方向に平行な断面において、上記連結部は、上記成形溝と連結する箇所に設けられた曲線部と、上記曲線部から上記原料供給孔へ向かう直線部とを含み、かつ、上記セラミック原料を押し出す方向に平行な方向における上記連結部の長さをa、上記セラミック原料を押し出す方向に垂直な方向における、上記連結部と連結する箇所の上記原料供給孔の幅をx、上記セラミック原料を押し出す方向に垂直な方向における、上記ハニカム成形体のセル壁又は外周壁の厚さに対応する上記成形溝の幅をyとし、b=(x-y)/2としたとき、2.0≦a/bを満たす部分を含む押出成形用金型であることを特徴とする。

Description

ハニカム構造体の製造方法、及び、押出成形用金型
本発明は、ハニカム構造体の製造方法、及び、押出成形用金型に関する。
バス、トラック等の車両又は建設機械等の内燃機関から排出される排ガス中に含有されるスス等のパティキュレート(以下、PMともいう)及びその他の有害成分が環境及び人体に害を及ぼすことが最近問題となっている。
そこで、排ガス中のPMを捕集し、排ガスを浄化するハニカムフィルタとして、多孔質セラミックからなるハニカム構造体が種々提案されている。
従来、ハニカム構造体を製造する際には、押出成形用金型を用いてセラミック原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設されたハニカム成形体を作製している。
ハニカム成形体を作製するための押出成形用金型としては、セラミック原料を供給するための原料供給孔と、該原料供給孔に連通して設けられ、セラミック原料をハニカム成形体の形状に成形するための成形溝とを有する金型が知られている。
例えば、特許文献1には、セラミックス坏土(セラミック原料)を坏土供給孔(原料供給孔)及び成形溝に供給することにより、坏土の通路の表面を磨耗させたセラミックハニカム押出ダイス(押出成形用金型)が開示されている。
また、特許文献2には、坏土導入孔(原料供給孔)と坏土押出しスリット(成形溝)とが連通する箇所に凸曲面を有するハニカム構造体成形用口金(押出成形用金型)が開示されている。
特公平6-45130号公報 特開2003-251619号公報
ハニカム成形体を作製するための押出成形用金型には、ハニカム成形体の成形性の観点から、流体(つまり、セラミック原料)が流れやすい構造であることが求められる。
特許文献1に記載のセラミックハニカム押出ダイスでは、坏土の通路の表面を磨耗させることにより、セラミック坏土の流れ抵抗を均一化している。また、特許文献2のハニカム構造体成形用口金では、坏土導入孔と坏土押出しスリットとが連通する箇所に凸曲面を設けることにより、坏土導入孔から坏土押出しスリットへの移行をスムーズにしている。
さらに、押出成形用金型には、ハニカム成形体の生産性の観点から、成形速度を大きくしても成形性が損なわれないことが求められる。
また、押出成形用金型を用いたハニカム構造体の製造方法には、ハニカム成形体の成形性及び生産性をともに向上させることが求められている。
本発明は、上記の問題を解決するためになされたものであり、ハニカム成形体の成形性及び生産性に優れるハニカム構造体の製造方法を提供することを目的とする。また、本発明は、上記ハニカム構造体の製造方法に用いられる押出成形用金型を提供することを目的とする。
請求項1に記載のハニカム構造体の製造方法は、
押出成形用金型を用いてセラミック原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設され、周囲に外周壁が形成されたハニカム成形体を作製する工程と、
上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する工程と、
少なくとも1つのハニカム焼成体を用いてセラミックブロックを作製する工程とを含むハニカム構造体の製造方法であって、
上記押出成形用金型は、原料導入側面及び成形体押出側面を有する金型本体を備え、
上記金型本体の上記原料導入側面には、上記セラミック原料を供給するための原料供給孔が形成されており、
上記金型本体の上記成形体押出側面には、上記セラミック原料を上記ハニカム成形体の形状に成形するための成形溝が形成されており、
上記原料供給孔及び上記成形溝の間には、上記原料供給孔及び上記成形溝を連通する連結部が形成されており、
上記セラミック原料を押し出す方向に平行な断面において、上記連結部は、上記成形溝と連結する箇所に設けられた曲線部と、上記曲線部から上記原料供給孔へ向かう直線部とを含み、かつ、
上記セラミック原料を押し出す方向に平行な方向における上記連結部の長さをa、上記セラミック原料を押し出す方向に垂直な方向における、上記連結部と連結する箇所の上記原料供給孔の幅をx、上記セラミック原料を押し出す方向に垂直な方向における、上記ハニカム成形体のセル壁又は外周壁の厚さに対応する上記成形溝の幅をyとし、b=(x-y)/2としたとき、2.0≦a/bを満たす部分を含む押出成形用金型であることを特徴とする。
請求項1に記載のハニカム構造体の製造方法では、上記の構成を有する押出成形用金型を用いてセラミック原料を押出成形することにより、ハニカム成形体を作製することを特徴としている。
請求項1に記載のハニカム構造体の製造方法で用いる押出成形用金型では、セラミック原料を押し出す方向に平行な断面において、連結部及び成形溝が連結する箇所に曲線部が設けられている。この曲線部により、特許文献1及び特許文献2に記載の従来の押出成形用金型と同様に、原料供給孔から成形溝へセラミック原料を流れやすくすることができる。
さらに、請求項1に記載のハニカム構造体の製造方法で用いる押出成形用金型では、セラミック原料を押し出す方向に平行な方向における連結部の長さをa、セラミック原料を押し出す方向に垂直な方向における、連結部と連結する箇所の原料供給孔の幅をx、セラミック原料を押し出す方向に垂直な方向における、ハニカム成形体のセル壁又は外周壁の厚さに対応する成形溝の幅をyとし、b=(x-y)/2としたとき、2.0≦a/bを満たす部分を含む。そのため、原料供給孔から成形溝へセラミック原料をより流れやすくすることができる。
セラミック原料を押し出す方向に平行な方向における連結部の長さaは、原料供給孔から成形溝へ移行するまでの、セラミック原料を押し出す方向に平行な方向の距離に対応する。以下、「セラミック原料を押し出す方向に平行な方向における連結部の長さa」を単に「連結部の長さa」とも記載する。
また、(x-y)/2で示される長さbは、原料供給孔から成形溝へ移行するまでの、セラミック原料を押し出す方向に垂直な方向の距離に対応する。以下、長さbを「原料供給孔及び成形溝の間の距離b」とも記載する。
a/b<2.0である場合、連結部の長さaが相対的に小さいか、又は、原料供給孔及び成形溝の間の距離bが相対的に大きい。連結部の長さaが相対的に小さいと、原料供給孔から成形溝にセラミック原料が流れにくくなるため、セラミック原料が金型内に詰まりやすくなる。そのため、成形速度が大きくなると、ハニカム成形体に割れ又は変形が発生しやすくなる。一方、原料供給孔及び成形溝の間の距離bが相対的に大きいと、同じ大きさのハニカム成形体を作製する場合に原料供給孔の幅が小さくなる。その結果、原料供給孔の抵抗が大きくなるため、ハニカム成形体の成形性及び生産性が悪くなる。
以上のように、請求項1に記載のハニカム構造体の製造方法では、上記の構成を有する押出成形用金型を用いるため、成形速度が大きい場合においても、セラミック原料が成形溝等に詰まることに起因してハニカム成形体に割れ又は変形が発生することを防止することができる。その結果、ハニカム成形体の成形性及び生産性をともに向上させることができる。
請求項2に記載のハニカム構造体の製造方法では、上記押出成形用金型において、上記2.0≦a/bを満たす部分は、上記金型本体の50%以上の領域である。
本発明のハニカム構造体の製造方法では、押出成形用金型の金型本体の50%以上の領域が2.0≦a/bを満たしていればよく、金型本体の全体が2.0≦a/bを満たす必要はない。しかしながら、上記2.0≦a/bを満たす部分が金型本体の50%未満の領域であると、原料供給孔から成形溝にセラミック原料が流れやすい部分が少ないため、ハニカム成形体の成形性及び生産性が向上する効果が充分に得られない。
請求項3に記載のハニカム構造体の製造方法では、上記押出成形用金型において、上記2.0≦a/bを満たす部分は、上記金型本体のセラミック原料を押し出す方向に垂直な断面の中心から該断面の外周までの1/2の領域を含む。
すなわち、請求項3に記載のハニカム構造体の製造方法では、金型本体の外周部分よりも中心部分において、原料供給孔から成形溝にセラミック原料が流れやすくなっている。金型本体の外周部分では、主にハニカム成形体の外周壁が形成されるが、一般に、ハニカム成形体の外周壁はセル壁に比べて厚い。そのため、金型本体の外周部分では、2.0≦a/bを満たしていなくても、セラミック原料が流れやすい。従って、請求項3に記載のハニカム構造体の製造方法では、押出成形用金型の金型本体の全体が2.0≦a/bを満たしていなくても、ハニカム成形体の成形性及び生産性をともに向上させることができる。
請求項4に記載のハニカム構造体の製造方法では、上記押出成形用金型において、上記2.0≦a/bを満たす部分は、2.0≦a/b≦4.0を満たす。
2.0≦a/b≦4.0である場合、ハニカム成形体の成形性及び生産性をより向上させることができる。
a/b>4.0である場合、連結部の長さaが相対的に大きいか、又は、原料供給孔及び成形溝の間の距離bが相対的に小さい。原料供給孔及び成形溝の間の距離bが相対的に小さいと、原料供給孔の幅xが成形溝の幅yと近い値になる(言い換えると、原料供給孔の幅xが小さい)ため、原料供給孔の抵抗が大きくなり、ハニカム成形体の成形性及び生産性が悪くなる。その結果、押出成形用金型が破損しやすくなり、押出成形用金型の寿命が短くなる。一方、連結部の長さaが相対的に大きいと、セラミック原料への抵抗が大きくなり、ハニカム成形体の成形性及び生産性が悪くなる。
請求項5に記載のハニカム構造体の製造方法では、上記押出成形用金型において、上記ハニカム成形体のセル壁の厚さに対応する上記成形溝の幅は、0.1~0.2mmである。
また、請求項6に記載のハニカム構造体の製造方法では、上記押出成形用金型において、上記ハニカム成形体の外周壁の厚さに対応する上記成形溝の幅は、0.2~0.5mmである。
ハニカム成形体のセル壁の厚さに対応する成形溝の幅が0.1~0.2mmである場合、及び、ハニカム成形体の外周壁の厚さに対応する成形溝の幅が0.2~0.5mmである場合、一般には、成形溝の幅が小さいため、セラミック原料が詰まりやすくなる。しかしながら、曲線部を有し、かつ、2.0≦a/bを満たす部分を含む押出成形用金型を用いると、原料供給孔から成形溝へセラミック原料が流れやすくなるため、ハニカム成形体に割れ又は変形が発生することを防止することができる。
請求項7に記載のハニカム構造体の製造方法では、上記押出成形用金型において、上記曲線部は、流体研磨により形成されている。
流体研磨を用いると、曲線部を有し、かつ、2.0≦a/bを満たす部分を含む押出成形用金型を容易に作製することができる。
請求項8に記載のハニカム構造体の製造方法では、上記ハニカム成形体の構成材料の主成分は、炭化ケイ素である。
一般に、硬質な炭化ケイ素を主成分とするセラミック原料を用いた場合、押出成形用金型が磨耗しやすくなるため、成形体の大きさにばらつきが大きくなる。しかしながら、曲線部を有し、かつ、2.0≦a/bを満たす部分を含む押出成形用金型を用いると、原料供給孔から成形溝へセラミック原料が流れやすくなるため、ハニカム成形体に割れ又は変形が発生することを防止することができる。
従って、請求項8に記載のハニカム構造体の製造方法では、炭化ケイ素質ハニカム構造体を好適に製造することができる。
請求項9に記載のハニカム構造体の製造方法では、上記セラミックブロックを作製する工程では、接着材ペーストを介して上記ハニカム焼成体を複数個結束する。
このように、請求項9に記載のハニカム構造体の製造方法では、いわゆる集合型ハニカム構造体を好適に製造することができる。
請求項10に記載の押出成形用金型は、
セラミック原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設され、周囲に外周壁が形成されたハニカム成形体を作製するために用いられる押出成形用金型であって、
上記押出成形用金型は、原料導入側面及び成形体押出側面を有する金型本体を備え、
上記金型本体の上記原料導入側面には、上記セラミック原料を供給するための原料供給孔が形成されており、
上記金型本体の上記成形体押出側面には、上記セラミック原料を上記ハニカム成形体の形状に成形するための成形溝が形成されており、
上記原料供給孔及び上記成形溝の間には、上記原料供給孔及び上記成形溝を連通する連結部が形成されており、
上記セラミック原料を押し出す方向に平行な断面において、上記連結部は、上記成形溝と連結する箇所に設けられた曲線部と、上記曲線部から上記原料供給孔へ向かう直線部とを含み、かつ、
上記セラミック原料を押し出す方向に平行な方向における上記連結部の長さをa、上記セラミック原料を押し出す方向に垂直な方向における、上記連結部と連結する箇所の上記原料供給孔の幅をx、上記セラミック原料を押し出す方向に垂直な方向における、上記ハニカム成形体のセル壁又は外周壁の厚さに対応する上記成形溝の幅をyとし、b=(x-y)/2としたとき、2.0≦a/bを満たす部分を含むことを特徴とする。
請求項11に記載の押出成形用金型では、上記2.0≦a/bを満たす部分は、上記金型本体の50%以上の領域である。
請求項12に記載の押出成形用金型では、上記2.0≦a/bを満たす部分は、上記金型本体のセラミック原料を押し出す方向に垂直な断面の中心から該断面の外周までの1/2の領域を含む。
請求項13に記載の押出成形用金型では、前記2.0≦a/bを満たす部分は、2.0≦a/b≦4.0を満たす。
請求項14に記載の押出成形用金型では、上記ハニカム成形体のセル壁の厚さに対応する上記成形溝の幅は、0.1~0.2mmである。
請求項15に記載の押出成形用金型では、上記ハニカム成形体の外周壁の厚さに対応する上記成形溝の幅は、0.2~0.5mmである。
請求項16に記載の押出成形用金型では、上記曲線部は、流体研磨により形成されている。
請求項17に記載の押出成形用金型では、上記ハニカム成形体の構成材料の主成分は、炭化ケイ素である。
請求項10~17に記載の押出成形用金型を用いると、請求項1~9に記載のハニカム構造体の製造方法で説明したように、成形速度が大きい場合においても、セラミック原料が成形溝等に詰まることに起因してハニカム成形体に割れ又は変形が発生することを防止することができる。従って、請求項10~17に記載の押出成形用金型をハニカム構造体の製造に用いた場合、ハニカム成形体の成形性及び生産性をともに向上させることができる。
図1は、本発明の第一実施形態に係る押出成形用金型の一例を模式的に示す断面図である。 図2(a)は、図1に示す押出成形用金型を構成する金型本体の正面拡大図であり、図2(b)は、該金型本体の背面図である。 図3は、図1に示す押出成形用金型を構成する金型本体の一部拡大図である。 図4は、図1に示す押出成形用金型を構成する金型本体のセラミック原料を押し出す方向に垂直な方向における断面図である。 図5は、本発明の第一実施形態に係る押出成形用金型を備える押出成形装置を用いてハニカム成形体を作製する様子を模式的に示す斜視図である。 図6(a)は、本発明の第一実施形態に係るハニカム成形体の一例を模式的に示す斜視図であり、図6(b)は、図6(a)に示すハニカム成形体のC-C線断面図である。 図7(a)は、本発明の第一実施形態に係るハニカム焼成体の一例を模式的に示す斜視図であり、図7(b)は、図7(a)に示すハニカム焼成体のD-D線断面図である。 図8は、本発明の第一実施形態に係るハニカム構造体の一例を模式的に示す斜視図である。 図9は、実施例1~3及び比較例1~2におけるa/b比と成形速度との関係を示すグラフである。
特許文献1及び特許文献2に記載の従来の押出成形用金型を用いてハニカム成形体を作製する場合において、成形速度を大きくすると、セラミック原料が成形溝等に詰まってしまい、得られるハニカム成形体に割れ又は変形が発生することが判明した。
このように、特許文献1及び特許文献2に記載の押出成形用金型を用いたハニカム構造体の製造方法には、成形性及び生産性を両立させることができないという問題があると考えられる。
本発明者らは、成形速度を大きくしても、得られるハニカム成形体に割れ又は変形が発生しない方法を検討した。そして、本発明者らは、特許文献1及び特許文献2に記載の従来の押出成形用金型では認識されていなかった解決手段として、セラミック原料を押し出す方向に平行な断面における、押出成形用金型の原料供給孔の幅と成形溝の幅との差に着目した。
その結果、本発明者らは、セラミック原料が原料供給孔から成形溝へ移行するまでの、セラミック原料を押し出す方向に垂直な方向の距離に対する平行な方向の距離の比を所定の値とすることにより、原料供給孔から成形溝にセラミック原料をより流れやすくすることができることを見出し、本発明を完成した。
以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
(第一実施形態)
以下、本発明のハニカム構造体の製造方法、及び、押出成形用金型の一実施形態である第一実施形態について、図面を参照しながら説明する。
本発明の第一実施形態に係るハニカム構造体の製造方法は、
押出成形用金型を用いてセラミック原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設され、周囲に外周壁が形成されたハニカム成形体を作製する工程と、
上記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する工程と、
少なくとも1つのハニカム焼成体を用いてセラミックブロックを作製する工程とを含むハニカム構造体の製造方法であって、
上記押出成形用金型は、原料導入側面及び成形体押出側面を有する金型本体を備え、
上記金型本体の上記原料導入側面には、上記セラミック原料を供給するための原料供給孔が形成されており、
上記金型本体の上記成形体押出側面には、上記セラミック原料を上記ハニカム成形体の形状に成形するための成形溝が形成されており、
上記原料供給孔及び上記成形溝の間には、上記原料供給孔及び上記成形溝を連通する連結部が形成されており、
上記セラミック原料を押し出す方向に平行な断面において、上記連結部は、上記成形溝と連結する箇所に設けられた曲線部と、上記曲線部から上記原料供給孔へ向かう直線部とを含み、かつ、
上記セラミック原料を押し出す方向に平行な方向における上記連結部の長さをa、上記セラミック原料を押し出す方向に垂直な方向における、上記連結部と連結する箇所の上記原料供給孔の幅をx、上記セラミック原料を押し出す方向に垂直な方向における、上記ハニカム成形体のセル壁又は外周壁の厚さに対応する上記成形溝の幅をyとし、b=(x-y)/2としたとき、2.0≦a/bを満たす部分を含む押出成形用金型であることを特徴とする。
まず、本発明の第一実施形態に係るハニカム構造体の製造方法で用いる押出成形用金型について説明する。この金型は、本発明の第一実施形態に係る押出成形用金型である。
図1は、本発明の第一実施形態に係る押出成形用金型の一例を模式的に示す断面図である。
図1は、セラミック原料を押し出す方向に平行な方向における押出成形用金型の断面図である。図1中、セラミック原料を押し出す方向を矢印で示している。
図1に示す押出成形用金型100は、原料導入側面A及び成形体押出側面Bを有する金型本体10と、金型本体10を固定するための外枠20とを備えている。なお、外枠は、必要に応じて備えられていればよい。
図1に示すように、金型本体10の原料導入側面Aには、セラミック原料を供給するために、原料供給孔11が形成されている。
一方、金型本体10の原料導入側面Aと反対側の成形体押出側面Bには、原料供給孔11を通過したセラミック原料をハニカム成形体の形状に成形するために、成形溝12が形成されている。
そして、原料供給孔11及び成形溝12の間には、連結部13が形成されている。原料供給孔11及び成形溝12は、連結部13を介して金型本体10の内部で連通している。
図2(a)は、図1に示す押出成形用金型を構成する金型本体の正面拡大図であり、図2(b)は、該金型本体の背面図である。
図2(a)及び図2(b)に示すように、金型本体10において、成形溝12は、ハニカム成形体(ハニカム構造体)のセル壁又は外周壁の厚さに対応するスリット幅を有しており、例えば、格子状等に設けられている。また、原料供給孔11は、通常、格子状等の成形溝12が交差する位置に対応して設けられている。
本発明の第一実施形態に係る押出成形用金型では、セラミック原料を押し出す方向に平行な断面において、連結部が、成形溝と連結する箇所に設けられた曲線部と、曲線部から原料供給孔へ向かう直線部とを含むことを特徴としている。
本発明の第一実施形態に係る押出成形用金型では、さらに、セラミック原料を押し出す方向に平行な方向における連結部の長さをa、セラミック原料を押し出す方向に垂直な方向における、連結部と連結する箇所の原料供給孔の幅をx、セラミック原料を押し出す方向に垂直な方向における、成形溝の幅をyとし、b=(x-y)/2としたとき、2.0≦a/bを満たす部分を含むことを特徴としている。
上記2点の特徴について、図3を参照しながら説明する。
図3は、図1に示す押出成形用金型を構成する金型本体の一部拡大図である。
図3に示す金型本体10において、連結部13は、成形溝12と連結する箇所に設けられた曲線部13aと、曲線部13aから原料供給孔11へ向かう直線部13bとを含む。
なお、図3において、連結部13には、原料供給孔11と連結する箇所に曲線部13cが設けられているが、曲線部13cは設けられていなくてもよい。例えば、連結部13は、曲線部13a及び直線部13bから構成されていてもよい。
図3に示すように、セラミック原料を押し出す方向に平行な方向において、成形溝12の内面と連結部13の曲線部13aとの交点、及び、原料供給孔11の内面と連結部13の曲線部13cとの交点の間の長さ(図3中、矢印aで示す長さ)を連結部13の長さとする。なお、連結部13に曲線部13cが設けられていない場合には、成形溝12の内面と連結部13の曲線部13aとの交点、及び、原料供給孔11の内面と連結部13の直線部13bとの交点の間の長さを連結部13の長さaとする。また、連結部13の上下において、連結部13の長さが異なる場合には、短い方の長さを連結部13の長さaとする。
また、図3に示すように、金型本体10の原料導入側面Aから連結部13の曲線部13c(曲線部13cが設けられていない場合には直線部13b)までの部分を原料供給孔11とする。そして、金型本体10の成形体押出側面Bから連結部13の曲線部13aまでの部分を成形溝12とする。
図3に示す金型本体10において、セラミック原料を押し出す方向に平行な方向における連結部13の長さをa、セラミック原料を押し出す方向に垂直な方向における、連結部13と連結する箇所の原料供給孔11の幅をx、セラミック原料を押し出す方向に垂直な方向における、成形溝12の幅をyとし、b=(x-y)/2としたとき、2.0≦a/bを満たす。
なお、図3に示すように、金型本体10の原料導入側面A上の原料供給孔11の幅(図3中、矢印xで示す長さ)を、セラミック原料を押し出す方向に垂直な方向における原料供給孔11の幅とする。同様に、金型本体10の成形体押出側面B上の成形溝12の幅(図3中、矢印yで示す長さ)を、セラミック原料を押し出す方向に垂直な方向における成形溝12の幅とする。
上述のとおり、セラミック原料を押し出す方向に平行な方向における連結部13の長さaは、原料供給孔11から成形溝12へ移行するまでの、セラミック原料を押し出す方向に平行な方向の距離に対応する。
また、図3に示す金型本体10のように、原料供給孔11の中央に成形溝12が設けられている場合、(x-y)/2で示される長さbは、原料供給孔11から成形溝12へ移行するまでの、セラミック原料を押し出す方向に垂直な方向の距離に対応する。
本発明の第一実施形態に係る押出成形用金型では、2.0≦a/bとすることにより、原料供給孔から成形溝へセラミック原料を流れやすくすることができる。
a/b<2.0である場合、連結部の長さaが相対的に小さいか、又は、原料供給孔及び成形溝の間の距離bが相対的に大きい。連結部の長さaが相対的に小さいと、原料供給孔から成形溝にセラミック原料が流れにくくなるため、セラミック原料が金型内に詰まりやすくなる。そのため、成形速度が大きくなると、ハニカム成形体に割れ又は変形が発生しやすくなる。一方、原料供給孔及び成形溝の間の距離bが相対的に大きいと、同じ大きさのハニカム成形体を作製する場合に原料供給孔の幅が小さくなる。その結果、原料供給孔の抵抗が大きくなるため、ハニカム成形体の成形性及び生産性が悪くなる。
上記2.0≦a/bを満たす部分は、2.0≦a/b≦4.0を満たすことが望ましく、2.5≦a/b≦4.0を満たすことがより望ましく、3.0≦a/b≦4.0を満たすことがさらに望ましい。
a/b>4.0である場合、連結部の長さaが相対的に大きいか、又は、原料供給孔及び成形溝の間の距離bが相対的に小さい。原料供給孔及び成形溝の間の距離bが相対的に小さいと、原料供給孔の幅xが成形溝の幅yと近い値になる(言い換えると、原料供給孔の幅xが小さい)ため、原料供給孔の抵抗が大きくなり、ハニカム成形体の成形性及び生産性が悪くなる。その結果、押出成形用金型が破損しやすくなり、押出成形用金型の寿命が短くなる。一方、連結部の長さaが相対的に大きいと、セラミック原料への抵抗が大きくなり、ハニカム成形体の成形性及び生産性が悪くなる。
本発明の第一実施形態に係る押出成形用金型においては、金型本体の全体が2.0≦a/bを満たしていなくてもよく、金型本体の一部が2.0≦a/bを満たしていればよい。
具体的には、2.0≦a/bを満たす部分は、金型本体の50%以上の領域であることが望ましく、70%以上の領域であることがより望ましい。また、2.0≦a/bを満たす部分は、金型本体の50%~100%の領域であることがさらに望ましく、70%~100%の領域であることが特に望ましい。
2.0≦a/bを満たす部分が金型本体の50%未満の領域であると、原料供給孔から成形溝にセラミック原料が流れやすい部分が少ないため、ハニカム成形体の成形性及び生産性が向上する効果が充分に得られない。
また、本発明の第一実施形態に係る押出成形用金型においては、2.0≦a/bを満たす部分は、金型本体のセラミック原料を押し出す方向に垂直な断面の中心から該断面の外周までの1/2の領域を含むことが望ましい。この場合、押出成形用金型の金型本体の全体が2.0≦a/bを満たしていなくても、ハニカム成形体の成形性及び生産性をともに向上させることができる。
以下、「金型本体のセラミック原料を押し出す方向に垂直な断面の中心から該断面の外周までの1/2の領域」について説明する。
図4は、図1に示す押出成形用金型を構成する金型本体のセラミック原料を押し出す方向に垂直な方向における断面図である。
図4に示すように、「金型本体のセラミック原料を押し出す方向に垂直な断面の中心から該断面の外周までの1/2の領域」とは、金型本体10の断面が、金型本体10の断面上の中心(図4中、金型本体の断面上の中心をOで示す)を含み、中心Oと外周とを結ぶ線分を2等分する点(図4中、上記2等分する点をPで示す)を結んだ線で囲まれた部分をいう。
なお、図4では、金型本体の断面形状が四角形(正方形)である場合を説明しているが、金型本体の断面形状に関わらず、上記の関係により「金型本体のセラミック原料を押し出す方向に垂直な断面の中心から該断面の外周までの1/2の領域」が決定される。
本発明の第一実施形態に係る押出成形用金型を構成する金型本体において、ハニカム成形体のセル壁の厚さに対応する成形溝の幅は、0.1~0.2mmであることが望ましい。
本発明の第一実施形態に係る押出成形用金型を構成する金型本体において、ハニカム成形体の外周壁の厚さに対応する成形溝の幅は、0.2~0.5mmであることが望ましい。また、ハニカム成形体の外周壁の厚さに対応する成形溝の幅は、ハニカム成形体のセル壁の厚さに対応する成形溝の幅よりも大きいことがより望ましい。
ハニカム成形体のセル壁の厚さに対応する成形溝の幅が0.1~0.2mmである場合、及び、ハニカム成形体の外周壁の厚さに対応する成形溝の幅が0.2~0.5mmである場合、一般には、成形溝の幅が小さいため、セラミック原料が詰まりやすくなる。しかしながら、曲線部を有し、かつ、2.0≦a/bを満たす部分を含む押出成形用金型を用いると、原料供給孔から成形溝へセラミック原料が流れやすくなるため、ハニカム成形体に割れ又は変形が発生することを防止することができる。
本発明の第一実施形態に係る押出成形用金型を構成する金型本体において、原料供給孔の幅は、特に限定されないが、1.0~1.5mmであることが望ましい。
なお、原料供給孔の断面形状が円形である場合、原料供給孔の幅とは、原料供給孔の内径を意味する。
次に、本発明の第一実施形態に係る押出成形用金型を構成する金型本体の製造方法の一例について説明する。
まず、金型本体を構成する基体を切削することにより、原料供給孔と、上記原料供給孔に連通する成形溝とを形成する。
金型本体を構成する基体の材質としては、特に限定されないが、超硬合金、工具鋼、又は、熱間金型用の工具鋼等を用いることが望ましい。
原料供給孔を形成する方法は、特に限定されるものではないが、例えば、エンドミル又はドリル等を用いる機械加工により、基体を切削して所望の内径を有する原料供給孔を形成する方法等が挙げられる。
また、成形溝を形成する方法も、特に限定されるものではないが、例えば、原料供給孔を形成した後、原料供給孔を形成した部分と反対側から、ダイヤモンド等を含む砥石を用いるダイシングマシン等による機械加工で、基体を切削して所望のスリット幅を有する成形溝を形成する方法等が挙げられる。
成形溝は、目的とするハニカム成形体(ハニカム構造体)の形状に応じて、格子状等の所望の形状のものを、所定間隔で所定数設ければよい。
一方、原料供給孔は、通常、成形溝を形成した面と反対側の基体の面から、成形溝の交差部の位置に対応させて形成すればよい。
次に、原料供給孔及び成形溝の間に連結部を形成する。
連結部を形成する方法は、特に限定されるものではないが、例えば、流体研磨、放電加工、電解加工、又は、機械加工等により連結部を形成する方法が挙げられる。
これらの中では、流体研磨により連結部を形成することが望ましい。
流体研磨を用いると、曲線部を有し、かつ、2.0≦a/bを満たす部分を含む押出成形用金型を容易に作製することができる。
流体研磨により連結部を形成する場合、具体的には、基体の材質より高い硬度を有する材料である炭化ケイ素(SiC)研粒含有研磨剤等を含有する研磨剤を、セラミック原料と同様に原料供給孔から繰り返し導入し、成形溝から押し出すことにより、上記の構成を有する連結部を形成することができる。また、成形溝から、上記研磨剤を導入してもよい。
なお、流体研磨により連結部を形成する場合、連結部の長さaの長さbに対する比(以下、a/b比ともいう)は、流体研磨の条件(例えば、粒度、研磨時間、研磨圧力、又は、研磨温度等)を変更することにより調整することができる。例えば、研磨時間を長くすることにより、a/b比を大きくすることができる。
図5は、本発明の第一実施形態に係る押出成形用金型を備える押出成形装置を用いてハニカム成形体を作製する様子を模式的に示す斜視図である。
図5に示す押出成形装置200では、ケーシング210の先端部に押出成形用金型100が設けられており、この押出成形用金型100を介して成形体300が連続的に押し出されている。ケーシング210の内部には、スクリュー(図示せず)が設けられており、このスクリューにより、セラミック原料の混合と押出成形用金型100へのセラミック原料の押し込みとが行われる。
その結果、多数のセルがセル壁を隔てて長手方向に並設され、周囲に外周壁が形成された成形体300が連続的に作製される。この後、連続的に延びた成形体300は、所定の長さに切断されることにより、ハニカム成形体となる。
図5に示す押出成形装置200を使用して押出成形を行う際には、セラミック原料をケーシング210内に投入する。セラミック原料は、押出成形装置200の内部で、さらに混練されるとともに、スクリュー羽根(図示せず)に押されて次第に端部の方向に移動していく。そして、セラミック原料が押出成形用金型100内の成形溝を通過して押し出された後、所定の長さに切断される。
以下、本発明の第一実施形態に係るハニカム構造体の製造方法の一例について説明する。
(1)まず、セラミック粉末とバインダとを含む湿潤混合物(セラミック原料)を調製する。
具体的には、まず、セラミック粉末と、有機バインダと、液状の可塑剤と、潤滑剤と、水とを混合することにより、ハニカム成形体製造用の湿潤混合物を調製する。
上記セラミック粉末は、作製するハニカム成形体(ハニカム構造体)の構成材料に応じて選択すればよい。
ハニカム成形体の構成材料の主成分としては、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、シリカ、チタン酸アルミニウム等の酸化物セラミック等を挙げることができる。
ハニカム成形体の構成材料の主成分の中では、非酸化物セラミックが好ましく、炭化ケイ素が特に好ましい。耐熱性、機械強度、熱伝導率等に優れるからである。
本明細書において、「主成分が炭化ケイ素である」とは、セラミック粉末が炭化ケイ素を60重量%以上含有することをいう。主成分が炭化ケイ素である場合、炭化ケイ素のみならず、ケイ素結合炭化ケイ素も含まれる。また、炭化ケイ素以外の構成材料の主成分についても同様である。
(2)次に、上記湿潤混合物(セラミック原料)を押出成形することにより、所定の形状のハニカム成形体を作製する。
この際、本発明の第一実施形態に係る押出成形用金型を用いて押出成形を行う。
図6(a)は、本発明の第一実施形態に係るハニカム成形体の一例を模式的に示す斜視図であり、図6(b)は、図6(a)に示すハニカム成形体のC-C線断面図である。
図6(a)及び図6(b)に示すハニカム成形体30には、多数のセル31がセル壁32を隔てて長手方向(図6(a)中、矢印cの方向)に並設されるとともに、その周囲に外周壁33が形成されている。
(3)その後、上記ハニカム成形体を、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させることにより、ハニカム成形体の乾燥体を作製する。
さらに、ハニカム成形体の乾燥体を、所定の条件で脱脂処理(例えば、200~500℃)、及び、焼成処理(例えば、1400~2300℃)を行う。
上記の工程を経ることにより、多数のセルがセル壁を隔てて長手方向に並設され、周囲に外周壁が形成されたハニカム焼成体を作製することができる。
なお、上記ハニカム成形体の乾燥体の脱脂処理及び焼成処理の条件は、従来からハニカム焼成体を作製する際に用いられている条件を適用することができる。
本発明の第一実施形態に係るハニカム構造体の製造方法においては、セルのいずれか一方の端部が封止されたハニカム焼成体を作製することもできる。この場合、上記(3)の工程において、乾燥後、ハニカム成形体の乾燥体が有するセルの所定の端部に、封止材となる封止材ペーストを所定量充填してセルを封止する。その後、上述した脱脂処理及び焼成処理を行うことにより、セルのいずれか一方の端部が封止されたハニカム焼成体を作製することができる。
ここで、封止材ペーストとしては、上記湿潤混合物を用いることができる。
図7(a)は、本発明の第一実施形態に係るハニカム焼成体の一例を模式的に示す斜視図であり、図7(b)は、図7(a)に示すハニカム焼成体のD-D線断面図である。
図7(a)及び図7(b)に示すハニカム焼成体40には、多数のセル41がセル壁42を隔てて長手方向(図7(a)中、矢印dの方向)に並設されるとともに、その周囲に外周壁43が形成されている。そして、セル41のいずれかの端部は、封止材44で封止されている。
従って、一方の端面が開口したセル41に流入した排ガスG(図7(b)中、排ガスをGで示し、排ガスの流れを矢印で示す)は、必ずセル41を隔てるセル壁42を通過した後、他方の端面が開口した他のセル41から流出するようになっている。排ガスGがセル壁42を通過する際に、排ガス中のPM等が捕集されるため、セル壁42は、フィルタとして機能する。
このように、セルのいずれか一方の端部が封止されたハニカム焼成体を含むハニカム構造体は、セラミックフィルタとして好適に使用することができる。また、セルのいずれの端部も封止されていないハニカム焼成体を含むハニカム構造体は、触媒担持体として好適に使用することができる。
(4)続いて、少なくとも1つのハニカム焼成体を用いてセラミックブロックを作製する。
一例として、複数のハニカム焼成体が接着材層を介して結束されてなるセラミックブロックを作製する方法について説明する。
まず、上記ハニカム焼成体のそれぞれの所定の側面に、接着材層となる接着材ペーストを塗布して接着材ペースト層を形成し、この接着剤ペースト層の上に、順次他のハニカム焼成体を積層する工程を繰り返し、ハニカム焼成体の集合体を作製する。
次に、ハニカム焼成体の集合体を加熱して接着剤ペースト層を乾燥、固化させて接着材層とすることにより、セラミックブロックを作製する。
ここで、接着材ペーストとしては、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。また、上記接着材ペーストは、さらに無機繊維及び/又はウィスカを含んでいてもよい。
(5)その後、セラミックブロックに切削加工を施す。
具体的には、ダイヤモンドカッター等を用いてセラミックブロックの外周を切削することにより、外周が円柱状に加工されたセラミックブロックを作製する。
(6)さらに、円柱状のセラミックブロックの外周面に、外周コート材ペーストを塗布し、乾燥固化して外周コート層を形成する。
ここで、外周コート材ペーストとしては、上記接着材ペーストを使用することができる。なお、外周コート材ペーストして、上記接着材ペーストと異なる組成のペーストを使用してもよい。
また、外周コート層は必ずしも設ける必要はなく、必要に応じて設ければよい。
以上の工程によって、ハニカム構造体を製造することができる。
図8は、本発明の第一実施形態に係るハニカム構造体の一例を模式的に示す斜視図である。
図8に示すハニカム構造体50では、ハニカム焼成体40が複数個ずつ接着材層51を介して結束されてセラミックブロック53を構成し、さらに、このセラミックブロック53の外周に外周コート層52が形成されている。なお、外周コート層は、必要に応じて形成されていればよい。
このような、ハニカム焼成体が複数個結束されてなるハニカム構造体は、集合型ハニカム構造体ともいう。
以下、本発明の第一実施形態に係るハニカム構造体の製造方法、及び、押出成形用金型の作用効果について列挙する。
(1)本実施形態の押出成形用金型では、セラミック原料を押し出す方向に平行な断面において、連結部及び成形溝が連結する箇所に曲線部が設けられている。この曲線部により、原料供給孔から成形溝へセラミック原料を流れやすくすることができる。従って、成形速度が大きい場合においても、セラミック原料が成形溝等に詰まりにくくなる。
(2)さらに、本実施形態の押出成形用金型では、セラミック原料を押し出す方向に平行な方向における連結部の長さをa、セラミック原料を押し出す方向に垂直な方向における、連結部と連結する箇所の原料供給孔の幅をx、セラミック原料を押し出す方向に垂直な方向における、ハニカム成形体のセル壁又は外周壁の厚さに対応する成形溝の幅をyとし、b=(x-y)/2としたとき、2.0≦a/bを満たす部分を含む。そのため、原料供給孔から成形溝へセラミック原料をより流れやすくすることができる。従って、成形速度が大きい場合においても、セラミック原料が成形溝等により詰まりにくくなる。
(3)本実施形態のハニカム構造体の製造方法では、本実施形態の押出成形用金型を用いてセラミック原料を押出成形することにより、ハニカム成形体を作製することを特徴としている。従って、成形速度が大きい場合においても、セラミック原料が成形溝等に詰まることに起因してハニカム成形体に割れ又は変形が発生することを防止することができる。その結果、ハニカム成形体の成形性及び生産性をともに向上させることができる。
(実施例)
以下、本発明の第一実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
まず、超硬合金を基体として、基体の両側面に原料供給孔及び成形溝をそれぞれ形成した。
ハニカム成形体のセル壁の厚さに対応する成形溝の幅を0.18mmとし、ハニカム成形体の外周壁の厚さに対応する成形溝の幅は0.30mmとし、成形溝の深さを2mmとした。
また、原料供給孔の内径を1.2mmとし、原料供給孔の深さを10mmとした。
次に、流体研磨により、成形溝と連結する箇所に曲線部を有し、かつ、a/b比がa/b=2.0である連結部を形成した。以上により作製した金型本体と、上記金型本体を押出成形装置の先端に固定するための外枠とを備える押出成形用金型を作製した。
なお、流体研磨の条件は、砥粒材質:SiC、砥粒径:25~35μm、研磨時間:40時間とした。流体研磨は、研磨剤を原料供給孔へ均等に導入し、成形溝から押し出す作業を繰り返すことにより行った。
続いて、上記押出成形用金型を押出成形装置に取り付けた。炭化ケイ素を主成分とする湿潤混合物(セラミック原料)を押出成形装置内に投入し、70kgf/cm(6.86MPa)の圧力で連続して押出成形を行うことにより、成形体を連続的に作製した。その後、成形体を切断することにより、ハニカム成形体を作製した。
この際、押出成形装置から1分間に押し出される成形体の長さ(押出方向に進んだ距離)を計測し、計測した値を成形速度とした。実施例1における成形速度は、2912mm/minであった。
また、得られたハニカム成形体を目視にて確認したところ、ハニカム成形体に割れ又は変形は発生していなかった。
炭化ケイ素を主成分とする湿潤混合物としては、平均粒子径22μmを有する炭化ケイ素の粗粉末54.6重量%と、平均粒子径0.5μmを有する炭化ケイ素の微粉末23.4重量%とを混合し、得られた混合物に対して、有機バインダ(メチルセルロース)4.3重量%、潤滑剤(日油社製 ユニルーブ)2.6重量%、グリセリン1.2重量%、及び、水13.9重量%を加えて混練した湿潤混合物を用いた。
次いで、マイクロ波乾燥機を用いて上記ハニカム成形体を乾燥させることにより、ハニカム成形体の乾燥体を作製した。その後、ハニカム成形体の乾燥体が有する所定のセルに封止材ペーストを充填してセルの封止を行った。なお、上記湿潤混合物を封止材ペーストとして使用した。セルの封止を行った後、封止材ペーストを充填したハニカム成形体の乾燥体を再び乾燥機を用いて乾燥させた。
続いて、セルの封止を行ったハニカム成形体の乾燥体を400℃で脱脂する脱脂処理を行い、さらに、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成処理を行った。
これにより、ハニカム焼成体を作製した。
実施例1で作製したハニカム焼成体は、気孔率が42%、平均気孔径が9μm、大きさが34.3mm×34.3mm×200mm、セルの数(セル密度)が24×24個/ユニット、セル壁の厚さが0.18mm、外周壁の厚さが0.30mmである。
(実施例2~3及び比較例1~2)
押出成形用金型を作製する際、流体研磨の条件(研磨時間)を変更することにより、a/b比の異なる金型本体を作製した。
具体的には、実施例2~3及び比較例1~2における研磨時間を、それぞれ48時間、70時間、0時間及び20時間とした。その他の条件は、実施例1と同様である。
実施例2~3及び比較例1~2におけるa/b比は、それぞれ、a/b=2.4、3.7、0.5及び1.6である。
次に、それぞれの金型本体を備える押出成形用金型を用いた他は、実施例1と同様に、ハニカム成形体を作製した。また、実施例1と同様に、それぞれの成形速度を計測した。
実施例2~3及び比較例1~2における成形速度は、それぞれ、3382mm/min、4912mm/min、1146mm/min及び2441mm/minであった。
また、得られたハニカム成形体を目視にて確認したところ、ハニカム成形体に割れ又は変形は発生していなかった。
その後、実施例1と同様に、ハニカム焼成体を作製した。
実施例2~3及び比較例1~2で作製したハニカム焼成体も、実施例1で作製したハニカム焼成体と同様、気孔率が42%、平均気孔径が9μm、大きさが34.3mm×34.3mm×200mm、セルの数(セル密度)が24×24個/ユニット、セル壁の厚さが0.18mm、外周壁の厚さが0.30mmである。
実施例1~3及び比較例1~2について、押出成形用金型の金型本体におけるa/b比、及び、成形速度をまとめて表1に示した。
また、実施例1~3及び比較例1~2におけるa/b比と成形速度との関係を図9のグラフに示した。
Figure JPOXMLDOC01-appb-T000001
実施例1~3では、いずれも成形速度が2500mm/min以上と高い値であった。従って、成形速度が大きい場合においても、割れ又は変形を発生させることなくハニカム成形体を作製することができることが判明した。
なお、成形速度が2500mm/min以上であれば、ハニカム構造体の製造効率として充分なレベルであると考えられる。
一方、比較例1~2では、得られたハニカム成形体に割れ又は変形は発生していなかったものの、成形速度は2500mm/min未満と低い値であった。従って、比較例1~2では、実施例1~3と比べて、ハニカム構造体を効率的に製造することができないと考えられる。
また、比較例1~2における押出成形用金型を用いて成形速度を上昇させようとする場合、成形時の圧力を増加させる必要がある。しかし、成形時の圧力が増加すると、その分、ハニカム成形体に割れ又は変形が発生する可能性は高くなると考えられる。
以上の結果から、2.0≦a/bを満たす部分を含む押出成形用金型を用いてハニカム成形体を作製することにより、成形速度が大きい場合においても、ハニカム成形体に割れ又は変形が発生することを防止することができると考えられる。
(その他の実施形態)
本発明の第一実施形態に係るハニカム構造体の製造方法では、複数のハニカム焼成体が接着材層を介して結束されてなるセラミックブロックを作製する方法について説明した。
しかしながら、本発明の実施形態に係るハニカム構造体の製造方法においては、1つのハニカム焼成体を用いてセラミックブロックを作製してもよい。つまり、1つのハニカム焼成体からなるハニカム構造体を製造してもよい。このような、1つのハニカム焼成体からなるハニカム構造体は、一体型ハニカム構造体ともいう。
一体型ハニカム構造体を製造する場合には、押出成形により成形するハニカム成形体の大きさが、本発明の第一実施形態において説明したハニカム成形体の大きさに比べて大きく、その外形が異なる他は、本発明の第一実施形態と同様にしてハニカム成形体を作製する。
つまり、得られるハニカム成形体の形状に対応する断面形状を有する他は、本発明の第一実施形態に係る押出成形用金型と同様の構成を有する押出成形用金型を用いてハニカム成形体を作製すればよい。
その他の工程は、本発明の第一実施形態で説明したハニカム構造体の製造工程と同様である。ただし、ハニカム構造体が1つのハニカム焼成体からなるため、ハニカム焼成体の集合体を作製する必要はない。また、円柱状のハニカム成形体を作製する場合には、セラミックブロックの外周を切削する必要はない。
本発明の実施形態に係るハニカム構造体の製造方法においては、断面形状が異なる複数種類のハニカム焼成体を作製し、複数種類のハニカム焼成体を組み合わせて、ハニカム焼成体が接着材層を介して複数個結束されてなるセラミックブロックを作製してもよい。これにより、セラミックブロックの外周を切削することを省略することができる。
なお、断面形状の異なるハニカム焼成体は、それぞれ、押出形成用金型の形状を変更することにより作製することができる。この場合にも、得られるハニカム成形体の形状に対応する断面形状を有する他は、本発明の第一実施形態に係る押出成形用金型と同様の構成を有する押出成形用金型を用いてハニカム成形体を作製すればよい。
本発明の実施形態に係るハニカム構造体の製造方法において、複数のハニカム焼成体が接着材層を介して結束されてなるセラミックブロックを作製する場合、接着材ペーストを各ハニカム焼成体の側面に塗布する方法以外に、例えば、作製するセラミックブロック(又はハニカム焼成体の集合体)の形状と同形状の型枠内に各ハニカム焼成体を仮固定した状態とし、接着材ペーストを各ハニカム焼成体間に注入する方法等によって行ってもよい。
本発明の実施形態に係るハニカム構造体の製造方法において、製造するハニカム構造体の形状は、円柱状に限定されるものでなく、楕円柱状、長円柱状、多角柱状等の任意の柱の形状であればよい。
本発明の実施形態に係る押出成形用金型において、ハニカム成形体が押し出される部分の面積は、900~1600mm(直径30~40mm)であることが望ましい。
本発明の実施形態に係る押出成形用金型において、金型本体の原料供給孔の形状は、特に限定されるものではなく、例えば、セラミック原料を押し出す方向に平行な断面形状が矩形状、テーパー形状、又は、台形状等を挙げることができる。
これらの中では、原料供給孔の形成が容易である点で、断面形状が矩形状であることが望ましい。
同様に、本発明の実施形態に係る押出成形用金型において、金型本体の成形溝の形状は、特に限定されるものではなく、例えば、セラミック原料を押し出す方向に平行な断面形状が矩形状、又は、テーパー形状等を挙げることができる。
これらの中では、成形溝の形成が容易である点で、断面形状が矩形状であることが望ましい。なお、本発明の実施形態に係る押出成形用金型を構成する金型本体においては、成形溝と連結する箇所に曲線部が設けられているため、成形溝の断面形状が矩形状であっても、原料供給孔から成形溝へセラミック原料を流れやすくすることができる。
本発明の実施形態に係るハニカム構造体の製造方法において、製造するハニカム構造体をフィルタとして使用する場合には、ハニカム構造体を構成するハニカム焼成体の気孔率は、特に限定されないが、35~60%であることが望ましい。
ハニカム焼成体の気孔率が35%未満であると、ハニカム焼成体が目詰まりを起こしやすくなる。一方、ハニカム焼成体の気孔率が60%を超えると、ハニカム焼成体の強度が低下するため、ハニカム焼成体が破壊されやすくなる。
また、本発明の実施形態に係るハニカム構造体の製造方法において、製造するハニカム構造体をフィルタとして使用する場合には、ハニカム構造体を構成するハニカム焼成体の平均気孔径は、5~30μmであることが望ましい。
ハニカム焼成体の平均気孔径が5μm未満であると、ハニカム焼成体が目詰まりを起こしやすくなる。一方、ハニカム焼成体の平均気孔径が30μmを超えると、パティキュレートがハニカム焼成体の気孔を通り抜けてしまい、ハニカム焼成体がパティキュレートを捕集することができず、ハニカム構造体がフィルタとして機能することができない。
なお、上記気孔率及び気孔径は、従来公知の方法である水銀圧入法により測定することができる。
本発明の実施形態に係るハニカム構造体の製造方法において、製造するハニカム構造体を構成するハニカム焼成体の断面におけるセル密度は、特に限定されないが、望ましい下限は、31.0個/cm(200個/inch)、望ましい上限は、93.0個/cm(600個/inch)、より望ましい下限は、38.8個/cm(250個/inch)、より望ましい上限は、77.5個/cm(500個/inch)である。
本発明の実施形態に係るハニカム構造体の製造方法において、製造するハニカム構造体を構成するハニカム焼成体のセル壁の厚さは、特に限定されるものではないが、0.1~0.4mmであることが望ましい。
セル壁の厚さが0.1mm未満であると、セル壁の厚さが薄くなりすぎるため、ハニカム焼成体の強度を保つことができなくなる。一方、セル壁の厚さが0.4mmを超えると、ハニカム構造体の圧力損失の上昇を引き起こしやすくなる。
本発明の実施形態に係るハニカム構造体の製造方法において、製造するハニカム構造体を構成するハニカム焼成体の外周壁の厚さは、セル壁の厚さと同一であってもよいし、セル壁の厚さよりも厚くてもよいが、ハニカム焼成体の強度の観点から、セル壁の厚さよりも厚いことが望ましい。
ハニカム焼成体の外周壁の厚さが、セル壁の厚さよりも厚い場合、外周壁の厚さは、セル壁の厚さの1.3~3.0倍であることが望ましい。
本発明の実施形態に係るハニカム構造体の製造方法において、製造するハニカム構造体を構成するハニカム焼成体の各セルのハニカム焼成体の長手方向に垂直な断面の形状は、特に限定されるものではなく、例えば、円形、楕円形、四角形、五角形、六角形、台形、八角形等の任意の形状であればよい。また、種々の形状を混在させてもよい。
本発明の実施形態に係るハニカム構造体の製造方法に用いられるセラミック粉末の粒径は特に限定されないが、後の焼成工程で収縮の少ないものが好ましく、例えば、3~70μm程度の平均粒径を有する粉末100重量部と0.1~1.0μmの平均粒径を有する粉末5~65重量部とを組み合わせたものが好ましい。
また、上記セラミック粉末は酸化処理が施されたものであってもよい。
本発明の実施形態に係るハニカム構造体の製造方法に用いられる湿潤混合物に含まれる有機バインダとしては、特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。これらの中では、メチルセルロースが望ましい。有機バインダの配合量は、通常、上記セラミック粉末100重量部に対して、1~10重量部が望ましい。
上記湿潤混合物に含まれる可塑剤としては、特に限定されず、例えば、グリセリン等が挙げられる。
また、上記湿潤混合物に含まれる潤滑剤としては、特に限定されず、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。
潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、上記湿潤混合物に含まれていなくてもよい。
また、上記湿潤混合物を調製する際には、分散媒液を使用してもよく、分散媒液としては、例えば、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられる。
さらに、上記湿潤混合物中には、成形助剤が添加されていてもよい。
成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられる。
さらに、上記湿潤混合物には、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらの中では、アルミナバルーンが望ましい。
上記接着材ペースト及び上記外周コート材ペーストに含まれる無機バインダとしては、例えば、シリカゾル、アルミナゾル等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機バインダの中では、シリカゾルが望ましい。
上記接着材ペースト及び上記外周コート材ペーストに含まれる有機バインダとしては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。有機バインダの中では、カルボキシメチルセルロースが望ましい。
上記接着材ペースト及び上記外周コート材ペーストに含まれる無機粒子としては、例えば、炭化物粒子、窒化物粒子等が挙げられる。具体的には、炭化ケイ素粒子、窒化ケイ素粒子、窒化ホウ素粒子等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機粒子の中では、熱伝導性に優れる炭化ケイ素粒子が望ましい。
上記接着材ペースト及び上記外周コート材ペーストに含まれる無機繊維及び/又はウィスカとしては、例えば、シリカ-アルミナ、ムライト、アルミナ、シリカ等からなる無機繊維及び/又はウィスカ等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機繊維の中では、アルミナ繊維が望ましい。また、無機繊維は、生体溶解性繊維であってもよい。
さらに、上記接着材ペースト及び上記外周コート材ペーストには、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーン、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらの中では、アルミナバルーンが好ましい。
本発明の実施形態に係るハニカム構造体の製造方法において、製造するハニカム構造体を構成するハニカム焼成体のセル壁には、排ガスを浄化するための触媒を担持させてもよい。担持させる触媒としては、例えば、白金、パラジウム、ロジウム等の貴金属が望ましい。また、その他の触媒として、例えば、カリウム、ナトリウム等のアルカリ金属、バリウム等のアルカリ土類金属、ゼオライト等を用いることもできる。これらの触媒は、単独で用いてもよいし、2種以上併用してもよい。
本発明のハニカム構造体の製造方法においては、連結部が、成形溝と連結する箇所に設けられた曲線部と、曲線部から原料供給孔へ向かう直線部とを含み、かつ、2.0≦a/bを満たす部分を含む押出成形用金型を用いてセラミック原料を押出成形することを必須の構成要素としている。また、本発明の押出成形用金型においても、連結部が、成形溝と連結する箇所に設けられた曲線部と、曲線部から原料供給孔へ向かう直線部とを含み、かつ、2.0≦a/bを満たす部分を含むことを必須の構成要素としている。
係る必須の構成要素に、本発明の第一実施形態、及び、その他の実施形態で詳述した種々の構成(例えば、押出成形用金型を構成する金型本体の形状、得られるハニカム成形体の形状、ハニカム構造体の製造工程等)を適宜組み合わせることにより所望の効果を得ることができる。
10 金型本体
11 原料供給孔
12 成形溝
13 連結部
13a 曲線部
13b 直線部
30 ハニカム成形体
31、41 セル
32、42 セル壁
33、43 外周壁
40 ハニカム焼成体
50 ハニカム構造体
53 セラミックブロック
100 押出成形用金型
A 金型本体の原料導入側面
B 金型本体の成形体押出側面
a セラミック原料を押し出す方向に平行な方向における連結部の長さ
x セラミック原料を押し出す方向に垂直な方向における、連結部と連結する箇所の原料供給孔の幅
y セラミック原料を押し出す方向に垂直な方向における、ハニカム成形体のセル壁又は外周壁の厚さに対応する成形溝の幅
 

Claims (17)

  1. 押出成形用金型を用いてセラミック原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設され、周囲に外周壁が形成されたハニカム成形体を作製する工程と、
    前記ハニカム成形体を焼成することにより、ハニカム焼成体を作製する工程と、
    少なくとも1つのハニカム焼成体を用いてセラミックブロックを作製する工程とを含むハニカム構造体の製造方法であって、
    前記押出成形用金型は、原料導入側面及び成形体押出側面を有する金型本体を備え、
    前記金型本体の前記原料導入側面には、前記セラミック原料を供給するための原料供給孔が形成されており、
    前記金型本体の前記成形体押出側面には、前記セラミック原料を前記ハニカム成形体の形状に成形するための成形溝が形成されており、
    前記原料供給孔及び前記成形溝の間には、前記原料供給孔及び前記成形溝を連通する連結部が形成されており、
    前記セラミック原料を押し出す方向に平行な断面において、前記連結部は、前記成形溝と連結する箇所に設けられた曲線部と、前記曲線部から前記原料供給孔へ向かう直線部とを含み、かつ、
    前記セラミック原料を押し出す方向に平行な方向における前記連結部の長さをa、前記セラミック原料を押し出す方向に垂直な方向における、前記連結部と連結する箇所の前記原料供給孔の幅をx、前記セラミック原料を押し出す方向に垂直な方向における、前記ハニカム成形体のセル壁又は外周壁の厚さに対応する前記成形溝の幅をyとし、b=(x-y)/2としたとき、2.0≦a/bを満たす部分を含む押出成形用金型であることを特徴とするハニカム構造体の製造方法。
  2. 前記押出成形用金型において、前記2.0≦a/bを満たす部分は、前記金型本体の50%以上の領域である請求項1に記載のハニカム構造体の製造方法。
  3. 前記押出成形用金型において、前記2.0≦a/bを満たす部分は、前記金型本体のセラミック原料を押し出す方向に垂直な断面の中心から該断面の外周までの1/2の領域を含む請求項1又は2に記載のハニカム構造体の製造方法。
  4. 前記押出成形用金型において、前記2.0≦a/bを満たす部分は、2.0≦a/b≦4.0を満たす請求項1~3のいずれかに記載のハニカム構造体の製造方法。
  5. 前記押出成形用金型において、前記ハニカム成形体のセル壁の厚さに対応する前記成形溝の幅は、0.1~0.2mmである請求項1~4のいずれかに記載のハニカム構造体の製造方法。
  6. 前記押出成形用金型において、前記ハニカム成形体の外周壁の厚さに対応する前記成形溝の幅は、0.2~0.5mmである請求項1~5のいずれかに記載のハニカム構造体の製造方法。
  7. 前記押出成形用金型において、前記曲線部は、流体研磨により形成されている請求項1~6のいずれかに記載のハニカム構造体の製造方法。
  8. 前記ハニカム成形体の構成材料の主成分は、炭化ケイ素である請求項1~7のいずれかに記載のハニカム構造体の製造方法。
  9. 前記セラミックブロックを作製する工程では、接着材ペーストを介して前記ハニカム焼成体を複数個結束する請求項1~8のいずれかに記載のハニカム構造体の製造方法。
  10. セラミック原料を押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設され、周囲に外周壁が形成されたハニカム成形体を作製するために用いられる押出成形用金型であって、
    前記押出成形用金型は、原料導入側面及び成形体押出側面を有する金型本体を備え、
    前記金型本体の前記原料導入側面には、前記セラミック原料を供給するための原料供給孔が形成されており、
    前記金型本体の前記成形体押出側面には、前記セラミック原料を前記ハニカム成形体の形状に成形するための成形溝が形成されており、
    前記原料供給孔及び前記成形溝の間には、前記原料供給孔及び前記成形溝を連通する連結部が形成されており、
    前記セラミック原料を押し出す方向に平行な断面において、前記連結部は、前記成形溝と連結する箇所に設けられた曲線部と、前記曲線部から前記原料供給孔へ向かう直線部とを含み、かつ、
    前記セラミック原料を押し出す方向に平行な方向における前記連結部の長さをa、前記セラミック原料を押し出す方向に垂直な方向における、前記連結部と連結する箇所の前記原料供給孔の幅をx、前記セラミック原料を押し出す方向に垂直な方向における、前記ハニカム成形体のセル壁又は外周壁の厚さに対応する前記成形溝の幅をyとし、b=(x-y)/2としたとき、2.0≦a/bを満たす部分を含むことを特徴とする押出成形用金型。
  11. 前記2.0≦a/bを満たす部分は、前記金型本体の50%以上の領域である請求項10に記載の押出成形用金型。
  12. 前記2.0≦a/bを満たす部分は、前記金型本体のセラミック原料を押し出す方向に垂直な断面の中心から該断面の外周までの1/2の領域を含む請求項10又は11に記載の押出成形用金型。
  13. 前記2.0≦a/bを満たす部分は、2.0≦a/b≦4.0を満たす請求項10~12のいずれかに記載の押出成形用金型。
  14. 前記ハニカム成形体のセル壁の厚さに対応する前記成形溝の幅は、0.1~0.2mmである請求項10~13のいずれかに記載の押出成形用金型。
  15. 前記ハニカム成形体の外周壁の厚さに対応する前記成形溝の幅は、0.2~0.5mmである請求項10~14のいずれかに記載の押出成形用金型。
  16. 前記曲線部は、流体研磨により形成されている請求項10~15のいずれかに記載の押出成形用金型。
  17. 前記ハニカム成形体の構成材料の主成分は、炭化ケイ素である請求項10~16のいずれかに記載の押出成形用金型。
PCT/JP2012/058128 2012-03-28 2012-03-28 ハニカム構造体の製造方法、及び、押出成形用金型 WO2013145151A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/058128 WO2013145151A1 (ja) 2012-03-28 2012-03-28 ハニカム構造体の製造方法、及び、押出成形用金型
EP12873013.2A EP2832513A4 (en) 2012-03-28 2012-03-28 METHOD FOR MANUFACTURING HONEYCOMB STRUCTURE, AND EXTRUSION LINE
US14/497,805 US20150008625A1 (en) 2012-03-28 2014-09-26 Method of producing honeycomb structured body, and die for extrusion molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058128 WO2013145151A1 (ja) 2012-03-28 2012-03-28 ハニカム構造体の製造方法、及び、押出成形用金型

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/497,805 Continuation US20150008625A1 (en) 2012-03-28 2014-09-26 Method of producing honeycomb structured body, and die for extrusion molding

Publications (1)

Publication Number Publication Date
WO2013145151A1 true WO2013145151A1 (ja) 2013-10-03

Family

ID=49258518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058128 WO2013145151A1 (ja) 2012-03-28 2012-03-28 ハニカム構造体の製造方法、及び、押出成形用金型

Country Status (3)

Country Link
US (1) US20150008625A1 (ja)
EP (1) EP2832513A4 (ja)
WO (1) WO2013145151A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015204616B4 (de) * 2015-03-13 2018-05-24 Nanostone Water Gmbh Mundstück zum Extrudieren einer Formmasse in einen Formling, sowie Verfahren zur Herstellung eines solchen Mundstücks

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638208A (en) * 1979-09-05 1981-04-13 Nippon Soken Die for molding honeycomb
JPH05131426A (ja) * 1991-11-14 1993-05-28 Ibiden Co Ltd ハニカム構造体の押出成形用ダイス及びその製造方法
JPH0645130B2 (ja) 1989-03-23 1994-06-15 日本碍子株式会社 セラミックハニカム押出ダイスの製造法
JPH1134026A (ja) * 1997-07-18 1999-02-09 Ngk Insulators Ltd ハニカム構造体押出用ダイスおよびその製造方法
JP2003251619A (ja) 2002-03-05 2003-09-09 Ngk Insulators Ltd ハニカム構造体成形用口金、及びその製造方法
JP2009196252A (ja) * 2008-02-22 2009-09-03 Denso Corp ハニカム構造体成形用金型の製造方法及び再生方法
WO2009141885A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336819A (ja) * 1995-06-09 1996-12-24 Babcock Hitachi Kk 繊維入りハニカム成形体の成形方法および成形用口金
JP5142003B2 (ja) * 2004-12-16 2013-02-13 日立金属株式会社 ハニカム構造体
JP5379460B2 (ja) * 2008-12-05 2013-12-25 日本碍子株式会社 ハニカム構造体成形用口金及びハニカム構造体成形用口金の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638208A (en) * 1979-09-05 1981-04-13 Nippon Soken Die for molding honeycomb
JPH0645130B2 (ja) 1989-03-23 1994-06-15 日本碍子株式会社 セラミックハニカム押出ダイスの製造法
JPH05131426A (ja) * 1991-11-14 1993-05-28 Ibiden Co Ltd ハニカム構造体の押出成形用ダイス及びその製造方法
JPH1134026A (ja) * 1997-07-18 1999-02-09 Ngk Insulators Ltd ハニカム構造体押出用ダイスおよびその製造方法
JP2003251619A (ja) 2002-03-05 2003-09-09 Ngk Insulators Ltd ハニカム構造体成形用口金、及びその製造方法
JP2009196252A (ja) * 2008-02-22 2009-09-03 Denso Corp ハニカム構造体成形用金型の製造方法及び再生方法
WO2009141885A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832513A4

Also Published As

Publication number Publication date
EP2832513A4 (en) 2015-11-25
US20150008625A1 (en) 2015-01-08
EP2832513A1 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
KR100882401B1 (ko) 벌집형 구조체
WO2009101682A1 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JP5241235B2 (ja) ハニカム構造体の製造方法
JP5757880B2 (ja) ハニカム構造体
WO2009101683A1 (ja) ハニカム構造体の製造方法
JP2007290951A (ja) ハニカム構造体およびその製造方法
JPWO2006035822A1 (ja) ハニカム構造体
WO2009118814A1 (ja) ハニカムフィルタ
JP2008069069A (ja) ハニカム構造体の製造方法、及び、ハニカム焼成用原料組成物
JP2009050849A (ja) 排気ガス浄化用ハニカムフィルタ
JPWO2008126328A1 (ja) ハニカムフィルタ
JPWO2008126329A1 (ja) ハニカムフィルタ
JP2016168582A (ja) ハニカムフィルタ
JP2009255037A (ja) ハニカム構造体
JP2017145171A (ja) 目封止ハニカム構造体、及び目封止ハニカム構造体の製造方法
JP2008212917A (ja) ハニカム構造体および排気ガス処理装置
WO2009118810A1 (ja) ハニカム構造体
WO2009101691A1 (ja) ハニカム構造体
JP5234970B2 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JP6002209B2 (ja) 押出成形用金型の製造方法
WO2013145151A1 (ja) ハニカム構造体の製造方法、及び、押出成形用金型
WO2009095982A1 (ja) ハニカム構造体
WO2009118808A1 (ja) ハニカム構造体
JPWO2013145151A1 (ja) ハニカム構造体の製造方法、及び、押出成形用金型
WO2009118811A1 (ja) ハニカム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507119

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012873013

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012873013

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE