WO2013141789A1 - Photocatalytic compositions comprising titanium dioxide and anti-photogreying additives - Google Patents
Photocatalytic compositions comprising titanium dioxide and anti-photogreying additives Download PDFInfo
- Publication number
- WO2013141789A1 WO2013141789A1 PCT/SE2013/050283 SE2013050283W WO2013141789A1 WO 2013141789 A1 WO2013141789 A1 WO 2013141789A1 SE 2013050283 W SE2013050283 W SE 2013050283W WO 2013141789 A1 WO2013141789 A1 WO 2013141789A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photocatalytic
- composition according
- composition
- photogreying
- photocatalytic composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
- B01J31/38—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J33/00—Protection of catalysts, e.g. by coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0209—Impregnation involving a reaction between the support and a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/10—Block or graft copolymers containing polysiloxane sequences
- C09D183/12—Block or graft copolymers containing polysiloxane sequences containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1606—Antifouling paints; Underwater paints characterised by the anti-fouling agent
- C09D5/1612—Non-macromolecular compounds
- C09D5/1618—Non-macromolecular compounds inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/48—Stabilisers against degradation by oxygen, light or heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/70—Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
Definitions
- Photocatalytic compositions comprising titanium dioxide and anti-photogreying additives
- the present invention relates to formulation of a photocatalytic composition capable of producing colour fast stable and photocatalytic active products.
- the present invention also relates to a coating of such a photocatalytic composition, a method for applying such a photocatalytic composition, and a building panel having photocatalytic properties.
- Photocatalytic materials such as Ti0 2 are used in many applications to obtain self-cleaning and air cleaning properties.
- the largest obstacle with photocatalytic materials is the scaling up to make large industrial productions.
- Ink jet printing technology is an economic way to apply functional materials using water-based suspensions or solvent-based suspensions.
- Ink jet printing is a non-contact deposition method, which can be used to obtain large area coverage with direct patterning on almost any substrate.
- the advantages of using ink jet printing are simplicity, low cost, less material waste, less environmental issues with spray aerosols and control of the coating.
- Photogreying is showing as the colour of Ti0 2 changes from white to dark violet upon light exposure. It has been suggested that photogreying is caused by reduction of Ti0 2 (probably from Ti 4+ to Ti 3+ ) during light irradiation in the absent of oxygen.
- the process of photogreying can be explained by examining the photocatalytic properties of Ti0 2 , which is shown in Fig 1.
- Ti0 2 is irradiated with light with a wavelength shorter than the band gap the absorbed photon can generate an electron/hole pair.
- the photogreying process is reversible and oxygen is known to reverse the photogreying process but the change from dark violet colour to the original colour is much slower than the reverse reaction.
- a further object of at least certain embodiments of the present invention is to obtain a composition with reduced photogreying and with maintained photocatalytic activity.
- a further object of at least certain embodiments of the present invention is to obtain a composition being photocatalytic and colour stable.
- a further object of at least certain embodiments the present invention is to formulate a photocatalytic composition that is stable regarding colour changes upon light exposure and weathering.
- a further object of at least certain embodiments the present invention is to provide a photocatalytic composition, which can be applied by digital printing.
- the photocatalytic composition comprises photocatalytic titanium dioxide particles being dispersed in a continuous phase, and at least one anti-photogreying additive.
- the photo greying index of said composition is smaller than 6, such as smaller 5, preferably smaller than 4, such as smaller than 3, such as smaller than 2.
- said at least one anti-photogreying additive is adapted to reduce photogreying while the photocatalytic activity of the composition is essentially maintained. In one embodiment, the photocatalytic activity is maintained to a level of at least 90%.
- composition herein is referred to also as suspension or as dispersion as a system in which particles are dispersed in a continuous phase of a different composition or state.
- the photocatalytic composition may be used as a photocatalytic coating fluid or a photocatalytic ink.
- An advantage of embodiments of the present invention is that it is possible to reduce photogreying but at the same time essentially maintain the photocatalytic activity of the composition, and thereby also provide a photocatalytic coating formed by the composition with reduced photogreying while essentially maintaining the photocatalytic properties.
- additives suitable for reducing photogreying may be, but are not limited to, a surfactant with a polar and a non-polar part. Whereas additives with the group of glycerine and for example PEG- 200, which are often used additives within ink formulation, enhance photogreying.
- the additives suitable for reducing photogreying i.e. the anti- photogreying additives
- the anti-photogreying additive is preferably not chemically bonded to the photocatalytic titanium dioxide particles. A sterical stabilisation between the anti-photogreying additive and the photocatalytic titanium dioxide particles may occur, and/or the anti-photogreying additive may electrostatically coat the
- the anti-photogreying additive may function so that when the
- photocatalytic titanium dioxide particles are arranged in a matrix such as resin matrix or lacquer matrix, thus being a low oxygen environment, the particles remain coated and the photogreying is reduced.
- the photocatalytic titanium dioxide particles arranged on the surface of a substrate are subjected to external influence such as wear, application of water applied, etc., which may break the temporary coupling.
- the photocatalytic activity is activated.
- the photocatalytic activity can be controlled to a region of the substrate where the photocatalytic activity is desired, i.e. at the surface of the substrate.
- the surface of the substrate represents a high oxygen environment. Consequently, photogreying throughout the substrate can be reduced while the photocatalytic activity can be maintained at the surface.
- the anti-photogreying additive temporarily coating of the photocatalytic titanium dioxide particles may facilitate orientating the photocatalytic particles at the surface of the composition, such that a major part of the photocatalytic particles are arranged at the surface of the composition when applied to a substrate.
- the chemical structure of the anti-photogreying additive may orientate the titanium dioxide particles towards the surface of the composition.
- the photocatalytic composition may be formulated by adding additives to a Ti0 2 dispersion that helps with creating an applicable film of the Ti0 2 mixture that dries up without cracks.
- the photocatalytic composition may be produced by mixing suitable additives to a photocatalytic dispersion.
- the photocatalytic composition may be applied on a substrate by creating a film or coating.
- the photocatalytic composition may be dried and/or cured without creating cracks in and/or on the film (for example mud cracks).
- the photocatalytic composition may be applied by ink jet technology, thereby being a photocatalytic ink.
- Known art focus on stabilization of ink jet inks and pigments for example, by adding a polymer to the particles in suspension.
- the focus has previously been on the stabilization of the pigments or/and particles to create a stable ink that does not sediment.
- the focus is towards obtaining a stable coating that also after application of the ink and/or coating fluid on the substrate obtains a lasting performance regarding photocatalytic activity and colour fastness. This is achieved by adding different additives in a controlled manner such as to obtain a colour stable and colour fast coating upon light exposure.
- ink jet technology has been used for applying pigment suspensions and recently also waterborne pigments are used as they are environmental safe materials.
- the pigments are applied to obtain a decorative coating.
- embodiments of the present invention show that it is possible to formulate a long lasting photocatalytic ink that instead of having decorative properties is a transparent coating and which has stable colour and photocatalytic properties.
- Said at least one anti-photogreying additive may be present in a concentration higher than 0.1 wt%. By adding an excess amount of an additive, compared to when used as for example a wetting agent, the additive reduces photogreying while the photocatalytic activity is essentially maintained.
- the anti-photogreying additive may be present in an amount being sufficient to temporarily coat the titanium dioxide particles.
- Said at least one additive may be present in the range of 1-35 wt%, preferably 1-15 wt%, more preferably 5-12 wt%.
- Said at least one additive may comprise a wetting agent.
- Said at least one additive may comprise a surfactant.
- Said surfactant may be or comprise a non-ionic surfactant.
- Said surfactant may be or comprise a silicone based surfactant.
- Said at least one additive may comprise oligomers or polymers.
- Said at least one additive may comprise a polyglycol, preferably poly(ethylene glycol) methyl ether.
- the polyglycol also function as a humectant.
- the polyglycol may be present in the range of 1-35 wt%, preferably 5-35 wt%.
- the titanium dioxide particles may be in anatase form.
- the titanium dioxide particles may have a primary size in the range between 5 to 250 nm, preferably between 5 to 100 nm, more preferably between 5 to 50 nm, most preferably between 5 and 30 nm.
- the titanium dioxide particles may have an agglomerate size of ⁇ 300 nm ⁇ 200 nm ⁇ 100 nm, such as ⁇ 80 nm preferably an aggregate size of ⁇ 60 nm such as of ⁇ 40 nm and even more preferably an aggregate ⁇ 30 nm such as ⁇ 20 nm.
- the photonic efficiency of the composition may be exceeding 0.025%, preferably exceeding 0.05%, more preferably exceeding 0.1%.
- the continuous phase may be a solvent, preferably water.
- the titanium dioxide particles may have a concentration in the range between 0.3 wt% to 40 wt%, preferably between 1.0 wt% to 30 wt%.
- the composition may have a pH higher than 9.
- the pH of the composition may be stabilized by amines, such as triethylenamine.
- the composition may have a pH lower than 4.
- the pH of the composition may be stabilized by a strong acid such as HCI.
- the photocatalytic composition may further comprise a dispersion agent, preferably propylene glycol.
- the photocatalytic composition may further comprise a binder, preferably a silicon or titanium based material.
- the photocatalytic composition may be or form a photocatalytic ink.
- the photocatalytic composition is printable by means of digital printing, preferably by an ink jet printer.
- the photocatalytic composition may further comprise a humectant.
- the humectant may comprise amines based compounds such as triethanolamine.
- the humectant may comprise compounds having a diol group.
- the humectant may comprise glycols, preferably poly(ethylene glycol) methyl ether.
- the humectant may be present in the range of 1-35 wt%, preferably 5-35 wt%.
- the colour change ( ⁇ ) index of the composition may be smaller than 6, such as smaller 5, preferably smaller than 4, such as smaller than 3, such as smaller than 2.
- the yellowing ( ⁇ ) index of said composition is smaller than 6, such as smaller 5, preferably smaller than 4, such as smaller than 3, such as smaller than 2.
- a photocatalytic coating formed of a composition according to the first aspect of the invention is provided.
- the second aspect of the invention may incorporate some or all the advantages of the first aspect of the invention, which previously have been discussed, whereby the previous discussion is applicable also for the coating.
- the coating may be provided on a substrate, for example a building panel such as a floor panel or wall panel.
- the coating may be applied on a surface or a surface layer of a substrate.
- the surface layer may be a lacquer layer.
- the surface layer may comprise a binder containing formaldehyde such as melamine formaldehyde resin.
- the surface layer may be a melamine formaldehyde resin impregnated paper.
- the surface layer may be a wood powder layer comprising wood fibres and a binder, preferably melamine
- a method for applying a composition according to the first aspect of the invention on a substrate may comprise applying said composition on a substrate for forming a coating, and drying and/or curing said coating.
- composition may be applied by digital printing, preferably by means of an ink jet printer.
- a building panel may have a surface comprising photocatalytic titanium dioxide particles and at least one anti-photogreying additive, and wherein the photo greying index (AL) of the surface may be less than 6, such as less 5, preferably less than 4, such as less than 3, such as less than 2.
- the surface of the building panel is preferably coated with a photocatalytic composition of the type described above.
- the building panel may have a surface or a surface layer, and a coating comprising photocatalytic titanium dioxide particles and at least one anti-photogreying additive.
- the surface layer may be a lacquer layer.
- the surface layer may comprise a binder containing formaldehyde such as melamine formaldehyde resin.
- the surface layer may be a melamine formaldehyde resin impregnated paper.
- a photocatalytic ink composition may comprise photocatalytic titanium dioxide particles and a humectant.
- the humectant may be a glycol, preferably poly(ethylene glycol) methyl ether.
- the photocatalytic titanium dioxide particles may have a primary size in the range between 5 to 250 nm, preferably between 5 to 100 nm, more preferably between 5 to 50 nm, most preferably between 5 to 30 nm.
- the titanium dioxide particles may have an agglomerate size of ⁇ 300 nm ⁇ 200 nm ⁇ 100 nm, such as ⁇ 80 nm preferably an aggregate size of ⁇ 60 nm such as of ⁇ 40 nm and even more preferably an aggregate size ⁇ 30 nm such as ⁇ 20 nm.
- a method for providing a photocatalytic coating on a substrate may comprise applying a photocatalytic composition comprising photocatalytic titanium dioxide particles and a humectant by means of digital printing on a substrate, and drying and/or curing said composition for forming a photocatalytic coating.
- the printing is preferably made by an ink jet printing device.
- the humectant may be a glycol, preferably poly(ethylene glycol) methyl ether.
- the photocatalytic titanium dioxide particles may have a primary size in the range between 5 to 250 nm, preferably between 5 to 100 nm, more preferably between 5 to 50 nm, most preferably between 5 to 30 nm.
- the titanium dioxide particles may have an agglomerate size of ⁇ 300 nm ⁇ 200 nm ⁇ 100 nm, such as ⁇ 80 nm, and preferably an aggregate size of ⁇ 60 nm, such as of ⁇ 40 nm, and even more preferably an aggregate size ⁇ 30 nm, such as ⁇ 20 nm.
- the substrate may a building panel, for example, a floor panel.
- the building panel may comprise a surface layer on which the photocatalytic composition is applied by digital printing.
- the surface layer may be a lacquer layer.
- the surface layer may be a resin impregnated paper, preferably a melamine formaldehyde resin impregnated paper.
- the surface layer may be wood powder layer comprising wood fibres and a binder, preferably melamine formaldehyde.
- embodiments of the present invention relate to a method, which allows for production of photocatalytic products without photogreying but with essentially maintained photocatalytic activity. It has been found that it is possible to reduce or eliminate photogreying but at the same time essentially maintain a photocatalytic active product. It was found that a non-photogreying product can be produced by controlling the coating formulation, the procedure of coating the substrate and by controlling the treatment of the coated substrate.
- Fig. 1 shows a photocatalytic process of titanium dioxide.
- Fig. 2a shows an example of a non-ionic surfactant in form of a polyether modified polysiloxane.
- Fig. 2b shows an example of a non-ionic surfactant in form of a poly(ethylene glycol) monomethyl ether.
- Fig. 2c shows an example of a non-ionic surfactant in form of a polyoxyethylene sorbitan.
- Fig. 3 shows a wetting process of a composition or coating fluid on a substrate.
- Fig. 4 shows a substrate having a coating formed by the photocatalytic composition.
- Fig. 5a shows a sample according to example 1A exposed to UVA light.
- Fig. 5b shows a sample according to example IB exposed to UVA light.
- Fig. 6 shows a Zisman plot for three different surface tensions of a photocatalytic composition.
- Fig. 7 shows wetting of a surface for four different formulations. Detailed description
- the photocatalytic composition comprises photocatalytic Ti0 2 particles in dispersion.
- the photocatalytic Ti0 2 are preferably in anatase phase.
- the photocatalytic dispersion may be dispersed in a solvent, preferably water.
- the concentration of photocatalytic Ti0 2 particles in the dispersion is preferably in the range 0.3 wt% to 40 wt%, more preferably in the range 1.0 wt% to 30 wt%.
- the photocatalytic particles may be doped with non-metals and/or metals.
- the Ti0 2 particles may be doped with non-metals and/or elements such as but not limited to the list of C, N, F, S, Mo, V, W, Cu, Ag, Au, Pt, Pd, Fe, Co, La, Eu, W0 2 , and PdO or a combination thereof.
- the photocatalytic Ti0 2 particles may be nanosized Ti0 2 particles.
- the Ti0 2 may have a size in the range from 5-250 nm, preferably in the range 5-100 nm, more preferably in the range 5-50 nm, most preferably in the range of 5-30 nm.
- the photocatalytic composition may be stabilized by pH and/or a dispersant agent.
- the photocatalytic composition may be stabilized at pH > 9 by preferably, but not limited to, amines, for example triethylenamine.
- the photocatalytic composition may also be stabilized at pH ⁇ 4 by preferably, but not limited to, a strong acid like HCI.
- photocatalytic dispersion may further be stabilized by a dispersion agent to keep the particles in suspension and from re-agglomerating.
- the dispersion may be stabilized by, but not limited to, propylene glycol.
- binders are added to the photocatalytic composition to enable and to improve the adhesion of the Ti0 2 particles to the substrate on which the composition is applied.
- these binders are non-photocatalytically degradable in the group of preferably, but not limited to, silanes, siloxanes, silicones, Si0 2 , surface modified Si0 2 , amorphous Ti0 2 , alkoxides, Ti-alkoxides, Si-alkoxides, UV curable binders and heat curable binders.
- the photocatalytic composition is a stable nanosized Ti0 2 dispersion in water with a size in suspension of said photocatalytic particles of less than 50 nm in concentration of said Ti0 2 particles up to 40 wt%.
- Additives may be added to the photocatalytic composition in order to, for example, enhance the coating and film formation properties and to improve the colourfastness upon light exposure. Additives may be added to the photocatalytic composition as to improve the coating and/or application properties of the photocatalytic composition. Additives may also be added to the photocatalytic composition to improve sprayability. Examples of such additives are humectants.
- wetting agents may be added to the photocatalytic composition to enhance the wetting of the photocatalytic composition on a substrate.
- An example of such wetting agent may be, but not limited to, the group of polyether modified siloxanes silicone surfactant such as polyether modified siloxanes.
- the photocatalytic composition is adjusted to be able to reduce photogreying.
- One or more additives may be added to the photocatalytic composition to reduce photogreying of the photocatalytic particles upon light exposure.
- an additive such as a wetting agent
- a photocatalytic composition which may be applied on a substrate such as paper, overlay paper, decor paper, foil, or film without experiencing photogreying or with at least reduced photogreying.
- the additive thereby forms an anti- photogreying additive.
- the anti-photogreying additive may be chosen from the group of silicone surfactants such as polyether modified siloxanes as shown in fig. 2a.
- the anti-photogreying additive may be a non-ionic surfactant.
- the anti-photogreying additive may be a silicone surfactant, preferably a non-ionic silicone surfactant. More preferably, the anti-photogreying additive may be a polyether modified siloxanes. More preferably, the anti-photogreying additive may be a polyether modified polysiloxanes. More preferably, the anti-photogreying additive may be a polyether modified polymethyl siloxane. As an alternative, the anti-photogreying additive may be polydimethylsiloxane co-polymer.
- the anti-photogreying additive may be a polyglycol, preferably poly(ethylene glycol) methyl ether as shown in fig. 2b.
- the anti-photogreying additive may be a polyoxyethylene sorbitan as shown in fig. 2c, preferably polyoxyethylene (20) sorbitan.
- the anti- photogreying additive may be a polyoxyethylene (20) sorbitan monooleate.
- the anti-photogreying additive may be polyvinyl alcohol (PVA) and/or polyvinyl pyrolidon (PVP), and/or poly(ethylene glycol) methyl ether, preferably combined with a wetting agent.
- PVA polyvinyl alcohol
- PVP polyvinyl pyrolidon
- PVP poly(ethylene glycol) methyl ether
- the anti-photogreying additive is added in an excess amount compared to conventional amounts of additives in order to obtain its anti-photogreying properties.
- the anti-photogreying additive may be added in the range of 1-35 % by weight of the composition, preferably 5-35 % by weight of the composition such as 1-15 % by weight of the composition. More preferably, the anti-photogreying additive may be added in the range 5-12 % by weight of the composition.
- the wetting agent acting as an anti-photogreying additive
- the wetting agent may be added in an amount of 5x, or lOx or lOOx the amount needed to achieve a wetting effect.
- a de-foaming agent may be added to the photocatalytic composition to suppress foaming.
- the photocatalytic composition is formulated to a photocatalytic coating fluid for spray coating, float coating, impregnation by roller coat application, or printer roll application of, for example, paper, decor paper, overlay paper, foils or films.
- the photocatalytic composition is formulated to a photocatalytic ink to be applied by for example an ink jet printer.
- the photocatalytic ink may be colour and/or weathering stable.
- the photocatalytic ink may include pigments or may be colourless.
- Density, surface tension and viscosity of the fluid are the properties that show the strongest dependence on the ink jet application and spreading of droplets on the substrate.
- the printability range of an ink can be estimated based as the inverse Ohnesorge number:
- a is the nozzle diameter
- p is the diameter of the ink
- ⁇ is the surface tension of the ink
- ⁇ is the viscosity of the ink
- the Ohnesorge number is in the range of 1 ⁇ Z ⁇ 30 and, more preferably in the range of 1 ⁇ Z ⁇ 20 of the photocatalytic ink.
- the photocatalytic composition to be used as a photocatalytic ink has a viscosity below 25 cP. Controlling drying of the photocatalytic coating or photocatalytic ink formed by the photocatalytic composition facilitates obtaining a good final coating and/or film without cracks. The drying has to be controlled to avoid both drying in the printing head and/or nozzle tip of the ink jet printer, and to minimise stain deposit effect which yields an uneven deposit with cracks.
- humectant such as glycerol
- glycerol has shown to be enhancing photogreying when the photocatalytic composition or ink is applied on substrates with tendencies for photogreying.
- a humectant is added to the photocatalytic composition and/or
- the photocatalytic ink to control the drying of the mixture in the nozzle and on the substrate.
- the humectant is chosen such as to prevent or at least reduce photogreying.
- the humectant is chosen from the group of triethanolamine.
- the humectant is chosen from the group of 3-methyl-l,5-pentanediol.
- a humectant is chosen the group of glycols such as of the group of triethylene glycol, and/or propylene glycol, and/or diethylene glycol, and/or ethylene glycol, and/or poly(ethylene glycol) methyl ether.
- the humectant is added in the range of 1-35 wt%, preferably 5-35 wt%.
- an additive is chosen that has both anti-photogreying properties and functions as a humectant.
- An example of such an additive is poly(ethylene glycol) methyl ether, both being a humectant and an anti-photogreying additive.
- An additive such as poly(ethylene glycol) methyl ether may be added in the range of 1-35 wt%, preferably 5-35 wt%.
- the photocatalytic composition may be applied on a substrate or in a substrate matrix. To be able to create a photocatalytic coating or film that is colour stable against light and/or weathering it has been found that is useful to make a film or coating without cracking, like for example mud cracking.
- “Mud cracking” means the occurrence of cracks during the drying phase of paint films, as opposed to crack formation, which can occur through exposure and ageing of the films.
- the film formation process is to be controlled to obtain a non- cracking coating or film.
- the time to create a film may be shorter than the time before drying or curing occurs. Thereby, the applied photocatalytic composition has time enough to create a wet film or coating before the wet film or coating start to dry up.
- topen is the time of full wetting of the substrate by the coating fluid from the impact of the droplet on the substrate to full wetting of the substrate.
- t o e n t fina i - to as illustrated in Fig. 3.
- t operi is less than 15 seconds, preferably less than 10 seconds, more preferably less than 5 seconds.
- mud cracking may be avoided by adding film forming auxiliary materials.
- the film forming auxiliary materials and the photocatalytic composition have to be individual adjusted to one another.
- the film forming materials are chosen from the group of anti-photogreying additives described above.
- the photocatalytic composition to be coated or applied on a substrate may be formulated to be able to wet the surface and thereby be able to create a film.
- the photocatalytic composition may have a surface tension which enables a wetting of the surface. More preferably, the surface tension is equal or less than the critical surface tension of the substrate to create a good wetting and create a wet coating or film.
- the photocatalytic composition forming a coating or ink has a surface tension smaller than 50 mN/m, preferably less than 40 mN/m, more preferably less than 30 mN/m, and more preferably equal to or less than 25 mN/m.
- the surface tension of said photocatalytic composition forming a coating or ink may be achieved by adding an additive from the group of anti-photogreying additives described above. In a further embodiment, the surface tension of the
- photocatalytic composition forming a coating or ink may be achieved by adding an additive from the group of anti-photogreying additives and adding a wetting agent to the photocatalytic composition forming the coating or ink.
- the photocatalytic composition forming a coating or ink may be used to impregnate overlay paper and/or decor paper and/or cellulose paper.
- the surface tension may be equal to or less than 24 mN/m to create a perfect wetting of the substrate.
- minimum volume of the photocatalytic composition forming a coating or ink is enough to ensure a full wetting of the surface creating a wet film with homogenous covering of the substrate to be coated on and/or impregnated in said matrix.
- the photocatalytic composition is applied by spraying.
- photocatalytic composition can be sprayed by nozzles yielding a droplet size small enough to give a homogenous coating.
- Application droplets of the photocatalytic composition is preferably smaller than 500 ⁇ , more preferably smaller than 250 ⁇ even more preferably smaller than 100 ⁇ and preferably equal to or smaller than 50 ⁇ .
- application of micronized droplets of the photocatalytic composition is obtained by using air-mixed nozzles.
- application of micronized droplets of the photocatalytic composition is obtained by using ultrasonic nozzles.
- application of micronized droplets of the photocatalytic composition is obtained by using rotary atomizing nozzle.
- application of micronized droplets of the photocatalytic composition is obtained by using ink jet printer.
- an ink jet printer is used to apply the photocatalytic composition on the substrate or into said substrate matrix.
- the droplets ejected from the nozzles are printed and/or spray coated in an array that ensure an efficient coverage of the substrate.
- the coverage is in one embodiment made in a way that the inter droplet distance (distance between two neighbouring droplets) in the array is smaller than the wetting capacity of the droplets.
- the inter droplet distance and the spreading of the droplets on the substrate is optimized as to obtain a wet film by overlapping droplets.
- the diameter of the printed and or spray coated droplets is chosen so as that the inter droplet distance, the spreading of the droplets on the substrate and diameter of each droplet was optimized to obtain a complete wet film.
- the inter droplet distance may be smaller than 5 mm, more preferably smaller than 1 mm, even more preferably smaller than 0.1 mm, and may be smaller than 0.05 mm, smaller than 0.01 mm, and even smaller than 0.001 mm.
- the rheological properties of the photocatalytic composition were chosen so as to obtain a homogenous wet film where the droplets spread easily to form a complete layer on the substrate and that the wet film or layer dries up without inhomogeneities.
- the diameter of the droplets is in the range 1-200 ⁇ , preferably in the range 1-100 ⁇ , and more preferably in the range of 1-50 ⁇ .
- the volume of said droplets are in the range of 1 nL - 1 mL.
- Controlling drying of the photocatalytic coating and/or photocata lytic ink formed by the photocatalytic composition facilitates obtaining a good final coating and/or film without cracks.
- the drying has to be controlled to avoid both drying in the printing head and/or nozzle tip and minimizing stain deposit effect which yields an uneven deposit with cracks. Drying of wet films depends on the thickness of the film, drying temperature and drying profile, humidity and film additives such as leveling agents and film formation agents and humectants.
- cracking may also facilitate photogreying on substrates with tendencies for photogreying such as but not limited to melamine impregnated papers and cellulose paper.
- the formation of uncracked photocatalytic films and/or coatings may be obtained by making said film and/or coating below a critical film thickness.
- the film thickness is related to the drying conditions and the formulation of said
- the film thickness is less than 100 ⁇ , even less than 50 ⁇ , more preferably less than 10 ⁇ , and more preferably less than 1 ⁇ .
- the photocatalytic film and/or coating formed by the photocatalytic composition is dried at a controlled temperature profile.
- the controlled temperature may in a preferred embodiment be a profile which is adjusted to the film thickness and the formulation of the photocatalytic composition.
- the photocatalytic film and/or coating is applied on a melamine formaldehyde resin impregnated paper.
- the melamine formaldehyde resin impregnated paper is preferably dry, or semi-dry, such as dried with a relative humidity in the range of 2- 10 %.
- the photocatalytic film and/or coating formed by the photocatalytic composition is applied on the melamine formaldehyde resin impregnated paper by spray application.
- the photocatalytic film and/or coating formed by the photocatalytic composition is applied on the melamine formaldehyde resin impregnated paper by ink jet printing.
- the photocatalytic film and/or coating formed by the photocatalytic composition is applied by roll coating on the melamine formaldehyde resin impregnated paper.
- the applied film and or coating has a thickness less than 10 ⁇ and maximum drying temperature in the range 20-160 °C.
- the applied film and or coating may have a thickness of less than 10 ⁇ and drying temperature less than 140 °C.
- the photocatalytic composition may be used as a photocatalytic ink or as a photocatalytic fluid. When applied to a substrate, the photocatalytic composition forms a coating or film.
- the photocatalytic coating or film may be continuous over the substrate, or discontinuous.
- Fig. 4 shows a substrate 1 such as a building panel having a core 2 and a surface layer 3 coated by a photocatalytic coating 4 formed of the above described photocatalytic composition.
- the core 2 may be a wood fibre based core such as HDF.
- the core may comprise a thermoplastic material.
- the surface layer 3 may be a lacquer layer.
- the surface layer 3 may comprise a binder containing formaldehyde, such as melamine formaldehyde resin.
- the surface layer 3 may be a melamine formaldehyde resin impregnated paper.
- the surface layer may comprise a thermoplastic material.
- the surface layer 3 may be a wood powder layer comprising wood fibres and a resin, preferably melamine formaldehyde.
- the coating may be applied on the surface layer or applied into the surface layer such as into the resin matrix of the surface layer.
- the anti-photogreying additive reduces photogreying of the photocatalytic titanium dioxide particles disposed in lacquer layer or resin matrix of the surface layer 3 of the substrate 1. Even if illustrated as two separate layers, the photocatalytic composition may enter into the underlying surface layer 3 of the substrate 1. However, even if the anti-photogreying additive reduces photogreying of the particles disposed in the surface layer 3, the photocatalytic titanium dioxide particles arranged on the outermost surface of the surface layer 3 remain photocatalytically active.
- the composition may be applied into the surface layer before being arranged on the core.
- the composition may be added when forming the surface layer.
- the photocatalytic coating is integrated in the surface layer.
- the photocatalytic composition may be added to a mix comprising wood fibres and a binder.
- the photocatalytic coating may be applied on a surface of the substrate, i.e. with no intervening layer.
- Sample A in fig.5a shows the overlay paper having a coating formed from a waterborne Ti0 2 composition comprising 0.5 vol% polyether modified polysiloxanes.
- Sample Bin fig. 5b shows the overlay paper having a coating formed form a waterborne Ti0 2 composition comprising 16.6 vol% polyether modified polysiloxanes. Both samples are cured at ambient conditions and irradiated with 1 mW/cm 2 UVA light.
- Figure 5a shows sample A after UV irradiation.
- Figure 5b discloses sample B after UV irradiation. Photogreying has occurred of sample A. Sample A also shows mud cracking. Sample B shows no photogreying and no mud cracking.
- Example 2 Colour and Contact Angle (CA) were measured as a function of time of UVA exposure (ISO) for a reference, a thick film of nanofluid with 10 vol % polyether modified polysiloxanes (A) and a thin film of nanofluid with 12 vol % polyether modified polysiloxanes (B).
- the colour of a blank white reference and samples were recorded with an NCS Colour Scan before and after UVA radiation.
- the NCS codes were recalculated to RGB and Lab values with NCS Navigator (www.ncscolour.com).
- the RGB values (RGB) are used to visually present the colour/colour change and the Lab (L*a*b) values are used to calculate the Greying and the Yellowing Index.
- the Photogreying index AL* L*(i n itiai)
- Example 3 Colour and Contact Angle (CA) were measured as a function of time of UVA exposure (ISO) for a reference, a thin film with 0.5 vol % polyether modified polysiloxanes (A), a thin film of nanofluid with 12 vol % polyether modified polysiloxanes (B), and a thin film Ti02 particles modified with Pt with 6 vol % polyether modified polysiloxanes (C).
- Figure 6 shows a Zisman plot for three different surface tensions of photocatalytic composition - showing a critical surface tension of overlay paper conforming to abrasion class AC6 (EN 13329) of 24 mN/m.
- a suitable anti-photogreying additive and/or wetting agent may be chosen in order to obtain perfect wetting.
- Figure 7 discloses wetting of surface - t o e n - as described above with reference to fig. 3 for four different formulations:
- Example 6 Photocatalytic activity An overlay paper conforming to abrasion class AC6 (EN 13329) was impregnated with 25 wt % nanosized photocatalytic anatase Ti02 composition containing 10 vol % polyether modified polysiloxanes as an anti-photogreying additive. The composition was applied by spray coating on the melamine formaldehyde resin coated overlay paper and a total of 3 g of composition was applied per m2. The melamine impregnated and Ti02 coated overlay paper was pressed together with a decor layer, a core and a backing paper to a laminate structure. The sample was pre-activated in UV light for 3 days where after the
- photocatalytic activity was measured.
- the photogreying was measured after 96 hr in Xenon test.
- the photocatalytic activity was measured according to ISO 22197-2 (removal of
- acetaldehyde with a gas flow rate of 1 L/min with 1 ppm acetaldehyde as pollutant a sample size of 45 cm2 and an UVA light source of 1 mW/cm2.
- the photocatalytic activity is measured as removal of pollutant ( x ppm) and by the photonic efficiency.
- the employed UV(A) illumination intensity is 1 mW/cm2, with an illuminated sample area of 45 cm2 the total power is 45 mW. Taking an average
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Catalysts (AREA)
- Paints Or Removers (AREA)
- Finishing Walls (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/386,063 US9573126B2 (en) | 2012-03-20 | 2013-03-15 | Photocatalytic composition |
| RU2014142039A RU2643148C2 (ru) | 2012-03-20 | 2013-03-15 | Фотокаталитические композиции, содержащие диоксид титана и добавки против фотообесцвечивания |
| JP2015501624A JP2015520009A (ja) | 2012-03-20 | 2013-03-15 | 二酸化チタン及び抗光灰色化添加剤を含む光触媒組成物 |
| BR112014021844-7A BR112014021844B1 (pt) | 2012-03-20 | 2013-03-15 | Composição fotocatalítica compreendendo dióxido de titânio e aditivos antifotoacinzentados e painel de construção |
| CN201380011950.8A CN104203406B (zh) | 2012-03-20 | 2013-03-15 | 包含二氧化钛和抗光致变灰添加剂的光催化组合物 |
| EP13764224.5A EP2827987B1 (en) | 2012-03-20 | 2013-03-15 | Photocatalytic compositions comprising titanium dioxide and anti-photogreying additives |
| KR20147029059A KR20140140583A (ko) | 2012-03-20 | 2013-03-15 | 이산화티탄 및 광회색화 방지 첨가제를 포함하는 광촉매 조성물 |
| AU2013235858A AU2013235858B2 (en) | 2012-03-20 | 2013-03-15 | Photocatalytic compositions comprising titanium dioxide and anti-photogreying additives |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DKPA201270126 | 2012-03-20 | ||
| DKPA201270126 | 2012-03-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013141789A1 true WO2013141789A1 (en) | 2013-09-26 |
Family
ID=49223089
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/SE2013/050283 Ceased WO2013141789A1 (en) | 2012-03-20 | 2013-03-15 | Photocatalytic compositions comprising titanium dioxide and anti-photogreying additives |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US9573126B2 (enExample) |
| EP (1) | EP2827987B1 (enExample) |
| JP (1) | JP2015520009A (enExample) |
| KR (1) | KR20140140583A (enExample) |
| CN (1) | CN104203406B (enExample) |
| AU (1) | AU2013235858B2 (enExample) |
| BR (1) | BR112014021844B1 (enExample) |
| MY (1) | MY167029A (enExample) |
| RU (1) | RU2643148C2 (enExample) |
| WO (1) | WO2013141789A1 (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015047169A1 (en) | 2013-09-25 | 2015-04-02 | Välinge Photocatalytic Ab | A method of applying a photo catalytic dispersion and a method of manufacturing a panel |
| US9375750B2 (en) | 2012-12-21 | 2016-06-28 | Valinge Photocatalytic Ab | Method for coating a building panel and a building panel |
| US9573126B2 (en) | 2012-03-20 | 2017-02-21 | Valinge Photocatalytic Ab | Photocatalytic composition |
| US11045798B2 (en) | 2011-07-05 | 2021-06-29 | Valinge Photocatalytic Ab | Coated wood products and method of producing coated wood products |
| US12359086B2 (en) | 2012-12-21 | 2025-07-15 | Valinge Photocatalytic Ab | Method for coating a building panel and a building panel |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DK2411141T3 (da) | 2009-03-23 | 2014-03-31 | Vaelinge Photocatalytic Ab | Frembringelse af kolloide titandioxidnanopartikelopslæm-ninger med opretholdt krystallinitet ved anvendelse af en perlemølle med perler i mikrometerstørrelse |
| PL2984059T3 (pl) | 2013-04-12 | 2021-05-04 | Välinge Photocatalytic Ab | Sposób nanoszenia kompozycji degradującej nox na element budowlany |
| WO2015179425A2 (en) * | 2014-05-20 | 2015-11-26 | Alpha Metals, Inc. | Jettable inks for solar cell and semiconductor fabrication |
| CN105618053A (zh) * | 2016-02-25 | 2016-06-01 | 济南大学 | 一种双金属掺杂二氧化钛多面体光催化剂的制备方法 |
| CN106246460B (zh) * | 2016-08-26 | 2018-10-30 | 上海麦加涂料有限公司 | 一种风力发电机叶片用前缘防护体系及风力发电机叶片 |
| US11819824B2 (en) * | 2020-08-07 | 2023-11-21 | Pure-Light Technologies, Inc. | Surface coatings for self-decontamination |
| US11964739B2 (en) | 2020-08-07 | 2024-04-23 | Roger K. Young | Coatings that reduce or prevent barnacle attachment to a marine structure |
| US11906157B2 (en) | 2020-08-07 | 2024-02-20 | Pure-Light Te chnologies, Inc. | Photocatalyst formulations and coatings |
| KR102304676B1 (ko) * | 2020-09-22 | 2021-09-27 | 한일콘크리트 주식회사 | 미세먼지 저감효과와 콘크리트 백화방지 기능을 가지는 나노솔루션의 제조방법, 이를 이용하여 제조된 나노솔루션, 나노솔루션을 포함하는 콘크리트 조성물 및 나노솔루션을 이용한 입상체를 포함하는 보도블록용 담체 |
| WO2025059743A1 (pt) * | 2023-09-18 | 2025-03-27 | Neves Walterley | Revestimento refletivo térmico e fotocatalítico à base de água |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0913447A1 (en) * | 1996-07-19 | 1999-05-06 | Toto Ltd. | Photocatalytic hydrophilic coating composition |
| US20080044483A1 (en) * | 2001-11-14 | 2008-02-21 | Loma Margaret Kessell | Metal Oxide Composition |
| US20110136660A1 (en) * | 2008-05-27 | 2011-06-09 | Toto Ltd. | Photocatalyst-coated body |
Family Cites Families (98)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3932342A (en) | 1966-12-14 | 1976-01-13 | Nippon Paint Co., Ltd. | Methyl methacrylate lacquers containing polyisocyanates |
| US3798111A (en) | 1972-03-24 | 1974-03-19 | Mead Corp | Multiple layer decorated paper,laminates prepared therefrom and process |
| DK0670780T3 (da) | 1992-11-24 | 1996-09-16 | Casco Nobel Ab | Kompositfilm |
| JP3397365B2 (ja) | 1993-04-01 | 2003-04-14 | キヤノン株式会社 | インク、インクの製造方法、インクジェット記録方法、記録ユニット、インクカートリッジおよびインクジェット記録装置 |
| US6284314B1 (en) | 1993-12-09 | 2001-09-04 | Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry | Porous ceramic thin film and method for production thereof |
| US5500331A (en) | 1994-05-25 | 1996-03-19 | Eastman Kodak Company | Comminution with small particle milling media |
| JP3703148B2 (ja) | 1995-06-06 | 2005-10-05 | 寿工業株式会社 | 湿式撹拌ボールミルと方法 |
| EP1955768A1 (en) | 1995-06-19 | 2008-08-13 | Nippon Soda Co., Ltd. | Photocatalyst-carrying structure and photocatalyst coating material |
| US5679138A (en) | 1995-11-30 | 1997-10-21 | Eastman Kodak Company | Ink jet inks containing nanoparticles of organic pigments |
| US6740312B2 (en) * | 1996-02-15 | 2004-05-25 | Rhodia Chimie | Titanium dioxide particles |
| FR2744914B1 (fr) | 1996-02-15 | 1998-03-20 | Rhone Poulenc Chimie | Dispersion de dioxyde de titane, poudre a base de dioxyde de titane, leur utilisation dans les formulations cosmetiques |
| JPH09234375A (ja) | 1996-03-01 | 1997-09-09 | Mitsubishi Paper Mills Ltd | 光反応性有害物除去材 |
| US5853830A (en) | 1996-06-12 | 1998-12-29 | Hoechst Trespaphan Gmbh | Transparent barrier coatings exhibiting reduced thin film interference |
| US5962343A (en) | 1996-07-30 | 1999-10-05 | Nissan Chemical Industries, Ltd. | Process for producing crystalline ceric oxide particles and abrasive |
| IT1286492B1 (it) | 1996-08-07 | 1998-07-15 | Italcementi Spa | Legante idraulico con migliorate proprieta' di costanza di colore |
| FR2756276B1 (fr) | 1996-11-26 | 1998-12-24 | Saint Gobain Vitrage | Substrat a proprietes hydrophiles ou hydrophobes ameliorees, comportant des irregularites |
| WO2000044984A1 (de) | 1999-01-26 | 2000-08-03 | Kronospan Technical Company Ltd. | Verfahren zum imprägnieren von dekorpapieren |
| FR2789591B1 (fr) | 1999-02-17 | 2002-10-04 | Rhodia Chimie Sa | Utilisation de dispersions filmogenes de dioxyde de titane pour la desinfection des surfaces dures, dispersions filmogenes de dioxyde de titane et procede de desinfection |
| US6162842A (en) | 1999-05-18 | 2000-12-19 | The Goodyear Tire & Rubber Company | Radiation curable coating composition |
| CA2387803C (en) | 1999-12-09 | 2010-02-09 | Valspar Sourcing, Inc. | Abrasion resistant coatings |
| WO2001042140A1 (en) | 1999-12-13 | 2001-06-14 | Jonathan Sherman | Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof |
| US20020042343A1 (en) * | 2000-05-16 | 2002-04-11 | Kansai Paint Co., Ltd. | Coating composition for forming titanium oxide film, process for forming titanium oxide film and photocatalyst |
| US7264678B2 (en) | 2000-06-14 | 2007-09-04 | The Procter & Gamble Company | Process for cleaning a surface |
| JP4667562B2 (ja) | 2000-06-29 | 2011-04-13 | 日新製鋼株式会社 | 加工性,光反射性及び光反射持続性に優れた白色塗装金属板 |
| DE10035924B4 (de) | 2000-07-21 | 2006-04-27 | Fritz Egger Gmbh & Co | Imprägnat und Verfahren zur Herstellung und Verwendung des Imprägnats |
| US6666913B2 (en) | 2000-09-05 | 2003-12-23 | Sakura Color Products Corporation | Aqueous ink composition |
| US7183023B2 (en) | 2003-04-07 | 2007-02-27 | Dai Nippon Printing Co., Ltd. | Method for manufacturing color filter |
| JP4846088B2 (ja) | 2000-11-07 | 2011-12-28 | 多木化学株式会社 | 酸化チタン含有光触媒塗布液およびその製造方法ならびに酸化チタン光触媒構造体 |
| JP2002177792A (ja) | 2000-12-15 | 2002-06-25 | Sosho:Kk | 流体浄化用光触媒とその製造方法 |
| DE10106213A1 (de) | 2001-02-10 | 2002-08-22 | Dmc2 Degussa Metals Catalysts Cerdec Ag | Selbstreinigende Lackbeschichtungen und Verfahren und Mittel zur Herstellung derselben |
| KR100434883B1 (ko) | 2001-08-14 | 2004-06-07 | 삼성전기주식회사 | 티탄산바륨계 파우더의 제조방법 |
| JP2003071967A (ja) | 2001-08-31 | 2003-03-12 | Takiron Co Ltd | 光触媒層を最外層に形成した化粧板 |
| GB0130658D0 (en) * | 2001-12-21 | 2002-02-06 | Acma | Particulate metal oxide |
| JP4048775B2 (ja) | 2001-12-26 | 2008-02-20 | 住友化学株式会社 | 酸化チタン、それを用いてなる光触媒体及び光触媒体コーティング剤 |
| JP4155760B2 (ja) * | 2001-12-28 | 2008-09-24 | 神東塗料株式会社 | 変性チタニアゾル組成物 |
| CN1216951C (zh) | 2002-03-20 | 2005-08-31 | 中国科学技术大学 | 具有自洁、抗霉、灭菌及净化空气作用的水性功能涂料 |
| FR2838734B1 (fr) | 2002-04-17 | 2005-04-15 | Saint Gobain | Substrat a revetement auto-nettoyant |
| EP1371693A3 (en) | 2002-06-14 | 2004-01-07 | Rohm And Haas Company | Damage resistant coatings, films and articles of manufacture containing crosslinked nanoparticles |
| JP2004026553A (ja) | 2002-06-25 | 2004-01-29 | Sumitomo Chem Co Ltd | 酸化チタン分散液およびその保存容器 |
| CN100480424C (zh) | 2002-07-09 | 2009-04-22 | 新材料公共服务公司研究所 | 包含光催化TiO2层的基片 |
| US7449245B2 (en) | 2002-07-09 | 2008-11-11 | Leibniz-Institut Fuer Neue Materialien Gemeinnuetzige Gmbh | Substrates comprising a photocatalytic TiO2 layer |
| EP1541638A4 (en) | 2002-08-07 | 2010-06-16 | Ishihara Sangyo Kaisha | Titanium dioxide pigment, its preparation and its use as an adjunct to a resin composition |
| CN100471569C (zh) | 2002-09-17 | 2009-03-25 | 富士通株式会社 | 含有光触媒磷灰石的膜、其形成方法、涂布液和具有用该膜被覆的部位的电子设备 |
| EP1549491A4 (en) | 2002-10-03 | 2007-04-11 | Metss Corp | SURFACES IN HARD LAMINATE DISSIPATING THE ELECTROSTATIC CHARGE |
| KR100592375B1 (ko) | 2002-12-27 | 2006-06-22 | 후지쯔 가부시끼가이샤 | 광촉매 아페타이트막의 형성 방법 |
| TW576868B (en) | 2002-12-30 | 2004-02-21 | Ind Tech Res Inst | Method for dispersion and grinding of ultrafine particles |
| DE10304849A1 (de) | 2003-02-06 | 2004-08-19 | Institut für Neue Materialien gemeinnützige Gesellschaft mit beschränkter Haftung | Chemomechanische Herstellung von Funktionskolloiden |
| US20060003013A1 (en) | 2003-03-11 | 2006-01-05 | Dobbs Robert J | Grinding media and methods associated with the same |
| EP1522629A1 (de) | 2003-10-08 | 2005-04-13 | M-real Oyj | Beschichtetes Papier als Druckstoff |
| US7540922B2 (en) | 2003-11-14 | 2009-06-02 | Sharp Kabushiki Kaisha | Thin film forming apparatus |
| FI116297B (fi) | 2004-01-07 | 2005-10-31 | Kemira Pigments Oy | Menetelmä pintojen käsittelemiseksi |
| BE1015862A6 (nl) | 2004-01-15 | 2005-10-04 | Flooring Ind Ltd | Vloerpaneel en werkwijze voor het vervaardigen ervan. |
| EP1715995A1 (en) | 2004-01-16 | 2006-11-02 | Domo Oudenaarde NV | Photocatalytic particles in floor laminate |
| JP4393963B2 (ja) | 2004-03-17 | 2010-01-06 | 住友化学株式会社 | 光触媒体コーティング液 |
| JP2005281017A (ja) | 2004-03-29 | 2005-10-13 | Moyo Kobayashi | 漆陶磁器及びその製造方法 |
| ES2640445T3 (es) | 2004-06-24 | 2017-11-03 | Ishihara Sangyo Kaisha, Ltd. | Pigmentos de dióxido de titanio, proceso para la producción de los mismos, y composiciones de resina que contienen los pigmentos |
| DE102004032058B4 (de) | 2004-07-01 | 2009-12-03 | Fritz Egger Gmbh & Co. | Verfahren zum Herstellen einer Platte mit einer ein Dekor aufweisenden Oberfläche und Platte mit einer dekorativen Oberfläche |
| GB0519444D0 (en) * | 2005-09-23 | 2005-11-02 | Ici Plc | Metal oxide dispersion |
| KR100948803B1 (ko) | 2005-12-13 | 2010-03-24 | 아사히 가세이 케미칼즈 가부시키가이샤 | 수계 유기·무기 복합 조성물 |
| GB0526328D0 (en) | 2005-12-23 | 2006-02-01 | Ici Plc | Particulate metal oxide |
| JP4676877B2 (ja) | 2005-12-28 | 2011-04-27 | 住友大阪セメント株式会社 | 粒子形状の制御された高結晶性アナターゼ型酸化チタン超微粒子、及びその製造方法 |
| ITFI20060030A1 (it) * | 2006-02-01 | 2007-08-02 | Colorobbia Italiana Spa | Processo per la preparazione di dispersioni acquose di ti02 in forma nanoparticelle e dispersioni ottenibili con questo processo |
| CN101384680B (zh) | 2006-02-20 | 2012-05-30 | 多摩化学工业株式会社 | 均匀分散性光催化涂覆液及其制造方法、以及使用它而得到的光催化活性复合材料 |
| TW200809437A (en) | 2006-05-18 | 2008-02-16 | Mitsubishi Chem Corp | Electrographic photoreceptor, image forming apparatus, and electrographic cartridge |
| BE1017168A5 (nl) | 2006-06-13 | 2008-03-04 | Flooring Ind Ltd | Werkwijze voor het vervaardigen van vloerpanelen en vloerpaneel. |
| WO2007144718A2 (en) | 2006-06-13 | 2007-12-21 | Flooring Industries Limited, Sarl | Method for manufacturing coated panels and coated panel |
| SE533410C2 (sv) | 2006-07-11 | 2010-09-14 | Vaelinge Innovation Ab | Golvpaneler med mekaniska låssystem med en flexibel och förskjutbar tunga samt tunga därför |
| US7927664B2 (en) | 2006-08-28 | 2011-04-19 | International Business Machines Corporation | Method of step-and-flash imprint lithography |
| DE102006046961A1 (de) | 2006-10-04 | 2008-04-10 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh | Herstellung einer flexiblen, gasdichten und transparenten Verbundfolie |
| US8003563B2 (en) | 2007-03-23 | 2011-08-23 | Kabushiki Kaisha Toshiba | Method for producing tungsten trioxide powder for photocatalyst, tungsten trioxide powder for photocatalyst, and photocatalyst product |
| JP2008261093A (ja) | 2007-04-10 | 2008-10-30 | Matsushita Electric Works Ltd | 機能性床材およびその製造方法 |
| DE102007019040A1 (de) * | 2007-04-20 | 2008-10-23 | Kronos International, Inc. | Verbesserte Photokatalysatoren auf Basis Titandioxid |
| DE102007019373A1 (de) | 2007-04-23 | 2008-10-30 | Henkel Ag & Co. Kgaa | Flüssiges Wasch- oder Reinigungsmittel mit Fließgrenze |
| TWI349701B (en) | 2007-07-26 | 2011-10-01 | Ind Tech Res Inst | Superhydrophobic self-cleaning powders and fabrication method thereof |
| US20090075093A1 (en) | 2007-08-14 | 2009-03-19 | Scf Technologies A/S | Method and compositions for producing optically clear photocatalytic coatings |
| EP2180996B9 (de) | 2007-08-22 | 2011-09-07 | Renolit SE | Folie mit photokatalytisch aktiver oberfläche |
| DE102007054848B4 (de) * | 2007-11-16 | 2018-09-27 | Erlus Aktiengesellschaft | Keramischer Formkörper mit einer photokatalytisch aktiven, luftreinigenden, transparenten Oberflächenbeschichtung, Verfahren zur Herstellung desselben und dessen Verwendung |
| CN101952116A (zh) | 2007-11-16 | 2011-01-19 | 瓦林格光催化股份有限公司 | 光催化板或面板及其制造方法 |
| BRPI0819634B1 (pt) | 2007-11-19 | 2020-02-04 | Ceraloc Innovation Belgium | painel de construção e método de fabricação de um painel de construção |
| JP5164542B2 (ja) | 2007-12-04 | 2013-03-21 | ニチハ株式会社 | 建材の塗装方法 |
| US8357426B2 (en) | 2008-01-11 | 2013-01-22 | Nanomateriales S.A. De C.V. | Single step milling and surface coating process for preparing stable nanodispersions |
| DE102008008808A1 (de) | 2008-02-12 | 2009-08-13 | Dekor-Kunststoffe Gmbh | Verfahren zur Herstellung eines scheuerfesten Overlays |
| ES2693125T3 (es) | 2008-04-07 | 2018-12-07 | Välinge Innovation AB | Método de fabricación de un tablero de suelo basado en fibra de madera |
| WO2009157449A1 (ja) | 2008-06-23 | 2009-12-30 | 旭硝子株式会社 | 太陽電池モジュール用バックシートおよび太陽電池モジュール |
| JP5476581B2 (ja) | 2008-06-30 | 2014-04-23 | 独立行政法人産業技術総合研究所 | サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク |
| DE102008046391A1 (de) | 2008-09-09 | 2010-03-11 | Kronos International, Inc. | Verfahren zur Herstellung kohlenstoffmodifizierter Photokatalysatorschichten |
| US20100112359A1 (en) | 2008-11-03 | 2010-05-06 | Sharma Pramod K | Titanium dioxide coatings having barrier layers and methods of forming titanium dioxide coatings having barrier layers |
| DK2411141T3 (da) | 2009-03-23 | 2014-03-31 | Vaelinge Photocatalytic Ab | Frembringelse af kolloide titandioxidnanopartikelopslæm-ninger med opretholdt krystallinitet ved anvendelse af en perlemølle med perler i mikrometerstørrelse |
| RU2408427C1 (ru) * | 2009-07-20 | 2011-01-10 | Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет | Способ получения фотокатализатора на основе диоксида титана |
| RU2012130954A (ru) | 2009-12-21 | 2014-01-27 | ЭфПиИННОВЕЙШНЗ | Покрытия, содержащие нанокристаллическую целлюлозу, способы их получения и применения |
| WO2011093785A1 (en) | 2010-01-29 | 2011-08-04 | Välinge Innovation AB | Method for applying nanoparticles |
| US20110189471A1 (en) | 2010-01-29 | 2011-08-04 | Valinge Innovation Ab | Method for applying nanoparticles |
| WO2012014893A1 (ja) | 2010-07-29 | 2012-02-02 | Toto株式会社 | 光触媒層を備えた無機材料およびその製造方法、並びに無機材料用光触媒コーティング液 |
| US20130177504A1 (en) * | 2011-06-17 | 2013-07-11 | Annuary Healthcare, Inc. | Nanoscale Particle Formulations and Methods |
| CN103608533B (zh) | 2011-07-05 | 2017-03-22 | 瓦林格光催化股份有限公司 | 涂覆的木制品以及制备涂覆的木制品的方法 |
| WO2013141789A1 (en) | 2012-03-20 | 2013-09-26 | Välinge Photocatalytic Ab | Photocatalytic compositions comprising titanium dioxide and anti-photogreying additives |
| US9375750B2 (en) | 2012-12-21 | 2016-06-28 | Valinge Photocatalytic Ab | Method for coating a building panel and a building panel |
| MY180856A (en) * | 2013-09-25 | 2020-12-10 | Valinge Photocatalytic Ab | A method of applying a photo catalytic dispersion and a method of manufacturing a panel |
-
2013
- 2013-03-15 WO PCT/SE2013/050283 patent/WO2013141789A1/en not_active Ceased
- 2013-03-15 AU AU2013235858A patent/AU2013235858B2/en active Active
- 2013-03-15 JP JP2015501624A patent/JP2015520009A/ja active Pending
- 2013-03-15 US US14/386,063 patent/US9573126B2/en active Active
- 2013-03-15 MY MYPI2014002465A patent/MY167029A/en unknown
- 2013-03-15 KR KR20147029059A patent/KR20140140583A/ko not_active Withdrawn
- 2013-03-15 EP EP13764224.5A patent/EP2827987B1/en active Active
- 2013-03-15 CN CN201380011950.8A patent/CN104203406B/zh active Active
- 2013-03-15 RU RU2014142039A patent/RU2643148C2/ru active
- 2013-03-15 BR BR112014021844-7A patent/BR112014021844B1/pt active IP Right Grant
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0913447A1 (en) * | 1996-07-19 | 1999-05-06 | Toto Ltd. | Photocatalytic hydrophilic coating composition |
| US20080044483A1 (en) * | 2001-11-14 | 2008-02-21 | Loma Margaret Kessell | Metal Oxide Composition |
| US20110136660A1 (en) * | 2008-05-27 | 2011-06-09 | Toto Ltd. | Photocatalyst-coated body |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP2827987A4 * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11045798B2 (en) | 2011-07-05 | 2021-06-29 | Valinge Photocatalytic Ab | Coated wood products and method of producing coated wood products |
| US9573126B2 (en) | 2012-03-20 | 2017-02-21 | Valinge Photocatalytic Ab | Photocatalytic composition |
| US9375750B2 (en) | 2012-12-21 | 2016-06-28 | Valinge Photocatalytic Ab | Method for coating a building panel and a building panel |
| US11666937B2 (en) | 2012-12-21 | 2023-06-06 | Valinge Photocatalytic Ab | Method for coating a building panel and a building panel |
| US12359086B2 (en) | 2012-12-21 | 2025-07-15 | Valinge Photocatalytic Ab | Method for coating a building panel and a building panel |
| WO2015047169A1 (en) | 2013-09-25 | 2015-04-02 | Välinge Photocatalytic Ab | A method of applying a photo catalytic dispersion and a method of manufacturing a panel |
| CN105555882A (zh) * | 2013-09-25 | 2016-05-04 | 瓦林格光催化股份有限公司 | 施加光催化分散体的方法和制板方法 |
| US9945075B2 (en) | 2013-09-25 | 2018-04-17 | Valinge Photocatalytic Ab | Method of applying a photocatalytic dispersion |
| EP3539793A1 (en) * | 2013-09-25 | 2019-09-18 | Välinge Photocatalytic AB | A method of applying a photocatalytic dispersion |
Also Published As
| Publication number | Publication date |
|---|---|
| CN104203406A (zh) | 2014-12-10 |
| MY167029A (en) | 2018-07-31 |
| AU2013235858B2 (en) | 2016-03-31 |
| RU2643148C2 (ru) | 2018-01-31 |
| EP2827987B1 (en) | 2021-05-26 |
| RU2014142039A (ru) | 2016-05-10 |
| AU2013235858A1 (en) | 2014-10-23 |
| EP2827987A4 (en) | 2016-01-20 |
| CN104203406B (zh) | 2019-03-12 |
| EP2827987A1 (en) | 2015-01-28 |
| BR112014021844B1 (pt) | 2021-08-17 |
| US9573126B2 (en) | 2017-02-21 |
| BR112014021844A2 (pt) | 2017-06-20 |
| KR20140140583A (ko) | 2014-12-09 |
| US20150102258A1 (en) | 2015-04-16 |
| JP2015520009A (ja) | 2015-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2013235858B2 (en) | Photocatalytic compositions comprising titanium dioxide and anti-photogreying additives | |
| CN103608533B (zh) | 涂覆的木制品以及制备涂覆的木制品的方法 | |
| US7419716B2 (en) | Multiple gloss level surface coverings and method of making | |
| US11292182B2 (en) | Panel having decorative layer and method for printing panels | |
| US20050260414A1 (en) | Coatings having low surface energy | |
| EP3049485B1 (en) | A method of applying a photo catalytic dispersion and a method of manufacturing a panel | |
| CN105960332B (zh) | 在附着在板材上的基底上印刷数字图像的方法和用于在基底上数字印刷的水基墨水 | |
| RU2617379C1 (ru) | Печатный материал | |
| RU2683012C2 (ru) | Способ покрытия строительной панели и строительная панель | |
| EP3587135B1 (fr) | Procede d'impression sans contact de vernis-uv | |
| JP2022532391A (ja) | 装飾用インクジェット印刷フィルム | |
| JP2005036550A (ja) | 凹凸模様を施した光触媒付き壁紙 | |
| CN106085005B (zh) | 调湿基材用水性喷墨墨和经装饰的调湿基材的制造方法 | |
| JP5550059B2 (ja) | 画像形成方法及び画像形成物 | |
| JP5478856B2 (ja) | 光触媒性塗膜形成用塗料、光触媒性塗膜及び該光触媒性塗膜を備える積層体 | |
| CN118325392A (zh) | 喷墨用油墨组、喷墨记录装置和喷墨记录方法 | |
| JP2004106303A (ja) | 防汚性能を有する化粧シート | |
| JP2019006944A (ja) | 調湿基材用インクセット、加飾された調湿基材の製造方法、及び加飾された調湿基材 | |
| US20210129566A1 (en) | Printed matter producing method, printed matter producing apparatus, and printed matter | |
| JP2007098660A (ja) | 優れた耐汚染性を有する化粧シート | |
| JP2007154430A (ja) | 化粧建築板 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13764224 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2015501624 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14386063 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013764224 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 20147029059 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2014142039 Country of ref document: RU Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014021844 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 2013235858 Country of ref document: AU Date of ref document: 20130315 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 112014021844 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140903 |