WO2013141140A1 - 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池 - Google Patents

二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池 Download PDF

Info

Publication number
WO2013141140A1
WO2013141140A1 PCT/JP2013/057292 JP2013057292W WO2013141140A1 WO 2013141140 A1 WO2013141140 A1 WO 2013141140A1 JP 2013057292 W JP2013057292 W JP 2013057292W WO 2013141140 A1 WO2013141140 A1 WO 2013141140A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
secondary battery
separator
electrode
slurry
Prior art date
Application number
PCT/JP2013/057292
Other languages
English (en)
French (fr)
Inventor
金田 拓也
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2014506182A priority Critical patent/JP5682737B2/ja
Publication of WO2013141140A1 publication Critical patent/WO2013141140A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous film for a secondary battery, a method for producing the same, and an electrode for a secondary battery, a separator for a secondary battery, and a secondary battery provided with the porous film for a secondary battery.
  • a separator In secondary batteries, a separator is generally used to prevent a short circuit between the positive electrode and the negative electrode.
  • the separator may affect the performance of the secondary battery. For this reason, various studies have been made on separators (see Patent Documents 1 to 3).
  • separators are made of, for example, polyolefin-based organic separators such as polyethylene and polypropylene. These separators may shrink when the secondary battery becomes hot due to internal and external stimuli. Such shrinkage may cause a short circuit between the positive electrode and the negative electrode, release of electrical energy, and the like.
  • porous film on the surface of the electrode.
  • the porous film is unlikely to shrink due to heat, if a porous film is provided on the surface of the electrode, the risk of short circuit is greatly reduced, and a significant improvement in safety is expected.
  • the porous film it is possible to prevent the electrode active material from falling off during the battery manufacturing process.
  • the porous film has pores, the electrolytic solution can penetrate into the porous film, and the battery reaction is not hindered.
  • the porous film is required to have excellent adhesiveness. Therefore, it is conceivable to include a binder in the porous film. However, when a large amount of the binder is contained in the porous film, blocking tends to occur. Generally, a separator and an electrode provided with a porous film have a sheet-like shape. In addition, these sheet-like separators and electrodes are usually transported or stored in a state of being wound in a roll. However, when the porous film contains a large amount of a binder, the porous film is excellent in adhesiveness, but the separators and the electrodes that overlap each other may be blocked when they become rolls.
  • the porous film is required to prevent non-conductive particles from separating from the porous film from the viewpoint of stably preventing a short circuit.
  • the phenomenon that the non-conductive particles are detached from the porous film is also called “powder falling”.
  • the present invention was devised in view of the above-mentioned problems, has excellent adhesiveness and anti-blocking property, hardly causes powder falling, and can suppress the shrinkage of the separator when the separator is configured in combination with an organic separator. It is an object of the present invention to provide a porous film for a secondary battery and a method for producing the same, and an electrode for a secondary battery, a separator for a secondary battery, and a secondary battery provided with the porous film for a secondary battery.
  • the present inventor uses the polymer particles having a predetermined core-shell structure as the non-conductive particles in the porous film containing the non-conductive particles, the particulate polymer, and the water-soluble polymer, thereby improving the adhesion. And it discovered that it was excellent in blocking resistance, it was hard to produce powder fall, and when a separator was constituted combining with an organic separator, a porous membrane which can control contraction of a separator was realized, and the present invention was completed. That is, the present invention is as follows.
  • non-conductive particles including non-conductive particles, a particulate polymer and a water-soluble polymer
  • the non-conductive particles are polymer particles having a core-shell structure;
  • the softening start point or decomposition point of the core part of the non-conductive particles is 175 ° C. or higher,
  • a porous film for a secondary battery, wherein the shell portion of the nonconductive particles has a softening start point at 85 ° C to 145 ° C.
  • the glass transition point of the particulate polymer is ⁇ 80 ° C. to 60 ° C.
  • the porous membrane for a secondary battery according to [1] wherein the softening start point of the water-soluble polymer is 85 ° C or higher.
  • the medium is an aqueous medium
  • the method for producing a porous film for a secondary battery according to [6] wherein the slurry for the porous film is an aqueous dispersion.
  • the porous film for secondary batteries which is excellent in adhesiveness and anti-blocking property, is hard to produce powder falling, and can suppress shrinkage
  • the method, and the secondary battery electrode, secondary battery separator and secondary battery provided with the porous membrane for the secondary battery can be realized.
  • (meth) acrylic acid includes both acrylic acid and methacrylic acid.
  • (meth) acrylate includes both acrylate and methacrylate.
  • (meth) acrylonitrile includes both acrylonitrile and methacrylonitrile.
  • a substance is water-soluble means that an insoluble content is less than 0.5% by weight when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
  • a certain substance is water-insoluble means that an insoluble content is 90% by weight or more when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
  • the porous membrane for a secondary battery of the present invention includes non-conductive particles, a particulate polymer, and a water-soluble polymer.
  • the non-conductive particles are polymer particles having a core-shell structure.
  • the core-shell structure refers to a particle structure including a core part inside the particle and a shell part covering the core part.
  • the softening start point or decomposition point of the core portion is as high as a predetermined temperature or higher, and the shell portion has a softening start point in a predetermined low temperature range.
  • the porous film of the present invention is excellent in adhesiveness and blocking resistance, hardly causes powder falling, and can suppress the shrinkage of the separator when the separator is configured in combination with an organic separator.
  • the reason why the porous film of the present invention can exhibit such excellent effects is not clear, but according to the study of the present inventor, it is presumed as follows.
  • the shell portion of the non-conductive particles according to the present invention has a softening start point in a low temperature range. For this reason, it melts easily when heated. Therefore, when the organic separator, the porous film, and the electrode are stacked in this order and heat-pressed, the polymer in the shell portion of the nonconductive particles is melted, and the melted polymer adheres to the organic separator and the electrode. Thereafter, when the porous film is cooled, the melted polymer is cured again while maintaining a close contact state. Thereby, since nonelectroconductive particle adheres to an organic separator and an electrode firmly, the adhesiveness of a porous film can be improved.
  • the particulate polymer generally has binding properties.
  • the adhesiveness of the porous film can be enhanced also by the binding property of the particulate polymer.
  • the core part of a nonelectroconductive particle has a high softening start point or decomposition
  • the particulate polymer generally has binding properties, if the content of the particulate polymer in the porous film is large, the adhesion of the porous film is improved, but blocking is likely to occur.
  • the shell part of the non-conductive particles can be melted to improve the adhesiveness, so that the amount of the particulate polymer can be reduced. Further, since the shell portion of the nonconductive particles is in a cured state with low friction when not melted, the nonconductive particles are unlikely to cause blocking in a normal use state.
  • the electrode for a secondary battery of the present invention (hereinafter sometimes referred to as “the battery of the present invention”) provided with a porous film or the separator for a secondary battery of the present invention (hereinafter referred to as “the separator of the present invention” as appropriate).
  • the separator of the present invention the separator of the present invention
  • the friction force between the stacked electrodes of the present invention or the separators of the present invention hardly increases, so that the porous film of the present invention is excellent in blocking resistance.
  • the non-conductive particles are firmly bound to each other by the action of the shell portion of the non-conductive particles and the particulate polymer. Therefore, the nonconductive particles are difficult to leave from the porous film. For this reason, the porous film of the present invention is less prone to powder falling.
  • the core portion of the non-conductive particles has a high softening start point or decomposition point. For this reason, even if it becomes high temperature, it does not melt and is not easily deformed. Further, the shell portion of the non-conductive particles is not melted in a normal use state. Therefore, the porous film is not easily deformed even when the temperature is high, and maintains high rigidity. Furthermore, in the porous film, the water-soluble polymer covers the surfaces of the non-conductive particles and the particulate polymer. For this reason, the rigidity of the porous membrane is also increased by the water-soluble polymer. Here, the porous film can be firmly adhered to the organic separator as described above.
  • the organic separator When the porous film having high rigidity without being deformed even at a high temperature is firmly bonded to the organic separator, the organic separator is also difficult to deform. Therefore, even if stress due to heating is generated in the organic separator, the porous film resists the stress, so that the shrinkage of the separator can be suppressed.
  • Non-conductive particles are polymer particles and have a core-shell structure. That is, a nonelectroconductive particle is equipped with the core part containing a polymer and the shell part containing a polymer.
  • the core part of nonelectroconductive particle has a softening start point or a decomposition point normally at 175 degreeC or more, Preferably it is 220 degreeC or more, More preferably, it is 225 degreeC or more.
  • the core part which has a softening start point or a decomposition point in a high temperature range is hard to deform
  • the softening start point can be measured as follows. First, 10 mg of a measurement sample was weighed into an aluminum pan, and an empty aluminum pan was used as a reference with a differential thermal analysis measurement device. The measurement temperature range was between ⁇ 100 ° C. and 500 ° C., and the heating rate was 10 ° C./min. The DSC curve is measured under normal temperature and humidity. During this temperature rising process, the baseline immediately before the endothermic peak of the DSC curve where the differential signal (DDSC) is 0.05 mW / min / mg or more and the tangent line of the DSC curve at the first inflection point after the endothermic peak The point of intersection with is the glass transition point (Tg).
  • Tg glass transition point
  • the temperature 25 degreeC higher than the glass transition point is made into a softening start point.
  • the softening start point may not be observed due to decomposition.
  • the decomposition point can be measured as follows. Under a nitrogen atmosphere, the measurement sample is heated from 30 ° C. at a rate of temperature increase of 10 ° C./min with a differential thermogravimetric simultaneous measurement apparatus. At this time, the temperature at which the weight loss ratio reaches 10% by weight is defined as the decomposition point. When both the softening start point and the decomposition point of the core portion of the nonconductive particles are observed, the lower temperature is treated as the softening start point or the decomposition point of the core portion of the nonconductive particle.
  • Examples of the polymer forming the core part include a highly crosslinked polymer.
  • a highly crosslinked polymer By highly crosslinking, molecular motion of the polymer is suppressed even at a temperature equal to or higher than the glass transition point of the polymer, so that the core portion can maintain its shape.
  • the polymer forming the core part is obtained, for example, by polymerizing a crosslinkable vinyl monomer.
  • the crosslinkable vinyl monomer include compounds having usually 2 or more, preferably 2 copolymerizable double bonds.
  • crosslinked vinyl monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • suitable crosslinkable vinyl monomers include non-conjugated divinyl compounds and polyvalent acrylate compounds.
  • non-conjugated divinyl compounds include divinylbenzene.
  • polyvalent acrylates include polyethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,6-hexane glycol diacrylate, neopentyl glycol diacrylate, polypropylene glycol diacrylate, 2,2′-bis (4 -Diacrylate compounds such as acryloxypropyloxyphenyl) propane and 2,2'-bis (4-acryloxydiethoxyphenyl) propane; trimethylolpropane triacrylate, trimethylolethane triacrylate, tetramethylolmethane triacrylate, etc.
  • Triacrylate compounds such as tetramethylolmethane tetraacrylate; ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, Liethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, 1,6-hexane glycol dimethacrylate, neopentyl glycol dimethacrylate, dipropylene glycol dimethacrylate, polypropylene And dimethacrylate compounds such as glycol dimethacrylate and 2,2′-bis (4-methacryloxydiethoxyphenyl) propane; and tomimethacrylate compounds such as trimethylolpropane trimethacrylate and trimethylolethane trimethacrylate; Among these, divinylbenzene, ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate are preferable, and
  • the ratio of the crosslinkable vinyl monomer is usually 20% by weight or more, preferably 25% by weight or more, and more preferably 30% by weight or more with respect to all monomers of the polymer forming the core part.
  • an upper limit is 100 weight% or less normally, Preferably it is 98 weight% or less, More preferably, it is 95 weight% or less.
  • the amount of the crosslinkable vinyl monomer is, for example, in terms of a pure product excluding diluents and impurities.
  • crosslinkable vinyl monomer As the polymer monomer that forms the core portion, only a crosslinkable vinyl monomer may be used. However, monomers other than the crosslinkable vinyl monomer may be used in combination as long as the effects of the present invention are not significantly impaired. Examples of monomers other than the crosslinkable vinyl monomer include polymerizable monovinyl monomers.
  • polymerizable monomer examples include aromatic monovinyl compounds such as styrene, ethylvinylbenzene, ⁇ -methylstyrene, fluorostyrene, and vinylpyrine; vinyl cyanide such as acrylonitrile and methacrylonitrile.
  • Acrylic acid ester monomers such as butyl acrylate, 2-ethylhexyl ethyl acrylate, glycidyl acrylate, N, N′-dimethylaminoethyl acrylate; butyl methacrylate, 2-ethylhexyl methacrylate, methyl methacrylate, 2-hydroxyethyl methacrylate, N, N '-Dimethylaminoethyl methacrylate and other methacrylic acid ester monomers; acrylic acid, methacrylic acid, maleic acid, itaconic acid and other mono- or dicals Acid and acid anhydrides of dicarboxylic acids; amide monomers such as acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide; carbon-carbon double bonds and epoxy groups such as allyl glycidyl ether and glycidyl methacrylate Monomer to contain; and the like.
  • conjugated double bond compounds such as butadiene and isoprene
  • vinyl ester compounds such as vinyl acetate
  • 4-methyl-1-pentene ⁇ -olefins
  • a compound or the like may be used in combination with a crosslinkable vinyl monomer.
  • the specific type of the polymerizable monomer that can be used in combination with the crosslinkable vinyl monomer usually varies depending on the type of the crosslinkable vinyl monomer. For example, when divinylbenzene is used as the crosslinkable monomer, ethyl vinylbenzene and styrene are preferable.
  • ethylene glycol dimethacrylate or trimethylolpropane trimethacrylate is used as the crosslinkable monomer
  • an acrylate monomer and a methacrylic acid ester monomer are preferred.
  • these monomers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • amorphous heat-resistant polymers such as polysulfone, polyethersulfone, polyarylate, polyamideimide, polyetherimide, and polyimide may be used.
  • the shell part of the non-conductive particles is usually in a temperature range of 85 ° C. or higher, preferably 87 ° C. or higher, more preferably 89 ° C. or higher, and usually 145 ° C. or lower, preferably 125 ° C. or lower, more preferably 115 ° C. or lower.
  • the softening start point is not less than the lower limit of the above range, the blocking resistance of the porous film can be improved.
  • the shell portion hardly melts at the use temperature of the secondary battery, it is possible to stably prevent the pores of the porous film from being blocked. For this reason, it is possible to improve the rate characteristics of the secondary battery.
  • the polymer forming the shell part it is preferable to use a polymer containing a (meth) acrylate unit.
  • the (meth) acrylate unit refers to a structural unit formed by polymerizing one or both of acrylate and methacrylate.
  • the electrical stability of the porous film can be improved.
  • both a shell part and a particulate polymer contain a (meth) acrylate unit, the affinity of a shell part and a particulate polymer can improve, and it can improve dust-proof property.
  • Examples of the acrylate include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl ethyl acrylate, and the like.
  • Examples of the methacrylate include methyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the ratio of the (meth) acrylate unit in the polymer forming the shell part is usually 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, and 100% by weight or less. Thereby, the electrical stability of the porous film can be improved. Moreover, when both a shell part and a particulate polymer contain a (meth) acrylate unit, anti-powder resistance can be improved.
  • the ratio of the (meth) acrylate unit in the polymer forming the shell part is usually the same as the ratio (preparation ratio) of acrylate and methacrylate in all monomers of the polymer forming the shell part.
  • the shell portion may be a polymer of a monomer other than acrylate and methacrylate, or may be a copolymer of one or both of acrylate and methacrylate and another monomer.
  • monomers other than acrylate and methacrylate include fats such as 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3 butadiene, and 2-chloro-1,3-butadiene.
  • Group conjugated diene monomers aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, vinyltoluene and divinylbenzene; One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the number average particle diameter of the non-conductive particles is usually 100 nm or more, preferably 200 nm or more, more preferably 300 nm or more, and usually 1500 nm or less, preferably 1200 nm or less, more preferably 1000 nm or less.
  • the number average particle diameter of the particles can be measured as follows. 200 particles are arbitrarily selected from a photograph taken at a magnification of 25000 times with a field emission scanning electron microscope. When the longest side of the particle image is La and the shortest side is Lb, the particle size is (La + Lb) / 2. The average particle size of 200 particles is determined as the average particle size.
  • the thickness of the shell part is usually 3% or more, preferably 5% or more, more preferably 7% or more, and usually 18% or less, preferably 16% with respect to the number average particle diameter of the non-conductive particles. Below, more preferably 14% or less.
  • a core part can be enlarged relatively by making a shell part thin, the rigidity of a nonelectroconductive particle can be improved. For this reason, the rigidity of a porous membrane can be improved and shrinkage
  • the content ratio of non-conductive particles in the porous membrane of the present invention is usually 70% by weight or more, preferably 75% by weight or more, more preferably 80% by weight or more, and usually 98% by weight or less, preferably 96% by weight or less. More preferably, it is 94 weight% or less.
  • the content ratio of the non-conductive particles in the porous film of the present invention within this range, the non-conductive particles have a contact portion and the non-conductive particles do not hinder the movement of ions. A gap can be formed. Therefore, if the content rate of nonelectroconductive particle is in the said range, the intensity
  • Non-conductive particles having a core-shell structure are polymerized stepwise by using, for example, a polymer monomer that forms the core part and a polymer monomer that forms the shell part, and changing the ratio of these monomers over time. Can be manufactured.
  • seed polymer particles are produced by polymerizing a polymer monomer that forms the core. This seed polymer particle becomes a core part of a nonelectroconductive particle.
  • a polymer monomer that forms a shell portion is polymerized.
  • a reaction medium, a polymerization initiator, a surfactant, or the like may be used.
  • the particulate polymer is a component that can function as a binder in the porous film.
  • various polymers can be used as long as they have binding properties.
  • the acrylate and methacrylate forming the (meth) acrylate unit include the same examples as those described in the description of the non-conductive particles.
  • an acrylate and a methacrylate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of (meth) acrylate units in the particulate polymer is usually 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, and 100% by weight or less. Thereby, the electrical stability of the porous film can be improved. Moreover, when both a shell part and a particulate polymer contain a (meth) acrylate unit, anti-powder resistance can be improved.
  • the ratio of (meth) acrylate units in the particulate polymer usually matches the ratio of acrylate and methacrylate (charge ratio) in all monomers of the particulate polymer.
  • the particulate polymer may be a polymer of a monomer other than acrylate and methacrylate, or may be a copolymer of one or both of acrylate and methacrylate and another monomer.
  • monomers other than acrylate and methacrylate include vinyl monomers having an acidic group, ⁇ , ⁇ -unsaturated nitrile monomers, monomers having a crosslinkable group, and the like. These are preferably copolymerized with acrylates or methacrylates. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • examples of the acidic group include —COOH group (carboxylic acid group), —OH group (hydroxyl group), —SO 3 H group (sulfonic acid group), —PO 3 H 2 group, — And PO (OH) (OR) group (R represents a hydrocarbon group).
  • any vinyl monomer having these acidic groups can be used.
  • a monomer having a lower polyoxyalkylene group and an acid anhydride that generates a carboxylic acid group by hydrolysis can also be used as the vinyl monomer having an acidic group.
  • the monomer which has a carboxylic acid group from the reason that it is excellent in the binding property to an electrode mixture layer or an organic separator, and the transition metal ion eluted from the positive electrode active material can be capture
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acids, dicarboxylic acids, dicarboxylic acid anhydrides, and derivatives thereof.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxy.
  • dicarboxylic acid examples include maleic acid, fumaric acid, itaconic acid, methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate, diphenylmaleate, and maleic acid.
  • maleyl esters such as nonyl, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleate.
  • acid anhydride of dicarboxylic acid examples include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.
  • monocarboxylic acids having 5 or less carbon atoms having carboxylic acid groups such as acrylic acid and methacrylic acid
  • dicarboxylic acids having 5 or less carbon atoms having two carboxylic acid groups such as maleic acid and itaconic acid
  • acrylic acid, methacrylic acid, and itaconic acid are preferable from the viewpoint that the storage stability of the prepared slurry for porous membrane is high.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the ratio (charge ratio) of the vinyl monomer having an acidic group to the total monomer of the particulate polymer is preferably 1.0% by weight or more, more preferably 1.5% by weight or more, preferably 3.0% by weight. Below, more preferably 2.5% by weight or less.
  • Examples of the ⁇ , ⁇ -unsaturated nitrile monomer include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile and the like.
  • acrylonitrile and methacrylonitrile are preferable from the viewpoint of improving the mechanical strength of the porous film and the binding force in the porous film.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the ratio (charge ratio) of the ⁇ , ⁇ -unsaturated nitrile monomer to the total monomer of the particulate polymer is preferably 1.0% by weight or more, preferably 50% by weight or less, more preferably 40% by weight or less, Particularly preferred is 30% by weight or less.
  • Examples of the monomer having a crosslinkable group include a monofunctional monomer having a crosslinkable group and having one olefinic double bond, and a polyfunctional monomer having at least two olefinic double bonds.
  • the crosslinkable group is preferably at least one selected from the group consisting of an epoxy group, an N-methylolamide group, an oxetanyl group, and an oxazoline group. Of these, an epoxy group and an N-methylolamide group are more preferable in terms of easy crosslinking and adjustment of the crosslinking density.
  • Examples of the monomer having an epoxy group as a crosslinkable group include a monomer containing a carbon-carbon double bond and an epoxy group, and a monomer containing a halogen atom and an epoxy group.
  • Examples of the monomer containing a carbon-carbon double bond and an epoxy group include unsaturated glycidyl ethers such as vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl ether; butadiene monoepoxide, chloroprene mono Diene or polyene monoepoxide such as epoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene; 3,4-epoxy Alkenyl epoxides such as 1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; glycidyl acrylate, glycidyl methacrylate, glycidyl crotonate, glycidy
  • Examples of the monomer having a halogen atom and an epoxy group include epihalohydrins such as epichlorohydrin, epibromohydrin, epiiodohydrin, epifluorohydrin, ⁇ -methylepichlorohydrin, p-chlorostyrene oxide, dibromophenylglycidyl, and the like. Ether; and the like.
  • Examples of the monomer having an N-methylolamide group as a crosslinkable group include N-methylolacrylamide and N-methylolmethacrylamide.
  • polyfunctional monomer having at least two olefinic double bonds examples include allyl acrylate, allyl methacrylate, trimethylolpropane-triacrylate, trimethylolpropane-methacrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triglyceride, Examples include ethylene glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, other allyl or vinyl ethers of polyfunctional alcohols, tetraethylene glycol diacrylate, triallylamine, trimethylolpropane-diallyl ether, methylenebisacrylamide, divinylbenzene, etc. It is done.
  • allyl acrylate, allyl methacrylate, trimethylolpropane-triacrylate, and trimethylolpropane-methacrylate are preferable.
  • acrylates and methacrylates having an allyl group such as allyl acrylate and allyl methacrylate are preferable because the crosslinking density is easily improved and the crosslinking density is improved and copolymerization is high.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the ratio (charge ratio) of the monomer having a crosslinkable group to the total monomer of the particulate polymer is preferably 0.02% by weight or more, more preferably 0.1% by weight or more, and particularly preferably 0.2% by weight or more. Preferably 4.0% by weight or less, more preferably 3.5% by weight or less, and particularly preferably 3.0% by weight or less. Thereby, the elution to the electrolyte solution of a particulate polymer is suppressed, and the outstanding porous film intensity
  • the glass transition point of the particulate polymer is usually ⁇ 80 ° C. or higher, preferably ⁇ 70 ° C. or higher, more preferably ⁇ 60 ° C. or higher, usually 60 ° C. or lower, preferably 30 ° C. or lower, more preferably 0. It is below °C.
  • the number average particle diameter of the particulate polymer is usually 50 nm or more, preferably 100 nm or more, more preferably 150 nm or more, and usually 1000 nm or less, preferably 800 nm or less, more preferably 600 nm or less.
  • the amount of the particulate polymer is usually 3 parts by weight or more, preferably 7 parts by weight or more, more preferably 11 parts by weight or more, and usually 26 parts by weight or less, preferably 100 parts by weight of the non-conductive particles. It is 22 parts by weight or less, more preferably 18 parts by weight or less.
  • the production method of the particulate polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method may be used.
  • the emulsion polymerization method and the suspension polymerization method are preferable because they can be polymerized in water and used as they are as the material for the slurry for the porous membrane.
  • the water-soluble polymer has a function of binding nonconductive particles to each other in the porous film.
  • the water-soluble polymer since the water-soluble polymer usually covers the surfaces of the non-conductive particles and the particulate polymer in a cured state, it has an action of increasing the rigidity of the porous film and suppressing blocking.
  • the water-soluble polymer in the slurry for porous membranes, the water-soluble polymer usually functions as a thickener that can adjust the viscosity of the slurry.
  • water-soluble polymer examples include cellulose polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof.
  • Polyvinyl alcohols such as (modified) polyvinyl alcohol, acrylic acid or copolymers of acrylic acid salt and vinyl alcohol, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl Examples include pyrrolidone, modified polyacrylic acid, oxidized starch, phosphate starch, casein, and various modified starches.
  • “(modified) poly” includes both “unmodified poly” and “modified poly”. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the softening start point of the water-soluble polymer is usually 85 ° C. or higher, preferably 175 ° C. or higher, more preferably 200 ° C. or higher.
  • the amount of the water-soluble polymer is usually 0.03 parts by weight or more, preferably 0.18 parts by weight or more, more preferably 0.3 parts by weight or more with respect to 100 parts by weight of the nonconductive particles. It is not more than parts by weight, preferably not more than 15 parts by weight, more preferably not more than 12 parts by weight.
  • the porous film of the present invention may contain any component other than the components described above.
  • the optional component is not particularly limited as long as it does not have an excessively unfavorable effect on the battery reaction in the secondary battery of the present invention.
  • the kind of arbitrary component may be one, and two or more kinds may be sufficient as it.
  • the porous film of the present invention includes, for example, a step of mixing a non-conductive particle, a particulate polymer, a water-soluble polymer and a medium to obtain a porous film slurry, and applying the porous film slurry onto a substrate. It can manufacture by the manufacturing method including the process of obtaining a slurry layer, and the process of drying a slurry layer. Hereinafter, this manufacturing method will be described.
  • the slurry for the porous film is a fluid composition containing non-conductive particles, a particulate polymer, a water-soluble polymer, and a medium.
  • the nonconductive particles and the particulate polymer are dispersed in the medium.
  • the slurry for porous membrane when an aqueous medium is used as a medium, some water-soluble polymers are dissolved in the medium, but another part of the water-soluble polymers are non-conductive particles and particulates. Adsorbs on the surface of the polymer.
  • the non-conductive particles and the particulate polymer are covered with the water-soluble polymer layer (dispersion stable layer), and the dispersibility of the non-conductive particles and the particulate polymer in water is improved.
  • an aqueous medium is usually used.
  • the slurry for porous films is obtained as an aqueous dispersion.
  • water is usually used.
  • the amount of the medium contained in the porous membrane slurry is usually arbitrarily set within a range in which the porous membrane slurry has a viscosity that does not impair workability when producing the porous membrane of the present invention. Specifically, the amount of the medium is set so that the solid content concentration of the slurry for the porous membrane is usually 5 wt% to 30 wt%.
  • the slurry for the porous film may contain any component other than the non-conductive particles, the particulate polymer, the water-soluble polymer and the medium.
  • the optional component is not particularly limited as long as it does not have an excessively unfavorable effect on the battery reaction in the secondary battery.
  • the kind of arbitrary component may be one, and two or more kinds may be sufficient as it.
  • a dispersing agent As an arbitrary component, a dispersing agent, electrolyte solution dispersion inhibitor, etc. are mentioned, for example.
  • the dispersant include an anionic compound, a cationic compound, a nonionic compound, and a polymer compound.
  • the specific type of the dispersant is usually selected according to the configuration of the non-conductive particles.
  • the slurry for a porous film may contain a surfactant such as an alkyl surfactant, a silicon surfactant, a fluorine surfactant, or a metal surfactant.
  • a surfactant such as an alkyl surfactant, a silicon surfactant, a fluorine surfactant, or a metal surfactant.
  • the amount of the surfactant is preferably within a range that does not affect the battery characteristics, and is preferably 10% by weight or less in the porous membrane of the present invention.
  • the slurry for a porous film may contain nanoparticles having a volume average particle diameter of less than 100 nm, such as fumed silica and fumed alumina.
  • nanoparticles having a volume average particle diameter of less than 100 nm such as fumed silica and fumed alumina.
  • the mixing order of the non-conductive particles, the particulate polymer, the water-soluble polymer and the medium, and optional components used as necessary there is no particular limitation on the mixing method.
  • mixing is performed using a disperser as a mixing device.
  • the disperser is preferably an apparatus capable of uniformly dispersing and mixing the above components.
  • examples include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer.
  • a high dispersion apparatus such as a bead mill, a roll mill, or a fill mix is particularly preferable because a high dispersion share can be added.
  • the slurry for the porous film is applied onto the substrate to obtain a slurry layer.
  • a base material is a member used as the object which forms a slurry layer as a film
  • a base material For example, you may use a peeling film.
  • the slurry for the porous film may be applied to the surface of the release film to obtain a slurry layer, and after the slurry layer is dried to obtain the porous film, the porous film may be peeled off from the release film.
  • a battery element is used as a base material from the viewpoint of improving the production efficiency by omitting the step of peeling the porous film of the present invention. Specific examples of such battery elements include electrodes and organic separators.
  • Examples of the method for applying the slurry for the porous film include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the dip method and the gravure method are preferable in that a uniform porous film can be obtained.
  • the slurry layer is dried.
  • the porous film of the present invention is obtained.
  • the drying method include drying with warm air, hot air, low-humidity air, and the like; vacuum drying; drying method by irradiation with energy rays such as infrared rays, far infrared rays, and electron beams.
  • the drying temperature is a temperature at which the medium is vaporized and removed from the coating film.
  • the pressing process may be performed using a mold press, a roll press, or the like.
  • the adhesiveness of a base material and the porous film of this invention can be improved.
  • Such pressure treatment is particularly useful when an electrode, an organic separator, or the like is used as the base material.
  • the pressure treatment is excessively performed, the porosity of the porous membrane of the present invention may be impaired, so it is preferable to appropriately control the pressure and the pressure time.
  • the porous film of the present invention has moderate porosity by having voids between the non-conductive particles, and can absorb the electrolytic solution.
  • the electrolytic solution can penetrate into the porous film of the present invention, even if the porous film of the present invention is provided on the electrode of the present invention or the separator of the present invention, the battery reaction is not hindered, and the rate characteristics are improved. A high secondary battery can be realized.
  • the thickness of the porous membrane of the present invention is preferably 0.5 ⁇ m to 20 ⁇ m. Further, when the porous film of the present invention is provided on the surface of the electrode, the thickness of the porous film is preferably 1 ⁇ m to 10 ⁇ m. By setting the thickness of the porous film to be equal to or more than the lower limit of the above range, the thickness of the film can be made uniform. Moreover, the capacity
  • the electrode of the present invention (secondary battery electrode) includes a current collector, an electrode mixture layer attached on the current collector, and a porous film of the present invention formed on the electrode mixture layer.
  • the electrode mixture layer includes an electrode active material and an electrode mixture layer binder. Even if the porous film of the present invention is provided on the surface of the electrode mixture layer, the electrolyte solution can permeate the porous film of the present invention, so that the rate characteristics are not adversely affected.
  • the porous film of the present invention since the porous film of the present invention has an appropriate strength, it functions as a protective film when provided on the surface of the electrode mixture layer, prevents the electrode active material from falling off during the manufacturing process of the secondary battery, and shorts during battery operation. It can be prevented. Furthermore, since the porous membrane of the present invention is provided, the electrode of the present invention is less likely to cause blocking.
  • the current collector is not particularly limited as long as it is a material having electrical conductivity and electrochemical durability.
  • metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable from the viewpoint of heat resistance.
  • aluminum is particularly preferable for the positive electrode of the nonaqueous electrolyte secondary battery, and copper is particularly preferable for the negative electrode.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of 0.001 mm to 0.5 mm is preferable.
  • the current collector is preferably used after roughening in advance.
  • the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • the mechanical polishing method for example, an abrasive cloth paper to which abrasive particles are fixed, a grindstone, an emery buff, a wire brush provided with a steel wire, or the like is used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity with the electrode mixture layer.
  • Electrode mixture layer (Electrode active material)
  • the electrode mixture layer includes an electrode active material.
  • an electrode active material for a positive electrode may be referred to as a “positive electrode active material”
  • an electrode active material for a negative electrode may be referred to as a “negative electrode active material”. Since the electrode of the present invention is usually used in a lithium secondary battery, an electrode active material for a lithium secondary battery will be described in particular.
  • the electrode active material for a lithium secondary battery a material capable of reversibly inserting and releasing lithium ions by applying a potential in an electrolytic solution can be used.
  • the electrode active material an inorganic compound or an organic compound may be used.
  • the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • Examples of the transition metal include Fe, Co, Ni, and Mn.
  • inorganic compounds used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4, and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13, etc. Can be mentioned.
  • examples of the positive electrode active material made of an organic compound include conductive polymers such as polyacetylene and poly-p-phenylene.
  • the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
  • a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and the composite material may be used as a positive electrode active material.
  • Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
  • you may use as a positive electrode active material what carried out the element substitution of the said compound partially.
  • These positive electrode active materials may be used alone or in combination of two or more at any ratio.
  • the particle size of the positive electrode active material is appropriately selected in consideration of other constituent elements of the battery.
  • the volume average particle diameter D50 of the positive electrode active material is usually 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and usually 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the volume average particle diameter D50 of the positive electrode active material is within this range, a secondary battery having a large charge / discharge capacity can be obtained, and handling of the mixture slurry and the electrode of the present invention is easy.
  • the volume average particle diameter D50 represents a particle diameter at which the cumulative volume calculated from the small diameter side becomes 50% in the particle size distribution measured by the laser diffraction method.
  • the negative electrode active material examples include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers; and conductive polymers such as polyacene.
  • metals such as silicon, tin, zinc, manganese, iron and nickel, and alloys thereof; oxides of the metals or alloys; sulfates of the metals or alloys; Further, metallic lithium; lithium alloys such as Li—Al, Li—Bi—Cd, and Li—Sn—Cd; lithium transition metal nitride; silicon and the like may be used.
  • the electrode active material a material obtained by attaching a conductivity imparting material to the surface by a mechanical modification method may be used. These negative electrode active materials may be used alone or in combination of two or more at any ratio.
  • the particle size of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, the volume average particle diameter D50 of the negative electrode active material is usually 1 ⁇ m or more, preferably 15 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less. .
  • the electrode mixture layer includes a binder for the electrode mixture layer.
  • a binder for the electrode mixture layer By including the binder for the electrode mixture layer, the adhesion of the electrode mixture layer is improved, and the strength against the mechanical force is increased in the process of winding the electrode of the present invention. In addition, since the electrode mixture layer is difficult to be detached, the possibility of a short circuit due to the desorbed material is reduced.
  • binder for the electrode mixture layer various polymer components can be used.
  • polyethylene polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like may be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • polyacrylic acid derivatives polyacrylonitrile derivatives, and the like may be used.
  • the soft polymer illustrated below as a binder for electrode mixture layers. That is, as a soft polymer, for example, (I) Polybutyl acrylate, polybutyl methacrylate, polyhydroxyethyl methacrylate, polyacrylamide, polyacrylonitrile, butyl acrylate / styrene copolymer, butyl acrylate / acrylonitrile copolymer, butyl acrylate / acrylonitrile / glycidyl methacrylate copolymer, etc.
  • a soft polymer for example, (I) Polybutyl acrylate, polybutyl methacrylate, polyhydroxyethyl methacrylate, polyacrylamide, polyacrylonitrile, butyl acrylate / styrene copolymer, butyl acrylate / acrylonitrile copolymer, butyl acrylate / acrylonitrile / glycidyl methacrylate copo
  • An acrylic soft polymer which is a homopolymer of acrylic acid or a methacrylic acid derivative or a copolymer thereof with a monomer copolymerizable therewith;
  • isobutylene-based soft polymers such as polyisobutylene, isobutylene-isoprene rubber, isobutylene-styrene copolymer;
  • the binder for the electrode mixture layer may be used alone or in combination of two or more at any ratio.
  • the amount of the binder for the electrode mixture layer in the electrode mixture layer is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, particularly preferably 0, relative to 100 parts by weight of the electrode active material. 0.5 parts by weight or more, preferably 5 parts by weight or less, more preferably 4 parts by weight or less, and particularly preferably 3 parts by weight or less.
  • the amount of the binder for the electrode mixture layer is within the above range, it is possible to prevent the electrode active material from dropping from the electrode mixture layer without inhibiting the battery reaction.
  • the binder for the electrode mixture layer is usually prepared in a state of being contained in a solution or a dispersion to produce the electrode mixture layer.
  • the viscosity of the solution or dispersion at that time is usually 1 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more, and usually 300,000 mPa ⁇ s or less, preferably 10,000 mPa ⁇ s or less.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • the electrode mixture layer may contain any component other than the electrode active material and the electrode mixture layer binder.
  • examples thereof include a conductivity imparting material (also referred to as a conductive material), a reinforcing material, and the like.
  • Arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Examples of the conductivity-imparting material include acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, carbon nanotube and other conductive carbon; graphite and other carbon powders; various metal fibers and foils; Can be mentioned.
  • the conductivity imparting material By using the conductivity imparting material, the electrical contact between the electrode active materials can be improved. In particular, when used for a lithium secondary battery, the discharge rate characteristics can be improved.
  • the reinforcing material for example, various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • the amount of the conductivity-imparting material and the reinforcing agent used is usually 0 parts by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight, based on 100 parts by weight of the electrode active material. It is as follows.
  • the electrode mixture layer is a current collector made of an electrode active material, a binder for the electrode mixture layer and a solvent, and a slurry containing optional components as necessary (hereinafter referred to as “mixture slurry” as appropriate). It is made to adhere to.
  • the mixture slurry usually contains a solvent, and dissolves or disperses the electrode active material, the binder for the electrode mixture layer, and optional components.
  • a solvent it is preferable to use a solvent that can dissolve the binder for the electrode mixture layer because the dispersibility of the electrode active material and the conductivity-imparting material is excellent.
  • a solvent used for the mixture slurry either water or an organic solvent can be used.
  • the organic solvent include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, and ⁇ -butyrolactone Esters such as ⁇ -caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N And amides such as methylpyrrolidone and N, N-dimethylformamide.
  • solvents may be used alone or in combination of two or more at any ratio.
  • the specific type of solvent is preferably selected as appropriate from the viewpoints of drying speed and environment.
  • a non-aqueous solvent from a viewpoint of the electrode expansion
  • the mixture slurry may further contain additives that exhibit various functions such as a thickener.
  • a thickener a polymer that is soluble in an organic solvent used for the mixture slurry is usually used. Specific examples thereof include acrylonitrile-butadiene copolymer hydride.
  • trifluoropropylene carbonate vinylene carbonate, catechol carbonate, 1,6-dioxaspiro [4,4] nonane-2,7-dione, -Crown-4-ether may be included. Moreover, you may include these in electrolyte solution.
  • the amount of the solvent in the mixture slurry is preferably adjusted so as to have a viscosity suitable for coating depending on the types of the electrode active material and the binder for the electrode mixture layer.
  • the concentration of the solid content of the electrode active material, the binder for the electrode mixture layer and the optional components is preferably 30% by weight or more, more preferably 40% by weight or more, and preferably 90%. It is used by adjusting the amount to be not more than wt%, more preferably not more than 80 wt%.
  • the mixture slurry is obtained by mixing an electrode active material and a solvent, and a binder for an electrode mixture layer and optional components, which are included as necessary, using a mixer. Mixing may be performed by supplying the above components all at once to a mixer. Moreover, when using an electrode active material, a binder for electrode mixture layers, a conductivity-imparting material, and a thickener as components of the mixture slurry, the conductivity-imparting material and the thickener are mixed in a solvent. Then, it is preferable to disperse the conductivity-imparting material in the form of fine particles and then mix the binder for the electrode mixture layer and the electrode active material because the dispersibility of the slurry is improved.
  • a ball mill for example, a ball mill, a sand mill, a pigment disperser, a pulverizer, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, or the like may be used.
  • a ball mill is preferable because aggregation of the conductivity imparting material and the electrode active material can be suppressed.
  • the size (particle size) of the particles contained in the mixture slurry is preferably 35 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the conductivity imparting material is highly dispersible, and a homogeneous electrode mixture layer can be obtained.
  • the electrode mixture layer may be produced, for example, by adhering the electrode mixture layer in layers on at least one side, preferably both sides, of the current collector.
  • the electrode mixture layer may be produced by applying and drying the mixture slurry on a current collector and then heat-treating the mixture at 120 ° C. or more for 1 hour or more.
  • Examples of methods for applying the mixture slurry to the current collector include methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • Examples of the drying method include drying with warm air, hot air, and low-humidity air; vacuum drying; drying by irradiation with energy rays such as infrared rays, far infrared rays, and electron beams.
  • the electrode mixture layer is preferably subjected to pressure treatment using, for example, a mold press and a roll press.
  • the porosity of the electrode mixture layer is preferably 5% or more, more preferably 7% or more, preferably 15% or less, more preferably 13% or less.
  • the volume capacity can be increased, or peeling of the electrode mixture layer can be prevented.
  • charge efficiency and discharge efficiency can be improved by making a porosity into below the upper limit of the said range.
  • the thickness of the electrode mixture layer is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and is usually 300 ⁇ m or less, preferably 250 ⁇ m or less for both the positive electrode and the negative electrode.
  • the electrode of the present invention includes the porous film of the present invention on an electrode mixture layer. Thereby, detachment
  • the method for producing the porous film of the present invention may be performed using the electrode mixture layer as a base material.
  • An example of a specific method is: 1) A method in which a slurry for a porous membrane is applied to the surface of an electrode mixture layer and then dried; 2) A method of drying the electrode mixture layer after immersing the electrode mixture layer in the slurry for the porous membrane; 3) A method for transferring the slurry for porous film of the present invention to the surface of the electrode mixture layer by applying the slurry for porous film on a release film and drying to produce the porous film of the present invention; Etc.
  • the method 1) is particularly preferable because the film thickness of the porous film of the present invention can be easily controlled.
  • the electrode of the present invention may include components other than the current collector, the electrode mixture layer, and the porous film of the present invention as long as the effects of the present invention are not significantly impaired.
  • another layer may be provided between the electrode mixture layer and the porous film of the present invention as necessary.
  • the porous film of the present invention is indirectly provided on the electrode mixture layer.
  • another layer may be provided on the porous film of the present invention.
  • the separator of the present invention includes an organic separator and the porous film of the present invention formed on the organic separator. Even if the separator of the present invention includes the porous film of the present invention, the electrolytic solution can permeate the porous film of the present invention, so that the rate characteristics and the like are not adversely affected. Moreover, since the separator of this invention is equipped with the porous film of this invention which does not deform
  • an organic separator is a member provided between a positive electrode and a negative electrode in order to prevent a short circuit between electrodes.
  • the organic separator for example, a porous substrate having fine pores is used, and a porous substrate made of an organic material is usually used.
  • Specific examples of the organic separator include microporous membranes and nonwoven fabrics containing polyolefin resins such as polyethylene and polypropylene, aromatic polyamide resins, and the like.
  • the thickness of the organic separator is usually 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and usually 40 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less. Within this range, the resistance of the separator of the present invention in the battery is reduced, and the workability during battery production is excellent.
  • the separator of the present invention includes the porous film of the present invention on an organic separator.
  • the method for producing the porous membrane of the present invention may be performed using the organic separator as a substrate.
  • An example of a specific method is: 1) A method in which a slurry for a porous membrane is applied to the surface of an organic separator and then dried; 2) A method of drying an organic separator after immersing it in a slurry for a porous membrane; 3) A method for producing a porous film of the present invention by applying a slurry for a porous film onto a release film and drying it, and transferring the resulting porous film of the present invention to the surface of an organic separator; Etc.
  • the method 1) is particularly preferable because the film thickness of the porous film of the present invention can be easily controlled.
  • the separator of the present invention may include components other than the organic separator and the porous membrane of the present invention as long as the effects of the present invention are not significantly impaired.
  • another layer may be provided on the porous film of the present invention.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution.
  • at least one of the positive electrode, the negative electrode, and the separator includes the porous film of the present invention. That is, the secondary battery of the present invention satisfies one or both of the following requirements (A) and (B).
  • the electrode of the present invention is provided as at least one of the positive electrode and the negative electrode.
  • the separator of the present invention is provided as a separator.
  • the porous film of the present invention is excellent in adhesiveness and anti-powder resistance, the porous film of the present invention is hardly peeled off from the electrode mixture layer and the organic separator even if charging and discharging are repeated in the secondary battery of the present invention. ing. For this reason, the secondary battery of this invention is excellent in cycling characteristics.
  • the porous film of the present invention does not easily close the pores even in a high temperature environment, the secondary battery of the present invention is excellent in rate characteristics.
  • the separator of the secondary battery of the present invention hardly shrinks even at high temperatures. Further, in the porous film of the present invention, non-conductive particles are hardly detached even in a high temperature environment. For this reason, the secondary battery of the present invention is a highly reliable battery which is unlikely to cause a short circuit even in a high temperature environment.
  • the secondary battery of the present invention includes the electrode of the present invention as one or both of a positive electrode and a negative electrode.
  • the secondary battery of the present invention includes the separator of the present invention as a separator, an electrode other than the electrode of the present invention may be provided as both the positive electrode and the negative electrode.
  • the secondary battery of the present invention includes the separator of the present invention as a separator.
  • a separator other than the separator of the present invention may be provided as a separator.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily soluble in a solvent and exhibit a high degree of dissociation.
  • one type of electrolyte may be used alone, or two or more types may be used in combination at any ratio.
  • the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used for the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); ⁇ -butyrolactone, methyl formate, etc. And the like; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; Moreover, you may use the liquid mixture of these solvents.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted depending on the type of solvent.
  • the concentration of the supporting electrolyte in the electrolytic solution is usually 1% by weight or more, preferably 5% by weight or more, and usually 30% by weight or less, preferably 20% by weight or less. Depending on the type of the supporting electrolyte, it may be used usually at a concentration of 0.5 mol / L to 2.5 mol / L. Even if the concentration of the supporting electrolyte is too low or too high, the ionic conductivity tends to decrease. Usually, the lower the concentration of the electrolytic solution, the higher the degree of swelling of the polymer particles such as the binder for the electrode mixture layer. Therefore, the lithium ion conductivity can be adjusted by adjusting the concentration of the electrolytic solution.
  • an additive or the like may be included in the electrolytic solution as necessary.
  • this laminate is subjected to heat press.
  • the polymer that forms the shell portion of the nonconductive particles in the porous film of the present invention is melted by heat pressing, and the electrode mixture layer and the organic separator are firmly bonded to the porous film of the present invention.
  • the temperature of the heat press is usually not less than the softening start point of the shell part and lower than the softening start point and the decomposition point of the core part. Specifically, it is preferably 85 ° C. or higher, more preferably 87 ° C. or higher, particularly preferably 89 ° C. or higher, preferably 110 ° C. or lower, more preferably 105 ° C. or lower, particularly preferably 100 ° C. or lower.
  • the pressure of the heat press is usually 0.1 MPa or more, preferably 0.3 MPa or more, more preferably 0.5 MPa or more, and usually 10 MPa or less, preferably 5 MPa or less, more preferably 3 MPa or less.
  • the electrode mixture layer and the organic separator can be firmly bonded by setting the pressure of the heat press to the lower limit value or more of the above range, and the porosity of the organic separator can be maintained by setting the pressure of the heat press to the upper limit value or less.
  • the time for performing the heat press is usually 2 seconds or more, preferably 5 seconds or more, more preferably 8 seconds or more, and usually 60 seconds or less, preferably 40 seconds or less, more preferably 20 seconds or less.
  • the electrode mixture layer and the organic separator can be firmly bonded by setting the time for performing heat press to the lower limit value or more of the above range, and high productivity can be ensured by setting the time to the upper limit value or less.
  • the obtained laminate is wound or folded according to the shape of the battery and placed in the battery container, and the electrolytic solution is injected into the battery container and sealed.
  • the secondary battery of the present invention is obtained.
  • an overcurrent prevention element such as a fuse or a PTC element, a lead plate, an expanded metal, or the like may be inserted to prevent overcharging / discharging or an increase in pressure inside the battery.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • Tg glass transition point
  • softening start point 10 mg of a measurement sample is weighed into an aluminum pan, and with a differential thermal analysis measuring device (“EXSTAR DSC6220” manufactured by SII Nano Technology), an empty aluminum pan is used as a reference, and the measurement temperature range is ⁇ 100 ° C. to 500 ° C. In the meantime, the DSC curve was measured at a heating rate of 10 ° C./min and at normal temperature and humidity.
  • EXSTAR DSC6220 manufactured by SII Nano Technology
  • the baseline immediately before the endothermic peak of the DSC curve where the differential signal (DDSC) is 0.05 mW / min / mg or more and the tangent line of the DSC curve at the first inflection point after the endothermic peak was determined as the glass transition point (Tg). Furthermore, a temperature 25 ° C. higher than the glass transition point was taken as the softening start point.
  • the softening start point of the water-soluble polymer is “none”, and the softening start point is not observed below 200 ° C., and the softening start point is due to decomposition of the water-soluble polymer above 200 ° C. Indicates that no points were observed.
  • a separator for a secondary battery (organic separator with a porous film) is cut into a width of 10 cm and a length of 10 cm to obtain a test piece. After leaving the test piece in an oven adjusted to a temperature of 150 ° C. for 1 hour, the length of each side was measured, and the shrinkage rate of the side having the largest shrinkage rate was evaluated according to the following criteria. The smaller the heat shrinkage rate, the better the safety of the secondary battery. (Evaluation criteria) A: Less than 3.0% B: 3.0% or more and less than 5.0% C: 5.0% or more and less than 10.0% D: 10% or more
  • a separator with a porous film is cut into a width of 5 cm ⁇ a length of 5 cm, and a positive electrode and a negative electrode are cut into a width of 3 cm ⁇ a length of 3 cm, respectively.
  • a separator with a porous film was disposed on the surface of the positive electrode on the positive electrode mixture layer side.
  • the negative electrode was disposed on the separator so that the surface on the negative electrode mixture layer side faced the separator.
  • This laminate was subjected to heat press using a desktop test press under conditions of a temperature of 90 ° C., a time of 10 seconds, and a pressure of 1 MPa.
  • This laminate was subjected to heat press using a desktop test press under conditions of a temperature of 90 ° C., a time of 10 seconds, and a pressure of 1 MPa.
  • R2 the ratio of the electrode mixture layer remaining adhered to the organic separator when each electrode was peeled off from this laminate at a speed of 50 mm / sec and an angle of 90 °.
  • the adhesion of the attached electrode to the organic separator was evaluated. It shows that it is excellent in adhesiveness, so that this ratio is high.
  • (R2) (Area of electrode mixture layer with porous film remaining adhered to organic separator / area of electrode mixture layer used) ⁇ 100 (Evaluation criteria) A: 50% or more B: 30% or more and less than 50% C: 10% or more and less than 30% D: Less than 10%
  • Example 1 (1-1. Production of seed polymer particles a) In a reactor equipped with a stirrer, 0.08 part of sodium dodecyl sulfate, 0.23 part of ammonium persulfate and 100 parts of ion-exchanged water were added and mixed to obtain a mixture A, which was heated to 80 ° C. Meanwhile, in another container, 93.8 parts of butyl acrylate, 2.0 parts of methacrylic acid, 2.0 parts of acrylonitrile, 1.0 part of allyl glycidyl ether, 1.2 parts of N-methylol acrylamide, sodium dodecyl sulfate 0.
  • a dispersion of monomer mixture 1 1 part and 100 parts of ion-exchanged water were mixed to prepare a dispersion of monomer mixture 1.
  • the dispersion of the monomer mixture 1 was continuously added to the mixture A for 4 hours and polymerized.
  • the temperature of the reaction system during the continuous addition of the dispersion of the monomer mixture 1 was maintained at 80 ° C. to carry out the reaction. After completion of the continuous addition, the reaction was further continued at 90 ° C. for 3 hours. Thereby, an aqueous dispersion of seed polymer particles a having a number average particle diameter of 284 nm was obtained.
  • Light Ester EG As a body, 1.0 part of sodium dodecylbenzenesulfonate as an emulsifier, and t-butylperoxy-2-ethylhexanoate as a polymerization initiator 4.0 parts of NOF (“Perbutyl O” manufactured by NOF Corporation) and 200 parts of ion-exchanged water are added and stirred for 12 hours at 35 ° C., so that the monomer and the polymerization initiator are completely added to the seed polymer particles a. Absorbed. Thereafter, this was polymerized at 90 ° C. for 5 hours. Thereafter, steam was introduced to remove unreacted monomers and initiator decomposition products. Thereby, an aqueous dispersion of seed polymer particles A having a number average particle diameter of 516 nm was obtained.
  • the obtained aqueous dispersion of the particulate polymer was cooled to 25 ° C., ammonia water was added thereto to adjust the pH to 7, and then steam was introduced to remove unreacted monomers. Thereafter, filtration was performed with a 200 mesh (pore diameter: about 77 ⁇ m) stainless steel wire mesh while further adjusting the solid content concentration with ion-exchanged water. As a result, an aqueous dispersion of a particulate polymer having an average particle diameter of 370 nm and a solid content concentration of 40% was obtained.
  • a single-layer polyethylene separator (thickness 16 ⁇ m) produced by a wet method was prepared as an organic separator.
  • the slurry for the secondary battery obtained in the step (1-5) was applied to one surface of the organic separator so that the thickness after drying was 4 ⁇ m to obtain a slurry layer. Thereafter, the slurry layer was dried at 50 ° C. for 10 minutes to form a porous film. Subsequently, a porous film was similarly formed on the other surface of the organic separator, and a separator with a porous film having a porous film on both surfaces was obtained.
  • the positive electrode obtained in the step (1-7) was cut into a width of 40 mm and a length of 40 mm to obtain a square positive electrode.
  • the negative electrode obtained in the step (1-8) was cut into a width of 42 mm and a length of 42 mm to obtain a square negative electrode.
  • the separator with a porous membrane obtained in the step (1-6) was cut into a width of 46 mm and a length of 46 mm to obtain a square separator with a porous membrane.
  • a square separator with a porous film was disposed on the surface of the positive electrode layer of the square positive electrode. Furthermore, a square negative electrode was arranged on the separator with a porous film so that the surface on the negative electrode mixture layer side was opposed to the separator with a porous film.
  • This laminate was heat-pressed with a desktop test press under the conditions of a temperature of 90 ° C., a time of 10 seconds, and a pressure of 1 MPa to obtain a laminate in which the separator was bonded and integrated with the positive electrode and the negative electrode.
  • the above laminate was placed on an aluminum wrapping material.
  • the electrolyte was poured into the aluminum packaging material so that no air remained. Furthermore, by performing heat sealing at 150 ° C., the opening of the aluminum packaging material was sealed to manufacture a laminate type lithium ion secondary battery.
  • the electrolyte used was a VC (vinylene carbonate) to LiPF 6 solution with a concentration of 1.0M was added 2% by volume.
  • Example 2 Separator with a porous membrane in the same manner as in Example 1 except that the amount of methyl methacrylate was changed to 84.0 parts and the amount of butyl acrylate was changed to 16.0 parts in the step (1-3). A secondary battery was manufactured and evaluated.
  • Step (1-4) the amount of butyl acrylate was changed to 93.8 parts, ethyl acrylate was not used, and the amount of acrylonitrile was changed to 2.0 parts.
  • a separator with a porous membrane and a secondary battery were manufactured and evaluated.
  • Example 4 A separator with a porous membrane and a secondary battery were produced and evaluated in the same manner as in Example 1 except that polyvinylpyrrolidone was used in place of carboxymethylcellulose as the water-soluble polymer in Step (1-5).
  • Example 5 Separator with a porous membrane in the same manner as in Example 1 except that the amount of methyl methacrylate was changed to 82.0 parts and the amount of butyl acrylate was changed to 18.0 parts in the step (1-3). A secondary battery was manufactured and evaluated.
  • Example 6 In the step (1-3), the separator with the porous membrane and the secondary battery were prepared in the same manner as in Example 1 except that the amount of methyl methacrylate was changed to 100.0 parts and butyl acrylate was not used. Manufactured and evaluated.
  • Example 7 In the step (1-4), the amount of butyl acrylate was changed to 22.8 parts, and in the same manner as in Example 1 except that 61.0 parts of methyl methacrylate was used instead of ethyl acrylate, the porosity was changed. A membrane separator and a secondary battery were manufactured and evaluated.
  • Example 8 In the same manner as in Example 1 except that in step (1-5), completely saponified polyvinyl alcohol (“NH-26” manufactured by Nippon Synthetic Chemical Co., Ltd.) was used instead of carboxymethylcellulose as the water-soluble polymer. A separator with a porous membrane and a secondary battery were manufactured and evaluated.
  • NH-26 manufactured by Nippon Synthetic Chemical Co., Ltd.
  • Example 9 (9-1. Production of positive electrode with porous film)
  • the slurry for the porous membrane obtained in the step (1-5) of Example 1 has a thickness after drying of 4 ⁇ m. This was applied to obtain a slurry layer.
  • the slurry for the porous film was applied so as to completely cover the positive electrode mixture layer.
  • the slurry layer was dried at 50 ° C. for 10 minutes to form a porous film, whereby a positive electrode with a porous film was obtained.
  • the obtained positive electrode with a porous film had a layer structure of (porous film) / (positive electrode mixture layer) / (aluminum foil).
  • the slurry for the porous film obtained in the step (1-5) of Example 1 has a thickness after drying of 4 ⁇ m. This was applied to obtain a slurry layer. At this time, the slurry for the porous film was applied so as to completely cover the negative electrode mixture layer. Thereafter, the slurry layer was dried at 50 ° C. for 10 minutes to form a porous film, and a negative electrode with a porous film was obtained.
  • the obtained negative electrode with a porous film had a layer structure of (porous film) / (negative electrode mixture layer) / (copper foil).
  • the obtained secondary battery and other materials were evaluated in the same manner as in Example 1. However, the thermal contraction test of the separator was not performed, and the reliability test of the electrode with a porous film was performed instead. The result of the reliability test was “good”.
  • Example 10 In the same manner as in Example 1 except that 90.0 parts of styrene and 10.0 parts of 1,3-butadiene were used in place of methyl methacrylate and butyl acrylate in the step (1-3). A separator and a secondary battery were manufactured and evaluated.
  • Example 11 In the same manner as in Example 1 except that 21.8 parts of styrene and 62.0 parts of 1,3-butadiene were used in place of butyl acrylate and ethyl acrylate in step (1-4). A separator and a secondary battery were manufactured and evaluated.
  • Example 12 In the step (1-3), the amount of the aqueous dispersion of the seed polymer particles A was changed to 357.0 parts on the basis of the solid content (that is, based on the weight of the seed polymer particles A). Thus, a separator with a porous membrane and a secondary battery were produced and evaluated.
  • Example 13 Same as Example 1 except that in step (1-3), the amount of the aqueous dispersion of seed polymer particles A was changed to 27.0 parts on the basis of solid content (that is, based on the weight of seed polymer particles A). Thus, a separator with a porous membrane and a secondary battery were produced and evaluated.
  • Example 14 In the same manner as in Example 1 except that 75 parts of ethylene glycol dimethacrylate and 25 parts of methyl methacrylate were used as monomers in place of 100 parts of ethylene glycol dimethacrylate as the monomer in the step (1-2). A separator and a secondary battery were manufactured and evaluated.
  • Example 15 Porous membrane in the same manner as in Example 1 except that 50 parts of ethylene glycol dimethacrylate and 50 parts of methyl methacrylate were used as monomers in place of 100 parts of ethylene glycol dimethacrylate as the monomer. A separator and a secondary battery were manufactured and evaluated.
  • Example 16 Separator with a porous membrane in the same manner as in Example 1 except that the amount of methyl methacrylate was changed to 92.0 parts and the amount of butyl acrylate was changed to 8.0 parts in the step (1-3). A secondary battery was manufactured and evaluated.
  • Example 17 In the step (1-4), the amount of butyl acrylate was changed to 51.4 parts and 32.4 parts of methyl methacrylate was used instead of ethyl acrylate. A membrane separator and a secondary battery were manufactured and evaluated.
  • Example 18 In the step (1-4), the amount of butyl acrylate was changed to 39.0 parts, and 44.8 parts of methyl methacrylate was used instead of ethyl acrylate. A membrane separator and a secondary battery were manufactured and evaluated.
  • Example 19 Separator with porous membrane in the same manner as in Example 1 except that 37.0 parts of methyl methacrylate and 50.0 parts of styrene were used in place of 87.0 parts of methyl methacrylate in step (1-3). A secondary battery was manufactured and evaluated.
  • step (1-4) instead of 66.8 parts of butyl acrylate and 17.0 parts of ethyl acrylate, 39.9 parts of butyl acrylate, 10.1 parts of ethyl acrylate, 2.8 parts of styrene, and 1 A separator with a porous membrane and a secondary battery were produced and evaluated in the same manner as in Example 1 except that 31.0 parts of 1,3-butadiene was used.
  • Tables 1 to 8 show the configurations of the examples and comparative examples, and Tables 9 to 16 show the results of the examples and comparative examples.
  • EGDMA Ethylene glycol dimethacrylate ST: Styrene
  • LASNa Sodium dodecylbenzenesulfonate
  • PBO t-Butylperoxy-2-ethylhexanoate
  • MMA Methyl methacrylate
  • BA Butyl acrylate
  • MAA Methacrylic acid
  • BD 1,3- Butadiene
  • EA Ethyl acrylate AN: Acrylonitrile
  • NMA N-methylol acrylamide
  • AGE Allyl glycidyl ether
  • SDS Na Sodium dodecyl sulfate
  • ASP Ammonium persulfate
  • Shell thickness Shell thickness relative to the number average particle diameter of non-conductive particles
  • Ratio (Meth) acrylate ratio Ratio (Meth)
  • the porosity for a secondary battery is excellent in adhesiveness and blocking resistance, hardly causes powder falling, and can suppress the shrinkage of the separator when the separator is configured in combination with the organic separator. It was confirmed that a film could be realized.

Abstract

 非導電性粒子、粒子状重合体及び水溶性重合体を含み、前記非導電性粒子が、コアシェル構造を有する重合体の粒子であり、前記非導電性粒子のコア部の軟化開始点又は分解点が、175℃以上であり、前記非導電性粒子のシェル部が、85℃~145℃に軟化開始点を有する、二次電池用多孔膜。

Description

二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池
 本発明は、二次電池用多孔膜及びその製造方法、並びに、その二次電池用多孔膜を備えた二次電池用電極、二次電池用セパレーター及び二次電池に関する。
 二次電池では、一般に、正極と負極との間の短絡を防ぐ為に、セパレーターが用いられている。セパレーターは、二次電池の性能に影響を与えることがある。このため、セパレーターについては、従来から様々な検討がなされている(特許文献1~3参照)。
特開2006-182925号公報 特開2011-54502号公報 特開2011-23186号公報
 通常のセパレーターは、例えばポリエチレン及びポリプロピレン等のポリオレフィン系の有機セパレーターからなる。これらのセパレーターは、内部及び外部の刺激によって二次電池が高温になった場合に、収縮する可能性がある。かかる収縮は、正極及び負極の短絡、電気エネルギーの放出などを招くおそれがある。
 そこで、前記のような高温での収縮を抑制するために、セパレーターに、非導電性粒子を含有する多孔膜を設けることが検討されている。セパレーターに多孔膜を設けることでセパレーターの強度が上がり、安全性が向上する。
 また、電極の表面に前記の多孔膜を設けることも提案されている。通常、多孔膜は熱による収縮が起こり難いので、電極の表面に多孔膜を設ければ短絡の危険性ははるかに減少し、大幅な安全性向上が見込まれる。また、多孔膜を設けることで、電池の作製過程における電極活物質の脱落も防止できる。さらに、多孔膜は孔を有しているので、多孔膜中に電解液が浸透でき、電池反応を阻害することもない。
 前記のような多孔膜を備えたセパレーター及び電極において、多孔膜は、接着性に優れることが求められる。そこで、多孔膜に、結着剤を含ませることが考えられる。ところが、結着剤を多孔膜に多く含ませると、ブロッキングが生じやすい。一般に、多孔膜を備えたセパレーター及び電極は、シート状の形状を有する。また、これらのシート状のセパレーター及び電極は、通常、ロール状に巻き取られた状態で運搬されたり保管されたりする。ところが、多孔膜が結着剤を多く含む場合、多孔膜は接着性に優れるものの、ロール状となった場合に重なったセパレーター同士及び電極同士がブロッキングを生じることがあった。
 また、多孔膜は、短絡を安定して防止する観点から、多孔膜から非導電性粒子が離脱しないことが求められる。ここで、多孔膜から非導電性粒子が離脱する現象は、「粉落ち」とも呼ぶ。
 本発明は上述した課題に鑑みて創案されたもので、接着性及び耐ブロッキング性に優れ、粉落ちを生じにくく、且つ、有機セパレーターと組み合わせてセパレーターを構成した場合にセパレーターの収縮を抑制しうる二次電池用多孔膜及びその製造方法、並びに、その二次電池用多孔膜を備えた二次電池用電極、二次電池用セパレータ及び二次電池を提供することを目的とする。
 本発明者は上述した課題を解決するべく鋭意検討した。その結果、本発明者は、非導電性粒子、粒子状重合体及び水溶性重合体を含む多孔膜において、非導電性粒子として所定のコアシェル構造を有する重合体の粒子を用いることにより、接着性及び耐ブロッキング性に優れ、粉落ちを生じにくく、且つ、有機セパレーターと組み合わせてセパレーターを構成した場合にセパレーターの収縮を抑制しうる多孔膜を実現できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通りである。
 〔1〕 非導電性粒子、粒子状重合体及び水溶性重合体を含み、
 前記非導電性粒子が、コアシェル構造を有する重合体の粒子であり、
 前記非導電性粒子のコア部の軟化開始点又は分解点が、175℃以上であり、
 前記非導電性粒子のシェル部が、85℃~145℃に軟化開始点を有する、二次電池用多孔膜。
 〔2〕 前記粒子状重合体のガラス転移点が、-80℃~60℃であり、
 前記水溶性重合体の軟化開始点が、85℃以上である、〔1〕記載の二次電池用多孔膜。
 〔3〕 前記非導電性粒子のシェル部及び前記粒子状重合体が、(メタ)アクリレート単位を50重量%以上含む、〔1〕又は〔2〕記載の二次電池用多孔膜。
 〔4〕 前記非導電性粒子のシェル部が、前記非導電性粒子の個数平均粒子径に対して、3%~18%の厚みを有する、〔1〕~〔3〕のいずれか一項に記載の二次電池用多孔膜。
 〔5〕 前記非導電性粒子の個数平均粒径が、100nm~1500nmである、〔1〕~〔4〕のいずれか一項に記載の二次電池用多孔膜。
 〔6〕 〔1〕~〔5〕のいずれか一項に記載の二次電池用多孔膜の製造方法であって、
 前記非導電性粒子、前記粒子状重合体、前記水溶性重合体及び媒体を混合して多孔膜用スラリーを得、
 前記多孔膜用スラリーを基材上に塗布してスラリー層を得、
 前記スラリー層を乾燥することを含む、二次電池用多孔膜の製造方法。
 〔7〕 前記媒体が水系媒体であり、
 前記多孔膜用スラリーが水性分散体である、〔6〕に記載の二次電池用多孔膜の製造方法。
 〔8〕 集電体、
 電極活物質及び電極合剤層用結着剤を含み、前記集電体上に付着した電極合剤層、並びに、
 前記電極合剤層上に形成された〔1〕~〔5〕のいずれか一項に記載の多孔膜を備える、二次電池用電極。
 〔9〕 有機セパレーター、及び
 前記有機セパレーター上に形成された〔1〕~〔5〕のいずれか一項に記載の多孔膜を備える、二次電池用セパレーター。
 〔10〕 正極、負極、セパレーター及び電解液を含む二次電池であって、
 前記正極、前記負極及び前記セパレーターの少なくともいずれかが、〔1〕~〔5〕のいずれか一項に記載の多孔膜を備える、二次電池。
 本発明によれば、接着性及び耐ブロッキング性に優れ、粉落ちを生じにくく、且つ、有機セパレーターと組み合わせてセパレーターを構成した場合にセパレーターの収縮を抑制しうる二次電池用多孔膜及びその製造方法、並びに、その二次電池用多孔膜を備えた二次電池用電極、二次電池用セパレーター及び二次電池を実現できる。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に説明する実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 以下の説明において、(メタ)アクリル酸には、アクリル酸及びメタクリル酸の両者が含まれる。
 また、(メタ)アクリレートには、アクリレート及びメタクリレートの両者が含まれる。
 また、(メタ)アクリロニトリルには、アクリロニトリル及びメタクリロニトリルの両者が含まれる。
 さらに、ある物質が水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。一方、ある物質が非水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が90重量%以上であることをいう。
[1.多孔膜]
 本発明の二次電池用多孔膜(以下、適宜「多孔膜」ということがある。)は、非導電性粒子、粒子状重合体及び水溶性重合体を含む。また、非導電性粒子は、コアシェル構造を有する重合体の粒子である。ここで、コアシェル構造とは、粒子の内部にあるコア部と、このコア部を被覆するシェル部とを備える粒子の構造のことをいう。本発明に係る非導電性粒子において、コア部の軟化開始点又は分解点が所定温度以上と高く、且つ、シェル部が所定の低い温度範囲に軟化開始点を有する。このような構成により、本発明の多孔膜は、接着性及び耐ブロッキング性に優れ、粉落ちを生じにくく、且つ、有機セパレーターと組み合わせてセパレーターを構成した場合にセパレーターの収縮を抑制できる。本発明の多孔膜がこのように優れた効果を発揮できる理由は定かではないが、本発明者の検討によれば、以下のように推察される。
 i.接着性
 本発明に係る非導電性粒子のシェル部は、低温の温度範囲に軟化開始点を有する。このため、加熱された場合に容易に融解する。したがって、有機セパレーターと多孔膜と電極とをこの順に重ねてヒートプレスを行うと、非導電性粒子のシェル部の重合体が融解し、融解した重合体が有機セパレーター及び電極に密着する。その後、多孔膜を冷ますと融解した重合体は密着した状態を維持したままで再び硬化する。これにより、非導電性粒子は有機セパレーター及び電極に強固に固着するため、多孔膜の接着性を高めることができる。また、粒子状重合体は一般に結着性を有する。よって、粒子状重合体の結着性によっても、多孔膜の接着性を高めることができる。
 ここで、非導電性粒子のコア部は軟化開始点又は分解点が高いので、ヒートプレスの際に加熱されても融解せず、粒子形状を維持する。このため、多孔膜の孔が塞がることはない。
 ii.耐ブロッキング性
 粒子状重合体が一般に結着性を有するので、多孔膜における粒子状重合体の含有量が多いと多孔膜の接着性は向上するものの、ブロッキングが生じやすくなる。これに対し、本発明の多孔膜では非導電性粒子のシェル部が融解することにより接着性を向上させることができるので、粒子状重合体の量を減らすことができる。また、非導電性粒子のシェル部は、融解していないときには摩擦の小さい硬化状態であるので、通常の使用状態において非導電性粒子はブロッキングの原因とはなり難い。このため、多孔膜を備えた本発明の二次電池用電極(以下、適宜「本発明の電池」ということがある。)又は本発明の二次電池用セパレーター(以下、適宜「本発明のセパレーター」ということがある。)を重ねた場合でも、重ねた本発明の電極又は本発明のセパレーター同士の摩擦力は大きくなり難いので、本発明の多孔膜は、耐ブロッキング性に優れる。
 iii.粉落ち
 前記の非導電性粒子のシェル部及び粒子状重合体の作用により、非導電性粒子同士は強固に結着されている。したがって、非導電性粒子は多孔膜から離脱し難くなっている。このため、本発明の多孔膜は、粉落ちが生じにくくなっている。
 iv.セパレーターの収縮抑制
 非導電性粒子のコア部は、高い軟化開始点又は分解点を有する。このため、高温になっても融解せず、変形し難い。また、非導電性粒子のシェル部も、通常の使用状態においては融解しない。したがって、多孔膜は高温になった場合でも変形し難く、高い剛性を維持する。さらに、多孔膜において水溶性重合体は、非導電性粒子及び粒子状重合体の表面を覆っている。このため、水溶性重合体によっても、多孔膜の剛性が高められている。ここで、多孔膜は上述したように有機セパレーターに強固に接着しうる。高温においても変形せず高い剛性を有する多孔膜が有機セパレーターに強固に接着することにより、有機セパレーターも変形し難くなる。したがって、加熱による応力が有機セパレーターに生じても、多孔膜が前記の応力に抗うので、セパレーターの収縮を抑制しうるようになっている。
 [1.1.非導電性粒子]
 非導電性粒子は、重合体の粒子であって、コアシェル構造を有する。すなわち、非導電性粒子は、重合体を含むコア部と、重合体を含むシェル部とを備える。
 (コア部)
 非導電性粒子のコア部は、通常175℃以上、好ましくは220℃以上、より好ましくは225℃以上に、軟化開始点又は分解点を有する。このように高い温度範囲に軟化開始点又は分解点を有するコア部は、二次電池の使用環境及びヒートプレス時に変形し難い。そのため、多孔膜の孔が塞がることを防止できる。また、多孔膜の剛性が低下することを防止できるので、セパレーターの収縮を抑制することができる。したがって、高温環境における短絡を安定して防止することが可能である。また、コア部の軟化開始点又は分解点の上限に制限は無いが、通常450℃以下である。
 ここで、軟化開始点は、以下のようにして測定しうる。まず、測定試料10mgをアルミパンに計量し、示差熱分析測定装置にて、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~500℃の間で、昇温速度10℃/minで、常温常湿下で、DSC曲線を測定する。この昇温過程で、微分信号(DDSC)が0.05mW/min/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点を、ガラス転移点(Tg)とする。そして、さらにそのガラス転移点より25℃高い温度を、軟化開始点とする。
 なお、非導電性粒子のコア部の軟化開始点より分解点の方が低い場合には、分解により軟化開始点が観測されない場合がある。
 また、分解点は、以下のようにして測定しうる。窒素雰囲気下において、測定試料を、示差熱熱重量同時測定装置により30℃から昇温速度10℃/分で加熱する。この際、減量割合が10重量%に達する温度を、分解点とする。
 なお、非伝導性粒子のコア部の軟化開始点及び分解点の両方が観測される場合には、より低い温度の方を非伝導性粒子のコア部の軟化開始点または分解点として扱う。
 コア部を形成する重合体としては、例えば、高度に架橋された重合体が挙げられる。高度に架橋することで、重合体のガラス転移点以上の温度においても重合体の分子運動が抑制されるので、コア部は形状を維持することができる。
 コア部を形成する重合体は、例えば、架橋性ビニルモノマーを重合することにより得られる。架橋性ビニルモノマーとしては、例えば、通常2個以上、好ましくは2個の共重合性二重結合を有する化合物が挙げられる。また、架橋性ビニルモノマーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 好適な架橋性ビニルモノマーの例としては、非共役ジビニル化合物、多価アクリレート化合物などが挙げられる。
 非共役ジビニル化合物の例としては、ジビニルベンゼン等が挙げられる。
 多価アクリレートの例としては、ポリエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,6-ヘキサングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ポリプロピレングリコールジアクリレート、2,2’-ビス(4-アクリロキシプロピロキシフェニル)プロパン、2,2’-ビス(4-アクリロキシジエトキシフェニル)プロパン等のジアクリレート化合物;トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート等のトリアクリレート化合物;テトラメチロールメタンテトラアクリレート等のテトラアクリレート化合物;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート、1,6-ヘキサングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ジプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、2,2’-ビス(4-メタクリロキシジエトキシフェニル)プロパン等のジメタクリレート化合物;トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート等のトミメタクリレート化合物;などが挙げられる。
 これらの中でも、ジビニルベンゼン、エチレングリコールジメタクリレート及びトリメチロールプロパントリメタクリレートが好ましく、エチレングリコールジメタクリレートが特に好ましい。
 架橋性ビニルモノマーの割合は、コア部を形成する重合体の全モノマーに対して、通常20重量%以上、好ましくは25重量%以上、さらに好ましくは30重量%以上である。架橋性ビニルモノマーの割合を20重量%以上とすることにより、コア部の硬度、耐熱性及び耐溶剤性を向上させることができる。また、上限は、通常100重量%以下、好ましくは98重量%以下、さらに好ましくは95重量%以下である。ここで、架橋性ビニルモノマーの量は、例えば希釈剤及び不純物などを除いた純品換算による。
 コア部を形成する重合体のモノマーとしては、架橋性ビニルモノマーのみを用いてもよい。ただし、本発明の効果を著しく損なわない限り、架橋性ビニルモノマー以外のモノマーを組み合わせて用いてもよい。架橋性ビニルモノマー以外のモノマーとしては、例えば、重合性モノビニルモノマーが挙げられる。
 架橋性ビニルモノマーと組み合わせて使用しうる重合性モノマーとしては、例えば、スチレン、エチルビニルベンゼン、α-メチルスチレン、フルオロスチレン、ビニルピリン等の芳香族モノビニル化合物;アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物;ブチルアクリレート、2-エチルヘキシルエチルアクリレート、グリシジルアクリレート、N,N’-ジメチルアミノエチルアクリレート等のアクリル酸エステルモノマー;ブチルメタクリレート、2-エチルヘキシルメタクリレート、メチルメタクリレート、2-ヒドロキシエチルメタクリレート、N,N’-ジメチルアミノエチルメタクリレート等のメタクリル酸エステルモノマー;アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のモノまたはジカルボン酸、並びにジカルボン酸の酸無水物;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド等のアミド系モノマー;アリルグリシジルエーテル、グリシジルメタクリレート等の炭素-炭素二重結合及びエポキシ基を含有するモノマー;などが挙げられる。また、重合速度及び重合安定性の点で許容される範囲内において、例えば、ブタジエン、イソプレン等の共役二重結合化合物;酢酸ビニル等のビニルエステル化合物;4-メチル-1-ペンテン;α-オレフィン化合物などを、架橋性ビニルモノマーと組み合わせて使用してもよい。ただし、通常、架橋性ビニルモノマーと組み合わせて使用しうる重合性モノマーの具体的な種類は、架橋性ビニルモノマーの種類により異なる。例えば、架橋性モノマーとしてジビニルベンゼンを用いた場合、エチルビニルベンゼン及びスチレンが好ましい。また、例えば、架橋性モノマーとしてエチレングリコールジメタクリレート又はトリメチロールプロパントリメタクリレートを用いた場合、アクリル酸エステルモノマー及びメタクリル酸エステルモノマーが好ましい。また、これらのモノマーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 さらに、コア部を形成する重合体としては、例えばポリサルホン、ポリエーテルサルホン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリイミド等の非晶性の耐熱重合体を用いてもよい。
 (シェル部)
 非導電性粒子のシェル部は、通常85℃以上、好ましくは87℃以上、より好ましくは89℃以上、また、通常145℃以下、好ましくは125℃以下、より好ましくは115℃以下の温度範囲に、軟化開始点を有する。軟化開始点が前記範囲の下限値以上であることにより、多孔膜の耐ブロッキング性を向上させることができる。また、二次電池の使用温度においてシェル部が融解し難くなるので、多孔膜の孔が塞がることを安定して防止できる。このため、二次電池のレート特性を向上させることが可能である。また、軟化開始点が前記範囲の上限値以下であることにより、ヒートプレスの際にシェル部を容易に融解させることができるので、多孔膜の接着性を向上させることができる。このため、二次電池のサイクル特性を向上させることができる。
 シェル部を形成する重合体としては、(メタ)アクリレート単位を含む重合体を用いることが好ましい。ここで、(メタ)アクリレート単位とは、アクリレート及びメタクリレートの一方又は両方を重合して形成される構造単位のことをいう。(メタ)アクリレート単位を含む重合体によってシェル部を形成することにより、多孔膜の電気的安定性を向上させることができる。また、シェル部及び粒子状重合体の両方が(メタ)アクリレート単位を含む場合には、シェル部と粒子状重合体との親和性が向上し、耐粉落ち性を向上させることができる。
 アクリレートとしては、例えば、メチルアクリレート、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルエチルアクリレート等が挙げられる。
 また、例えば、メタクリレートとしては、メチルメタクリレート、ブチルメタクリレート、2-エチルヘキシルメタクリレート等が挙げられる。
 これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 シェル部を形成する重合体における(メタ)アクリレート単位の比率は、通常50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上であり、100重量%以下である。これにより、多孔膜の電気的安定性を向上させることができる。また、シェル部及び粒子状重合体の両方が(メタ)アクリレート単位を含む場合に、耐粉落ち性を向上させることができる。シェル部を形成する重合体における(メタ)アクリレート単位の比率は、通常、シェル部を形成する重合体の全モノマーにおけるアクリレート及びメタクリレートの比率(仕込み比)に一致する。
 シェル部は、アクリレート及びメタクリレート以外のモノマーの重合体であってもよく、アクリレート及びメタクリレートの一方又は両方とそれ以外のモノマーとの共重合体であってもよい。アクリレート及びメタクリレート以外のモノマーの例としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3ブタジエン、2-クロル-1,3-ブタジエン等の脂肪族共役ジエン系モノマー;スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼン等の芳香族ビニル系モノマー;などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 (非導電性粒子の大きさ)
 非導電性粒子の個数平均粒子径は、通常100nm以上、好ましくは200nm以上、より好ましくは300nm以上であり、通常1500nm以下、好ましくは1200nm以下、より好ましくは1000nm以下である。非導電性粒子の個数平均粒径をこのような範囲とすることにより、非導電性粒子同士が接触部を有しつつ、イオンの移動が阻害されない程度に、非導電性粒子同士の隙間を形成できる。したがって、多孔膜の強度が向上し、且つ電池の短絡を防止することができる。また、二次電池のサイクル特性を向上させることも可能である。
 粒子の個数平均粒子径は、以下のようにして測定しうる。電界放出形走査電子顕微鏡にて25000倍の倍率で撮影した写真から、200個の粒子を任意に選択する。その粒子像の最長辺をLa、最短辺をLbとしたとき、(La+Lb)/2を粒径とする。200個の粒子の粒径の平均を、平均粒径として求める。
 シェル部の厚みは、非導電性粒子の個数平均粒子径に対して、通常3%以上、好ましくは5%以上、より好ましくは7%以上であり、また、通常18%以下、好ましくは16%以下、より好ましくは14%以下である。シェル部の厚みを前記範囲の下限値以上とすることにより、多孔膜の接着性を高めて二次電池のサイクル特性を向上させることができる。また、シェル部の厚みを前記範囲の上限値以下とすることにより、多孔膜の孔の大きさを、イオンの移動を妨げない程度に大きくできる。このため、二次電池のレート特性を向上させることができる。また、シェル部を薄くすることで相対的にコア部を大きくできるので、非導電性粒子の剛性を高めることができる。このため、多孔膜の剛性を高めて、セパレーターの収縮を抑制することができる。
 シェル部の厚み(S)は、例えば、シェル部を形成する前のシードポリマー粒子の個数平均粒子径(D1)およびシェル部を形成した後の非導電性粒子の個数平均粒子径(D2)から、以下の式により算出しうる。
  (D2-D1)/2=S
 (非導電性粒子の量)
 本発明の多孔膜における非導電性粒子の含有割合は、通常70重量%以上、好ましくは75重量%以上、より好ましくは80重量%以上であり、通常98重量%以下、好ましくは96重量%以下、より好ましくは94重量%以下である。本発明の多孔膜における非導電性粒子の含有割合をこの範囲内とすることにより、非導電性粒子同士が接触部を有しつつ、イオンの移動が阻害されない程度に、非導電性粒子同士の隙間を形成できる。したがって、非導電性粒子の含有割合が前記範囲内であれば、本発明の多孔膜の強度を向上させ、電池の短絡を安定して防止することができる。
 (非導電性粒子の製造方法)
 コアシェル構造を有する非導電性粒子は、例えば、コア部を形成する重合体のモノマーとシェル部を形成する重合体のモノマーとを用い、経時的にそれらのモノマーの比率を変えて段階的に重合することにより、製造しうる。具体例を挙げると、まず、コア部を形成する重合体のモノマーを重合してシードポリマー粒子を製造する。このシードポリマー粒子は、非導電性粒子のコア部となる。その後、シードポリマー粒子を含む重合系において、シェル部を形成する重合体のモノマーを重合する。これにより、コア部の表面にシェル部が形成されるので、コアシェル構造を有する非導電性粒子が得られる。この際、必要に応じて、例えば反応媒、重合開始剤、界面活性剤などを用いてもよい。
 [1.2.粒子状重合体]
 粒子状重合体は、多孔膜において結着剤として機能しうる成分である。粒子状重合体を形成する重合体は、結着性を有するものであれば種々のものを用いうる。中でも、非導電性粒子のシェル部との親和性を高めて耐粉落ち性を向上させる観点では、(メタ)アクリレート単位を含む重合体を用いることが好ましい。(メタ)アクリレート単位を形成するアクリレート及びメタアクリレートの例としては、非導電性粒子の説明の項において挙げたものと同様の例が挙げられる。また、アクリレート及びメタアクリレートは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状重合体における(メタ)アクリレート単位の比率は、通常50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上であり、100重量%以下である。これにより、多孔膜の電気的安定性を向上させることができる。また、シェル部及び粒子状重合体の両方が(メタ)アクリレート単位を含む場合に、耐粉落ち性を向上させることができる。粒子状重合体における(メタ)アクリレート単位の比率は、通常、粒子状重合体の全モノマーにおけるアクリレート及びメタクリレートの比率(仕込み比)に一致する。
 粒子状重合体は、アクリレート及びメタクリレート以外のモノマーの重合体であってもよく、アクリレート及びメタクリレートの一方又は両方とそれ以外のモノマーとの共重合体であってもよい。アクリレート及びメタクリレート以外のモノマーの例としては、酸性基を有するビニルモノマー、α,β-不飽和ニトリルモノマー、架橋性基を有するモノマーなどが挙げられる。これらは、アクリレート又はメタクリレートと共重合することが好ましい。また、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 酸性基を有するビニルモノマーにおいて、酸性基としては、例えば、-COOH基(カルボン酸基)、-OH基(水酸基)、-SOH基(スルホン酸基)、-PO基、-PO(OH)(OR)基(Rは炭化水素基を表す)などが挙げられる。酸性基を有するビニルモノマーとしては、これらの酸性基を有する任意のビニルモノマーを使用しうる。また、例えば、低級ポリオキシアルキレン基を有するモノマー、並びに加水分解によりカルボン酸基を生成する酸無水物も、酸性基を有するビニルモノマーとして使用しうる。中でも、電極合剤層又は有機セパレーターへの結着性に優れること、並びに正極活物質から溶出した遷移金属イオンを効率良く捕捉しうるという理由から、カルボン酸基を有するモノマーを用いることが好ましい。
 カルボン酸基を有するモノマーとしては、例えば、モノカルボン酸、ジカルボン酸、ジカルボン酸の無水物、及びこれらの誘導体などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルなどが挙げられる。ジカルボン酸の酸無水物としては、例えば、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。これらの中でも、例えばアクリル酸、メタクリル酸等のカルボン酸基を有する炭素数5以下のモノカルボン酸;マレイン酸、イタコン酸等のカルボン酸基を2つ有する炭素数5以下のジカルボン酸;が好ましい。さらには、作製した多孔膜用スラリーの保存安定性が高いという観点から、アクリル酸、メタクリル酸、及びイタコン酸が好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状重合体の全モノマーに対する酸性基を有するビニルモノマーの比率(仕込み比)は、好ましくは1.0重量%以上、より好ましくは1.5重量%以上であり、好ましくは3.0重量%以下、より好ましくは2.5重量%以下である。
 α,β-不飽和ニトリルモノマーとしては、例えば、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エチルアクリロニトリルなどが挙げられる。中でも、多孔膜の機械的強度及び多孔膜中の結着力の向上という観点から、アクリロニトリル及びメタクリロニトリルが好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状重合体の全モノマーに対するα,β-不飽和ニトリルモノマーの比率(仕込み比)は、好ましくは1.0重量%以上であり、好ましくは50重量%以下、より好ましくは40重量%以下、特に好ましくは30重量%以下である。
 架橋性基を有するモノマーとしては、例えば、架橋性基を有し1つのオレフィン性二重結合を持つ単官能性モノマー、少なくとも2つのオレフィン性二重結合を持つ多官能性モノマーなどが挙げられる。
 架橋性基としては、エポキシ基、N-メチロールアミド基、オキセタニル基、及びオキサゾリン基からなる群から選ばれる少なくとも1種が好ましい。中でもエポキシ基及びN-メチロールアミド基が、架橋及び架橋密度の調節が容易な点で、より好ましい。
 架橋性基としてエポキシ基を有するモノマーとしては、例えば、炭素-炭素二重結合及びエポキシ基を含有するモノマー、ハロゲン原子及びエポキシ基を含有するモノマーが挙げられる。
 炭素-炭素二重結合及びエポキシ基を含有するモノマーとしては、例えば、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテル等の不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエン等のジエン又はポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセン等のアルケニルエポキシド;グリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステル等の不飽和カルボン酸のグリシジルエステル類;などが挙げられる。
 ハロゲン原子及びエポキシ基を有するモノマーとしては、例えば、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン、エピフルオロヒドリン、β-メチルエピクロルヒドリンなどのエピハロヒドリン;p-クロロスチレンオキシド;ジブロモフェニルグリシジルエーテル;などが挙げられる。
 架橋性基としてN-メチロールアミド基を有するモノマーとしては、例えば、N-メチロールアクリルアミド、N-メチロールメタクリルアミドなどが挙げられる。
 少なくとも2つのオレフィン性二重結合を持つ多官能性モノマーとしては、例えば、アリルアクリレート、アリルメタクリレート、トリメチロールプロパン-トリアクリレート、トリメチロールプロパン-メタクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、多官能性アルコールの他のアリル又はビニルエーテル、テトラエチレングリコールジアクリレート、トリアリルアミン、トリメチロールプロパン-ジアリルエーテル、メチレンビスアクリルアミド、ジビニルベンゼンなどが挙げられる。中でも、アリルアクリレート、アリルメタクリレート、トリメチロールプロパン-トリアクリレート、トリメチロールプロパン-メタクリレートが好ましい。さらにその中でも、架橋密度が向上しやすいことから、架橋密度の向上及び共重合性が高いという観点の理由で、アリルアクリレート及びアリルメタクリレート等のアリル基を有するアクリレート及びメタアクリレートが好ましい。
 また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状重合体の全モノマーに対する架橋性基を有するモノマーの比率(仕込み比)は、好ましくは0.02重量%以上、より好ましくは0.1重量%以上、特に好ましくは0.2重量%以上であり、好ましくは4.0重量%以下、より好ましくは3.5重量%以下、特に好ましくは3.0重量%以下である。これにより、粒子状重合体の電解液への溶出を抑制し、優れた多孔膜強度と長期サイクル特性を実現できる。
 また、粒子状重合体のガラス転移点は、通常-80℃以上、好ましくは-70℃以上、より好ましくは-60℃以上であり、通常60℃以下、好ましくは30℃以下、より好ましくは0℃以下である。粒子状重合体のガラス転移点を前記範囲の下限値以上とすることにより、多孔膜の孔が塞がることを防止して透液性を向上させることができる。このため、二次電池のレート特性を高くできる。また、上限値以下とすることにより、粒子状重合体の結着性を高くして非導電性粒子の粉落ちを安定して防止できる。
 粒子状重合体の個数平均粒子径は、通常50nm以上、好ましくは100nm以上、より好ましくは150nm以上であり、通常1000nm以下、好ましくは800nm以下、より好ましくは600nm以下である。粒子状重合体の個数平均粒子径を前記範囲の下限値以上とすることにより、多孔膜の多孔性を高く維持して多孔膜の抵抗を抑制し、電池物性を良好に保つことができる。また、前記範囲の上限値以下にすることで、非導電性粒子及び基材と粒子状重合体との接着点を多くして、粉落ちを安定して防止できる。
 粒子状重合体の量は、非導電性粒子100重量部に対して、通常3重量部以上、好ましくは7重量部以上、より好ましくは11重量部以上であり、通常26重量部以下、好ましくは22重量部以下、より好ましくは18重量部以下である。粒子状重合体の量を前記範囲の下限値以上とすることによって非導電性粒子の粉落ちを安定して防止することができる。また、前記範囲の上限値以下とすることによって、多孔膜の多孔性を高く維持して多孔膜の抵抗を抑制し、電池物性を良好に保つことができる。
 粒子状重合体の製造方法は特に限定はされず、例えば、溶液重合法、懸濁重合法、乳化重合法などの、いずれの方法を用いてもよい。中でも、水中で重合をすることができ、そのまま多孔膜用スラリーの材料として使用できるので、乳化重合法および懸濁重合法が好ましい。
 [1.3.水溶性重合体]
 水溶性重合体は、多孔膜において、非導電性粒子同士を結着する作用を有する。また、水溶性重合体は、通常、非導電性粒子及び粒子状重合体の表面を硬化した状態で覆っているので、多孔膜の剛性を高めたりブロッキングを抑制したりする作用を有する。さらに、多孔膜用スラリーにおいて、水溶性重合体は、通常、当該スラリーの粘度を調整しうる増粘剤として機能する。
 水溶性重合体としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマー及びこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸及びこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸若しくはフマル酸とビニルアルコールの共重合体等のポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが挙げられる。ここで、「(変性)ポリ」には「未変性ポリ」及び「変性ポリ」の両者が含まれる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水溶性重合体の軟化開始点は、通常85℃以上、好ましくは175℃以上、より好ましくは200℃以上である。水溶性重合体の軟化開始点をこのように高くすることにより、多孔膜の耐熱性を向上させることができ、耐粉落ち性を向上させることができる。さらに、耐ブロッキング性を向上させることもできる。また、水溶性重合体の軟化開始点の上限値に制限は無いが、通常450℃以下である。
 水溶性重合体の量は、非導電性粒子100重量部に対して、通常0.03重量部以上、好ましくは0.18重量部以上、より好ましくは0.3重量部以上であり、通常19重量部以下、好ましくは15重量部以下、より好ましくは12重量部以下である。水溶性重合体の量を前記範囲の下限値以上とすることによって多孔膜の耐熱性を向上させることができ、耐粉落ち性を向上させることができる。また、前記範囲の上限値以下とすることによって、多孔膜の多孔性を高く維持して多孔膜の抵抗を抑制し、電池物性を良好に保つことができる。
 [1.4.任意の成分]
 本発明の多孔膜は、上述した成分以外にも、任意の成分を含んでいてもよい。任意の成分は、本発明の二次電池における電池反応に過度に好ましくない影響を及ぼさないものであれば、特に制限は無い。また、任意の成分の種類は、1種類でもよく、2種類以上でもよい。
 [1.5.多孔膜の製造方法]
 本発明の多孔膜は、例えば、非導電性粒子、粒子状重合体、水溶性重合体及び媒体を混合して多孔膜用スラリーを得る工程と、多孔膜用スラリーを基材上に塗布してスラリー層を得る工程と、スラリー層を乾燥する工程とを含む製造方法により、製造しうる。以下、この製造方法について説明する。
 多孔膜用スラリーは、非導電性粒子、粒子状重合体、水溶性重合体及び媒体を含む流体状の組成物である。通常、多孔膜用スラリーでは、非導電性粒子及び粒子状重合体は媒体中に分散している。また、多孔膜用スラリーでは、媒体として水系媒体を用いた場合、一部の水溶性重合体は媒体に溶解しているが、別の一部の水溶性重合体が非導電性粒子及び粒子状重合体の表面に吸着する。これにより、非導電性粒子及び粒子状重合体が水溶性重合体の層(分散安定層)で覆われて、非導電性粒子及び粒子状重合体の水中での分散性が向上している。
 媒体としては、通常、水系媒体を用いる。これにより、多孔膜用スラリーを、水性分散体として得られる。水系媒体としては、通常、水を用いる。
 多孔膜用スラリーが含む媒体の量は、通常、本発明の多孔膜を製造する際に作業性を損なわない範囲の粘度を多孔膜用スラリーが有する範囲で任意に設定する。具体的には、多孔膜用スラリーの固形分濃度が、通常5重量%~30重量%となるように媒体の量を設定する。
 多孔膜用スラリーは、非導電性粒子、粒子状重合体、水溶性重合体及び媒体以外にも、任意の成分を含んでいてもよい。任意の成分は、二次電池における電池反応に過度に好ましくない影響を及ぼさないものであれば、特に制限は無い。また、任意の成分の種類は、1種類でもよく、2種類以上でもよい。
 任意の成分としては、例えば、分散剤、電解液分散抑制剤等が挙げられる。
 分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、重合体化合物が例示される。分散剤の具体的な種類は、通常、非導電性粒子の構成に応じて選択される。
 また、多孔膜用スラリーは、例えば、アルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤を含んでいてもよい。界面活性剤を含むことにより、多孔膜用スラリーを塗布する時のはじきを防止したり、本発明の電極の平滑性を向上させたりすることができる。界面活性剤の量としては、電池特性に影響が及ばない範囲が好ましく、本発明の多孔膜において10重量%以下となる量が好ましい。
 また、多孔膜用スラリーは、例えば、フュームドシリカ、フュームドアルミナなどの体積平均粒子径100nm未満のナノ微粒子を含んでいてもよい。ナノ微粒子を含むことにより、多孔膜用スラリーのチキソ性を制御することができ、さらにそれに本発明の多孔膜のレベリング性を向上させることができる。
 多孔膜用スラリーの製造の際、非導電性粒子、粒子状重合体、水溶性重合体及び媒体、並びに、必要に応じて用いられる任意の成分の混合順序には特に制限は無い。また、混合方法にも特に制限は無い。通常は、非導電性粒子を速やかに分散させるため、混合装置として分散機を用いて混合を行う。
 分散機は、上記成分を均一に分散及び混合できる装置が好ましい。例を挙げると、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどが挙げられる。中でも、高い分散シェアを加えることができることから、ビーズミル、ロールミル、フィルミックス等の高分散装置が特に好ましい。
 多孔膜用スラリーを用意した後で、その多孔膜用スラリーを基材上に塗布して、スラリー層を得る。基材は、多孔膜用スラリーの膜としてスラリー層を形成する対象となる部材である。基材に制限は無く、例えば剥離フィルムを用いてもよい。この場合、剥離フィルムの表面に多孔膜用スラリーを塗布してスラリー層を得て、そのスラリー層を乾燥させて多孔膜を得た後で、剥離フィルムから多孔膜を剥がすようにしてもよい。しかし、通常は、本発明の多孔膜を剥がす工程を省略して製造効率を高める観点から、基材として電池要素を用いる。このような電池要素の具体例としては、電極及び有機セパレーターなどが挙げられる。
 多孔膜用スラリーの塗布方法としては、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。中でも、均一な多孔膜が得られる点で、ディップ法及びグラビア法が好ましい。
 スラリー層を得た後で、そのスラリー層を乾燥する。これにより、本発明の多孔膜が得られる。乾燥方法としては、例えば、温風、熱風、低湿風等の風による乾燥;真空乾燥;赤外線、遠赤外線、電子線などのエネルギー線の照射による乾燥法などが挙げられる。乾燥温度は、媒体が気化して塗膜から除去される温度にする。また、粒子状重合体が熱架橋性基を有する場合には、当該熱架橋性基が架橋反応を生じる温度以上の高温で乾燥を行うことが好ましい。乾燥と架橋反応とを同時に行うことにより、工程数を減らして製造効率を向上させることができる。通常は40℃~120℃で乾燥させる。
 上述した多孔膜の製造方法においては、更に別の工程を行うようにしてもよい。例えば、金型プレスやロールプレスなどを用い、加圧処理を行ってもよい。これにより、基材と本発明の多孔膜との接着性を向上させることができる。このような加圧処理は、基材として電極又は有機セパレーター等を用いている場合に、特に有用である。ただし、過度に加圧処理を行うと、本発明の多孔膜の空隙率が損なわれる可能性があるため、圧力および加圧時間を適切に制御することが好ましい。
 [1.6.多孔膜に係るその他の事項]
 本発明の多孔膜は非導電性粒子の間に空隙を有することにより適度な多孔性を有し、電解液を吸液しうる。このように、本発明の多孔膜中には電解液が浸透できるので、本発明の多孔膜を本発明の電極又は本発明のセパレーターに設けても電池反応を阻害することはなく、レート特性の高い二次電池を実現できる。
 本発明の多孔膜の厚みは、好ましくは0.5μm~20μmである。また、本発明の多孔膜を電極の表面に設ける場合には、多孔膜の厚みは1μm~10μmが好ましい。多孔膜の厚みを前記範囲の下限値以上とすることにより膜の厚みを均一にすることができる。また、上限値以下とすることにより、電池内での体積又は重量あたりの容量(capacity)を高くすることができる。
[2.二次電池用電極]
 本発明の電極(二次電池用電極)は、集電体、集電体上に付着した電極合剤層、及び、電極合剤層上に形成された本発明の多孔膜を備える。また、電極合剤層は、電極活物質及び電極合剤層用結着剤を含む。電極合剤層の表面に本発明の多孔膜を設けても、本発明の多孔膜には電解液が浸透できるので、レート特性に対して悪影響を及ぼすことは無い。また、本発明の多孔膜は適度な強度を有するため、電極合剤層の表面に設けられると保護膜として機能し、二次電池の製造過程における電極活物質の脱落防止および電池作動時の短絡防止ができる。さらに、本発明の多孔膜を備えているので、本発明の電極はブロッキングを生じにくくなっている。
 [2.1.集電体]
 集電体は、電気導電性を有し且つ電気化学的に耐久性のある材料であれば特に制限されない。中でも、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。その中でも、非水電解質二次電池の正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。
 集電体の形状は特に制限されないが、厚さ0.001mm~0.5mmのシート状のものが好ましい。
 集電体は、電極合剤層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、例えば、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。
 また、電極合剤層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
 [2.2.電極合剤層]
 (電極活物質)
 電極合剤層は、電極活物質を含む。以下の説明においては、電極活物質の中でも特に正極用の電極活物質のことを「正極活物質」、負極用の電極活物質のことを「負極活物質」と呼ぶことがある。通常、本発明の電極はリチウム二次電池において使用されるため、特にリチウム二次電池用の電極活物質について説明する。
 リチウム二次電池用の電極活物質は、電解液中で電位をかけることにより可逆的にリチウムイオンを挿入放出できるものを用いうる。電極活物質は、無機化合物を用いてもよく、有機化合物を用いてもよい。
 正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、例えば、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVO等のリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13等の遷移金属酸化物などが挙げられる。一方、有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性重合体が挙げられる。
 さらに、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。
 また、例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
 さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。
 これらの正極活物質は、1種類だけを用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、前述の無機化合物と有機化合物との混合物を正極活物質として用いてもよい。
 正極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択される。負荷特性、サイクル特性などの電池特性の向上の観点から、正極活物質の体積平均粒子径D50は、通常0.1μm以上、好ましくは1μm以上であり、通常50μm以下、好ましくは20μm以下である。正極活物質の体積平均粒子径D50がこの範囲であると、充放電容量が大きい二次電池を得ることができ、かつ合剤スラリーおよび本発明の電極を製造する際の取扱いが容易である。ここで、前記の体積平均粒子径D50は、レーザー回折法で測定された粒度分布において、小径側から計算した累積体積が50%となる粒子径を表す。
 負極活物質は、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性重合体;などが挙げられる。また、ケイ素、錫、亜鉛、マンガン、鉄およびニッケル等の金属並びにこれらの合金;前記金属又は合金の酸化物;前記金属又は合金の硫酸塩;なども挙げられる。また、金属リチウム;Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン等を使用してもよい。さらに、電極活物質は、機械的改質法により表面に導電性付与材を付着させたものも使用してもよい。これらの負極活物質は、1種類だけを用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 負極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択される。初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、負極活物質の体積平均粒子径D50は、通常1μm以上、好ましくは15μm以上であり、通常50μm以下、好ましくは30μm以下である。
 (電極合剤層用結着剤)
 電極合剤層は、電極合剤層用結着剤を含む。電極合剤層用結着剤を含むことにより、電極合剤層の接着性が向上し、本発明の電極の撒回時等の工程上においてかかる機械的な力に対する強度が上がる。また、電極合剤層が脱離しにくくなることから、脱離物による短絡等の可能性が低くなる。
 電極合剤層用結着剤としては様々な重合体成分を用いうる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いてもよい。
 さらに、以下に例示する軟質重合体も電極合剤層用結着剤として使用してもよい。すなわち、軟質重合体としては、例えば、
(i)ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体、ブチルアクリレート・アクリロニトリル共重合体、ブチルアクリレート・アクリロニトリル・グリシジルメタクリレート共重合体などの、アクリル酸またはメタクリル酸誘導体の単独重合体またはそれと共重合可能な単量体との共重合体である、アクリル系軟質重合体;
(ii)ポリイソブチレン、イソブチレン・イソプレンゴム、イソブチレン・スチレン共重合体などのイソブチレン系軟質重合体;
(iii)ポリブタジエン、ポリイソプレン、ブタジエン・スチレンランダム共重合体、イソプレン・スチレンランダム共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ブタジエン・スチレン・ブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、イソプレン・スチレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体などジエン系軟質重合体;
(iv)ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサンなどのケイ素含有軟質重合体;
(v)液状ポリエチレン、ポリプロピレン、ポリ-1-ブテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体;
(vi)ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などビニル系軟質重合体;
(vii)ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;
(viii)フッ化ビニリデン系ゴム、四フッ化エチレン-プロピレンゴムなどのフッ素含有軟質重合体;
(ix)天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体;などが挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性により官能基を導入したものであってもよい。
 電極合剤層用結着剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 電極合剤層における電極合剤層用結着剤の量は、電極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、特に好ましくは0.5重量部以上であり、好ましくは5重量部以下、より好ましくは4重量部以下、特に好ましくは3重量部以下である。電極合剤層用結着剤の量が前記範囲であることにより、電池反応を阻害せずに、電極合剤層から電極活物質が脱落するのを防ぐことができる。
 電極合剤層用結着剤は、通常、電極合剤層を作製するために溶液もしくは分散液に含まれた状態で用意される。その時の溶液もしくは分散液の粘度は、通常1mPa・s以上、好ましくは50mPa・s以上であり、通常300,000mPa・s以下、好ましくは10,000mPa・s以下である。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
 (電極合剤層に含まれていてもよい任意の成分)
 電極合剤層には、本発明の効果を著しく損なわない限り、電極活物質及び電極合剤層用結着剤以外にも、任意の成分が含まれていてもよい。その例を挙げると、導電性付与材(導電材ともいう)、補強材などが挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 導電性付与材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボン;黒鉛等の炭素粉末;各種金属のファイバー及び箔;などが挙げられる。導電性付与材を用いることにより、電極活物質同士の電気的接触を向上させることができ、特にリチウム二次電池に用いる場合には放電レート特性を改善できる。
 補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。
 導電性付与材及び補強剤の使用量は、電極活物質100重量部に対して、それぞれ、通常0重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。
 (合剤スラリー)
 通常、電極合剤層は、電極活物質、電極合剤層用結着剤及び溶媒、並びに必要に応じて任意の成分を含むスラリー(以下、適宜「合剤スラリー」という。)を集電体に付着させて製造する。
 合剤スラリーは、通常は溶媒を含有し、電極活物質、電極合剤層用結着剤及び任意の成分等を溶解又は分散させる。溶媒としては、電極合剤層用結着剤を溶解し得るものを用いると、電極活物質及び導電性付与材の分散性に優れるので好ましい。電極合剤層用結着剤が溶媒に溶解した状態で用いることにより、電極合剤層用結着剤が電極活物質などの表面に吸着してその体積効果により分散を安定化させていると推測される。
 合剤スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用しうる。有機溶媒としては、例えば、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミド等のアミド類が挙げられる。これらの溶媒は、1種類を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。具体的な溶媒の種類は、乾燥速度及び環境上の観点から適宜選択することが好ましい。中でも、水への電極膨張特性の観点から、非水性溶媒を用いることが好ましい。
 合剤スラリーには、さらに例えば増粘剤などの各種の機能を発現する添加剤を含ませてもよい。増粘剤としては、通常は、合剤スラリーに用いる有機溶媒に可溶な重合体が用いられる。その具体例を挙げると、アクリロニトリル-ブタジエン共重合体水素化物などが挙げられる。
 さらに、合剤スラリーには、電池の安定性や寿命を高めるため、例えば、トリフルオロプロピレンカーボネート、ビニレンカーボネート、カテコールカーボネート、1,6-ジオキサスピロ[4,4]ノナン-2,7-ジオン、12-クラウン-4-エーテル等を含ませてもよい。また、これらは電解液に含ませてもよい。
 合剤スラリーにおける溶媒の量は、電極活物質及び電極合剤層用結着剤などの種類に応じ、塗布に好適な粘度になるように調整することが好ましい。具体的には、電極活物質、電極合剤層用結着剤および任意の成分を合わせた固形分の濃度が、好ましくは30重量%以上、より好ましくは40重量%以上、また、好ましくは90重量%以下、より好ましくは80重量%以下となる量に調整して用いられる。
 合剤スラリーは、電極活物質及び溶媒、並びに、必要に応じて含まれる電極合剤層用結着剤及び任意の成分を、混合機を用いて混合して得られる。混合は、上記の各成分を一括して混合機に供給し、混合してもよい。また、合剤スラリーの構成成分として、電極活物質、電極合剤層用結着剤、導電性付与材及び増粘剤を用いる場合には、導電性付与材および増粘剤を溶媒中で混合して導電性付与材を微粒子状に分散させ、その後で電極合剤層用結着剤及び電極活物質を混合することが、スラリーの分散性が向上するので好ましい。混合機としては、例えば、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いてもよい。中でもボールミルを用いると、導電性付与材及び電極活物質の凝集を抑制できるので、好ましい。
 合剤スラリーに含まれる粒子の大きさ(粒度)は、好ましくは35μm以下であり、さらに好ましくは25μm以下である。スラリーの粒度が上記範囲にあると、導電性付与材の分散性が高く、均質な電極合剤層が得られる。
 (電極合剤層の製造方法)
 電極合剤層は、例えば、集電体の少なくとも片面、好ましくは両面に電極合剤層を層状に接着させることにより製造してもよい。具体例を挙げると、合剤スラリーを集電体に塗布及び乾燥し、次いで、120℃以上で1時間以上加熱処理して電極合剤層を製造してもよい。
 合剤スラリーを集電体へ塗布する方法としては、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。また、乾燥方法としては、例えば、温風、熱風、低湿風による乾燥;真空乾燥;赤外線、遠赤外線、電子線等のエネルギー線の照射による乾燥法が挙げられる。
 その後、例えば金型プレス及びロールプレスなどを用い、電極合剤層に加圧処理を施すことが好ましい。加圧処理を施すことにより、電極合剤層の空隙率を低くすることができる。電極合剤層の空隙率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは15%以下、より好ましくは13%以下である。空隙率を前記範囲の下限値以上にすることにより、体積容量を大きくできたり、電極合剤層の剥離を防止したりできる。また、空隙率を前記範囲の上限値以下にすることにより、充電効率及び放電効率を高めることができる。
 また、電極合剤層用結着剤として硬化性の重合体を用いる場合、合剤スラリーを塗布した後の適切な時期に電極合剤層用結着剤を硬化させることが好ましい。
 電極合剤層の厚みは、正極及び負極のいずれも、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。
 [2.3.多孔膜]
 本発明の電極は、電極合剤層上に本発明の多孔膜を備える。これにより、電極合剤層からの電極活物質等の脱離、電極合剤層の剥離、電池の内部短絡等を防止することができる。
 電極合剤層に本発明の多孔膜を設ける方法としては、例えば、基材として電極合剤層を用いて、本発明の多孔膜の製造方法を行ってもよい。具体的な方法の例を挙げると、
1)多孔膜用スラリーを電極合剤層の表面に塗布し、次いで乾燥する方法;
2)多孔膜用スラリーに電極合剤層を浸漬後、これを乾燥する方法;
3)多孔膜用スラリーを、剥離フィルム上に塗布、乾燥して本発明の多孔膜を製造し、得られた本発明の多孔膜を電極合剤層の表面に転写する方法;
などが挙げられる。これらの中でも、前記1)の方法が、本発明の多孔膜の膜厚制御をしやすいことから特に好ましい。
 [2.4.他の構成要素]
 本発明の電極は、本発明の効果を著しく損なわない限り、集電体、電極合剤層及び本発明の多孔膜以外の構成要素を備えていてもよい。例えば、必要に応じて、電極合剤層と本発明の多孔膜との間に他の層を設けてもよい。この場合、本発明の多孔膜は電極合剤層上に間接的に設けられることになる。また、本発明の多孔膜上に、更に別の層を設けてもよい。
[3.二次電池用セパレーター]
 本発明のセパレーター(二次電池用セパレーター)は、有機セパレーターと、有機セパレーター上に形成された本発明の多孔膜とを備える。本発明のセパレーターが本発明の多孔膜を備えていても、本発明の多孔膜には電解液が浸透できるので、レート特性等に対して悪影響を及ぼすことは無い。また、本発明のセパレーターは、高温においても変形せず高い剛性を有しうる本発明の多孔膜を備えるので、高温環境においても収縮し難い。さらに、本発明の多孔膜を備えているので、本発明のセパレーターはブロッキングを生じにくくなっている。
 一般に、有機セパレーターは、電極の短絡を防止するために正極と負極との間に設けられる部材である。有機セパレーターとしては、例えば、微細な孔を有する多孔性基材が用いられ、通常は有機材料からなる多孔性基材が用いられる。有機セパレーターの具体例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微孔膜または不織布などが挙げられる。
 有機セパレーターの厚さは、通常0.5μm以上、好ましくは1μm以上であり、通常40μm以下、好ましくは30μm以下、より好ましくは10μm以下である。この範囲であると電池内での本発明のセパレーターによる抵抗が小さくなり、また、電池製造時の作業性に優れる。
 本発明のセパレーターは、有機セパレーター上に本発明の多孔膜を備える。有機セパレーターに本発明の多孔膜を設ける方法としては、例えば、基材として有機セパレーターを用いて、本発明の多孔膜の製造方法を行ってもよい。具体的な方法の例を挙げると、
1)多孔膜用スラリーを有機セパレーターの表面に塗布し、次いで乾燥する方法;
2)多孔膜用スラリーに有機セパレーターを浸漬後、これを乾燥する方法;
3)多孔膜用スラリーを、剥離フィルム上に塗布、乾燥して本発明の多孔膜を製造し、得られた本発明の多孔膜を有機セパレーターの表面に転写する方法;
などが挙げられる。これらの中でも、前記1)の方法が、本発明の多孔膜の膜厚制御をしやすいことから特に好ましい。
 本発明のセパレーターは、本発明の効果を著しく損なわない限り、有機セパレーター及び本発明の多孔膜以外の構成要素を備えていてもよい。例えば、本発明の多孔膜上に、更に別の層を設けてもよい。
[4.二次電池]
 本発明の二次電池は、正極、負極、セパレーター及び電解液を備える。また、本発明の二次電池は、正極、負極及びセパレーターの少なくともいずれかが、本発明の多孔膜を備える。すなわち、本発明の二次電池は、下記の要件(A)及び(B)の一方又は両方を満たす。
(A)正極及び負極の少なくとも一方として、本発明の電極を備える。
(B)セパレーターとして、本発明のセパレーターを備える。
 本発明の多孔膜が接着性及び耐粉落ち性に優れているので、本発明の二次電池では、充放電を繰り返しても本発明の多孔膜が電極合剤層及び有機セパレーターから剥がれ難くなっている。このため、本発明の二次電池は、サイクル特性に優れる。
 また、本発明の多孔膜では高温環境においても孔が塞がり難くなっているので、本発明の二次電池は、レート特性に優れる。
 さらに、本発明の多孔膜を用いることにより、本発明の二次電池のセパレーターは高温においても収縮し難い。また、本発明の多孔膜では高温環境においても非導電性粒子が離脱し難くなっている。このため、本発明の二次電池は高温環境でも短絡が生じ難く、信頼性の高い電池となっている。
 [4.1.電極]
 本発明の二次電池は、原則として、正極及び負極の一方又は両方として、本発明の電極を備える。ただし、本発明の二次電池がセパレーターとして本発明のセパレーターを備える場合には、正極及び負極の両方として本発明の電極以外の電極を備えていてもよい。
 [4.2.セパレーター]
 本発明の二次電池は、原則として、セパレーターとして本発明のセパレーターを備える。ただし、本発明の二次電池が正極及び負極の一方又は両方として本発明の電極を備える場合には、セパレーターとして本発明のセパレーター以外のセパレーターを備えていてもよい。
 [4.3.電解液]
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。また、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されない。例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 電解液中における支持電解質の濃度は、通常1重量%以上、好ましくは5重量%以上であり、通常30重量%以下、好ましくは20重量%以下である。また、支持電解質の種類に応じて、通常0.5モル/L~2.5モル/Lの濃度で用いられる場合がある。支持電解質の濃度が低すぎても高すぎても、イオン導電度は低下する傾向にある。通常は電解液の濃度が低いほど電極合剤層用結着剤等の重合体粒子の膨潤度が大きくなるので、電解液の濃度を調整することによりリチウムイオン伝導度を調節することができる。
 さらに、電解液には、必要に応じて、添加剤等を含ませてもよい。
 [4.4.二次電池の製造方法]
 本発明の二次電池の製造方法としては、例えば、次のような方法が挙げられる。
 まず、正極と負極とをセパレーターを介して重ね合わせる。これにより、正極、セパレーター及び負極をこの順に備える積層体を得る。この積層体は、電極合剤層と有機セパレーターとの間に、本発明の多孔膜を有する。
 その後、この積層体にヒートプレスを施す。ヒートプレスにより、本発明の多孔膜において非導電性粒子のシェル部を形成する重合体が融解し、電極合剤層及び有機セパレーターは本発明の多孔膜に強固に接着される。
 ヒートプレスの温度は、通常、シェル部の軟化開始点以上であり、且つ、コア部の軟化開始点及び分解点未満である。具体的には、好ましくは85℃以上、より好ましくは87℃以上、特に好ましくは89℃以上であり、好ましくは110℃以下、より好ましくは105℃以下、特に好ましくは100℃以下である。
 ヒートプレスの圧力は、通常0.1MPa以上、好ましくは0.3MPa以上、より好ましくは0.5MPa以上であり、通常10MPa以下、好ましくは5MPa以下、より好ましくは3MPa以下である。ヒートプレスの圧力を前記範囲の下限値以上とすることにより電極合剤層と有機セパレーターを強固に接着することができ、上限値以下とすることにより有機セパレーターの多孔性を維持することができる。
 ヒートプレスを施す時間は、通常2秒以上、好ましくは5秒以上、より好ましくは8秒以上であり、通常60秒以下、好ましくは40秒以下、より好ましくは20秒以下である。ヒートプレスを施す時間を前記範囲の下限値以上とすることにより電極合剤層と有機セパレーターを強固に接着することができ、上限値以下とすることにより高い生産性を確保することができる。
 その後、得られた積層体を、電池形状に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する。これにより、本発明の二次電池が得られる。
 また、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、リード板、エキスパンドメタルなどを入れ、過充放電の防止、電池内部の圧力上昇の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例を示して具体的に説明する。ただし、本発明は以下の実施例に限定されず、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。また、以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。さらに、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
[評価方法]
 〔個数平均粒子径の算出方法〕
 電界放出形走査電子顕微鏡(日立ハイテク社製「Hitachi S-4700」)にて25000倍の倍率で撮影した写真から200個の粒子を任意に選択した。その粒子像の最長辺をLa、最短辺をLbとしたとき、(La+Lb)/2を粒径とし、200個の平均から平均粒径を算出した。
 〔ガラス転移点(Tg)および軟化開始点の算出方法〕
 測定試料10mgをアルミパンに計量し、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製「EXSTAR DSC6220」)にて、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~500℃の間で、昇温速度10℃/minで、常温常湿下で、DSC曲線を測定した。この昇温過程で、微分信号(DDSC)が0.05mW/min/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点を、ガラス転移点(Tg)として求めた。また、さらにそのガラス転移点より25℃高い温度を、軟化開始点とした。
 なお、下記の表において水溶性重合体の軟化開始点が「なし」とは、200℃以下に軟化開始点が観測されず、且つ、200℃超では水溶性重合体が分解したことにより軟化開始点が観測されなかったことを示す。
 〔分解点の算出方法〕
 窒素雰囲気下において、示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー社製「EXSTAR TG/DTA6000」)により30℃から昇温速度10℃/分で加熱し、減量割合が10重量%に達する温度を、分解点とした。
 〔非導電性粒子のシェル部の厚みの算出方法〕
 非導電性粒子のシェル部の厚み(S)は、シェル部の形成前のシードポリマー粒子Aの個数平均粒子径(D1)およびシェル部の形成後の非導電性粒子の個数平均粒子径(D2)を測定し、以下の式より算出した。
  (D2-D1)/2=S
 〔二次電池用セパレーターの熱収縮試験〕
 二次電池用セパレーター(多孔膜付有機セパレーター)を幅10cm×長さ10cmに切り出し試験片とする。試験片を温度150℃に温調したオーブン内に1時間放置した後、各辺の長さを測定し、最も収縮率の大きい辺の収縮率を下記基準で評価した。熱収縮率が小さいほど、二次電池の安全性に優れる。
 (評価基準)
 A:3.0%未満
 B:3.0%以上5.0%未満
 C:5.0%以上10.0%未満
 D:10%以上
 〔二次電池用セパレーター及び二次電池用電極の粉落ち試験〕
 多孔膜付セパレーター及び多孔膜付電極を電極打ち抜き機で直径19mmの円形に打ち抜き、打ち抜き刃に対する多孔膜片付着の有無を目視で観察し、下記の基準により判定した。打ち抜き刃への多孔膜片の付着発生が遅いほど、電極合剤層上又は有機セパレーター層上に形成した多孔膜層の粉落ち性が優れることを示す。なお、多孔膜片付着の有無は打ち抜き100回毎に行い、最大1000回まで確認した。
 (評価基準)
 A:1000回打ち抜いても多孔膜片の付着はみられない。
 B:501~999回の打ち抜きで多孔膜片の付着が発生。
 C:101~500回の打ち抜きで多孔膜片の付着が発生。
 D:100回以下の打ち抜きで多孔膜片の付着が発生。
 〔二次電池用セパレーター及び二次電池用電極のブロッキング試験〕
 多孔膜付電極又は多孔膜付セパレーターを幅5cm×長さ5cmに切り出し試験片とする。これを2枚重ね、60℃、1時間、1MPaの条件でプレスした後の多孔膜付電極又は多孔膜付セパレーターの接着状態(ブロッキング状態)を目視で確認した。
 (評価基準)
 A:まったく接着していない。
 B:僅かに接着しているが、手で触れるだけで剥がれ落ちる。
 C:僅かに接着しているが、容易に剥がし取れる。
 D:接着している。
 〔二次電池用セパレーターの電極接着試験〕
 多孔膜付セパレーターを幅5cm×長さ5cm、正極および負極をそれぞれ幅3cm×長さ3cmに切り出し試験片とする。上記正極の正極合剤層側の面上に、多孔膜付セパレーターを配置した。さらに、セパレーター上に負極を、負極合剤層側の面がセパレーターに対向するように配置した。この積層体に、卓上型テストプレスで、温度90℃、時間10秒、圧力1MPaの条件でヒートプレスを施した。この積層体から、速度50mm/秒、角度90°で各電極を剥がし取った際に、多孔膜付セパレーターに接着残存した電極合剤層の割合(R1)を以下の式で算出することで、多孔膜付セパレーターの電極への接着性を評価した。この割合が高いほど、接着性に優れることを示す。
 (R1)=(多孔膜付セパレーターに接着残存した電極合剤層の面積/使用した電極合剤層の面積)×100
 (評価基準)
 A:50%以上
 B:30%以上50%未満
 C:10%以上30%未満
 D:10%未満
 〔二次電池用電極のセパレーター接着試験〕
 有機セパレーターを幅5cm×長さ5cm、多孔膜付き正極および多孔膜付き負極をそれぞれ幅3cm×長さ3cmに切り出し試験片とする。上記多孔膜付き正極の多孔膜層側の面上に、有機セパレーターを配置した。さらに、有機セパレーター上に多孔膜付負極を、多孔膜層側の面が有機セパレーターに対向するように配置した。この積層体に、卓上テストプレスで、温度90℃、時間10秒、圧力1MPaの条件でヒートプレスを施した。この積層体から、速度50mm/秒、角度90°で各電極を剥がし取った際に、有機セパレーターに接着残存した電極合剤層の割合(R2)を以下の式で算出することで、多孔膜付電極の有機セパレーターへの接着性を評価した。この割合が高いほど、接着性に優れることを示す。
 (R2)=(有機セパレーターに接着残存した多孔膜付電極合剤層の面積/使用した電極合剤層の面積)×100
 (評価基準)
 A:50%以上
 B:30%以上50%未満
 C:10%以上30%未満
 D:10%未満
 〔二次電池のレート特性の評価試験〕
 ラミネート型のリチウムイオン二次電池を、24時間静置した後に、25℃、0.1Cの充放電レートにて、4.2Vまで充電し3.0Vまで放電する充放電の操作を行った。その後、25℃で0.1Cの充電レートで4.2Vまで充電し、1.0Cの放電レートで3.0Vまで放電する充放電サイクルと、3.0Cの放電レートで3.0Vまで放電する充放電サイクルをそれぞれ行った。1.0Cにおける電池容量に対する3.0Cにおける電池容量の割合を百分率で算出して充放電レート特性とし、下記の基準で判断した。この値が高いほど内部抵抗が小さく、高速充放電が可能であることを示す。
 (評価基準)
 A:70%以上
 B:65%以上70%未満
 C:60%以上65%未満
 D:60%未満
 〔二次電池の高温サイクル特性の評価試験〕
 ラミネート型のリチウムイオン二次電池を、24時間静置した後に、25℃、4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量C0を測定した。さらに、60℃環境下で、0.1Cの充放電レートで4.2Vに充電し、3.0Vまで放電する充放電を繰り返し、100サイクル後の容量C1を測定した。高温サイクル特性はΔC=C1/C0×100(%)で示す容量維持率にて評価した。この値が高いほど放電容量の低下が少なく、サイクル特性に優れている。
 (評価基準)
 A:80%以上
 B:75%以上80%未満
 C:70%以上75%未満
 D:70%未満
 〔二次電池の信頼性試験〕
 ラミネート型のリチウムイオン二次電池を、24時間静置した後に、25℃、0.1Cの充放電レートにて、4.2Vまで充電し3.0Vまで放電する充放電の操作を行い、さらに0.1Cの充電レートで4.2Vに充電した。この電池を恒温槽内に入れ、5℃/分で150℃まで昇温し、更に150℃で1時間放置した。その後、各電池の短絡の有無を調べた。短絡の発生していない電池が、信頼性に優れている。
 (評価基準)
 良:短絡無し
 不良:短絡有り
[実施例1]
 (1-1.シードポリマー粒子aの製造)
 撹拌機を備えた反応器に、ドデシル硫酸ナトリウムを0.08部、過硫酸アンモニウムを0.23部、及びイオン交換水を100部入れて混合し混合物Aとし、80℃に昇温した。
 一方、別の容器中でアクリル酸ブチル93.8部、メタクリル酸2.0部、アクリロニトリル2.0部、アリルグリシジルエーテル1.0部、N-メチロールアクリルアミド1.2部、ドデシル硫酸ナトリウム0.1部、及びイオン交換水100部を混合して、単量体混合物1の分散体を調製した。
 この単量体混合物1の分散体を、4時間かけて、混合物A中に連続的に添加して重合させた。単量体混合物1の分散体の連続的な添加中の反応系の温度は80℃に維持し、反応を行った。連続的な添加の終了後、さらに90℃で3時間反応を継続させた。
 これにより、個数平均粒子径284nmのシードポリマー粒子aの水分散体を得た。
 (1-2.シードポリマー粒子Aの製造)
 次に、撹拌機を備えた反応器に、工程(1-1)で得たシードポリマー粒子aの水分散体を固形分基準(即ち、シードポリマー粒子aの重量基準)で20部、単量体としてエチレングリコールジメタクリレート(共栄社化学株式会社「ライトエステルEG」)を100部、乳化剤としてドデシルベンゼンスルホン酸ナトリウムを1.0部、重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート(日油社製「パーブチルO」)を4.0部、及びイオン交換水を200部入れ、35℃で12時間撹拌することで、シードポリマー粒子aに単量体及び重合開始剤を完全に吸収させた。その後、これを90℃で5時間重合させた。その後、スチームを導入して未反応の単量体および開始剤分解生成物を除去した。
 これにより、個数平均粒子径516nmのシードポリマー粒子Aの水分散体を得た。
 (1-3.非導電性粒子Aの製造)
 次に、撹拌機を備えた反応器に、単量体として、メタクリル酸メチル87.0部、アクリル酸ブチル13.0部、乳化剤としてドデシルベンゼンスルホン酸ナトリウムを1.0部、重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート(日油社製「パーブチルO」)を4.0部、及びイオン交換水を200部入れ、粗い液滴が目視で確認できなくなるまで撹拌した。これを、インライン型乳化分散機(太平洋機工社製「キャビトロン」)を用いて、15,000rpmの回転数で1分間高速剪断攪拌して、重合性単量体組成物の分散液を得た。これに、工程(1-2)で得たシードポリマー粒子Aの水分散体を固形分基準(即ち、シードポリマー粒子Aの重量基準)で100部入れ、35℃で12時間撹拌することで、シードポリマー粒子Aに単量体及び重合開始剤を完全に吸収させた。その後、これを90℃で5時間重合させた。その後、スチームを導入して未反応の単量体及び開始剤分解生成物を除去した。
 これにより、個数平均粒子径650nmのコアシェル構造を有する非導電性粒子Aの水分散体を得た。
 (1-4.粒子状重合体の製造)
 撹拌機を備えた反応器に、ドデシル硫酸ナトリウムを0.06部、過硫酸アンモニウムを0.23部、及びイオン交換水を100部入れて混合し混合物Bとし、80℃に昇温した。
 一方、別の容器中でアクリル酸ブチル66.8部、アクリル酸エチル17.0部、メタクリル酸2.0部、アクリロニトリル12.0部、アリルグリシジルエーテル1.0部、N-メチロールアクリルアミド1.2部、ドデシル硫酸ナトリウム0.1部、及びイオン交換水100部を混合して、単量体混合物2の分散体を調製した。
 この単量体混合物2の分散体を、4時間かけて、上で得た混合物B中に、連続的に添加して重合させた。単量体混合物2の分散体の連続的な添加中の反応系の温度は80℃に維持し、反応を行った。連続的な添加の終了後、さらに90℃で3時間反応を継続させた。これにより、粒子状重合体の水分散体を得た。
 得られた粒子状重合体の水分散体を25℃に冷却後、これにアンモニア水を添加してpHを7に調整し、その後スチームを導入して未反応の単量体を除去した。その後、イオン交換水で固形分濃度の調整を更に行いながら、200メッシュ(孔径:約77μm)のステンレス製金網でろ過を行った。これにより、平均粒子径370nm、固形分濃度40%の粒子状重合体の水分散液を得た。
 (1-5.多孔膜用スラリーの製造)
 工程(1-3)で得た非導電性粒子Aの水分散体、工程(1-4)で得た粒子状重合体の水分散液、水溶性重合体としてカルボキシメチルセルロース(ダイセル化学社製「ダイセル1220」)、及び湿潤剤(サンノプコ株式会社製「SNウエット980」)を、固形分重量比が82:12:5:1となるように水中で混合して、固形分濃度20%の多孔膜用スラリーを得た。
 (1-6.二次電池用セパレーター(多孔膜付セパレーター)の製造)
 湿式法により製造された単層のポリエチレン製セパレーター(厚さ16μm)を、有機セパレーターとして用意した。この有機セパレーターの一方の面に、工程(1-5)で得た二次電池用スラリーを、乾燥後の厚みが4μmとなるように塗布してスラリー層を得た。その後、スラリー層を50℃で10分間乾燥し、多孔膜を形成した。続いて、有機セパレーターのもう一方の面にも、同様に多孔膜を形成し、両面に多孔膜を有する、多孔膜付セパレーターを得た。
 (1-7.正極の製造)
 正極活物質としてLiCoOを95部用意し、これに、正極用結着剤としてのPVDF(ポリフッ化ビニリデン;呉羽化学社製「KF-1100」)を固形分換算量で3部となるように加え、さらに、アセチレンブラック2部、及びN-メチルピロリドン20部を加えて、これらをプラネタリーミキサーで混合して、正極用スラリーを得た。この正極用スラリーを、厚さ18μmのアルミニウム箔の片面に塗布し、120℃で3時間乾燥した。その後、ロールプレスして、全厚みが100μmの正極合剤層を有する正極を得た。
 (1-8.負極の製造)
 負極活物質として粒径20μm、比表面積4.2m/gのグラファイトを98部用意した。これと、負極用結着剤としてSBR(スチレン-ブタジエンゴム、ガラス転移点が-10℃)を固形分換算量で1部混合した。この混合物にさらにカルボキシメチルセルロースを1.0部加えて、これらをプラネタリーミキサーで混合して、負極用スラリーを調製した。この負極用スラリーを厚さ18μmの銅箔の片面に塗布し、120℃で3時間乾燥した。その後、ロールプレスして、全厚みが100μmの負極合剤層を有する負極を得た。
 (1-9.二次電池の製造)
 工程(1-7)で得られた正極を幅40mm×長さ40mmに切り出して、正方形の正極を得た。工程(1-8)で得られた負極を幅42mm×長さ42mmに切り出して、正方形の負極を得た。また、工程(1-6)で得られた多孔膜付きセパレーターを幅46mm×長さ46mmに切り出して、正方形の多孔膜付セパレーターを得た。
 上記、正方形の正極の正極合剤層側の面上に、正方形の多孔膜付セパレーターを配置した。さらに、多孔膜付セパレーター上に正方形の負極を、負極合剤層側の面が多孔膜付セパレーターに対向するように配置した。この積層体に、卓上型テストプレスで、温度90℃、時間10秒、圧力1MPaの条件でヒートプレスを施すことで、セパレーターが正極および負極に接着して一体化した積層体を得た。
 上記の積層体をアルミ包材に配置した。このアルミ包材の中に、電解液を空気が残らないように注入した。さらに150℃のヒートシールを行うことで、アルミ包材の開口を密封してラミネート型のリチウムイオン二次電池を製造した。なお、電解液は、濃度1.0MのLiPF溶液にVC(ビニレンカーボネート)を2容量%添加したものを用いた。また、前記LiPF溶液の溶媒は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒(EC/DEC=1/2容量比)である。
 (1-10.評価)
 得られた多孔膜付セパレーターについて、熱収縮試験、ブロッキング試験、粉落ち試験および電極への接着試験を行った。また、得られた二次電池のレート特性、高温サイクル特性及び信頼性の評価試験を行った。
[実施例2]
 工程(1-3)において、メタクリル酸メチルの量を84.0部に変更し、アクリル酸ブチルの量を16.0部に変更したこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例3]
 工程(1-4)において、アクリル酸ブチルの量を93.8部に変更し、アクリル酸エチルを使用せず、アクリロニトリルの量を2.0部に変更したこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例4]
 工程(1-5)において、水溶性重合体としてカルボキシメチルセルロースの代わりにポリビニルピロリドンを用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例5]
 工程(1-3)において、メタクリル酸メチルの量を82.0部に変更し、アクリル酸ブチルの量を18.0部に変更したこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例6]
 工程(1-3)において、メタクリル酸メチルの量を100.0部に変更し、アクリル酸ブチルを使用しなかったこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例7]
 工程(1-4)において、アクリル酸ブチルの量を22.8部に変更し、アクリル酸エチルの代わりにメタクリル酸メチルを61.0部用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例8]
 工程(1-5)において、水溶性重合体としてカルボキシメチルセルロースの代わりに完全ケン化型ポリビニルアルコール(日本合成化学社製「NH-26」)を用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例9]
 (9-1.多孔膜付正極の製造)
 実施例1の工程(1-7)で得た正極の正極合剤層側の面に、実施例1の工程(1-5)で得た多孔膜用スラリーを、乾燥後の厚みが4μmとなるように塗布してスラリー層を得た。この際、多孔膜用スラリーは、正極合剤層を完全に覆うように塗布した。その後、スラリー層を50℃で10分間乾燥し、多孔膜を形成し、多孔膜付正極を得た。得られた多孔膜付正極は、(多孔膜)/(正極合剤層)/(アルミ箔)の層構成を有していた。
 (9-2.多孔膜付負極の製造)
 実施例1の工程(1-8)で得た負極の負極合剤層側の面に、実施例1の工程(1-5)で得た多孔膜用スラリーを、乾燥後の厚みが4μmとなるように塗布してスラリー層を得た。この際、多孔膜用スラリーは、負極合剤層を完全に覆うように塗布した。その後、スラリー層を50℃で10分間乾燥し、多孔膜を形成し、多孔膜付負極を得た。得られた多孔膜付負極は、(多孔膜)/(負極合剤層)/(銅箔)の層構成を有していた。
 (9-3.二次電池等の製造及び評価)
 下記の事項i.~iv.を変更したこと以外は、実施例1の工程(1-9)と同様に操作して、二次電池を製造した。
 i.多孔膜付セパレーターに代えて、有機セパレーター(湿式法により製造された単層のポリエチレン製セパレーター、厚さ16μm)をそのまま用いた。
 ii.正極に代えて、工程(9-1)で得た多孔膜付正極を用いた。
 iii.負極に代えて、工程(9-2)で得た多孔膜付負極を用いた。
 iv.多孔膜付正極の多孔膜層側の面上に有機セパレーターを配置した。さらに、有機セパレーター上に多孔膜付負極を、多孔膜層側の面が有機セパレーターに対向するように配置した。
 得られた二次電池及びその他の材料について、実施例1と同様に評価した。但し、セパレーターの熱収縮試験は行わず、代わりに多孔膜付電極の信頼性試験を行った。信頼性試験の結果は、「良」であった。
[実施例10]
 工程(1-3)において、メタクリル酸メチル及びアクリル酸ブチルの代わりに、スチレン90.0部及び1,3-ブタジエン10.0部を用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例11]
 工程(1-4)において、アクリル酸ブチル及びアクリル酸エチルの代わりに、スチレン21.8部及び1,3-ブタジエン62.0部を用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例12]
 工程(1-3)において、シードポリマー粒子Aの水分散体の量を、固形分基準(即ち、シードポリマー粒子Aの重量基準)で357.0部に変更したこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例13]
 工程(1-3)において、シードポリマー粒子Aの水分散体の量を、固形分基準(即ち、シードポリマー粒子Aの重量基準)で27.0部に変更したこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例14]
 工程(1-2)において、単量体としてエチレングリコールジメタクリレート100部の代わりに、エチレングリコールジメタクリレート75部及びメタクリル酸メチル25部を用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例15]
 工程(1-2)において、単量体としてエチレングリコールジメタクリレート100部の代わりに、エチレングリコールジメタクリレート50部及びメタクリル酸メチル50部を用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例16]
 工程(1-3)において、メタクリル酸メチルの量を92.0部に変更し、アクリル酸ブチルの量を8.0部に変更したこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例17]
 工程(1-4)において、アクリル酸ブチルの量を51.4部に変更し、アクリル酸エチルの代わりにメタクリル酸メチルを32.4部用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例18]
 工程(1-4)において、アクリル酸ブチルの量を39.0部に変更し、アクリル酸エチルの代わりにメタクリル酸メチルを44.8部用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例19]
 工程(1-3)において、メタクリル酸メチル87.0部の代わりに、メタクリル酸メチル37.0部及びスチレン50.0部を用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[実施例20]
 工程(1-4)において、アクリル酸ブチル66.8部及びアクリル酸エチル17.0部の代わりに、アクリル酸ブチル39.9部、アクリル酸エチル10.1部、スチレン2.8部及び1,3-ブタジエン31.0部を用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[比較例1]
 工程(1-3)において、メタクリル酸メチルの量を80.0部に変更し、アクリル酸ブチルの量を20.0部に変更したこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[比較例2]
 工程(1-3)において、メタクリル酸メチルの量を70.0部に変更し、アクリル酸ブチルの代わりにメタクリル酸を30.0部用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[比較例3]
 工程(1-2)において、エチレングリコールジメタクリレートの代わりにスチレン100部を用いたこと以外は実施例1と同様にして、多孔膜付セパレーター及び二次電池を製造し、評価した。
[結果]
 以下、表1~表8において実施例及び比較例の構成を示し、表9~表16において実施例及び比較例の結果を示した。
 表において、各略称の意味は、以下の通りである。
 EGDMA:エチレングリコールジメタクリレート
 ST:スチレン
 LASNa:ドデシルベンゼンスルホン酸ナトリウム
 PBO:t-ブチルパーオキシ-2-エチルヘキサノエート
 MMA:メタクリル酸メチル
 BA:アクリル酸ブチル
 MAA:メタクリル酸
 BD:1,3-ブタジエン
 EA:アクリル酸エチル
 AN:アクリロニトリル
 NMA:N-メチロールアクリルアミド
 AGE:アリルグリシジルエーテル
 SDS Na:ドデシル硫酸ナトリウム
 ASP:過硫酸アンモニウム
 シェル部の厚み:非導電性粒子の個数平均粒子径に対するシェル部の厚みの比
 (メタ)アクリレート率:(メタ)アクリレート単位の比率
 セパ:セパレーター
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
[検討]
 前記の表から分かるように、実施例においては、接着試験、ブロッキング試験、粉落ち試験及びセパレーターの熱収縮試験のいずれにおいても良好な結果が得られている。このことから、本発明によれば、接着性及び耐ブロッキング性に優れ、粉落ちを生じにくく、且つ、有機セパレーターと組み合わせてセパレーターを構成した場合にセパレーターの収縮を抑制しうる二次電池用多孔膜を実現しうることが確認された。

Claims (10)

  1.  非導電性粒子、粒子状重合体及び水溶性重合体を含み、
     前記非導電性粒子が、コアシェル構造を有する重合体の粒子であり、
     前記非導電性粒子のコア部の軟化開始点又は分解点が、175℃以上であり、
     前記非導電性粒子のシェル部が、85℃~145℃に軟化開始点を有する、二次電池用多孔膜。
  2.  前記粒子状重合体のガラス転移点が、-80℃~60℃であり、
     前記水溶性重合体の軟化開始点が、85℃以上である、請求項1記載の二次電池用多孔膜。
  3.  前記非導電性粒子のシェル部及び前記粒子状重合体が、(メタ)アクリレート単位を50重量%以上含む、請求項1又は2記載の二次電池用多孔膜。
  4.  前記非導電性粒子のシェル部が、前記非導電性粒子の個数平均粒子径に対して、3%~18%の厚みを有する、請求項1~3のいずれか一項に記載の二次電池用多孔膜。
  5.  前記非導電性粒子の個数平均粒径が、100nm~1500nmである、請求項1~4のいずれか一項に記載の二次電池用多孔膜。
  6.  請求項1~5のいずれか一項に記載の二次電池用多孔膜の製造方法であって、
     前記非導電性粒子、前記粒子状重合体、前記水溶性重合体及び媒体を混合して多孔膜用スラリーを得、
     前記多孔膜用スラリーを基材上に塗布してスラリー層を得、
     前記スラリー層を乾燥することを含む、二次電池用多孔膜の製造方法。
  7.  前記媒体が水系媒体であり、
     前記多孔膜用スラリーが水性分散体である、請求項6に記載の二次電池用多孔膜の製造方法。
  8.  集電体、
     電極活物質及び電極合剤層用結着剤を含み、前記集電体上に付着した電極合剤層、並びに、
     前記電極合剤層上に形成された請求項1~5のいずれか一項に記載の多孔膜を備える、二次電池用電極。
  9.  有機セパレーター、及び
     前記有機セパレーター上に形成された請求項1~5のいずれか一項に記載の多孔膜を備える、二次電池用セパレーター。
  10.  正極、負極、セパレーター及び電解液を含む二次電池であって、
     前記正極、前記負極及び前記セパレーターの少なくともいずれかが、請求項1~5のいずれか一項に記載の多孔膜を備える、二次電池。
PCT/JP2013/057292 2012-03-22 2013-03-14 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池 WO2013141140A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014506182A JP5682737B2 (ja) 2012-03-22 2013-03-14 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-065068 2012-03-22
JP2012065068 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013141140A1 true WO2013141140A1 (ja) 2013-09-26

Family

ID=49222599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057292 WO2013141140A1 (ja) 2012-03-22 2013-03-14 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池

Country Status (2)

Country Link
JP (1) JP5682737B2 (ja)
WO (1) WO2013141140A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025093A (ja) * 2014-07-23 2016-02-08 ラッキー フィルム カンパニー・リミテッド スラリー組成物およびそれを含んでなるリチウムイオン電池用セパレータ
JP2016031911A (ja) * 2014-07-30 2016-03-07 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP2016081888A (ja) * 2014-10-22 2016-05-16 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層および非水系二次電池
JP2016100149A (ja) * 2014-11-20 2016-05-30 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池部材、非水系二次電池、および非水系二次電池用接着層の製造方法
JP2016186920A (ja) * 2015-03-27 2016-10-27 日立マクセル株式会社 非水電解質二次電池
JP2017098203A (ja) * 2015-11-27 2017-06-01 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
WO2018027652A1 (zh) * 2016-08-10 2018-02-15 东莞新能源科技有限公司 隔膜、制备方法及电化储能装置
WO2018043200A1 (ja) * 2016-08-30 2018-03-08 Dic株式会社 リチウムイオン二次電池バインダー用水性樹脂組成物、及びリチウムイオン二次電池用セパレータ
CN108448032A (zh) * 2017-02-16 2018-08-24 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
WO2018198940A1 (ja) * 2017-04-26 2018-11-01 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、並びに非水系二次電池およびその製造方法
JP2019036421A (ja) * 2017-08-10 2019-03-07 トヨタ自動車株式会社 セパレータ付き電極板の製造方法
WO2020040031A1 (ja) * 2018-08-24 2020-02-27 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用セパレータおよび非水系二次電池
WO2021106589A1 (ja) * 2019-11-27 2021-06-03 Dic株式会社 リチウムイオン二次電池バインダー用水性樹脂組成物、及びリチウムイオン二次電池用セパレータ
WO2023284348A1 (zh) * 2021-07-13 2023-01-19 上海恩捷新材料科技有限公司 一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843116B2 (ja) * 2013-10-04 2016-01-13 トヨタ自動車株式会社 非水電解質二次電池
JP6903090B2 (ja) * 2019-04-01 2021-07-14 旭化成株式会社 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166756A (ja) * 2003-11-28 2005-06-23 Nippon Zeon Co Ltd 電気化学素子用バインダー
JP2006100051A (ja) * 2004-09-29 2006-04-13 Hitachi Maxell Ltd 非水二次電池およびその製造方法
JP2006139978A (ja) * 2004-11-11 2006-06-01 Hitachi Maxell Ltd 非水電池およびその製造方法
JP2006331760A (ja) * 2005-05-25 2006-12-07 Japan Vilene Co Ltd 電池用セパレータ及び電池
JP2008287888A (ja) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp 非水電解液二次電池用コーティング組成物
WO2011013604A1 (ja) * 2009-07-29 2011-02-03 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
JP2011054503A (ja) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd 電気化学素子用セパレータ、電気化学素子およびその製造方法
WO2011040562A1 (ja) * 2009-09-30 2011-04-07 日本ゼオン株式会社 二次電池用多孔膜及び二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166756A (ja) * 2003-11-28 2005-06-23 Nippon Zeon Co Ltd 電気化学素子用バインダー
JP2006100051A (ja) * 2004-09-29 2006-04-13 Hitachi Maxell Ltd 非水二次電池およびその製造方法
JP2006139978A (ja) * 2004-11-11 2006-06-01 Hitachi Maxell Ltd 非水電池およびその製造方法
JP2006331760A (ja) * 2005-05-25 2006-12-07 Japan Vilene Co Ltd 電池用セパレータ及び電池
JP2008287888A (ja) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp 非水電解液二次電池用コーティング組成物
WO2011013604A1 (ja) * 2009-07-29 2011-02-03 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
JP2011054503A (ja) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd 電気化学素子用セパレータ、電気化学素子およびその製造方法
WO2011040562A1 (ja) * 2009-09-30 2011-04-07 日本ゼオン株式会社 二次電池用多孔膜及び二次電池

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025093A (ja) * 2014-07-23 2016-02-08 ラッキー フィルム カンパニー・リミテッド スラリー組成物およびそれを含んでなるリチウムイオン電池用セパレータ
JP2016031911A (ja) * 2014-07-30 2016-03-07 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP2016081888A (ja) * 2014-10-22 2016-05-16 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層および非水系二次電池
JP2016100149A (ja) * 2014-11-20 2016-05-30 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池部材、非水系二次電池、および非水系二次電池用接着層の製造方法
JP2016186920A (ja) * 2015-03-27 2016-10-27 日立マクセル株式会社 非水電解質二次電池
JP2017098203A (ja) * 2015-11-27 2017-06-01 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
WO2018027652A1 (zh) * 2016-08-10 2018-02-15 东莞新能源科技有限公司 隔膜、制备方法及电化储能装置
WO2018043200A1 (ja) * 2016-08-30 2018-03-08 Dic株式会社 リチウムイオン二次電池バインダー用水性樹脂組成物、及びリチウムイオン二次電池用セパレータ
JPWO2018043200A1 (ja) * 2016-08-30 2018-08-30 Dic株式会社 リチウムイオン二次電池バインダー用水性樹脂組成物、及びリチウムイオン二次電池用セパレータ
CN108448032A (zh) * 2017-02-16 2018-08-24 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
CN108448032B (zh) * 2017-02-16 2022-10-18 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
CN110557970A (zh) * 2017-04-26 2019-12-10 日本瑞翁株式会社 非水系二次电池多孔膜用粘结剂组合物、非水系二次电池多孔膜用浆料组合物、非水系二次电池用多孔膜以及非水系二次电池及其制造方法
JP7205465B2 (ja) 2017-04-26 2023-01-17 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、並びに非水系二次電池およびその製造方法
CN110557970B (zh) * 2017-04-26 2023-09-15 日本瑞翁株式会社 多孔膜用粘结剂组合物、多孔膜用浆料组合物、多孔膜以及非水系二次电池及其制造方法
JPWO2018198940A1 (ja) * 2017-04-26 2020-03-12 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、並びに非水系二次電池およびその製造方法
WO2018198940A1 (ja) * 2017-04-26 2018-11-01 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、並びに非水系二次電池およびその製造方法
US11258133B2 (en) 2017-04-26 2022-02-22 Zeon Corporation Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery and production method therefor
JP2019036421A (ja) * 2017-08-10 2019-03-07 トヨタ自動車株式会社 セパレータ付き電極板の製造方法
CN112567568A (zh) * 2018-08-24 2021-03-26 日本瑞翁株式会社 非水系二次电池功能层用浆料组合物、非水系二次电池用功能层、非水系二次电池用间隔件以及非水系二次电池
WO2020040031A1 (ja) * 2018-08-24 2020-02-27 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用セパレータおよび非水系二次電池
JP7472791B2 (ja) 2018-08-24 2024-04-23 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用セパレータおよび非水系二次電池
JPWO2021106589A1 (ja) * 2019-11-27 2021-12-02 Dic株式会社 リチウムイオン二次電池バインダー用水性樹脂組成物、及びリチウムイオン二次電池用セパレータ
WO2021106589A1 (ja) * 2019-11-27 2021-06-03 Dic株式会社 リチウムイオン二次電池バインダー用水性樹脂組成物、及びリチウムイオン二次電池用セパレータ
CN114342175A (zh) * 2019-11-27 2022-04-12 Dic株式会社 锂离子二次电池粘结剂用水性树脂组合物及锂离子二次电池用间隔件
CN114342175B (zh) * 2019-11-27 2024-03-08 Dic株式会社 锂离子二次电池粘结剂用水性树脂组合物及锂离子二次电池用间隔件
WO2023284348A1 (zh) * 2021-07-13 2023-01-19 上海恩捷新材料科技有限公司 一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜

Also Published As

Publication number Publication date
JPWO2013141140A1 (ja) 2015-08-03
JP5682737B2 (ja) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5682737B2 (ja) 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池
JP5652572B2 (ja) 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池
KR102165556B1 (ko) 이차 전지용 세퍼레이터
JP5549739B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
JP5601472B2 (ja) 多孔膜、二次電池電極及びリチウムイオン二次電池
JP6375949B2 (ja) 二次電池用正極の製造方法、二次電池及び二次電池用積層体の製造方法
KR101819067B1 (ko) 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지
JP5605591B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池、及び二次電池多孔膜の製造方法
JP5617634B2 (ja) リチウムイオン二次電池用電極
JP6287862B2 (ja) 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
JP6052290B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2015129408A1 (ja) 二次電池多孔膜用バインダー組成物、二次電池多孔膜用スラリー、二次電池用多孔膜及び二次電池
KR20190125986A (ko) 비수계 이차 전지용 바인더 조성물 및 비수계 이차 전지용 슬러리 조성물
WO2012043812A1 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
JP2014149936A (ja) 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
JP6135258B2 (ja) 二次電池多孔膜用スラリー、二次電池用多孔膜及びその製造方法、並びに用途
JP2014149935A (ja) 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
WO2013147006A1 (ja) 二次電池用多孔膜、二次電池用多孔膜スラリー、非導電性粒子、二次電池用電極、二次電池用セパレータ及び二次電池
JP2014032758A (ja) リチウムイオン二次電池用電極の製造方法、及びリチウムイオン二次電池
KR20200021935A (ko) 전기 화학 소자용 바인더 조성물, 전기 화학 소자 기능층용 슬러리 조성물, 전기 화학 소자 접착층용 슬러리 조성물, 및 복합막
KR20200024791A (ko) 전기 화학 소자용 바인더 조성물, 전기 화학 소자 기능층용 슬러리 조성물, 전기 화학 소자 접착층용 슬러리 조성물, 및 복합막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13765269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13765269

Country of ref document: EP

Kind code of ref document: A1