WO2023284348A1 - 一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜 - Google Patents

一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜 Download PDF

Info

Publication number
WO2023284348A1
WO2023284348A1 PCT/CN2022/087620 CN2022087620W WO2023284348A1 WO 2023284348 A1 WO2023284348 A1 WO 2023284348A1 CN 2022087620 W CN2022087620 W CN 2022087620W WO 2023284348 A1 WO2023284348 A1 WO 2023284348A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
polymer ion
functional resin
conducting functional
shell
Prior art date
Application number
PCT/CN2022/087620
Other languages
English (en)
French (fr)
Inventor
庄志
王中奇
陈永乐
廖晨博
孙敏强
胡君
单华靖
冶成良
程跃
Original Assignee
上海恩捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恩捷新材料科技有限公司 filed Critical 上海恩捷新材料科技有限公司
Publication of WO2023284348A1 publication Critical patent/WO2023284348A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of batteries, and in particular relates to the synthesis of a polymer ion-conducting resin and a preparation method of a lithium battery diaphragm containing the ion-conducting resin.
  • the separator is one of the key inner components. Its main function is to separate the positive and negative electrodes of the battery, prevent the two electrodes from contacting and short circuit, and also have the function of allowing electrolyte ions to pass through.
  • the separator and the pole piece Or poor bonding or bonding of the electrodes may lead to obstruction of lithium ion passage, which will affect the smooth progress of the charging and discharging process, and even lead to the phenomenon of lithium precipitation on the surface, thereby reducing the rate performance and cycle performance of the battery.
  • the present invention provides a polymer ion-conducting resin with a core-shell structure, and a lithium battery separator coated with the ion-conducting functional resin of the polymer.
  • the core-shell polymer microspheres contain a core and A special microsphere material composed of a shell layer wrapped on the surface of the core.
  • the core-shell structure microsphere can combine the functions of the two polymers, so that the separator can obtain better performance. It can be tightly attached to the pole piece or electrode, and has a higher electrolyte absorption rate.
  • the preparation of the core-shell resin at least includes the following steps:
  • Step 1 Add emulsifier and deionized water into the reaction kettle equipped with thermometer, magnetic stirring, reflux condensing device and constant pressure dropping funnel, raise the temperature to the reaction temperature, add initiator, pass nitrogen gas for 20min, and use constant pressure dropping funnel Slowly add the monomer methyl methacrylate dropwise, and continue to react for 2 hours after the dropwise addition to complete the stage of nuclear polymerization.
  • Step 2 Add the shell monomer, the required amount of emulsifier, the required amount of initiator, and the required amount of deionized water into the core layer obtained in step 1, raise the temperature to the reaction temperature, stir for 4 hours, and take out Demulsification, washing with water, and drying to obtain a core-shell structure polymer ion-conducting functional resin.
  • the core of the core-shell structure is polymethyl methacrylate
  • the outer shell is poly(isoprene-co-styrene), trimethylsilyl acrylic resin, polypropylene n-butyl ester, polybutylene Any one of diene and polymethylsiloxane.
  • the raw materials for the preparation of the polymer ion-conducting resin with a core-shell structure include, by weight fraction, 50-70 parts of the core layer monomer, 15-25 parts of the shell layer monomer, 0.1-2 parts of the emulsifier, and an initiator 0.1 to 1 part, 100 to 300 parts of deionized water.
  • the emulsifier is selected from the group consisting of: sodium lauryl sulfate, sodium tetradecyl sulfate, sodium cetyl sulfate, sodium octadecyl sulfate, sodium dodecyl sulfate, tetradecyl Any one or a mixture of sodium sulfonates.
  • the initiator is any one or a mixture of potassium persulfate, sodium persulfate and sodium sulfite.
  • the particle size of the polymer ion-conducting resin with core-shell structure is 50nm-500nm.
  • the synthesized polymer ion-conducting resin is coated on one or both sides of the porous substrate to prepare a lithium battery separator.
  • the porous base material is one or more of polyethylene, polypropylene, polyethylene terephthalate, polyamide, high-density polyethylene, polyacrylonitrile, and viscose fiber.
  • the core-shell resin is prepared as a whole, and the crystallinity of the core is greater than that of the shell layer by more than 20%, and then the core-shell resin is composited with a porous base film to obtain a diaphragm.
  • the entire resin structure is a shell at the microscopic level.
  • the core polymer is composed of one or more sides of the separator coated with the resin layer, and the gap between the core and the shell can provide channels for the organic solvent and small molecule compounds in the electrolyte, so that the separator has higher wettability and absorption.
  • the battery separator of the embodiment of the present application and its preparation method, and the preparation method of the polymer ion-conducting functional resin are described in detail below.
  • each part by weight is 1 g.
  • Step 1 Add 20 parts of sodium lauryl sulfate and 1000 parts of deionized water into a reaction kettle equipped with a thermometer, magnetic stirring, reflux condensing device and constant pressure dropping funnel, stir at 30°C, add 10 parts Potassium persulfate, nitrogen gas for 20min, constant pressure dropping funnel slowly drop 500 parts of monomer methyl methacrylate, after the dropwise addition, continue to react for 2h to complete the stage of nuclear polymerization.
  • Step 2 Add 200 parts of poly(isoprene-co-styrene), 10 parts of sodium lauryl sulfate, 10 parts of potassium persulfate, 1500 parts of deionized water to the core obtained in step 1 In the layer, the temperature was raised to 80° C., stirred and reacted for 4 hours, taken out, demulsified, washed with water, and dried to obtain a core-shell structure polymer ion-conducting functional resin.
  • Step 2 300 parts of trimethylsilyl acrylic resin, 20 parts of sodium tetradecyl sulfate, 15 parts of sodium persulfate, and 2000 parts of deionized water are added to the core layer obtained in step 1, and the temperature is raised to Stir and react at 90°C for 4 hours, take out to break the emulsion, wash with water, and dry to obtain a core-shell structure polymer ion-conducting functional resin.
  • a lithium battery separator is prepared by setting a continuous polymer ion-conducting functional resin functional layer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • Step 2 Add 300 parts of polypropylene n-butyl ester, 20 parts of sodium cetyl sulfate, 15 parts of sodium sulfite, and 2000 parts of deionized water to the core layer obtained in step 1, raise the temperature to 85°C, and stir After reacting for 4 hours, take out the demulsification, wash with water, and dry to obtain a core-shell structure polymer ion-conducting functional resin.
  • a lithium battery separator is prepared by setting a continuous polymer ion-conducting functional resin functional layer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • Step 1 Add 25 parts of sodium octadecyl sulfate and 1000 parts of deionized water into a reaction kettle equipped with a thermometer, magnetic stirring, reflux condensing device and constant pressure dropping funnel, stir at 40°C, add 20 parts Sodium sulfite, nitrogen gas for 20min, constant pressure dropping funnel slowly drop 6000 parts of monomer methyl methacrylate, after the dropwise addition, continue to react for 2h to complete the stage of nuclear polymerization.
  • Step 2 Add 300 parts of polybutadiene, 20 parts of sodium octadecyl sulfate, 15 parts of sodium sulfite, and 2000 parts of deionized water to the core layer obtained in step 1, raise the temperature to 90°C, and stir for reaction After 4 hours, it was taken out for demulsification, washed with water, and dried to obtain a core-shell structure polymer ion-conducting functional resin.
  • a lithium battery separator is prepared by setting a continuous polymer ion-conducting functional resin functional layer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • Step 1 Add 30 parts of sodium dodecylsulfonate and 2000 parts of deionized water into a reaction kettle equipped with a thermometer, magnetic stirring, reflux condensing device and constant pressure dropping funnel, stir at 40°C, add 20 Parts of sodium persulfate, nitrogen gas for 20 minutes, slowly drop 5000 parts of monomer methyl methacrylate into the constant pressure dropping funnel, and continue to react for 2 hours to complete the stage of nuclear polymerization.
  • Step 2 Add 300 parts of polymethylsiloxane, 25 parts of sodium dodecylsulfonate, 20 parts of sodium sulfite, and 2000 parts of deionized water to the core layer obtained in step 1, and raise the temperature to 85°C , stirring and reacting for 4 hours, taking out to break the emulsion, washing with water, and drying to obtain a core-shell structure polymer ion-conducting functional resin.
  • a lithium battery separator is prepared by setting a continuous polymer ion-conducting functional resin functional layer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • a lithium battery separator was prepared by setting a continuous polymethyl methacrylate polymer functional layer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • a lithium battery separator was prepared by setting a continuous poly(isoprene-co-styrene) polymer functional layer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • a lithium battery separator is prepared by setting a continuous polytrimethylsilyl acrylic resin polymer functional layer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • a lithium battery separator was prepared by setting a continuous functional layer of polypropylene n-butyl ester polymer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • a lithium battery separator was prepared by setting a continuous polybutadiene polymer functional layer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • a lithium battery separator is prepared by setting a continuous polymethylsiloxane polymer functional layer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • a lithium battery separator was prepared by setting a continuous polyvinylidene fluoride functional layer with a thickness of 2 ⁇ m on both sides of a polyethylene single-layer porous base film with a thickness of 12 ⁇ m.
  • the polyvinylidene fluoride used in coating the separator was purchased from Arkema, France.
  • Air permeability can also be characterized by Gurley value, which refers to the time required for a specific amount of air to pass through a diaphragm of a specific area under a specific pressure (standard Gruley: 100mL gas passes through at a pressure of 4.88 inches of water column 1 square inch of diaphragm).
  • Gurley value refers to the time required for a specific amount of air to pass through a diaphragm of a specific area under a specific pressure (standard Gruley: 100mL gas passes through at a pressure of 4.88 inches of water column 1 square inch of diaphragm).
  • Gurley value refers to the time required for a specific amount of air to pass through a diaphragm of a specific area under a specific pressure (standard Gruley: 100mL gas passes through at a pressure of 4.88 inches of water column 1 square inch of diaphragm).
  • the air permeability increase value is the air permeability value of the coated membrane minus the air permeability value of the base film.
  • the most commonly used method for testing the resistance of the diaphragm is the AC impedance method (EIS).
  • EIS AC impedance method
  • the resistance of the diaphragm in the electrolyte is compared to the resistance of the upper electrolyte to obtain the Nm value, which is the MacMullini constant.
  • Apply a sinusoidal AC voltage signal to the measuring device measure the impedance values at different frequencies within a certain range, and then analyze the data with an equivalent circuit to obtain information on the ionic resistance of the diaphragm.
  • Tensile strength test adopt GB 13022-91, film tensile performance test method. The test directions are MD and TD directions.
  • the lithium battery separator prepared by the core-shell structure polymer ion-conducting functional resin in the present application has better tensile strength and peel strength than a single-component polymer coating separator with a non-core-shell structure And air permeability, short standing time after liquid injection and low internal resistance, and its liquid absorption rate is higher.
  • the liquid absorption rate of the diaphragm not only reflects the affinity between the diaphragm and the electrolyte, but also reflects the microporous structure of the diaphragm.
  • the exchange provides support for improving the battery rate performance and cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

一种聚合物导离子功能树脂及其制备方法,聚合物导离子功能树脂具有核壳结构,核壳结构包括核及包裹在核外表面的壳层,核的结晶度比外壳层的结晶度大20%以上。将聚合物导离子功能树脂制备的浆料涂覆在多孔基底的一面或两面制成锂电池隔膜,核壳之间的空隙可以为有机溶剂和小分子化合物提供通道,使得隔膜有更高的吸液率;壳层结构的低的结晶度使隔膜在低的热压温度下就可以与极片贴合在一起,为充放电过程中锂离子快速通过提供了保障;同时聚合物导离子功能树脂的核结构的高的结晶度可以使涂布层在外力作用下不易变形从而保持结构的完整性。

Description

一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜 技术领域
本发明属于电池技术领域,具体涉及一种聚合物导离子树脂的合成以及包含该导离子树脂的锂电池隔膜的制备方法。
背景技术
无人机、电动工具、电动汽车、智能医疗设备、机器人等产业的高速增长,对具有快充快放特性的储能器件的需求日益迫切,充放电倍率性能与循环性能成为锂离子电池的关键性能指标。在锂电池的结构中,隔膜是关键的内层组件之一,其主要作用是分隔电池的正、负极,防止两极接触而短路,此外还具有能使电解质离子通过的功能,而隔膜与极片或电极的贴合或粘结不好,可能导致锂离子通过受阻,进而会影响充放电过程顺利进行,甚至导致表面析锂现象的产生,从而降低电池的倍率性能与循环性能。
发明内容
为了解决上述技术问题,本发明提供了一种核壳结构型的聚合物导离子树脂,以及该聚合物导离子功能树脂凃敷的锂电池隔膜,核壳型聚合物微球是内部含有核以及由包裹在核表面的壳层组成的特殊微球材料,相比于完全实心的聚合物微球,核壳结构的微球可以综合两种聚合物的功能,从而使隔膜获得更优异的性能,能紧密得与极片或电极贴合再一起,同时拥有更高的电解液吸液率。
具体的,壳核型树脂的制备至少包括以下步骤:
步骤1:在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入乳化剂和去离子水,升温至反应温度,加入引发剂,通氮气20min, 恒压滴液漏斗缓慢滴加单体甲基丙烯酸甲酯,滴加完毕后继续反应2h完成核聚合的阶段。
步骤2:将壳层单体、所需量的乳化剂、所需量的引发剂、所需量的去离子水加入到步骤1得到的核层中,升温至反应温度,搅拌反应4h,取出破乳、水洗、干燥,得到核壳结构型聚合物导离子功能树脂。
优选的,所述核壳结构核为聚甲基丙烯酸甲酯,外部壳层为聚(异戊二烯-co-苯乙烯)、三甲基硅烷基丙烯酸树脂、聚丙烯正丁酯、聚丁二烯和聚甲基硅氧烷中的任意一种。
优选的,所述核壳结构的聚合物导离子树脂的制备原料,以重量分数计,核层单体50~70份,壳层单体15~25份,乳化剂0.1~2份,引发剂0.1~1份,去离子水100~300份。
优选的,所述乳化剂选自:十二烷基硫酸钠、十四烷基硫酸钠、十六烷基硫酸钠、十八烷基硫酸钠、十二烷基磺酸钠、十四烷基磺酸钠中的任意一种或几种的混合。
优选的,所述引发剂为过硫酸钾、过硫酸钠、亚硫酸钠中的任意一种或几种的混合。
优选的,所述的反应温度为30℃~90℃。
优选的,所述核壳结构的聚合物导离子树脂的颗粒粒径为50nm~500nm。
进一步的,以所合成的聚合物导离子树脂涂覆在多孔基底的一面或两面制备锂电池隔膜。
优选的,所述多孔基底材料为聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚酰胺、高密度聚乙烯、聚丙烯腈、粘胶纤维中的一种或几种。
本发明的有益效果在于:
本案先整体制得壳核型树脂,且所述核的结晶度比外壳层的结晶度大于20%以上,再将核壳型树脂复合多孔基膜制得隔膜,微观层面看整个树脂结构为壳核型聚合物构成;单面或多面涂覆该树脂层的隔膜,核壳之间的空隙可以为电解液中的有机溶剂和小分子化合物提供通道,使得隔膜有更高的润湿性与吸液率;由于壳层物质结晶度低,使隔膜在低的热压温度下就可以与极片粘接在一起,极片与隔膜贴合紧密,从而使锂离子更容易通过隔膜完成充放电过程,同时该聚合物导离子树脂核结构的高的结晶度使隔膜能适应更高的拉伸强度,可以使涂布层在外力作用下不易变形从而保持极芯结构的完整性。
具体实施方式
下面对本申请实施例的电池隔膜及其制备方法、聚合物导离子功能树脂的制备方法进行具体说明。
以下实施例中每重量份为1g。
实施例1
步骤1:在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入20份的十二烷基硫酸钠和1000份去离子水,在30℃下搅拌,加入10份过硫酸钾,通氮气20min,恒压滴液漏斗缓慢滴加500份单体甲基丙烯酸甲酯,滴加完毕后继续反应2h完成核聚合的阶段。
步骤2:将200份的聚(异戊二烯-co-苯乙烯)、10份的十二烷基硫酸钠、 10份的过硫酸钾、1500份的去离子水加入到步骤1得到的核层中,升温至80℃,搅拌反应4h,取出破乳、水洗、干燥,得到核壳结构型聚合物导离子功能树脂。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚合物导离子功能树脂功能层制备锂电池隔膜。
实施例2
步骤1:在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入15份的十四烷基硫酸钠和1500份去离子水,在30℃下搅拌,加入10份过硫酸钠,通氮气20min,恒压滴液漏斗缓慢滴加600份单体甲基丙烯酸甲酯,滴加完毕后继续反应2h完成核聚合的阶段。
步骤2:将300份的三甲基硅烷基丙烯酸树脂、20份的十四烷基硫酸钠、15份的过硫酸钠、2000份的去离子水加入到步骤1得到的核层中,升温至90℃,搅拌反应4h,取出破乳、水洗、干燥,得到核壳结构型聚合物导离子功能树脂。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚合物导离子功能树脂功能层制备锂电池隔膜。
实施例3
步骤1:在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入20份的十六烷基硫酸钠和1500份去离子水,在40℃下搅拌,加入15份亚硫酸钠,通氮气20min,恒压滴液漏斗缓慢滴加5000份单体甲基丙烯酸甲酯,滴加完毕后继续反应2h完成核聚合的阶段。
步骤2:将300份的聚丙烯正丁酯、20份的十六烷基硫酸钠、15份的亚硫酸钠、2000份的去离子水加入到步骤1得到的核层中,升温至85℃,搅拌 反应4h,取出破乳、水洗、干燥,得到核壳结构型聚合物导离子功能树脂。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚合物导离子功能树脂功能层制备锂电池隔膜。
实施例4
步骤1:在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入25份的十八烷基硫酸钠和1000份去离子水,在40℃下搅拌,加入20份亚硫酸钠,通氮气20min,恒压滴液漏斗缓慢滴加6000份单体甲基丙烯酸甲酯,滴加完毕后继续反应2h完成核聚合的阶段。
步骤2:将300份的聚丁二烯、20份的十八烷基硫酸钠、15份的亚硫酸钠、2000份的去离子水加入到步骤1得到的核层中,升温至90℃,搅拌反应4h,取出破乳、水洗、干燥,得到核壳结构型聚合物导离子功能树脂。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚合物导离子功能树脂功能层制备锂电池隔膜。
实施例5
步骤1:在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入30份的十二烷基磺酸钠和2000份去离子水,在40℃下搅拌,加入20份过硫酸钠,通氮气20min,恒压滴液漏斗缓慢滴加5000份单体甲基丙烯酸甲酯,滴加完毕后继续反应2h完成核聚合的阶段。
步骤2:将300份的聚甲基硅氧烷、25份的十二烷基磺酸钠、20份的亚硫酸钠、2000份的去离子水加入到步骤1得到的核层中,升温至85℃,搅拌反应4h,取出破乳、水洗、干燥,得到核壳结构型聚合物导离子功能树脂。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚合物导离子功能树脂功能层制备锂电池隔膜。
对比例1
在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入30份的十二烷基磺酸钠和2000份去离子水,在40℃下搅拌,加入20份过硫酸钠,通氮气20min,恒压滴液漏斗缓慢滴加5000份单体甲基丙烯酸甲酯,滴加完毕后继续反应2h,取出破乳、水洗、干燥,得到单一的聚甲基丙烯酸甲酯聚合物。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚甲基丙烯酸甲酯聚合物功能层制备锂电池隔膜。
对比例2
在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入200份的聚(异戊二烯-co-苯乙烯)、10份的十二烷基硫酸钠、10份的过硫酸钾、1500份的去离子水,升温至80℃,搅拌反应4h,取出破乳、水洗、干燥,得到单一的聚(异戊二烯-co-苯乙烯)聚合物。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚(异戊二烯-co-苯乙烯)聚合物功能层制备锂电池隔膜。
对比例3
在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入300份的三甲基硅烷基丙烯酸树脂、20份的十四烷基硫酸钠、15份的过硫酸钠、2000份的去离子水加入到步骤1得到的核层中,升温至90℃,搅拌反应4h,取出破乳、水洗、干燥,得到单一的聚三甲基硅烷基丙烯酸树脂聚合物。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚三甲基硅烷基丙烯酸树脂聚合物功能层制备锂电池隔膜。
对比例4
在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入300份的聚丙烯正丁酯、20份的十六烷基硫酸钠、15份的亚硫酸钠、2000份的去离子水加入到步骤1得到的核层中,升温至85℃,搅拌反应4h,取出破乳、水洗、干燥,得到单一的聚丙烯正丁酯树脂聚合物。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚丙烯正丁酯聚合物功能层制备锂电池隔膜。
对比例5
在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入300份的聚丁二烯、20份的十八烷基硫酸钠、15份的亚硫酸钠、2000份的去离子水加入到步骤1得到的核层中,升温至90℃,搅拌反应4h,取出破乳、水洗、干燥,得到单一的聚丁二烯树脂聚合物。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚丁二烯聚合物功能层制备锂电池隔膜。
对比例6
在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应釜中加入300份的聚甲基硅氧烷、25份的十二烷基磺酸钠、20份的亚硫酸钠、2000份的去离子水加入到步骤1得到的核层中,升温至85℃,搅拌反应4h,取出破乳、水洗、干燥,得到核壳结构型聚合物导离子功能树脂。得到单一的甲基硅氧烷聚合物。
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚甲基硅氧烷聚合物功能层制备锂电池隔膜。
对比例7
采用厚度为12μm的聚乙烯单层多孔基膜上双面设置厚度为2μm连续的聚偏氟乙烯功能层制备锂电池隔膜。涂覆隔膜时所使用的聚偏氟乙烯购自法国阿科玛(Arkema)。
锂电池隔膜的性能测试
对实施例1-5和对比例1-7的隔离膜进行以下性能测试:
(1)透气性:透气率也可以用Gurley值来表征,它是指特定量的空气在特定的压力下通过特定面积的隔膜所需要的时间(标准Gruley:100mL气体在4.88英寸水柱压力下通过1平方英寸隔膜的时间)。透气性增加值为涂布层隔膜的透气值减去基膜的透气值。
(2)内阻:测试隔膜电阻更常用的是交流阻抗法(EIS),测试隔膜在电解液中的电阻比上电解液的电阻得出Nm值,即MacMullini常数。施加正弦交流电压信号于测量装置上,通过测量一定范围内不同频率的阻抗值,再用等效电路分析数据,得到隔膜离子电阻的信息。
(3)剥离强度:将涂覆隔膜的涂层面与载玻片用胶粘剂粘接制备成胶接试样,并将涂覆隔膜反向180°然后将胶接试样用万能拉伸试验机以规定的速率从胶接的开口处剥开,如此便沿着被粘面长度的方向逐渐将涂覆隔膜与载玻片分离,分离过程中涂覆隔膜的涂层被胶粘剂完全从基膜上粘接下来,从而使涂层与基膜分离,通过试验机自动得出的涂层与基膜分离时的力值大小,以此计算出涂覆隔膜涂层与基膜的之间的剥离强度。
(4)拉伸强度:拉伸强度测试:采用GB 13022-91,薄膜拉伸性能试验方法。测试方向为MD和TD方向。
(5)注液后静置时间:电池注液后进行常温静置,极片与隔膜浸润良好,直至化成的时间。
实施例1-5和对比例1-7的隔离膜性能测试结果如下表1所示。
表1
Figure PCTCN2022087620-appb-000001
从表1可知,本申请由核壳结构聚合物导离子功能树脂制备得到的锂电池隔膜与非核壳结构的单一组分的聚合物涂布隔膜相比,具有更好的拉伸强度、剥离强度和透气性,注液后静置时间短以及内阻低等优点,且其吸液率更高,隔膜的吸液率不仅反映了隔膜与电解液的亲和性,还能够体现隔膜微孔结构的差异,吸液率越高,说明隔膜有较高的孔隙率、较高的通孔率和较好的浸润性,单位体积吸收电解液的量也就越大,也更有利于进行锂离子交换,为提升电池倍率性能与循环性能提供了支持。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普 通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

  1. 一种锂电池用聚合物导离子功能树脂复合隔膜,其特征在于,所述隔膜由多孔基底上单面或双面涂覆聚合物导离子功能树脂制得,所述聚合物导离子功能树脂具有核壳结构,该核壳结构包括核部以及包裹在所述核部外表面的壳层,所述核的结晶度比外壳层的结晶度大20%以上。
  2. 如权利要求1所述的一种锂电池用聚合物导离子功能树脂复合隔膜,其特征在于,所述核壳结构的聚合物导离子树脂的颗粒粒径为50nm~500nm。
  3. 如权利要求1所述的一种锂电池用聚合物导离子功能树脂复合隔膜,其特征在于所述聚合物导离子功能树脂制备过程至少包括以下步骤:
    步骤1:在装有温度计、磁力搅拌、回流冷凝装置以及恒压滴液漏斗的反应器中加入乳化剂和去离子水,升温至反应温度,加入引发剂,通氮气20min,恒压滴液漏斗缓慢滴加单体甲基丙烯酸甲酯,滴加完毕后继续反应2h完成核聚合的阶段;
    步骤2:将壳层单体、所需量的乳化剂、所需量的引发剂、所需量的去离子水加入到步骤1得到的产物中,升温至反应温度,搅拌反应4h,取出破乳、水洗、干燥,得到核壳结构型聚合物导离子功能树脂。
  4. 如权利要求3所述的一种锂电池用聚合物导离子功能树脂复合隔膜,其特征在于,所述核壳结构核为聚甲基丙烯酸甲酯,外部壳层为聚(异戊二烯-co-苯乙烯)、三甲基硅烷基丙烯酸树脂、聚丙烯正丁酯、聚丁二烯和聚甲基硅氧烷中的任意一种。
  5. 如权利要求3所述的一种锂电池用聚合物导离子功能树脂复合隔膜,其特征在于,所述核壳结构的聚合物导离子树脂的制备原料,以重量分数计,核层单体50~70份,壳层单体15~25份,乳化剂0.1~2份,引发剂0.1~1 份,去离子水100~300份。
  6. 如权利要求3所述的一种锂电池用聚合物导离子功能树脂复合隔膜,其特征在于,所述乳化剂选自:十二烷基硫酸钠、十四烷基硫酸钠、十六烷基硫酸钠、十八烷基硫酸钠、十二烷基磺酸钠、十四烷基磺酸钠中的任意一种或几种的混合。
  7. 如权利要求3所述的一种锂电池用聚合物导离子功能树脂复合隔膜,其特征在于,所述引发剂为过硫酸钾、过硫酸钠、亚硫酸钠中的任意一种或几种的混合。
  8. 如权利要求3所述的锂电池用聚合物导离子功能树脂复合隔膜,其特征在于,所述的反应温度为30℃~90℃。
PCT/CN2022/087620 2021-07-13 2022-04-19 一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜 WO2023284348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110787759.9A CN113381125B (zh) 2021-07-13 2021-07-13 一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜
CN202110787759.9 2021-07-13

Publications (1)

Publication Number Publication Date
WO2023284348A1 true WO2023284348A1 (zh) 2023-01-19

Family

ID=77581760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087620 WO2023284348A1 (zh) 2021-07-13 2022-04-19 一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜

Country Status (2)

Country Link
CN (1) CN113381125B (zh)
WO (1) WO2023284348A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381125B (zh) * 2021-07-13 2023-02-17 上海恩捷新材料科技有限公司 一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜
CN113929827A (zh) * 2021-09-16 2022-01-14 深圳知行新能源材料科技有限公司 电池涂层材料及其制备方法、电池涂层浆料、二次电池
CN118073780A (zh) * 2022-11-24 2024-05-24 比亚迪股份有限公司 粘接剂及其制备方法、电池隔膜及电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141140A1 (ja) * 2012-03-22 2013-09-26 日本ゼオン株式会社 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池
CN104170121A (zh) * 2012-03-28 2014-11-26 日本瑞翁株式会社 二次电池用多孔膜及其制造方法、二次电池用电极、二次电池用隔板及二次电池
WO2018004277A1 (ko) * 2016-06-30 2018-01-04 삼성에스디아이 주식회사 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
CN109983599A (zh) * 2016-11-24 2019-07-05 日本瑞翁株式会社 非水系二次电池功能层用组合物、非水系二次电池用功能层以及非水系二次电池
CN110676418A (zh) * 2018-07-02 2020-01-10 Sk新技术株式会社 二次电池用复合隔膜
CN112335074A (zh) * 2018-07-24 2021-02-05 日本瑞翁株式会社 非水系二次电池用浆料及其制造方法、非水系二次电池用电池构件及其制造方法、以及非水系二次电池
CN113381125A (zh) * 2021-07-13 2021-09-10 上海恩捷新材料科技有限公司 一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931297A (ja) * 1995-07-24 1997-02-04 Gantsu Kasei Kk 水分散性組成物及びその製造方法
US8034527B2 (en) * 2007-08-23 2011-10-11 Xerox Corporation Core-shell polymer nanoparticles and method for making emulsion aggregation particles using same
EP2903063A4 (en) * 2012-09-28 2016-04-27 Furukawa Electric Co Ltd COLLECTOR, ELECTRODE STRUCTURE, BATTERY WITH A WATER-FREE ELECTROLYTE AND ELECTRICAL MEMORY COMPONENT
CN103146161B (zh) * 2013-03-29 2015-08-05 浙江海正生物材料股份有限公司 一种改性聚乳酸树脂组合物及其制备方法和应用
CN106977669B (zh) * 2017-05-08 2019-05-31 南通艾德旺化工有限公司 核壳结构型acr树脂及其制备方法
CN118156727A (zh) * 2018-03-02 2024-06-07 阿科玛股份有限公司 在电化学装置中使用的含氟聚合物粘结剂涂料
WO2020091537A1 (ko) * 2018-11-01 2020-05-07 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
CN111599969B (zh) * 2020-05-29 2023-04-11 东莞市溢兴新材料科技有限公司 一种pvdf涂覆的锂离子电池隔膜及其制备方法
CN112795184B (zh) * 2020-12-30 2023-08-25 珠海冠宇电池股份有限公司 一种聚合物颗粒、含有该聚合物颗粒的隔膜及锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141140A1 (ja) * 2012-03-22 2013-09-26 日本ゼオン株式会社 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池
CN104170121A (zh) * 2012-03-28 2014-11-26 日本瑞翁株式会社 二次电池用多孔膜及其制造方法、二次电池用电极、二次电池用隔板及二次电池
WO2018004277A1 (ko) * 2016-06-30 2018-01-04 삼성에스디아이 주식회사 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
CN109983599A (zh) * 2016-11-24 2019-07-05 日本瑞翁株式会社 非水系二次电池功能层用组合物、非水系二次电池用功能层以及非水系二次电池
CN110676418A (zh) * 2018-07-02 2020-01-10 Sk新技术株式会社 二次电池用复合隔膜
CN112335074A (zh) * 2018-07-24 2021-02-05 日本瑞翁株式会社 非水系二次电池用浆料及其制造方法、非水系二次电池用电池构件及其制造方法、以及非水系二次电池
CN113381125A (zh) * 2021-07-13 2021-09-10 上海恩捷新材料科技有限公司 一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜

Also Published As

Publication number Publication date
CN113381125A (zh) 2021-09-10
CN113381125B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2023284348A1 (zh) 一种导离子功能树脂及包含该导离子功能树脂的锂电池隔膜
TWI338403B (en) Electrode with enhanced performance and electrochemical device comprising the same
CN103571420B (zh) 一种用于锂离子电池陶瓷隔膜涂料的粘合剂及其制备方法
TW510064B (en) Binder composition for the electrodes of lithium secondary battery comprised a polymer having a structural unit come from 1,3-butylene and the use thereof
WO2018018870A1 (zh) 一种电化学装置隔离膜及其制备方法
CN108711605A (zh) 一种复合电池隔膜、制备方法和电池
JP5193234B2 (ja) リチウムイオン電池用微孔ポリマー膜およびその製造方法
CN109841784A (zh) 用于二次电池的复合隔膜以及包括它的锂二次电池
CN105018001B (zh) 锂离子电池用水性粘合剂及正负极片和涂覆隔膜
WO2023284385A1 (zh) 一种锂电池陶瓷隔膜用耐高温粘结剂及其制备方法
CN103474609A (zh) 一种叠涂复合锂电池隔膜及其制备方法
CN109037555A (zh) 锂离子电池隔离膜及其制备方法
WO2023123751A1 (zh) 一种涂覆隔膜及其制备方法
CN104993088A (zh) 一种低温闭孔高温稳定的无纺布型锂电池隔膜及制备方法
WO2016179785A1 (zh) 复合隔膜及使用该复合隔膜的锂离子电池
CN112521616B (zh) 接枝陶瓷粉体及制备方法、陶瓷隔膜及制备方法、锂离子电池、电池模组和电池包
CN104112833A (zh) 锂离子电池隔膜及其制备方法、应用
CN100370639C (zh) 用于电池隔板的交联聚合物支撑的多孔膜及采用它制备电池的方法
CN104140502A (zh) 一种锂离子电池隔膜用粘结剂、制备方法及使用该粘结剂的隔膜
WO2022068178A1 (zh) 一种电化学装置,新型无纺布陶瓷隔膜及其制备方法
CN109119574A (zh) 基于交联与线形聚合物的多孔性锂离子电池隔膜及其制备方法与应用
WO2024119544A1 (zh) 一种半固态电池及其制备方法
CN111244368A (zh) 一种结合性好的陶瓷隔膜及其制备方法以及包含该陶瓷隔膜的锂离子电池
CN104584266A (zh) 制备包含含氟聚合物隔膜的锂离子电池的方法
CN111933864B (zh) 能量储存装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE