WO2013140590A1 - 非水電解質二次電池用負極、非水電解質二次電池及び電池パック - Google Patents
非水電解質二次電池用負極、非水電解質二次電池及び電池パック Download PDFInfo
- Publication number
- WO2013140590A1 WO2013140590A1 PCT/JP2012/057434 JP2012057434W WO2013140590A1 WO 2013140590 A1 WO2013140590 A1 WO 2013140590A1 JP 2012057434 W JP2012057434 W JP 2012057434W WO 2013140590 A1 WO2013140590 A1 WO 2013140590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- electrode active
- current collector
- positive electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- Embodiments of the present invention relate to a negative electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a battery pack.
- An object is to provide a long-life nonaqueous electrolyte secondary battery, a battery pack, and a negative electrode for a nonaqueous electrolyte secondary battery used in these.
- the negative electrode for a non-aqueous electrolyte secondary battery of the embodiment includes a layered negative electrode active material layer including a current collector, a negative electrode active material, and a binder that binds the negative electrode active material, a negative electrode active material layer, and a current collector. And an azole compound having an amino group as a functional group at a part of the interface with the electric body.
- FIG. 1 is a conceptual diagram of an extremely active material according to an embodiment.
- FIG. 2 is a conceptual diagram of the nonaqueous electrolyte secondary battery of the embodiment.
- FIG. 3 is an enlarged conceptual diagram of the nonaqueous electrolyte secondary battery of the embodiment.
- FIG. 4 is a conceptual diagram of the battery pack of the embodiment.
- FIG. 5 is a block diagram showing an electric circuit of the battery pack.
- the negative electrode 100 includes a layered negative electrode active material that includes a current collector 104, a negative electrode active material 101, and a binder 102 that binds the negative electrode active material 101.
- the negative electrode active material layer 103 is formed on one side or both sides of the current collector 104.
- the negative electrode active material 101 of the embodiment is an active material containing crystalline silicon that performs insertion and extraction of Li.
- Specific examples of the negative electrode active material 101 include composite particles having a silicon oxide phase in a carbonaceous material and a silicon phase in the silicon oxide phase.
- the silicon oxide phase of the negative electrode active material in this form is dispersed in the carbonaceous material and is combined with the carbonaceous material.
- the silicon phase is dispersed in the silicon oxide phase and is combined with the silicon oxide phase.
- the average primary particle diameter of the negative electrode active material is, for example, 5 ⁇ m or more and 100 ⁇ m or less, and the specific surface area is 0.5 m 2 / g or more and 10 m 2 / g or less.
- the particle size and specific surface area of the active material affect the rate of lithium insertion and desorption reaction, and have a great influence on the negative electrode characteristics. However, values within this range can stably exhibit the characteristics.
- the example carbonaceous material is conductive and forms an active material.
- the carbonaceous material one or more selected from the group consisting of graphite, hard carbon, soft carbon, amorphous carbon and acetylene black can be used.
- the exemplary silicon oxide phase relaxes the expansion and contraction of the silicon phase.
- Examples of the silicon oxide phase include a compound represented by a chemical formula of SiO x (1 ⁇ x ⁇ 2) having a structure such as amorphous, low crystalline, or crystalline.
- the silicon phase expands and contracts as Li is inserted and released. Along with this expansion and contraction, when the phases are combined and the size of the phase becomes coarse, the cycle characteristics are likely to deteriorate. In order to prevent deterioration of cycle characteristics, it is preferable to take measures such as silicon phase refinement and phase size uniformity, silicon oxide phase refinement and phase size uniformity, cubic zirconia addition, carbon fiber addition, etc. .
- the binder 102 is a material having excellent binding properties between the negative electrode active materials and excellent binding properties between the negative electrode active material layer 103 and the current collector 104.
- the binder 102 for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), polyimide, polyaramid, or the like is used. be able to.
- two or more binders may be used in combination, and the binder excellent in binding between the active materials and the binder excellent in binding between the active material and the current collector. If a combination of the above and a combination of a high hardness and a good flexibility are used, a negative electrode having excellent life characteristics can be produced.
- the negative electrode active material layer 103 is a mixture containing the negative electrode active material 101 and the binder 102.
- a conductive material may be added to the negative electrode active material layer 103 for the purpose of improving the conductivity of the negative electrode.
- the conductive agent include acetylene black, carbon black, and graphite.
- the thickness of the negative electrode active material layer 103 is desirably in the range of 1.0 to 150 ⁇ m. Therefore, when the negative electrode current collector 104 is supported on both surfaces, the total thickness of the negative electrode active material layer 103 is in the range of 2.0 to 300 ⁇ m. A more preferable range of the thickness of one surface is 30 to 100 ⁇ m. Within this range, the large current discharge characteristics and cycle life are greatly improved.
- the mixing ratio of the negative electrode active material, the conductive agent and the binder is preferably in the range of 57 to 95% by mass of the negative electrode active material, 3 to 20% by mass of the conductive agent, and 2 to 40% by mass of the binder. It is preferable because current discharge characteristics and cycle life can be obtained.
- the current collector 104 of the embodiment is a conductive member that binds to the negative electrode active material layer 103.
- a conductive substrate having a porous structure or a non-porous conductive substrate can be used as the current collector 104. These conductive substrates can be formed from, for example, copper, stainless steel, or nickel.
- the thickness of the current collector is preferably 5 to 20 ⁇ m. This is because within this range, the electrode strength and weight reduction can be balanced.
- the azole compound 105 having an amino group as a functional group in the embodiment exists in a part of the interface between the negative electrode active material layer 103 and the current collector 104, and bonds the negative electrode active material layer 103 and the current collector 104 to each other. It is a joining member to do.
- the azole compound 105 has a stronger binding force to a metal surface such as Cu than a general binder, and is excellent in affinity with a binder having a polar group by having an amino group, so It improves the adhesion between the material layer 103 and the current collector 104, and functions to prevent peeling associated with Li insertion / extraction.
- the azole compound 105 is present at the interface between the negative electrode active material layer 103 and the current collector 104 in the form of a film in which a plurality of molecules are aggregated or in a state where single molecules are independent.
- an azole compound having an amino group as a functional group can be used as the azole compound 105.
- the azole compound 105 has an amino group as a functional group and has an azole ring, and the azole ring includes diazole, oxazole, thiazole, triazole, oxadiazole, thiadiazole, tetrazole, oxatriazole, and thiatriazole. Examples include, but are not limited to, at least one compound selected from the group.
- the tetrazole compound is preferable because of its high complex forming ability with a metal such as Cu.
- the azole compound 105 having an amino group as a functional group has better affinity with the binder than the azole compound having no amino group, and when a polyimide precursor is used as the binder. It reacts in the imidization process and shows a stronger binding force.
- azole compound 105 examples include, for example, 2-aminobenzimidazole, 3-amino-1,2,4-triazole, 4-amino-1,2,4, -triazole, 3,5-diamino-1, 2,4-triazole, 3-amino-1,2,4-triazole-5-carboxylic acid, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole, 5-amino-1H -Tetrazole, 1- ( ⁇ -aminoethyl) tetrazole, 5-amino-1,2,3,4-thiatriazole, 2-amino-5-trifluoromethyl-1,3,4-thiadiazole, 5-aminoindazole 4-aminoindole, 5-aminoindole, 3-amino-1H-isoindole, 3-aminoisoxazole, 3- ⁇ -aminoethylpyrazole, 3-a Mino-1,2,4-triazole, 4-amino
- the azole compound 105 exists in the range of 5% to 95% of the interface area (the surface of the current collector 104 on which the negative electrode active material layer 103 is formed). When the amount of the azole compound 105 is less than this range, there is almost no effect of improving the peel resistance. Further, since the azole compound 105 has poor conductivity, if the azole compound 105 is more than this range, it is not preferable that the conductivity between the negative electrode active material layer 103 and the current collector is lowered.
- the interface area of these azole compounds was measured using an energy dispersive X-ray analyzer (EDX) for the surface-treated Cu foil current collector, the acceleration voltage was 10 kV, and the emission current was 10. It can be easily confirmed by measuring the Cu foil surface as a measurement condition of 0 ⁇ A and element mapping.
- EDX energy dispersive X-ray analyzer
- the presence of the azole compound 105 at the interface between the negative electrode active material layer 103 and the current collector 104 indicates that the negative electrode is analyzed from the negative electrode active material layer 103 side by the attenuated total reflection method of infrared spectroscopic analysis. can be known by observing the absorption spectra of the specific 1640 cm -1 Le compounds 105 - absorption spectrum and azo from the 3400 cm -1.
- the current collector 104 from which the negative electrode active material layer 103 has been removed is immersed in methanol, and the azole compound is extracted, and the azole is also used in a technique commonly used in the field by organic spectrum analysis such as LC / MS and GC / MS. The presence of the compound can be easily known.
- MS spectrum analysis is performed for about 1/3 of the thickness direction from the surface of the negative electrode active material layer 103 by the same methanol extraction method, and it is also confirmed that no azole compound is detected. I can do it.
- the negative electrode 100 of the embodiment It can be easily formed by preparing a solution of the azole compound 105 having an amino group dissolved in an organic solvent as a functional group (hereinafter referred to as a surface treatment solution) and treating the surface of the current collector 104.
- a surface treatment solution a solution of the azole compound 105 having an amino group dissolved in an organic solvent as a functional group
- the surface treatment liquid and the surface of the current collector 104 may be in contact with the entire surface of the treatment surface, and the method is not limited, but it is preferable to uniformly contact the surface.
- the current collector 104 may be immersed in the surface treatment solution, or may be sprayed on the copper foil by spraying or the like, or may be applied to the substrate with an appropriate tool.
- the temperature of the surface treatment liquid is preferably in the range of 0 to 100 ° C., more preferably 10 to 80 ° C. This can be done in consideration of the boiling point and vapor pressure of the organic solvent used.
- Solvents for dissolving these azole compounds 105 include hydrocarbon alcohols such as methanol, ethanol, propanol, isopropanol, butanol, tert-butanol, pentanol, hexanol, heptanol, octanol and the like, hydrocarbon ketones such as , Acetone, propanone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc., hydrocarbon ethers such as diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, etc., hydrocarbon esters such as methyl acetate, ethyl acetate, acetic acid Butyl, ⁇ -butyrolactone, etc., for example, toluene, xylene, dimethylformamide, dimethylacetamide, dimethyls Sulfoxide dichloromethan
- the concentration of the azole compound 105 in the surface treatment liquid is preferably 0.001 to 1 mol / l.
- a low concentration is preferable to reduce the adhesion of excess azole compound 105. Since the effect of improving the adhesive force between the electric body 104 and the negative electrode active material layer 103 is lost, the amount is more preferably 0.01 to 0.5 mol / l.
- a cleaning step of dissolving and removing the azole compound 105 excessively attached to the surface of the current collector 104 with an organic solvent may be performed.
- an organic solvent used for this washing a solvent capable of dissolving the azole compound 105 can be used.
- the organic solvent described above can be used.
- the method of cleaning the surface of the current collector 104 with an organic solvent in this cleaning step is not limited. It may be immersed in a solvent, may be sprayed off with a spray or the like, or may be wiped off by being soaked in a suitable base material. Moreover, you may add the drying process to about 100 degreeC for this washing
- a slurry is prepared by suspending the negative electrode active material, the conductive agent and the binder in a commonly used solvent.
- the slurry is applied to the current collector 104 treated with the azole compound 105, dried, and then pressed to produce a negative electrode.
- a nonaqueous electrolyte secondary battery according to a second embodiment will be described.
- the nonaqueous electrolyte secondary battery according to the second embodiment is housed in an exterior material, a positive electrode accommodated in the exterior material, and spatially separated from the positive electrode in the exterior material, for example, via a separator.
- FIG. 2 is a conceptual cross-sectional view of a flat type nonaqueous electrolyte secondary battery 200 in which the bag-shaped exterior material 202 is made of a laminate film.
- the flat wound electrode group 201 is housed in a bag-like exterior material 202 made of a laminate film in which an aluminum foil is interposed between two resin layers.
- the flat wound electrode group 201 is laminated in the order of a negative electrode 203, a separator 204, a positive electrode 205, and a separator 204, as shown in FIG. And it is formed by winding the laminate in a spiral shape and press-molding it.
- the electrode closest to the bag-shaped outer packaging material 202 is a negative electrode, and the negative electrode current collector on the side of the bag-shaped outer packaging material 202 is not formed with a negative electrode mixture.
- the negative electrode mixture is formed only on one side.
- the other negative electrode 203 is configured by forming a negative electrode mixture on both surfaces of the negative electrode current collector.
- the positive electrode 205 is configured by forming a positive electrode mixture on both surfaces of a positive electrode current collector.
- the negative electrode terminal is electrically connected to the negative electrode current collector of the outermost negative electrode 203
- the positive electrode terminal is electrically connected to the positive electrode current collector of the inner positive electrode 205.
- the negative electrode terminal 206 and the positive electrode terminal 207 extend to the outside from the opening of the bag-shaped exterior material 202.
- the liquid non-aqueous electrolyte is injected from the opening of the bag-shaped exterior material 202.
- the wound electrode group 201 and the liquid nonaqueous electrolyte are completely sealed by heat-sealing the opening of the bag-shaped exterior material 202 with the negative electrode terminal 206 and the positive electrode terminal 207 interposed therebetween.
- Examples of the negative electrode terminal 206 include aluminum or an aluminum alloy containing elements such as Mg, Ti, Zn, Mn, Fe, Cu, and Si.
- the negative electrode terminal 206 is preferably made of the same material as the negative electrode current collector in order to reduce the contact resistance with the negative electrode current collector.
- the positive electrode terminal 207 can be made of a material having electrical stability and conductivity in the range of 3 to 4.25 V with respect to the lithium ion metal. Specifically, aluminum or an aluminum alloy containing an element such as Mg, Ti, Zn, Mn, Fe, Cu, or Si can be given.
- the positive electrode terminal 207 is preferably made of the same material as the positive electrode current collector in order to reduce the contact resistance with the positive electrode current collector.
- the bag-shaped exterior material 202, the positive electrode 205, the electrolyte, and the separator 204, which are components of the nonaqueous electrolyte secondary battery 200, will be described in detail.
- Bag-shaped exterior material 202 is formed from a laminate film having a thickness of 0.5 mm or less. Alternatively, a metal container having a thickness of 1.0 mm or less is used as the exterior material. The metal container is more preferably 0.5 mm or less in thickness.
- the shape of the bag-shaped exterior material 202 can be selected from a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
- the exterior material include, for example, an exterior material for a small battery that is loaded on a portable electronic device or the like, an exterior material for a large battery that is loaded on a two- to four-wheeled vehicle, etc., depending on the battery size.
- the laminate film a multilayer film in which a metal layer is interposed between resin layers is used.
- the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
- a polymer material such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET) can be used.
- PP polypropylene
- PE polyethylene
- PET polyethylene terephthalate
- the laminate film can be molded into the shape of an exterior material by sealing by heat sealing.
- Metal containers are made from aluminum or aluminum alloy.
- the aluminum alloy is preferably an alloy containing elements such as magnesium, zinc, and silicon.
- transition metals such as iron, copper, nickel, and chromium are included in the alloy, the amount is preferably 100 ppm by mass or less.
- the positive electrode 205 has a structure in which a positive electrode mixture containing an active material is supported on one surface or both surfaces of a positive electrode current collector.
- the thickness of one surface of the positive electrode mixture is preferably in the range of 1.0 ⁇ m to 150 ⁇ m from the viewpoint of maintaining the large current discharge characteristics and cycle life of the battery. Therefore, when the positive electrode current collector is supported on both surfaces, the total thickness of the positive electrode mixture is preferably in the range of 20 ⁇ m to 300 ⁇ m. A more preferable range of one side is 30 ⁇ m to 120 ⁇ m. Within this range, large current discharge characteristics and cycle life are improved.
- the positive electrode mixture may contain a conductive agent in addition to the positive electrode active material and the binder that binds the positive electrode active materials.
- the positive electrode active material examples include various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel cobalt oxide (for example, LiCOO 2 ), lithium-containing nickel cobalt oxide (for example, LiNi 0.8 CO 0.2 O). 2 ) and a lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2 ) are preferable because a high voltage can be obtained.
- various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel cobalt oxide (for example, LiCOO 2 ), lithium-containing nickel cobalt oxide (for example, LiNi 0.8 CO 0.2 O). 2 ) and a lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2 ) are preferable because a high voltage can be obtained.
- Examples of the conductive agent include acetylene black, carbon black, and graphite.
- Specific examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), and the like. .
- the mixing ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by mass of the positive electrode active material, 3 to 20% by mass of the conductive agent, and 2 to 7% by mass of the binder. It is preferable because current discharge characteristics and cycle life can be obtained.
- a conductive substrate having a porous structure or a non-porous conductive substrate can be used as the current collector.
- the thickness of the current collector is preferably 5 to 20 ⁇ m. This is because within this range, the electrode strength and weight reduction can be balanced.
- the positive electrode 205 is prepared by, for example, preparing a slurry by suspending an active material, a conductive agent, and a binder in a commonly used solvent, applying the slurry to a current collector, drying, and then pressing the slurry. Is done.
- the positive electrode 205 may also be manufactured by forming an active material, a conductive agent, and a binder in the form of a pellet to form a positive electrode layer, which is formed on a current collector.
- Negative electrode 203 As the negative electrode 203, the negative electrode 100 described in the first embodiment is used.
- Electrolyte As the electrolyte, a non-aqueous electrolyte, an electrolyte-impregnated polymer electrolyte, a polymer electrolyte, or an inorganic solid electrolyte can be used.
- the non-aqueous electrolyte is a liquid electrolyte prepared by dissolving an electrolyte in a non-aqueous solvent, and is held in the voids in the electrode group.
- non-aqueous solvent a non-aqueous solvent mainly composed of a mixed solvent of propylene carbonate (PC) or ethylene carbonate (EC) and a non-aqueous solvent having a viscosity lower than that of PC or EC (hereinafter referred to as a second solvent) is used. It is preferable.
- PC propylene carbonate
- EC ethylene carbonate
- second solvent a non-aqueous solvent having a viscosity lower than that of PC or EC
- the second solvent for example, chain carbon is preferable.
- DMC dimethyl carbonate
- MEC methyl ethyl carbonate
- DEC diethyl carbonate
- ethyl propionate methyl propionate
- BL ⁇ -butyrolactone
- AN acetonitrile
- EA ethyl acetate
- MA methyl acetate
- the viscosity of the second solvent is preferably 2.8 cmp or less at 25 ° C.
- the blending amount of ethylene carbonate or propylene carbonate in the mixed solvent is preferably 1.0% to 80% by volume ratio. A more preferable blending amount of ethylene carbonate or propylene carbonate is 20% to 75% by volume.
- Examples of the electrolyte contained in the nonaqueous electrolytic solution include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and lithium arsenic hexafluoride (LiAsF 6 ). And lithium salts (electrolytes) such as lithium trifluorometasulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ]. Of these, LiPF 6 and LiBF 4 are preferably used.
- the amount of electrolyte dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.
- the separator 204 can be used.
- the separator 204 is a porous separator.
- a porous film containing polyethylene, polypropylene, or polyvinylidene fluoride (PVdF), a synthetic resin nonwoven fabric, or the like can be used.
- PVdF polyvinylidene fluoride
- a porous film made of polyethylene, polypropylene, or both is preferable because it can improve the safety of the secondary battery.
- the thickness of the separator 204 is preferably 30 ⁇ m or less. If the thickness exceeds 30 ⁇ m, the distance between the positive and negative electrodes may be increased and the internal resistance may be increased. Further, the lower limit value of the thickness is preferably 5 ⁇ m. If the thickness is less than 5 ⁇ m, the strength of the separator 204 may be significantly reduced and an internal short circuit is likely to occur.
- the upper limit value of the thickness is more preferably 25 ⁇ m, and the lower limit value is more preferably 1.0 ⁇ m.
- the separator 204 preferably has a thermal shrinkage rate of 20% or less when kept at 120 ° C. for 1 hour. If the heat shrinkage rate exceeds 20%, the possibility of a short circuit due to heating increases. The thermal shrinkage rate is more preferably 15% or less.
- the separator 204 preferably has a porosity in the range of 30 to 70%. This is due to the following reason. If the porosity is less than 30%, it may be difficult to obtain high electrolyte retention in the separator 204. On the other hand, if the porosity exceeds 60%, sufficient strength of the separator 204 may not be obtained. A more preferable range of the porosity is 35 to 70%.
- the separator 204 preferably has an air permeability of 500 seconds / 1.00 cm 3 or less. If the air permeability exceeds 500 seconds / 1.00 cm 3 , it may be difficult to obtain high lithium ion mobility in the separator 204.
- the lower limit of the air permeability is 30 seconds / 1.00 cm 3 . This is because if the air permeability is less than 30 seconds / 1.00 cm 3 , sufficient separator strength may not be obtained.
- the upper limit value of the air permeability is more preferably 300 seconds / 1.00 cm 3 , and the lower limit value is more preferably 50 seconds / 1.00 cm 3 .
- the battery pack according to the third embodiment includes one or more non-aqueous electrolyte secondary batteries (that is, single cells) according to the second embodiment.
- the battery pack includes a plurality of single cells, the single cells are electrically connected in series, parallel, or connected in series and parallel.
- the battery pack 300 will be specifically described with reference to the conceptual diagram of FIG. 4 and the block diagram of FIG. In the battery pack 300 shown in FIG. 4, the flat nonaqueous electrolyte battery 200 shown in FIG. 2 is used as the unit cell 301.
- the plurality of single cells 301 are stacked such that the negative electrode terminal 302 and the positive electrode terminal 303 extending to the outside are aligned in the same direction, and are fastened with an adhesive tape 304 to constitute an assembled battery 305. These unit cells 301 are electrically connected to each other in series as shown in FIG.
- the printed wiring board 306 is disposed to face the side surface of the unit cell 301 from which the negative electrode terminal 302 and the positive electrode terminal 303 extend.
- a thermistor 307, a protection circuit 308, and a terminal 309 for energizing external devices are mounted on the printed wiring board 306, as shown in FIG. 5, as shown in FIG. 5, a thermistor 307, a protection circuit 308, and a terminal 309 for energizing external devices are mounted. Note that an insulating plate (not shown) is attached to the surface of the protection circuit board 306 facing the assembled battery 305 in order to avoid unnecessary connection with the wiring of the assembled battery 305.
- the positive electrode side lead 310 is connected to the positive electrode terminal 303 located at the lowermost layer of the assembled battery 305, and the tip thereof is inserted into the positive electrode side connector 311 of the printed wiring board 306 and electrically connected thereto.
- the negative electrode side lead 312 is connected to the negative electrode terminal 302 located on the uppermost layer of the assembled battery 305, and the tip thereof is inserted into and electrically connected to the negative electrode side connector 313 of the printed wiring board 306.
- These connectors 311 and 313 are connected to the protection circuit 308 through wirings 314 and 315 formed on the printed wiring board 306.
- the thermistor 307 is used to detect the temperature of the unit cell 305, and the detection signal is transmitted to the protection circuit 308.
- the protection circuit 308 can cut off the plus-side wiring 316a and the minus-side wiring 316b between the protection circuit 308 and the terminal 309 for energizing external devices under a predetermined condition.
- the predetermined condition is, for example, when the temperature detected by the thermistor 307 is equal to or higher than a predetermined temperature.
- the predetermined condition is when an overcharge, overdischarge, overcurrent, or the like of the unit cell 301 is detected. This detection of overcharge or the like is performed for each single cell 301 or the entire single cell 301.
- the battery voltage When detecting each single cell 301, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 301. 4 and 5, a voltage detection wiring 317 is connected to each single cell 301, and a detection signal is transmitted to the protection circuit 308 through the wiring 317.
- a protective sheet 318 made of rubber or resin is disposed on each of the three side surfaces of the assembled battery 305 excluding the side surface from which the positive electrode terminal 303 and the negative electrode terminal 302 protrude.
- the assembled battery 305 is stored in the storage container 319 together with each protective sheet 318 and the printed wiring board 306. That is, the protective sheet 318 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 319, and the printed wiring board 306 is disposed on the inner side surface on the opposite side in the short side direction.
- the assembled battery 305 is located in a space surrounded by the protective sheet 318 and the printed wiring board 306.
- the lid 320 is attached to the upper surface of the storage container 319.
- a heat shrink tape may be used for fixing the assembled battery 305.
- protective sheets are arranged on both side surfaces of the assembled battery, the heat shrinkable tape is circulated, and then the heat shrinkable tape is heat shrunk to bind the assembled battery.
- FIGS. 4 and 5 show the configuration in which the unit cells 301 are connected in series, but in order to increase the battery capacity, they may be connected in parallel, or a combination of series connection and parallel connection may be used.
- the assembled battery packs can be further connected in series and in parallel. According to this embodiment described above, it is possible to provide a battery pack having excellent charge / discharge cycle performance by including the nonaqueous electrolyte secondary battery having excellent charge / discharge cycle performance in the third embodiment. it can.
- the aspect of a battery pack is changed suitably according to a use.
- the battery pack is preferably one that exhibits excellent cycle characteristics when a large current is taken out.
- Specific examples include a power source for a digital camera, a vehicle for a two- to four-wheel hybrid electric vehicle, a two- to four-wheel electric vehicle, an assist bicycle, and the like.
- a battery pack using a nonaqueous electrolyte secondary battery having excellent high temperature characteristics is suitably used for in-vehicle use.
- SiO was pulverized, kneaded and formed into a composite, and fired in Ar gas to obtain a negative electrode active material.
- the grinding of SiO was performed as follows.
- the raw material SiO powder was pulverized by a continuous bead mill apparatus using beads having a bead diameter of 0.5 ⁇ m for a predetermined time using ethanol as a dispersion medium. Further, this SiO powder was pulverized by using a 0.1 ⁇ m ball with a planetary ball mill using ethanol as a dispersion medium to produce a fine SiO powder.
- Silicon monoxide powder and 6 ⁇ m graphite powder obtained by pulverization were combined with hard carbon by the following method.
- 2.8 g of SiO powder, 0.7 of graphite powder, and 0.06 g of carbon fiber with an average diameter of 180 nm were added to a mixture of 4.0 g of furfuryl alcohol, 10 g of ethanol and 0.125 g of water, and kneaded with a kneader.
- a slurry was formed.
- 0.2 g of dilute hydrochloric acid serving as a polymerization catalyst for furfuryl alcohol was added and left at room temperature to dry and solidify to obtain a carbon composite.
- the obtained carbon composite was fired in Ar gas at 1050 ° C. for 3 h, cooled to room temperature, pulverized, and sieved with a 30 ⁇ m diameter to obtain a negative electrode active material.
- the copper foil which performed the following processes on the surface was used as a collector.
- the copper foil is dipped in methanol for 60 seconds to be washed, and then the surface is dried by blowing compressed nitrogen to obtain a surface treatment.
- a copper foil was obtained and used as a current collector.
- the surface-treated copper foil surface was evaluated at several arbitrary points by the ATR method, a peak derived from an amino group was observed in the vicinity of 3400 cm ⁇ 1 , and it was confirmed that 2-aminobenzimidazole treatment was achieved as expected. Further, as a result of element mapping by EDX, an average of 83% nitrogen adhesion was observed in a 100 ⁇ m visual field region.
- a negative electrode was produced using the active material and current collector obtained in Example 1, and a charge / discharge test described below and a charge / discharge test using a cylindrical cell (FIG. 2) were conducted to evaluate charge / discharge characteristics.
- the charge / discharge test was performed by charging at a current density of 1 mA / cm 2 up to a potential difference of 0.01 V between the reference electrode and the test electrode, followed by constant voltage charging at 0.01 V for 16 hours, and discharging at 1 mA / cm 2 .
- the current density was up to 1.5V.
- Example 2 A copper foil in which the azole compound used for the collector surface treatment was changed to 5-amino-1H-tetrazole was used.
- the surface-treated copper foil surface was evaluated any several points by ATR method, to observe the peak derived from an azo group a peak derived from the amino group near 3400 cm -1 in the vicinity of 1640 cm -1, prospectus exactly 5-amino - It was confirmed that 1H-tetrazole treatment was completed. Further, as a result of element mapping by EDX, an average of 78% of nitrogen was observed in the 100 ⁇ m visual field region.
- Example 1 A negative electrode was produced in the same manner as in Example 1 using the untreated copper foil as a current collector.
- Comparative Example 2 A negative electrode mixture similar to that of Example 1 was prepared.
- the copper foil which performed the following processes on the surface was used as a collector.
- the surface oxide film of the untreated electrolytic copper foil not subjected to the surface treatment it was immersed in a 10% hydrochloric acid aqueous solution for 60 seconds.
- it was thoroughly washed with ion-exchanged water and dried by blowing compressed nitrogen.
- the negative electrode active material of the present invention has a large discharge capacity and good cycle characteristics. That is, in Comparative Examples 1 and 2, peeling occurred between the electrode mixture and the current collector as the charge / discharge progressed, and thus the cycle characteristics deteriorated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
【課題】 長寿命な非水電解質二次電池用負極を提供する。 【解決手段】 実施形態の非水電解質二次電池用負極は、集電体と、負極活物質と、負極活物質を結着する結着剤とを含む層状の負極活物質層と、負極活物質層と集電体との界面の一部に、アミノ基を官能基として有するアゾ-ル化合物と、を有することを特徴とする。
Description
本発明の実施形態は、非水電解質二次電池用負極、非水電解質二次電池及び電池パックに係わる。
近年、急速なエレクトロニクス機器の小型化技術の発達により、種々の携帯電子機器が普及しつつある。そして、これら携帯電子機器の電源である電池にも小型化が求められており、高エネルギー密度を持つ非水電解質二次電池が注目を集めている。
特に、シリコン、スズなどのリチウムと合金化する元素、非晶質カルコゲン化合物などリチウム吸蔵容量が大きく、密度の高い物質を用いる試みがなされてきた。中でもシリコンはシリコン原子1に対してリチウム原子を4.4の比率までリチウムを吸蔵することが可能であり、質量あたりの負極容量は黒鉛質炭素の約10倍となる。しかし、シリコンは、充放電サイクルにおけるリチウムの挿入脱離に伴う体積の変化が大きく活物質粒子の微粉化などサイクル寿命に問題があった。
特に、シリコン、スズなどのリチウムと合金化する元素、非晶質カルコゲン化合物などリチウム吸蔵容量が大きく、密度の高い物質を用いる試みがなされてきた。中でもシリコンはシリコン原子1に対してリチウム原子を4.4の比率までリチウムを吸蔵することが可能であり、質量あたりの負極容量は黒鉛質炭素の約10倍となる。しかし、シリコンは、充放電サイクルにおけるリチウムの挿入脱離に伴う体積の変化が大きく活物質粒子の微粉化などサイクル寿命に問題があった。
発明者らは鋭意実験を重ねた結果、微細な一酸化珪素と炭素質物とを複合化し焼成した活物質において、微結晶SiがSiと強固に結合するSiO2に包含または保持された状態で炭素質物中に分散した活物質を得られ、高容量化およびサイクル特性の向上を達成できることを見出した。しかしながら、このような活物質においても数百回の充放電サイクルを行うと容量が低下し、長期間の使用には寿命特性が不十分である。
さらに、容量低下の過程を詳細に調査したところ、活物質中に含まれる微結晶Siが充放電を繰り返す間に成長し結晶子サイズが大きくなることが分かった。この結晶子サイズの成長により充放電時のLiの挿入脱離による体積変化の影響が大きくなり、容量低下が生じるという問題があった。
さらに、容量低下の過程を詳細に調査したところ、活物質中に含まれる微結晶Siが充放電を繰り返す間に成長し結晶子サイズが大きくなることが分かった。この結晶子サイズの成長により充放電時のLiの挿入脱離による体積変化の影響が大きくなり、容量低下が生じるという問題があった。
長寿命な非水電解質二次電池、電池パック、及びこれらに用いる非水電解質二次電池用負極を提供することを目的とする。
実施形態の非水電解質二次電池用負極は、集電体と、負極活物質と、負極活物質を結着する結着剤とを含む層状の負極活物質層と、負極活物質層と集電体との界面の一部に、アミノ基を官能基として有するアゾ-ル化合物と、を有することを特徴とする。
以下、実施の形態について、図面を参照して説明する。
(第1実施形態)
図1の概念図に示すように、第1実施形態の負極100は、集電体104と、負極活物質101と、負極活物質101を結着する結着剤102とを含む層状の負極活物質層103と、負極活物質層103と集電体104との界面の一部に、負極活物質層103と集電体104を接着するアミノ基を官能基として有するアゾ-ル化合物105とを有する。負極活物質層103は集電体104の片面又は両面に形成されている。
(第1実施形態)
図1の概念図に示すように、第1実施形態の負極100は、集電体104と、負極活物質101と、負極活物質101を結着する結着剤102とを含む層状の負極活物質層103と、負極活物質層103と集電体104との界面の一部に、負極活物質層103と集電体104を接着するアミノ基を官能基として有するアゾ-ル化合物105とを有する。負極活物質層103は集電体104の片面又は両面に形成されている。
実施形態の負極活物質101は、Liの挿入脱離を行う結晶性のケイ素を含む活物質である。具体的な負極活物質101の例としては、炭素質物中に、酸化ケイ素物相と、酸化ケイ素相中にケイ素相と、を有する複合体粒子が挙げられる。この形態の負極活物質の酸化ケイ素相は、炭素質物中に分散して存在し、炭素質物と複合化されている。また、ケイ素相は、酸化ケイ素相中に分散し、酸化ケイ素相と複合化されている。
負極活物質の平均一次粒径は例えば、5μm以上100μm以下、比表面積は0.5m2/g以上10m2/g以下の粒子である。活物質の粒径および比表面積はリチウムの挿入脱離反応の速度に影響し、負極特性に大きな影響をもつが、この範囲の値であれば安定して特性を発揮することができる。
例示の炭素質物は、導電性であり、活物質を形作る。炭素質物としては、グラファイト、ハードカーボン、ソフトカーボン、アモルファス炭素とアセチレンブラックからなる群から選ばれる1種類以上を用いることができる。
例示の酸化ケイ素相は、ケイ素相の膨張収縮を緩和する。酸化ケイ素相としては、非晶質、低晶質、結晶質などの構造とるSiOx(1<x≦2)の化学式で表される化合物が挙げられる。
ケイ素相は、Liの挿入脱離に伴い、膨張と収縮を行う。この膨張収縮に伴い、相が結合し相の大きさが粗大となるとサイクル特性が低下しやすいという性質がある。サイクル特性の低下を防ぐために、ケイ素相の微細化及び相サイズの均一化、酸化ケイ素相の微細化及び相サイズの均一化、立方晶ジルコニア添加、炭素繊維の添加などの手段を講ずることが好ましい。
実施形態の結着剤102は、負極活物質同士の結着性に優れ、負極活物質層103と集電体104との結着性に優れた材料である。結着剤102としては、例えばポリテトラフルオロエチレン(PTFE)、ポリ弗化ビニリデン(PVdF)、エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエンゴム(SBR)、ポリイミド、ポリアラミド等を用いることができる。また、結着剤には2種またはそれ以上のものを組み合わせて用いてもよく、活物質同士の結着に優れた結着剤と活物質と集電体の結着に優れた結着剤の組み合わせや、硬度の高いものと柔軟性に優れるものを組み合わせて用いると、寿命特性に優れた負極を作製することができる。
負極活物質層103は、負極活物質101と結着剤102とを含む混合物である。負極活物質層103には、負極活物質101と結着剤102の他に負極の導電性を向上させる目的で導電材を添加しても良い。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛などを挙げることができる。負極活物質層103の厚さは1.0~150μmの範囲であることが望ましい。従って負極集電体104の両面に担持されている場合は負極活物質層103の合計の厚さは2.0~300μmの範囲となる。片面の厚さのより好ましい範囲は30~100μmである。この範囲であると大電流放電特性とサイクル寿命は大幅に向上する。
負極活物質、導電剤および結着剤の配合割合は、負極活物質57~95質量%、導電剤3~20質量%、結着剤2~40質量%の範囲にすることが、良好な大電流放電特性とサイクル寿命を得られるために好ましい。
実施形態の集電体104は、負極活物質層103と結着する導電性の部材である。集電体104としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、銅、ステンレスまたはニッケルから形成することができる。集電体の厚さは5~20μmであることが望ましい。この範囲内であると電極強度と軽量化のバランスがとれるからである。
実施形態のアミノ基を官能基として有するアゾ-ル化合物105は、負極活物質層103と集電体104との界面の一部に存在し、負極活物質層103と集電体104とを接着する接合部材である。アゾ-ル化合物105は、一般の結着剤よりもCuなどの金属表面との結着力が強く、またアミノ基を備えることによる極性基を有する結着剤との親和性に優れるため、負極活物質層103と集電体104の密着性を向上し、Li挿入脱離に伴う剥離を防ぐ働きをする。アゾ-ル化合物105は、負極活物質層103と集電体104との界面に、複数分子が凝集した膜状にあるいは単分子が独立した状態で存在する。
アゾール化合物105としては、アミノ基を官能基として有するアゾール化合物を用いることができる。アゾール化合物105は、アミノ基を官能基として有し、アゾール環を有する化合物であって、アゾール環としては、ジアゾール、オキサゾール、チアゾール、トリアゾール、オキサジアゾール、チアジアゾール、テトラゾール、オキサトリアゾール、チアトリアゾールの群より選択される少なくとも1種の化合物などがあげられるが、これらに限定されるものではない。なお、上記アゾール化合物中でも、テトラゾール化合物がCuなどの金属との錯形成能が高いという理由により好ましい。アミノ基を官能基として有するアゾ-ル化合物105は、アミノ基を有しないアゾ-ル化合物と比較して結着剤との親和性が良く、また結着剤にポリイミド前駆体を用いた場合は、イミド化過程において反応し、より強固な結着力を示す。
前記アゾール化合物105の具体例としては、例えば2-アミノベンゾイミダゾール、3-アミノ-1,2,4-トリアゾール、4-アミノ-1,2,4,-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール-5-カルボン酸、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾール、5-アミノ-1H-テトラゾール、1-(β-アミノエチル)テトラゾール、5-アミノ-1,2,3,4-チアトリアゾール、2-アミノ-5-トリフルオロメチル-1,3,4-チアジアゾール、5-アミノインダゾール、4-アミノインドール、5-アミノインドール、3-アミノ-1H-イソインドール、3-アミノイソキサゾール、3-β-アミノエチルピラゾール、3-アミノ-1,2,4-トリアゾール、4-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール-5-カルボン酸、5-アミノテトラゾール、1-(β-アミノエチル)テトラゾールなどの環内に2~4個のチッ素原子を有するアゾール化合物が挙げられるが、前記アゾール化合物は、1種を用いてもよく、2種以上を併用してもよい。が、これに限定されるものではない。
アゾ-ル化合物105は、界面面積(負極活物質層103が形成された集電体104の面)の5%以上95%以下の範囲内に存在する。この範囲よりアゾ-ル化合物105が少ないと、耐剥離性向上の効果がほとんどない。また、アゾ-ル化合物105は導電性が悪いため、この範囲よりアゾ-ル化合物105が多いと、負極活物質層103と集電体間の導電性が低下することが好ましくない。
これらアゾール化合物の界面面積は、表面処理したCu箔集電体について、エネルギー分散型X線分析装置(EDX) を用い、加速電圧は1 0 kV、エミッション電流は1 0 . 0 μ Aの測定条件としてCu箔表面を測定し元素マッピングすることで容易に確認できる。
これらアゾール化合物の界面面積は、表面処理したCu箔集電体について、エネルギー分散型X線分析装置(EDX) を用い、加速電圧は1 0 kV、エミッション電流は1 0 . 0 μ Aの測定条件としてCu箔表面を測定し元素マッピングすることで容易に確認できる。
アゾ-ル化合物105が、負極活物質層103と集電体104との界面に存在することは、負極活物質層103側から負極を赤外分光分析の減衰全反射法で分析し、アミノ基由来の3400cm-1の吸収スペクトルとアゾ-ル化合物105に特異的な1640cm-1の吸収スペクトルを観察することで知ることができる。
また、負極活物質層103を除去した集電体104をメタノール中に浸漬し、アゾール化合物を抽出し、LC/MS,GC/MSなどの有機スペクトル分析にて当該分野で一般に行われる手法でもアゾール化合物の存在を容易に知ることが出来る。また、本発明の構成において、この時、負極活物質層103の表面から厚み方向1/3程度を、同様のメタノール抽出法にて、MSスペクトル分析しアゾール化合物が検出されないことも併せて確認する事が出来る。
また、負極活物質層103を除去した集電体104をメタノール中に浸漬し、アゾール化合物を抽出し、LC/MS,GC/MSなどの有機スペクトル分析にて当該分野で一般に行われる手法でもアゾール化合物の存在を容易に知ることが出来る。また、本発明の構成において、この時、負極活物質層103の表面から厚み方向1/3程度を、同様のメタノール抽出法にて、MSスペクトル分析しアゾール化合物が検出されないことも併せて確認する事が出来る。
次に、実施形態の負極100の製造方法について説明する。
有機溶剤中に溶解させたアミノ基を官能基として有するアゾール化合物105の溶液(以下、表面処理液と記載)を作製し、集電体104の表面を処理することで容易に形成可能である。その場合、処理面全面に表面処理液と集電体104表面が接触すればよく、その方法は限定されないが、均一に接触させることが好ましい。集電体104を表面処理液に浸漬してもよく、また、スプレー等で銅箔に吹き付けても、適当な工具で基板に塗布してもよい。また、この際の表面処理液の温度は、好ましくは0~100℃、より好ましくは10~80℃の範囲である。用いる有機溶剤の沸点、蒸気圧など勘案し行うことが出来る。
有機溶剤中に溶解させたアミノ基を官能基として有するアゾール化合物105の溶液(以下、表面処理液と記載)を作製し、集電体104の表面を処理することで容易に形成可能である。その場合、処理面全面に表面処理液と集電体104表面が接触すればよく、その方法は限定されないが、均一に接触させることが好ましい。集電体104を表面処理液に浸漬してもよく、また、スプレー等で銅箔に吹き付けても、適当な工具で基板に塗布してもよい。また、この際の表面処理液の温度は、好ましくは0~100℃、より好ましくは10~80℃の範囲である。用いる有機溶剤の沸点、蒸気圧など勘案し行うことが出来る。
これらアゾール化合物105を溶解する溶剤としては、炭化水素系アルコール類、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール等、炭化水素系ケトン類、例えば、アセトン、プロパノン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等、炭化水素系エーテル類、例えば、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン等、炭化水素系エステル類、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、γ-ブチロラクトン等、その他、例えば、トルエン、キシレン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等、等を用いることができるが、これに限定されるものではない。
表面処理液のアゾール化合物105濃度は、0.001~1mol/lで用いることが好ましく、余分なアゾール化合物105の付着を少なくするためには低濃度とすることが好ましいが、低濃度すぎると集電体104と負極活物質層103との接着力向上効果がなくなるので、より好ましくは0.01~0.5mol/lである。
表面処理液のアゾール化合物105濃度は、0.001~1mol/lで用いることが好ましく、余分なアゾール化合物105の付着を少なくするためには低濃度とすることが好ましいが、低濃度すぎると集電体104と負極活物質層103との接着力向上効果がなくなるので、より好ましくは0.01~0.5mol/lである。
上記処理後、集電体104表面に余分に付着したアゾール化合物105を有機溶剤で溶解除去する洗浄工程を行ってもよい。この洗浄で使用する有機溶剤には、アゾール化合物105を溶解することができる溶剤を使用することができる。例としては、上記記載の有機溶剤を用いることができる。
この洗浄工程で集電体104表面を有機溶媒で洗浄する方法は限定されない。溶媒に浸漬してもよく、また、スプレー等で吹き付けて洗い流しても、適当な基材にしみ込ませてふき取ってもよい。またこの洗浄液除去のため、100℃程度までの乾燥工程を加えても構わない。この工程は、熱風乾燥、オーブンへの投入乾燥、ホットプレート上での乾燥など何れの方法を取ることもできる。
次に、負極活物質、導電剤及び結着剤を汎用されている溶媒に懸濁してスラリーを調製する。スラリーをアゾ-ル化合物105処理した集電体104に塗布し、乾燥し、その後、プレスを施すことにより負極が作製される。
(第2実施形態)
第2実施形態に係る非水電解質二次電池を説明する。
第2実施形態に係る非水電解質二次電池は、外装材と、外装材内に収納された正極と、外装材内に正極と空間的に離間して、例えばセパレータを介在して収納された活物質を含む負極と、外装材内に充填された非水電解質とを具備する。
第2実施形態に係る非水電解質二次電池を説明する。
第2実施形態に係る非水電解質二次電池は、外装材と、外装材内に収納された正極と、外装材内に正極と空間的に離間して、例えばセパレータを介在して収納された活物質を含む負極と、外装材内に充填された非水電解質とを具備する。
実施形態に係る非水電解質二次電池200の一例を示した図2の概念図を参照してより詳細に説明する。図2は、袋状外装材202がラミネートフィルムからなる扁平型非水電解質二次電池200の断面概念図である。
扁平状の捲回電極群201は、2枚の樹脂層の間にアルミニウム箔を介在したラミネートフィルムからなる袋状外装材202内に収納されている。扁平状の捲回電極群201は、一部を抜粋した概念図である図3に示すように、負極203、セパレータ204、正極205、セパレータ204の順で積層されている。そして積層物を渦巻状に捲回し、プレス成型することにより形成されたものである。袋状外装材202に最も近い電極は負極であり、この負極は、袋状外装材202側の負極集電体には、負極合剤が形成されておらず、負極集電体の電池内面側の片面のみに負極合剤を形成した構成を有する。その他の負極203は、負極集電体の両面に負極合剤を形成して構成されている。正極205は、正極集電体の両面に正極合剤を形成して構成されている。
捲回電極群201の外周端近傍において、負極端子は最外殻の負極203の負極集電体に電気的に接続され、正極端子は内側の正極205の正極集電体に電気的に接続されている。これらの負極端子206及び正極端子207は、袋状外装材202の開口部から外部に延出されている。例えば液状非水電解質は、袋状外装材202の開口部から注入されている。袋状外装材202の開口部を負極端子206及び正極端子207を挟んでヒートシールすることにより捲回電極群201及び液状非水電解質を完全密封している。
負極端子206は、例えばアルミニウムまたはMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。負極端子206は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料であることが好ましい。
正極端子207は、リチウムイオン金属に対する電位が3~4.25Vの範囲における電気的安定性と導電性とを備える材料を用いることができる。具体的には、アルミニウムまたはMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。正極端子207は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料であることが好ましい。
正極端子207は、リチウムイオン金属に対する電位が3~4.25Vの範囲における電気的安定性と導電性とを備える材料を用いることができる。具体的には、アルミニウムまたはMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。正極端子207は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料であることが好ましい。
以下、非水電解質二次電池200の構成部材である袋状外装材202、正極205、電解質、セパレータ204について詳細に説明する。
1)袋状外装材202
袋状外装材202は、厚さ0.5mm以下のラミネートフィルムから形成される。或いは、外装材は厚さ1.0mm以下の金属製容器が用いられる。金属製容器は、厚さ0.5mm以下であることがより好ましい。
袋状外装材202は、厚さ0.5mm以下のラミネートフィルムから形成される。或いは、外装材は厚さ1.0mm以下の金属製容器が用いられる。金属製容器は、厚さ0.5mm以下であることがより好ましい。
袋状外装材202の形状は、扁平型(薄型)、角型、円筒型、コイン型、及びボタン型から選択できる。外装材の例には、電池寸法に応じて、例えば携帯用電子機器等に積載される小型電池用外装材、二輪乃至四輪の自動車等に積載される大型電池用外装材などが含まれる。
ラミネートフィルムは、樹脂層間に金属層を介在した多層フィルムが用いられる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂層は、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装材の形状に成形することができる。
金属製容器は、アルミニウムまたはアルミニウム合金等から作られる。アルミニウム合金は、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属が含まれる場合、その量は100質量ppm以下にすることが好ましい。
2)正極205
正極205は、活物質を含む正極合剤が正極集電体の片面もしくは両面に担持された構造を有する。
前記正極合剤の片面の厚さは1.0μm~150μmの範囲であることが電池の大電流放電特性とサイクル寿命の保持の点から望ましい。従って正極集電体の両面に担持されている場合は正極合剤の合計の厚さは20μm~300μmの範囲となることが望ましい。片面のより好ましい範囲は30μm~120μmである。この範囲であると大電流放電特性とサイクル寿命は向上する。
正極合剤は、正極活物質と正極活物質同士を結着する結着剤の他に導電剤を含んでいてもよい。
正極205は、活物質を含む正極合剤が正極集電体の片面もしくは両面に担持された構造を有する。
前記正極合剤の片面の厚さは1.0μm~150μmの範囲であることが電池の大電流放電特性とサイクル寿命の保持の点から望ましい。従って正極集電体の両面に担持されている場合は正極合剤の合計の厚さは20μm~300μmの範囲となることが望ましい。片面のより好ましい範囲は30μm~120μmである。この範囲であると大電流放電特性とサイクル寿命は向上する。
正極合剤は、正極活物質と正極活物質同士を結着する結着剤の他に導電剤を含んでいてもよい。
正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケルコバルト酸化物(例えばLiCOO2)、リチウム含有ニッケルコバルト酸化物(例えばLiNi0.8CO0.2O2)、リチウムマンガン複合酸化物(例えばLiMn2O4、LiMnO2)を用いると高電圧が得られるために好ましい。
導電剤としてはアセチレンブラック、カーボンブラック、黒鉛などを挙げることができる。
結着材の具体例としては例えばポリテトラフルオロエチレン(PTFE)、ポリ弗化ビニリデン(PVdF)、エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエンゴム(SBR)等を用いることができる。
結着材の具体例としては例えばポリテトラフルオロエチレン(PTFE)、ポリ弗化ビニリデン(PVdF)、エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエンゴム(SBR)等を用いることができる。
正極活物質、導電剤および結着剤の配合割合は、正極活物質80~95質量%、導電剤3~20質量%、結着剤2~7質量%の範囲にすることが、良好な大電流放電特性とサイクル寿命を得られるために好ましい。
集電体としては、多孔質構造の導電性基板かあるいは無孔の導電性基板を用いることができる。集電体の厚さは5~20μmであることが望ましい。この範囲であると電極強度と軽量化のバランスがとれるからである。
正極205は、例えば活物質、導電剤及び結着剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体に塗布し、乾燥し、その後、プレスを施すことにより作製される。正極205はまた活物質、導電剤及び結着剤をペレット状に形成して正極層とし、これを集電体上に形成することにより作製されてもよい。
3)負極203
負極203としては、第1実施形態に記載した負極100を用いる。
負極203としては、第1実施形態に記載した負極100を用いる。
4)電解質
電解質としては非水電解液、電解質含浸型ポリマー電解質、高分子電解質、あるいは無機固体電解質を用いることができる。
非水電解液は、非水溶媒に電解質を溶解することにより調製される液体状電解液で、電極群中の空隙に保持される。
電解質としては非水電解液、電解質含浸型ポリマー電解質、高分子電解質、あるいは無機固体電解質を用いることができる。
非水電解液は、非水溶媒に電解質を溶解することにより調製される液体状電解液で、電極群中の空隙に保持される。
非水溶媒としては、プロピレンカーボネート(PC)やエチレンカーボネート(EC)とPCやECより低粘度である非水溶媒(以下第2溶媒と称す)との混合溶媒を主体とする非水溶媒を用いることが好ましい。
第2溶媒としては、例えば鎖状カーボンが好ましく、中でもジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、プロピオン酸エチル、プロピオン酸メチル、γ-ブチロラクトン(BL)、アセトニトリル(AN)、酢酸エチル(EA)、トルエン、キシレンまたは、酢酸メチル(MA)等が挙げられる。これらの第2溶媒は、単独または2種以上の混合物の形態で用いることができる。特に、第2溶媒はドナー数が16.5以下であることがより好ましい。
第2溶媒の粘度は、25℃において2.8cmp以下であることが好ましい。混合溶媒中のエチレンカーボネートまたはプロピレンカーボネートの配合量は、体積比率で1.0%~80%であることが好ましい。より好ましいエチレンカーボネートまたはプロピレンカーボネートの配合量は体積比率で20%~75%である。
非水電解液に含まれる電解質としては、例えば過塩素酸リチウム(LiClO4)、六弗化リン酸リチウム(LiPF6)、ホウ弗化リチウム(LiBF4)、六弗化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO2)2]等のリチウム塩(電解質)が挙げられる。中でもLiPF6、LiBF4を用いるのが好ましい。
電解質の非水溶媒に対する溶解量は、0.5~2.0mol/Lとすることが望ましい。
電解質の非水溶媒に対する溶解量は、0.5~2.0mol/Lとすることが望ましい。
5)セパレータ204
非水電解液を用いる場合、および電解質含浸型ポリマー電解質を用いる場合においてはセパレータ204を用いることができる。セパレータ204は多孔質セパレータを用いる。セパレータ204の材料としては、例えば、ポリエチレン、ポリプロピレン、またはポリ弗化ピニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布等を用いることができる。中でも、ポリエチレンか、あるいはポリプロピレン、または両者からなる多孔質フィルムは、二次電池の安全性を向上できるため好ましい。
非水電解液を用いる場合、および電解質含浸型ポリマー電解質を用いる場合においてはセパレータ204を用いることができる。セパレータ204は多孔質セパレータを用いる。セパレータ204の材料としては、例えば、ポリエチレン、ポリプロピレン、またはポリ弗化ピニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布等を用いることができる。中でも、ポリエチレンか、あるいはポリプロピレン、または両者からなる多孔質フィルムは、二次電池の安全性を向上できるため好ましい。
セパレータ204の厚さは、30μm以下にすることが好ましい。厚さが30μmを越えると、正負極間の距離が大きくなって内部抵抗が大きくなる恐れがある。また、厚さの下限値は、5μmにすることが好ましい。厚さを5μm未満にすると、セパレータ204の強度が著しく低下して内部ショートが生じやすくなる恐れがある。厚さの上限値は、25μmにすることがより好ましく、また、下限値は1.0μmにすることがより好ましい。
セパレータ204は、120℃の条件で1時間おいたときの熱収縮率が20%以下であることが好ましい。熱収縮率が20%を超えると、加熱により短絡が起こる可能性が大きくなる。熱収縮率は、15%以下にすることがより好ましい。
セパレータ204は、多孔度が30~70%の範囲であることが好ましい。これは次のような理由によるものである。多孔度を30%未満にすると、セパレータ204において高い電解質保持性を得ることが困難になる恐れがある。一方、多孔度が60%を超えると十分なセパレータ204強度を得られなくなる恐れがある。多孔度のより好ましい範囲は、35~70%である。
セパレータ204は、多孔度が30~70%の範囲であることが好ましい。これは次のような理由によるものである。多孔度を30%未満にすると、セパレータ204において高い電解質保持性を得ることが困難になる恐れがある。一方、多孔度が60%を超えると十分なセパレータ204強度を得られなくなる恐れがある。多孔度のより好ましい範囲は、35~70%である。
セパレータ204は、空気透過率が500秒/1.00cm3以下であると好ましい。空気透過率が500秒/1.00cm3を超えると、セパレータ204において高いリチウムイオン移動度を得ることが困難になる恐れがある。また、空気透過率の下限値は、30秒/1.00cm3である。空気透過率を30秒/1.00cm3未満にすると、十分なセパレータ強度を得られなくなる恐れがあるからである。
空気透過率の上限値は300秒/1.00cm3にすることがより好ましく、また、下限値は50秒/1.00cm3にするとより好ましい。
空気透過率の上限値は300秒/1.00cm3にすることがより好ましく、また、下限値は50秒/1.00cm3にするとより好ましい。
(第3実施形態)
次に、第3実施形態に係る電池パックを説明する。
第3実施形態に係る電池パックは、上記第2実施形態に係る非水電解質二次電池(即ち、単電池)を一以上有する。電池パックに複数の単電池が含まれる場合、各単電池は、電気的に直列、並列、或いは、直列と並列に接続して配置される。
図4の概念図及び図5のブロック図を参照して電池パック300を具体的に説明する。図4に示す電池パック300では、単電池301として図2に示す扁平型非水電解液電池200を使用している。
次に、第3実施形態に係る電池パックを説明する。
第3実施形態に係る電池パックは、上記第2実施形態に係る非水電解質二次電池(即ち、単電池)を一以上有する。電池パックに複数の単電池が含まれる場合、各単電池は、電気的に直列、並列、或いは、直列と並列に接続して配置される。
図4の概念図及び図5のブロック図を参照して電池パック300を具体的に説明する。図4に示す電池パック300では、単電池301として図2に示す扁平型非水電解液電池200を使用している。
複数の単電池301は、外部に延出した負極端子302及び正極端子303が同じ向きに揃えられるように積層され、粘着テープ304で締結することにより組電池305を構成している。これらの単電池301は、図5に示すように互いに電気的に直列に接続されている。
プリント配線基板306は、負極端子302及び正極端子303が延出する単電池301側面と対向して配置されている。プリント配線基板306には、図5に示すようにサーミスタ307、保護回路308及び外部機器への通電用端子309が搭載されている。なお、組電池305と対向する保護回路基板306の面には組電池305の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
正極側リード310は、組電池305の最下層に位置する正極端子303に接続され、その先端はプリント配線基板306の正極側コネクタ311に挿入されて電気的に接続されている。負極側リード312は、組電池305の最上層に位置する負極端子302に接続され、その先端はプリント配線基板306の負極側コネクタ313に挿入されて電気的に接続されている。これらのコネクタ311、313は、プリント配線基板306に形成された配線314、315を通して保護回路308に接続されている。
サーミスタ307は、単電池305の温度を検出するために用いられ、その検出信号は保護回路308に送信される。保護回路308は、所定の条件で保護回路308と外部機器への通電用端子309との間のプラス側
配線316a及びマイナス側配線316bを遮断できる。所定の条件とは、例えばサーミスタ307の検出温度が所定温度以上になったときである。また、所定の条件とは単電池301の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池301もしくは単電池301全体について行われる。個々の単電池301を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池301中に参照極として用いるリチウム電極が挿入される。図4及び図5の場合、単電池301それぞれに電圧検出のための配線317を接続し、これら配線317を通して検出信号が保護回路308に送信される。
配線316a及びマイナス側配線316bを遮断できる。所定の条件とは、例えばサーミスタ307の検出温度が所定温度以上になったときである。また、所定の条件とは単電池301の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池301もしくは単電池301全体について行われる。個々の単電池301を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池301中に参照極として用いるリチウム電極が挿入される。図4及び図5の場合、単電池301それぞれに電圧検出のための配線317を接続し、これら配線317を通して検出信号が保護回路308に送信される。
正極端子303及び負極端子302が突出する側面を除く組電池305の三側面には、ゴムもしくは樹脂からなる保護シート318がそれぞれ配置されている。
組電池305は、各保護シート318及びプリント配線基板306と共に収納容器319内に収納される。すなわち、収納容器319の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート318が配置され、短辺方向の反対側の内側面にプリント配線基板306が配置される。組電池305は、保護シート318及びプリント配線基板306で囲まれた空間内に位置する。蓋320は、収納容器319の上面に取り付けられている。
なお、組電池305の固定には粘着テープ304に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。
図4、図5では単電池301を直列接続した形態を示したが、電池容量を増大させるためには並列に接続しても、または直列接続と並列接続を組み合わせてもよい。組み上がった電池パックをさらに直列、並列に接続することもできる。
以上記載した本実施形態によれば、上記第3実施形態における優れた充放電サイクル性能を有する非水電解質二次電池を備えることにより、優れた充放電サイクル性能を有する電池パックを提供することができる。
以上記載した本実施形態によれば、上記第3実施形態における優れた充放電サイクル性能を有する非水電解質二次電池を備えることにより、優れた充放電サイクル性能を有する電池パックを提供することができる。
なお、電池パックの態様は用途により適宜変更される。電池パックの用途は、大電流を取り出したときに優れたサイクル特性を示すものが好ましい。具体的には、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。特に、高温特性の優れた非水電解質二次電池を用いた電池パックは車載用に好適に用いられる。
以下に具体的な実施例(各実施例で説明する夫々の条件で、図2で説明した電池を具体的に作成した例)を挙げ、その効果について述べる。
(実施例1)
次のような条件でSiOの粉砕、混練および複合体の形成、Arガス中での焼成を行い、負極活物質を得た。
SiOの粉砕は次のように行った。原料SiO粉を連続式ビーズミル装置にてビーズ径0.5μmのビーズを用いエタノールを分散媒として所定の時間、粉砕処理を行った。さらにこのSiO粉末を遊星ボールミルで0.1μmボールを用いてエタノールを分散媒として粉砕を行い粉砕しSiO微粉末を作製した。
次のような条件でSiOの粉砕、混練および複合体の形成、Arガス中での焼成を行い、負極活物質を得た。
SiOの粉砕は次のように行った。原料SiO粉を連続式ビーズミル装置にてビーズ径0.5μmのビーズを用いエタノールを分散媒として所定の時間、粉砕処理を行った。さらにこのSiO粉末を遊星ボールミルで0.1μmボールを用いてエタノールを分散媒として粉砕を行い粉砕しSiO微粉末を作製した。
微粉砕処理により得られた一酸化ケイ素粉末、6μmの黒鉛粉末を、次のような方法でハードカーボンと複合化した。フルフリルアルコール4.0gとエタノール10gと水0.125gの混合液にSiO粉末を2.8g、黒鉛粉末を0.7、平均直径180nmの炭素繊維0.06gを加え混練機にて混練処理しスラリー状とした。混錬後のスラリーにフルフリルアルコールの重合触媒となる希塩酸を0.2g加え室温で放置し乾燥、固化して炭素複合体を得た。
得られた炭素複合体を1050℃で3h、Arガス中にて焼成し、室温まで冷却後、粉砕し30μm径のふるいをかけて負極活物質を得た。
また、集電体として表面に次のような処理を施した銅箔使用した。
得られた炭素複合体を1050℃で3h、Arガス中にて焼成し、室温まで冷却後、粉砕し30μm径のふるいをかけて負極活物質を得た。
また、集電体として表面に次のような処理を施した銅箔使用した。
表面処理を施していない未処理電解銅箔の表面酸化皮膜を除去するため、10%塩酸水溶液に60秒間浸漬した。付着した酸を除くため、イオン交換水で十分に洗浄し、圧縮窒素を吹き付けて乾燥した。このように処理した銅箔上に、2-アミノベンゾイミダゾール50mgをエタノール1Lに溶解した処理液をスプレー上に均一に吹き付けた後、圧縮窒素を吹き付けることで表面を乾燥させた。次いで、銅箔表面に付着した余分な2-アミノベンゾイミダゾールを洗浄するため、メタノールにこの銅箔を60秒間浸漬して洗浄し、その後圧縮窒素を吹き付けることで表面を乾燥させることで、表面処理銅箔を得、これを集電体として用いた。なお、表面処理銅箔表面をATR法により任意の数点評価したところ、3400cm-1付近にアミノ基由来のピークを観察し、目論見どおり2-アミノベンゾイミダゾール処理が出来ていることを確認した。またEDXによる元素マッピングの結果、100μm視野領域において、平均83%の窒素の付着を観察した。
実施例1において得られた活物質、集電体を用いて負極を作製し、以下に説明する充放電試験、円筒型セル(図2)による充放電試験を行い、充放電特性を評価した。
(充放電試験)
得られた試料に平均径6μmのグラファイト15質量%、ポリイミド8質量%を分散媒としてN-メチルピロリドンを用いて混練し厚さ12μmの銅箔上に塗布して圧延した後、250℃で2時間、Arガス中にて熱処理し、所定のサイズに裁断した後、100℃で12時間、真空乾燥し、試験電極とした。対極および参照極を金属Li、電解液をLiPF6(1M)のEC・DEC(体積比EC:DEC=1:2)溶液とした電池をアルゴン雰囲気中で作製し充放電試験を行った。充放電試験の条件は、参照極と試験電極間の電位差0.01Vまで1mA/cm2の電流密度で充電、さらに0.01Vで16時間の定電圧充電を行い、放電は1mA/cm2の電流密度で1.5Vまで行った。さらに、参照極と試験電極間の電位差0.01Vまで1mA/cm2の電流密度で充電、1mA/cm2の電流密度で1.5Vまで放電するサイクルを100回行い、1サイクル目に対する100サイクル目の放電容量の維持率を測定した。
得られた試料に平均径6μmのグラファイト15質量%、ポリイミド8質量%を分散媒としてN-メチルピロリドンを用いて混練し厚さ12μmの銅箔上に塗布して圧延した後、250℃で2時間、Arガス中にて熱処理し、所定のサイズに裁断した後、100℃で12時間、真空乾燥し、試験電極とした。対極および参照極を金属Li、電解液をLiPF6(1M)のEC・DEC(体積比EC:DEC=1:2)溶液とした電池をアルゴン雰囲気中で作製し充放電試験を行った。充放電試験の条件は、参照極と試験電極間の電位差0.01Vまで1mA/cm2の電流密度で充電、さらに0.01Vで16時間の定電圧充電を行い、放電は1mA/cm2の電流密度で1.5Vまで行った。さらに、参照極と試験電極間の電位差0.01Vまで1mA/cm2の電流密度で充電、1mA/cm2の電流密度で1.5Vまで放電するサイクルを100回行い、1サイクル目に対する100サイクル目の放電容量の維持率を測定した。
以下の実施例と比較例に関して表1にまとめた。以下の実施例および比較例については実施例1と異なる部分のみ説明し、その他の合成および評価手順については実施例1と同様に行ったので説明を省略する。
(実施例2)
集電体表面処理に用いるアゾール化合物を5-アミノ-1H-テトラゾールに変更した銅箔を用いた。なお、表面処理銅箔表面をATR法により任意の数点評価したところ、3400cm-1付近にアミノ基由来のピークを1640cm-1付近にアゾ基由来のピークを観察し、目論見どおり5-アミノ-1H-テトラゾール処理が出来ていることを確認した。またEDXによる元素マッピングの結果、100μm視野領域において、平均78%の窒素の付着を観察した。
集電体表面処理に用いるアゾール化合物を5-アミノ-1H-テトラゾールに変更した銅箔を用いた。なお、表面処理銅箔表面をATR法により任意の数点評価したところ、3400cm-1付近にアミノ基由来のピークを1640cm-1付近にアゾ基由来のピークを観察し、目論見どおり5-アミノ-1H-テトラゾール処理が出来ていることを確認した。またEDXによる元素マッピングの結果、100μm視野領域において、平均78%の窒素の付着を観察した。
(比較例1)
表面未処理銅箔を集電体として、実施例1と同様の方法で負極を作製した。
(比較例2)
実施例1と同様の負極合剤を用意した。
また、集電体として表面に次のような処理を施した銅箔使用した。
表面処理を施していない未処理電解銅箔の表面酸化皮膜を除去するため、10%塩酸水溶液に60秒間浸漬した。付着した酸を除くため、イオン交換水で十分に洗浄し、圧縮窒素を吹き付けて乾燥した。このように処理した銅箔上に、2-アミノベンゾイミダゾール50mgをエタノール1Lに溶解した処理液をスプレー上に均一に吹き付けた後、圧縮窒素を吹き付けることで表面を乾燥させることで、表面処理銅箔を得、これを集電体として用いた。なお、表面処理銅箔表面をATR法により任意の数点評価したところ、3400cm-1付近にアミノ基由来のピークを観察し、目論見どおり2-アミノベンゾイミダゾール処理が出来ていることを確認した。またEDXによる元素マッピングの結果、100μm視野領域において、平均99%の窒素の付着を観察した。
表面未処理銅箔を集電体として、実施例1と同様の方法で負極を作製した。
(比較例2)
実施例1と同様の負極合剤を用意した。
また、集電体として表面に次のような処理を施した銅箔使用した。
表面処理を施していない未処理電解銅箔の表面酸化皮膜を除去するため、10%塩酸水溶液に60秒間浸漬した。付着した酸を除くため、イオン交換水で十分に洗浄し、圧縮窒素を吹き付けて乾燥した。このように処理した銅箔上に、2-アミノベンゾイミダゾール50mgをエタノール1Lに溶解した処理液をスプレー上に均一に吹き付けた後、圧縮窒素を吹き付けることで表面を乾燥させることで、表面処理銅箔を得、これを集電体として用いた。なお、表面処理銅箔表面をATR法により任意の数点評価したところ、3400cm-1付近にアミノ基由来のピークを観察し、目論見どおり2-アミノベンゾイミダゾール処理が出来ていることを確認した。またEDXによる元素マッピングの結果、100μm視野領域において、平均99%の窒素の付着を観察した。
表1に挙げた結果から本発明の負極活物質は大きな放電容量および良好なサイクル特性
を有することが理解される。すなわち、比較例1および2では、充放電が進むに従い電極合剤と集電体間に剥離が生じ、そのためサイクル特性が低下した。
を有することが理解される。すなわち、比較例1および2では、充放電が進むに従い電極合剤と集電体間に剥離が生じ、そのためサイクル特性が低下した。
以上、本発明の実施の形態を説明したが、本発明はこれらに限られず、特許請求の範囲に記載の発明の要旨の範疇において様々に変更可能である。また、本発明は、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、上記実施形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。
Claims (5)
- 集電体と、
負極活物質と、前記負極活物質を結着する結着剤とを含む層状の負極活物質層と、
前記負極活物質層と前記集電体との界面の一部に、アミノ基を官能基として有するアゾ-ル化合物と、
を有することを特徴とする非水電解質二次電池用負極。 - 前記アゾ-ル化合物は、前記界面の面積の5%以上99%以下の範囲内に存在することを特徴とする請求項1に記載の非水電解質二次電池用負極。
- 前記アゾ-ル化合物は、アミノ基を官能基として有するテトラゾール化合物であることを特徴とする請求項1又は2に記載の非水電解質二次電池用負極。
- 請求項1乃至3のいずれか1項に記載の非水電解質二次電池用負極を負極に用いたことを特徴とする非水電解質二次電池。
- 請求項4に記載の非水電解質二次電池を用いたことを特徴とする電池パック。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014505917A JP5715298B2 (ja) | 2012-03-23 | 2012-03-23 | 非水電解質二次電池用負極、非水電解質二次電池及び電池パック |
PCT/JP2012/057434 WO2013140590A1 (ja) | 2012-03-23 | 2012-03-23 | 非水電解質二次電池用負極、非水電解質二次電池及び電池パック |
CN201280041862.8A CN103782415A (zh) | 2012-03-23 | 2012-03-23 | 非水电解质二次电池用负极、非水电解质二次电池以及电池包 |
US14/211,831 US20140199593A1 (en) | 2012-03-23 | 2014-03-14 | Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/057434 WO2013140590A1 (ja) | 2012-03-23 | 2012-03-23 | 非水電解質二次電池用負極、非水電解質二次電池及び電池パック |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/211,831 Continuation US20140199593A1 (en) | 2012-03-23 | 2014-03-14 | Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013140590A1 true WO2013140590A1 (ja) | 2013-09-26 |
Family
ID=49222084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/057434 WO2013140590A1 (ja) | 2012-03-23 | 2012-03-23 | 非水電解質二次電池用負極、非水電解質二次電池及び電池パック |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140199593A1 (ja) |
JP (1) | JP5715298B2 (ja) |
CN (1) | CN103782415A (ja) |
WO (1) | WO2013140590A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9705155B2 (en) | 2012-03-15 | 2017-07-11 | Kabushiki Kaisha Toshiba | Electrode for solid electrolyte secondary battery, solid electrolyte secondary battery, and battery pack |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016062860A (ja) * | 2014-09-22 | 2016-04-25 | 株式会社東芝 | 非水電解質二次電池用電極活物質およびそれを備えた非水電解質二次電池 |
TWI596178B (zh) * | 2015-08-24 | 2017-08-21 | 國立臺灣科技大學 | 黏著劑組成物、電極組成物、電極及鋰電池 |
JP7332508B2 (ja) * | 2020-03-17 | 2023-08-23 | 株式会社東芝 | 超電導コイル及び超電導機器 |
KR20210120196A (ko) * | 2020-03-26 | 2021-10-07 | 주식회사 엘지에너지솔루션 | 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지 |
CN113072144A (zh) * | 2021-04-26 | 2021-07-06 | 哈尔滨工业大学 | 一种氮掺杂电芬顿阴极的制备方法及应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61267264A (ja) * | 1985-05-21 | 1986-11-26 | Toshiba Battery Co Ltd | アルカリ電池 |
JPH09139233A (ja) * | 1995-09-13 | 1997-05-27 | Denso Corp | 非水電解液二次電池 |
JPH10162833A (ja) * | 1996-11-29 | 1998-06-19 | Denso Corp | 非水電解液二次電池 |
JP2006260784A (ja) * | 2005-03-15 | 2006-09-28 | Matsushita Electric Ind Co Ltd | リチウム二次電池用負極とそれを用いた電池 |
JP2011134623A (ja) * | 2009-12-25 | 2011-07-07 | Sanyo Electric Co Ltd | 非水電解質二次電池及びその製造方法 |
JP2011134651A (ja) * | 2009-12-25 | 2011-07-07 | Furukawa Electric Co Ltd:The | 非水溶媒二次電池負極集電体用銅箔その製造方法及び非水溶媒二次電池負極電極の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61267265A (ja) * | 1985-05-21 | 1986-11-26 | Toshiba Battery Co Ltd | アルカリ電池 |
US7205067B2 (en) * | 2005-02-08 | 2007-04-17 | Valence Technology, Inc. | Method and apparatus for dissipation of heat generated by a secondary electrochemical cell |
KR20130143083A (ko) * | 2010-11-16 | 2013-12-30 | 히다치 막셀 가부시키가이샤 | 비수 이차 전지 |
-
2012
- 2012-03-23 JP JP2014505917A patent/JP5715298B2/ja active Active
- 2012-03-23 CN CN201280041862.8A patent/CN103782415A/zh active Pending
- 2012-03-23 WO PCT/JP2012/057434 patent/WO2013140590A1/ja active Application Filing
-
2014
- 2014-03-14 US US14/211,831 patent/US20140199593A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61267264A (ja) * | 1985-05-21 | 1986-11-26 | Toshiba Battery Co Ltd | アルカリ電池 |
JPH09139233A (ja) * | 1995-09-13 | 1997-05-27 | Denso Corp | 非水電解液二次電池 |
JPH10162833A (ja) * | 1996-11-29 | 1998-06-19 | Denso Corp | 非水電解液二次電池 |
JP2006260784A (ja) * | 2005-03-15 | 2006-09-28 | Matsushita Electric Ind Co Ltd | リチウム二次電池用負極とそれを用いた電池 |
JP2011134623A (ja) * | 2009-12-25 | 2011-07-07 | Sanyo Electric Co Ltd | 非水電解質二次電池及びその製造方法 |
JP2011134651A (ja) * | 2009-12-25 | 2011-07-07 | Furukawa Electric Co Ltd:The | 非水溶媒二次電池負極集電体用銅箔その製造方法及び非水溶媒二次電池負極電極の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9705155B2 (en) | 2012-03-15 | 2017-07-11 | Kabushiki Kaisha Toshiba | Electrode for solid electrolyte secondary battery, solid electrolyte secondary battery, and battery pack |
Also Published As
Publication number | Publication date |
---|---|
US20140199593A1 (en) | 2014-07-17 |
JPWO2013140590A1 (ja) | 2015-08-03 |
JP5715298B2 (ja) | 2015-05-07 |
CN103782415A (zh) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6275822B2 (ja) | 非水電解質電池用活物質、非水電解質電池用電極、非水電解質二次電池、電池パック及び非水電解質電池用活物質の製造方法 | |
JP6430489B2 (ja) | 非水電解質電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池及び電池パック | |
JP5300502B2 (ja) | 電池用活物質、非水電解質電池および電池パック | |
JP6239326B2 (ja) | 非水電解質二次電池用負極材料、非水電解質二次電池用負極、非水電解質二次電池及び電池パック | |
CN102088109B (zh) | 非水电解质二次电池和隔膜 | |
US8247101B2 (en) | Active material for battery, non-aqueous electrolyte battery and battery pack | |
JP6043339B2 (ja) | 非水電解質二次電池用電極、非水電解質二次電池と電池パック | |
JP6523609B2 (ja) | 非水電解質電池用電極、非水電解質二次電池及び電池パック | |
JP6555506B2 (ja) | 非水電解質電池及び電池パック | |
US10326140B2 (en) | Nonaqueous electrolyte battery, battery pack, and vehicle | |
CN104022279B (zh) | 电池 | |
JP5715298B2 (ja) | 非水電解質二次電池用負極、非水電解質二次電池及び電池パック | |
WO2012111546A1 (ja) | 電池用電極及びその製造方法、非水電解質電池、電池パック及び活物質 | |
JP6570843B2 (ja) | 非水電解質電池及び電池パック | |
CN108432025B (zh) | 非水电解质电池及电池包 | |
CN111095613B (zh) | 电极、非水电解质电池及电池包 | |
JP6184273B2 (ja) | 非水電解質二次電池及び電池パック | |
CN112335076A (zh) | 电极、电池及电池包 | |
WO2015140984A1 (ja) | 非水電解質電池用電極、非水電解質二次電池及び電池パック | |
KR20170107895A (ko) | 비수 전해질 전지, 전지 팩 및 차량 | |
WO2013145110A1 (ja) | 非水電解質二次電池用電極、非水電解質二次電池と電池パック | |
KR101424865B1 (ko) | 정극 활물질 및 전극의 제조 방법과 전극 | |
JPWO2018062202A1 (ja) | 非水電解質電池及び電池パック | |
JP2015128076A (ja) | 非水電解質二次電池用負極、非水電解質二次電池及び電池パック | |
JP6903683B2 (ja) | 非水電解質電池及び電池パック |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12871618 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014505917 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12871618 Country of ref document: EP Kind code of ref document: A1 |