JP2015128076A - 非水電解質二次電池用負極、非水電解質二次電池及び電池パック - Google Patents

非水電解質二次電池用負極、非水電解質二次電池及び電池パック Download PDF

Info

Publication number
JP2015128076A
JP2015128076A JP2015041027A JP2015041027A JP2015128076A JP 2015128076 A JP2015128076 A JP 2015128076A JP 2015041027 A JP2015041027 A JP 2015041027A JP 2015041027 A JP2015041027 A JP 2015041027A JP 2015128076 A JP2015128076 A JP 2015128076A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrolyte secondary
secondary battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015041027A
Other languages
English (en)
Inventor
堀田 康之
Yasuyuki Hotta
康之 堀田
久保木 貴志
Takashi Kuboki
貴志 久保木
森田 朋和
Tomokazu Morita
朋和 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015041027A priority Critical patent/JP2015128076A/ja
Publication of JP2015128076A publication Critical patent/JP2015128076A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 長寿命な非水電解質二次電池用負極を提供する。【解決手段】 実施形態の非水電解質二次電池用負極は、集電体と、負極活物質と、負極活物質を結着する結着剤とを含む層状の負極活物質層と、負極活物質層と集電体との界面の一部に、アミノ基を官能基として有するアゾ−ル化合物と、を有することを特徴とする。【選択図】図1

Description

本発明の実施形態は、非水電解質二次電池用負極、非水電解質二次電池及び電池パックに係わる。
近年、急速なエレクトロニクス機器の小型化技術の発達により、種々の携帯電子機器が普及しつつある。そして、これら携帯電子機器の電源である電池にも小型化が求められており、高エネルギー密度を持つ非水電解質二次電池が注目を集めている。
特に、シリコン、スズなどのリチウムと合金化する元素、非晶質カルコゲン化合物などリチウム吸蔵容量が大きく、密度の高い物質を用いる試みがなされてきた。中でもシリコンはシリコン原子1に対してリチウム原子を4.4の比率までリチウムを吸蔵することが可能であり、質量あたりの負極容量は黒鉛質炭素の約10倍となる。しかし、シリコンは、充放電サイクルにおけるリチウムの挿入脱離に伴う体積の変化が大きく活物質粒子の微粉化などサイクル寿命に問題があった。
発明者らは鋭意実験を重ねた結果、微細な一酸化珪素と炭素質物とを複合化し焼成した活物質において、微結晶SiがSiと強固に結合するSiOに包含または保持された状態で炭素質物中に分散した活物質を得られ、高容量化およびサイクル特性の向上を達成できることを見出した。しかしながら、このような活物質においても数百回の充放電サイクルを行うと容量が低下し、長期間の使用には寿命特性が不十分である。
さらに、容量低下の過程を詳細に調査したところ、活物質中に含まれる微結晶Siが充放電を繰り返す間に成長し結晶子サイズが大きくなることが分かった。この結晶子サイズの成長により充放電時のLiの挿入脱離による体積変化の影響が大きくなり、容量低下が生じるという問題があった。
特開2004−119176号公報
長寿命な非水電解質二次電池、電池パック、及びこれらに用いる非水電解質二次電池用負極を提供することを目的とする。
実施形態の非水電解質二次電池用負極は、集電体と、結晶性ケイ素を含む負極活物質と、負極活物質を結着する結着剤とを含む層状の負極活物質層と、負極活物質層と集電体との界面の一部に、アミノ基を官能基として有するアゾ−ル化合物と、を有し、アゾ−ル化合物は、界面の面積の5%以上95%以下の範囲内に存在することを特徴とする。
図1は、実施形態の極活物質の概念図である。 図2は、実施形態の非水電解質二次電池の概念図である。 図3は、実施形態の非水電解質二次電池の拡大概念図である。 図4は、実施形態の電池パックの概念図である。 図5は、電池パックの電気回路を示すブロック図である。
以下、実施の形態について、図面を参照して説明する。
(第1実施形態)
図1の概念図に示すように、第1実施形態の負極100は、集電体104と、負極活物質101と、負極活物質101を結着する結着剤102とを含む層状の負極活物質層103と、負極活物質層103と集電体104との界面の一部に、負極活物質層103と集電体104を接着するアミノ基を官能基として有するアゾ−ル化合物105とを有する。負極活物質層103は集電体104の片面又は両面に形成されている。
実施形態の負極活物質101は、Liの挿入脱離を行う結晶性のケイ素を含む活物質である。具体的な負極活物質101の例としては、炭素質物中に、酸化ケイ素物相と、酸化ケイ素相中にケイ素相と、を有する複合体粒子が挙げられる。この形態の負極活物質の酸化ケイ素相は、炭素質物中に分散して存在し、炭素質物と複合化されている。また、ケイ素相は、酸化ケイ素相中に分散し、酸化ケイ素相と複合化されている。
負極活物質の平均一次粒径は例えば、5μm以上100μm以下、比表面積は0.5m/g以上10m/g以下の粒子である。活物質の粒径および比表面積はリチウムの挿入脱離反応の速度に影響し、負極特性に大きな影響をもつが、この範囲の値であれば安定して特性を発揮することができる。
例示の炭素質物は、導電性であり、活物質を形作る。炭素質物としては、グラファイト、ハードカーボン、ソフトカーボン、アモルファス炭素とアセチレンブラックからなる群から選ばれる1種類以上を用いることができる。
例示の酸化ケイ素相は、ケイ素相の膨張収縮を緩和する。酸化ケイ素相としては、非晶質、低晶質、結晶質などの構造とるSiO(1<x≦2)の化学式で表される化合物が挙げられる。
ケイ素相は、Liの挿入脱離に伴い、膨張と収縮を行う。この膨張収縮に伴い、相が結合し相の大きさが粗大となるとサイクル特性が低下しやすいという性質がある。サイクル特性の低下を防ぐために、ケイ素相の微細化及び相サイズの均一化、酸化ケイ素相の微細化及び相サイズの均一化、立方晶ジルコニア添加、炭素繊維の添加などの手段を講ずることが好ましい。
実施形態の結着剤102は、負極活物質同士の結着性に優れ、負極活物質層103と集電体104との結着性に優れた材料である。結着剤102としては、例えばポリテトラフルオロエチレン(PTFE)、ポリ弗化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、ポリイミド、ポリアラミド等を用いることができる。また、結着剤には2種またはそれ以上のものを組み合わせて用いてもよく、活物質同士の結着に優れた結着剤と活物質と集電体の結着に優れた結着剤の組み合わせや、硬度の高いものと柔軟性に優れるものを組み合わせて用いると、寿命特性に優れた負極を作製することができる。
負極活物質層103は、負極活物質101と結着剤102とを含む混合物である。負極活物質層103には、負極活物質101と結着剤102の他に負極の導電性を向上させる目的で導電材を添加しても良い。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛などを挙げることができる。負極活物質層103の厚さは1.0〜150μmの範囲であることが望ましい。従って負極集電体104の両面に担持されている場合は負極活物質層103の合計の厚さは2.0〜300μmの範囲となる。片面の厚さのより好ましい範囲は30〜100μmである。この範囲であると大電流放電特性とサイクル寿命は大幅に向上する。
負極活物質、導電剤および結着剤の配合割合は、負極活物質57〜95質量%、導電剤3〜20質量%、結着剤2〜40質量%の範囲にすることが、良好な大電流放電特性とサイクル寿命を得られるために好ましい。
実施形態の集電体104は、負極活物質層103と結着する導電性の部材である。集電体104としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、銅、ステンレスまたはニッケルから形成することができる。集電体の厚さは5〜20μmであることが望ましい。この範囲内であると電極強度と軽量化のバランスがとれるからである。
実施形態のアミノ基を官能基として有するアゾ−ル化合物105は、負極活物質層103と集電体104との界面の一部に存在し、負極活物質層103と集電体104とを接着する接合部材である。アゾ−ル化合物105は、一般の結着剤よりもCuなどの金属表面との結着力が強く、またアミノ基を備えることによる極性基を有する結着剤との親和性に優れるため、負極活物質層103と集電体104の密着性を向上し、Li挿入脱離に伴う剥離を防ぐ働きをする。アゾ−ル化合物105は、負極活物質層103と集電体104との界面に、複数分子が凝集した膜状にあるいは単分子が独立した状態で存在する。
アゾール化合物105としては、アミノ基を官能基として有するアゾール化合物を用いることができる。アゾール化合物105は、アミノ基を官能基として有し、アゾール環を有する化合物であって、アゾール環としては、ジアゾール、オキサゾール、チアゾール、トリアゾール、オキサジアゾール、チアジアゾール、テトラゾール、オキサトリアゾール、チアトリアゾールの群より選択される少なくとも1種の化合物などがあげられるが、これらに限定されるものではない。なお、上記アゾール化合物中でも、テトラゾール化合物がCuなどの金属との錯形成能が高いという理由により好ましい。アミノ基を官能基として有するアゾ−ル化合物105は、アミノ基を有しないアゾ−ル化合物と比較して結着剤との親和性が良く、また結着剤にポリイミド前駆体を用いた場合は、イミド化過程において反応し、より強固な結着力を示す。
前記アゾール化合物105の具体例としては、例えば2−アミノベンゾイミダゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4,−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール−5−カルボン酸、2,5−ビス(4−アミノフェニル)−1,3,4−オキサジアゾール、5−アミノ−1H−テトラゾール、1−(β−アミノエチル)テトラゾール、5−アミノ−1,2,3,4−チアトリアゾール、2−アミノ−5−トリフルオロメチル−1,3,4−チアジアゾール、5−アミノインダゾール、4−アミノインドール、5−アミノインドール、3−アミノ−1H−イソインドール、3−アミノイソキサゾール、3−β−アミノエチルピラゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール−5−カルボン酸、5−アミノテトラゾール、1−(β−アミノエチル)テトラゾールなどの環内に2〜4個のチッ素原子を有するアゾール化合物が挙げられるが、前記アゾール化合物は、1種を用いてもよく、2種以上を併用してもよい。が、これに限定されるものではない。
アゾ−ル化合物105は、界面面積(負極活物質層103が形成された集電体104の面)の5%以上95%以下の範囲内に存在する。この範囲よりアゾ−ル化合物105が少ないと、耐剥離性向上の効果がほとんどない。また、アゾ−ル化合物105は導電性が悪いため、この範囲よりアゾ−ル化合物105が多いと、負極活物質層103と集電体間の導電性が低下することが好ましくない。
これらアゾール化合物の界面面積は、表面処理したCu箔集電体について、エネルギー分散型X線分析装置(EDX) を用い、加速電圧は1 0 kV、エミッション電流は1 0 . 0 μ Aの測定条件としてCu箔表面を測定し元素マッピングすることで容易に確認できる。
アゾ−ル化合物105が、負極活物質層103と集電体104との界面に存在することは、負極活物質層103側から負極を赤外分光分析の減衰全反射法で分析し、アミノ基由来の3400cm−1の吸収スペクトルとアゾ−ル化合物105に特異的な1640cm−1の吸収スペクトルを観察することで知ることができる。
また、負極活物質層103を除去した集電体104をメタノール中に浸漬し、アゾール化合物を抽出し、LC/MS,GC/MSなどの有機スペクトル分析にて当該分野で一般に行われる手法でもアゾール化合物の存在を容易に知ることが出来る。また、本発明の構成において、この時、負極活物質層103の表面から厚み方向1/3程度を、同様のメタノール抽出法にて、MSスペクトル分析しアゾール化合物が検出されないことも併せて確認する事が出来る。
次に、実施形態の負極100の製造方法について説明する。
有機溶剤中に溶解させたアミノ基を官能基として有するアゾール化合物105の溶液(以下、表面処理液と記載)を作製し、集電体104の表面を処理することで容易に形成可能である。その場合、処理面全面に表面処理液と集電体104表面が接触すればよく、その方法は限定されないが、均一に接触させることが好ましい。集電体104を表面処理液に浸漬してもよく、また、スプレー等で銅箔に吹き付けても、適当な工具で基板に塗布してもよい。また、この際の表面処理液の温度は、好ましくは0〜100℃、より好ましくは10〜80℃の範囲である。用いる有機溶剤の沸点、蒸気圧など勘案し行うことが出来る。
これらアゾール化合物105を溶解する溶剤としては、炭化水素系アルコール類、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert−ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール等、炭化水素系ケトン類、例えば、アセトン、プロパノン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等、炭化水素系エーテル類、例えば、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン等、炭化水素系エステル類、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、γ−ブチロラクトン等、その他、例えば、トルエン、キシレン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等、等を用いることができるが、これに限定されるものではない。
表面処理液のアゾール化合物105濃度は、0.001〜1mol/lで用いることが好ましく、余分なアゾール化合物105の付着を少なくするためには低濃度とすることが好ましいが、低濃度すぎると集電体104と負極活物質層103との接着力向上効果がなくなるので、より好ましくは0.01〜0.5mol/lである。
上記処理後、集電体104表面に余分に付着したアゾール化合物105を有機溶剤で溶解除去する洗浄工程を行ってもよい。この洗浄で使用する有機溶剤には、アゾール化合物105を溶解することができる溶剤を使用することができる。例としては、上記記載の有機溶剤を用いることができる。
この洗浄工程で集電体104表面を有機溶媒で洗浄する方法は限定されない。溶媒に浸漬してもよく、また、スプレー等で吹き付けて洗い流しても、適当な基材にしみ込ませてふき取ってもよい。またこの洗浄液除去のため、100℃程度までの乾燥工程を加えても構わない。この工程は、熱風乾燥、オーブンへの投入乾燥、ホットプレート上での乾燥など何れの方法を取ることもできる。
次に、負極活物質、導電剤及び結着剤を汎用されている溶媒に懸濁してスラリーを調製する。スラリーをアゾ−ル化合物105処理した集電体104に塗布し、乾燥し、その後、プレスを施すことにより負極が作製される。
(第2実施形態)
第2実施形態に係る非水電解質二次電池を説明する。
第2実施形態に係る非水電解質二次電池は、外装材と、外装材内に収納された正極と、外装材内に正極と空間的に離間して、例えばセパレータを介在して収納された活物質を含む負極と、外装材内に充填された非水電解質とを具備する。
実施形態に係る非水電解質二次電池200の一例を示した図2の概念図を参照してより詳細に説明する。図2は、袋状外装材202がラミネートフィルムからなる扁平型非水電解質二次電池200の断面概念図である。
扁平状の捲回電極群201は、2枚の樹脂層の間にアルミニウム箔を介在したラミネートフィルムからなる袋状外装材202内に収納されている。扁平状の捲回電極群201は、一部を抜粋した概念図である図3に示すように、負極203、セパレータ204、正極205、セパレータ204の順で積層されている。そして積層物を渦巻状に捲回し、プレス成型することにより形成されたものである。袋状外装材202に最も近い電極は負極であり、この負極は、袋状外装材202側の負極集電体には、負極合剤が形成されておらず、負極集電体の電池内面側の片面のみに負極合剤を形成した構成を有する。その他の負極203は、負極集電体の両面に負極合剤を形成して構成されている。正極205は、正極集電体の両面に正極合剤を形成して構成されている。
捲回電極群201の外周端近傍において、負極端子は最外殻の負極203の負極集電体に電気的に接続され、正極端子は内側の正極205の正極集電体に電気的に接続されている。これらの負極端子206及び正極端子207は、袋状外装材202の開口部から外部に延出されている。例えば液状非水電解質は、袋状外装材202の開口部から注入されている。袋状外装材202の開口部を負極端子206及び正極端子207を挟んでヒートシールすることにより捲回電極群201及び液状非水電解質を完全密封している。
負極端子206は、例えばアルミニウムまたはMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。負極端子206は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料であることが好ましい。
正極端子207は、リチウムイオン金属に対する電位が3〜4.25Vの範囲における電気的安定性と導電性とを備える材料を用いることができる。具体的には、アルミニウムまたはMg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金が挙げられる。正極端子207は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料であることが好ましい。
以下、非水電解質二次電池200の構成部材である袋状外装材202、正極205、電解質、セパレータ204について詳細に説明する。
1)袋状外装材202
袋状外装材202は、厚さ0.5mm以下のラミネートフィルムから形成される。或いは、外装材は厚さ1.0mm以下の金属製容器が用いられる。金属製容器は、厚さ0.5mm以下であることがより好ましい。
袋状外装材202の形状は、扁平型(薄型)、角型、円筒型、コイン型、及びボタン型から選択できる。外装材の例には、電池寸法に応じて、例えば携帯用電子機器等に積載される小型電池用外装材、二輪乃至四輪の自動車等に積載される大型電池用外装材などが含まれる。
ラミネートフィルムは、樹脂層間に金属層を介在した多層フィルムが用いられる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂層は、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装材の形状に成形することができる。
金属製容器は、アルミニウムまたはアルミニウム合金等から作られる。アルミニウム合金は、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属が含まれる場合、その量は100質量ppm以下にすることが好ましい。
2)正極205
正極205は、活物質を含む正極合剤が正極集電体の片面もしくは両面に担持された構造を有する。
前記正極合剤の片面の厚さは1.0μm〜150μmの範囲であることが電池の大電流放電特性とサイクル寿命の保持の点から望ましい。従って正極集電体の両面に担持されている場合は正極合剤の合計の厚さは20μm〜300μmの範囲となることが望ましい。片面のより好ましい範囲は30μm〜120μmである。この範囲であると大電流放電特性とサイクル寿命は向上する。
正極合剤は、正極活物質と正極活物質同士を結着する結着剤の他に導電剤を含んでいてもよい。
正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケルコバルト酸化物(例えばLiCOO)、リチウム含有ニッケルコバルト酸化物(例えばLiNi0.8CO0.2)、リチウムマンガン複合酸化物(例えばLiMn、LiMnO)を用いると高電圧が得られるために好ましい。
導電剤としてはアセチレンブラック、カーボンブラック、黒鉛などを挙げることができる。
結着材の具体例としては例えばポリテトラフルオロエチレン(PTFE)、ポリ弗化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
正極活物質、導電剤および結着剤の配合割合は、正極活物質80〜95質量%、導電剤3〜20質量%、結着剤2〜7質量%の範囲にすることが、良好な大電流放電特性とサイクル寿命を得られるために好ましい。
集電体としては、多孔質構造の導電性基板かあるいは無孔の導電性基板を用いることができる。集電体の厚さは5〜20μmであることが望ましい。この範囲であると電極強度と軽量化のバランスがとれるからである。
正極205は、例えば活物質、導電剤及び結着剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体に塗布し、乾燥し、その後、プレスを施すことにより作製される。正極205はまた活物質、導電剤及び結着剤をペレット状に形成して正極層とし、これを集電体上に形成することにより作製されてもよい。
3)負極203
負極203としては、第1実施形態に記載した負極100を用いる。
4)電解質
電解質としては非水電解液、電解質含浸型ポリマー電解質、高分子電解質、あるいは無機固体電解質を用いることができる。
非水電解液は、非水溶媒に電解質を溶解することにより調製される液体状電解液で、電極群中の空隙に保持される。
非水溶媒としては、プロピレンカーボネート(PC)やエチレンカーボネート(EC)とPCやECより低粘度である非水溶媒(以下第2溶媒と称す)との混合溶媒を主体とする非水溶媒を用いることが好ましい。
第2溶媒としては、例えば鎖状カーボンが好ましく、中でもジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、プロピオン酸エチル、プロピオン酸メチル、γ−ブチロラクトン(BL)、アセトニトリル(AN)、酢酸エチル(EA)、トルエン、キシレンまたは、酢酸メチル(MA)等が挙げられる。これらの第2溶媒は、単独または2種以上の混合物の形態で用いることができる。特に、第2溶媒はドナー数が16.5以下であることがより好ましい。
第2溶媒の粘度は、25℃において2.8cmp以下であることが好ましい。混合溶媒中のエチレンカーボネートまたはプロピレンカーボネートの配合量は、体積比率で1.0%〜80%であることが好ましい。より好ましいエチレンカーボネートまたはプロピレンカーボネートの配合量は体積比率で20%〜75%である。
非水電解液に含まれる電解質としては、例えば過塩素酸リチウム(LiClO)、六弗化リン酸リチウム(LiPF)、ホウ弗化リチウム(LiBF)、六弗化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]等のリチウム塩(電解質)が挙げられる。中でもLiPF、LiBFを用いるのが好ましい。
電解質の非水溶媒に対する溶解量は、0.5〜2.0mol/Lとすることが望ましい。
5)セパレータ204
非水電解液を用いる場合、および電解質含浸型ポリマー電解質を用いる場合においてはセパレータ204を用いることができる。セパレータ204は多孔質セパレータを用いる。セパレータ204の材料としては、例えば、ポリエチレン、ポリプロピレン、またはポリ弗化ピニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布等を用いることができる。中でも、ポリエチレンか、あるいはポリプロピレン、または両者からなる多孔質フィルムは、二次電池の安全性を向上できるため好ましい。
セパレータ204の厚さは、30μm以下にすることが好ましい。厚さが30μmを越えると、正負極間の距離が大きくなって内部抵抗が大きくなる恐れがある。また、厚さの下限値は、5μmにすることが好ましい。厚さを5μm未満にすると、セパレータ204の強度が著しく低下して内部ショートが生じやすくなる恐れがある。厚さの上限値は、25μmにすることがより好ましく、また、下限値は1.0μmにすることがより好ましい。
セパレータ204は、120℃の条件で1時間おいたときの熱収縮率が20%以下であることが好ましい。熱収縮率が20%を超えると、加熱により短絡が起こる可能性が大きくなる。熱収縮率は、15%以下にすることがより好ましい。
セパレータ204は、多孔度が30〜70%の範囲であることが好ましい。これは次のような理由によるものである。多孔度を30%未満にすると、セパレータ204において高い電解質保持性を得ることが困難になる恐れがある。一方、多孔度が60%を超えると十分なセパレータ204強度を得られなくなる恐れがある。多孔度のより好ましい範囲は、35〜70%である。
セパレータ204は、空気透過率が500秒/1.00cm以下であると好ましい。空気透過率が500秒/1.00cmを超えると、セパレータ204において高いリチウムイオン移動度を得ることが困難になる恐れがある。また、空気透過率の下限値は、30秒/1.00cmである。空気透過率を30秒/1.00cm未満にすると、十分なセパレータ強度を得られなくなる恐れがあるからである。
空気透過率の上限値は300秒/1.00cmにすることがより好ましく、また、下限値は50秒/1.00cmにするとより好ましい。
(第3実施形態)
次に、第3実施形態に係る電池パックを説明する。
第3実施形態に係る電池パックは、上記第2実施形態に係る非水電解質二次電池(即ち、単電池)を一以上有する。電池パックに複数の単電池が含まれる場合、各単電池は、電気的に直列、並列、或いは、直列と並列に接続して配置される。
図4の概念図及び図5のブロック図を参照して電池パック300を具体的に説明する。図4に示す電池パック300では、単電池301として図2に示す扁平型非水電解液電池200を使用している。
複数の単電池301は、外部に延出した負極端子302及び正極端子303が同じ向きに揃えられるように積層され、粘着テープ304で締結することにより組電池305を構成している。これらの単電池301は、図5に示すように互いに電気的に直列に接続されている。
プリント配線基板306は、負極端子302及び正極端子303が延出する単電池301側面と対向して配置されている。プリント配線基板306には、図5に示すようにサーミスタ307、保護回路308及び外部機器への通電用端子309が搭載されている。なお、組電池305と対向する保護回路基板306の面には組電池305の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
正極側リード310は、組電池305の最下層に位置する正極端子303に接続され、その先端はプリント配線基板306の正極側コネクタ311に挿入されて電気的に接続されている。負極側リード312は、組電池305の最上層に位置する負極端子302に接続され、その先端はプリント配線基板306の負極側コネクタ313に挿入されて電気的に接続されている。これらのコネクタ311、313は、プリント配線基板306に形成された配線314、315を通して保護回路308に接続されている。
サーミスタ307は、単電池305の温度を検出するために用いられ、その検出信号は保護回路308に送信される。保護回路308は、所定の条件で保護回路308と外部機器への通電用端子309との間のプラス側
配線316a及びマイナス側配線316bを遮断できる。所定の条件とは、例えばサーミスタ307の検出温度が所定温度以上になったときである。また、所定の条件とは単電池301の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池301もしくは単電池301全体について行われる。個々の単電池301を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池301中に参照極として用いるリチウム電極が挿入される。図4及び図5の場合、単電池301それぞれに電圧検出のための配線317を接続し、これら配線317を通して検出信号が保護回路308に送信される。
正極端子303及び負極端子302が突出する側面を除く組電池305の三側面には、ゴムもしくは樹脂からなる保護シート318がそれぞれ配置されている。
組電池305は、各保護シート318及びプリント配線基板306と共に収納容器319内に収納される。すなわち、収納容器319の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート318が配置され、短辺方向の反対側の内側面にプリント配線基板306が配置される。組電池305は、保護シート318及びプリント配線基板306で囲まれた空間内に位置する。蓋320は、収納容器319の上面に取り付けられている。
なお、組電池305の固定には粘着テープ304に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。
図4、図5では単電池301を直列接続した形態を示したが、電池容量を増大させるためには並列に接続しても、または直列接続と並列接続を組み合わせてもよい。組み上がった電池パックをさらに直列、並列に接続することもできる。
以上記載した本実施形態によれば、上記第3実施形態における優れた充放電サイクル性能を有する非水電解質二次電池を備えることにより、優れた充放電サイクル性能を有する電池パックを提供することができる。
なお、電池パックの態様は用途により適宜変更される。電池パックの用途は、大電流を取り出したときに優れたサイクル特性を示すものが好ましい。具体的には、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。特に、高温特性の優れた非水電解質二次電池を用いた電池パックは車載用に好適に用いられる。
以下に具体的な実施例(各実施例で説明する夫々の条件で、図2で説明した電池を具体的に作成した例)を挙げ、その効果について述べる。
(実施例1)
次のような条件でSiOの粉砕、混練および複合体の形成、Arガス中での焼成を行い、負極活物質を得た。
SiOの粉砕は次のように行った。原料SiO粉を連続式ビーズミル装置にてビーズ径0.5μmのビーズを用いエタノールを分散媒として所定の時間、粉砕処理を行った。さらにこのSiO粉末を遊星ボールミルで0.1μmボールを用いてエタノールを分散媒として粉砕を行い粉砕しSiO微粉末を作製した。
微粉砕処理により得られた一酸化ケイ素粉末、6μmの黒鉛粉末を、次のような方法でハードカーボンと複合化した。フルフリルアルコール4.0gとエタノール10gと水0.125gの混合液にSiO粉末を2.8g、黒鉛粉末を0.7、平均直径180nmの炭素繊維0.06gを加え混練機にて混練処理しスラリー状とした。混錬後のスラリーにフルフリルアルコールの重合触媒となる希塩酸を0.2g加え室温で放置し乾燥、固化して炭素複合体を得た。
得られた炭素複合体を1050℃で3h、Arガス中にて焼成し、室温まで冷却後、粉砕し30μm径のふるいをかけて負極活物質を得た。
また、集電体として表面に次のような処理を施した銅箔使用した。
表面処理を施していない未処理電解銅箔の表面酸化皮膜を除去するため、10%塩酸水溶液に60秒間浸漬した。付着した酸を除くため、イオン交換水で十分に洗浄し、圧縮窒素を吹き付けて乾燥した。このように処理した銅箔上に、2−アミノベンゾイミダゾール50mgをエタノール1Lに溶解した処理液をスプレー上に均一に吹き付けた後、圧縮窒素を吹き付けることで表面を乾燥させた。次いで、銅箔表面に付着した余分な2−アミノベンゾイミダゾールを洗浄するため、メタノールにこの銅箔を60秒間浸漬して洗浄し、その後圧縮窒素を吹き付けることで表面を乾燥させることで、表面処理銅箔を得、これを集電体として用いた。なお、表面処理銅箔表面をATR法により任意の数点評価したところ、3400cm−1付近にアミノ基由来のピークを観察し、目論見どおり2−アミノベンゾイミダゾール処理が出来ていることを確認した。またEDXによる元素マッピングの結果、100μm視野領域において、平均83%の窒素の付着を観察した。
実施例1において得られた活物質、集電体を用いて負極を作製し、以下に説明する充放電試験、円筒型セル(図2)による充放電試験を行い、充放電特性を評価した。
(充放電試験)
得られた試料に平均径6μmのグラファイト15質量%、ポリイミド8質量%を分散媒としてN−メチルピロリドンを用いて混練し厚さ12μmの銅箔上に塗布して圧延した後、250℃で2時間、Arガス中にて熱処理し、所定のサイズに裁断した後、100℃で12時間、真空乾燥し、試験電極とした。対極および参照極を金属Li、電解液をLiPF6(1M)のEC・DEC(体積比EC:DEC=1:2)溶液とした電池をアルゴン雰囲気中で作製し充放電試験を行った。充放電試験の条件は、参照極と試験電極間の電位差0.01Vまで1mA/cmの電流密度で充電、さらに0.01Vで16時間の定電圧充電を行い、放電は1mA/cmの電流密度で1.5Vまで行った。さらに、参照極と試験電極間の電位差0.01Vまで1mA/cmの電流密度で充電、1mA/cmの電流密度で1.5Vまで放電するサイクルを100回行い、1サイクル目に対する100サイクル目の放電容量の維持率を測定した。
以下の実施例と比較例に関して表1にまとめた。以下の実施例および比較例については実施例1と異なる部分のみ説明し、その他の合成および評価手順については実施例1と同様に行ったので説明を省略する。
(実施例2)
集電体表面処理に用いるアゾール化合物を5−アミノ−1H−テトラゾールに変更した銅箔を用いた。なお、表面処理銅箔表面をATR法により任意の数点評価したところ、3400cm−1付近にアミノ基由来のピークを1640cm−1付近にアゾ基由来のピークを観察し、目論見どおり5−アミノ−1H−テトラゾール処理が出来ていることを確認した。またEDXによる元素マッピングの結果、100μm視野領域において、平均78%の窒素の付着を観察した。
(比較例1)
表面未処理銅箔を集電体として、実施例1と同様の方法で負極を作製した。
(比較例2)
実施例1と同様の負極合剤を用意した。
また、集電体として表面に次のような処理を施した銅箔使用した。
表面処理を施していない未処理電解銅箔の表面酸化皮膜を除去するため、10%塩酸水溶液に60秒間浸漬した。付着した酸を除くため、イオン交換水で十分に洗浄し、圧縮窒素を吹き付けて乾燥した。このように処理した銅箔上に、2−アミノベンゾイミダゾール50mgをエタノール1Lに溶解した処理液をスプレー上に均一に吹き付けた後、圧縮窒素を吹き付けることで表面を乾燥させることで、表面処理銅箔を得、これを集電体として用いた。なお、表面処理銅箔表面をATR法により任意の数点評価したところ、3400cm−1付近にアミノ基由来のピークを観察し、目論見どおり2−アミノベンゾイミダゾール処理が出来ていることを確認した。またEDXによる元素マッピングの結果、100μm視野領域において、平均99%の窒素の付着を観察した。
表1に挙げた結果から本発明の負極活物質は大きな放電容量および良好なサイクル特性
を有することが理解される。すなわち、比較例1および2では、充放電が進むに従い電極合剤と集電体間に剥離が生じ、そのためサイクル特性が低下した。
以上、本発明の実施の形態を説明したが、本発明はこれらに限られず、特許請求の範囲に記載の発明の要旨の範疇において様々に変更可能である。また、本発明は、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、上記実施形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。

Claims (5)

  1. 集電体と、
    結晶性ケイ素を含む負極活物質と、前記負極活物質を結着する結着剤とを含む層状の負極活物質層と、
    前記負極活物質層と前記集電体との界面の一部に、アミノ基を官能基として有するアゾ−ル化合物と、
    を有し、
    前記アゾ−ル化合物は、前記界面の面積の5%以上95%以下の範囲内に存在することを特徴とする非水電解質二次電池用負極。
  2. 前記負極活物質は、酸化ケイ素物相と、酸化ケイ素相中にケイ素相と、を有する複合体粒子であることを特徴とする請求項1に記載の非水電解質二次電池用負極。
  3. 前記アゾ−ル化合物は、アミノ基を官能基として有するテトラゾール化合物であることを特徴とする請求項1又は2に記載の非水電解質二次電池用負極。
  4. 請求項1乃至3のいずれか1項に記載の非水電解質二次電池用負極を負極に用いたことを特徴とする非水電解質二次電池。
  5. 請求項4に記載の非水電解質二次電池を用いたことを特徴とする電池パック。
JP2015041027A 2015-03-03 2015-03-03 非水電解質二次電池用負極、非水電解質二次電池及び電池パック Pending JP2015128076A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041027A JP2015128076A (ja) 2015-03-03 2015-03-03 非水電解質二次電池用負極、非水電解質二次電池及び電池パック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041027A JP2015128076A (ja) 2015-03-03 2015-03-03 非水電解質二次電池用負極、非水電解質二次電池及び電池パック

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014505917A Division JP5715298B2 (ja) 2012-03-23 2012-03-23 非水電解質二次電池用負極、非水電解質二次電池及び電池パック

Publications (1)

Publication Number Publication Date
JP2015128076A true JP2015128076A (ja) 2015-07-09

Family

ID=53837967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041027A Pending JP2015128076A (ja) 2015-03-03 2015-03-03 非水電解質二次電池用負極、非水電解質二次電池及び電池パック

Country Status (1)

Country Link
JP (1) JP2015128076A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600281A (zh) * 2020-03-26 2022-06-07 株式会社Lg新能源 二次电池用电解液添加剂及包含其的锂二次电池用非水电解液和锂二次电池
WO2022230517A1 (ja) * 2021-04-27 2022-11-03 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成用組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173947A (ja) * 1997-08-29 1999-03-16 Ricoh Co Ltd 電池用電極およびその製造方法
JP2009295474A (ja) * 2008-06-06 2009-12-17 Nec Tokin Corp 非水電解液二次電池
WO2011013414A1 (ja) * 2009-07-31 2011-02-03 トヨタ自動車株式会社 電池用電極の製造方法
WO2011030626A1 (ja) * 2009-09-11 2011-03-17 Jx日鉱日石金属株式会社 リチウムイオン電池集電体用銅箔
JP2011134623A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173947A (ja) * 1997-08-29 1999-03-16 Ricoh Co Ltd 電池用電極およびその製造方法
JP2009295474A (ja) * 2008-06-06 2009-12-17 Nec Tokin Corp 非水電解液二次電池
WO2011013414A1 (ja) * 2009-07-31 2011-02-03 トヨタ自動車株式会社 電池用電極の製造方法
WO2011030626A1 (ja) * 2009-09-11 2011-03-17 Jx日鉱日石金属株式会社 リチウムイオン電池集電体用銅箔
JP2011134623A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600281A (zh) * 2020-03-26 2022-06-07 株式会社Lg新能源 二次电池用电解液添加剂及包含其的锂二次电池用非水电解液和锂二次电池
WO2022230517A1 (ja) * 2021-04-27 2022-11-03 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成用組成物

Similar Documents

Publication Publication Date Title
JP5300502B2 (ja) 電池用活物質、非水電解質電池および電池パック
JP6275822B2 (ja) 非水電解質電池用活物質、非水電解質電池用電極、非水電解質二次電池、電池パック及び非水電解質電池用活物質の製造方法
JP6430489B2 (ja) 非水電解質電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池及び電池パック
CN102088109B (zh) 非水电解质二次电池和隔膜
JP6043339B2 (ja) 非水電解質二次電池用電極、非水電解質二次電池と電池パック
JP6555506B2 (ja) 非水電解質電池及び電池パック
US10326140B2 (en) Nonaqueous electrolyte battery, battery pack, and vehicle
JP5715298B2 (ja) 非水電解質二次電池用負極、非水電解質二次電池及び電池パック
WO2012111546A1 (ja) 電池用電極及びその製造方法、非水電解質電池、電池パック及び活物質
JP2015179565A (ja) 非水電解質電池用電極、非水電解質二次電池及び電池パック
JP6570843B2 (ja) 非水電解質電池及び電池パック
JP7055899B2 (ja) 電極、電池、及び電池パック
CN108432025B (zh) 非水电解质电池及电池包
JP6184273B2 (ja) 非水電解質二次電池及び電池パック
JPWO2019069402A1 (ja) 電極、非水電解質電池及び電池パック
KR20170107368A (ko) 비수전해질 전지, 전지 팩 및 차량
KR20170107895A (ko) 비수 전해질 전지, 전지 팩 및 차량
WO2013145110A1 (ja) 非水電解質二次電池用電極、非水電解質二次電池と電池パック
KR101424865B1 (ko) 정극 활물질 및 전극의 제조 방법과 전극
JP2015128076A (ja) 非水電解質二次電池用負極、非水電解質二次電池及び電池パック
JP6903683B2 (ja) 非水電解質電池及び電池パック
JP2013055006A (ja) 非水電解質電池用負極、非水電解質電池及び電池パック
JPWO2018062202A1 (ja) 非水電解質電池及び電池パック
JP6853616B2 (ja) 非水電解質二次電池用電極、非水電解質二次電池、及び電池パック
JP2017168359A (ja) 非水電解質電池用電極、それを備えた非水電解質電池および電池パック

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906