WO2013139129A1 - 阵列基板及包括该阵列基板的显示装置 - Google Patents

阵列基板及包括该阵列基板的显示装置 Download PDF

Info

Publication number
WO2013139129A1
WO2013139129A1 PCT/CN2012/084160 CN2012084160W WO2013139129A1 WO 2013139129 A1 WO2013139129 A1 WO 2013139129A1 CN 2012084160 W CN2012084160 W CN 2012084160W WO 2013139129 A1 WO2013139129 A1 WO 2013139129A1
Authority
WO
WIPO (PCT)
Prior art keywords
array substrate
electrode
pixel electrode
common electrode
resin layer
Prior art date
Application number
PCT/CN2012/084160
Other languages
English (en)
French (fr)
Inventor
周伟峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/823,329 priority Critical patent/US20140085577A1/en
Publication of WO2013139129A1 publication Critical patent/WO2013139129A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/40Arrangements for improving the aperture ratio
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive

Definitions

  • Embodiments of the present invention relate to an array substrate and a display device including the array substrate. Background technique
  • the COA (Color Filter on Array) technology is a technique in which a color filter is directly prepared on an array substrate of a liquid crystal display panel.
  • Figure 1 shows an array substrate of the prior art COA technology.
  • a plurality of thin film transistors T are arranged in an array on the substrate S, and a color resin layer is formed between the thin film transistor T and the pixel electrode ITO, including a red resin R, a green resin G, and a blue color.
  • Resin B a color resin layer is formed between the thin film transistor T and the pixel electrode ITO, including a red resin R, a green resin G, and a blue color.
  • Resin B the step of accurately aligning the color filter substrate and the array substrate can be omitted, thereby significantly improving the production efficiency.
  • the integration degree of the liquid crystal display panel can be improved, thereby reducing the power consumption of the liquid crystal display panel.
  • Fringe Field Switching (FFS) technology is a wide viewing angle technology developed for large-size, high-definition desktop displays and LCD TV applications. LCD panels made with FFS technology have wide viewing angles and high aperture ratios. advantage.
  • Fig. 2 shows a prior art FFS type liquid crystal display panel.
  • the FFS type liquid crystal display panel includes an array substrate 21, a color filter substrate 22, and liquid crystal molecules 23 between the two substrates.
  • a color resin layer 24 is formed on one side surface of the color filter substrate 22 facing the array substrate 21.
  • the common electrode 26 is formed on the array substrate 21 below the pixel electrode 25, and an insulating layer 27 is formed between the common electrode 26 and the pixel electrode 25.
  • the COA technology in the FFS liquid crystal display panel, that is, to form a colored resin layer on the surface of the array substrate on which the thin film transistor is prepared to cover the film.
  • the transistor is then formed with a pixel electrode via in the colored resin layer, and finally a pixel electrode is formed on the colored resin layer.
  • the color resin layer is located between the pixel electrode and the common electrode.
  • the thickness of the colored resin layer is relatively thick, it is usually 1 ⁇ m to 2 ⁇ m, and the pixel structure of the FFS liquid crystal display panel needs to establish an electric field between the pixel electrode and the common electrode, and the liquid crystal molecules are deflected by the electric field, so the thick color resin is thick.
  • the layer will greatly reduce the electric field strength, so that the liquid crystal molecules cannot be deflected normally, thereby reducing the aperture ratio of the FFS type liquid crystal display panel, and the COA technology cannot be directly applied to the FFS type liquid crystal display panel. Summary of the invention
  • an array substrate including: a pixel electrode and a common electrode, and a color resin layer between the pixel electrode and the common electrode, wherein the color resin layer Conductive particles are dispersed.
  • a display device including the above array substrate is provided.
  • FIG. 1 is a schematic cross-sectional view of an array substrate of a prior art COA technology
  • FIG. 2 is a schematic cross-sectional view of a prior art FFS type liquid crystal display panel
  • FIG. 3 is a cross-sectional view of an array substrate in an FFS liquid crystal display panel using COA technology according to an embodiment of the present invention. detailed description
  • An embodiment of the present invention provides an array substrate including: a pixel electrode and a common electrode; and a color resin layer between the pixel electrode and the common electrode, wherein the color resin layer is dispersed Conductive particles.
  • Embodiments of the present invention also provide a display device including the above array substrate.
  • the conductive particles are added to the color resin layer, so that the equivalent dielectric thickness of the color resin layer is effectively reduced, so that the COA technology can be applied.
  • the integration degree and the production efficiency of the FFS type liquid crystal display panel can be improved, so that the display device including the array substrate has high integration degree. And production efficiency.
  • the array substrate has an FFS type pixel structure, including: a substrate 301; a thin film transistor formed on the substrate 301; formed on the substrate 301 and electrically insulated from each other The gate electrode 302 and the common electrode 303; the gate insulating layer 304 covering the gate electrode 302 and the common electrode 303.
  • the array substrate further includes: a patterned semiconductor layer 305 and a patterned ohmic contact layer 306 sequentially formed on the gate insulating layer 304; and a source electrode formed on the patterned ohmic contact layer 306 307 and drain electrode 308, wherein the gate electrode 302, the gate insulating layer 304, the patterned semiconductor layer 305, the patterned ohmic contact layer 306, the source electrode 307, and the drain electrode 308 together constitute the thin film transistor.
  • the array substrate further includes: a color resin layer 309 covering a surface of the substrate 301 on which the thin film transistor (not shown) and the common electrode 303 are formed; and a color resin layer 309 formed in the color resin layer 309
  • the pixel electrode via 310 exposing the drain electrode 308; the pixel electrode 311 formed on the surface of the color resin layer 309 and in the pixel electrode via 310, such that the color resin layer 309 is located between the pixel electrode 311 and the common electrode 303.
  • the conductive particles 312 are dispersed in the colored resin layer 309.
  • an electric field is formed between the pixel electrode 311 and the common electrode 303.
  • the power line 313 passes through the conductive particles 312 during conduction, since the inside of the conductor is an equipotential body, It is considered that the power line bypasses the conductive particles 312 to continue to propagate, and the size and direction of the power lines are not changed, so that the equivalent dielectric thickness of the colored resin layer 309 in which the conductive particles 312 are dispersed is the same area size as the conductive particles 312 are removed. The overall average thickness of the colored resin layer.
  • the thickness of the colored resin layer is In the case where the degrees are equal, the intensity of the electric field formed in the colored resin layer not containing the conductive particles is smaller than the intensity of the electric field formed by the colored resin layer containing the conductive particles. Therefore, this enables the COA technology to be applied to the FFS type liquid crystal display panel without lowering the aperture ratio of the FFS type liquid crystal display panel, and also improving the integration and production efficiency of the FFS type liquid crystal display panel.
  • the size and number of the conductive particles can be appropriately selected by those skilled in the art according to the process requirements. It has been found through experiments that when the conductive particles account for 3% to 8% by mass of the color resin layer, it is ensured that the array substrate provided with the color resin layer has superior performance during operation.
  • the conductive particles may be uniformly dispersed in the color resin layer, but the embodiment of the present invention is not limited thereto. .
  • the conductive particles may be any one of metal particles, conductive metal oxide particles, metal-coated pigment particles, conductive metal oxide-coated pigment particles, or a combination of any two or more. It is known to those skilled in the art that the kind of the conductive particles is not limited to the above, and any other particles having an electrically conductive property capable of lowering the equivalent dielectric thickness of the colored resin layer can be used in the present invention.
  • the electrically conductive metal oxide particles may be transparent electrically conductive particles.
  • the light transmittance of the color resin layer in which the transparent conductive particles are dispersed is clearly higher than the light transmittance of the color resin layer in which the opaque conductive particles are dispersed.
  • the material of the conductive metal oxide particles may be any one of indium tin oxide (ITO), indium oxide (IZO), aluminum oxide (AZO), indium gallium oxide (IGZO), or any two. More than one combination.
  • metal-coated pigment particles or conductive metal oxide-encapsulated pigment particles In the preparation of metal-coated pigment particles or conductive metal oxide-encapsulated pigment particles, methods such as vapor phase evaporation, electroless plating, and spray coating may be employed.
  • the positional relationship between the pixel electrode and the common electrode may be as shown in FIG. 3, that is, the pixel electrode 311 is disposed above the common electrode 303, or It is also possible to arrange the common electrode above the pixel electrode.
  • the common electrode is disposed over the pixel electrode, the corresponding thin film transistor is also adjusted to a form in which it is electrically connected to the pixel electrode and the common electrode.
  • the pixel electrode and the common electrode may both be slit-shaped electrode structures, or as shown in FIG. 3, when the pixel electrode 311 is disposed above the common electrode 303, the pixel electrode 311 is a slit-shaped electrode structure, and the common electrode 303 is a plate-shaped electrode; or when the common electrode is disposed above the pixel electrode, the common electrode is a slit-like electrode structure, and the pixel electrode is a plate electrode.
  • the equivalent dielectric thickness of the color resin layer is effectively reduced, so that the COA technology can be applied to the FFS type liquid crystal display panel without being lowered.
  • the aperture ratio of the FFS type liquid crystal display panel can also improve the integration degree and production efficiency of the FFS type liquid crystal display panel.
  • Embodiments of the present invention also provide a display device including the above array substrate, which may be a liquid crystal panel, a liquid crystal display, or a liquid crystal television or the like. Due to the use of the above array substrate, the display device has high integration and production efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种阵列基板及包括该阵列基板的显示装置。该阵列基板包括:像素电极(311)和公共电极(303),以及位于所述像素电极(311)和所述公共电极(303)之间的彩色树脂层(309),其中,所述彩色树脂层(309)中分散有导电颗粒(312)。

Description

阵列基板及包括该阵列基板的显示装置 技术领域
本发明的实施例涉及阵列基板及包括该阵列基板的显示装置。 背景技术
COA ( Color Filter on Array )技术是将彩色滤光片直接制备在液晶显示 面板的阵列基板上的技术。 图 1示出了现有技术的釆用 COA技术的阵列基 板。
如图 1所示, 在基板 S上以阵列形式排布有多个薄膜晶体管 T, 在薄膜 晶体管 T与像素电极 ITO之间形成有彩色树脂层, 其中包括红色树脂 R、 绿 色树脂 G及蓝色树脂 B。 在使用 COA技术制备液晶显示面板时, 可省掉彩 膜基板与阵列基板精确对位的步骤, 从而显著提高了生产效率。 同时, 还可 以提高液晶显示面板的集成度, 从而降低了液晶显示面板的功耗。
边缘场开关(Fringe Field Switching, FFS )技术是为实现大尺寸、 高清 晰度桌面显示器和液晶电视应用而开发的广视角技术, 釆用 FFS技术制成的 液晶显示面板具有视角宽、 开口率高等优点。 图 2示出了现有技术的 FFS型 液晶显示面板。
如图 2所示, FFS型液晶显示面板包括阵列基板 21、 彩膜基板 22及两 个基板之间的液晶分子 23。彩色树脂层 24形成在彩膜基板 22的面向阵列基 板 21的一侧表面上。 公共电极 26形成在阵列基板 21上, 位于像素电极 25 的下方,公共电极 26与像素电极 25之间形成有绝缘层 27。 当在像素电极 25 与公共电极 26间施加电压时, 同一平面内的各像素电极间产生边缘电场,使 像素电极间以及像素电极正上方的液晶分子都能在平面方向上发生偏转, 从 而提高了液晶显示面板的开口率。
为了进一步提高 FFS型液晶显示面板的集成度和生产效率,提出了可将 COA技术应用在 FFS型液晶显示面板中, 即把彩色树脂层形成在制备完薄 膜晶体管的阵列基板的表面, 以覆盖薄膜晶体管, 然后在彩色树脂层中形成 像素电极过孔, 最后在彩色树脂层上形成像素电极。 在上述应用了 COA技术的阵列基板上, 彩色树脂层位于像素电极与公 共电极之间。 由于彩色树脂层的厚度较厚, 通常为 1μπι ~ 2μπι, 而 FFS型液 晶显示面板的像素结构需要在像素电极与公共电极间建立电场, 并依靠电场 使液晶分子发生偏转, 因此较厚的彩色树脂层将大大降低电场强度, 使得液 晶分子无法正常偏转,从而降低了 FFS型液晶显示面板的开口率,导致 COA 技术无法直接应用在 FFS型液晶显示面板中。 发明内容
在本发明的一个实施例中, 提供一种阵列基板, 其包括: 像素电极和公 共电极, 以及位于所述像素电极和所述公共电极之间的彩色树脂层, 其中, 所述彩色树脂层中分散有导电颗粒。
在本发明的另一实施例中, 提供一种显示装置, 其包括上述阵列基板。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术的釆用 COA技术的阵列基板的剖面示意图;
图 2为现有技术的 FFS型液晶显示面板的剖面示意图;
图 3为本发明实施例提供的釆用 COA技术的 FFS型液晶显示面板中阵 列基板的剖面示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明的实施例提供一种阵列基板, 其包括: 像素电极和公共电极; 以 及位于像素电极和公共电极之间的彩色树脂层, 其中, 彩色树脂层中分散有 导电颗粒。
本发明的实施例还提供一种显示装置, 其包括上述阵列基板。
在本发明的实施例提供的阵列基板及包括该阵列基板的显示装置中, 由 于在彩色树脂层中添加了导电颗粒 ,有效降低了彩色树脂层的等效介电厚度, 使得 COA技术能够应用于 FFS型液晶显示面板中, 并且不降低该 FFS型液 晶显示面板的开口率, 还能提高 FFS型液晶显示面板的集成度和生产效率, 从而使包括该阵列基板的显示装置具有较高的集成度和生产效率。
下面参照图 3详细说明本发明的实施例提供的阵列基板。
本发明的实施例提供一种阵列基板, 如图 3所示, 该阵列基板具有 FFS 型像素结构, 其包括: 基板 301 ; 形成在基板 301上的薄膜晶体管; 形成在 基板 301上并且相互电绝缘的栅电极 302和公共电极 303; 覆盖栅电极 302 和公共电极 303的栅极绝缘层 304。
在本发明的实施例中, 该阵列基板还包括: 依次形成在栅极绝缘层 304 上的图案化半导体层 305和图案化欧姆接触层 306; 以及形成在图案化欧姆 接触层 306上的源电极 307和漏电极 308, 其中, 栅电极 302、 栅极绝缘层 304、图案化半导体层 305、图案化欧姆接触层 306、源电极 307及漏电极 308 共同构成上述薄膜晶体管。
在本发明的实施例中, 该阵列基板还包括: 覆盖形成有上述薄膜晶体管 (图中未示出)和公共电极 303的基板 301的表面的彩色树脂层 309; 在彩 色树脂层 309中形成的暴露漏电极 308的像素电极过孔 310; 形成在彩色树 脂层 309的表面上及像素电极过孔 310中的像素电极 311 , 使得彩色树脂层 309位于像素电极 311和公共电极 303之间。
在本发明的实施例中, 彩色树脂层 309中分散有导电颗粒 312。
在本发明的实施例提供的上述阵列基板的操作过程中, 像素电极 311与 公共电极 303间形成有电场,电力线 313在传导过程中经过导电颗粒 312时, 由于导体内部是等势体, 因此可以看成电力线绕过导电颗粒 312继续传播, 而电力线的大小和方向没有发生改变, 这就使得分散有导电颗粒 312的彩色 树脂层 309的等效介电厚度为除去导电颗粒 312的同等面积大小的彩色树脂 层的总体平均厚度。
进一步而言, 在像素电极与公共电极间施加一电压时, 在彩色树脂层厚 度相等的情况下, 不包含导电颗粒的彩色树脂层中形成的电场的强度小于包 含导电颗粒的彩色树脂层形成的电场的强度。 因此, 这使得 COA技术能够 应用在 FFS型液晶显示面板中,并且不会降低 FFS型液晶显示面板的开口率, 还能提高 FFS型液晶显示面板的集成度和生产效率。
在本发明的实施例中, 在制备上述阵列基板时, 需要在涂覆彩色树脂层 的步骤之前将导电颗粒分散混合在彩色树脂中, 也可以在向树脂中添加颜料 的同时进行导电颗粒的分散与添加, 其余的步骤与现有技术相同。 釆用后一 种分散导电颗粒的方法不会增加液晶显示面板的工艺步骤, 因此有利于提高 生产效率和降低制造成本。
在本发明的实施例中, 导电颗粒的大小和数量可由本领域技术人员根据 工艺需求进行适当选择。 通过实验发现, 当导电颗粒占彩色树脂层的质量百 分比为 3% ~ 8%时, 能够保证设置有该彩色树脂层的阵列基板在工作时具有 较优的性能。
在本发明的实施例中, 为了保证在像素电极与公共电极间形成的电场在 整个彩色树脂层中均匀分布, 可以使导电颗粒均匀分散在彩色树脂层中, 但 是本发明的实施例不限于此。
导电颗粒可以为金属颗粒、 导电的金属氧化物颗粒、 金属包裹的颜料颗 粒、 导电的金属氧化物包裹的颜料颗粒中的任意一种, 或为任意两种以上的 组合。 本领域技术人员可知, 导电颗粒的种类并不限于上述几种, 其它任何 能降低彩色树脂层的等效介电厚度的具有导电性质的颗粒都能用于本发明。
在本发明的实施例中, 导电的金属氧化物颗粒可以为透明导电颗粒。 分 散有透明导电颗粒的彩色树脂层的透光率显然高于分散有不透明导电颗粒的 彩色树脂层的透光率。
另外, 导电的金属氧化物颗粒的材料可以为氧化铟锡(ITO ) 、 氧化铟 辞(IZO ) 、 氧化铝辞(AZO ) 、 氧化铟镓辞 ( IGZO ) 中的任意一种, 或为 任意两种以上的组合。
在制备金属包裹的颜料颗粒或导电的金属氧化物包裹的颜料颗粒时, 可 以釆用气相蒸镀、 化学镀、 喷涂等方法。
在本发明的实施例提供的上述阵列基板中, 像素电极和公共电极的位置 关系可以为如图 3所示, 即像素电极 311设置在公共电极 303的上方, 或者 也可以为公共电极设置在像素电极的上方。 当公共电极设置在像素电极上方 时, 相应的薄膜晶体管也调整为便于与像素电极和公共电极电连接的设置形 式。
在本发明的实施例提供的上述阵列基板中, 像素电极和公共电极可以均 为狭缝状电极结构,也可以如图 3所示,当像素电极 311设置在公共电极 303 的上方时, 像素电极 311为狭缝状电极结构, 公共电极 303为板状电极; 或 者当公共电极设置在像素电极的上方时, 公共电极为狭缝状电极结构, 像素 电极为板^ 电极。
在本发明的实施例中, 由于在彩色树脂层中添加了导电颗粒, 有效地降 低了彩色树脂层的等效介电厚度, 使得 COA技术能够应用于 FFS型液晶显 示面板中, 并且不会降低 FFS型液晶显示面板的开口率,还能提高 FFS型液 晶显示面板的集成度和生产效率。
本发明的实施例还提供一种包括上述阵列基板的显示装置, 该显示装置 可以为液晶面板、 液晶显示器或液晶电视等。 由于使用了上述阵列基板, 该 显示装置具有较高的集成度及生产效率。
以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前 述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其 依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术 特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离 本发明各实施例技术方案的精神和范围。

Claims

权利要求书
1、 一种阵列基板, 包括: 像素电极和公共电极, 以及位于所述像素电极 和所述公共电极之间的彩色树脂层, 其中, 所述彩色树脂层中分散有导电颗 粒。
2、根据权利要求 1所述的阵列基板, 其中, 所述导电颗粒均匀分散在所 述彩色树脂层中。
3、根据权利要求 1或 2所述的阵列基板, 其中, 所述导电颗粒占所述彩 色树脂层的质量百分比为 3% ~ 8%。
4、根据权利要求 1至 3中的任一项所述的阵列基板, 其中, 所述导电颗 粒为金属颗粒、 导电的金属氧化物颗粒、 金属包裹的颜料颗粒、 导电的金属 氧化物包裹的颜料颗粒中的任意一种, 或为任意两种以上的组合。
5、根据权利要求 1至 4中的任一项所述的阵列基板, 其中, 所述导电颗 粒为透明导电颗粒。
6、根据权利要求 4所述的阵列基板, 其中, 所述导电的金属氧化物颗粒 的材料为氧化铟锡、 氧化铟辞、 氧化铝辞、 氧化铟镓辞中的任意一种, 或为 任意两种以上的组合。
7、根据权利要求 1至 6中的任一项所述的阵列基板, 其中, 所述像素电 极和所述公共电极的位置关系为,所述像素电极设置在所述公共电极的上方; 或者所述公共电极设置在所述像素电极的上方。
8、根据权利要求 1至 7中的任一项所述的阵列基板, 其中, 所述像素电 极和所述公共电极均为狭缝状电极结构。
9、根据权利要求 1至 8中的任一项所述的阵列基板, 其中, 所述像素电 极设置在所述公共电极的上方, 所述像素电极为狭缝状电极结构, 所述公共 电极为板状电极; 或者, 所述公共电极设置在所述像素电极的上方, 所述公 共电极为狭缝状电极结构, 所述像素电极为板状电极。
10、 一种显示装置, 包括权利要求 1至 9中任一项所述的阵列基板。
PCT/CN2012/084160 2012-03-23 2012-11-06 阵列基板及包括该阵列基板的显示装置 WO2013139129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/823,329 US20140085577A1 (en) 2012-03-23 2012-11-06 Array substrate and display device comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210080930.3 2012-03-23
CN2012100809303A CN102654695A (zh) 2012-03-23 2012-03-23 阵列基板及应用其的显示装置

Publications (1)

Publication Number Publication Date
WO2013139129A1 true WO2013139129A1 (zh) 2013-09-26

Family

ID=46730335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084160 WO2013139129A1 (zh) 2012-03-23 2012-11-06 阵列基板及包括该阵列基板的显示装置

Country Status (3)

Country Link
US (1) US20140085577A1 (zh)
CN (1) CN102654695A (zh)
WO (1) WO2013139129A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202404339U (zh) * 2012-01-12 2012-08-29 京东方科技集团股份有限公司 阵列基板及包括该阵列基板的显示装置
CN102654695A (zh) * 2012-03-23 2012-09-05 京东方科技集团股份有限公司 阵列基板及应用其的显示装置
CN103915452B (zh) * 2014-03-28 2016-04-06 京东方科技集团股份有限公司 一种阵列基板、其制作方法及显示装置
CN104090402A (zh) * 2014-06-19 2014-10-08 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN104952887A (zh) * 2015-06-26 2015-09-30 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN110161762B (zh) * 2019-05-23 2022-09-06 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09179109A (ja) * 1995-12-26 1997-07-11 Casio Comput Co Ltd 液晶表示素子
CN1655021A (zh) * 2004-02-14 2005-08-17 鸿富锦精密工业(深圳)有限公司 液晶显示装置
CN101750821A (zh) * 2008-12-03 2010-06-23 株式会社半导体能源研究所 液晶显示器
US20110051064A1 (en) * 2009-08-31 2011-03-03 Hitachi Displays, Ltd. Liquid crystal display device
CN102654695A (zh) * 2012-03-23 2012-09-05 京东方科技集团股份有限公司 阵列基板及应用其的显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705302A (en) * 1989-04-28 1998-01-06 Seiko Epson Corporation Color filter for liquid crystal display device and method for producing the color filter
JPH0379109A (ja) * 1989-08-23 1991-04-04 Seiko Instr Inc 水晶振動子実装装置
CA2042035A1 (en) * 1989-09-18 1991-03-19 Seiichiro Yokoyama Method of producing color filter and resist for light-shielding film used for the method
JP3556364B2 (ja) * 1995-12-27 2004-08-18 富士通ディスプレイテクノロジーズ株式会社 アクティブマトリクス型液晶表示パネル及び投射型表示装置
JPH1164885A (ja) * 1997-08-21 1999-03-05 Sharp Corp アクティブマトリクス基板
JP3237667B2 (ja) * 1999-11-12 2001-12-10 富士ゼロックス株式会社 光触媒を用いた新規な着膜方法およびこの方法を使用するカラーフィルターの製造方法、それに使用する電解液、ならびに製造装置
TW575775B (en) * 2001-01-29 2004-02-11 Hitachi Ltd Liquid crystal display device
CN100338765C (zh) * 2004-03-06 2007-09-19 鸿富锦精密工业(深圳)有限公司 散热装置及其制备方法
JP2006292801A (ja) * 2005-04-06 2006-10-26 Seiko Epson Corp 液晶装置並びに電子機器
JP5061505B2 (ja) * 2006-05-25 2012-10-31 日本電気株式会社 横電界方式のアクティブマトリクス型液晶表示装置
CN102033369A (zh) * 2009-09-25 2011-04-27 北京京东方光电科技有限公司 Ffs型tft-lcd阵列基板的像素结构
KR20130143029A (ko) * 2010-09-09 2013-12-30 샤프 가부시키가이샤 박막 트랜지스터 기판 및 그 제조방법, 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09179109A (ja) * 1995-12-26 1997-07-11 Casio Comput Co Ltd 液晶表示素子
CN1655021A (zh) * 2004-02-14 2005-08-17 鸿富锦精密工业(深圳)有限公司 液晶显示装置
CN101750821A (zh) * 2008-12-03 2010-06-23 株式会社半导体能源研究所 液晶显示器
US20110051064A1 (en) * 2009-08-31 2011-03-03 Hitachi Displays, Ltd. Liquid crystal display device
CN102654695A (zh) * 2012-03-23 2012-09-05 京东方科技集团股份有限公司 阵列基板及应用其的显示装置

Also Published As

Publication number Publication date
CN102654695A (zh) 2012-09-05
US20140085577A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
EP2919266B1 (en) Array substrate, preparation method therefor, and display device
WO2013139129A1 (zh) 阵列基板及包括该阵列基板的显示装置
CN106292084B (zh) 像素结构及其制作方法
CN103311253B (zh) 薄膜晶体管阵列基板及其制作方法以及液晶显示装置
CN105161499B (zh) 一种显示基板及其制作方法和显示装置
CN102998856B (zh) 一种阵列基板及其制作方法、显示装置
WO2015081659A1 (zh) 一种阵列基板、液晶显示面板及显示装置
CN104765205B (zh) 一种阵列基板、显示面板和显示装置
CN106094366B (zh) Ips型阵列基板的制作方法及ips型阵列基板
WO2016176876A1 (zh) Oled显示装置
CN103698948B (zh) 一种液晶面板及液晶显示器
WO2013104300A1 (zh) 阵列基板及包括该阵列基板的显示装置
CN105448824B (zh) 阵列基板及其制作方法、显示装置
WO2014139211A1 (zh) 高级超维场转换液晶显示装置及其制造方法
CN105470266B (zh) Ffs型阵列基板及其制作方法
CN105093756B (zh) 液晶显示像素结构及其制作方法
WO2013086906A1 (zh) Tft阵列基板及其制作方法和显示装置
WO2015158052A1 (zh) 大板加电线路及其制造方法
CN104934443A (zh) 阵列基板及其制造方法、显示装置
WO2015000260A1 (zh) 一种像素结构、阵列基板及显示装置
US20160103374A1 (en) Liquid crystal display and manufacturing method thereof
WO2017049865A1 (zh) 阵列基板、显示装置及其制作方法
CN108319065A (zh) 液晶显示面板
CN109541860A (zh) 一种显示面板及其制备方法和显示装置
WO2015180302A1 (zh) 阵列基板及其制备方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13823329

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18-02-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12871884

Country of ref document: EP

Kind code of ref document: A1