WO2013137246A1 - 成形用材料、その成形体、および該成形体の製造方法 - Google Patents
成形用材料、その成形体、および該成形体の製造方法 Download PDFInfo
- Publication number
- WO2013137246A1 WO2013137246A1 PCT/JP2013/056792 JP2013056792W WO2013137246A1 WO 2013137246 A1 WO2013137246 A1 WO 2013137246A1 JP 2013056792 W JP2013056792 W JP 2013056792W WO 2013137246 A1 WO2013137246 A1 WO 2013137246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon fiber
- mass
- polycarbonate
- molding material
- parts
- Prior art date
Links
- IQHJQDQTORCKBB-UHFFFAOYSA-N CC[O](OC1=CCC(C(C)(C)C2C=CC(OC(C(C3Oc4c(C)cccc4C)Oc4c(C)cccc4C)C3=O)=CC2)C=C1)(Oc1c(C)cccc1C)(Oc1c(C)cccc1C)=O Chemical compound CC[O](OC1=CCC(C(C)(C)C2C=CC(OC(C(C3Oc4c(C)cccc4C)Oc4c(C)cccc4C)C3=O)=CC2)C=C1)(Oc1c(C)cccc1C)(Oc1c(C)cccc1C)=O IQHJQDQTORCKBB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/06—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/08—Ingredients agglomerated by treatment with a binding agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2069/00—Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2307/00—Use of elements other than metals as reinforcement
- B29K2307/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2369/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
Definitions
- the present invention relates to a molding material in which polycarbonate is adhered to an easily impregnated carbon fiber bundle, a molded body having excellent mechanical properties obtained from the molding material, and a method for producing the molded body.
- the resin is a composite material reinforced with carbon fibers.
- CFRTP carbon fiber reinforced thermoplastic resin
- a production method in which a carbon fiber bundle is impregnated with a thermoplastic resin in a molten state having a relatively high viscosity to obtain a composite material.
- the carbon fiber bundle in order to prevent the strength from being lowered in the molded product due to insufficient impregnation, the carbon fiber bundle is kept for a long time at an excessive pressure with the atmospheric temperature raised and the melt viscosity of the thermoplastic resin lowered. It is necessary to perform the impregnation treatment, and there is a problem that the manufacturing cost increases due to such a high-pressure impregnation treatment for a long time.
- Patent Document 1 a method of impregnating a carbon fiber bundle with a low molecular weight molten resin and then impregnating a high molecular weight thermoplastic resin (Patent Document 2), and opening carbon fibers in a molten resin bath A method of impregnation (Patent Document 3) and the like are disclosed. Further, Patent Document 4 describes adjusting the carbon fiber converging agent to an agent having good wettability with the resin as a method for allowing the carbon fiber itself to be impregnated with the thermoplastic resin.
- CFRTP products molded products with excellent physical properties and appearance have not been provided at an inexpensive manufacturing cost that facilitates their use in various applications. It is not responding enough.
- CFRTP using polycarbonate as a thermoplastic resin since polycarbonate is a resin having a particularly high melt viscosity, the problem of difficulty in impregnation in the conventional production method is likely to occur, and an immediate solution has been demanded.
- An object of the present invention is to provide a carbon fiber reinforced polycarbonate molded article having excellent physical properties and appearance, a method for producing the molded article by a simple process without causing an increase in production cost, and a molding enabling the production method.
- the purpose is to provide materials.
- the present inventors have remarkably easily made a carbon fiber bundle containing a specific compound (hereinafter referred to as an easily impregnable carbon fiber bundle) by plasticized polycarbonate. Found to be impregnated. Furthermore, the present inventors use this easily impregnated carbon fiber bundle in which polycarbonate is adhered as a molding material, and this is present in a molding die in the state of the plasticizing temperature of polycarbonate. It has been found that a surprising phenomenon occurs in which the polycarbonate impregnates the easily impregnable carbon fiber bundle and spreads in the mold while releasing the carbon fiber bundle.
- an easily impregnable carbon fiber bundle a specific compound
- the glass transition temperature decrease rate ( ⁇ Tg) defined by the following formula (A) is larger than 2 [° C./%] from Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
- Impregnation aid blending ratio [%] 100 ⁇ impregnation aid blending amount [parts by mass] / polycarbonate amount [parts by mass] (B) Defined by 2.
- the above molding material, wherein the impregnation aid is at least one selected from the group consisting of a phosphate ester and an aliphatic hydroxycarboxylic acid polyester. 3.
- the phosphoric acid ester is an aromatic phosphoric acid ester having a boiling point of 340 ° C. or higher under normal pressure and a heating loss of 2% / min or less at 300 ° C. in a nitrogen atmosphere. Molding material. 4).
- the aliphatic hydroxycarboxylic acid polyester is a homopolymer of ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and enanthlactone, and has a weight average molecular weight of 3000.
- the molding material as described above which is one or more selected from the group consisting of those having a weight average molecular weight of 3,000 to 50,000, and a copolymer of two or more kinds of monomers. 6).
- the molding material as described above which has a core-sheath structure in which the easily impregnable carbon fiber bundle is a core component and polycarbonate is a sheath component. 7).
- the molding material as described above, wherein the length of the pellet in the longitudinal direction is 3 to 10 mm.
- the molded object which consists of a molding material as described above. 10.
- the relationship between the carbon fiber content (% by mass) and the tensile strength of ISO527 standard 4 mm dumbbell is represented by the following formula (C) Carbon fiber content (mass%) ⁇ 3 + 90 ⁇ tensile strength (MPa) (C)
- C Carbon fiber content (mass%) ⁇ 3 + 90 ⁇ tensile strength (MPa)
- MPa ⁇ tensile strength
- a carbon fiber reinforced polycarbonate molded article having excellent physical properties and appearance, a method for producing the molded article by a simple process without causing an increase in production cost, and a molding material enabling the production method Can provide.
- the present invention relates to an easily impregnated carbon fiber bundle containing 3 to 15 parts by mass of one or more impregnation aids that satisfy the following conditions 1 and 2 with respect to 100 parts by mass of carbon fibers, and 50 to 2000 parts by mass of polycarbonate.
- the present invention relates to a molding material, a molded body obtained from the molding material, and a method for producing the molded body.
- Condition 1 The viscosity of the liquid at 300 ° C. is 10 Pa ⁇ s or less.
- the glass transition temperature decrease rate ( ⁇ Tg) defined by the following formula (A) is larger than 2 [° C./%] from Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
- Impregnation aid blending ratio [%] 100 ⁇ impregnation aid blending amount [parts by mass] / polycarbonate amount [parts by mass] (B) Defined by
- the easily impregnable carbon fiber bundle in the present invention includes 3 to 15 parts by mass of one or more impregnation aids satisfying the following conditions 1 and 2 with respect to 100 parts by mass of carbon fibers, It is a carbon fiber bundle characterized by being easily impregnated with a plasticized polycarbonate).
- Condition 1 The viscosity of the liquid at 300 ° C. is 10 Pa ⁇ s or less.
- the glass transition temperature decrease rate ( ⁇ Tg) defined by the following formula (A) is larger than 2 [° C./%] from Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
- Impregnation aid blending ratio [%] 100 ⁇ impregnation aid blending amount [parts by mass] / polycarbonate amount [parts by mass] (B) Defined by
- the easily impregnable carbon fiber bundle may be a carbon fiber bundle that contains the impregnation aid in a predetermined amount with respect to the carbon fiber, and includes its production method and carbon fiber and impregnation aid. Regardless of form.
- the impregnation aid used in the present invention satisfies the above-mentioned condition 1, which means that the impregnation aid is in a low viscosity state at 300 ° C., which is a typical processing temperature of general-purpose polycarbonate, and It means that viscosity measurement as a liquid is possible at 300 ° C.
- the viscosity of the liquid at 300 ° C. of the impregnation aid is preferably 8 Pa ⁇ s or less, and more preferably 6 Pa ⁇ s or less.
- a rotary viscometer is suitable as a method for measuring the viscosity of the impregnation aid as a liquid. Specifically, the method etc. which measure with a parallel plate with a high temperature tank can be illustrated.
- the impregnation aid used in the present invention satisfies the above condition 2.
- the impregnation aid does not need to have a glass transition temperature decrease rate ( ⁇ Tg)> 2 [° C./%] over the entire range of the blending amount of 1 to 100 parts by weight per 100 parts by weight of the polycarbonate, What is necessary is just to show the glass transition temperature fall rate ((DELTA) Tg) larger than 2 in a part of the said compounding quantity range.
- the glass transition temperature reduction rate ( ⁇ Tg) is greater than 2 ° C./%, it has the effect of promoting impregnation, and ⁇ Tg is more preferably greater than 3 ° C./%. That ⁇ Tg is 2 ° C./% or less is a state in which the impregnation aid is not compatible with the polycarbonate, and therefore it is assumed that the Tg of the polycarbonate is measured almost as it is. Even when an impregnation aid having a ⁇ Tg of 2 ° C./% or less is added to the carbon fiber bundle and a polycarbonate is adhered thereto, the impregnation promoting effect by the impregnation aid is extremely low. Dispersion failure of carbon fiber occurs.
- the easily impregnable carbon fiber bundle used in the present invention may contain a plurality of types of impregnation aids.
- the impregnation aid used in the present invention include phosphate esters and aliphatic hydroxycarboxylic acid polyesters. It is preferable that it is at least one selected from the group consisting of, and naturally, it may contain both a phosphate ester and an aliphatic hydroxycarboxylic acid polyester. These phosphate esters and aliphatic hydroxycarboxylic acid polyesters used as impregnation aids will be described in detail later.
- a typical method for producing an easily impregnated carbon fiber bundle is to impregnate a general-purpose carbon fiber bundle by at least one method selected from the group selected from a dipping method, a spray method, a roller transfer method, a slit coater method, and the like.
- the method of including an auxiliary agent is exemplified.
- the impregnation aid adheres mainly to the surface of the carbon fiber bundle, and a part of the impregnation aid also penetrates into the carbon fiber bundle. Seem.
- the impregnation aid in producing the easily impregnable carbon fiber bundle it can be handled as an aqueous emulsion, an organic solvent diluted solution, or a heated viscous or molten liquid.
- a preferable combination of the production method and the form of the impregnation aid is a dipping method or a roller transfer method in the case of an aqueous emulsion, but a drying step in an atmosphere of 100 ° C. or higher is necessary to sufficiently dry the water. It becomes.
- a heated viscous liquid a general coating method such as a slit coater method can be used, and after an appropriate amount is attached to the carbon fiber bundle, it can be uniformly attached with a smoothing roll or the like.
- the impregnation aid is adhered to the carbon fiber bundle as uniformly as possible.
- the heat treatment is again performed at a temperature at which the viscosity of the impregnation aid is sufficiently lowered.
- the heat treatment for example, hot air, a hot plate, a roller, an infrared heater or the like can be used, and a roller is preferably used.
- the carbon fiber contained in the molding material of the present invention may be any carbon fiber such as polyacrylonitrile (PAN), petroleum / petroleum pitch, rayon, and lignin.
- PAN polyacrylonitrile
- PAN-based carbon fibers using PAN as a raw material are preferable because they are excellent in productivity and mechanical properties on a factory scale.
- Carbon fibers having an average diameter of 5 to 10 ⁇ m can be preferably used.
- a general carbon fiber is a carbon fiber filament in which 1000 to 50000 single fibers are bundled.
- the carbon fiber bundle in the present invention includes such general carbon fiber filaments, and the carbon fiber filaments are further overlapped and combined, or the combined yarn is twisted into a twisted yarn. Is also included.
- As the carbon fiber contained in the molding material of the present invention one in which an oxygen-containing functional group is introduced to the surface by a surface treatment is preferable in order to enhance the adhesion between the carbon fiber and the polycarbonate.
- the carbon fiber bundle when making an easily impregnated carbon fiber bundle by including an impregnation aid in the carbon fiber bundle, the carbon fiber bundle is stabilized in order to stabilize the step of uniformly attaching the impregnation aid to the carbon fiber bundle.
- the sizing agent those known for producing carbon fiber filaments can be used.
- the carbon fiber bundle even if the oil agent used for increasing the slipping property at the time of production remains, it can be used without any problem in the present invention.
- the term “surface treatment agent” may be used to mean a superordinate concept that includes an impregnation aid and other treatment agents such as the above-described sizing agent.
- the phosphate ester used as the impregnation aid is not particularly limited as long as it satisfies the above conditions 1 and 2, but specifically, a phosphate ester monomer or a blend of oligomeric phosphate esters, etc.
- aromatic phosphates typified by trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, and triphenyl phosphate. Trimethyl phosphate or triphenyl phosphate is preferred.
- the loss of heat in a nitrogen atmosphere is 2% / min or less and the boiling point at normal pressure is 340 ° C. or higher at 300 ° C., which is the molding temperature of polycarbonate.
- An aromatic phosphate having a boiling point under pressure of 340 ° C. or higher and a heat loss at 300 ° C. under a nitrogen atmosphere of 2% / min or less is more preferable.
- normal pressure means atmospheric pressure of about standard atmospheric pressure (1013 hPa) without intentional pressurization / decompression operation, generally 800 to 1050 hPa, usually 1000 to 1030 hPa, more usually Means an atmospheric pressure in the range of 1009 to 1017 hPa.
- the aromatic phosphoric acid ester represented by the general formula (1) is preferably used in the present invention.
- R 1 to R 12 are a hydrogen atom or a methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl group or the like.
- Use of an alkyl group having 1 to 4 carbon atoms is preferable because melt flowability and light resistance of the molded product can be remarkably improved.
- an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group and / or an ethyl group are more preferable.
- R 1 to R 8 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 9 to R 12 are each a hydrogen atom
- R 1 to R 8 are each independently a hydrogen atom.
- a methyl group or an ethyl group, and R 9 to R 12 are particularly preferably a hydrogen atom.
- the aromatic phosphate represented by the general formula (1) includes an aromatic group in the formula Are each independently a phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2-propylphenyl group , 3-propylphenyl group, 4-propylphenyl group, 2-isopropylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2-butylphenyl group, 3-butylphenyl group, Among them, preferred is a phenyl group having two alkyl groups having 1 to 3 carbon atoms such as methyl, ethyl and propyl groups, and more preferred are two alkyl groups having 1 to 3 carbon atoms, Phenyl groups having 2 and 6 positions (for example, 2,6-dimethylphenyl group, 2,6-diethylpheny
- n is 0 or an integer of 1, but is preferably 1.
- X is a bond, —CH 2 —, —C (CH 3 ) 2 —, —S—, —SO 2 —, —O—, —CO— or —N ⁇ N—.
- a bond, —CH 2 —, or —C (CH 3 ) 2 — is preferable, and —C (CH 3 ) 2 — is more preferable.
- the repeating unit m is an integer of 0 to 5, but is preferably 1 or more, that is, the aromatic phosphate ester of the formula (1) is a so-called aromatic condensed phosphate ester, It is more preferably an integer of 1 to 3, further preferably 1 or 2, and particularly preferably 1.
- triphenyl phosphate is particularly preferable.
- 2,5-pyridinediol bis (diphenyl phosphate) As described above, a condensed phosphate ester condensed through a polynuclear aromatic ring residue or a heterocyclic ring residue can also be used as a preferred aromatic phosphate ester in the present invention.
- the amount of the phosphate ester contained in the easily impregnated carbon fiber bundle is 3 to 15 parts by mass, preferably 5 to 12 parts by mass with respect to 100 parts by mass of the carbon fiber. If the amount is less than 3 parts by mass, the impregnation property of the polycarbonate into the carbon fiber becomes insufficient, and if it exceeds 15 parts by mass, the impregnation property of the polycarbonate into the carbon fiber is excellent, but the glass transition temperature of the polycarbonate which is the matrix resin is lowered. This is not preferable because the heat resistance of the molded product decreases.
- the total amount of use may be within the above range. Further, when the content of the impregnation aid is increased, the impregnation rate of the Marix resin into the carbon fiber is increased, so that the fiber length tends to be shortened by being sheared by the screw from the initial stage of screw plasticization.
- the aliphatic hydroxycarboxylic acid-based polyester that can be used as an impregnation aid is a polyester composed of an aliphatic hydroxycarboxylic acid residue, and may be a monopolymerized polyester composed of a single aliphatic hydroxycarboxylic acid residue. It may be a copolyester containing a kind of aliphatic hydroxycarboxylic acid residue.
- the aliphatic hydroxycarboxylic acid polyester may be a residue other than the aliphatic hydroxycarboxylic acid residue, such as a diol residue or dicarboxylic acid, in an amount of less than 50 mol% of the residues constituting the polymer.
- a copolyester containing an acid residue or the like a homopolymer to which no copolymerization component is intentionally added is preferred because it is easily available.
- the weight average molecular weight of the aliphatic hydroxycarboxylic acid polyester used in the present invention is preferably 3000 to 50000.
- the weight average molecular weight is in the range of 3,000 to 50,000, the affinity for the polycarbonate resin is good and emulsification is easy. Particularly preferably, it is in the range of 5000 to 20000, more preferably 8000 to 15000.
- well-known methods such as a high temperature GPC method, can be used as a measuring method of a weight average molecular weight.
- the aliphatic hydroxycarboxylic acid-based polyester that can be used as an impregnation aid is not particularly limited, but ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valero A homopolymer of lactone and enanthlactone, and a copolymer of two or more of these monomers are preferable, and ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -One or more kinds selected from the group consisting of homopolymers of valerolactone and enanthlactone having a weight average molecular weight of 3,000 to 50,000 and copolymers of these two or more monomers having a weight average molecular weight of 3,000 to 50,000.
- the weight average molecular weight of each polymer is as described above. Particularly preferred is a homopolymer of ⁇ -caprolactone or ⁇ -caprolactone having a weight average molecular weight of 3,000 to 50,000.
- the lactone polymer is not only a polymer obtained by ring-opening polymerization of a lactone but also an aliphatic hydroxycarboxylic acid or a derivative thereof, which is an equivalent of the lactone, as a raw material. A polymer having a similar structure is also included.
- the amount of the aliphatic hydroxycarboxylic acid polyester to be attached to the easily impregnated carbon fiber bundle is 3 to 15 parts by mass, preferably 5 to 12 parts by mass with respect to 100 parts by mass of the carbon fiber. If the amount is less than 3 parts by mass, the easy impregnation of polycarbonate into carbon fibers becomes insufficient. If the amount is more than 15 parts by mass, the impregnation is excellent, but the molded article obtained by lowering the glass transition temperature of polycarbonate as a matrix resin. This is not preferable because the heat resistance is reduced.
- the molding material of the present invention is such that polycarbonate is adhered to the above-mentioned easily impregnable carbon fiber bundle at 50 to 2000 parts by mass per 100 parts by mass of carbon fiber contained in the easily impregnable carbon fiber bundle. 66 to 1900 parts by mass is more preferable.
- the shape of the molding material of the present invention is not particularly limited, and examples thereof include a columnar shape, a plate shape, a granular shape, a lump shape, a thread shape (string shape), a net shape, and the like, and a plurality of types of molding materials having different shapes may be molded. Is possible.
- a method of attaching polycarbonate to the easily impregnable carbon fiber bundle to obtain the molding material of the present invention a method of coating the surface of the easily impregnable carbon fiber bundle with polycarbonate in a molten state, an easily impregnable carbon fiber bundle, A method of casting and laminating polycarbonate in a molten state using a T-die or the like on a line, a method of laminating and laminating a film-like polycarbonate resin on a line of easily impregnated carbon fiber bundles, an easily impregnable carbon fiber bundle
- a method of spraying a powdery polycarbonate on the same can be mentioned.
- an aggregate of easily impregnable fiber bundles cut to a predetermined length can be used in the same manner.
- the molding material of the present invention preferably has a core-sheath structure in which an easily impregnated carbon fiber bundle is a core component and polycarbonate is a sheath component, and particularly for the molding material of the present invention and for injection molding.
- a core-sheath structure obtained by, for example, cutting a strand in which the periphery of the easily impregnable carbon fiber bundle is coated with polycarbonate with a strand cutter and using the easily impregnable carbon fiber bundle as a core component and polycarbonate as a sheath component.
- a pellet having a longitudinal length of about 3 to 10 mm hereinafter sometimes referred to as a core-sheath pellet) is more preferable.
- this core-sheath-type pellet It is preferable that it is 1/10 or more and 2 times or less of pellet length, and it is more preferable that it is 1/4 or more of pellet length and is equal to or less than pellet length.
- polycarbonate used in the present invention is not particularly limited, and examples thereof include those obtained by reacting various dihydroxyaryl compounds with phosgene, and those obtained by transesterification of dihydroxyaryl compounds and diphenyl carbonate.
- a typical example is 2,2′-bis (4-hydroxyphenyl) propane, a polycarbonate obtained by reacting so-called bisphenol A with phosgene or diphenyl carbonate.
- dihydroxyaryl compound used as a raw material for polycarbonate examples include bis (4-hydroxyphenyl) methane, 1,1′-bis (4-hydroxyphenyl) ethane, 2,2′-bis (4-hydroxyphenyl) propane, 2, 2'-bis (4-hydroxyphenyl) butane, 2,2'-bis (4-hydroxyphenyl) octane, 2,2'-bis (4-hydroxy-3-methylphenyl) propane, 2,2'-bis (4-hydroxy-3-t-butylphenyl) propane, 2,2′-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2′-bis (4-hydroxy-3-cyclohexylphenyl) Propane, 2,2′-bis (4-hydroxy-3-methoxyphenyl) propane, 1,1′-bis (4-hydroxypheny ) Cyclopentane, 1,1′-bis (4-hydroxyphenyl) cyclohexane, 1,1′-bis (4-hydroxyphenyl) cyclodo
- Preferred dihydroxyaryl compounds include bisphenols that form highly heat-resistant aromatic polycarbonates, bis (hydroxyphenyl) alkanes such as 2,2′-bis (4-hydroxyphenyl) propane, and bis (4-hydroxyphenyl) cyclohexane.
- Particularly preferred dihydroxyaryl compounds include 2,2'-bis (4-hydroxyphenyl) propane which forms bisphenol A type aromatic polycarbonate.
- bisphenol A type aromatic polycarbonate when manufacturing bisphenol A type aromatic polycarbonate within a range not impairing heat resistance, mechanical strength, etc., a part of bisphenol A may be substituted with another dihydroxyaryl compound.
- various polymers, fillers, stabilizers, pigments, etc. are blended within the range that does not impair the mechanical strength in order to increase fluidity, appearance gloss, flame retardancy, thermal stability, weather resistance, impact resistance, etc. May be.
- the molding material of the present invention is molded by the existing thermoplastic resin molding process without performing the treatment for impregnating the thermoplastic resin into the reinforcing fiber in an independent process as in the prior art.
- polycarbonate is impregnated into the easily impregnated carbon fiber bundle, melted and flowed while unraveling the carbon fiber bundle, and spread in the mold, so that it is possible to obtain a molded article with good physical properties. It is.
- the invention of the molded body made of the molding material of the present invention and the molding material is present in a mold at a temperature equal to or higher than the plasticizing temperature of the polycarbonate
- the molded article is characterized in that the easily impregnated carbon fiber bundle is impregnated with the polycarbonate, and the carbon fiber bundle of the easily impregnable carbon fiber bundle is molded while being dispersed and then cooled.
- the invention of the production method is also included.
- “dissolving and dispersing the carbon fiber bundles of the easily impregnated carbon fiber bundles” means that the carbon fiber bundles are formed to such an extent that the carbon fibers do not become a lump in the molded body. It means that the fiber bundles such as carbon fiber filaments are defibrated and dispersed, and do not have to be completely unwound up to each of the thousands of tens of thousands of carbon fiber single yarns that make up the carbon fiber bundle. A molded article having excellent physical properties and appearance can be obtained.
- the molding material can be used in various forms suitable for the molding method employed.
- it can be used as a pellet-shaped molding material in which a strand coated with polycarbonate around an easily impregnated carbon fiber bundle is cut to a length of about 3 to 10 mm by a strand cutter. .
- press molding is effective for obtaining a plate-like large molded body.
- a plate-shaped molding material in which a polycarbonate and an easily impregnated carbon fiber bundle are laminated is heated to a temperature equal to or higher than the plasticizing temperature of the polycarbonate, and is placed in a press die, It is also possible to mold by pressing pressure.
- a method of molding using a preform body obtained by pre-heating the molding material according to the present invention is also effective.
- the amount and ratio of the molding material and the carbon fiber of the molding are contained. That is, the composition based on mass is naturally the same. Therefore, the amount of carbon fiber and polycarbonate contained in the molded article of the present invention and the preferred range thereof are as described above for the molding material.
- the carbon fiber content of either the molding material or the obtained molded body ( Rate) is measured and this can be regarded as the other carbon fiber content (rate).
- the calculation is performed based on the amount of addition, and the molding material or molded body of the present invention is calculated. From one carbon fiber content (rate), the other carbon fiber content (rate) can be obtained.
- Conventional molded articles of carbon fiber reinforced thermoplastic resin are pellets obtained by melt-kneading thermoplastic resin and carbon fiber with a twin screw extruder or the like to make the carbon fiber uniformly dispersed in the thermoplastic resin. Is obtained as a material.
- the carbon fibers are crushed in the extruder, and the carbon fiber length in the obtained molded body becomes less than 0.3 mm. Will fall.
- the molded body of the molding material of the present invention is excellent in the impregnation property of the polycarbonate into the carbon fiber bundle, it is not necessary to knead the carbon fiber bundle and the molten resin with high shear. For this reason, carbon fibers remain in the molded article obtained for a long time, and the mechanical strength is excellent.
- the molded body of the present invention is preferably a molded body in which the carbon fibers from which the easily impregnable carbon fiber bundles have been dispersed are dispersed with an average fiber length of 0.3 mm or more, more preferably the carbon fibers. Are dispersed with an average fiber length of 0.4 mm or more.
- the upper limit of the average fiber length of the remaining carbon fibers is not particularly limited, and depends on the application and the molding method employed.
- the average fiber length of the carbon fiber is 10 mm or less
- the carbon fiber bundle having a general degree and a higher degree of impregnation with the thermoplastic resin is more likely to break during injection molding, so the average fiber length is often 2 mm or less.
- the molded body of the present invention satisfies the relationship of the following formula (C) in a tensile test piece having an ISO 527 standard thickness of 4 mm.
- MPa ⁇ tensile strength
- the fact that the above formula (C) is satisfied means that in a molded article of carbon fiber reinforced thermoplastic resin, the tensile strength of the molded article is extremely high compared to the carbon fiber content, which is extremely preferable in terms of cost and performance. .
- the impregnation aid used in each example and comparative example is shown below.
- assistants was measured on the conditions of the strain rate 1 / s and 300 degreeC with the parallel plate using the rheometrics viscoelasticity measuring device (RDA2).
- RDA2 rheometrics viscoelasticity measuring device
- the glass transition temperature of polycarbonate or a resin composition in which an impregnation aid is blended is measured using a TA Instruments thermal analyzer DSC-Q20 at a temperature rising rate of 20 ° C./min. It has been done.
- Bisphenol A bis (diphenyl phosphate) The viscosity of the liquid of bisphenol A bis (diphenyl phosphate) at 300 ° C. is 2.8 Pa ⁇ s.
- Polycaprolactone The viscosity of the liquid of polycaprolactone at 300 ° C. is 6 Pa ⁇ s.
- the glass transition temperature decrease rate ( ⁇ Tg) is 3.2 ° C./%, which is larger than 2.
- Trimethyl phosphate The viscosity of the liquid of trimethyl phosphate at 300 ° C. is 1.2 mPa ⁇ s.
- the glass transition temperature decrease rate ( ⁇ Tg) is 3.5 ° C./%, which is larger than 2.
- Triphenyl phosphate The viscosity of the liquid of triphenyl phosphate at 300 ° C. is 2 mPa ⁇ s.
- the glass transition temperature decrease rate ( ⁇ Tg) is 3.6 ° C./%, which is larger than 2.
- Copolyester Byron 220 Copolyester Byron 220 (manufactured by Toyobo)
- the defined glass transition temperature decrease rate ( ⁇ Tg) is 0.2 ° C./%, which is smaller than 2.
- Polyethylene glycol Polyethylene glycol (Lion Corporation PEG # 4000, molecular weight 4000)
- the glass transition temperature decrease rate ( ⁇ Tg) is 0 ° C./%, which is smaller than 2.
- each measurement test method and evaluation method used in Examples and Comparative Examples are as follows (content of carbon fiber in molding material or molded body, content rate).
- the carbon fiber content is determined by placing a molding material such as pellets or a sample of the cut molded body into a crucible, putting it in a muffle furnace set at a furnace temperature of 600 ° C., and removing the resin component by combustion. It was determined from the mass of the carbon fiber.
- what is shown as carbon fiber content (mass%) about a molding material or a molded object is the ratio of the mass of the carbon fiber with respect to the whole mass including not only carbon fiber and a polycarbonate but an impregnation adjuvant. is there.
- the amount of the surface treatment agent such as impregnation aid contained in the easily impregnable carbon fiber bundle or carbon fiber filament is put in a crucible with the carbon fiber bundle cut out in a length of 1 m, and the furnace temperature is 550 ° C.
- the surface treatment agent component was burned and removed, and determined from the mass of the remaining carbon fiber.
- a dumbbell test piece was prepared from the obtained molding material by an injection molding machine, and the tensile strength was measured according to ISO 527 (JIS K 7161).
- Example 1 As an impregnation aid, aromatic condensed phosphate ester bisphenol A bis (diphenyl phosphate) (manufactured by Daihachi Chemical Co., Ltd .; CR-741) was used. After passing a PAN-based carbon fiber filament (STO40 24K equivalent, fiber diameter 7.0 ⁇ m, filament number 24000, tensile strength 4000 MPa, manufactured by Toho Tenax Co., Ltd.) as a carbon fiber bundle, the excessively adhered solution was removed with a nip roll, and then Then, it was passed through a hot air drying furnace heated to 180 ° C. for 2 minutes and dried.
- STO40 24K equivalent fiber diameter 7.0 ⁇ m, filament number 24000, tensile strength 4000 MPa, manufactured by Toho Tenax Co., Ltd.
- the easily impregnated carbon fiber bundle obtained by the above treatment is placed on two metal rolls having a diameter of 60 mm heated to 200 ° C., and subjected to heat treatment again, so that the impregnation aid more uniformly adheres to the carbon fiber bundle.
- An impregnated carbon fiber bundle was obtained.
- the content of the impregnation aid in the easily impregnable carbon fiber bundle was 5% by mass (5.3 parts by mass per 100 parts by mass of the carbon fiber).
- the easily impregnated carbon fiber bundle obtained above was covered with polycarbonate (manufactured by Teijin Kasei Co., Ltd .: L-1225Y) using an electric wire covering crosshead die having an outlet diameter of 3 mm, and this was lengthened.
- a molding material was obtained.
- Example 2 By treating the carbon fiber filament with an emulsified solution concentration of bisphenol A bis (diphenyl phosphate), which is an impregnation aid, having a nonvolatile content of 25% by weight, the impregnation aid content is 10% by mass (per 100 parts by mass of carbon fiber). (11.1 parts by mass) The same procedure as in Example 1 was performed except that the carbon fiber bundle was easily impregnated. The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
- Example 3 When an easily impregnated carbon fiber bundle is coated with a polycarbonate (manufactured by Teijin Kasei Co., Ltd .: L-1225Y) using an electric wire covering crosshead die having an exit diameter of 3 mm, the resulting carbon fiber as a pellet-shaped molding material The operation was performed in the same manner as in Example 2 except that the content was 30% by mass (the polycarbonate was 222.2 parts by mass per 100 parts by mass of the carbon fiber). The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
- Example 4 Instead of bisphenol A bis (diphenyl phosphate), polycaprolactone (PLACCEL (registered trademark) H1P molecular weight 10,000, manufactured by Daicel Chemical Industries), which is an aliphatic hydroxycarboxylic acid polyester, is used as an impregnation aid, and this has a non-volatile content of 12% by mass.
- the carbon fiber filaments were treated with the emulsion solution of the above to obtain an easily impregnable carbon fiber bundle having a polycaprolactone impregnation aid content of 5% by mass (5.3 parts by mass per 100 parts by mass of carbon fiber).
- the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
- Example 5 The content of polycaprolactone impregnation aid is 10% by mass (100 parts by mass of carbon fiber) by treating the carbon fiber filament as an emulsion solution having a nonvolatile content of 25% by mass with the concentration of the emulsified solution of polycaprolactone as the impregnation aid.
- the same operation as in Example 4 was performed except that the easily impregnated carbon fiber bundle was 11.1 parts by mass).
- the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
- Example 6> Instead of bisphenol A bis (diphenyl phosphate), trimethyl phosphate (TMP manufactured by Eighth Chemical Co., Ltd.) was used as the impregnation aid, and the carbon fiber filament was treated with an emulsion liquid having a nonvolatile content of 25% by mass.
- TMP bisphenol A bis (diphenyl phosphate)
- the carbon fiber filament was treated with an emulsion liquid having a nonvolatile content of 25% by mass.
- the operation was performed in the same manner as in Example 1, except that the easily impregnable carbon fiber bundle was 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) of the trimethyl phosphate impregnation aid.
- the obtained molded article showed sufficient tensile strength, and no lumps of fibrous material were confirmed on the appearance surface, but bubbles were observed. The results are shown in Table 1.
- Example 7 Instead of bisphenol A bis (diphenyl phosphate) as an impregnation aid, triphenyl phosphate (TPP manufactured by Eighth Chemical Co., Ltd.) was used, and this was used as an emulsion solution having a nonvolatile content of 12% by mass.
- TPP bisphenol A bis (diphenyl phosphate)
- TPP Tetraphenyl phosphate
- the same operation as in Example 1 was carried out except that a readily impregnable carbon fiber bundle having a content of triphenyl phosphate impregnation aid of 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) was processed. It was.
- the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
- Example 8 By treating the carbon fiber filament as an emulsion solution having a non-volatile content of 12% by mass, the concentration of the polycaprolactone emulsified solution as the impregnation aid is 3% by mass (100 parts by mass of carbon fiber). The operation was performed in the same manner as in Example 4 except that the easily impregnable carbon fiber bundle was 4 parts by mass. The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
- Example 9 Instead of the emulsified solution of polycaprolactone, which is an impregnation aid, heated to 120 ° C. and melted, the liquid polycaprolactone was dropped onto the surface of the carbon fiber bundle, and further passed through a hot bar heated to 120 ° C., The molten polycaprolactone was impregnated into the carbon bundle. The carbon fiber bundle was treated in this manner, so that it was an easily impregnated carbon fiber bundle having a polycaprolactone impregnation aid content of 8% by mass (8.7 parts by mass per 100 parts by mass of carbon fiber). The same operation as in 4 was performed. The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
- Example 3 The same operation as in Example 1 was performed except that the resin covering the easily impregnated carbon fiber bundle was changed to polyamide 6 (so-called nylon 6, UBE nylon 1015B manufactured by Ube Industries) instead of polycarbonate.
- the obtained molded article had low tensile strength and poor appearance.
- ⁇ Comparative Example 4 100 parts by mass of carbon fiber and 233.3 parts by mass of polycarbonate are melt-kneaded in a twin-screw extruder to form pellets having a carbon fiber content of 30% by mass (panlite manufactured by Teijin Kasei). B-8130) was injection molded under the same conditions as in Example 1. The obtained molded body had a good dispersion state of carbon fibers, but the average fiber length of carbon fibers in the molded body was as short as 0.15 mm, and the tensile strength was not satisfactory at 140 MPa.
- Example 5 A carbon fiber bundle similar to that used in Example 1 was treated with polycarbonate (made by Teijin Kasei Co., Ltd.) without using polycaprolactone, which was an impregnation aid, using a wire-covering crosshead die with an outlet diameter of 3 mm. L-1225Y), this was cut into a length of 6 mm, the carbon fiber content was 20% by mass (polycarbonate was 394.7 parts by mass per 100 parts by mass of carbon fiber), the diameter was 3.2 mm, and the length was 6 mm. Pellets were obtained. To this pellet, 5.3 masses of polycaprolactone was added (post-addition) to obtain a molding material suitable for injection molding. This molding material was injection molded under the same conditions as in Example 1 to obtain a tensile test dumbbell having a thickness of 4 mm. The obtained molded article had low tensile strength and poor appearance. The results are shown in Table 1.
- the content of polycaprolactone impregnation aid is 18% by mass (100 parts by mass of carbon fiber) by treating the carbon fiber filament as an emulsion solution having a non-volatile content of 12% by mass of the emulsified solution of polycaprolactone as an impregnation aid.
- the operation was performed in the same manner as in Example 4 except that the carbon fiber bundle was easily impregnated at 20 parts by mass.
- the obtained molded article showed a good appearance, the average fiber length of carbon fibers in the molded article was as short as 0.4 mm, and the tensile strength was not satisfactory, 150 MPa. Moreover, it was inferior to heat resistance.
- Table 1 The results are shown in Table 1.
- Carbon fiber filaments were treated by using polyethylene glycol (Lion Corporation PEG # 4000, molecular weight 4000) as an impregnation aid instead of bisphenol A bis (diphenyl phosphate) and using it as an emulsion liquid with a nonvolatile content of 12% by mass. Then, the operation was carried out in the same manner as in Example 1 except that a readily impregnable carbon fiber bundle having a polyethylene glycol impregnation aid content of 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) was obtained. The obtained molded body had a low tensile strength and was inferior in the molded body appearance. The results are shown in Table 1.
- the present inventors used the same easy-impregnating carbon fiber bundles and carbon fiber filaments as in the above examples and comparative examples, and formed a molding material on which a sheet-like polycarbonate was placed on a short metal plate.
- the impregnation rate of the polycarbonate which is a matrix resin (hereinafter referred to as the matrix resin impregnation rate, including the case where a thermoplastic resin other than polycarbonate is used) was determined for the time-heated sample, and the easy impregnation property was evaluated.
- the results of evaluating the easy impregnation properties of the easily impregnable carbon fiber bundles of Examples 1 to 9 and Comparative Examples 1 to 10 are shown as Reference Examples A to H and Comparative Reference Examples A to I, respectively.
- Example A A readily impregnable carbon fiber bundle (width 10 mm long) having a content of bisphenol A bis (diphenyl phosphate) of 5% by mass (5.3 parts by mass per 100 parts by mass of carbon fiber) obtained by the same operation as in Example 1.
- the portion of the carbon fiber bundle that has not been impregnated with the polycarbonate does not adhere to the polycarbonate between the carbon single fibers in a dry state, and the carbon single fibers are easily peeled off. Therefore, the carbon fiber is peeled from the portion of the sample that has not been impregnated after heating, the mass is measured, and the easily impregnated carbon fiber when the matrix resin is polycarbonate according to the following calculation formula (D) The matrix resin impregnation rate into the bundle was calculated.
- Matrix resin impregnation rate (mass%) 100 ⁇ (mass of unimpregnated carbon single fiber / mass of carbon fiber bundle as matrix resin) ⁇ 100 (D)
- the matrix resin impregnation rate was as extremely high as 98% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 1 was very easily impregnated into the polycarbonate.
- ⁇ Reference Example B> A readily impregnable carbon fiber bundle (width) obtained by the same operation as in Examples 2 and 3 and having a bisphenol A bis (diphenyl phosphate) content of 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) The operation was performed in the same manner as in Reference Example A except that 10 mm and 20 mm in length were used. The matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the easily impregnable carbon fiber bundles used in Examples 2 and 3 were very easily impregnated into the polycarbonate.
- Example D A readily impregnable carbon fiber bundle (width 10 mm, length 20 mm) having a polycaprolactone impregnation aid content of 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) obtained in the same manner as in Example 5. ) was used in the same manner as in Reference Example A, except that The matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 5 was very easily impregnated into the polycarbonate.
- ⁇ Reference Example G> A readily impregnable carbon fiber bundle (width 10 mm, length 20 mm) having a polycaprolactone impregnation aid content of 3% by mass (4 parts by mass per 100 parts by mass of carbon fiber) obtained in the same manner as in Example 8. The same operation as in Reference Example A was performed except that it was used. The matrix resin impregnation rate was as high as 83% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 8 was easily impregnated into the polycarbonate.
- ⁇ Comparative Reference Example C> A readily impregnable carbon fiber bundle (width 10 mm long) having a content of bisphenol A bis (diphenyl phosphate) of 5% by mass (5.3 parts by mass per 100 parts by mass of carbon fiber) obtained by the same operation as in Example 1.
- 20 mm) is not a sheet-like polycarbonate (L-1225Y manufactured by Teijin Chemicals Ltd.) having a thickness of 300 ⁇ m, a width of 10 mm, and a length of 20 mm, but a sheet of polyamide 6 (UBE Nylon 1015B manufactured by Ube Industries) is used. Then, the same operation as in Reference Example A was performed.
- the matrix resin impregnation rate obtained by using the matrix resin as polyamide 6 instead of polycarbonate is as extremely low as 4% by mass, and the easily impregnable carbon fiber bundle used in Example 2 is extremely low in polyamide 6. It was found that it was difficult to be impregnated.
- Comparative Reference Example F The same operation as in Reference Example A was performed, except that a carbon fiber bundle having a content of 18% by mass of a bisphenol A bis (diphenylphosphate) impregnation aid obtained by the same operation as in Comparative Example 7 was used.
- the matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the readily impregnable carbon fiber bundle used in Comparative Example 7 was very easily impregnated into the polycarbonate.
- ⁇ Comparative Reference Example G> The same operation as in Reference Example A was performed, except that a carbon fiber bundle having a content of 10% by mass of the copolyester impregnation aid obtained by the same operation as in Comparative Example 8 was used.
- the impregnation rate of the matrix resin was as extremely low as 16% by mass, and the carbon fiber bundle of copolyester used as the impregnation aid used in Comparative Example 8 was not easily impregnated into the polycarbonate.
- the molding material of the present invention makes it possible to produce a molded article having excellent mechanical strength by a simple process, such as transportation equipment such as automobiles, ships, and aircraft, electrical / electronic equipment, and office use. It is extremely useful in various industrial fields such as interior / exterior materials and parts of equipment.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Moulding By Coating Moulds (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
・ 条件1:300℃における液体の粘度が10Pa・s以下である。
・ 条件2:ポリカーボネート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg1[℃]と、該ポリカーボネートのガラス転移温度Tg0[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が2[℃/%]より大きい。
ガラス転移温度低下率(ΔTg)[℃/%]=(Tg0[℃]-Tg1[℃])/含浸助剤配合率[%]・・・(A)
ここで、含浸助剤配合率[%]は、以下式(B)
含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリカーボネートの量[質量部]・・・(B)
にて定義される。
2. 含浸助剤が、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルからなる群より選ばれる1種類以上である上記の成形用材料。
3. リン酸エステルが、その常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下300℃での加熱減量が2%/分以下である芳香族リン酸エステルであることを特徴とする上記の成形用材料。
4. 前記芳香族リン酸エステルが、下記一般式(1)
(上記一般式(1)において、R1~R12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基であり、Xは、結合、-CH2-、-C(CH3)2-、-S-、-SO2-、-O-、-CO-または-N=N-であり、nは0または1の整数であり、mは0から5の整数である)
で表されるものであることを特徴とする上記の成形用材料。
5. 前記脂肪族ヒドロキシカルボン酸系ポリエステルが、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体で重量平均分子量3000~50000のもの、およびこれら2種以上のモノマーの共重合体で重量平均分子量3000~50000のものからなる群より選ばれる1種類以上のものである上記記載の成形用材料。
6. 前記易含浸性炭素繊維束を芯成分、ポリカーボネートを鞘成分とする芯鞘型構造である上記記載の成形用材料。
7. 前記成形用材料の形態がペレットである上記記載の成形用材料。
8. 前記ペレットの長手方向の長さが3~10mmである、上記記載の成形用材料。
9. 上記に記載の成形用材料からなる成形体。
10. 前記の易含浸性炭素繊維束に由来する炭素繊維が平均繊維長0.3mm以上の長さで分散していることを特徴とする上記記載の成形体。
11. 炭素繊維含有率(質量%)とISO527規格4mmダンベルでの引張強度との関係が下記式(C)
炭素繊維含有率(質量%)×3+90<引張強度(MPa) (C)
の関係を満たす上記記載の成形体。
12. 前記の成形用材料を、前記ポリカーボネートの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該ポリカーボネートを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする上記記載の成形体の製造方法。
・ 条件1:300℃における液体の粘度が10Pa・s以下である。
・ 条件2:ポリカーボネート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg1[℃]と、該ポリカーボネートのガラス転移温度Tg0[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が2[℃/%]より大きい。
ガラス転移温度低下率(ΔTg)[℃/%]=(Tg0[℃]-Tg1[℃])/含浸助剤配合率[%]・・・(A)
ここで、含浸助剤配合率[%]は、以下式(B)、
含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリカーボネートの量[質量部]・・・(B)
にて定義される。
本発明における易含浸性炭素繊維束とは、炭素繊維100質量部に対し、下記の条件1および条件2を満たす1種類以上の含浸助剤3~15質量部を含むことにより、ポリカーボネート(好ましくは可塑化されたポリカーボネート)により容易に含浸されることを特徴とする炭素繊維束である。
・ 条件1:300℃における液体の粘度が10Pa・s以下である。
・ 条件2:ポリカーボネート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg1[℃]と、該ポリカーボネートのガラス転移温度Tg0[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が2[℃/%]より大きい。
ガラス転移温度低下率(ΔTg)[℃/%]=(Tg0[℃]-Tg1[℃])/含浸助剤配合率[%]・・・(A)
ここで、含浸助剤配合率[%]は、以下式(B)、
含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリカーボネートの量[質量部]・・・(B)
にて定義される。
本発明の成形用材料に含まれる炭素繊維は、ポリアクリロニトリル(PAN)系、石油・石油ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維であっても良い。特に、PANを原料としたPAN系炭素繊維が、工場規模における生産性及び機械的特性に優れており好ましい。
本発明において、含浸助剤として用いられるリン酸エステルは、前記条件1および条件2を満たすものであれば、特に限定されないが、リン酸エステルモノマー又はオリゴマー性リン酸エステルのブレンドなど、具体的には、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェートに代表される芳香族リン酸エステル類等が挙げられる。好ましくはトリメチルホスフェート又はトリフェニルフェートである。
成形加工性の観点から、ポリカーボネートの成形温度である300℃において、窒素雰囲気下加熱減量が2%/分以下であり、かつ、常圧での沸点が340℃以上であるものが好ましく、その常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下300℃での加熱減量が2%/分以下である芳香族リン酸エステルであることがより好ましい。
本願において、常圧とは、特に注記無い限り、意図的に加圧・減圧操作をしない、標準大気圧(1013hPa)程度の気圧をいい、一般に800~1050hPa、通常には1000~1030hPa、より通常には、1009~1017hPaの範囲にある気圧をいう。そのような耐熱性を有するリン酸エステルとして、本発明において、前記一般式(1)で表される芳香族リン酸エステルが好適に用いられる。
が、それぞれ独立に、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2-プロピルフェニル基、3-プロピルフェニル基、4-プロピルフェニル基、2-イソプロピルフェニル基、3-イソプロピルフェニル基、4-イソプロピルフェニル基、2-ブチルフェニル基、3-ブチルフェニル基のいずれかであるものは、耐熱性が高いので好ましく、中でも、メチル、エチル、プロピル基などの炭素数1~3のアルキル基を2個有するフェニル基であるものがより好ましく、炭素数1~3のアルキル基を2個、2位及び6位に有するフェニル基(例えば、2,6-ジメチルフェニル基、2,6-ジエチルフェニル基、2-エチル-6-メチルフェニル基など)が極めて好ましい。なお、以後、特に注記無く、化合物名でキシレニルとある場合は、2,6-ジメチルフェニル基を意味する。
前記一般式(1)において、Xは、結合、-CH2-、-C(CH3)2-、-S-、-SO2-、-O-、-CO-または-N=N-であるが、結合、-CH2-、または-C(CH3)2-が好ましく、-C(CH3)2-がより好ましい。
前記の一般式(1)において、繰返し単位mは0~5の整数であるが、1以上、つまり式(1)の芳香族リン酸エステルが、いわゆる芳香族縮合リン酸エステルであると好ましく、1~3の整数であるとより好ましく、1又は2であると更に好ましく、特に1であると好ましい。
のように、多核芳香環残基や複素環残基を介して縮合している縮合リン酸エステルも、本発明における芳香族リン酸エステルの好ましいものとして使用することができる。
また、含浸助剤の含有量が多くなると、マリクス樹脂の炭素繊維への含浸速度が速くなるため、スクリュ可塑化の初期からスクリュによるせん断を受け繊維長は短くなる傾向となる。
本発明において、含浸助剤として使用できる脂肪族ヒドロキシカルボン酸系ポリエステルは、脂肪族ヒドロキシカルボン酸残基からなるポリエステルであり、単独の脂肪族ヒドロキシカルボン酸残基からなる単重合ポリエステルでもよく、複数種の脂肪族ヒドロキシカルボン酸残基を含む共重合ポリエステルでもよい。また、該脂肪族ヒドロキシカルボン酸系ポリエステルとしては、ポリマーを構成する残基のうち、50モル%未満の量にて、脂肪族ヒドロキシカルボン酸残基以外の残基、例えば、ジオール残基やジカルボン酸残基などを含む共重合ポリエステルであっても良いが、意図的に共重合成分を加えられていない単重合体が、入手し易い点で好ましい。
本発明の成形用材料は、上記の易含浸性炭素繊維束に、ポリカーボネートが、易含浸性炭素繊維束に含まれる炭素繊維100質量部あたり50~2000質量部にて付着しているものであり、66~1900質量部にて付着しているとより好ましい。本発明の成形用材料の形状は特に限定されず、柱状、板状、粒状、塊状、糸状(紐状)、網状等が挙げられ、異なる形状の成形用材料を複数種用いて成形することも可能である。
本発明において用いられるポリカーボネートの種類は特に限定されず、種々のジヒドロキシアリール化合物とホスゲンとの反応によって得られるもの、又はジヒドロキシアリール化合物とジフェニルカーボネートとのエステル交換反応により得られるものが挙げられる。代表的なものとしては、2,2’-ビス(4-ヒドロキシフェニル)プロパン、所謂ビスフェノールAとホスゲンまたはジフェニルカーボネートの反応で得られるポリカーボネートである。
前述のとおり、本発明の成形用材料を、従来技術のように、独立した工程にて強化繊維に熱可塑性樹脂を含浸させる為の処理をすることなく、既存の熱可塑性樹脂成形プロセスにて成形することにより、成形用材料において、易含浸性炭素繊維束へポリカーボネートが含浸し、炭素繊維束を解きつつ溶融流動して金型内に広がることにより、良好な物性の成形体を得ることが可能である。
炭素繊維含有率(重量%)×3+90<引張強度(MPa) ・・・(C)
上記式(C)が成り立つことは、炭素繊維強化熱可塑性樹脂の成形体において、炭素繊維含有率に比べて、成形体の引張強度が極めて高く、コストおよび性能の面で極めて好ましいことを意味する。
ポリカーボネート(Tg0=143℃)100質量部あたり、共重合ポリエステル バイロン20を5質量部配合して得られる樹脂組成物が示すガラス転移温度Tg1は、142℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0.2℃/%であり、2より小さい。
ポリカーボネート(Tg0=143℃)100質量部あたり、低分子量AS樹脂(ライタックA)を5質量部配合して得られる樹脂組成物が示すガラス転移温度Tg1は、143℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0℃/%であり、2より小さい。
ポリカーボネート(Tg0=143℃)100質量部あたり、ポリエチレングリコールを5質量部配合して得られる樹脂組成物が示すガラス転移温度Tg1は、143℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0℃/%であり、2より小さい。
炭素繊維の含有量は、ペレット等の成形用材料または、切り出された成形体の試料をるつぼに入れ、炉内温度を600℃に設定したマッフル炉に投入して樹脂成分を燃焼除去し、残った炭素繊維の質量から求めた。なお、成形用材料や成形体について炭素繊維含有率(質量%)と示してあるものは、炭素繊維とポリカーボネートとだけではなく含浸助剤等も含めた全体の質量に対する炭素繊維の質量の割合である。
易含浸性炭素繊維束や炭素繊維フィラメント等に含有されている含浸助剤等の表面処理剤の量は、1mの長さで切り出された炭素繊維束をるつぼに入れ、炉内温度を550℃に設定したマッフル炉に15分間投入し、表面処理剤成分を燃焼除去して、残った炭素繊維の質量から求めた。
得られた成形体の表面外観を観察し、炭素繊維束へのポリカーボネートの含浸が不十分だったことにより発生する直径3mm以上の繊維状物質の塊、および気泡が表面に確認されなかったものを○(良好)、繊維状物質の塊は確認されなかったものの気泡が確認されたものを△(やや良好)、繊維状物質の塊が確認されたものを×(不良)とした。
得られた複合成形体から20mm×10mmの試験片を切出し、550℃にて1.5時間有酸素雰囲気下で加熱し樹脂成分を燃焼除去した。残った炭素繊維を界面活性剤入りの水に投入し、超音波振動により十分に攪拌させた。攪拌させた分散液を計量スプーンによりランダムに採取し評価用サンプルを得て、ニレコ社製画像解析装置Luzex APにて、繊維数3000本の長さを計測し、長さ平均を算出し、成型体中における炭素繊維の平均繊維長を求めた。以下に、実施例および比較例にて詳細を示す。
含浸助剤として、芳香族縮合リン酸エステルであるビスフェノールA ビス(ジフェニルホスフェート)(大八化学株式会社製;CR―741)を用い、これを不揮発分12質量%にエマルジョン化した溶液内に、炭素繊維束としてPAN系炭素繊維フィラメント(東邦テナックス社製STS40 24K相当 繊維直径7.0μm フィラメント本数24000本、引張強度4000MPa)を通過させた後、ニップロールにて過剰に付着した溶液を取り除き、更にその後、180℃に加熱された熱風乾燥炉内を2分間かけて通過させ、乾燥させた。上記処理により得られた易含浸炭素繊維束を200℃に加熱した直径60mmの2本の金属製ロールに沿わせ、再度の加熱処理を行い、炭素繊維束に、より含浸助剤が均一に付着した含浸性炭素繊維束とした。この易含浸性炭素繊維束の含浸助剤の含有率は5質量%(炭素繊維100質量部あたり5.3質量部)であった。
含浸助剤であるビスフェノールA ビス(ジフェニルホスフェート)のエマルジョン化溶液の濃度を不揮発分25重量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリカーボネート(帝人化成株式会社製:L-1225Y)で被覆する際、得られるペレット状の成形用材料の炭素繊維含有率を30質量%(炭素繊維100質量部あたり、ポリカーボネートが222.2質量部)とした以外は、実施例2と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
含浸助剤として、ビスフェノールA ビス(ジフェニルホスフェート)ではなく、脂肪族ヒドロキシカルボン酸系ポリエステルであるポリカプロラクトン(ダイセル化学工業製PLACCEL(登録商標)H1P 分子量10000)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、ポリカプロラクトン含浸助剤の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分25質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトン含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
含浸助剤として、ビスフェノールA ビス(ジフェニルホスフェート)ではなく、トリメチルホスフェート(第八化学株式会社製 TMP)を用い、これを不揮発分25質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、トリメチルホスフェート含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は充分な引張強度を示し、その外観表面には繊維状物質の塊は確認されなかったが、気泡が見られた。結果を表1に示す。
含浸助剤として、ビスフェノールA ビス(ジフェニルホスフェート)ではなく、トリフェニルホスフェート(第八化学株式会社製 TPP)を用い、これを不揮発分12質量%のエマルジョン化溶液としたものにより、炭素繊維フィラメントを処理して、トリフェニルホスフェート含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分12質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトン含浸助剤の含有率3質量%(炭素繊維100質量部あたり4質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
含浸助剤であるポリカプロラクトンのエマルジョン化溶液に替えて120℃に加熱し溶融し、液体状となったポリカプロラクトンを炭素繊維束表面に滴下し、さらには120℃に加熱したホットバーに通し、溶融したポリカプロラクトンを炭素束に含浸させた。このように炭素繊維束を処理したことより、ポリカプロラクトン含浸助剤の含有率8質量%(炭素繊維100質量部あたり8.7質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
含浸助剤であるビスフェノールA ビス(ジフェニルホスフェート)のエマルジョン化溶液の濃度を不揮発分5重量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有率2質量%(炭素繊維100質量部あたり2質量部)の炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体の表面には分散不良の繊維束の塊が存在しており、引張強度も低い値となった。結果を表1に示す。
含浸助剤を用いて易含浸性炭素繊維を作成することはせず、ウレタン・エポキシ系収束剤が1.2質量%含浸されたPAN系炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を用いて、これをポリカーボネート(帝人化成株式会社製:L-1225Y)で被覆する以降の操作を実施例1と同様に行った。得られた成形体の表面には分散不良の繊維束の塊が存在しており、引張強度も低い値となった。結果を表1に示す。
易含浸性炭素繊維束を被覆する樹脂をポリカーボネートではなく、ポリアミド6(いわゆるナイロン6、宇部興産製 UBEナイロン1015B)に変更した以外は実施例1と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。
炭素繊維100質量部と、ポリカーボネート233.3質量部とを二軸押出成形機内にて溶融混練し、炭素繊維含有率30質量%のペレットとしたものである炭素繊維強化ポリカーボネート(帝人化成製 パンライト B-8130)を実施例1と同様の条件で射出成形を行った。得られた成形体は、炭素繊維の分散状態は良好であったが、成形体中における炭素繊維の平均繊維長は0.15mmと短く、引張強度も140MPaと満足できる値ではなかった。
実施例1で用いたのと同様の炭素繊維束を、含浸助剤であるポリカプロラクトンを処理せずに、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリカーボネート(帝人化成株式会社製:L-1225Y)で被覆し、これを長さ6mmに切断し、炭素繊維含有率が20質量%(炭素繊維100質量部あたり、ポリカーボネートが394.7質量部)、直径3.2mm、長さ6mmのペレットを得た。このペレットにポリカプロラクトンを5.3質量添加(後添加)し、射出成形に適した成形用材料を得た。この成形用材料を、実施例1と同様の条件で射出成形し、肉厚4mmの引張試験用ダンベルを得た。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分12質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトンの含有率1.5質量%(炭素繊維100質量部あたり2質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分12質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトン含浸助剤の含有率18質量%(炭素繊維100質量部あたり20質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観を示したが、成形体中における炭素繊維の平均繊維長は0.4mmと短く、引張強度も150MPaと満足できる値ではなかった。また、耐熱性に劣った。結果を表1に示す。
含浸助剤であるビスフェノールA ビス(ジフェニルホスフェート)ではなく、比較含浸助剤である共重合ポリエステル バイロン220(東洋紡製)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、共重合ポリエステル バイロン220比較含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
含浸助剤であるビスフェノールA ビス(ジフェニルホスフェート)ではなく、比較含浸助剤である低分子量AS樹脂 ライタックA(A&L社製 120PCF)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、低分子量AS樹脂 ライタックA比較含浸助剤の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
含浸助剤として、ビスフェノールA ビス(ジフェニルホスフェート)ではなく、ポリエチレングリコール(ライオン株式会社 PEG♯4000 分子量4000)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、ポリエチレングリコール含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、引張強度が低く、成形体外観に劣った。結果を表1に示す。
実施例1と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)の上面に厚み300μm幅10mm長さ20mmのシート状ポリカーボネート(帝人化成株式会社製 L-1225Y)を乗せた状態で、280℃に加熱した熱板上に置き、易含浸性炭素繊維束およびシート状ポリカーボネートを2分間加熱した。加熱により溶融したポリカーボネートが易含浸性炭素繊維束に含浸した部分はウェット状態となり、炭素単繊維間がポリカーボネートで固着する。一方、炭素繊維束における、ポリカーボネートが含浸しなかった部分は、ドライ状態で炭素単繊維間におけるポリカーボネートの固着はなく、炭素単繊維が剥離しやすい。そこで、加熱後の試料のポリカーボネートが含浸しなかった部分から、炭素単繊維を剥離して質量を測定し、下記計算式(D)にて、マトリックス樹脂がポリカーボネートである場合の易含浸性炭素繊維束へのマトリックス樹脂含浸率を算出した。
マトリックス樹脂含浸率(質量%)=100-(マトリックス樹脂である未含浸の炭素単繊維質量/炭素繊維束質量)×100 ・・・(D)
マトリックス樹脂含浸率は98質量%と極めて高く、実施例1において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
実施例2および3と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例2および3において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
実施例4と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は95質量%と極めて高く、実施例4において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
実施例5と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例5において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
実施例6と同様の操作にて得られた、トリメチルホスフェート含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は73質量%と高く、実施例6において用いた易含浸性炭素繊維束が、ポリカーボネートに含浸されやすいことを確認できた。
実施例7と同様の操作にて得られた、トリフェニルホスフェート含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は96質量%と極めて高く、実施例7において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
実施例8と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率3質量%(炭素繊維100質量部あたり4質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は83質量%と高く、実施例8において用いた易含浸性炭素繊維束がポリカーボネートに含浸されやすいことを確認できた。
実施例9と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率8質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例9において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
比較例1と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)含浸助剤の含有率2質量%(炭素繊維100質量部あたり2質量部)の炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は32質量%と低く、比較例1において用いた、含浸助剤の含有率2質量%の炭素繊維束は、ポリカーボネートに含浸されやすいものでは無かった。
易含浸性炭素繊維束の代わりに、比較例2と同じウレタン・エポキシ系収束剤が1.2質量%含浸された炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は2質量%と極めて低く、比較例2において用いた炭素繊維フィラメントは、極めてポリカーボネートに含浸されにくいものであった。
実施例1と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)の上面に、厚み300μm幅10mm長さ20mmのシート状ポリカーボネート(帝人化成株式会社製 L-1225Y)ではなく、同寸法のポリアミド6(宇部興産製 UBEナイロン1015B)のシート状物を用いて、参考例Aと同様に操作を行った。前記計算式(D)において、マトリックス樹脂をポリカーボネートではなくポリアミド6として求めたマトリックス樹脂含浸率は4質量%と極めて低く、実施例2において用いた易含浸性炭素繊維束は、ポリアミド6には極めて含浸されにくいものであることが分かった。
易含浸性炭素繊維束の代わりに、比較例5と同じ含浸助剤を後添加して得られたポリカプロラクトン含浸助剤の含有率1.2質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は2質量%と極めて低く、比較例5において用いた炭素繊維フィラメントは、極めてポリカーボネートに含浸されにくいものであった。
比較例6と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率1.5質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は28質量%と低く、比較例6において用いた、含浸助剤の含有率1.5質量%の炭素繊維束は、ポリカーボネートに含浸されやすいものでは無かった。
比較例7と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)含浸助剤の含有率18質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、比較例7において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
比較例8と同様の操作にて得られた、共重合ポリエステル含浸助剤の含有率10質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は16質量%と極めて低く、比較例8において用いた、含浸助剤が共重合ポリエステルの炭素繊維束は、ポリカーボネートに含浸されやすいものでは無かった。
比較例9と同様の操作にて得られた、低分子量AS樹脂含浸助剤の含有率5質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は12質量%と極めて低く、比較例9において用いた、含浸助剤が低分子量AS樹脂の炭素繊維束は、ポリカーボネートに含浸されやすいものでは無かった。
比較例10と同様の操作にて得られた、ポリエチレングリコール含浸助剤の含有率10質量%の易含浸性炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は64質量%と高く、比較例10において用いた含浸助剤がポリエチレングリコールの炭素繊維束は、ポリカーボネートに含浸されやすいものでは無かった。
本出願は、2012年3月14日出願の日本特許出願(特願2012-057323)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (12)
- 炭素繊維100質量部に対し、下記の条件1および条件2を満たす1種類以上の含浸助剤3~15質量部を含む易含浸性炭素繊維束に、50~2000質量部のポリカーボネートが付着していることを特徴とする成形用材料。
・ 条件1:300℃における液体の粘度が10Pa・s以下である。
・ 条件2:ポリカーボネート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg1[℃]と、該ポリカーボネートのガラス転移温度Tg0[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が2[℃/%]より大きい。
ガラス転移温度低下率(ΔTg)[℃/%]=(Tg0[℃]-Tg1[℃])/含浸助剤配合率[%]・・・(A)
ここで、含浸助剤配合率[%]は、以下式(B)、
含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリカーボネートの量[質量部]・・・(B)
にて定義される。 - 含浸助剤が、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルからなる群より選ばれる1種類以上である請求項1に記載の成形用材料。
- リン酸エステルが、その常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下300℃での加熱減量が2%/分以下である芳香族リン酸エステルであることを特徴とする請求項2記載の成形用材料。
- 前記脂肪族ヒドロキシカルボン酸系ポリエステルが、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体で重量平均分子量3000~50000のもの、およびこれら2種以上のモノマーの共重合体で重量平均分子量3000~50000のものからなる群より選ばれる1種類以上のものである請求項2記載の成形用材料。
- 前記易含浸性炭素繊維束を芯成分、ポリカーボネートを鞘成分とする芯鞘型構造である請求項1~5のいずれかに記載の成形用材料。
- 前記成形用材料の形態がペレットである請求項1~6のいずれかに記載の成形用材料。
- 前記ペレットの長手方向の長さが3~10mmである、請求項7に記載の成形用材料。
- 請求項1~8のいずれかに記載の成形用材料からなる成形体。
- 前記の易含浸性炭素繊維束に由来する炭素繊維が平均繊維長0.3mm以上の長さで分散していることを特徴とする請求項9記載の成形体。
- 炭素繊維含有率(質量%)とISO527規格4mmダンベルでの引張強度との関係が下記式(C)炭素繊維含有率(質量%)×3+90<引張強度(MPa)・・・(C)の関係を満たす請求項9または10記載の成形体。
- 前記の成形用材料を、前記ポリカーボネートの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該ポリカーボネートを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする請求項9~11のいずれかに記載の成形体の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380014471.1A CN104169340B (zh) | 2012-03-14 | 2013-03-12 | 成型用材料、由其获得的成形制品以及该成形制品的制造方法 |
US14/384,857 US9688854B2 (en) | 2012-03-14 | 2013-03-12 | Material for molding, shaped product therefrom, and method for manufacturing the shaped product |
JP2014504926A JP5658418B2 (ja) | 2012-03-14 | 2013-03-12 | 成形用材料、および成形体 |
EP13761369.1A EP2826810B1 (en) | 2012-03-14 | 2013-03-12 | Molding material, molded product thereof, and method for producing said molded product |
KR1020147024844A KR101546206B1 (ko) | 2012-03-14 | 2013-03-12 | 성형용 재료, 그 성형체, 및 그 성형체의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-057323 | 2012-03-14 | ||
JP2012057323 | 2012-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137246A1 true WO2013137246A1 (ja) | 2013-09-19 |
Family
ID=49161152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056792 WO2013137246A1 (ja) | 2012-03-14 | 2013-03-12 | 成形用材料、その成形体、および該成形体の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9688854B2 (ja) |
EP (1) | EP2826810B1 (ja) |
JP (2) | JP5658418B2 (ja) |
KR (1) | KR101546206B1 (ja) |
CN (1) | CN104169340B (ja) |
WO (1) | WO2013137246A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018083978A1 (ja) | 2016-11-01 | 2018-05-11 | 帝人株式会社 | 成形材料、成形材料の集合体、及びそれらの製造方法 |
JP2018196937A (ja) * | 2017-05-23 | 2018-12-13 | 帝人株式会社 | 成形体の製造方法 |
WO2020158293A1 (ja) * | 2019-01-30 | 2020-08-06 | 帝人株式会社 | 炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料 |
US10822482B2 (en) | 2017-01-18 | 2020-11-03 | Panasonic Corporation | Composite resin composition |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01271439A (ja) * | 1988-04-23 | 1989-10-30 | Toho Rayon Co Ltd | 導電性プラスチック成形材料 |
JPH03121146A (ja) | 1989-10-03 | 1991-05-23 | Polyplastics Co | 長繊維強化成形用ポリオレフィン樹脂組成物の製造法 |
JPH03181528A (ja) | 1989-12-08 | 1991-08-07 | Polyplastics Co | 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法 |
JPH05112657A (ja) | 1991-10-21 | 1993-05-07 | Mitsubishi Kasei Corp | 熱可塑性樹脂強化用炭素繊維強化樹脂組成物および炭素繊維強化熱可塑性樹脂複合材 |
JPH06166961A (ja) | 1992-11-27 | 1994-06-14 | Petoca:Kk | セメント補強用炭素繊維及びセメント複合体 |
JP2003026911A (ja) * | 2001-07-12 | 2003-01-29 | Mitsubishi Engineering Plastics Corp | ポリカーボネート樹脂組成物及びそれを用いた成形品 |
WO2010107022A1 (ja) * | 2009-03-16 | 2010-09-23 | 東レ株式会社 | 繊維強化樹脂組成物、成形材料および繊維強化樹脂組成物の製造方法 |
JP4849196B1 (ja) * | 2010-07-21 | 2012-01-11 | 三菱エンジニアリングプラスチックス株式会社 | 高熱伝導性ポリカーボネート系樹脂組成物及び成形体 |
JP2013011050A (ja) * | 2011-05-30 | 2013-01-17 | Toray Ind Inc | 複合強化繊維束、その製造方法、および成形材料 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126375A (ja) * | 1982-01-22 | 1983-07-27 | 東邦レーヨン株式会社 | 炭素繊維及びその樹脂組成物 |
DE69313410T2 (de) | 1992-11-27 | 1998-02-19 | Petoca Ltd | Kohlenstoffasern für die Bewehrung von Zement und zementhaltiges Verbundmaterial |
US7078098B1 (en) * | 2000-06-30 | 2006-07-18 | Parker-Hannifin Corporation | Composites comprising fibers dispersed in a polymer matrix having improved shielding with lower amounts of conducive fiber |
US6231788B1 (en) * | 2000-02-03 | 2001-05-15 | General Electric Company | Carbon-reinforced PC-ABS composition and articles made from same |
JP4588155B2 (ja) * | 2000-02-29 | 2010-11-24 | 帝人化成株式会社 | 芳香族ポリカーボネート樹脂組成物 |
JP2002212876A (ja) * | 2001-01-05 | 2002-07-31 | Toho Tenax Co Ltd | 熱可塑性樹脂強化用炭素繊維、同炭素繊維を含有してなる射出成型用ペレット、及び炭素繊維強化熱可塑性樹脂成型体 |
US6992185B2 (en) * | 2002-01-09 | 2006-01-31 | Alliant Techsystems Inc. | Crystallization of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,903,11]-dodecane |
JP2004244531A (ja) * | 2003-02-14 | 2004-09-02 | Toho Tenax Co Ltd | 熱可塑性樹脂用炭素繊維チョップドストランド及び繊維強化複合材料 |
WO2006134797A1 (ja) * | 2005-06-15 | 2006-12-21 | Mitsubishi Engineering-Plastics Corporation | ポリカーボネート樹脂組成物及び成形品 |
-
2013
- 2013-03-12 US US14/384,857 patent/US9688854B2/en active Active
- 2013-03-12 WO PCT/JP2013/056792 patent/WO2013137246A1/ja active Application Filing
- 2013-03-12 JP JP2014504926A patent/JP5658418B2/ja active Active
- 2013-03-12 KR KR1020147024844A patent/KR101546206B1/ko active IP Right Grant
- 2013-03-12 EP EP13761369.1A patent/EP2826810B1/en active Active
- 2013-03-12 CN CN201380014471.1A patent/CN104169340B/zh active Active
-
2014
- 2014-09-04 JP JP2014180614A patent/JP5634638B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01271439A (ja) * | 1988-04-23 | 1989-10-30 | Toho Rayon Co Ltd | 導電性プラスチック成形材料 |
JPH03121146A (ja) | 1989-10-03 | 1991-05-23 | Polyplastics Co | 長繊維強化成形用ポリオレフィン樹脂組成物の製造法 |
JPH03181528A (ja) | 1989-12-08 | 1991-08-07 | Polyplastics Co | 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法 |
JPH05112657A (ja) | 1991-10-21 | 1993-05-07 | Mitsubishi Kasei Corp | 熱可塑性樹脂強化用炭素繊維強化樹脂組成物および炭素繊維強化熱可塑性樹脂複合材 |
JPH06166961A (ja) | 1992-11-27 | 1994-06-14 | Petoca:Kk | セメント補強用炭素繊維及びセメント複合体 |
JP2003026911A (ja) * | 2001-07-12 | 2003-01-29 | Mitsubishi Engineering Plastics Corp | ポリカーボネート樹脂組成物及びそれを用いた成形品 |
WO2010107022A1 (ja) * | 2009-03-16 | 2010-09-23 | 東レ株式会社 | 繊維強化樹脂組成物、成形材料および繊維強化樹脂組成物の製造方法 |
JP4849196B1 (ja) * | 2010-07-21 | 2012-01-11 | 三菱エンジニアリングプラスチックス株式会社 | 高熱伝導性ポリカーボネート系樹脂組成物及び成形体 |
JP2013011050A (ja) * | 2011-05-30 | 2013-01-17 | Toray Ind Inc | 複合強化繊維束、その製造方法、および成形材料 |
Non-Patent Citations (2)
Title |
---|
"Shohin [Rinkei Nannenzai (1)]", 5 June 2013 (2013-06-05), XP008174968, Retrieved from the Internet <URL:icl-ipjapan.com/products.html> * |
See also references of EP2826810A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018083978A1 (ja) | 2016-11-01 | 2018-05-11 | 帝人株式会社 | 成形材料、成形材料の集合体、及びそれらの製造方法 |
JPWO2018083978A1 (ja) * | 2016-11-01 | 2018-11-08 | 帝人株式会社 | 成形材料、成形材料の集合体、及びそれらの製造方法 |
US10822482B2 (en) | 2017-01-18 | 2020-11-03 | Panasonic Corporation | Composite resin composition |
JP2018196937A (ja) * | 2017-05-23 | 2018-12-13 | 帝人株式会社 | 成形体の製造方法 |
WO2020158293A1 (ja) * | 2019-01-30 | 2020-08-06 | 帝人株式会社 | 炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料 |
JPWO2020158293A1 (ja) * | 2019-01-30 | 2021-10-14 | 帝人株式会社 | 炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料 |
JP7116198B2 (ja) | 2019-01-30 | 2022-08-09 | 帝人株式会社 | 炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料 |
Also Published As
Publication number | Publication date |
---|---|
EP2826810A4 (en) | 2015-03-18 |
US20150044461A1 (en) | 2015-02-12 |
CN104169340A (zh) | 2014-11-26 |
JP2014221925A (ja) | 2014-11-27 |
CN104169340B (zh) | 2016-03-09 |
JP5634638B2 (ja) | 2014-12-03 |
US9688854B2 (en) | 2017-06-27 |
EP2826810A1 (en) | 2015-01-21 |
JP5658418B2 (ja) | 2015-01-28 |
KR101546206B1 (ko) | 2015-08-20 |
KR20140121878A (ko) | 2014-10-16 |
EP2826810B1 (en) | 2016-12-07 |
JPWO2013137246A1 (ja) | 2015-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101585824B1 (ko) | 성형용 재료, 그 성형체, 및 그 성형체의 제조 방법 | |
JP6163485B2 (ja) | 成形用材料、その成形体、および該成形体の製造方法 | |
JP5634638B2 (ja) | 成形体の製造方法 | |
EP4151667A1 (en) | Composition, pellet, molded product and composition production method | |
JP2021003899A (ja) | ガラス繊維強化樹脂成形品 | |
KR20170094239A (ko) | 복합 물품의 제조 방법 | |
WO2023085297A1 (ja) | ペレット、成形品、および、ペレットの製造方法 | |
WO2018083978A1 (ja) | 成形材料、成形材料の集合体、及びそれらの製造方法 | |
JP6445389B2 (ja) | 連続繊維強化ポリカーボネート樹脂製プリプレグ | |
US20240301202A1 (en) | Polycarbonate resin composition for 3d printing having excellent shape retention ability and interfacial adhesion, and pellet and filament for 3d printing comprising same | |
JP6902395B2 (ja) | 成形体の製造方法 | |
KR20240113452A (ko) | 펠릿, 성형품, 및, 펠릿의 제조 방법 | |
JP2015124275A (ja) | ポリカーボネート樹脂成形材料、およびその成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380014471.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13761369 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2014504926 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147024844 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14384857 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013761369 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013761369 Country of ref document: EP |