WO2013137246A1 - 成形用材料、その成形体、および該成形体の製造方法 - Google Patents

成形用材料、その成形体、および該成形体の製造方法 Download PDF

Info

Publication number
WO2013137246A1
WO2013137246A1 PCT/JP2013/056792 JP2013056792W WO2013137246A1 WO 2013137246 A1 WO2013137246 A1 WO 2013137246A1 JP 2013056792 W JP2013056792 W JP 2013056792W WO 2013137246 A1 WO2013137246 A1 WO 2013137246A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
mass
polycarbonate
molding material
parts
Prior art date
Application number
PCT/JP2013/056792
Other languages
English (en)
French (fr)
Inventor
横溝 穂高
松田 猛
伊藤 隆
一光 古川
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to CN201380014471.1A priority Critical patent/CN104169340B/zh
Priority to US14/384,857 priority patent/US9688854B2/en
Priority to JP2014504926A priority patent/JP5658418B2/ja
Priority to EP13761369.1A priority patent/EP2826810B1/en
Priority to KR1020147024844A priority patent/KR101546206B1/ko
Publication of WO2013137246A1 publication Critical patent/WO2013137246A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the present invention relates to a molding material in which polycarbonate is adhered to an easily impregnated carbon fiber bundle, a molded body having excellent mechanical properties obtained from the molding material, and a method for producing the molded body.
  • the resin is a composite material reinforced with carbon fibers.
  • CFRTP carbon fiber reinforced thermoplastic resin
  • a production method in which a carbon fiber bundle is impregnated with a thermoplastic resin in a molten state having a relatively high viscosity to obtain a composite material.
  • the carbon fiber bundle in order to prevent the strength from being lowered in the molded product due to insufficient impregnation, the carbon fiber bundle is kept for a long time at an excessive pressure with the atmospheric temperature raised and the melt viscosity of the thermoplastic resin lowered. It is necessary to perform the impregnation treatment, and there is a problem that the manufacturing cost increases due to such a high-pressure impregnation treatment for a long time.
  • Patent Document 1 a method of impregnating a carbon fiber bundle with a low molecular weight molten resin and then impregnating a high molecular weight thermoplastic resin (Patent Document 2), and opening carbon fibers in a molten resin bath A method of impregnation (Patent Document 3) and the like are disclosed. Further, Patent Document 4 describes adjusting the carbon fiber converging agent to an agent having good wettability with the resin as a method for allowing the carbon fiber itself to be impregnated with the thermoplastic resin.
  • CFRTP products molded products with excellent physical properties and appearance have not been provided at an inexpensive manufacturing cost that facilitates their use in various applications. It is not responding enough.
  • CFRTP using polycarbonate as a thermoplastic resin since polycarbonate is a resin having a particularly high melt viscosity, the problem of difficulty in impregnation in the conventional production method is likely to occur, and an immediate solution has been demanded.
  • An object of the present invention is to provide a carbon fiber reinforced polycarbonate molded article having excellent physical properties and appearance, a method for producing the molded article by a simple process without causing an increase in production cost, and a molding enabling the production method.
  • the purpose is to provide materials.
  • the present inventors have remarkably easily made a carbon fiber bundle containing a specific compound (hereinafter referred to as an easily impregnable carbon fiber bundle) by plasticized polycarbonate. Found to be impregnated. Furthermore, the present inventors use this easily impregnated carbon fiber bundle in which polycarbonate is adhered as a molding material, and this is present in a molding die in the state of the plasticizing temperature of polycarbonate. It has been found that a surprising phenomenon occurs in which the polycarbonate impregnates the easily impregnable carbon fiber bundle and spreads in the mold while releasing the carbon fiber bundle.
  • an easily impregnable carbon fiber bundle a specific compound
  • the glass transition temperature decrease rate ( ⁇ Tg) defined by the following formula (A) is larger than 2 [° C./%] from Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
  • Impregnation aid blending ratio [%] 100 ⁇ impregnation aid blending amount [parts by mass] / polycarbonate amount [parts by mass] (B) Defined by 2.
  • the above molding material, wherein the impregnation aid is at least one selected from the group consisting of a phosphate ester and an aliphatic hydroxycarboxylic acid polyester. 3.
  • the phosphoric acid ester is an aromatic phosphoric acid ester having a boiling point of 340 ° C. or higher under normal pressure and a heating loss of 2% / min or less at 300 ° C. in a nitrogen atmosphere. Molding material. 4).
  • the aliphatic hydroxycarboxylic acid polyester is a homopolymer of ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and enanthlactone, and has a weight average molecular weight of 3000.
  • the molding material as described above which is one or more selected from the group consisting of those having a weight average molecular weight of 3,000 to 50,000, and a copolymer of two or more kinds of monomers. 6).
  • the molding material as described above which has a core-sheath structure in which the easily impregnable carbon fiber bundle is a core component and polycarbonate is a sheath component. 7).
  • the molding material as described above, wherein the length of the pellet in the longitudinal direction is 3 to 10 mm.
  • the molded object which consists of a molding material as described above. 10.
  • the relationship between the carbon fiber content (% by mass) and the tensile strength of ISO527 standard 4 mm dumbbell is represented by the following formula (C) Carbon fiber content (mass%) ⁇ 3 + 90 ⁇ tensile strength (MPa) (C)
  • C Carbon fiber content (mass%) ⁇ 3 + 90 ⁇ tensile strength (MPa)
  • MPa ⁇ tensile strength
  • a carbon fiber reinforced polycarbonate molded article having excellent physical properties and appearance, a method for producing the molded article by a simple process without causing an increase in production cost, and a molding material enabling the production method Can provide.
  • the present invention relates to an easily impregnated carbon fiber bundle containing 3 to 15 parts by mass of one or more impregnation aids that satisfy the following conditions 1 and 2 with respect to 100 parts by mass of carbon fibers, and 50 to 2000 parts by mass of polycarbonate.
  • the present invention relates to a molding material, a molded body obtained from the molding material, and a method for producing the molded body.
  • Condition 1 The viscosity of the liquid at 300 ° C. is 10 Pa ⁇ s or less.
  • the glass transition temperature decrease rate ( ⁇ Tg) defined by the following formula (A) is larger than 2 [° C./%] from Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
  • Impregnation aid blending ratio [%] 100 ⁇ impregnation aid blending amount [parts by mass] / polycarbonate amount [parts by mass] (B) Defined by
  • the easily impregnable carbon fiber bundle in the present invention includes 3 to 15 parts by mass of one or more impregnation aids satisfying the following conditions 1 and 2 with respect to 100 parts by mass of carbon fibers, It is a carbon fiber bundle characterized by being easily impregnated with a plasticized polycarbonate).
  • Condition 1 The viscosity of the liquid at 300 ° C. is 10 Pa ⁇ s or less.
  • the glass transition temperature decrease rate ( ⁇ Tg) defined by the following formula (A) is larger than 2 [° C./%] from Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
  • Impregnation aid blending ratio [%] 100 ⁇ impregnation aid blending amount [parts by mass] / polycarbonate amount [parts by mass] (B) Defined by
  • the easily impregnable carbon fiber bundle may be a carbon fiber bundle that contains the impregnation aid in a predetermined amount with respect to the carbon fiber, and includes its production method and carbon fiber and impregnation aid. Regardless of form.
  • the impregnation aid used in the present invention satisfies the above-mentioned condition 1, which means that the impregnation aid is in a low viscosity state at 300 ° C., which is a typical processing temperature of general-purpose polycarbonate, and It means that viscosity measurement as a liquid is possible at 300 ° C.
  • the viscosity of the liquid at 300 ° C. of the impregnation aid is preferably 8 Pa ⁇ s or less, and more preferably 6 Pa ⁇ s or less.
  • a rotary viscometer is suitable as a method for measuring the viscosity of the impregnation aid as a liquid. Specifically, the method etc. which measure with a parallel plate with a high temperature tank can be illustrated.
  • the impregnation aid used in the present invention satisfies the above condition 2.
  • the impregnation aid does not need to have a glass transition temperature decrease rate ( ⁇ Tg)> 2 [° C./%] over the entire range of the blending amount of 1 to 100 parts by weight per 100 parts by weight of the polycarbonate, What is necessary is just to show the glass transition temperature fall rate ((DELTA) Tg) larger than 2 in a part of the said compounding quantity range.
  • the glass transition temperature reduction rate ( ⁇ Tg) is greater than 2 ° C./%, it has the effect of promoting impregnation, and ⁇ Tg is more preferably greater than 3 ° C./%. That ⁇ Tg is 2 ° C./% or less is a state in which the impregnation aid is not compatible with the polycarbonate, and therefore it is assumed that the Tg of the polycarbonate is measured almost as it is. Even when an impregnation aid having a ⁇ Tg of 2 ° C./% or less is added to the carbon fiber bundle and a polycarbonate is adhered thereto, the impregnation promoting effect by the impregnation aid is extremely low. Dispersion failure of carbon fiber occurs.
  • the easily impregnable carbon fiber bundle used in the present invention may contain a plurality of types of impregnation aids.
  • the impregnation aid used in the present invention include phosphate esters and aliphatic hydroxycarboxylic acid polyesters. It is preferable that it is at least one selected from the group consisting of, and naturally, it may contain both a phosphate ester and an aliphatic hydroxycarboxylic acid polyester. These phosphate esters and aliphatic hydroxycarboxylic acid polyesters used as impregnation aids will be described in detail later.
  • a typical method for producing an easily impregnated carbon fiber bundle is to impregnate a general-purpose carbon fiber bundle by at least one method selected from the group selected from a dipping method, a spray method, a roller transfer method, a slit coater method, and the like.
  • the method of including an auxiliary agent is exemplified.
  • the impregnation aid adheres mainly to the surface of the carbon fiber bundle, and a part of the impregnation aid also penetrates into the carbon fiber bundle. Seem.
  • the impregnation aid in producing the easily impregnable carbon fiber bundle it can be handled as an aqueous emulsion, an organic solvent diluted solution, or a heated viscous or molten liquid.
  • a preferable combination of the production method and the form of the impregnation aid is a dipping method or a roller transfer method in the case of an aqueous emulsion, but a drying step in an atmosphere of 100 ° C. or higher is necessary to sufficiently dry the water. It becomes.
  • a heated viscous liquid a general coating method such as a slit coater method can be used, and after an appropriate amount is attached to the carbon fiber bundle, it can be uniformly attached with a smoothing roll or the like.
  • the impregnation aid is adhered to the carbon fiber bundle as uniformly as possible.
  • the heat treatment is again performed at a temperature at which the viscosity of the impregnation aid is sufficiently lowered.
  • the heat treatment for example, hot air, a hot plate, a roller, an infrared heater or the like can be used, and a roller is preferably used.
  • the carbon fiber contained in the molding material of the present invention may be any carbon fiber such as polyacrylonitrile (PAN), petroleum / petroleum pitch, rayon, and lignin.
  • PAN polyacrylonitrile
  • PAN-based carbon fibers using PAN as a raw material are preferable because they are excellent in productivity and mechanical properties on a factory scale.
  • Carbon fibers having an average diameter of 5 to 10 ⁇ m can be preferably used.
  • a general carbon fiber is a carbon fiber filament in which 1000 to 50000 single fibers are bundled.
  • the carbon fiber bundle in the present invention includes such general carbon fiber filaments, and the carbon fiber filaments are further overlapped and combined, or the combined yarn is twisted into a twisted yarn. Is also included.
  • As the carbon fiber contained in the molding material of the present invention one in which an oxygen-containing functional group is introduced to the surface by a surface treatment is preferable in order to enhance the adhesion between the carbon fiber and the polycarbonate.
  • the carbon fiber bundle when making an easily impregnated carbon fiber bundle by including an impregnation aid in the carbon fiber bundle, the carbon fiber bundle is stabilized in order to stabilize the step of uniformly attaching the impregnation aid to the carbon fiber bundle.
  • the sizing agent those known for producing carbon fiber filaments can be used.
  • the carbon fiber bundle even if the oil agent used for increasing the slipping property at the time of production remains, it can be used without any problem in the present invention.
  • the term “surface treatment agent” may be used to mean a superordinate concept that includes an impregnation aid and other treatment agents such as the above-described sizing agent.
  • the phosphate ester used as the impregnation aid is not particularly limited as long as it satisfies the above conditions 1 and 2, but specifically, a phosphate ester monomer or a blend of oligomeric phosphate esters, etc.
  • aromatic phosphates typified by trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, and triphenyl phosphate. Trimethyl phosphate or triphenyl phosphate is preferred.
  • the loss of heat in a nitrogen atmosphere is 2% / min or less and the boiling point at normal pressure is 340 ° C. or higher at 300 ° C., which is the molding temperature of polycarbonate.
  • An aromatic phosphate having a boiling point under pressure of 340 ° C. or higher and a heat loss at 300 ° C. under a nitrogen atmosphere of 2% / min or less is more preferable.
  • normal pressure means atmospheric pressure of about standard atmospheric pressure (1013 hPa) without intentional pressurization / decompression operation, generally 800 to 1050 hPa, usually 1000 to 1030 hPa, more usually Means an atmospheric pressure in the range of 1009 to 1017 hPa.
  • the aromatic phosphoric acid ester represented by the general formula (1) is preferably used in the present invention.
  • R 1 to R 12 are a hydrogen atom or a methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl group or the like.
  • Use of an alkyl group having 1 to 4 carbon atoms is preferable because melt flowability and light resistance of the molded product can be remarkably improved.
  • an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group and / or an ethyl group are more preferable.
  • R 1 to R 8 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 9 to R 12 are each a hydrogen atom
  • R 1 to R 8 are each independently a hydrogen atom.
  • a methyl group or an ethyl group, and R 9 to R 12 are particularly preferably a hydrogen atom.
  • the aromatic phosphate represented by the general formula (1) includes an aromatic group in the formula Are each independently a phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2-propylphenyl group , 3-propylphenyl group, 4-propylphenyl group, 2-isopropylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2-butylphenyl group, 3-butylphenyl group, Among them, preferred is a phenyl group having two alkyl groups having 1 to 3 carbon atoms such as methyl, ethyl and propyl groups, and more preferred are two alkyl groups having 1 to 3 carbon atoms, Phenyl groups having 2 and 6 positions (for example, 2,6-dimethylphenyl group, 2,6-diethylpheny
  • n is 0 or an integer of 1, but is preferably 1.
  • X is a bond, —CH 2 —, —C (CH 3 ) 2 —, —S—, —SO 2 —, —O—, —CO— or —N ⁇ N—.
  • a bond, —CH 2 —, or —C (CH 3 ) 2 — is preferable, and —C (CH 3 ) 2 — is more preferable.
  • the repeating unit m is an integer of 0 to 5, but is preferably 1 or more, that is, the aromatic phosphate ester of the formula (1) is a so-called aromatic condensed phosphate ester, It is more preferably an integer of 1 to 3, further preferably 1 or 2, and particularly preferably 1.
  • triphenyl phosphate is particularly preferable.
  • 2,5-pyridinediol bis (diphenyl phosphate) As described above, a condensed phosphate ester condensed through a polynuclear aromatic ring residue or a heterocyclic ring residue can also be used as a preferred aromatic phosphate ester in the present invention.
  • the amount of the phosphate ester contained in the easily impregnated carbon fiber bundle is 3 to 15 parts by mass, preferably 5 to 12 parts by mass with respect to 100 parts by mass of the carbon fiber. If the amount is less than 3 parts by mass, the impregnation property of the polycarbonate into the carbon fiber becomes insufficient, and if it exceeds 15 parts by mass, the impregnation property of the polycarbonate into the carbon fiber is excellent, but the glass transition temperature of the polycarbonate which is the matrix resin is lowered. This is not preferable because the heat resistance of the molded product decreases.
  • the total amount of use may be within the above range. Further, when the content of the impregnation aid is increased, the impregnation rate of the Marix resin into the carbon fiber is increased, so that the fiber length tends to be shortened by being sheared by the screw from the initial stage of screw plasticization.
  • the aliphatic hydroxycarboxylic acid-based polyester that can be used as an impregnation aid is a polyester composed of an aliphatic hydroxycarboxylic acid residue, and may be a monopolymerized polyester composed of a single aliphatic hydroxycarboxylic acid residue. It may be a copolyester containing a kind of aliphatic hydroxycarboxylic acid residue.
  • the aliphatic hydroxycarboxylic acid polyester may be a residue other than the aliphatic hydroxycarboxylic acid residue, such as a diol residue or dicarboxylic acid, in an amount of less than 50 mol% of the residues constituting the polymer.
  • a copolyester containing an acid residue or the like a homopolymer to which no copolymerization component is intentionally added is preferred because it is easily available.
  • the weight average molecular weight of the aliphatic hydroxycarboxylic acid polyester used in the present invention is preferably 3000 to 50000.
  • the weight average molecular weight is in the range of 3,000 to 50,000, the affinity for the polycarbonate resin is good and emulsification is easy. Particularly preferably, it is in the range of 5000 to 20000, more preferably 8000 to 15000.
  • well-known methods such as a high temperature GPC method, can be used as a measuring method of a weight average molecular weight.
  • the aliphatic hydroxycarboxylic acid-based polyester that can be used as an impregnation aid is not particularly limited, but ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valero A homopolymer of lactone and enanthlactone, and a copolymer of two or more of these monomers are preferable, and ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -One or more kinds selected from the group consisting of homopolymers of valerolactone and enanthlactone having a weight average molecular weight of 3,000 to 50,000 and copolymers of these two or more monomers having a weight average molecular weight of 3,000 to 50,000.
  • the weight average molecular weight of each polymer is as described above. Particularly preferred is a homopolymer of ⁇ -caprolactone or ⁇ -caprolactone having a weight average molecular weight of 3,000 to 50,000.
  • the lactone polymer is not only a polymer obtained by ring-opening polymerization of a lactone but also an aliphatic hydroxycarboxylic acid or a derivative thereof, which is an equivalent of the lactone, as a raw material. A polymer having a similar structure is also included.
  • the amount of the aliphatic hydroxycarboxylic acid polyester to be attached to the easily impregnated carbon fiber bundle is 3 to 15 parts by mass, preferably 5 to 12 parts by mass with respect to 100 parts by mass of the carbon fiber. If the amount is less than 3 parts by mass, the easy impregnation of polycarbonate into carbon fibers becomes insufficient. If the amount is more than 15 parts by mass, the impregnation is excellent, but the molded article obtained by lowering the glass transition temperature of polycarbonate as a matrix resin. This is not preferable because the heat resistance is reduced.
  • the molding material of the present invention is such that polycarbonate is adhered to the above-mentioned easily impregnable carbon fiber bundle at 50 to 2000 parts by mass per 100 parts by mass of carbon fiber contained in the easily impregnable carbon fiber bundle. 66 to 1900 parts by mass is more preferable.
  • the shape of the molding material of the present invention is not particularly limited, and examples thereof include a columnar shape, a plate shape, a granular shape, a lump shape, a thread shape (string shape), a net shape, and the like, and a plurality of types of molding materials having different shapes may be molded. Is possible.
  • a method of attaching polycarbonate to the easily impregnable carbon fiber bundle to obtain the molding material of the present invention a method of coating the surface of the easily impregnable carbon fiber bundle with polycarbonate in a molten state, an easily impregnable carbon fiber bundle, A method of casting and laminating polycarbonate in a molten state using a T-die or the like on a line, a method of laminating and laminating a film-like polycarbonate resin on a line of easily impregnated carbon fiber bundles, an easily impregnable carbon fiber bundle
  • a method of spraying a powdery polycarbonate on the same can be mentioned.
  • an aggregate of easily impregnable fiber bundles cut to a predetermined length can be used in the same manner.
  • the molding material of the present invention preferably has a core-sheath structure in which an easily impregnated carbon fiber bundle is a core component and polycarbonate is a sheath component, and particularly for the molding material of the present invention and for injection molding.
  • a core-sheath structure obtained by, for example, cutting a strand in which the periphery of the easily impregnable carbon fiber bundle is coated with polycarbonate with a strand cutter and using the easily impregnable carbon fiber bundle as a core component and polycarbonate as a sheath component.
  • a pellet having a longitudinal length of about 3 to 10 mm hereinafter sometimes referred to as a core-sheath pellet) is more preferable.
  • this core-sheath-type pellet It is preferable that it is 1/10 or more and 2 times or less of pellet length, and it is more preferable that it is 1/4 or more of pellet length and is equal to or less than pellet length.
  • polycarbonate used in the present invention is not particularly limited, and examples thereof include those obtained by reacting various dihydroxyaryl compounds with phosgene, and those obtained by transesterification of dihydroxyaryl compounds and diphenyl carbonate.
  • a typical example is 2,2′-bis (4-hydroxyphenyl) propane, a polycarbonate obtained by reacting so-called bisphenol A with phosgene or diphenyl carbonate.
  • dihydroxyaryl compound used as a raw material for polycarbonate examples include bis (4-hydroxyphenyl) methane, 1,1′-bis (4-hydroxyphenyl) ethane, 2,2′-bis (4-hydroxyphenyl) propane, 2, 2'-bis (4-hydroxyphenyl) butane, 2,2'-bis (4-hydroxyphenyl) octane, 2,2'-bis (4-hydroxy-3-methylphenyl) propane, 2,2'-bis (4-hydroxy-3-t-butylphenyl) propane, 2,2′-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2′-bis (4-hydroxy-3-cyclohexylphenyl) Propane, 2,2′-bis (4-hydroxy-3-methoxyphenyl) propane, 1,1′-bis (4-hydroxypheny ) Cyclopentane, 1,1′-bis (4-hydroxyphenyl) cyclohexane, 1,1′-bis (4-hydroxyphenyl) cyclodo
  • Preferred dihydroxyaryl compounds include bisphenols that form highly heat-resistant aromatic polycarbonates, bis (hydroxyphenyl) alkanes such as 2,2′-bis (4-hydroxyphenyl) propane, and bis (4-hydroxyphenyl) cyclohexane.
  • Particularly preferred dihydroxyaryl compounds include 2,2'-bis (4-hydroxyphenyl) propane which forms bisphenol A type aromatic polycarbonate.
  • bisphenol A type aromatic polycarbonate when manufacturing bisphenol A type aromatic polycarbonate within a range not impairing heat resistance, mechanical strength, etc., a part of bisphenol A may be substituted with another dihydroxyaryl compound.
  • various polymers, fillers, stabilizers, pigments, etc. are blended within the range that does not impair the mechanical strength in order to increase fluidity, appearance gloss, flame retardancy, thermal stability, weather resistance, impact resistance, etc. May be.
  • the molding material of the present invention is molded by the existing thermoplastic resin molding process without performing the treatment for impregnating the thermoplastic resin into the reinforcing fiber in an independent process as in the prior art.
  • polycarbonate is impregnated into the easily impregnated carbon fiber bundle, melted and flowed while unraveling the carbon fiber bundle, and spread in the mold, so that it is possible to obtain a molded article with good physical properties. It is.
  • the invention of the molded body made of the molding material of the present invention and the molding material is present in a mold at a temperature equal to or higher than the plasticizing temperature of the polycarbonate
  • the molded article is characterized in that the easily impregnated carbon fiber bundle is impregnated with the polycarbonate, and the carbon fiber bundle of the easily impregnable carbon fiber bundle is molded while being dispersed and then cooled.
  • the invention of the production method is also included.
  • “dissolving and dispersing the carbon fiber bundles of the easily impregnated carbon fiber bundles” means that the carbon fiber bundles are formed to such an extent that the carbon fibers do not become a lump in the molded body. It means that the fiber bundles such as carbon fiber filaments are defibrated and dispersed, and do not have to be completely unwound up to each of the thousands of tens of thousands of carbon fiber single yarns that make up the carbon fiber bundle. A molded article having excellent physical properties and appearance can be obtained.
  • the molding material can be used in various forms suitable for the molding method employed.
  • it can be used as a pellet-shaped molding material in which a strand coated with polycarbonate around an easily impregnated carbon fiber bundle is cut to a length of about 3 to 10 mm by a strand cutter. .
  • press molding is effective for obtaining a plate-like large molded body.
  • a plate-shaped molding material in which a polycarbonate and an easily impregnated carbon fiber bundle are laminated is heated to a temperature equal to or higher than the plasticizing temperature of the polycarbonate, and is placed in a press die, It is also possible to mold by pressing pressure.
  • a method of molding using a preform body obtained by pre-heating the molding material according to the present invention is also effective.
  • the amount and ratio of the molding material and the carbon fiber of the molding are contained. That is, the composition based on mass is naturally the same. Therefore, the amount of carbon fiber and polycarbonate contained in the molded article of the present invention and the preferred range thereof are as described above for the molding material.
  • the carbon fiber content of either the molding material or the obtained molded body ( Rate) is measured and this can be regarded as the other carbon fiber content (rate).
  • the calculation is performed based on the amount of addition, and the molding material or molded body of the present invention is calculated. From one carbon fiber content (rate), the other carbon fiber content (rate) can be obtained.
  • Conventional molded articles of carbon fiber reinforced thermoplastic resin are pellets obtained by melt-kneading thermoplastic resin and carbon fiber with a twin screw extruder or the like to make the carbon fiber uniformly dispersed in the thermoplastic resin. Is obtained as a material.
  • the carbon fibers are crushed in the extruder, and the carbon fiber length in the obtained molded body becomes less than 0.3 mm. Will fall.
  • the molded body of the molding material of the present invention is excellent in the impregnation property of the polycarbonate into the carbon fiber bundle, it is not necessary to knead the carbon fiber bundle and the molten resin with high shear. For this reason, carbon fibers remain in the molded article obtained for a long time, and the mechanical strength is excellent.
  • the molded body of the present invention is preferably a molded body in which the carbon fibers from which the easily impregnable carbon fiber bundles have been dispersed are dispersed with an average fiber length of 0.3 mm or more, more preferably the carbon fibers. Are dispersed with an average fiber length of 0.4 mm or more.
  • the upper limit of the average fiber length of the remaining carbon fibers is not particularly limited, and depends on the application and the molding method employed.
  • the average fiber length of the carbon fiber is 10 mm or less
  • the carbon fiber bundle having a general degree and a higher degree of impregnation with the thermoplastic resin is more likely to break during injection molding, so the average fiber length is often 2 mm or less.
  • the molded body of the present invention satisfies the relationship of the following formula (C) in a tensile test piece having an ISO 527 standard thickness of 4 mm.
  • MPa ⁇ tensile strength
  • the fact that the above formula (C) is satisfied means that in a molded article of carbon fiber reinforced thermoplastic resin, the tensile strength of the molded article is extremely high compared to the carbon fiber content, which is extremely preferable in terms of cost and performance. .
  • the impregnation aid used in each example and comparative example is shown below.
  • assistants was measured on the conditions of the strain rate 1 / s and 300 degreeC with the parallel plate using the rheometrics viscoelasticity measuring device (RDA2).
  • RDA2 rheometrics viscoelasticity measuring device
  • the glass transition temperature of polycarbonate or a resin composition in which an impregnation aid is blended is measured using a TA Instruments thermal analyzer DSC-Q20 at a temperature rising rate of 20 ° C./min. It has been done.
  • Bisphenol A bis (diphenyl phosphate) The viscosity of the liquid of bisphenol A bis (diphenyl phosphate) at 300 ° C. is 2.8 Pa ⁇ s.
  • Polycaprolactone The viscosity of the liquid of polycaprolactone at 300 ° C. is 6 Pa ⁇ s.
  • the glass transition temperature decrease rate ( ⁇ Tg) is 3.2 ° C./%, which is larger than 2.
  • Trimethyl phosphate The viscosity of the liquid of trimethyl phosphate at 300 ° C. is 1.2 mPa ⁇ s.
  • the glass transition temperature decrease rate ( ⁇ Tg) is 3.5 ° C./%, which is larger than 2.
  • Triphenyl phosphate The viscosity of the liquid of triphenyl phosphate at 300 ° C. is 2 mPa ⁇ s.
  • the glass transition temperature decrease rate ( ⁇ Tg) is 3.6 ° C./%, which is larger than 2.
  • Copolyester Byron 220 Copolyester Byron 220 (manufactured by Toyobo)
  • the defined glass transition temperature decrease rate ( ⁇ Tg) is 0.2 ° C./%, which is smaller than 2.
  • Polyethylene glycol Polyethylene glycol (Lion Corporation PEG # 4000, molecular weight 4000)
  • the glass transition temperature decrease rate ( ⁇ Tg) is 0 ° C./%, which is smaller than 2.
  • each measurement test method and evaluation method used in Examples and Comparative Examples are as follows (content of carbon fiber in molding material or molded body, content rate).
  • the carbon fiber content is determined by placing a molding material such as pellets or a sample of the cut molded body into a crucible, putting it in a muffle furnace set at a furnace temperature of 600 ° C., and removing the resin component by combustion. It was determined from the mass of the carbon fiber.
  • what is shown as carbon fiber content (mass%) about a molding material or a molded object is the ratio of the mass of the carbon fiber with respect to the whole mass including not only carbon fiber and a polycarbonate but an impregnation adjuvant. is there.
  • the amount of the surface treatment agent such as impregnation aid contained in the easily impregnable carbon fiber bundle or carbon fiber filament is put in a crucible with the carbon fiber bundle cut out in a length of 1 m, and the furnace temperature is 550 ° C.
  • the surface treatment agent component was burned and removed, and determined from the mass of the remaining carbon fiber.
  • a dumbbell test piece was prepared from the obtained molding material by an injection molding machine, and the tensile strength was measured according to ISO 527 (JIS K 7161).
  • Example 1 As an impregnation aid, aromatic condensed phosphate ester bisphenol A bis (diphenyl phosphate) (manufactured by Daihachi Chemical Co., Ltd .; CR-741) was used. After passing a PAN-based carbon fiber filament (STO40 24K equivalent, fiber diameter 7.0 ⁇ m, filament number 24000, tensile strength 4000 MPa, manufactured by Toho Tenax Co., Ltd.) as a carbon fiber bundle, the excessively adhered solution was removed with a nip roll, and then Then, it was passed through a hot air drying furnace heated to 180 ° C. for 2 minutes and dried.
  • STO40 24K equivalent fiber diameter 7.0 ⁇ m, filament number 24000, tensile strength 4000 MPa, manufactured by Toho Tenax Co., Ltd.
  • the easily impregnated carbon fiber bundle obtained by the above treatment is placed on two metal rolls having a diameter of 60 mm heated to 200 ° C., and subjected to heat treatment again, so that the impregnation aid more uniformly adheres to the carbon fiber bundle.
  • An impregnated carbon fiber bundle was obtained.
  • the content of the impregnation aid in the easily impregnable carbon fiber bundle was 5% by mass (5.3 parts by mass per 100 parts by mass of the carbon fiber).
  • the easily impregnated carbon fiber bundle obtained above was covered with polycarbonate (manufactured by Teijin Kasei Co., Ltd .: L-1225Y) using an electric wire covering crosshead die having an outlet diameter of 3 mm, and this was lengthened.
  • a molding material was obtained.
  • Example 2 By treating the carbon fiber filament with an emulsified solution concentration of bisphenol A bis (diphenyl phosphate), which is an impregnation aid, having a nonvolatile content of 25% by weight, the impregnation aid content is 10% by mass (per 100 parts by mass of carbon fiber). (11.1 parts by mass) The same procedure as in Example 1 was performed except that the carbon fiber bundle was easily impregnated. The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 3 When an easily impregnated carbon fiber bundle is coated with a polycarbonate (manufactured by Teijin Kasei Co., Ltd .: L-1225Y) using an electric wire covering crosshead die having an exit diameter of 3 mm, the resulting carbon fiber as a pellet-shaped molding material The operation was performed in the same manner as in Example 2 except that the content was 30% by mass (the polycarbonate was 222.2 parts by mass per 100 parts by mass of the carbon fiber). The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 4 Instead of bisphenol A bis (diphenyl phosphate), polycaprolactone (PLACCEL (registered trademark) H1P molecular weight 10,000, manufactured by Daicel Chemical Industries), which is an aliphatic hydroxycarboxylic acid polyester, is used as an impregnation aid, and this has a non-volatile content of 12% by mass.
  • the carbon fiber filaments were treated with the emulsion solution of the above to obtain an easily impregnable carbon fiber bundle having a polycaprolactone impregnation aid content of 5% by mass (5.3 parts by mass per 100 parts by mass of carbon fiber).
  • the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 5 The content of polycaprolactone impregnation aid is 10% by mass (100 parts by mass of carbon fiber) by treating the carbon fiber filament as an emulsion solution having a nonvolatile content of 25% by mass with the concentration of the emulsified solution of polycaprolactone as the impregnation aid.
  • the same operation as in Example 4 was performed except that the easily impregnated carbon fiber bundle was 11.1 parts by mass).
  • the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 6> Instead of bisphenol A bis (diphenyl phosphate), trimethyl phosphate (TMP manufactured by Eighth Chemical Co., Ltd.) was used as the impregnation aid, and the carbon fiber filament was treated with an emulsion liquid having a nonvolatile content of 25% by mass.
  • TMP bisphenol A bis (diphenyl phosphate)
  • the carbon fiber filament was treated with an emulsion liquid having a nonvolatile content of 25% by mass.
  • the operation was performed in the same manner as in Example 1, except that the easily impregnable carbon fiber bundle was 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) of the trimethyl phosphate impregnation aid.
  • the obtained molded article showed sufficient tensile strength, and no lumps of fibrous material were confirmed on the appearance surface, but bubbles were observed. The results are shown in Table 1.
  • Example 7 Instead of bisphenol A bis (diphenyl phosphate) as an impregnation aid, triphenyl phosphate (TPP manufactured by Eighth Chemical Co., Ltd.) was used, and this was used as an emulsion solution having a nonvolatile content of 12% by mass.
  • TPP bisphenol A bis (diphenyl phosphate)
  • TPP Tetraphenyl phosphate
  • the same operation as in Example 1 was carried out except that a readily impregnable carbon fiber bundle having a content of triphenyl phosphate impregnation aid of 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) was processed. It was.
  • the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 8 By treating the carbon fiber filament as an emulsion solution having a non-volatile content of 12% by mass, the concentration of the polycaprolactone emulsified solution as the impregnation aid is 3% by mass (100 parts by mass of carbon fiber). The operation was performed in the same manner as in Example 4 except that the easily impregnable carbon fiber bundle was 4 parts by mass. The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 9 Instead of the emulsified solution of polycaprolactone, which is an impregnation aid, heated to 120 ° C. and melted, the liquid polycaprolactone was dropped onto the surface of the carbon fiber bundle, and further passed through a hot bar heated to 120 ° C., The molten polycaprolactone was impregnated into the carbon bundle. The carbon fiber bundle was treated in this manner, so that it was an easily impregnated carbon fiber bundle having a polycaprolactone impregnation aid content of 8% by mass (8.7 parts by mass per 100 parts by mass of carbon fiber). The same operation as in 4 was performed. The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 3 The same operation as in Example 1 was performed except that the resin covering the easily impregnated carbon fiber bundle was changed to polyamide 6 (so-called nylon 6, UBE nylon 1015B manufactured by Ube Industries) instead of polycarbonate.
  • the obtained molded article had low tensile strength and poor appearance.
  • ⁇ Comparative Example 4 100 parts by mass of carbon fiber and 233.3 parts by mass of polycarbonate are melt-kneaded in a twin-screw extruder to form pellets having a carbon fiber content of 30% by mass (panlite manufactured by Teijin Kasei). B-8130) was injection molded under the same conditions as in Example 1. The obtained molded body had a good dispersion state of carbon fibers, but the average fiber length of carbon fibers in the molded body was as short as 0.15 mm, and the tensile strength was not satisfactory at 140 MPa.
  • Example 5 A carbon fiber bundle similar to that used in Example 1 was treated with polycarbonate (made by Teijin Kasei Co., Ltd.) without using polycaprolactone, which was an impregnation aid, using a wire-covering crosshead die with an outlet diameter of 3 mm. L-1225Y), this was cut into a length of 6 mm, the carbon fiber content was 20% by mass (polycarbonate was 394.7 parts by mass per 100 parts by mass of carbon fiber), the diameter was 3.2 mm, and the length was 6 mm. Pellets were obtained. To this pellet, 5.3 masses of polycaprolactone was added (post-addition) to obtain a molding material suitable for injection molding. This molding material was injection molded under the same conditions as in Example 1 to obtain a tensile test dumbbell having a thickness of 4 mm. The obtained molded article had low tensile strength and poor appearance. The results are shown in Table 1.
  • the content of polycaprolactone impregnation aid is 18% by mass (100 parts by mass of carbon fiber) by treating the carbon fiber filament as an emulsion solution having a non-volatile content of 12% by mass of the emulsified solution of polycaprolactone as an impregnation aid.
  • the operation was performed in the same manner as in Example 4 except that the carbon fiber bundle was easily impregnated at 20 parts by mass.
  • the obtained molded article showed a good appearance, the average fiber length of carbon fibers in the molded article was as short as 0.4 mm, and the tensile strength was not satisfactory, 150 MPa. Moreover, it was inferior to heat resistance.
  • Table 1 The results are shown in Table 1.
  • Carbon fiber filaments were treated by using polyethylene glycol (Lion Corporation PEG # 4000, molecular weight 4000) as an impregnation aid instead of bisphenol A bis (diphenyl phosphate) and using it as an emulsion liquid with a nonvolatile content of 12% by mass. Then, the operation was carried out in the same manner as in Example 1 except that a readily impregnable carbon fiber bundle having a polyethylene glycol impregnation aid content of 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) was obtained. The obtained molded body had a low tensile strength and was inferior in the molded body appearance. The results are shown in Table 1.
  • the present inventors used the same easy-impregnating carbon fiber bundles and carbon fiber filaments as in the above examples and comparative examples, and formed a molding material on which a sheet-like polycarbonate was placed on a short metal plate.
  • the impregnation rate of the polycarbonate which is a matrix resin (hereinafter referred to as the matrix resin impregnation rate, including the case where a thermoplastic resin other than polycarbonate is used) was determined for the time-heated sample, and the easy impregnation property was evaluated.
  • the results of evaluating the easy impregnation properties of the easily impregnable carbon fiber bundles of Examples 1 to 9 and Comparative Examples 1 to 10 are shown as Reference Examples A to H and Comparative Reference Examples A to I, respectively.
  • Example A A readily impregnable carbon fiber bundle (width 10 mm long) having a content of bisphenol A bis (diphenyl phosphate) of 5% by mass (5.3 parts by mass per 100 parts by mass of carbon fiber) obtained by the same operation as in Example 1.
  • the portion of the carbon fiber bundle that has not been impregnated with the polycarbonate does not adhere to the polycarbonate between the carbon single fibers in a dry state, and the carbon single fibers are easily peeled off. Therefore, the carbon fiber is peeled from the portion of the sample that has not been impregnated after heating, the mass is measured, and the easily impregnated carbon fiber when the matrix resin is polycarbonate according to the following calculation formula (D) The matrix resin impregnation rate into the bundle was calculated.
  • Matrix resin impregnation rate (mass%) 100 ⁇ (mass of unimpregnated carbon single fiber / mass of carbon fiber bundle as matrix resin) ⁇ 100 (D)
  • the matrix resin impregnation rate was as extremely high as 98% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 1 was very easily impregnated into the polycarbonate.
  • ⁇ Reference Example B> A readily impregnable carbon fiber bundle (width) obtained by the same operation as in Examples 2 and 3 and having a bisphenol A bis (diphenyl phosphate) content of 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) The operation was performed in the same manner as in Reference Example A except that 10 mm and 20 mm in length were used. The matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the easily impregnable carbon fiber bundles used in Examples 2 and 3 were very easily impregnated into the polycarbonate.
  • Example D A readily impregnable carbon fiber bundle (width 10 mm, length 20 mm) having a polycaprolactone impregnation aid content of 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) obtained in the same manner as in Example 5. ) was used in the same manner as in Reference Example A, except that The matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 5 was very easily impregnated into the polycarbonate.
  • ⁇ Reference Example G> A readily impregnable carbon fiber bundle (width 10 mm, length 20 mm) having a polycaprolactone impregnation aid content of 3% by mass (4 parts by mass per 100 parts by mass of carbon fiber) obtained in the same manner as in Example 8. The same operation as in Reference Example A was performed except that it was used. The matrix resin impregnation rate was as high as 83% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 8 was easily impregnated into the polycarbonate.
  • ⁇ Comparative Reference Example C> A readily impregnable carbon fiber bundle (width 10 mm long) having a content of bisphenol A bis (diphenyl phosphate) of 5% by mass (5.3 parts by mass per 100 parts by mass of carbon fiber) obtained by the same operation as in Example 1.
  • 20 mm) is not a sheet-like polycarbonate (L-1225Y manufactured by Teijin Chemicals Ltd.) having a thickness of 300 ⁇ m, a width of 10 mm, and a length of 20 mm, but a sheet of polyamide 6 (UBE Nylon 1015B manufactured by Ube Industries) is used. Then, the same operation as in Reference Example A was performed.
  • the matrix resin impregnation rate obtained by using the matrix resin as polyamide 6 instead of polycarbonate is as extremely low as 4% by mass, and the easily impregnable carbon fiber bundle used in Example 2 is extremely low in polyamide 6. It was found that it was difficult to be impregnated.
  • Comparative Reference Example F The same operation as in Reference Example A was performed, except that a carbon fiber bundle having a content of 18% by mass of a bisphenol A bis (diphenylphosphate) impregnation aid obtained by the same operation as in Comparative Example 7 was used.
  • the matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the readily impregnable carbon fiber bundle used in Comparative Example 7 was very easily impregnated into the polycarbonate.
  • ⁇ Comparative Reference Example G> The same operation as in Reference Example A was performed, except that a carbon fiber bundle having a content of 10% by mass of the copolyester impregnation aid obtained by the same operation as in Comparative Example 8 was used.
  • the impregnation rate of the matrix resin was as extremely low as 16% by mass, and the carbon fiber bundle of copolyester used as the impregnation aid used in Comparative Example 8 was not easily impregnated into the polycarbonate.
  • the molding material of the present invention makes it possible to produce a molded article having excellent mechanical strength by a simple process, such as transportation equipment such as automobiles, ships, and aircraft, electrical / electronic equipment, and office use. It is extremely useful in various industrial fields such as interior / exterior materials and parts of equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 優れた物性および外観を有する炭素繊維強化ポリカーボネート成形体、製造コストの増大を招くことの無い簡素なプロセスで該成形体を製造する方法、並びに該製造方法を可能にする成形用材料を提供する。 炭素繊維100質量部と、特定の条件を満たす1種類以上の含浸助剤3~15質量部とを含む易含浸性炭素繊維束に、50~2000質量部のポリカーボネートが付着していることを特徴とする成形用材料。

Description

成形用材料、その成形体、および該成形体の製造方法
 本発明は、易含浸性炭素繊維束にポリカーボネートが付着している成形用材料、該成形用材料から得られる機械的特性に優れた成形体、および該成形体の製造方法に関する。
 高強度、かつ脆弱破壊が抑制された樹脂材料を得る手段として、樹脂を炭素繊維で強化された複合材料とすることが知られている。特に、マトリックス樹脂として熱可塑性樹脂を炭素繊維で強化した複合材料(炭素繊維強化熱可塑性樹脂とも言い、以下、CFRTPと略することがある)は、成形用材料として易加工性およびリサイクル性に優れており、様々な分野への応用が期待されている。
 炭素繊維と熱可塑性樹脂との複合材料を製造する方法として、炭素繊維束に比較的高粘度である溶融状態の熱可塑性樹脂を含浸させて複合材料とする製造方法が知られている。この製造方法では、含浸不足により、成形品において強度低下が起こることを防止する為、雰囲気温度を上げて熱可塑性樹脂の溶融粘度を下げた状態で、過大な圧力にて長時間、炭素繊維束に含浸処理を行う必要があり、そのような高圧で長時間の含浸処理により製造コストが増大するなどの問題があった。
 例えば、炭素繊維束への熱可塑性樹脂の含浸を進ませる手法としては、炭素繊維と熱可塑性樹脂繊維とをより合わせて繊維束を作製し、熱と圧力をかけ熱可塑性樹脂を溶融させながら含浸を進める方法(特許文献1)、炭素繊維束に低分子量の溶融樹脂を含浸させたのち高分子量の熱可塑性樹脂を含浸させる方法(特許文献2)、溶融樹脂浴中で炭素繊維を開繊させ含浸させる方法(特許文献3)などが開示されている。また、特許文献4には、炭素繊維自体に熱可塑性樹脂の含浸を進ませる方法として、炭素繊維の収束剤を樹脂との濡れ性が良い剤に調整することが記載されている。
 このように、従来の製造方法では、強化繊維束に熱可塑性樹脂を充分に含浸させるために、独立した含浸工程を設け、当該工程における特殊な条件での処理を必要としていた。そのため、優れた物性および外観のCFRTP製品(成形体)を、種々の用途において使用が促進されるような安価な製造コストにて提供するには至っておらず、各分野における、CFRTPへの期待に充分に応えられていない。特に、熱可塑性樹脂としてポリカーボネートを用いたCFRTPについては、ポリカーボネートが特に溶融粘度が高い樹脂であることから、従来の製造方法における含浸困難の問題が発現し易く、早急な解決が求められていた。
日本国特開平3-121146号公報 日本国特開平3-181528号公報 日本国特開平5-112657号公報 日本国特開平6-166961号公報
 本発明の目的は、優れた物性および外観を有する炭素繊維強化ポリカーボネート成形体、製造コストの増大を招くことの無い簡素なプロセスで該成形体を製造する方法、並びに該製造方法を可能にする成形用材料を提供することを目的とする。
 本発明者らは上記のような従来の課題の解決を検討するにおいて、特定の化合物を含む炭素繊維束(以後、易含浸性炭素繊維束と称する)が、可塑化されたポリカーボネートによって著しく容易に含浸されることを見出した。更に、本発明者らは、この易含浸性炭素繊維束にポリカーボネートを付着させたものを成形用材料として用い、これをポリカーボネートの可塑化温度の状態で、成形用の金型内に存在させると、ポリカーボネートが易含浸性炭素繊維束に含浸し、炭素繊維束を解きつつ金型内に広がるという驚くべき現象が起こることを見出した。そして、従来技術のように、独立した工程にて強化繊維に熱可塑性樹脂を含浸させる為の処理をすることなく、優れた物性および外観の複合材料の成形体を製造できることを見出し、本発明を完成させた。本発明の要旨を以下に示す。
 1. 炭素繊維100質量部に対し、下記の条件1および条件2を満たす1種類以上の含浸助剤3~15質量部を含む易含浸性炭素繊維束に、50~2000質量部のポリカーボネートが付着していることを特徴とする成形用材料。
 ・ 条件1:300℃における液体の粘度が10Pa・s以下である。
 ・ 条件2:ポリカーボネート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該ポリカーボネートのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が2[℃/%]より大きい。
 ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
 ここで、含浸助剤配合率[%]は、以下式(B)
含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリカーボネートの量[質量部]・・・(B)
にて定義される。
 2. 含浸助剤が、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルからなる群より選ばれる1種類以上である上記の成形用材料。
 3. リン酸エステルが、その常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下300℃での加熱減量が2%/分以下である芳香族リン酸エステルであることを特徴とする上記の成形用材料。
 4. 前記芳香族リン酸エステルが、下記一般式(1)
Figure JPOXMLDOC01-appb-C000002

(上記一般式(1)において、R~R12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基であり、Xは、結合、-CH-、-C(CH-、-S-、-SO-、-O-、-CO-または-N=N-であり、nは0または1の整数であり、mは0から5の整数である)
で表されるものであることを特徴とする上記の成形用材料。
 5. 前記脂肪族ヒドロキシカルボン酸系ポリエステルが、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体で重量平均分子量3000~50000のもの、およびこれら2種以上のモノマーの共重合体で重量平均分子量3000~50000のものからなる群より選ばれる1種類以上のものである上記記載の成形用材料。
 6. 前記易含浸性炭素繊維束を芯成分、ポリカーボネートを鞘成分とする芯鞘型構造である上記記載の成形用材料。
 7. 前記成形用材料の形態がペレットである上記記載の成形用材料。
 8. 前記ペレットの長手方向の長さが3~10mmである、上記記載の成形用材料。
 9. 上記に記載の成形用材料からなる成形体。
 10. 前記の易含浸性炭素繊維束に由来する炭素繊維が平均繊維長0.3mm以上の長さで分散していることを特徴とする上記記載の成形体。
 11. 炭素繊維含有率(質量%)とISO527規格4mmダンベルでの引張強度との関係が下記式(C)
  炭素繊維含有率(質量%)×3+90<引張強度(MPa) (C)
の関係を満たす上記記載の成形体。
 12. 前記の成形用材料を、前記ポリカーボネートの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該ポリカーボネートを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする上記記載の成形体の製造方法。
 本発明により、優れた物性および外観を有する炭素繊維強化ポリカーボネート成形体、製造コストの増大を招くことの無い簡素なプロセスで該成形体を製造する方法、並びに該製造方法を可能にする成形用材料を提供できる。
 本発明は、炭素繊維100質量部に対し、下記の条件1および条件2を満たす1種類以上の含浸助剤3~15質量部を含む易含浸性炭素繊維束に、50~2000質量部のポリカーボネートが付着していることを特徴とする成形用材料、該成形用材料から得られる成形体、および該成形体の製造方法に関するものである。
・ 条件1:300℃における液体の粘度が10Pa・s以下である。
・ 条件2:ポリカーボネート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該ポリカーボネートのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が2[℃/%]より大きい。
ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
ここで、含浸助剤配合率[%]は、以下式(B)、
含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリカーボネートの量[質量部]・・・(B)
にて定義される。
 以下に、本発明を実施するための形態につき詳細に説明する。尚、本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。
 [易含浸性炭素繊維束]
 本発明における易含浸性炭素繊維束とは、炭素繊維100質量部に対し、下記の条件1および条件2を満たす1種類以上の含浸助剤3~15質量部を含むことにより、ポリカーボネート(好ましくは可塑化されたポリカーボネート)により容易に含浸されることを特徴とする炭素繊維束である。
・ 条件1:300℃における液体の粘度が10Pa・s以下である。
・ 条件2:ポリカーボネート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該ポリカーボネートのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が2[℃/%]より大きい。
ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
ここで、含浸助剤配合率[%]は、以下式(B)、
含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリカーボネートの量[質量部]・・・(B)
にて定義される。
 この易含浸性炭素繊維束は、炭素繊維に対し、該含浸助剤を所定の量にて含む炭素繊維束であれば良く、その製造方法や、炭素繊維と含浸助剤とが含まれている形態を問わない。本発明で用いる含浸助剤は、上記の条件1を満たすものであり、これは、該含浸助剤が汎用のポリカーボネートの代表的な加工温度である300℃において、低粘度状態であり、かつ、300℃において液体としての粘度測定が可能なものであることを意味する。含浸助剤の300℃における液体の粘度は8Pa・s以下であることが好ましく、6Pa・s以下であることがより好ましい。
 なお、上記の条件1について、含浸助剤の液体としての粘度を測定する方法としては、回転式粘度計が適している。具体的には高温槽付きパラレルプレートにて測定する方法などを例示することができる。
 更に、本発明で用いる含浸助剤は、上記の条件2を満たすものである。この条件2において、含浸助剤は、ポリカーボネート100質量部あたり、1~100質量部の配合量の範囲全域で、ガラス転移温度低下率(ΔTg)>2[℃/%]である必要は無く、当該配合量範囲の一部で、2より大きいガラス転移温度低下率(ΔTg)を示すものであれば良い。
 ガラス転移温度低下率(ΔTg)が2℃/%より大きいことにより、含浸を促進する効果を有するものであり、ΔTgが3℃/%より大きいものであるとより好ましい。ΔTgが2℃/%以下ということは、含浸助剤がポリカーボネートと相溶化していない状態であり、そのため、ポリカーボネートのTgが殆どそのまま計測されると推測している。ΔTgが2℃/%以下の含浸助剤を炭素繊維束に加え、これにポリカーボネートを付着させたものを成形しても、含浸助剤による含浸促進効果は著しく低いもので、得られる成形体において炭素繊維の分散不良が発生する。
 また、上記の条件2について、ポリカーボネートや、ポリカーボネートと含浸助剤との樹脂組成物のガラス転移温度を測定する方法としては、示差走査熱量測定(DSC)による方法などが挙げられる。
 本発明にて用いられる易含浸性炭素繊維束は、複数種の含浸助剤を含むものでも良く、また本発明において用いられる含浸助剤としては、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルからなる群より選ばれる1種類以上のものであると好ましく、当然、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルの双方を含むものであっても良い。含浸助剤として用いられるこれらのリン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルについては、後に詳細に記載する。
 易含浸性炭素繊維束の代表的な製法としては、ディッピング法、スプレー法、ローラー転写法、スリットコーター法などから選ばれる群より選ばれる1種類以上の方法にて、汎用の炭素繊維束に含浸助剤を含ませる方法が例示される。これらの方法において、炭素繊維束に含浸助剤を含ませた場合、含浸助剤は主に炭素繊維束の表面に付着し、一部は炭素繊維束の内部にも浸み込んでいるものと思われる。
 易含浸性炭素繊維束を製造する際における含浸助剤の形態としては、水性エマルジョン、有機溶媒希釈溶液、または加熱された粘調または溶融状態の液体として取り扱うことが可能である。製造方法と含浸助剤の形態との好ましい組合せとしては、水性エマルジョンの場合、ディッピング法、ローラー転写法であるが、十分に水分を乾燥させるために100℃以上の雰囲気下での乾燥工程が必要となる。また加熱粘調液体の場合、スリットコーター法などの一般的なコーティング手法が可能であり、適量を炭素繊維束に付着させた後にスムージングロールなどで均一に付着させることが可能である。
 本発明の成形用材料を用いて成形し、炭素繊維がポリカーボネートに均質に分散した成形体を得るためには、炭素繊維束に含浸助剤をできるだけ均一に付着させるのが好ましい。炭素繊維束に含浸助剤をより均一に付着させる方法として、上記方法により含浸助剤を炭素繊維束に付着させた後、これら含浸助剤の粘度が十分に低下する温度以上に再度熱処理する方法が例示される。また、該熱処理には、例えば、熱風、熱板、ローラー、赤外線ヒーターなどを使用することができ、ローラーを用いることが好ましい。
 [炭素繊維]
 本発明の成形用材料に含まれる炭素繊維は、ポリアクリロニトリル(PAN)系、石油・石油ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維であっても良い。特に、PANを原料としたPAN系炭素繊維が、工場規模における生産性及び機械的特性に優れており好ましい。
 炭素繊維としては、平均直径5~10μmのものが好ましく使用できる。なお、一般的な炭素繊維は、1000~50000本の単繊維が繊維束となった炭素繊維フィラメントである。本発明における炭素繊維束には、そのような一般的な炭素繊維フィラメントも含まれるが、該炭素繊維フィラメントを、更に重ね合わせて合糸したものや、合糸に撚りを掛け撚糸としたもの等も含まれる。本発明の成形用材料に含まれる炭素繊維としては、炭素繊維とポリカーボネートとの接着性を高めるため、表面処理によって、表面に含酸素官能基を導入されたものも好ましい。
 また、前述のように、炭素繊維束に含浸助剤を含ませることにより易含浸性炭素繊維束を作る場合、含浸助剤を炭素繊維束に均一に付着させる工程を安定させるため、炭素繊維束としては、収束性を持たせる為の収束剤で処理されたものであると好ましい。収束剤としては、炭素繊維フィラメント製造用に公知のものを使用することができる。また、炭素繊維束としては、製造時に滑り性を上げるために使用された油剤が残存したものであっても、本願発明において問題無く使用することができる。なお、以後、含浸助剤と、上記の収束剤といったその他の処理剤とを包含する上位概念の意味で、表面処理剤との表現をする場合がある。
 [リン酸エステル]
 本発明において、含浸助剤として用いられるリン酸エステルは、前記条件1および条件2を満たすものであれば、特に限定されないが、リン酸エステルモノマー又はオリゴマー性リン酸エステルのブレンドなど、具体的には、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェートに代表される芳香族リン酸エステル類等が挙げられる。好ましくはトリメチルホスフェート又はトリフェニルフェートである。
 成形加工性の観点から、ポリカーボネートの成形温度である300℃において、窒素雰囲気下加熱減量が2%/分以下であり、かつ、常圧での沸点が340℃以上であるものが好ましく、その常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下300℃での加熱減量が2%/分以下である芳香族リン酸エステルであることがより好ましい。
 本願において、常圧とは、特に注記無い限り、意図的に加圧・減圧操作をしない、標準大気圧(1013hPa)程度の気圧をいい、一般に800~1050hPa、通常には1000~1030hPa、より通常には、1009~1017hPaの範囲にある気圧をいう。そのような耐熱性を有するリン酸エステルとして、本発明において、前記一般式(1)で表される芳香族リン酸エステルが好適に用いられる。
 本願発明において、芳香族リン酸エステルとして、前記一般式(1)において、R~R12が水素原子又はメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル基等の炭素数1~4のアルキル基であるものを用いると、溶融流動性および成形体の耐光性を顕著に改善できるので好ましい。これらのアルキル基のうち、炭素数1~3のアルキル基が好ましく、メチル基及び/又はエチル基がより好ましい。R~Rがそれぞれ独立に水素原子又は炭素数1~4のアルキル基であって、R~R12が水素原子であることが更に好ましく、R~Rがそれぞれ独立に水素原子、メチル基又はエチル基であって、R~R12が水素原子であることが特に好ましい。
 前記一般式(1)にて表される芳香族リン酸エステルとしては、当該式中の芳香族基
Figure JPOXMLDOC01-appb-C000003

が、それぞれ独立に、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2-プロピルフェニル基、3-プロピルフェニル基、4-プロピルフェニル基、2-イソプロピルフェニル基、3-イソプロピルフェニル基、4-イソプロピルフェニル基、2-ブチルフェニル基、3-ブチルフェニル基のいずれかであるものは、耐熱性が高いので好ましく、中でも、メチル、エチル、プロピル基などの炭素数1~3のアルキル基を2個有するフェニル基であるものがより好ましく、炭素数1~3のアルキル基を2個、2位及び6位に有するフェニル基(例えば、2,6-ジメチルフェニル基、2,6-ジエチルフェニル基、2-エチル-6-メチルフェニル基など)が極めて好ましい。なお、以後、特に注記無く、化合物名でキシレニルとある場合は、2,6-ジメチルフェニル基を意味する。
 前記一般式(1)において、nは0または1の整数であるが、1であることが好ましい。
 前記一般式(1)において、Xは、結合、-CH-、-C(CH-、-S-、-SO-、-O-、-CO-または-N=N-であるが、結合、-CH-、または-C(CH-が好ましく、-C(CH-がより好ましい。
 前記の一般式(1)において、繰返し単位mは0~5の整数であるが、1以上、つまり式(1)の芳香族リン酸エステルが、いわゆる芳香族縮合リン酸エステルであると好ましく、1~3の整数であるとより好ましく、1又は2であると更に好ましく、特に1であると好ましい。
 前記一般式(1)にて表される芳香族リン酸エステルのうち、特に好ましいものとして、トリフェニルホスフェート
Figure JPOXMLDOC01-appb-C000004
 トリキシレニルホスフェート
Figure JPOXMLDOC01-appb-C000005
 1,3-フェニレン ビス(ジフェニルホスフェート)
Figure JPOXMLDOC01-appb-C000006
 1,3-フェニレン ビス(ジキシレニルホスフェート)
Figure JPOXMLDOC01-appb-C000007
 ビスフェノールA ビス(ジフェニルホスフェート)
Figure JPOXMLDOC01-appb-C000008
 ビスフェノールA ビス(ジキシレニルホスフェート)
Figure JPOXMLDOC01-appb-C000009
 1,4-フェニレン ビス(ジキシレニルホスフェート)
Figure JPOXMLDOC01-appb-C000010
 1,4-フェニレン ビス(ジフェニルホスフェート)
Figure JPOXMLDOC01-appb-C000011
 4,4’-ビフェニレン ビス(ジキシレニルホスフェート)、
Figure JPOXMLDOC01-appb-C000012
 および、4,4’-ビフェニレン ビス(ジフェニルホスフェート)
Figure JPOXMLDOC01-appb-C000013

からなる群より選ばれる1種類以上の芳香族リン酸エステルが挙げられる。
 なお、前記一般式(1)には該当しないが、1,4-ナフタレンジオール ビス(ジキシレニルホスフェート)
Figure JPOXMLDOC01-appb-C000014
 2,5-ピリジンジオール ビス(ジフェニルホスフェート)
Figure JPOXMLDOC01-appb-C000015

 のように、多核芳香環残基や複素環残基を介して縮合している縮合リン酸エステルも、本発明における芳香族リン酸エステルの好ましいものとして使用することができる。
 易含浸炭素繊維束に含まれるリン酸エステルの量は、炭素繊維100質量部に対し3~15質量部であり、好ましくは5~12質量部である。3質量部未満では、炭素繊維へのポリカーボネートの含浸性が不十分となり、15質量部より多いと炭素繊維へのポリカーボネートの含浸性は優れるが、マトリクス樹脂であるポリカーボネートのガラス転移温度が低下することにより成形品の耐熱性が低下するため好ましくない。なお、含浸助剤として、リン酸エステルと共に、脂肪族ヒドロキシカルボン酸系ポリエステルも併用する場合は、これらの使用量合計が上記範囲に該当していれば良い。
 また、含浸助剤の含有量が多くなると、マリクス樹脂の炭素繊維への含浸速度が速くなるため、スクリュ可塑化の初期からスクリュによるせん断を受け繊維長は短くなる傾向となる。
 [脂肪族ヒドロキシカルボン酸系ポリエステル]
 本発明において、含浸助剤として使用できる脂肪族ヒドロキシカルボン酸系ポリエステルは、脂肪族ヒドロキシカルボン酸残基からなるポリエステルであり、単独の脂肪族ヒドロキシカルボン酸残基からなる単重合ポリエステルでもよく、複数種の脂肪族ヒドロキシカルボン酸残基を含む共重合ポリエステルでもよい。また、該脂肪族ヒドロキシカルボン酸系ポリエステルとしては、ポリマーを構成する残基のうち、50モル%未満の量にて、脂肪族ヒドロキシカルボン酸残基以外の残基、例えば、ジオール残基やジカルボン酸残基などを含む共重合ポリエステルであっても良いが、意図的に共重合成分を加えられていない単重合体が、入手し易い点で好ましい。
 本発明に用いられる脂肪族ヒドロキシカルボン酸系ポリエステルの重量平均分子量は、3000~50000であるのが好ましい。重量平均分子量が3000~50000の範囲であると、ポリカーボネート樹脂との親和性がよく、また乳化も容易である。特に好ましくは5000~20000、更に好ましくは8000~15000の範囲である。なお、重量平均分子量の測定方法としては、高温GPC法など公知の方法を使用することができる。
 本発明において、含浸助剤として使用できる脂肪族ヒドロキシカルボン酸系ポリエステルは、特に限定されないが、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体、およびこれら2種以上のモノマーの共重合体であると好ましく、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体で重量平均分子量3000~50000のもの、およびこれら2種以上のモノマーの共重合体で重量平均分子量3000~50000のものからなる群より選ばれる1種類以上のものであるとより好ましい。各重合体の更に好ましい重量平均分子量の範囲は上記のとおりである。特に好ましくは、ε-カプロラクトン、又はδ-カプロラクトンの各単独重合体で重量平均分子量3000~50000のものである。なお、本願発明においてラクトン類の重合体というときは、実際に、ラクトン類を開環重合させた重合体だけでなく、該ラクトン類の等価体である脂肪族ヒドロキシカルボン酸やその誘導体を原料とする同様の構造の重合体も含まれる。
 易含浸性炭素繊維束に付着させる脂肪族ヒドロキシカルボン酸系ポリエステルの量は、炭素繊維100質量部に対し3~15質量部であり、好ましくは5~12質量部である。3質量部未満では、炭素繊維へのポリカーボネートの易含浸性が不十分となり、15質量部より多いと含浸性は優れるが、マトリクス樹脂であるポリカーボネートのガラス転移温度が低下することにより得られる成形体の耐熱性が低下するため好ましくない。
 [成形用材料]
 本発明の成形用材料は、上記の易含浸性炭素繊維束に、ポリカーボネートが、易含浸性炭素繊維束に含まれる炭素繊維100質量部あたり50~2000質量部にて付着しているものであり、66~1900質量部にて付着しているとより好ましい。本発明の成形用材料の形状は特に限定されず、柱状、板状、粒状、塊状、糸状(紐状)、網状等が挙げられ、異なる形状の成形用材料を複数種用いて成形することも可能である。
 前記の易含浸性炭素繊維束にポリカーボネートを付着させ、本発明の成形用材料とする方法としては、易含浸性炭素繊維束の表面に溶融状態のポリカーボネートを被覆する方法、易含浸性炭素繊維束を引き並べた上にTダイなどを使って溶融状態のポリカーボネートをキャストし積層化する方法、引き並べた易含浸性炭素繊維束にフィルム状ポリカーボネート樹脂を積層ラミネートする方法、易含浸性炭素繊維束を引きそろえた上に粉末状ポリカーボネートを吹きつける方法などが挙げられる。連続上に引き並べられた易含浸性炭素繊維束の替わりに、所定の長さに切断された易含浸性繊維束の集合体を同様に用いることも可能である。
 本発明の成形用材用は、易含浸性炭素繊維束を芯成分、ポリカーボネートを鞘成分とする芯鞘型構造であることが好ましく、特に、本発明の成形用材用で、射出成形用のものとしては、易含浸性炭素繊維束の周囲がポリカーボネートで被覆されたストランドをストランドカッターにて切断するなどして得られる、易含浸性炭素繊維束を芯成分、ポリカーボネートを鞘成分とする芯鞘型構造の、ペレットであることがより好ましく、長手方向の長さが3~10mm程度のペレット(以下、芯鞘型ペレットと称することがある)が更に好ましい。該芯鞘型ペレットの直径に特に制限は無いが、ペレット長さの1/10以上2倍以下であると好ましく、ペレット長さの1/4以上かつペレット長さと同等以下であるとより好ましい。
 [ポリカーボネート]
 本発明において用いられるポリカーボネートの種類は特に限定されず、種々のジヒドロキシアリール化合物とホスゲンとの反応によって得られるもの、又はジヒドロキシアリール化合物とジフェニルカーボネートとのエステル交換反応により得られるものが挙げられる。代表的なものとしては、2,2’-ビス(4-ヒドロキシフェニル)プロパン、所謂ビスフェノールAとホスゲンまたはジフェニルカーボネートの反応で得られるポリカーボネートである。
 ポリカーボネートの原料となるジヒドロキシアリール化合物としては、ビス(4-ヒドロキシフェニル)メタン、1,1’-ビス(4-ヒドロキシフェニル)エタン、2,2’-ビス(4-ヒドロキシフェニル)プロパン、2,2’-ビス(4-ヒドロキシフェニル)ブタン、2,2’-ビス(4-ヒドロキシフェニル)オクタン、2,2’-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2’-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2’-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2’-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)プロパン、2,2’-ビス(4-ヒドロキシ-3-メトキシフェニル)プロパン、1,1’-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1’-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1’-ビス(4-ヒドロキシフェニル)シクロドデカン、4,4’-ジヒドロキシフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)ケトンなどがある。これらのジヒドロキシアリール化合物は単独で又は2種以上組み合わせて使用できる。
 好ましいジヒドロキシアリール化合物には、耐熱性の高い芳香族ポリカーボネートを形成するビスフェノール類、2,2’-ビス(4-ヒドロキシフェニル)プロパンなどのビス(ヒドロキシフェニル)アルカン、ビス(4-ヒドロキシフェニル)シクロヘキサンなどのビス(ヒドロキシフェニル)シクロアルカン、ジヒドロキシジフェニルスルフィド、ジヒドロキシジフェニルスルホン、ジヒドロキシジフェニルケトンなどが含まれる。特に好ましいジヒドロキシアリール化合物には、ビスフェノールA型芳香族ポリカーボネートを形成する2,2’-ビス(4-ヒドロキシフェニル)プロパンが含まれる。
 なお、耐熱性、機械的強度などを損なわない範囲で、ビスフェノールA型芳香族ポリカーボネートを製造する際、ビスフェノールAの一部を、他のジヒドロキシアリール化合物で置換してもよい。また、流動性、外観光沢、難燃特性、熱安定性、耐候性、耐衝撃性などを上げる目的で、機械的強度を損なわない範囲で、各種ポリマー、充填剤、安定剤、顔料などを配合してもよい。なお、難燃性を向上させる目的で、難燃剤としてリン酸エステルをポリカーボネートに配合させることも可能である。
 [成形体及びその製造方法]
 前述のとおり、本発明の成形用材料を、従来技術のように、独立した工程にて強化繊維に熱可塑性樹脂を含浸させる為の処理をすることなく、既存の熱可塑性樹脂成形プロセスにて成形することにより、成形用材料において、易含浸性炭素繊維束へポリカーボネートが含浸し、炭素繊維束を解きつつ溶融流動して金型内に広がることにより、良好な物性の成形体を得ることが可能である。
 つまり、本願には、前記の本発明の成形用材料からなる成形体の発明、および該成形用材料を、前記ポリカーボネートの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該ポリカーボネートを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする成形体の製造方法の発明も包含される。
 本発明の成形体の製造方法において、“易含浸性炭素繊維束の炭素繊維束を解き分散させる”とは、成形体において炭素繊維が塊状物となることが無い程度にまで、炭素繊維束が解繊され分散されることを意味し、炭素繊維フィラメント等の炭素繊維束を、その構成する数千~数万本の炭素繊維単糸1本1本まで完全に解くまでしなくても、優れた物性および外観の成形体を得ることができる。
 本発明の成形体を製造するにおいて、前記の成形用材料を、採用する成形方法に適した種々の形態として用いることができる。例えば、射出成形にて成形する場合は、易含浸性炭素繊維束の周囲にポリカーボネートを被覆したストランドをストランドカッターにて長さ3~10mm程度に切断したペレット状の成形用材料として用いることができる。
 また、板状の大型成形体を得る場合には、プレス成形が有効である。プレス成形を行う場合には、ポリカーボネートと易含浸性炭素繊維束とを積層した板状の成形用材料とし、これを、ポリカーボネートの可塑化温度以上に加熱し、プレス型内に設置後、所定のプレス圧にて成形することも可能である。形状などによっては、予め本発明にかかる成形用材料を加熱プレスして得られるプリフォーム体を用いて成形する方法なども有効である。
 本発明の成形用材料を用い、他の成形用材料や添加剤を加えることなく、成形を行って成形体を得た場合、該成形用材料と該成形体の炭素繊維を含有する量や割合、つまり質量基準の組成は当然同じである。よって本発明の成形体に含まれる炭素繊維やポリカーボネートの量やその好ましい範囲については、成形用材料について前述したものである。
 なお、本発明の成形用材料を用いて、他の成形用材料や添加剤を加えることなく成形を行った場合は、成形用材料または得られた成形体のいずれか一方の炭素繊維含有量(率)を測定し、これを他方の炭素繊維含有量(率)とみなすことができる。また、本発明の成形用材料に、他の成形用材料や添加剤等を加えて成形を行った場合でも、それらの添加量を元に計算を行い、本発明の成形用材料または成形体のいずれか一方の炭素繊維含有量(率)から、他方の炭素繊維含有量(率)を求めることができる。
 従来の炭素繊維強化熱可塑性樹脂の成形体は、炭素繊維が熱可塑性樹脂に均質に分散した状態にするために、2軸押出機等にて熱可塑性樹脂と炭素繊維とを溶融混練したペレット等を材料として成形することによって得られている。しかしこの方法では、高いせん断をかけて混練するために、炭素繊維が押出機内で破砕され、得られる成形体中の炭素繊維長さが0.3mm未満となってしまうため、繊維による物性補強効果が低下してしまう。これに対し、本発明の成形用材料の成形体は、炭素繊維束へのポリカーボネートの含浸性に優れるため、高いせん断で炭素繊維束と溶融樹脂とを混練する必要がない。このため得られる成形体中に炭素繊維が長いまま残存し、機械的強度に優れたものとなる。
 本発明の成形体は、成形体において、易含浸性炭素繊維束が解かれた炭素繊維が、平均繊維長0.3mm以上の長さで分散しているものが好ましく、更に好ましくは該炭素繊維が平均繊維長0.4mm以上の長さで分散しているものである。本発明の成形体において、残存する炭素繊維の平均繊維長の上限に特に制限は無く、用途や採用される成形方法による。例えば、易含浸性炭素繊維束の周囲にポリカーボネートを被覆したストランドをストランドカッターにてペレット状にして成形用材料として用いて射出成形により得られた成形体については、炭素繊維の平均繊維長10mm以下程度が一般的であり、熱可塑性樹脂による含浸された度合が高い炭素繊維束ほど、射出成型時に折損が起きやすいことから、平均繊維長が2mm以下の場合も多い。
 更に、本発明の成形体は、ISO527規格肉厚4mmの引張試験片においては 下式(C)の関係が成り立つものが好ましい。
 炭素繊維含有率(重量%)×3+90<引張強度(MPa) ・・・(C)
 上記式(C)が成り立つことは、炭素繊維強化熱可塑性樹脂の成形体において、炭素繊維含有率に比べて、成形体の引張強度が極めて高く、コストおよび性能の面で極めて好ましいことを意味する。
 以下、実施例により本発明を具体的に説明するが、本発明は以下の例に限定されるものではない。各実施例、比較例において用いた含浸助剤について、以下に示す。なお、これら含浸助剤の液体の粘度は、レオメトリックス社粘弾性測定器(RDA2)を用いて、パラレルプレートにて、ひずみ速度1/s、300℃の条件にて測定されたものである。また、ポリカーボネートや、これに含浸助剤を配合した樹脂組成物のガラス転移温度は、TAインスツルメント社製熱分析装置DSC-Q20を用いて、昇温速度20℃/minの条件にて測定されたものである。
 1)ビスフェノールA ビス(ジフェニルホスフェート):ビスフェノールA ビス(ジフェニルホスフェート)の300℃における液体の粘度は2.8Pa・sである。ポリカーボネート(Tg=143℃)100質量部あたり、ビスフェノールA ビス(ジフェニルホスフェート)を10質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、108℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は3.5℃/%であり、2より大きい。
 2)ポリカプロラクトン:ポリカプロラクトンの300℃における液体の粘度は6Pa・sである。ポリカーボネート(Tg=143℃)100質量部あたり、ポリカプロラクトンを5質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、127℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は3.2℃/%であり、2より大きい。
 3)トリメチルホスフェート:トリメチルホスフェートの300℃における液体の粘度は1.2mPa・sである。ポリカーボネート(Tg=143℃)100質量部あたり、トリメチルホスフェートを2質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、136℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は3.5℃/%であり、2より大きい。
 4)トリフェニルホスフェート:トリフェニルホスフェートの300℃における液体の粘度は2mPa・sである。ポリカーボネート(Tg=143℃)100質量部あたり、トリメチルホスフェートを5質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、125℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は3.6℃/%であり、2より大きい。
 5)共重合ポリエステル バイロン220:共重合ポリエステル バイロン220(東洋紡製)
 ポリカーボネート(Tg=143℃)100質量部あたり、共重合ポリエステル バイロン20を5質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、142℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0.2℃/%であり、2より小さい。
 6)低分子量AS樹脂 ライタックA:低分子量AS樹脂 ライタックA(A&L社製120PCF)
 ポリカーボネート(Tg=143℃)100質量部あたり、低分子量AS樹脂(ライタックA)を5質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、143℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0℃/%であり、2より小さい。
 7)ポリエチレングリコール:ポリエチレングリコール(ライオン株式会社 PEG♯4000 分子量4000)
 ポリカーボネート(Tg=143℃)100質量部あたり、ポリエチレングリコールを5質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、143℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0℃/%であり、2より小さい。
 また、実施例および比較例において用いた各測定試験法および評価方法は以下のとおりである(成形用材料または成形体などにおける炭素繊維の含有量、含有率)。
 炭素繊維の含有量は、ペレット等の成形用材料または、切り出された成形体の試料をるつぼに入れ、炉内温度を600℃に設定したマッフル炉に投入して樹脂成分を燃焼除去し、残った炭素繊維の質量から求めた。なお、成形用材料や成形体について炭素繊維含有率(質量%)と示してあるものは、炭素繊維とポリカーボネートとだけではなく含浸助剤等も含めた全体の質量に対する炭素繊維の質量の割合である。
 (表面処理剤の含有量、含有率)
 易含浸性炭素繊維束や炭素繊維フィラメント等に含有されている含浸助剤等の表面処理剤の量は、1mの長さで切り出された炭素繊維束をるつぼに入れ、炉内温度を550℃に設定したマッフル炉に15分間投入し、表面処理剤成分を燃焼除去して、残った炭素繊維の質量から求めた。
 (引張強度の測定)得られた成形用材料よりダンベル試験片を射出成型機により作成し、ISO 527(JIS K 7161)に準拠し引張強度の測定を行った。
 (成形体の表面外観の評価)
 得られた成形体の表面外観を観察し、炭素繊維束へのポリカーボネートの含浸が不十分だったことにより発生する直径3mm以上の繊維状物質の塊、および気泡が表面に確認されなかったものを○(良好)、繊維状物質の塊は確認されなかったものの気泡が確認されたものを△(やや良好)、繊維状物質の塊が確認されたものを×(不良)とした。
 (成形体中の炭素繊維長の評価)
 得られた複合成形体から20mm×10mmの試験片を切出し、550℃にて1.5時間有酸素雰囲気下で加熱し樹脂成分を燃焼除去した。残った炭素繊維を界面活性剤入りの水に投入し、超音波振動により十分に攪拌させた。攪拌させた分散液を計量スプーンによりランダムに採取し評価用サンプルを得て、ニレコ社製画像解析装置Luzex APにて、繊維数3000本の長さを計測し、長さ平均を算出し、成型体中における炭素繊維の平均繊維長を求めた。以下に、実施例および比較例にて詳細を示す。
 <実施例1>
 含浸助剤として、芳香族縮合リン酸エステルであるビスフェノールA ビス(ジフェニルホスフェート)(大八化学株式会社製;CR―741)を用い、これを不揮発分12質量%にエマルジョン化した溶液内に、炭素繊維束としてPAN系炭素繊維フィラメント(東邦テナックス社製STS40 24K相当 繊維直径7.0μm フィラメント本数24000本、引張強度4000MPa)を通過させた後、ニップロールにて過剰に付着した溶液を取り除き、更にその後、180℃に加熱された熱風乾燥炉内を2分間かけて通過させ、乾燥させた。上記処理により得られた易含浸炭素繊維束を200℃に加熱した直径60mmの2本の金属製ロールに沿わせ、再度の加熱処理を行い、炭素繊維束に、より含浸助剤が均一に付着した含浸性炭素繊維束とした。この易含浸性炭素繊維束の含浸助剤の含有率は5質量%(炭素繊維100質量部あたり5.3質量部)であった。
 次に、上記で得られた易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリカーボネート(帝人化成株式会社製:L-1225Y)で被覆し、これを長さ6mmに切断し、炭素繊維含有率が20質量%(炭素繊維100質量部あたり、ポリカーボネートが394.7質量部)、直径3.2mm、長さ6mmの、射出成形に適した芯鞘型ペレットである成形用材料を得た。この成形用材料を、日本製鋼所製110ton電動射出成形機(J110AD)を用い、シリンダー温度C1/C2/C3/C4/N=280℃/290℃/300℃/300℃/300℃(C1~C4はキャビティ、Nはノズル)にて成形サイクル35秒で射出成形し、肉厚4mmの引張試験用ダンベルを得た。得られた成形体は、分散不良による繊維状物質の塊や気泡は見られず外観が良好なものであり、引張強度は162MPaと優れた機械物性を示した。また成形体中に含まれる、平均繊維長は0.9mmであった。結果を表1に示す。
 <実施例2>
 含浸助剤であるビスフェノールA ビス(ジフェニルホスフェート)のエマルジョン化溶液の濃度を不揮発分25重量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例3>
 易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリカーボネート(帝人化成株式会社製:L-1225Y)で被覆する際、得られるペレット状の成形用材料の炭素繊維含有率を30質量%(炭素繊維100質量部あたり、ポリカーボネートが222.2質量部)とした以外は、実施例2と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例4>
 含浸助剤として、ビスフェノールA ビス(ジフェニルホスフェート)ではなく、脂肪族ヒドロキシカルボン酸系ポリエステルであるポリカプロラクトン(ダイセル化学工業製PLACCEL(登録商標)H1P 分子量10000)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、ポリカプロラクトン含浸助剤の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例5>
 含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分25質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトン含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例6>
 含浸助剤として、ビスフェノールA ビス(ジフェニルホスフェート)ではなく、トリメチルホスフェート(第八化学株式会社製 TMP)を用い、これを不揮発分25質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、トリメチルホスフェート含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は充分な引張強度を示し、その外観表面には繊維状物質の塊は確認されなかったが、気泡が見られた。結果を表1に示す。
 <実施例7>
 含浸助剤として、ビスフェノールA ビス(ジフェニルホスフェート)ではなく、トリフェニルホスフェート(第八化学株式会社製 TPP)を用い、これを不揮発分12質量%のエマルジョン化溶液としたものにより、炭素繊維フィラメントを処理して、トリフェニルホスフェート含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例8>
 含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分12質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトン含浸助剤の含有率3質量%(炭素繊維100質量部あたり4質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <実施例9>
 含浸助剤であるポリカプロラクトンのエマルジョン化溶液に替えて120℃に加熱し溶融し、液体状となったポリカプロラクトンを炭素繊維束表面に滴下し、さらには120℃に加熱したホットバーに通し、溶融したポリカプロラクトンを炭素束に含浸させた。このように炭素繊維束を処理したことより、ポリカプロラクトン含浸助剤の含有率8質量%(炭素繊維100質量部あたり8.7質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
 <比較例1>
 含浸助剤であるビスフェノールA ビス(ジフェニルホスフェート)のエマルジョン化溶液の濃度を不揮発分5重量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有率2質量%(炭素繊維100質量部あたり2質量部)の炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体の表面には分散不良の繊維束の塊が存在しており、引張強度も低い値となった。結果を表1に示す。
 <比較例2>
 含浸助剤を用いて易含浸性炭素繊維を作成することはせず、ウレタン・エポキシ系収束剤が1.2質量%含浸されたPAN系炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を用いて、これをポリカーボネート(帝人化成株式会社製:L-1225Y)で被覆する以降の操作を実施例1と同様に行った。得られた成形体の表面には分散不良の繊維束の塊が存在しており、引張強度も低い値となった。結果を表1に示す。
 <比較例3>
 易含浸性炭素繊維束を被覆する樹脂をポリカーボネートではなく、ポリアミド6(いわゆるナイロン6、宇部興産製 UBEナイロン1015B)に変更した以外は実施例1と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。
 <比較例4>
 炭素繊維100質量部と、ポリカーボネート233.3質量部とを二軸押出成形機内にて溶融混練し、炭素繊維含有率30質量%のペレットとしたものである炭素繊維強化ポリカーボネート(帝人化成製 パンライト B-8130)を実施例1と同様の条件で射出成形を行った。得られた成形体は、炭素繊維の分散状態は良好であったが、成形体中における炭素繊維の平均繊維長は0.15mmと短く、引張強度も140MPaと満足できる値ではなかった。
 <比較例5>
 実施例1で用いたのと同様の炭素繊維束を、含浸助剤であるポリカプロラクトンを処理せずに、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリカーボネート(帝人化成株式会社製:L-1225Y)で被覆し、これを長さ6mmに切断し、炭素繊維含有率が20質量%(炭素繊維100質量部あたり、ポリカーボネートが394.7質量部)、直径3.2mm、長さ6mmのペレットを得た。このペレットにポリカプロラクトンを5.3質量添加(後添加)し、射出成形に適した成形用材料を得た。この成形用材料を、実施例1と同様の条件で射出成形し、肉厚4mmの引張試験用ダンベルを得た。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
 <比較例6>
 含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分12質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトンの含有率1.5質量%(炭素繊維100質量部あたり2質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
 <比較例7>
 含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分12質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトン含浸助剤の含有率18質量%(炭素繊維100質量部あたり20質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観を示したが、成形体中における炭素繊維の平均繊維長は0.4mmと短く、引張強度も150MPaと満足できる値ではなかった。また、耐熱性に劣った。結果を表1に示す。
 <比較例8>
 含浸助剤であるビスフェノールA ビス(ジフェニルホスフェート)ではなく、比較含浸助剤である共重合ポリエステル バイロン220(東洋紡製)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、共重合ポリエステル バイロン220比較含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
 <比較例9>
 含浸助剤であるビスフェノールA ビス(ジフェニルホスフェート)ではなく、比較含浸助剤である低分子量AS樹脂 ライタックA(A&L社製 120PCF)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、低分子量AS樹脂 ライタックA比較含浸助剤の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
 <比較例10>
 含浸助剤として、ビスフェノールA ビス(ジフェニルホスフェート)ではなく、ポリエチレングリコール(ライオン株式会社 PEG♯4000 分子量4000)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、ポリエチレングリコール含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、引張強度が低く、成形体外観に劣った。結果を表1に示す。
 上記の実施例1~9において、炭素繊維が良好に分散し、機械物性が優れた成形体が得られていることから、本発明の成形用材料を用いて成形を行う際、易含浸性炭素繊維束にポリカーボネートが円滑に含浸していることは明らかであるが、本発明者らは、より直接的に、それぞれの易含浸性炭素繊維束の易含浸性の度合を確認することを試みた。しかし、例えば、射出成形において、成形用材料を可塑化し、易含浸性炭素繊維束にポリカーボネートが含浸し始める段階で、成形機を急停止して試料を採取するような作業は、安全性に問題があり、かつ成形機に損傷を与える可能性があるため、実施困難であった。
 そこで、本発明者らは、上記実施例や比較例と同じ、易含浸性炭素繊維束や炭素繊維フィラメント等を用いて、これらにシート状ポリカーボネートを乗せた成形用材料を、金属板上で短時間加熱した試料についてマトリックス樹脂であるポリカーボネートの含浸率(以後、ポリカーボネート以外の熱可塑性樹脂を用いた場合も含め、マトリックス樹脂含浸率と称する)を求め、易含浸性を評価した。以下、実施例1~9および比較例1~10の易含浸性炭素繊維束などの易含浸性を評価した結果を、それぞれ参考例A~Hおよび比較参考例A~Iとして示す。
 <参考例A>
 実施例1と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)の上面に厚み300μm幅10mm長さ20mmのシート状ポリカーボネート(帝人化成株式会社製 L-1225Y)を乗せた状態で、280℃に加熱した熱板上に置き、易含浸性炭素繊維束およびシート状ポリカーボネートを2分間加熱した。加熱により溶融したポリカーボネートが易含浸性炭素繊維束に含浸した部分はウェット状態となり、炭素単繊維間がポリカーボネートで固着する。一方、炭素繊維束における、ポリカーボネートが含浸しなかった部分は、ドライ状態で炭素単繊維間におけるポリカーボネートの固着はなく、炭素単繊維が剥離しやすい。そこで、加熱後の試料のポリカーボネートが含浸しなかった部分から、炭素単繊維を剥離して質量を測定し、下記計算式(D)にて、マトリックス樹脂がポリカーボネートである場合の易含浸性炭素繊維束へのマトリックス樹脂含浸率を算出した。
 マトリックス樹脂含浸率(質量%)=100-(マトリックス樹脂である未含浸の炭素単繊維質量/炭素繊維束質量)×100 ・・・(D)
 マトリックス樹脂含浸率は98質量%と極めて高く、実施例1において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
 <参考例B>
 実施例2および3と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例2および3において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
 <参考例C>
 実施例4と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は95質量%と極めて高く、実施例4において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
 <参考例D>
 実施例5と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例5において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
 <参考例E>
 実施例6と同様の操作にて得られた、トリメチルホスフェート含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は73質量%と高く、実施例6において用いた易含浸性炭素繊維束が、ポリカーボネートに含浸されやすいことを確認できた。
 <参考例F>
 実施例7と同様の操作にて得られた、トリフェニルホスフェート含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は96質量%と極めて高く、実施例7において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
 <参考例G>
 実施例8と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率3質量%(炭素繊維100質量部あたり4質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は83質量%と高く、実施例8において用いた易含浸性炭素繊維束がポリカーボネートに含浸されやすいことを確認できた。
 <参考例H>
 実施例9と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率8質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例9において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
 <比較参考例A>
 比較例1と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)含浸助剤の含有率2質量%(炭素繊維100質量部あたり2質量部)の炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は32質量%と低く、比較例1において用いた、含浸助剤の含有率2質量%の炭素繊維束は、ポリカーボネートに含浸されやすいものでは無かった。
 <比較参考例B>
 易含浸性炭素繊維束の代わりに、比較例2と同じウレタン・エポキシ系収束剤が1.2質量%含浸された炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は2質量%と極めて低く、比較例2において用いた炭素繊維フィラメントは、極めてポリカーボネートに含浸されにくいものであった。
 <比較参考例C>
 実施例1と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)の上面に、厚み300μm幅10mm長さ20mmのシート状ポリカーボネート(帝人化成株式会社製 L-1225Y)ではなく、同寸法のポリアミド6(宇部興産製 UBEナイロン1015B)のシート状物を用いて、参考例Aと同様に操作を行った。前記計算式(D)において、マトリックス樹脂をポリカーボネートではなくポリアミド6として求めたマトリックス樹脂含浸率は4質量%と極めて低く、実施例2において用いた易含浸性炭素繊維束は、ポリアミド6には極めて含浸されにくいものであることが分かった。
 <比較参考例D>
 易含浸性炭素繊維束の代わりに、比較例5と同じ含浸助剤を後添加して得られたポリカプロラクトン含浸助剤の含有率1.2質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は2質量%と極めて低く、比較例5において用いた炭素繊維フィラメントは、極めてポリカーボネートに含浸されにくいものであった。
 <比較参考例E>
 比較例6と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率1.5質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は28質量%と低く、比較例6において用いた、含浸助剤の含有率1.5質量%の炭素繊維束は、ポリカーボネートに含浸されやすいものでは無かった。
 <比較参考例F>
 比較例7と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)含浸助剤の含有率18質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、比較例7において用いた易含浸性炭素繊維束が極めてポリカーボネートに含浸されやすいことを確認できた。
 <比較参考例G>
 比較例8と同様の操作にて得られた、共重合ポリエステル含浸助剤の含有率10質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は16質量%と極めて低く、比較例8において用いた、含浸助剤が共重合ポリエステルの炭素繊維束は、ポリカーボネートに含浸されやすいものでは無かった。
 <比較参考例H>
 比較例9と同様の操作にて得られた、低分子量AS樹脂含浸助剤の含有率5質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は12質量%と極めて低く、比較例9において用いた、含浸助剤が低分子量AS樹脂の炭素繊維束は、ポリカーボネートに含浸されやすいものでは無かった。
 <比較参考例I>
 比較例10と同様の操作にて得られた、ポリエチレングリコール含浸助剤の含有率10質量%の易含浸性炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は64質量%と高く、比較例10において用いた含浸助剤がポリエチレングリコールの炭素繊維束は、ポリカーボネートに含浸されやすいものでは無かった。
Figure JPOXMLDOC01-appb-T000016
 本発明の成形用材料は、優れた機械強度を有する成形体を、簡素なプロセスにて製造することを可能とするものであり、自動車、船舶、航空機など輸送機器、電気・電子機器、事務用機器等の内外装材や部品といった種々の産業分野において極めて有用なものである。 
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年3月14日出願の日本特許出願(特願2012-057323)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (12)

  1.  炭素繊維100質量部に対し、下記の条件1および条件2を満たす1種類以上の含浸助剤3~15質量部を含む易含浸性炭素繊維束に、50~2000質量部のポリカーボネートが付着していることを特徴とする成形用材料。
    ・ 条件1:300℃における液体の粘度が10Pa・s以下である。
    ・ 条件2:ポリカーボネート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該ポリカーボネートのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が2[℃/%]より大きい。
    ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
     ここで、含浸助剤配合率[%]は、以下式(B)、
    含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリカーボネートの量[質量部]・・・(B)
    にて定義される。
  2.  含浸助剤が、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルからなる群より選ばれる1種類以上である請求項1に記載の成形用材料。
  3.  リン酸エステルが、その常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下300℃での加熱減量が2%/分以下である芳香族リン酸エステルであることを特徴とする請求項2記載の成形用材料。
  4.  前記芳香族リン酸エステルが、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001

    (上記一般式(1)において、R~R12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基であり、Xは、結合、-CH-、-C(CH-、-S-、-SO-、-O-、-CO-または-N=N-であり、nは0または1の整数であり、mは0から5の整数である)で表されるものであることを特徴とする請求項3記載の成形用材料。
  5.  前記脂肪族ヒドロキシカルボン酸系ポリエステルが、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体で重量平均分子量3000~50000のもの、およびこれら2種以上のモノマーの共重合体で重量平均分子量3000~50000のものからなる群より選ばれる1種類以上のものである請求項2記載の成形用材料。
  6.  前記易含浸性炭素繊維束を芯成分、ポリカーボネートを鞘成分とする芯鞘型構造である請求項1~5のいずれかに記載の成形用材料。
  7.  前記成形用材料の形態がペレットである請求項1~6のいずれかに記載の成形用材料。
  8.  前記ペレットの長手方向の長さが3~10mmである、請求項7に記載の成形用材料。
  9.  請求項1~8のいずれかに記載の成形用材料からなる成形体。
  10.  前記の易含浸性炭素繊維束に由来する炭素繊維が平均繊維長0.3mm以上の長さで分散していることを特徴とする請求項9記載の成形体。
  11.  炭素繊維含有率(質量%)とISO527規格4mmダンベルでの引張強度との関係が下記式(C)炭素繊維含有率(質量%)×3+90<引張強度(MPa)・・・(C)の関係を満たす請求項9または10記載の成形体。
  12.  前記の成形用材料を、前記ポリカーボネートの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該ポリカーボネートを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする請求項9~11のいずれかに記載の成形体の製造方法。
PCT/JP2013/056792 2012-03-14 2013-03-12 成形用材料、その成形体、および該成形体の製造方法 WO2013137246A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380014471.1A CN104169340B (zh) 2012-03-14 2013-03-12 成型用材料、由其获得的成形制品以及该成形制品的制造方法
US14/384,857 US9688854B2 (en) 2012-03-14 2013-03-12 Material for molding, shaped product therefrom, and method for manufacturing the shaped product
JP2014504926A JP5658418B2 (ja) 2012-03-14 2013-03-12 成形用材料、および成形体
EP13761369.1A EP2826810B1 (en) 2012-03-14 2013-03-12 Molding material, molded product thereof, and method for producing said molded product
KR1020147024844A KR101546206B1 (ko) 2012-03-14 2013-03-12 성형용 재료, 그 성형체, 및 그 성형체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-057323 2012-03-14
JP2012057323 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013137246A1 true WO2013137246A1 (ja) 2013-09-19

Family

ID=49161152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056792 WO2013137246A1 (ja) 2012-03-14 2013-03-12 成形用材料、その成形体、および該成形体の製造方法

Country Status (6)

Country Link
US (1) US9688854B2 (ja)
EP (1) EP2826810B1 (ja)
JP (2) JP5658418B2 (ja)
KR (1) KR101546206B1 (ja)
CN (1) CN104169340B (ja)
WO (1) WO2013137246A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083978A1 (ja) 2016-11-01 2018-05-11 帝人株式会社 成形材料、成形材料の集合体、及びそれらの製造方法
JP2018196937A (ja) * 2017-05-23 2018-12-13 帝人株式会社 成形体の製造方法
WO2020158293A1 (ja) * 2019-01-30 2020-08-06 帝人株式会社 炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料
US10822482B2 (en) 2017-01-18 2020-11-03 Panasonic Corporation Composite resin composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271439A (ja) * 1988-04-23 1989-10-30 Toho Rayon Co Ltd 導電性プラスチック成形材料
JPH03121146A (ja) 1989-10-03 1991-05-23 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物の製造法
JPH03181528A (ja) 1989-12-08 1991-08-07 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法
JPH05112657A (ja) 1991-10-21 1993-05-07 Mitsubishi Kasei Corp 熱可塑性樹脂強化用炭素繊維強化樹脂組成物および炭素繊維強化熱可塑性樹脂複合材
JPH06166961A (ja) 1992-11-27 1994-06-14 Petoca:Kk セメント補強用炭素繊維及びセメント複合体
JP2003026911A (ja) * 2001-07-12 2003-01-29 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及びそれを用いた成形品
WO2010107022A1 (ja) * 2009-03-16 2010-09-23 東レ株式会社 繊維強化樹脂組成物、成形材料および繊維強化樹脂組成物の製造方法
JP4849196B1 (ja) * 2010-07-21 2012-01-11 三菱エンジニアリングプラスチックス株式会社 高熱伝導性ポリカーボネート系樹脂組成物及び成形体
JP2013011050A (ja) * 2011-05-30 2013-01-17 Toray Ind Inc 複合強化繊維束、その製造方法、および成形材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126375A (ja) * 1982-01-22 1983-07-27 東邦レーヨン株式会社 炭素繊維及びその樹脂組成物
DE69313410T2 (de) 1992-11-27 1998-02-19 Petoca Ltd Kohlenstoffasern für die Bewehrung von Zement und zementhaltiges Verbundmaterial
US7078098B1 (en) * 2000-06-30 2006-07-18 Parker-Hannifin Corporation Composites comprising fibers dispersed in a polymer matrix having improved shielding with lower amounts of conducive fiber
US6231788B1 (en) * 2000-02-03 2001-05-15 General Electric Company Carbon-reinforced PC-ABS composition and articles made from same
JP4588155B2 (ja) * 2000-02-29 2010-11-24 帝人化成株式会社 芳香族ポリカーボネート樹脂組成物
JP2002212876A (ja) * 2001-01-05 2002-07-31 Toho Tenax Co Ltd 熱可塑性樹脂強化用炭素繊維、同炭素繊維を含有してなる射出成型用ペレット、及び炭素繊維強化熱可塑性樹脂成型体
US6992185B2 (en) * 2002-01-09 2006-01-31 Alliant Techsystems Inc. Crystallization of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,903,11]-dodecane
JP2004244531A (ja) * 2003-02-14 2004-09-02 Toho Tenax Co Ltd 熱可塑性樹脂用炭素繊維チョップドストランド及び繊維強化複合材料
WO2006134797A1 (ja) * 2005-06-15 2006-12-21 Mitsubishi Engineering-Plastics Corporation ポリカーボネート樹脂組成物及び成形品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271439A (ja) * 1988-04-23 1989-10-30 Toho Rayon Co Ltd 導電性プラスチック成形材料
JPH03121146A (ja) 1989-10-03 1991-05-23 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物の製造法
JPH03181528A (ja) 1989-12-08 1991-08-07 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法
JPH05112657A (ja) 1991-10-21 1993-05-07 Mitsubishi Kasei Corp 熱可塑性樹脂強化用炭素繊維強化樹脂組成物および炭素繊維強化熱可塑性樹脂複合材
JPH06166961A (ja) 1992-11-27 1994-06-14 Petoca:Kk セメント補強用炭素繊維及びセメント複合体
JP2003026911A (ja) * 2001-07-12 2003-01-29 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及びそれを用いた成形品
WO2010107022A1 (ja) * 2009-03-16 2010-09-23 東レ株式会社 繊維強化樹脂組成物、成形材料および繊維強化樹脂組成物の製造方法
JP4849196B1 (ja) * 2010-07-21 2012-01-11 三菱エンジニアリングプラスチックス株式会社 高熱伝導性ポリカーボネート系樹脂組成物及び成形体
JP2013011050A (ja) * 2011-05-30 2013-01-17 Toray Ind Inc 複合強化繊維束、その製造方法、および成形材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Shohin [Rinkei Nannenzai (1)]", 5 June 2013 (2013-06-05), XP008174968, Retrieved from the Internet <URL:icl-ipjapan.com/products.html> *
See also references of EP2826810A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083978A1 (ja) 2016-11-01 2018-05-11 帝人株式会社 成形材料、成形材料の集合体、及びそれらの製造方法
JPWO2018083978A1 (ja) * 2016-11-01 2018-11-08 帝人株式会社 成形材料、成形材料の集合体、及びそれらの製造方法
US10822482B2 (en) 2017-01-18 2020-11-03 Panasonic Corporation Composite resin composition
JP2018196937A (ja) * 2017-05-23 2018-12-13 帝人株式会社 成形体の製造方法
WO2020158293A1 (ja) * 2019-01-30 2020-08-06 帝人株式会社 炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料
JPWO2020158293A1 (ja) * 2019-01-30 2021-10-14 帝人株式会社 炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料
JP7116198B2 (ja) 2019-01-30 2022-08-09 帝人株式会社 炭素繊維強化ポリカーボネート樹脂組成物からなる成形用材料

Also Published As

Publication number Publication date
EP2826810A4 (en) 2015-03-18
US20150044461A1 (en) 2015-02-12
CN104169340A (zh) 2014-11-26
JP2014221925A (ja) 2014-11-27
CN104169340B (zh) 2016-03-09
JP5634638B2 (ja) 2014-12-03
US9688854B2 (en) 2017-06-27
EP2826810A1 (en) 2015-01-21
JP5658418B2 (ja) 2015-01-28
KR101546206B1 (ko) 2015-08-20
KR20140121878A (ko) 2014-10-16
EP2826810B1 (en) 2016-12-07
JPWO2013137246A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
KR101585824B1 (ko) 성형용 재료, 그 성형체, 및 그 성형체의 제조 방법
JP6163485B2 (ja) 成形用材料、その成形体、および該成形体の製造方法
JP5634638B2 (ja) 成形体の製造方法
EP4151667A1 (en) Composition, pellet, molded product and composition production method
JP2021003899A (ja) ガラス繊維強化樹脂成形品
KR20170094239A (ko) 복합 물품의 제조 방법
WO2023085297A1 (ja) ペレット、成形品、および、ペレットの製造方法
WO2018083978A1 (ja) 成形材料、成形材料の集合体、及びそれらの製造方法
JP6445389B2 (ja) 連続繊維強化ポリカーボネート樹脂製プリプレグ
US20240301202A1 (en) Polycarbonate resin composition for 3d printing having excellent shape retention ability and interfacial adhesion, and pellet and filament for 3d printing comprising same
JP6902395B2 (ja) 成形体の製造方法
KR20240113452A (ko) 펠릿, 성형품, 및, 펠릿의 제조 방법
JP2015124275A (ja) ポリカーボネート樹脂成形材料、およびその成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380014471.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761369

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014504926

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147024844

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14384857

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013761369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013761369

Country of ref document: EP