WO2013137044A1 - インダクタ内蔵基板製造方法及びインダクタ内蔵基板及びそれを用いた電源モジュール - Google Patents

インダクタ内蔵基板製造方法及びインダクタ内蔵基板及びそれを用いた電源モジュール Download PDF

Info

Publication number
WO2013137044A1
WO2013137044A1 PCT/JP2013/055846 JP2013055846W WO2013137044A1 WO 2013137044 A1 WO2013137044 A1 WO 2013137044A1 JP 2013055846 W JP2013055846 W JP 2013055846W WO 2013137044 A1 WO2013137044 A1 WO 2013137044A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
wiring
substrate
built
magnetic body
Prior art date
Application number
PCT/JP2013/055846
Other languages
English (en)
French (fr)
Inventor
友景 肇
圭一 中西
憲隆 前田
正和 渋谷
Original Assignee
学校法人福岡大学
東光株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人福岡大学, 東光株式会社 filed Critical 学校法人福岡大学
Priority to JP2014504799A priority Critical patent/JP6086370B2/ja
Publication of WO2013137044A1 publication Critical patent/WO2013137044A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated

Definitions

  • the present invention relates to a substrate with a built-in inductor, a manufacturing method thereof, and a power supply module using the same.
  • An example of an element used in an electronic device is an inductor.
  • the inductor constitutes a resonance circuit and a filter circuit, and particularly when used in a power supply module or the like, an inductor having a large allowable current is required, so that there is a problem that the element itself becomes large.
  • Patent Documents 1 to 3 are disclosed for inductors.
  • the techniques shown in Patent Documents 1 to 3 are multi-layer boards with built-in inductors, and a plurality of wiring board layers including a signal wiring layer, a ground layer, a power supply layer, and the like arranged between the front and back surfaces or the core layer. And a single layer or a plurality of core layers with a built-in inductor.
  • the inductor is a multi-layer substrate with a built-in inductor, which is a helical inductor having a structure in which a conductor is wound around a thin magnetic material. It is disclosed that an inductor element is manufactured by forming a coil so that a laminated magnetic body is wound with a wiring pattern of a metal thin film and a through hole.
  • the first is a method of using a through-hole in a position where an electronic component is placed in advance
  • the second is a method in which a semi-through hole is opened in a position where a component is placed in advance, the component is placed, and crimped.
  • the third method is to connect the component to the lower substrate, place the substrate on the lower substrate, and press the substrate as it is.
  • an inductor built-in board is manufactured by embedding an inductor manufactured as a component by embedding it in the board manufacturing process.
  • the manufacturing process is deteriorated because the process of manufacturing the inductor and the process of manufacturing the substrate are separate and independent processes.
  • the process of manufacturing the inductor and the process of manufacturing the substrate are independent, there is a possibility that the characteristics of the wiring such as the resistance and capacitance of the board will differ from the characteristics of the wiring such as the resistance of the inductor and the capacity.
  • a defect occurs in the connection part of the inductor and the accuracy of the substrate is deteriorated.
  • the present invention makes it possible to manufacture an inductor-embedded substrate very efficiently by making an inductor incorporated in the substrate in the manufacturing process of manufacturing the substrate, and also provides high precision with common wiring characteristics.
  • a substrate with a built-in inductor and a method for manufacturing the same are provided.
  • a method for manufacturing a substrate with a built-in inductor according to the present invention includes a first wiring step for forming a plurality of strip-shaped wiring patterns on a surface of a core substrate, and excluding at least an end portion of the strip-shaped wiring pattern formed in the first wiring step.
  • a via hole for connecting a magnetic body mounting step for mounting a magnetic body in a region, an embedding step of embedding the magnetic body with an insulating material, and an end portion of the strip-shaped wiring pattern and a wiring pattern formed in an upper layer A via hole forming step, a filling step for filling the via hole formed in the via hole forming step with a conductive material, and a via formed in the filling step, and connected to the via in the stacking direction of the substrate.
  • an inductor having a magnetic material as a core is formed in a normal substrate manufacturing process, so that a substrate having an inductor embedded therein is manufactured very efficiently. There is an effect that can be done.
  • the wiring as the inductor coil is created in the board manufacturing process, so that the electrical characteristics (resistance, capacitance, etc.) of the wiring of the current flowing in the inductor coil and the wiring of the board are made common. Therefore, it is possible to manufacture a highly accurate substrate with a built-in inductor.
  • the strip-shaped wiring pattern and the via are formed by the same plating process.
  • wiring as a coil of the inductor is formed by a similar plating process in the substrate manufacturing process.
  • the electrical characteristics (such as resistance and capacitance) can be shared with the other wiring, and it is possible to produce a highly accurate substrate with a built-in inductor.
  • the substrate with a built-in inductor according to the present invention includes a plurality of strip-shaped first wiring patterns formed on the surface of a core substrate, a magnetic body attached to a region excluding at least an end of the first wiring pattern, and the first An insulating material for molding the wiring pattern and the magnetic body, and a plurality of strip-shaped second wiring patterns formed on the upper surface of the insulating material, wherein the first wiring pattern and the second wiring pattern are The wirings are connected by vias so that the wiring is formed as a coil magnetized in a direction perpendicular to the stacking direction of the substrates.
  • a plurality of the inductors are arranged in parallel, and the coil wirings of the inductors are continuously connected in series, and the magnetization directions of the adjacent inductors are opposite to each other. It is the direction.
  • the inductor-embedded substrate according to the present invention includes a plurality of the inductors arranged in parallel, and the coil wirings in the inductors are continuously connected in series, and the magnetization directions of the adjacent inductors
  • the inductance is increased, and the influence of the magnetic field to the outside is greatly reduced by the interlinkage magnetic flux between adjacent inductors, thereby realizing a highly accurate substrate with a built-in inductor. There is an effect that can be done.
  • the two magnetic bodies are arranged in parallel, a plurality of first vias formed along the outer side surface of each magnetic body, and the inner side surface of the magnetic body A second via common to each magnetic body formed along the first wiring pattern, the second wiring pattern, the first via, and the second via.
  • the first wiring pattern, the second wiring pattern, the first via, and the second via are formed so as to be alternately wound around the body every one or a plurality of turns.
  • the two magnetic bodies are arranged in parallel, a plurality of first vias formed along the outer side surface of each magnetic body, and the magnetic body A second via common to each of the magnetic bodies formed along the inner side surface, and the coil formed by the first wiring pattern, the second wiring pattern, the first via, and the second via.
  • the first wiring pattern, the second wiring pattern, the first via, and the second via are formed so as to be alternately wound around each magnetic body every one or a plurality of turns.
  • the second via formed along the side surface, that is, between the two magnetic bodies can be used in common, and the element can be miniaturized by reducing the area occupied by the inductor. .
  • the magnetic body has a closed loop shape, and the first wiring pattern, the second wiring pattern, and the via are formed as a coil around which the magnetic body is wound.
  • the magnetic body is in a closed loop shape, there is an effect that the magnetic flux is stably linked.
  • a power supply module is a power supply module using the substrate with a built-in inductor, wherein a DC / DC converter connected in series with the inductor is mounted on the inductor, and a subsequent stage portion of the inductor.
  • the output unit and the capacitor are connected in parallel, and the DC / DC converter and the capacitor are arranged to face each other with the magnetic body of the inductor interposed therebetween.
  • the power supply module according to the present invention has an effect that a highly accurate power supply module can be realized by absorbing unnecessary electromagnetic waves from the DC / DC converter by the magnetic body constituting the inductor.
  • the DC / DC converter and the capacitor are arranged opposite to each other with the magnetic body of the inductor interposed therebetween, so that electromagnetic waves from the DC / DC converter to the capacitor are absorbed by the magnetic body, and the power supply module is made highly accurate. It becomes possible to function.
  • the DC / DC converter and the capacitor are arranged to face each other with the magnetic body of the inductor interposed therebetween, the area when viewed in plan can be reduced, and the power supply module can be miniaturized. There is an effect.
  • the method for manufacturing a substrate with a built-in inductor includes a magnetic material embedding step of embedding a magnetic material in a core substrate, and a wiring layer forming step of forming a wiring layer on the front and back surfaces of the core base material embedded with the magnetic material.
  • the via formed in the above, and the wiring layer formed on the surface of the core base material and the wiring layer formed on the back surface thereof become a coil magnetized in a direction perpendicular to the stacking direction of the substrate.
  • a wiring process for forming a wiring pattern of the wiring layers on the front surface and the back surface are examples of the wiring layers on the front surface and the back surface.
  • the inductor-embedded substrate manufacturing method includes a second wiring layer forming step in which a wiring layer is formed again on the front surface and the back surface of the wiring pattern formed by the wiring step, the second wiring layer forming step, In addition, the via hole forming step, the filling step, and the wiring step are repeated one or more times to form the coil with a plurality of turns.
  • the method for manufacturing a substrate with a built-in inductor according to the present invention includes a first wiring step of forming a plurality of strip-shaped wiring patterns on the front surface and the back surface of the core substrate, and a front surface and a back surface of the core substrate formed in the first wiring step.
  • the via hole forming step for forming a via hole for connecting the wiring pattern formed in the upper layer the filling step for filling the via hole formed in the via hole forming step with a conductive material, and the filling step
  • the wiring is formed as a coil that is connected to the formed via and is magnetized in a direction perpendicular to the stacking direction of the substrate on each of the front and back surfaces across the core substrate.
  • the upper layer of the metal thin film formed in step Hama is intended to include a second wiring step of forming a strip of a plurality of wiring patterns.
  • an inductor having a magnetic material as a core is formed in a normal substrate manufacturing process, so that a substrate having an inductor embedded therein is manufactured very efficiently. There is an effect that can be done. Also, the wiring as the inductor coil is created in the board manufacturing process, so that the electrical characteristics (resistance, capacitance, etc.) of the wiring of the current flowing in the inductor coil and the wiring of the board are made common. Therefore, it is possible to manufacture a highly accurate substrate with a built-in inductor.
  • FIGS. 1 is a perspective view and a cross-sectional view of an inductor-embedded substrate produced by the inductor-embedded substrate manufacturing method according to the present embodiment.
  • FIG. 2 is a flowchart showing a procedure of the inductor-embedded substrate manufacturing method according to the present embodiment.
  • FIG. 4 is a cross-sectional view in each procedure of the inductor-embedded substrate manufacturing method according to the present embodiment, and FIG. 4 is a top view of a part of the procedure of the inductor-embedded substrate manufacturing method according to the present embodiment.
  • FIG. 1A is a perspective view of a substrate 1 with a built-in inductor according to the present embodiment
  • FIG. 1B is a cross-sectional view when viewed from the direction of arrow a in FIG.
  • an inductor-embedded substrate 1 according to this embodiment includes a core substrate 4 composed of at least a core material 3 and copper thin films 2a and 2b covering the front and back surfaces of the core material 3.
  • the inductor 10 is formed thereon.
  • the inductor 10 is a coil that winds the magnetic body 5 so as to be magnetized in a direction perpendicular to the stacking direction of the substrate (the surface direction of the core substrate 4) with the magnetic body 5 mounted on the core substrate 4.
  • Wiring (first coil wiring 7, via 6 and second coil wiring 8).
  • the first coil wiring 7 is formed in the first layer
  • the second coil wiring 8 is a second layer that is an upper layer of the first layer. It is formed in the layer.
  • the first coil wiring 7 and the second coil wiring 8 are electrically connected continuously via the via 6, and a current flows through the first coil wiring 7, the via 6, and the second coil wiring 8.
  • the inductor 10 is configured by flowing a coil (spiral) around the magnetic body 5. Between the first layer and the second layer, a resin 12 (not shown in FIG. 1A) as an insulating material is filled in the same manner as a normal component-embedded substrate.
  • the inductor built-in substrate 1 shown in FIG. 1 can be manufactured by the inductor built-in substrate manufacturing method according to this embodiment.
  • the inductor 10 is formed in the substrate manufacturing process. That is, the manufacturing process of the inductor 10 and the board manufacturing process are made independent and only the inductor 10 is created in the inductor manufacturing process, and then the separately created inductor 10 is embedded in the board as a component in the board manufacturing process. Instead, by manufacturing the inductor 10 while manufacturing the substrate, the manufacturing process of the inductor-embedded substrate 1 can be simplified, and the manufacturing efficiency can be significantly improved.
  • step S1 of FIG. 2 a core substrate 4 whose surface is coated with a copper foil as shown in FIG. 3A is prepared, and the magnetic material 5 is wound around the copper thin film 2a on the upper surface of the core substrate 4.
  • a first coil wiring 7 corresponding to a wiring pattern under the rotating coil is formed by etching (see FIGS. 3B and 4A).
  • FIG. 4A in order to form the wiring in the coil shape of the inductor, a plurality of strip-shaped first coil wirings 7 are formed in an oblique direction.
  • the wiring area of the first coil wiring 7 shown in FIG. 4 describes only the minimum wiring area, and the area other than the wiring area of the first coil wiring 7 described here is a copper thin film. 2a may be removed, the copper thin film 2a may remain, or other necessary wiring patterns may be formed. When the copper thin film 2a remains, it is necessary not to be electrically connected to the first coil wiring 7.
  • the magnetic body 5 is attached to the region excluding at least the end portion 11 of the first coil wiring 7 in step S2 (FIGS. 3C and 4). (See (B)).
  • the magnetic body 5 needs to be mounted in a region excluding the end portion 11 for connection with the via 6 formed in the subsequent manufacturing process.
  • step S2 of FIG. 2 When the magnetic body 5 is mounted in step S2 of FIG. 2, the mounted magnetic body 5 is sealed with a resin 12 as an insulating material in step S3 (see FIG. 3D).
  • a via hole 6a is formed in step S4 (see FIGS. 3E and 4C).
  • via holes 6a are formed at the positions of the end portions 11 of the first coil wiring 7 and the positions connected to the wiring for inputting and outputting signals.
  • the via hole 6a can be drilled using, for example, a laser.
  • step S6 the second coil wiring 8 corresponding to the wiring pattern above the inductor 10 is formed by etching the second layer copper thin film formed in the plating process (FIGS. 3G and 4). (See (D)).
  • the second coil wiring 8 is etched between the vias 6 so that the magnetic body 5 is wound in a coil shape in a direction perpendicular to the stacking direction of the substrates.
  • the wiring (first coil wiring 7, via 6, and second wiring) for causing the magnetic body 5 to function as a coil spirally wound in a direction perpendicular to the stacking direction of the substrate.
  • Coil wiring 8 is formed.
  • the electrical characteristics (resistance, capacity, etc.) of the first coil wiring 7, the via 6 and the second coil wiring 8 and other wiring on the substrate can be surely shared.
  • the inductor 10 having the magnetic body 5 as a core is formed in the normal substrate manufacturing process, so that the inductor built-in substrate 1 is very efficient. Can be manufactured well.
  • the inductor 10 is formed in the manufacturing process of the substrate, the wiring of the inductor 10 (first coil wiring 7, via 6 and second coil wiring 8) formed in a coil shape and other wiring Since electrical characteristics (resistance, capacitance, etc.) can be shared, it is possible to manufacture a highly accurate substrate with a built-in inductor. In other words, when only the inductor is manufactured in a separate process and the separately manufactured inductor is embedded as a component in the board manufacturing process, the wiring between the inductor and the board needs to be connected. If there is, there will be a substrate with poor accuracy. Such a problem can be avoided by using the inductor built-in substrate manufacturing method of the present embodiment.
  • FIG. 5 is a first top view of the inductor in the power supply module according to the present embodiment
  • FIG. 6 is a second top view of the inductor in the power supply module according to the present embodiment.
  • the description which overlaps with each said embodiment is abbreviate
  • a plurality of inductors 10 are connected in series, and the respective inductors 10 are arranged in parallel at a predetermined interval.
  • the wires are formed so that the currents flowing in the coiled wires of the adjacent inductors 10 are in opposite directions. 5 and 6 show a case where two inductors 10 are arranged in parallel.
  • the coiled wires of the adjacent inductors are connected in series in series, and the wires are formed so that the magnetization directions are opposite to each other. Can be increased, and the influence of the magnetic field to the outside can be reduced by the interlinkage magnetic flux between the adjacently arranged inductors, thereby realizing a highly accurate power supply module.
  • the wiring pattern in FIG. 5 is merely an example, and the power supply module according to the present embodiment can be used as long as the wiring pattern in which the respective magnetization directions of the adjacent inductors 10 are reversed. Can be realized. Another example is shown in FIG.
  • two magnetic bodies 5 are arranged in parallel, a plurality of first vias 6 a formed along the outer side surface of each magnetic body 5, and the inner side surface of the magnetic body 5.
  • a second via 6b common to each magnetic body 5 formed in this manner, and a coil formed by the second coil wiring 8, the first via 6a, the first coil wiring 7, and the second via 6b
  • the second coil wiring 8, the first via 6a, the first coil wiring 7, and the second via 6b are formed so as to be alternately wound around the magnetic body 5 every one or a plurality of turns. That is, like FIG. 5, the coil-shaped wiring is continuously connected in series, and the magnetization direction of each inductor is opposite, but the second via 6b is a common via for each inductor, The wiring of the coil wound around the magnetic body 5 is wound alternately every turn.
  • the inductance value can be increased similarly to the case of FIG. 5, and the influence of the external magnetic field can be reduced by the interlinkage magnetic flux between the adjacently arranged inductors.
  • a highly accurate power supply module can be realized by reducing the number.
  • the second via 6b as a common via for each inductor, the area occupied by the inductor can be reduced and the element can be miniaturized.
  • the inductors shown in FIGS. 5 and 6 do not necessarily have to be built in the board manufacturing process, but may be separately created as a single component and then embedded in the board. That is, an inductor can be manufactured by forming a via hole in the magnetic material itself and forming a coil-shaped wiring pattern by plating on the upper and lower surfaces.
  • an inductor can be manufactured by forming a via hole in the magnetic material itself and forming a coil-shaped wiring pattern by plating on the upper and lower surfaces.
  • a plurality of first vias 6a and second vias 6b are alternately formed in the magnetic body 5, and the respective vias, the first coil wiring 7 and the second coil wiring 8 are plated. Then, the magnetic body 5 is cut so that only the row of the first vias 6a is divided (separated into a semi-cylindrical shape) by the vertical cut surface. Parts can be made.
  • FIG. 7 is a diagram for explaining an example of the power supply module according to this embodiment.
  • FIG. 7A shows a circuit diagram of a general step-down DC / DC converter, and FIG. Sectional drawing of a power supply module is shown. In the present embodiment, descriptions overlapping with those in the first embodiment are omitted.
  • the inductor 10 according to the present embodiment functions as a DC / DC converter choke coil that is an external component of the DC / DC converter IC.
  • the power supply module 20 uses the inductor-embedded substrate 1 according to the first embodiment, and has a circuit configuration shown in FIG. That is, the switching element 17 and the inductor 10 are connected in series between the input terminal and the output terminal, the capacitor 16 is connected between the output terminal and the ground, and the connection point between the switching element 17 and the inductor 10 and the ground.
  • the diode 18 is connected to the switching element 17, and the DC / DC converter is connected to the control terminal of the switching element 17.
  • the specific structure is that a DC / DC converter 15 is mounted at a position corresponding to the upper position of the inductor 10, and the DC / DC converter 15 and the inductor 10 are connected in series.
  • the wiring is formed as described above.
  • a capacitor 16 connected to the inductor 10 through a via is formed in a lower layer of the inductor 10 across the core.
  • the DC / DC converter 15 and the capacitor 16 are preferably disposed so as to face each other with the magnetic body of the inductor 10 interposed therebetween.
  • the capacitor 16 can be incorporated as a component, but in the case of this embodiment, a power supply module can be formed in the board manufacturing process by making it in the board manufacturing process. , Manufacturing efficiency can be improved.
  • the power supply module 20 includes the DC / DC converter 15 mounted on the inductor 10, and the capacitor connected to the inductor 10 is formed by forming in the substrate manufacturing process.
  • the module 20 manufacturing efficiency can be improved.
  • the DC / DC converter 15 and the capacitor 16 are disposed to face each other with the magnetic body 5 of the inductor 10 interposed therebetween, the magnetic body 5 constituting the inductor 10 eliminates unnecessary power from the DC / DC converter 15.
  • a highly accurate power supply module can be realized by absorbing electromagnetic waves.
  • FIG. 8 is a perspective view and a cross-sectional view of the inductor-embedded substrate according to the present embodiment
  • FIG. 9 is a first view illustrating a cross-section in each procedure of the method for manufacturing the inductor-embedded substrate according to the present embodiment
  • FIG. It is a 2nd figure which shows the cross section in each procedure of the manufacturing method of the board
  • the description which overlaps with each said embodiment is abbreviate
  • FIG. 8A is a perspective view of the inductor-embedded substrate 1 according to this embodiment
  • FIG. 8B is a cross-sectional view when viewed from the direction of arrow a in FIG. 8A.
  • the number of turns of the wiring as the coil around which the magnetic body 5 is wound is one in the inductor-embedded substrate 1 shown in FIG. 1 in the first embodiment.
  • the wiring and the via are formed so as to be wound a plurality of times (twice in FIG. 8). That is, by increasing the number of turns of the coil, an inductance having a larger value can be obtained as compared with the inductor-embedded substrate 1 according to the first embodiment.
  • FIG. 9A a core material with copper foil on both sides is prepared (FIG. 9A), and the entire surface of the copper foil is removed by etching (FIG. 9B).
  • a cavity for housing the magnetic body 5 and a hole for positioning are made in the core material (FIG. 9C).
  • An interlayer insulating material with a copper foil is attached to the back side (FIG. 9D), and the magnetic body 5 is put into the cavity (FIG. 9E).
  • the surface side is embedded with an interlayer insulating material with a copper foil (FIG. 9F).
  • Wiring as a coil is formed by patterning on the back side, and patterning is performed leaving only a pattern for drilling X-rays on the front side (FIG. 9G).
  • FIG. 9G In order to form an interlayer insulating material with copper foil on both sides (FIG. 9H), and to form through holes between the second layer and the third layer, and between the second layer and the fourth layer. Is drilled (FIG. 9I). At this time, positioning uses a hole in the outer frame.
  • FIG. 10A A positioning hole is made by X-rays using the wiring pattern on the front surface side (FIG. 10B). Wiring as a coil is formed by patterning on the front surface side (second layer) and the back surface side (fourth layer), and a pattern for drilling X-rays is formed (FIG. 10C). At this time, the positioning uses the X-ray hole drilled in FIG. In order to form an interlayer insulating material with copper foil on both sides (FIG. 10D), and to form through holes between the first layer and the fourth layer and between the first layer and the fifth layer. Is drilled (FIG. 10E). At this time, positioning uses a hole in the outer frame.
  • Through-hole plating is performed after desmearing (FIG. 10F).
  • a positioning hole is made by X-ray using the wiring pattern of FIG. 10C (FIG. 10G). Wirings as coils are formed by patterning on the front surface side (first layer) and the back surface side (fifth layer) (FIG. 10H). At this time, the positioning uses the X-ray hole drilled in FIG. Patterning is performed with a solder resist (FIG. 10I). At this time, the positioning uses the X-ray hole drilled in FIG. Finally, electroless Ni / Au plating is performed, and individual router processing is performed to manufacture the inductor-embedded substrate 1.
  • a large value inductor can be obtained by increasing the number of turns of the coil, and the substrate in which the inductor is incorporated is used for normal substrate manufacturing. Can be built in the process.
  • FIG. 11 is a perspective view and a cross-sectional view of the inductor built-in substrate according to the present embodiment
  • FIG. 12 is a cross-sectional view in each procedure of the method for manufacturing the inductor built-in substrate according to the present embodiment.
  • the description which overlaps with each said embodiment is abbreviate
  • FIG. 11A is a perspective view of the inductor-embedded substrate 1 according to the present embodiment
  • FIG. 11B is a cross-sectional view when viewed from the direction of arrow a in FIG. 11A.
  • the inductor-embedded substrate 1 according to the present embodiment has a two-core structure in which two inductors are arranged in parallel as in the inductor-embedded substrate 1 shown in FIG. 5 in the second embodiment. Are arranged in parallel. That is, inductors are respectively formed on the front side and the back side across the core material.
  • a core material with copper foil is prepared on both surfaces (FIG. 12A), and a positioning hole is drilled (FIG. 12B).
  • a wiring as a coil is formed by patterning on the front surface side (second layer) and the back surface side (third layer) (FIG. 12C).
  • positioning uses a hole in the outer frame.
  • Magnetic bodies 5 are mounted on the front side and the back side, respectively (FIG. 12D). At this time, the magnetic body 5 is fixed with a pelletizing agent. Both surfaces are embedded with resin, and each surface is laminated with an interlayer insulating material (FIG. 12E).
  • a hole for a through hole penetrating from the front surface side to the back surface side is drilled (FIG. 12F). At this time, positioning uses a hole in the outer frame. After desmearing, the entire surface is plated (electroless plating and electrolytic plating) (FIG. 12G). A wiring as a coil is formed by patterning on the front surface side (first layer) and the back surface side (fourth layer) (FIG. 12H). At this time, positioning uses a hole in the outer frame. Thereafter, as in the case of the fourth embodiment, patterning using a solder resist, electroless Ni / Au plating, and individualized router processing are performed to manufacture the substrate 1 with a built-in inductor.
  • the inductor-embedded substrate 1 manufactured by the above-described manufacturing method has a front-side inductor and a back-side inductor connected in series continuously by wiring patterns and through-holes, similarly to the structure shown in FIG. It is what.
  • a large-value inductor can be obtained by using a two-core structure, and the substrate in which the inductor is incorporated is a normal substrate. Can be built in the manufacturing process.
  • FIG. 13 shows a modification of the substrate with a built-in inductor shown in FIG.
  • the vias 6 formed between the two magnetic bodies 5 are formed in a straight line in the vertical direction, whereas in FIG. 13, the vias 6 are formed between the two magnetic bodies 5.
  • the vias 6 are formed in a zigzag shape.
  • the inductor itself is somewhat larger, the magnetic flux in each magnetic body 5 is equal on the outer side and the inner side, and a stable inductor can be obtained.
  • the via 6 is formed apart, the formation of the via hole is facilitated.
  • FIG. 14 shows a modification of the substrate with a built-in inductor shown in FIG.
  • two magnetic bodies 5 are configured as separate bodies, but in FIG. 14, one magnetic body 5 is formed in a closed loop shape.
  • the wiring pattern and via as a coil are formed so as to wind the closed loop magnetic body 5.
  • the loop shape may be a circle, an ellipse, a rectangle, a polygon, or the like, but is preferably a smooth loop shape like a circle or an ellipse in order to efficiently link magnetic flux.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

基板を製造する製造過程で基板に内蔵するインダクタを併せて作り込むことで、インダクタ内蔵基板を効率よく製造することができるインダクタ内蔵基板製造方法を提供する。 コア基板4の表面に帯状の複数の第1コイル配線7のパターンを形成する工程と、形成された帯状の第1コイル配線7のパターンにおける少なくとも端部11以外の領域に磁性体5を装着する工程と、磁性体5を樹脂で埋め込む工程と、帯状の第1コイル配線7の端部11と上層の第2コイル配線8とを接続するためのビア6を形成する工程と、形成されたビア6をめっきする工程と、めっき工程で形成された上層の金属薄膜に、第1コイル配線7とビア6とを介してコイル状に接続するように、帯状の複数の第2コイル配線8を形成する工程とを含む。

Description

インダクタ内蔵基板製造方法及びインダクタ内蔵基板及びそれを用いた電源モジュール
 本発明は、インダクタが内蔵された基板及びその製造方法及びそれを用いた電源モジュールに関する。
 近年、電子機器の急速な微細化に伴い、電子機器で使用する素子も微細化が求められる。電子機器で使用される素子として、例えばインダクタがある。インダクタは共振回路やフィルタ回路を構成しており、特に電源モジュールなどで使用される際には大きい許容電流のインダクタが必要となるため、素子自体が大型化してしまうという問題がある。
 このような問題に関連して、インダクタについて、例えば特許文献1ないし3に示すような技術が開示されている。特許文献1ないし3に示す技術は、インダクタ内蔵型多層基板であって、表裏面、もしくはコア層の間に配置された信号の配線層や、グランド層や電源層等からなる複数の配線基板層と、インダクタを内蔵する単層もしくは複数のコア層から構成され、インダクタは、薄い磁性体に、導体を巻線した構造のヘリカル型インダクタであるインダクタ内蔵型多層基板であり、単層又は多層の積層磁性体を、金属薄膜の配線パターンとスルーホールとで巻回するようにコイルを形成してインダクタ素子を製造することが開示されている。
 また、インダクタを積層基板内部に内蔵する具体的な製造方法としては、以下の3種類の方法が開示されている。1つ目は、予め電子部品を配置する位置に貫通孔を開け利用する方法、2つ目は、予め部品を配置する位置に半貫通孔を開け、部品を配置し、圧着することで、樹脂の移動量を少なくした方法、3つ目は、部品を下部の基板に接続し、その上に基板を載せそのまま圧着する方法である。いずれの技術も、部品として製造されたインダクタを基板の製造工程の中で埋め込んで内蔵することで、インダクタ内蔵基板を製造する。
特開2004-319875号公報 特開2004-363162号公報 特開2005-101175号公報
 しかしながら、上記各特許文献に記載の技術は、インダクタを製造する工程と基板を製造する工程とが夫々個別の独立した工程であるため、製造効率が悪くなってしまう。また、インダクタを製造する工程と基板を製造する工程とが独立しているため、基板における配線の抵抗、容量等の特性と、インダクタにおける配線の抵抗、容量等の特性とが異なってしまう可能性が高く、インダクタの接続部分等で不具合が発生し基板の精度が悪くなってしまう。
 本発明は、基板を製造する製造過程で基板に内蔵するインダクタを併せて作り込むことで、インダクタ内蔵基板を非常に効率よく製造することができると共に、配線の特性が共通化されている高精度なインダクタ内蔵基板及びその製造方法を提供する。
 本発明に係るインダクタ内蔵基板製造方法は、コア基板の表面に帯状の複数の配線パターンを形成する第1配線工程と、前記第1配線工程で形成された帯状の配線パターンにおける少なくとも端部を除く領域に磁性体を装着する磁性体装着工程と、前記磁性体を絶縁材で埋め込む埋込工程と、帯状の前記配線パターンの端部と上層に形成される配線パターンとを接続するためのビア穴を形成するビア穴形成工程と、前記ビア穴形成工程で形成されたビア穴に導電性材料を充填する充填工程と、前記充填工程で形成されたビアと接続され、基板の積層方向に対して垂直な方向に磁化するコイルとして配線が形成されるように、前記充填工程で形成された上層の金属薄膜に帯状の複数の配線パターンを形成する第2配線工程とを含むものである。
 このように、本発明に係るインダクタ内蔵基板製造方法においては、通常の基板製造工程の中で、磁性体をコアとするインダクタが作り込まれるため、インダクタが内蔵された基板を非常に効率よく製造することができるという効果を奏する。
 また、基板製造工程の中でインダクタのコイルとしての配線が作り込まれることで、インダクタのコイルに流れる電流の配線と基板の配線との電気的な特性(抵抗や容量等)を共通化することができ、非常に高精度なインダクタ内蔵基板を製造することが可能になるという効果を奏する。
 本発明に係るインダクタ内蔵基板製造方法は、前記帯状の配線パターン及び前記ビアの形成が、同様のめっき処理で行われるものである。
 このように、本発明に係るインダクタ内蔵基板製造方法においては、基板製造工程の中で、特に同様のめっき処理によりインダクタのコイルとしての配線が作り込まれることで、インダクタに流れる電流の配線と基板の配線との電気的な特性(抵抗や容量等)を共通化することができ、非常に高精度なインダクタ内蔵基板を製造することが可能になるという効果を奏する。
 本発明に係るインダクタ内蔵基板は、コア基板の表面に形成された帯状の複数の第1配線パターンと、当該第1配線パターンの少なくとも端部を除く領域に装着される磁性体と、前記第1配線パターンと前記磁性体とをモールドする絶縁材と、当該絶縁材の上面に形成される帯状の複数の第2配線パターンとを備え、前記第1配線パターンと前記第2配線パターンとが、前記基板の積層方向に対して垂直な方向に磁化するコイルとして配線が形成されるようにビアで接続されているものである。
 このように、本発明に係るインダクタ内蔵基板においては、コア基板の表面に形成された帯状の複数の第1配線パターンと、当該第1配線パターンの少なくとも端部を除く領域に装着される磁性体と、前記第1配線パターンと前記磁性体とをモールドする絶縁材と、当該絶縁材の上面に形成される帯状の複数の第2配線パターンとを備え、前記第1配線パターンと前記第2配線パターンとが、前記基板の積層方向に対して垂直な方向に磁化するコイルとして配線が形成されるようにビアで接続されているため、インダクタのコイルに流れる電流の配線と基板の配線との電気的な特性(抵抗や容量等)を共通化することができ、非常に高精度なインダクタ内蔵基板を実現することができるという効果を奏する。
 本発明に係るインダクタ内蔵基板は、複数の前記インダクタが並列して配置され、それぞれの前記インダクタにおけるコイルの配線が連続して直列接続されており、相隣る前記インダクタの磁化方向が、夫々逆方向となっているものである。
 このように、本発明に係るインダクタ内蔵基板は、複数の前記インダクタが並列して配置され、それぞれの前記インダクタにおけるコイルの配線が連続して直列接続されており、相隣る前記インダクタの磁化方向が、夫々逆方向となっているため、インダクタンスを大きくすると共に、隣接配設されるインダクタ同士の鎖交磁束により、外部への磁界の影響を格段に減少させて高精度なインダクタ内蔵基板を実現することができるという効果を奏する。
 本発明に係るインダクタ内蔵基板は、2つの前記磁性体が並列して配置され、当該各磁性体の外側の側面に沿って形成される複数の第1ビアと、前記磁性体の内側の側面に沿って形成される前記各磁性体に共通の第2ビアとを有し、前記第1配線パターン、第2配線パターン、第1ビア及び第2ビアとで形成される前記コイルが、前記各磁性体に一又は複数ターンごとに交互に巻回されるように前記第1配線パターン、第2配線パターン、第1ビア及び第2ビアが形成されているものである。
 このように、本発明に係るインダクタ内蔵基板は、2つの前記磁性体が並列して配置され、当該各磁性体の外側の側面に沿って形成される複数の第1ビアと、前記磁性体の内側の側面に沿って形成される前記各磁性体に共通の第2ビアとを有し、前記第1配線パターン、第2配線パターン、第1ビア及び第2ビアとで形成される前記コイルが、前記各磁性体に一又は複数ターンごとに交互に巻回されるように前記第1配線パターン、第2配線パターン、第1ビア及び第2ビアが形成されているため、磁性体の内側の側面に沿って、すなわち2つの磁性体の間に形成される第2ビアを共通化することができ、インダクタの占有面積を小さくして、素子を微細化することが可能になるという効果を奏する。
 本発明に係るインダクタ内蔵基板は、前記磁性体が閉ループ状であり、前記第1配線パターン、前記第2配線パターン及びビアが、前記磁性体を巻回するコイルとして形成されているものである。
 このように、本発明に係るインダクタ内蔵基板においては、磁性体が閉ループ状となっているため、磁束が安定して鎖交するという効果を奏する。
 本発明に係る電源モジュールは、前記インダクタ内蔵基板を用いた電源モジュールであって、前記インダクタの上部に当該インダクタと直列に接続されるDC/DCコンバータが搭載されており、前記インダクタの後段部分に、出力部とキャパシタとが並列に接続されており、前記DC/DCコンバータと前記キャパシタとが前記インダクタの磁性体を挟んで対向して配設されているものである。
 このように、本発明に係る電源モジュールは、インダクタを構成する磁性体によりDC/DCコンバータからの不要な電磁波が吸収されて高精度な電源モジュールを実現することができるという効果を奏する。すなわち、DC/DCコンバータとキャパシタとがインダクタの磁性体を挟んで対向して配設されることで、DC/DCコンバータからキャパシタへの電磁波が磁性体に吸収されて、電源モジュールを高精度に機能させることが可能になる。
 また、DC/DCコンバータとキャパシタとがインダクタの磁性体を挟んで対向して配設されるため、平面視で見た場合の面積を小さくすることができ、電源モジュールを微細化することができるという効果を奏する。
 本発明に係るインダクタ内蔵基板製造方法は、コア基板に磁性体を埋め込む磁性体埋込工程と、前記磁性体が埋め込まれた前記コア基材の表面及び裏面に配線層を形成する配線層形成工程と、表面及び裏面の前記配線層を接続するためのビア穴を形成するビア穴形成工程と、前記ビア穴形成工程で形成されたビア穴に導電性材料を充填する充填工程と、前記充填工程で形成されたビア、並びに、前記コア基材の表面に形成された配線層及び裏面に形成された配線層が、基板の積層方向に対して垂直な方向に磁化するコイルとなるように、前記表面及び裏面の配線層の配線パターンを形成する配線工程とを含むものである。
 本発明に係るインダクタ内蔵基板製造方法は、前記配線工程により形成された配線パターンの表面及び裏面に再度配線層を形成する第2の配線層形成工程を含み、前記第2の配線層形成工程、並びに、前記ビア穴形成工程、前記充填工程及び前記配線工程を1又は複数回繰り返して、前記コイルの巻回数を複数回に形成するものである。
 本発明に係るインダクタ内蔵基板製造方法は、コア基板の表面及び裏面に帯状の複数の配線パターンを形成する第1配線工程と、前記第1配線工程で形成された前記コア基板の表面及び裏面における帯状の配線パターンの少なくとも端部を除く領域に磁性体を装着する磁性体装着工程と、前記磁性体を絶縁材で埋め込む埋込工程と、帯状の前記配線パターンの端部と、各配線パターンの上層に形成される配線パターンとを接続するためのビア穴を形成するビア穴形成工程と、前記ビア穴形成工程で形成されたビア穴に導電性材料を充填する充填工程と、前記充填工程で形成されたビアと接続され、前記コア基板を挟んで表面及び裏面のそれぞれに、基板の積層方向に対して垂直な方向に磁化するコイルとして配線が形成されるように、前記充填工程で形成された上層の金属薄膜に帯状の複数の配線パターンを形成する第2配線工程とを含むものである。
 このように、本発明に係るインダクタ内蔵基板製造方法においては、通常の基板製造工程の中で、磁性体をコアとするインダクタが作り込まれるため、インダクタが内蔵された基板を非常に効率よく製造することができるという効果を奏する。また、基板製造工程の中でインダクタのコイルとしての配線が作り込まれることで、インダクタのコイルに流れる電流の配線と基板の配線との電気的な特性(抵抗や容量等)を共通化することができ、非常に高精度なインダクタ内蔵基板を製造することが可能になるという効果を奏する。
第1の実施形態に係るインダクタ内蔵基板製造方法で作成されるインダクタ内蔵基板の斜視図及び断面図である。 第1の実施形態に係るインダクタ内蔵基板製造方法の手順を示すフローチャートである。 第1の実施形態に係るインダクタ内蔵基板製造方法の各手順における断面図である。 第1の実施形態に係るインダクタ内蔵基板製造方法の一部の手順における上面図である。 第2の実施形態に係る電源モジュールにおけるインダクタの第1の上面図である。 第2の実施形態に係る電源モジュールにおけるインダクタの第2の上面図である。 第3の実施形態に係る電源モジュールを説明する図である。 第4の実施形態に係るインダクタ内蔵基板の斜視図及び断面図である。 第4の実施形態に係るインダクタ内蔵基板の製造方法の各手順における断面を示す第1の図である。 第4の実施形態に係るインダクタ内蔵基板の製造方法の各手順における断面を示す第2の図である。 第5の実施形態に係るインダクタ内蔵基板の斜視図及び断面図である。 第5の実施形態に係るインダクタ内蔵基板の製造方法の各手順における断面図である。 その他の実施形態に係るインダクタ内蔵基板の構造を示す第1の図である。 その他の実施形態に係るインダクタ内蔵基板の構造を示す第2の図である。
 以下、本発明の実施の形態を説明する。本発明は多くの異なる形態で実施可能である。また、本実施形態の全体を通して同じ要素には同じ符号を付けている。
  (本発明の第1の実施形態)
 本実施形態に係るインダクタ内蔵基板及びインダクタ内蔵基板製造方法について、図1ないし図4を用いて説明する。図1は、本実施形態に係るインダクタ内蔵基板製造方法で作成されるインダクタ内蔵基板の斜視図及び断面図、図2は、本実施形態に係るインダクタ内蔵基板製造方法の手順を示すフローチャート、図3は、本実施形態に係るインダクタ内蔵基板製造方法の各手順における断面図、図4は、本実施形態に係るインダクタ内蔵基板製造方法の一部の手順における上面図である。
 本実施形態に係るインダクタ内蔵基板1の構造について、図1を用いて説明する。図1(A)は、本実施形態に係るインダクタ内蔵基板1の斜視図、図1(B)は、図1(A)の矢印aの方向から見た場合の断面図である。図1(A)、(B)に示すように、本実施形態に係るインダクタ内蔵基板1は、少なくともコア材3と当該コア材3の表裏面を被覆する銅薄膜2a,2bからなるコア基板4上にインダクタ10を形成する。
 このインダクタ10は、コア基板4上に装着された磁性体5と、基板の積層方向に対して垂直な方向(コア基板4の面方向)に磁化するように、磁性体5を巻回するコイルとしての配線(第1コイル配線7、ビア6及び第2コイル配線8)とからなる。コア基板4の上面側の銅薄膜2aを第1の層とすると、第1コイル配線7は第1の層に形成されており、第2コイル配線8は第1の層の上層である第2の層に形成されている。第1コイル配線7と第2コイル配線8とは、ビア6を介して電気的に連続して接続されており、第1コイル配線7、ビア6及び第2コイル配線8に電流を流すことで、磁性体5の周りをコイル状(螺旋状)に電流が流れてインダクタ10が構成される。第1の層と第2の層との間は、通常の部品内蔵基板と同様に絶縁材としての樹脂12(図1(A)では図示しない)が充填されている。
 図1に示すインダクタ内蔵基板1は、本実施形態に係るインダクタ内蔵基板製造方法により製造することができる。本実施形態に係るインダクタ内蔵基板製造方法は、インダクタ10を基板製造工程の中で作り込むものである。すなわち、インダクタ10の製造工程と基板製造工程とを別個独立にし、インダクタ10のみをインダクタ製造工程で作成した後に、この別途作成されたインダクタ10を基板製造工程において部品として基板に埋め込んで内蔵するものではなく、基板を製造しながらインダクタ10が作り込まれることで、インダクタ内蔵基板1の製造工程を簡略化して、製造効率を格段に向上させることができる。
 図2ないし図4を用いて本実施形態に係るインダクタ内蔵基板製造方法の処理手順を具体的に説明する。まず、図2のステップS1で、図3(A)に示すような表面を銅箔で被覆されたコア基板4を用意し、このコア基板4の上面の銅薄膜2aに、磁性体5を巻回するコイルの下部の配線パターンに相当する第1コイル配線7をエッチングにより形成する(図3(B)及び図4(A)を参照)。ここでは、図4(A)に示すように、配線をインダクタのコイル状に形成するために、斜め方向に複数の帯状の第1コイル配線7が形成されている。
 なお、図4に示す第1コイル配線7の配線領域は、必要最小限の配線領域のみを記載したものであり、ここに記載された第1コイル配線7の配線領域以外の領域は、銅薄膜2aが除去されてもよいし、銅薄膜2aが残っている状態であってもよいし、他の必要な配線パターンが形成されてもよい。銅薄膜2aが残っている場合は、第1コイル配線7と電気的に接続されないことが必要となる。
 図2のステップS1で第1コイル配線7が形成されると、ステップS2で、第1コイル配線7の少なくとも端部11を除く領域に磁性体5を装着する(図3(C)及び図4(B)を参照)。ここでは、図4(B)に示すように、磁性体5は、後段の製造工程で形成されるビア6との接続のために、端部11を除く領域に装着される必要がある。
 図2のステップS2で磁性体5が装着されると、ステップS3で、装着された磁性体5を絶縁材としての樹脂12で封止する(図3(D)を参照)。磁性体5が樹脂12に埋め込まれると、ステップS4で、ビア穴6aを形成する(図3(E)及び図4(C)を参照)。ここでは、図4(C)に示すように、第1コイル配線7の端部11の位置と、信号の入出力を行うための配線に接続する位置にビア穴6aが形成される。ビア穴6aは、例えばレーザーを用いて穿けることができる。
 図2のステップS4でビア穴6aが形成されると、ステップS5で、形成されたビア穴6a及び第2層をめっきで埋める(図3(F)を参照)。ステップS6で、めっき工程にて形成された第2層の銅薄膜に対して、インダクタ10の上部の配線パターンに相当する第2コイル配線8をエッチングにより形成する(図3(G)及び図4(D)を参照)。ここでは、図4(D)に示すように、磁性体5を基板の積層方向に対して垂直な方向にコイル状に巻回するように、ビア6の間に第2コイル配線8をエッチングで形成する。以上のように、基板製造工程の中で、磁性体5を基板の積層方向と垂直な方向に螺旋状に巻回するコイルとして機能させるための配線(第1コイル配線7、ビア6及び第2コイル配線8)を形成する。
 なお、第1コイル配線7、ビア6及び第2コイル配線8を形成する場合に、同様の又は一連のめっき処理にて行うようにしてもよい。そうすることで、第1コイル配線7、ビア6及び第2コイル配線8と、基板における他の配線との電気的な特性(抵抗や容量等)を確実に共通化することができる。
 このように、本実施形態に係るインダクタ内蔵基板製造方法においては、通常の基板の製造工程の中で、磁性体5をコアとするインダクタ10が作り込まれるため、インダクタ内蔵基板1を非常に効率よく製造することができる。
 また、基板の製造工程の中でインダクタ10が作り込まれることで、コイル状に形成されたインダクタ10の配線(第1コイル配線7、ビア6及び第2コイル配線8)と他の配線との電気的な特性(抵抗や容量等)を共通化することができるため、非常に高精度なインダクタ内蔵基板を製造することが可能になる。すなわち、インダクタのみを別工程で製造し、その別途製造されたインダクタを基板製造工程で部品として埋め込む場合は、インダクタと基板の配線間を接続する必要があるため、配線の電気的な特性にずれがある場合に精度が良くない基板になってしまう。本実施形態のインダクタ内蔵基板製造方法を用いることで、そのような問題を避けることができる。
  (本発明の第2の実施形態)
 本実施形態に係るインダクタ内蔵基板について、図5及び図6を用いて説明する。図5は、本実施形態に係る電源モジュールにおけるインダクタの第1の上面図、図6は、本実施形態に係る電源モジュールにおけるインダクタの第2の上面図である。なお、本実施形態において、前記各実施形態と重複する説明については省略する。
 本実施形態に係るインダクタ内蔵基板は、複数のインダクタ10が直列に接続されて配設されており、それぞれのインダクタ10が所定の間隔を空けて並列に配設されている。そして、相隣るインダクタ10のコイル状の配線に流れる電流が、それぞれ逆方向となるように配線が形成されているものである。図5及び図6ではインダクタ10が2つ並列に配設された場合を示す。
 図5に示す通り、相隣るインダクタのコイル状の配線は、それぞれが連続して直列に接続されており、また磁化の方向がそれぞれ逆方向となるように配線が形成されているため、インダクタンスの値を大きくすることができると共に、隣接配設されるインダクタ同士の鎖交磁束により、外部への磁界の影響を減らして高精度な電源モジュールを実現することができる。
 なお、図5の配線パターンはあくまで一例を示したものであり、隣接配設されるインダクタ10の夫々の磁化の方向が逆となるような配線パターンであれば、本実施形態に係る電源モジュールを実現することができる。その他の例を図6に示す。
 図6の配線パターンは、2つの磁性体5が並列して配置され、各磁性体5の外側の側面に沿って形成される複数の第1ビア6aと、磁性体5の内側の側面に沿って形成される各磁性体5に共通の第2ビア6bとを有し、第2コイル配線8、第1ビア6a、第1コイル配線7及び第2ビア6bとで形成されるコイルが、各磁性体5に一又は複数ターンごとに交互に巻回されるように第2コイル配線8、第1ビア6a、第1コイル配線7及び第2ビア6bが形成されている。すなわち、図5と同様にコイル状の配線が連続して直列に接続され、各インダクタの磁化方向がそれぞれ逆方向となっているが、第2ビア6bを各インダクタに共通のビアとし、それぞれの磁性体5に巻回されるコイルの配線が、1ターンごとに交互に巻回されるようになっている。
 図6に示すような構成とすることで、図5の場合と同様にインダクタンスの値を大きくすることができると共に、隣接配設されるインダクタ同士の鎖交磁束により、外部への磁界の影響を減らして高精度な電源モジュールを実現することができる。また、第2ビア6bを各インダクタに共通のビアとすることで、インダクタが占有する面積を小さくして、素子を微細化することが可能になる。
 なお、図5及び図6に示すインダクタは、必ずしも基板の製造工程で作り込む必要がなく、部品単体として別途作成してから基板に埋め込むようにしてもよい。つまり、磁性体自体にビア穴を形成し、上面と下面にめっきでコイル状の配線パターンの形成することでインダクタを作製することも可能である。特に、図6の構成の場合は、磁性体5に第1ビア6aと第2ビア6bとを交互に複数列形成し、それぞれのビアと第1コイル配線7及び第2コイル配線8とをめっきで形成した後に、第1ビア6aの列のみを当該第1ビア6aが垂直方向の切断面で分断(半円柱状に分断)されるように磁性体5を切断することで、図6のインダクタ部品を作製することができる。
  (本発明の第3の実施形態)
 本実施形態に係るインダクタ内蔵基板を用いた電源モジュールについて、図7を用いて説明する。図7は、本実施形態に係る電源モジュールの一実施例を説明する図であり、図7(A)は一般的な降圧型のDC/DCコンバータの回路図を示し、図7(B)は電源モジュールの断面図を示す。なお、本実施形態において、前記第1の実施形態と重複する説明については省略する。また、本実施形態に係るインダクタ10は、DC/DCコンバータICの外付け部品であるDC/DCコンバータ用チョークコイルとして機能するものである。
 本実施形態に係る電源モジュール20は、前記第1の実施形態に係るインダクタ内蔵基板1を用いたものであり、図7(A)に示す回路構成となっている。すなわち、入力端子と出力端子の間に、スイッチング素子17とインダクタ10が直列に接続され、出力端子とグランド間にキャパシタ16が接続され、スイッチング素子17とインダクタ10との接続点とグランドとの間にダイオード18が接続され、スイッチング素子17の制御端子にDC/DCコンバータが接続された構成となっている。
 具体的な構造は、図7(B)に示すように、インダクタ10の上部の位置に対応する位置にDC/DCコンバータ15を搭載し、このDC/DCコンバータ15とインダクタ10とが直列で接続されるように配線が形成される。また、コアを挟んだインダクタ10の下側の層には、ビアを介してインダクタ10と接続するキャパシタ16が作り込みで形成される。このような構造により、図7(A)の回路が実現される。
 なお、このとき、DC/DCコンバータ15とキャパシタ16とは、インダクタ10の磁性体を挟んで対向するように配設されるのが望ましい。
 また、キャパシタ16は、部品として内蔵することも可能であるが、本実施形態の場合は、基板製造工程の中で作り込むようにすることで、基板製造工程で電源モジュールを形成することができ、製造効率を向上させることができる。
 このように、本実施形態に係る電源モジュール20は、インダクタ10の上部にDC/DCコンバータ15を搭載し、インダクタ10に接続するキャパシタを基板製造工程の中で作り込みで形成することで、電源モジュール20製造効率を向上させることができる。また、DC/DCコンバータ15とキャパシタ16とが、インダクタ10の磁性体5を挟んで対向して配設されているので、インダクタ10を構成する磁性体5によりDC/DCコンバータ15からの不要な電磁波が吸収されて高精度な電源モジュールを実現することができる。
  (本発明の第4の実施形態)
 本実施形態に係るインダクタ内蔵基板について、図8ないし図10を用いて説明する。図8は、本実施形態に係るインダクタ内蔵基板の斜視図及び断面図、図9は、本実施形態に係るインダクタ内蔵基板の製造方法の各手順における断面を示す第1の図、図10は、本実施形態に係るインダクタ内蔵基板の製造方法の各手順における断面を示す第2の図である。なお、本実施形態において、前記各実施形態と重複する説明については省略する。
 本実施形態に係るインダクタ内蔵基板1の構造について、図8を用いて説明する。図8(A)は、本実施形態に係るインダクタ内蔵基板1の斜視図、図8(B)は、図8(A)の矢印aの方向から見た場合の断面図である。本実施形態に係るインダクタ内蔵基板1は、第1の実施形態で図1に示したインダクタ内蔵基板1において、磁性体5を巻回するコイルとしての配線の巻回数が1回であるのに対して、複数回(図8においては2回)巻回されるように、配線及びビアが形成されている。すなわち、コイルの巻数を増やすことで、第1の実施形態に係るインダクタ内蔵基板1に比べて、大きい値のインダクタンスを得ることができる。
 次に、本実施形態に係るインダクタ内蔵基板1の製造方法について、図9及び図10を用いて一例を説明する。まず、両面に銅箔付きのコア材を用意し(図9(A))、銅箔全面をエッチングにより除去する(図9(B))。コア材に磁性体5を収納するためのキャビティ及び位置決めのための穴を穿ける(図9(C))。裏面側に銅箔付きの層間絶縁材料を付け(図9(D))、キャビティ内に磁性体5を投入する(図9(E))。表面側を銅箔付きの層間絶縁材料で埋め込む(図9(F))。裏面側にコイルとしての配線をパターニングで形成すると共に、表面側にX線穴あけ用のパターンのみを残してパターニングする(図9(G))。両面に銅箔付きの層間絶縁材料を貼り付け(図9(H))、第2層と第3層との間、及び、第2層と第4層との間にスルーホールを形成するための穴を穿ける(図9(I))。このとき、位置決めは外枠の穴を用いる。
 続いて、デスミアを行ってからスルーホールメッキを行う(図10(A))。先ほどの表面側の配線パターンを利用してX線により位置決め用の穴を穿ける(図10(B))。表面側(第2層)及び裏面側(第4層)にコイルとしての配線をパターニングで形成すると共に、X線穴あけ用のパターンを形成する(図10(C))。このとき、位置決めは図10(B)で穿けたX線穴を用いる。両面に銅箔付きの層間絶縁材料を貼り付け(図10(D))、第1層と第4層との間、及び、第1層と第5層との間にスルーホールを形成するための穴を穿ける(図10(E))。このとき、位置決めは外枠の穴を用いる。デスミアを行ってからスルーホールめっきを行う(図10(F))。図10(C)の配線パターンを利用してX線により位置決め用の穴を穿ける(図10(G))。表面側(第1層)及び裏面側(第5層)にコイルとしての配線をパターニングで形成する(図10(H))。このとき、位置決めは図10(G)で穿けたX線穴を用いる。ソルダーレジストによるパターニングを行う(図10(I))。このとき、位置決めは図10(G)で穿けたX線穴を用いる。最後に無電解Ni/Auめっきを行い、個片化ルータ加工を施してインダクタ内蔵基板1が製造される。
 このように、本実施形態に係るインダクタ内蔵基板及びその製造方法においては、コイルの巻数を増やすことで大きい値のインダクタを得ることができ、且つ、当該インダクタが内臓された基板を通常の基板製造工程の中で作り込むことができる。
  (本発明の第5の実施形態)
 本実施形態に係るインダクタ内蔵基板について、図11及び図12を用いて説明する。図11は、本実施形態に係るインダクタ内蔵基板の斜視図及び断面図、図12は、本実施形態に係るインダクタ内蔵基板の製造方法の各手順における断面図である。なお、本実施形態において、前記各実施形態と重複する説明については省略する。
 本実施形態に係るインダクタ内蔵基板1の構造について、図11を用いて説明する。図11(A)は、本実施形態に係るインダクタ内蔵基板1の斜視図、図11(B)は、図11(A)の矢印aの方向から見た場合の断面図である。本実施形態に係るインダクタ内蔵基板1は、第2の実施形態で図5に示したインダクタ内蔵基板1のように、2つのインダクタが並列に配置された2芯構造であるが、基板の積層方向に並列に配置されている。すなわち、コア材を挟んで表面側と裏面側にそれぞれインダクタが作り込まれる。
 次に、本実施形態に係るインダクタ内蔵基板1の製造方法について、図12を用いて一例を説明する。まず、両面に銅箔付きのコア材を用意し(図12(A))、位置決め用の穴を穿ける(図12(B))。表面側(第2層)及び裏面側(第3層)にコイルとしての配線をパターニングで形成する(図12(C))。このとき、位置決めは外枠の穴を用いる。表面側及び裏面側に磁性体5をそれぞれ搭載する(図12(D))。このとき、ペレット付け剤にて磁性体5を固定する。両面を樹脂で埋め込み、それぞれの表面を層間絶縁材料でラミネートする(図12(E))。表面側から裏面側まで貫通するスルーホール用の穴を穿ける(図12(F))。このとき、位置決めは外枠の穴を用いる。デスミアを行ってから表面全面にめっきを行う(無電解めっき及び電解めっき)(図12(G))。表面側(第1層)及び裏面側(第4層)にコイルとしての配線をパターニングで形成する(図12(H))。このとき、位置決めは外枠の穴を用いる。以降、前記第4の実施形態の場合と同様に、ソルダーレジストによるパターニング、無電解Ni/Auめっき、個片化ルータ加工を施してインダクタ内蔵基板1が製造される。
 なお、上記製造方法により製造されたインダクタ内蔵基板1は、図5に示した構造と同様に、配線パターン及びスルーホールにより、表面側のインダクタと裏面側のインダクタとが直列に連続して接続されているものである。
 このように、本実施形態に係るインダクタ内蔵基板及びその製造方法においては、2芯の構造にすることで大きい値のインダクタを得ることができ、且つ、当該インダクタが内臓された基板を通常の基板製造工程の中で作り込むことができる。
  (その他の実施形態)
 上記各実施形態以外のインダクタ内蔵基板の構造について説明する。図13は、図6に示すインダクタ内蔵基板の変形例である。図6においては、2つの磁性体5の間に形成されるビア6が縦方向に直線で並んで形成されているのに対して、図13の場合は、2つの磁性体5の間に形成されるビア6がジグザク状に形成されている。例えば、図6の場合、電流が磁性体5の間(内側)と外側とで異なる大きさとなるため、内側のみ磁束が飽和し、安定したインダクタンスを得ることができない可能性がある。これに対して、図13の場合は、インダクタ自体が多少大きくなるものの、それぞれの磁性体5における磁束が、外側と内側とで均等になり、安定したインダクタを得ることができる。また、ビア6が離れて形成されるため、ビア穴の形成も容易になる。
 図14は、図5に示すインダクタ内蔵基板の変形例である。図5においては、2つの磁性体5がそれぞれ別体として構成されているが、図14においては、1つの磁性体5が閉ループ状に形成されている。コイルとしての配線パターン及びビアは、この閉ループ状の磁性体5を巻回するように形成される。こうすることで、磁束が安定して鎖交するインダクタを得ることができるようになる。なお、ループ形状は、円、楕円、矩形、多角形等でもよいが、磁束を効率よく鎖交させるために、円や楕円のように滑らかなループ状であることが望ましい。
  1 インダクタ内蔵基板
  2a,2b 銅薄膜
  3 コア材
  4 コア基板
  5 磁性体
  6 ビア
  7 第1コイル配線
  8 第2コイル配線
  10 インダクタ
  11 端部
  15 DC/DCコンバータ
  16 キャパシタ
  17 スイッチング素子
  18 ダイオード
  20 電源モジュール

Claims (11)

  1.  コア基板の表面に帯状の複数の配線パターンを形成する第1配線工程と、
     前記第1配線工程で形成された帯状の配線パターンにおける少なくとも端部を除く領域に磁性体を装着する磁性体装着工程と、
     前記磁性体を絶縁材で埋め込む埋込工程と、
     帯状の前記配線パターンの端部と上層に形成される配線パターンとを接続するためのビア穴を形成するビア穴形成工程と、
     前記ビア穴形成工程で形成されたビア穴に導電性材料を充填する充填工程と、
     前記充填工程で形成されたビアと接続され、基板の積層方向に対して垂直な方向に磁化するコイルとして配線が形成されるように、前記充填工程で形成された上層の金属薄膜に帯状の複数の配線パターンを形成する第2配線工程とを含むことを特徴とするインダクタ内蔵基板製造方法。
  2.  請求項1に記載のインダクタ内蔵基板製造方法において、
     前記帯状の配線パターン及び前記ビアの形成が、同様のめっき処理で行われることを特徴とするインダクタ内蔵基板製造方法。
  3.  コア基板の表面に形成された帯状の複数の第1配線パターンと、当該第1配線パターンの少なくとも端部を除く領域に装着される磁性体と、前記第1配線パターンと前記磁性体とをモールドする絶縁材と、当該絶縁材の上面に形成される帯状の複数の第2配線パターンとを備え、前記第1配線パターンと前記第2配線パターンとが、前記基板の積層方向に対して垂直な方向に磁化するコイルとして配線が形成されるようにビアで接続されていることを特徴とするインダクタ内蔵基板。
  4.  請求項3に記載のインダクタ内蔵基板において、
     前記請求項1又は2に記載のインダクタ内蔵基板製造方法により製造されたインダクタ内蔵基板。
  5.  請求項3又は4に記載のインダクタ内蔵基板において、
     複数の前記インダクタが並列して配置され、それぞれの前記インダクタにおけるコイルの配線が連続して直列接続されており、相隣る前記インダクタの磁化方向が、夫々逆方向となっていることを特徴とするインダクタ内蔵基板。
  6.  請求項5に記載のインダクタ内蔵基板において、
     2つの前記磁性体が並列して配置され、当該各磁性体の外側の側面に沿って形成される複数の第1ビアと、前記磁性体の内側の側面に沿って形成される前記各磁性体に共通の第2ビアとを有し、
     前記第1配線パターン、第2配線パターン、第1ビア及び第2ビアとで形成される前記コイルが、前記各磁性体に一又は複数ターンごとに交互に巻回されるように前記第1配線パターン、第2配線パターン、第1ビア及び第2ビアが形成されていることを特徴とするインダクタ内蔵基板。
  7.  請求項3又は4に記載のインダクタ内蔵基板において、
     前記磁性体が閉ループ状であり、前記第1配線パターン、前記第2配線パターン及びビアが、前記磁性体を巻回するコイルとして形成されていることを特徴とするインダクタ内蔵基板。
  8.  請求項3ないし7のいずれかに記載のインダクタ内蔵基板を用いた電源モジュールであって、
     前記インダクタの上部に当該インダクタと直列に接続されるDC/DCコンバータが搭載されており、前記インダクタの後段部分に、出力部とキャパシタとが並列に接続されており、前記DC/DCコンバータと前記キャパシタとが前記インダクタの磁性体を挟んで対向して配設されていることを特徴とする電源モジュール。
  9.  コア基板に磁性体を埋め込む磁性体埋込工程と、
     前記磁性体が埋め込まれた前記コア基材の表面及び裏面に配線層を形成する配線層形成工程と、
     表面及び裏面の前記配線層を接続するためのビア穴を形成するビア穴形成工程と、
     前記ビア穴形成工程で形成されたビア穴に導電性材料を充填する充填工程と、
     前記充填工程で形成されたビア、並びに、前記コア基材の表面に形成された配線層及び裏面に形成された配線層が、基板の積層方向に対して垂直な方向に磁化するコイルとなるように、前記表面及び裏面の配線層の配線パターンを形成する配線工程とを含むことを特徴とするインダクタ内蔵基板製造方法。
  10.  請求項9に記載のインダクタ内蔵基板製造方法において、
     前記配線工程により形成された配線パターンの表面及び裏面に再度配線層を形成する第2の配線層形成工程を含み、
     前記第2の配線層形成工程、並びに、前記ビア穴形成工程、前記充填工程及び前記配線工程を1又は複数回繰り返して、前記コイルの巻回数を複数回に形成することを特徴とするインダクタ内蔵基板製造方法。
  11.  コア基板の表面及び裏面に帯状の複数の配線パターンを形成する第1配線工程と、
     前記第1配線工程で形成された前記コア基板の表面及び裏面における帯状の配線パターンの少なくとも端部を除く領域に磁性体を装着する磁性体装着工程と、
     前記磁性体を絶縁材で埋め込む埋込工程と、
     帯状の前記配線パターンの端部と、各配線パターンの上層に形成される配線パターンとを接続するためのビア穴を形成するビア穴形成工程と、
     前記ビア穴形成工程で形成されたビア穴に導電性材料を充填する充填工程と、
     前記充填工程で形成されたビアと接続され、前記コア基板を挟んで表面及び裏面のそれぞれに、基板の積層方向に対して垂直な方向に磁化するコイルとして配線が形成されるように、前記充填工程で形成された上層の金属薄膜に帯状の複数の配線パターンを形成する第2配線工程とを含むことを特徴とするインダクタ内蔵基板製造方法。
PCT/JP2013/055846 2012-03-16 2013-03-04 インダクタ内蔵基板製造方法及びインダクタ内蔵基板及びそれを用いた電源モジュール WO2013137044A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014504799A JP6086370B2 (ja) 2012-03-16 2013-03-04 インダクタ内蔵基板製造方法、インダクタ内蔵基板及びそれを用いた電源モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-060957 2012-03-16
JP2012060957 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013137044A1 true WO2013137044A1 (ja) 2013-09-19

Family

ID=49160957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055846 WO2013137044A1 (ja) 2012-03-16 2013-03-04 インダクタ内蔵基板製造方法及びインダクタ内蔵基板及びそれを用いた電源モジュール

Country Status (2)

Country Link
JP (1) JP6086370B2 (ja)
WO (1) WO2013137044A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111048A (ja) * 2014-12-02 2016-06-20 学校法人福岡大学 インダクタ内蔵基板
CN106559956A (zh) * 2015-09-30 2017-04-05 三星电子株式会社 电源供应器的电路板、包括电路板的电子装置和电感装置
KR20170096200A (ko) * 2015-02-05 2017-08-23 퀄컴 인코포레이티드 패키지 기판에 내장된 보호 링을 갖는 자성 코어 인덕터를 포함하는 집적형 디바이스 패키지
KR20170108581A (ko) * 2016-03-18 2017-09-27 삼성전기주식회사 자성코어 내장 인쇄회로기판
KR20180082282A (ko) * 2017-01-09 2018-07-18 삼성전기주식회사 인쇄회로기판
US11600690B2 (en) 2018-02-11 2023-03-07 Danmarks Tekniske Universitet Power converter embodied in a semiconductor substrate member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587609Y2 (ja) * 1979-01-25 1983-02-10 ティーディーケイ株式会社 積層トランス
JPH0446570U (ja) * 1990-08-24 1992-04-21
JPH06112655A (ja) * 1992-09-29 1994-04-22 Matsushita Electric Ind Co Ltd コイル内蔵多層印刷配線板およびその製造方法
JPH1140915A (ja) * 1997-05-22 1999-02-12 Nec Corp プリント配線板
JP2003209331A (ja) * 2002-01-17 2003-07-25 Toppan Printing Co Ltd プリント配線板およびその製造方法
JP2004200439A (ja) * 2002-12-19 2004-07-15 Nec Tokin Corp 基板
JP2008072021A (ja) * 2006-09-15 2008-03-27 Nec Kansai Ltd 磁気デバイス素子、それを含む電子デバイス及び磁気デバイス素子の製造方法
JP2008085314A (ja) * 2006-08-29 2008-04-10 Matsushita Electric Ind Co Ltd 放熱基板とその製造方法及び電源ユニット及びプラズマ表示装置
JP2009212265A (ja) * 2008-03-04 2009-09-17 Daihatsu Motor Co Ltd トランス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587609Y2 (ja) * 1979-01-25 1983-02-10 ティーディーケイ株式会社 積層トランス
JPH0446570U (ja) * 1990-08-24 1992-04-21
JPH06112655A (ja) * 1992-09-29 1994-04-22 Matsushita Electric Ind Co Ltd コイル内蔵多層印刷配線板およびその製造方法
JPH1140915A (ja) * 1997-05-22 1999-02-12 Nec Corp プリント配線板
JP2003209331A (ja) * 2002-01-17 2003-07-25 Toppan Printing Co Ltd プリント配線板およびその製造方法
JP2004200439A (ja) * 2002-12-19 2004-07-15 Nec Tokin Corp 基板
JP2008085314A (ja) * 2006-08-29 2008-04-10 Matsushita Electric Ind Co Ltd 放熱基板とその製造方法及び電源ユニット及びプラズマ表示装置
JP2008072021A (ja) * 2006-09-15 2008-03-27 Nec Kansai Ltd 磁気デバイス素子、それを含む電子デバイス及び磁気デバイス素子の製造方法
JP2009212265A (ja) * 2008-03-04 2009-09-17 Daihatsu Motor Co Ltd トランス

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111048A (ja) * 2014-12-02 2016-06-20 学校法人福岡大学 インダクタ内蔵基板
KR20170096200A (ko) * 2015-02-05 2017-08-23 퀄컴 인코포레이티드 패키지 기판에 내장된 보호 링을 갖는 자성 코어 인덕터를 포함하는 집적형 디바이스 패키지
KR101880409B1 (ko) * 2015-02-05 2018-07-19 퀄컴 인코포레이티드 패키지 기판에 내장된 보호 링을 갖는 자성 코어 인덕터를 포함하는 집적형 디바이스 패키지
CN106559956B (zh) * 2015-09-30 2021-04-06 三星电子株式会社 电源供应器的电路板、包括电路板的电子装置和电感装置
WO2017057842A1 (en) * 2015-09-30 2017-04-06 Samsung Electronics Co., Ltd. Circuit board for power supply, electronic apparatus including the same, and inductor device
US10455687B2 (en) 2015-09-30 2019-10-22 Samsung Electronics Co., Ltd. Circuit board for power supply, electronic apparatus including the same, and inductor device
CN106559956A (zh) * 2015-09-30 2017-04-05 三星电子株式会社 电源供应器的电路板、包括电路板的电子装置和电感装置
KR20170108581A (ko) * 2016-03-18 2017-09-27 삼성전기주식회사 자성코어 내장 인쇄회로기판
JP2017175120A (ja) * 2016-03-18 2017-09-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. 磁性コア内蔵印刷回路基板
JP7014375B2 (ja) 2016-03-18 2022-02-01 サムソン エレクトロ-メカニックス カンパニーリミテッド. 磁性コア内蔵印刷回路基板
KR102523852B1 (ko) * 2016-03-18 2023-04-20 삼성전기주식회사 자성코어 내장 인쇄회로기판
KR20180082282A (ko) * 2017-01-09 2018-07-18 삼성전기주식회사 인쇄회로기판
KR102426202B1 (ko) * 2017-01-09 2022-07-29 삼성전기주식회사 인쇄회로기판
US11600690B2 (en) 2018-02-11 2023-03-07 Danmarks Tekniske Universitet Power converter embodied in a semiconductor substrate member
US11908886B2 (en) 2018-02-11 2024-02-20 Danmarks Tekniske Universitet Power converter embodied in a semiconductor substrate member

Also Published As

Publication number Publication date
JPWO2013137044A1 (ja) 2015-08-03
JP6086370B2 (ja) 2017-03-01

Similar Documents

Publication Publication Date Title
US7170384B2 (en) Printed circuit board having three-dimensional spiral inductor and method of fabricating same
JP6086370B2 (ja) インダクタ内蔵基板製造方法、インダクタ内蔵基板及びそれを用いた電源モジュール
JP5549600B2 (ja) 平板状コイル付きモジュールの製造方法及び平板状コイル付きモジュール
CN108806950B (zh) 线圈部件
TWI427649B (zh) 多層電感器
JP6256820B2 (ja) フレキシブルプリント配線板及び該フレキシブルプリント配線板の製造方法
JP5962754B2 (ja) 電子部品
US20130335186A1 (en) Electromagnetic component and fabrication method thereof
KR101832608B1 (ko) 코일 전자 부품 및 그 제조방법
JP2015088753A (ja) コイル部品とその製造方法、コイル部品内蔵基板、及びこれを含む電圧調節モジュール
JP6393457B2 (ja) コイル基板及びその製造方法、インダクタ
JP5570196B2 (ja) インダクタ内蔵部品
KR101532171B1 (ko) 인덕터 및 그 제조 방법
JP2016515305A (ja) ラミネートポリマーを使用するプレーナ磁気技術に関する装置および方法
JP2014038884A (ja) 電子部品および電子部品の製造方法
CN108701527A (zh) 电感器部件以及电感器部件的制造方法
JP2013207149A (ja) トロイダルコイル
JP6551256B2 (ja) コイル部品、コイル部品を内蔵した回路基板、並びに、コイル部品を備える電源回路
JP5716391B2 (ja) コイル内蔵基板
US20210233698A1 (en) Coil component and its manufacturing method
JP6610769B2 (ja) 電子部品モジュール、dc−dcコンバータおよび電子機器
JP6572791B2 (ja) コイル複合部品及び多層基板、ならびに、コイル複合部品の製造方法
JP6658234B2 (ja) 積層型電子部品
KR100733279B1 (ko) 인덕터 내장형 인쇄 회로 기판 제조 방법
JP2013207151A (ja) トランス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761741

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014504799

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761741

Country of ref document: EP

Kind code of ref document: A1