WO2013136922A1 - 多結晶シリコンウエハ - Google Patents

多結晶シリコンウエハ Download PDF

Info

Publication number
WO2013136922A1
WO2013136922A1 PCT/JP2013/054081 JP2013054081W WO2013136922A1 WO 2013136922 A1 WO2013136922 A1 WO 2013136922A1 JP 2013054081 W JP2013054081 W JP 2013054081W WO 2013136922 A1 WO2013136922 A1 WO 2013136922A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
polycrystalline silicon
silicon wafer
depth
less
Prior art date
Application number
PCT/JP2013/054081
Other languages
English (en)
French (fr)
Inventor
高村 博
鈴木 了
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US14/381,431 priority Critical patent/US9053942B2/en
Priority to JP2014504750A priority patent/JP5826915B2/ja
Publication of WO2013136922A1 publication Critical patent/WO2013136922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table

Definitions

  • the present invention relates to a polycrystalline silicon wafer, particularly a silicon wafer having an outer diameter of 450 mm or more for mechanical testing.
  • the shape of a single crystal silicon wafer used in an LSI process tends to increase in diameter with the times. This is because when the wafer diameter is increased, more semiconductor devices can be manufactured from one wafer and the chip unit price can be reduced. On the other hand, with the progress of device miniaturization, quality requirements for silicon wafers are becoming increasingly severe. Therefore, when the wafer size is shifted to a large product, it is necessary to solve the problem of quality as well as the problem of scale, and there is a problem that the market price of the single crystal wafer of the next generation size becomes very expensive.
  • the transition time of wafer size from 300 mm to 450 mm was predicted to be around 2012, and the transition time from 450 mm to 675 mm was predicted to be around 2019. The increase in diameter and the pursuit of quality are expected to continue.
  • mechanical wafer Since such a wafer (hereinafter referred to as “mechanical wafer”) is not a single crystal wafer that can actually manufacture a device, it is very important to be low in cost. Therefore, it is necessary to reduce the cost by omitting unnecessary quality as a mechanical wafer, and to grasp the conditions for achieving the same level as the single crystal wafer in the mechanical characteristics.
  • a sintered silicon wafer for LSI is a sintered body having a crystal grain size of 100 ⁇ m or less.
  • a sintered body having an average particle diameter of 1 to 10 ⁇ m has been proposed.
  • these sintered silicon dummy wafers can adjust the bending strength, tensile strength, and Vickers hardness and increase the strength of the wafer, naturally the gravity deflection of the wafer approaches that of a single crystal silicon wafer.
  • Patent Document 3 describes that the outer diameter is 48 mm or more and 450 mm or less, and the roughness Ra and the surface sag are reduced.
  • the cause of cracking of polycrystalline silicon of 450 mm or more is not a problem of surface roughness or sagging, but rather a fine scratch. Therefore, Patent Document 3 has solved the problem of polycrystalline silicon of 450 mm or more. It is thought that there is not.
  • JP 2004-289065 A International Publication Number WO2009 / 011233 JP 2009-38220 A
  • the present invention has been made in view of the above, and is a large-sized polycrystalline silicon wafer, and particularly in a silicon wafer having an outer diameter of 450 mm or more, the generation of scratches on the wafer surface is small and small.
  • An object of the present invention is to provide a large polycrystalline silicon wafer similar to the mechanical properties of a single crystal silicon wafer.
  • the present inventors have repeatedly conducted a production test of polycrystalline silicon, and as a result, have obtained a large-sized polycrystalline silicon wafer similar to the mechanical properties of a single crystal silicon wafer. knowledge was obtained of the possible. Based on the above findings, the present invention provides the following inventions.
  • a polycrystalline silicon wafer having an outer diameter of 450 mm or more produced by a melting method, and the scratch existing on the wafer has a width of 20 ⁇ m or more and 40 ⁇ m or less and a depth of more than 10 ⁇ m and 20 ⁇ m or less.
  • the polycrystalline silicon wafer of the present invention is a polycrystalline silicon wafer produced by a melting method.
  • CMP Chemical-Mechanical-Polishing
  • the polycrystalline silicon wafer of the present invention is a polycrystalline silicon wafer having an outer diameter of 450 mm or more produced by a melting method, and provides a polycrystalline silicon wafer having a depth of scratches present on the wafer of 10 ⁇ m or less.
  • a flaw depth since the mechanical characteristics of the silicon wafer are not deteriorated even if the flaw width is large, the flaw width is not displayed. The same applies hereinafter. Thereby, the mechanical characteristics of the silicon wafer can be improved, and a polycrystalline silicon wafer similar to the mechanical characteristics of the single crystal wafer can be obtained.
  • the depth of the scratch is 10 ⁇ m or less, but the number of scratches having a scratch depth of 0 ⁇ m or a depth of 10 ⁇ m or less does not mean zero.
  • This is intended to obtain mechanical strength equivalent to that of a single crystal silicon wafer without performing costly CMP (Chemical Mechanical Polishing), and therefore there is a scratch having a depth of less than 2 ⁇ m. That is, scratches with a depth of less than 2 ⁇ m exist as scratches that are not subjected to CMP.
  • FIG. 1 shows how this scratch was observed using a high-intensity halogen lamp.
  • the shape of the flaw is not limited, and includes rectangles such as rectangles and rectangles, circles (perfect circles and ellipses), and other irregular shapes.
  • the scratches appear straight from the surface of the polycrystalline silicon wafer. Based on the scratch (which may be a collection of small defects), the width of the scratch is the longest width and the depth is the maximum depth.
  • the present invention is a polycrystalline silicon wafer having an outer diameter of 450 mm or more produced by a melting method as a condition for obtaining a mechanical strength equivalent to that of a single crystal wafer, and a width existing in the wafer is 40 ⁇ m or more and 100 ⁇ m or less.
  • the maximum number of scratches per section when the entire wafer is divided into 100 mm squares is 1 or less, and the depth of the remaining scratches is 10 ⁇ m or less to provide a wafer.
  • CMP since CMP is not performed, there is a scratch having a depth of less than 2 ⁇ m. That is, scratches with a depth of less than 2 ⁇ m exist as scratches that are not subjected to CMP. As above, this level of flaws is negligible because it does not cause degradation of the mechanical properties of the polycrystalline silicon wafer.
  • the present invention is a polycrystalline silicon wafer having an outer diameter of 450 mm or more produced by a melting method as a condition for obtaining a mechanical strength equivalent to that of a single crystal wafer, and the width existing in the wafer is 20 ⁇ m or more and 40 ⁇ m or less.
  • the maximum number of scratches with a depth of more than 20 ⁇ m and 40 ⁇ m or less is 1 or less, and the depth of the remaining scratches is 10 ⁇ m or less.
  • a polycrystalline silicon wafer is provided. Also in this case, since CMP is not performed, there is a scratch having a depth of less than 2 ⁇ m. That is, scratches with a depth of less than 2 ⁇ m exist as scratches that are not subjected to CMP. As above, this level of flaws is negligible because it does not cause degradation of the mechanical properties of the polycrystalline silicon wafer.
  • the present invention is a polycrystalline silicon wafer having an outer diameter of 450 mm or more produced by a melting method as a condition for obtaining a mechanical strength equivalent to that of a single crystal wafer, and the width existing in the wafer is 20 ⁇ m or more and 40 ⁇ m or less.
  • the maximum number of scratches per section is 3 or less and the depth of the remaining scratches is 10 ⁇ m or less. to provide a crystalline silicon wafer.
  • CMP since CMP is not performed, there is a scratch having a depth of less than 2 ⁇ m. That is, scratches with a depth of less than 2 ⁇ m exist as scratches that are not subjected to CMP. As above, this level of flaws is negligible because it does not cause degradation of the mechanical properties of the polycrystalline silicon wafer.
  • a polycrystalline silicon wafer having a low cost can be obtained which is similar to the mechanical characteristics of the single crystal wafer.
  • An example in which a wafer having an outer diameter of 450 mm or more is divided by a 100 mm square lattice is shown in FIG.
  • the scratch extends over two or more sections, but the size of the scratch in each section when the section is divided into 100 mm squares means the longest width and the maximum depth in each section. The same applies hereinafter.
  • a polycrystalline silicon wafer that is similar to the mechanical characteristics of a single crystal wafer and that is low in cost can be obtained.
  • the silicon wafer is suitable for a polycrystalline silicon wafer having an outer diameter of 450 mm or more, and can be used as a mechanical wafer. It is also possible to provide a polycrystalline silicon wafer having a silicon purity of 3N to 7N or higher.
  • the present invention includes these.
  • the polycrystalline silicon wafer described above is necessary not only as a mechanical wafer but also in a semiconductor manufacturing apparatus such as a vertical furnace when the purity of the wafer surface is increased by using the purity of a high-purity silicon material. It can also be used as a dummy filler wafer.
  • the above classification of surface scratches can be applied as various parts such as a sputtering target and a holder of a semiconductor manufacturing apparatus.
  • Annealing treatment for approximating the amount of gravity deflection to a single crystal when manufacturing a polycrystalline silicon wafer may be performed with a block-shaped polycrystalline silicon ingot before slicing or after slicing with a multi-wire saw. In any case, it is necessary to appropriately adjust the heating rate, holding temperature, holding time, cooling rate, vacuum degree, and load. Annealing in a block form is easier to handle, but in order to approximate the gravitational deflection of a single crystal wafer, there is a feature that any wafer is more stably approximated by slicing after slicing close to the wafer shape.
  • the annealing after slicing may be performed after the multi-wire saw processing, or may be performed after the lapping process or the polishing process.
  • the thickness of the wafer is different in each process, it is necessary to approximate the gravity deflection amount of the single crystal wafer in consideration of the thickness. Also, in order to avoid thermal diffusion of unnecessary impurities, it is necessary to appropriately clean the surface of the wafer before annealing.
  • a polycrystalline silicon wafer having a large outer diameter of 450 mm or more similar to the mechanical properties of the single crystal silicon wafer can be obtained, and a large size similar to the mechanical properties of the single crystal silicon used as the mechanical wafer can be obtained.
  • a polycrystalline silicon wafer can be provided. Further, since the CMP process can be omitted, the yield is greatly improved and the manufacturing cost can be greatly reduced.
  • Example 1 Silicon was melted in a silica crucible and solidified from the bottom of the crucible by unidirectional solidification to produce a silicon ingot having a purity of 6N and a size of 690 ⁇ 690 ⁇ 250 mm. This ingot was cut so that four corners were cut and cylindrical grinding was performed so that the outer diameter was ⁇ 451 mm and the length was 200 mm.
  • this polycrystalline silicon ingot with a diameter of 451 mm is sliced by multi-wire saw processing, annealed to approximate the amount of gravity deflection to a single crystal, then beveled and notched, and lapped and primary polished.
  • a double-sided mirror-finished wafer having a diameter of 450 mm and a thickness of 925 ⁇ m was produced.
  • the sample of 100 mm ⁇ 100 mm ⁇ 925 ⁇ mt was a surface scratch having a width of 100 ⁇ m or less and a depth of 10 ⁇ m or less when the number of scratches present on the surface and the width and depth of the scratch were observed with a microscope. Then, the bending strength of the wafer made 100 mm square was measured with a 4-point bending tester (FIG. 2). As a result, a surface flaw having a width of 100 ⁇ m or less and a depth of 10 ⁇ m or less had a bending strength of 120 MPa without greatly depending on the width, length and quantity.
  • FIG. 3 shows a state in which the depth of the surface flaw was examined with the sample of 100 mm ⁇ 100 mm ⁇ 925 ⁇ mt produced in Example 1.
  • the width of the scratch was 28 ⁇ m and the depth was 14 ⁇ m.
  • the depth of the scratch was 10 to 20 ⁇ m and the width was 20 to 40 ⁇ m, up to three per 100 mm square, there was almost no difference from the bending strength of a commercially available single crystal wafer having no scratch.
  • the bending strength of the samples in this range was ⁇ 10% or less from 100 MPa, which is the average bending strength of the single crystal wafer.
  • Example 3 The sample of 100 mm ⁇ 100 mm ⁇ 925 ⁇ mt produced in Example 1, the scratch width on the wafer surface is 40 ⁇ m to 100 ⁇ m and the depth is 10 to 40 ⁇ m, or the width is 20 ⁇ m to 40 ⁇ m and the depth is 20 ⁇ m or more. In the case of 40 ⁇ m or less, up to one per 100 mm square, there was almost no difference from the bending strength of a commercially available single crystal wafer having no scratches. An example of this flaw in FIG. In FIG. 4, the width of the scratch was 63 ⁇ m and the depth was 27 ⁇ m.
  • evaluation was made with a sample size of 100 mm ⁇ 100 mm, but an actual wafer is used with a diameter of 450 mm or 675 mm.
  • the sample size is 100 mm ⁇ 100 mm and is significantly lower than the strength of a commercially available single crystal wafer, the entire wafer becomes a weak point and the strength naturally decreases. Accordingly, it can be considered that the evaluation of the sample size of 100 mm ⁇ 100 mm has a correlation with the evaluation of the entire wafer surface.
  • Example 1 Using the sample of 100 mm ⁇ 100 mm ⁇ 925 ⁇ mt prepared in Example 1, the number of scratches was changed, and when two or more scratches having a scratch width of about 60 ⁇ m and a scratch depth of about 30 ⁇ m were formed, bending The strength was significantly reduced to 60 MPa or less. Further, when the number of scratches having a scratch width of about 30 ⁇ m and a scratch depth of about 15 ⁇ m was set to 4 or more, the bending strength was remarkably reduced to 60 MPa or less.
  • FIG. 5 shows a state in which the scratch size is changed using the sample of 100 mm ⁇ 100 mm ⁇ 925 ⁇ mt prepared in Example 1, the width of the scratch is 127 ⁇ m, and the depth of the scratch is 54 ⁇ m.
  • the depth of the surface flaw exceeds 40 ⁇ m or the width of the flaw is 100 ⁇ m or more, the bending strength is remarkably reduced to 60 MPa or less.
  • any surface scratches can be considered as mechanical properties of the single crystal as long as it approximates the amount of gravity deflection of the single crystal under annealing conditions. Can be similar.
  • the width of the scratches, the depth of the scratches, the number of the scratches, and the dispersion form of the scratches have a great influence on the mechanical characteristics.
  • the present invention has identified the above-described flaw form, increased the mechanical strength of the polycrystalline silicon wafer, and resembled the mechanical characteristics of the single crystal silicon wafer, but is difficult to understand. Therefore, an outline of an example of a flaw will be described with reference to the example shown in FIG. 7 for the conventional high-cost single crystal example, Examples 1 to 3 and Comparative Examples 1 and 2.
  • the scratches on the single crystal silicon wafer are indicated by dotted lines.
  • the depth of the scratch is less than 2 ⁇ m, but there are many. In order to remove this scratch, a high-cost CMP process is required.
  • the flaw is shown by a dotted line, this does not show the form (shape) of the flaw, but is shown by a dotted line in order to enable comparison with other flaws described later.
  • the following line types are used with the same meaning.
  • the second diagram on the left in the upper part of FIG. 7 is an explanatory diagram of Example 1 of the present application, and indicates a flaw of 10 ⁇ m or less (2 ⁇ m to 10 ⁇ m) of the polycrystalline silicon wafer indicated by a one-dot chain line. As described above, this level of flaws does not contribute to the degradation of the mechanical properties of the polycrystalline silicon wafer. As a matter of course, scratches of less than 2 ⁇ m indicated by dotted lines can be ignored.
  • the third diagram on the left in the upper part of FIG. 7 is an explanatory diagram of Example 2 of the present application, and indicates a scratch having a depth of 10 ⁇ m (extra) to 20 ⁇ m or less by a thin line.
  • this level of flaws is a factor that degrades the mechanical characteristics of a polycrystalline silicon wafer if the maximum number of flaws per division when the entire wafer is divided into 100 mm squares is 3 or less. not a.
  • scratches of 10 ⁇ m or less indicated by a dotted line and a one-dot chain line can be ignored.
  • the depth of the flaw since the depth of the flaw has a large effect, only the flaw depth is described. However, as is apparent from the above description, the width of the scratch is also limited.
  • the upper right diagram in FIG. 7 is an explanatory diagram of Example 3 of the present application, and a flaw having a depth of 20 ⁇ m (super) to 40 ⁇ m or less is indicated by a thin line.
  • this level of flaws is a factor that degrades the mechanical properties of a polycrystalline silicon wafer if the maximum number of flaws per division when the entire wafer is divided into 100 mm squares is one or less. not a.
  • the maximum number of fine line scratches is 3 or less, and scratches of 10 ⁇ m or less indicated by dotted lines and dashed lines can be ignored.
  • the depth of the flaw since the depth of the flaw has a large effect, only the flaw depth is described. However, as is apparent from the above description, the width of the scratch is also limited.
  • the left diagram in the lower part of FIG. 7 is an explanatory diagram of Comparative Example 1, and scratches with a depth of 20 ⁇ m (extra) to 40 ⁇ m or less are indicated by bold lines.
  • this level of flaws is polycrystalline when the maximum number of flaws per division when the entire wafer is divided into 100 mm squares is one or more (in some cases, there are two in the figure). This is a cause of deteriorating the mechanical properties of the silicon wafer and is not suitable. This is not suitable even if the maximum number of fine line scratches is 3 or less, and the scratches of 10 ⁇ m or less indicated by dotted lines and alternate long and short dash lines can be ignored.
  • the depth of the flaw has a large effect, only the flaw depth is described. However, as apparent from the above description, the width of the scratch is also limited.
  • the lower right figure of FIG. 7 is explanatory drawing of the comparative example 2, and shows a 40-micrometer-depth (super) damage
  • this level of flaws is a factor that degrades the mechanical characteristics of a polycrystalline silicon wafer if the maximum number of flaws per division when the entire wafer is divided into 100 mm squares is one or more. Is unsuitable. This is unsuitable even if other scratches can be ignored.
  • the depth of the flaw has a large effect, only the flaw depth is described. However, as apparent from the above description, the width of the scratch is also limited.
  • the present invention is a large-sized polycrystalline silicon wafer, and particularly in a silicon wafer having an outer diameter of 450 mm or more, the generation of scratches on the wafer surface is small and small, and a large size similar to the mechanical properties of a single-crystal silicon wafer.
  • the polycrystalline silicon wafer can be provided with an excellent effect.
  • Single crystal wafers, especially when wafers move to the next generation size, can be supplied with wafers that can be tested at a much lower cost than single crystal wafers, and mechanical properties such as bending strength and gravity deflection are simple. Since it resembles the characteristics of a crystal wafer, it becomes an effective wafer in the development of a wafer case and the development of a transfer robot.
  • a polycrystalline silicon wafer having an outer diameter of 450 mm or more manufactured using the polycrystalline silicon ingot of the present invention is inexpensive and useful as a large polycrystalline silicon wafer having a diameter of 450 mm or more, particularly as a mechanical silicon wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

溶解法により作製した外径が450mm以上の多結晶シリコンウエハであって、該ウエハに存在する傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハ。溶解法により作製した外径が450mm以上の多結晶シリコンウエハであって、該ウエハに存在する幅が40μm以上100μm以下、深さが10μm超40μm以下である傷が、ウエハ全体を100mm角に区分した場合の一区分当たりの最大個数が1個以下であり、残余の傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハ。大型の多結晶シリコンウエハであって、特にウエハサイズが外径450mm以上のシリコンウエハにおいて、ウエハ面の傷の発生が少量でかつ小さく、単結晶シリコンウエハの機械的物性に類似した大型の多結晶シリコンウエハを提供することを課題とする。

Description

多結晶シリコンウエハ
 本発明は、多結晶シリコンウエハ、特にメカニカルテスト用の外径が450mm以上のシリコンウエハに関する。
 LSIプロセスに使用される単結晶シリコンウエハの形状は、時代とともに大口径化する方向にある。 これはウエハ口径が大きくなるとウエハ1枚からより多くの半導体デバイスを作製することが可能となり、チップ単価を減少させることできるためである。
一方、デバイスの微細化の進展にともないシリコンウエハに対する品質要求は益々厳しくなっている。そのためウエハサイズが大型品に移行する際は、スケールの課題とともに品質の課題も解決する必要があり、次世代サイズの単結晶ウエハの市場価格は非常に高価になるという問題があった。
ITRS(International Technology Roadmap for Semiconductors)においては、直径300mmから直径450mmへのウエハサイズの移行時期は2012年頃、直径450mmから直径675mmの移行時期は2019年頃になると予測されたこともあり、今後もウエハの大口径化と品質の追求は続くと考えられる。
ウエハサイズが変更になると当然ながらウエハを輸送するケース(FOSB)や、各工程間を移動させるウエハケース(FOUP)が変更となる。またウエハを搬送させるロボットの形状や、デバイスを製造する装置そのものも次世代サイズのウエハに合う形状に新たに設計開発する必要がある。
従ってウエハサイズが大型品へ移行する際には、次世代ウエハを用いて様々な目的で様々な試験や検証が行われる背景がある。この試験や検証においては、必ずしも高価な単結晶のシリコンウエハを用いる必要がない用途がある。
例えば、ウエハケースやウエハを搬送するロボットの開発においては、ウエハの重さや強度、ウエハの重力たわみ等の機械的な特性が単結晶ウエハと同等であれば、単結晶ウエハでなくとも目的に沿った試験が可能だと考えられる。
そのようなウエハ(以下「メカニカルウエハ」と呼ぶ)は、実際にデバイスを製造できる単結晶ウエハではないため、低コストであることが非常に重要となる。従って、メカニカルウエハとしては不要な品質は省略してコスト削減を図るとともに、機械的な特性においては単結晶ウエハと同レベルになる条件を把握する必要がある。
 参考までに、過去の公知文献を挙げると、LSI用焼結シリコン製ウエハでは、特許文献1に記載されているように、結晶粒径100μm以下の焼結体であり、また特許文献2に示すように、平均粒径1~10μmの焼結体が提案されている。
これらの焼結シリコン製ダミーウエハは、抗折力、引張強度、ビッカース硬度を調整し、ウエハの強度を高めることは出来ても、ウエハの重力たわみ量を単結晶シリコンウエハのそれに近付けることには自ずと限界があり、直径450mm以上のメカニカルウエハとして使用することが極めて限定される原因となっている。
また、特許文献3には、外径が48mm以上450mm以下であって、粗さRaと面ダレを小さくすることが記載されている。しかし、450mm以上の多結晶シリコンの割れの原因は、表面の粗さやダレの問題ではなく、むしろ微細な傷が原因なので、特許文献3では、450mm以上の多結晶シリコンの問題の解決には至っていないと考えられる。
多結晶シリコンをメカニカルウエハとして使用する場合には、単結晶シリコンとほぼ同様の挙動になることが期待され、単結晶シリコンウエハの曲げ強度と重力たわみ量の両方から逸脱しないようにすることが非常に重要である。この点、メカニカルウエハに要求される機械的強度は、多結晶シリコン表面の傷に大きく影響を受けることが分かったが、従来技術において、その解決方法は見出されていなかった。
特開2004-289065号公報 国際公開番号WO2009/011233 特開2009-38220号公報
 本発明は、上記に鑑みてなされたもので、大型の多結晶シリコンウエハであって、特にウエハサイズが、外径450mm以上であるシリコンウエハにおいて、ウエハ面の傷の発生が少量でかつ小さく、単結晶シリコンウエハの機械的物性に類似した大型の多結晶シリコンウエハを提供することにある。
 上記の課題を解決するために、本発明者等は、多結晶シリコンの製造試験を繰り返し行って検証した結果、単結晶シリコンウエハの機械的物性に類似した大型の多結晶シリコンウエハを得ることができるとの知見を得た。
 本発明は、上記知見に基づき、以下の発明を提供する。
1)溶解法により作製した外径が450mm以上の多結晶シリコンウエハであって、該ウエハに存在する傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハ。
2)溶解法により作製した外径が450mm以上の多結晶シリコンウエハであって、該ウエハに存在する幅が40μm以上100μm以下、深さが10μm超40μm以下である傷が、ウエハ全体を100mm角に区分した場合の一区分当たりの最大個数が1個以下であり、残余の傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハ。
3)溶解法により作製した外径が450mm以上の多結晶シリコンウエハであって、該ウエハに存在する幅が20μm以上40μm以下、深さが20μm超40μm以下である傷が、ウエハ全体を100mm角に区分した場合の一区分当たりの最大個数が1個以下であり、残余の傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハ。
4)溶解法により作製した外径が450mm以上の多結晶シリコンウエハであって、該ウエハに存在する幅が20μm以上40μm以下、深さが10μm超20μm以下である傷が、ウエハ全体を100mm角に区分した場合の一区分当たりの傷の最大個数が3個以下であり、残余の傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハ。
5)深さ2μm未満の傷については、CMPを実施しない傷として存在することを特徴とする1)~4)のいずれか一項に記載の多結晶シリコンウエハ。
大型の多結晶シリコンウエハであって、特にウエハサイズが外径450mm以上のシリコンウエハにおいて、ウエハ面の傷(強い影響を与える傷)の発生が少量でかつ小さく、単結晶シリコンウエハの機械的物性に類似した大型の多結晶シリコンウエハを提供することができる優れた効果を有する。
ハロゲンランプを用いて傷を観察した様子を示す図である。 シリコンウエハの4点曲げ試験の外観図(写真)である。 実施例2の100mm×100mm×925μmtのサンプルで、表面傷の深さを調べた様子を示す図である。 実施例3の100mm×100mm×925μmtのサンプルで、表面傷の深さを調べた様子を示す図である。 比較例2の、傷の幅が127μmであり、傷の深さは54μmである場合の様子を示す図である。 450mmウエハを100mm角の格子で区分した例を示す図である。 単結晶の例、実施例1~実施例3及び比較例1~2の、100mm角の格子で区分した場合に存在する傷の例を示す説明図である。
本発明の多結晶シリコンウエハは、溶解法により作製する多結晶シリコンウエハである。下記の実施例に説明するように、適切なアニール処理をした多結晶シリコンを用いると、単結晶シリコンウエハの製造では標準的に行われるCMP(Chemical Mechanical Polishing)を行わずに、単結晶シリコンウエハと同等の機械的強度を得ることができる。
これらの多結晶シリコンウエハはCMPを行わないため、多結晶シリコンウエハ表面には薄い傷が常に存在している。また、スライス工程で入ったソーマークやラップ工程で入った傷が一次研磨だけでは十分に取りきれず、多結晶シリコンウエハの強度に影響する場合があることも分かった。
そこで、本発明者らは、多結晶シリコンウエハ表面の傷の大きさと、多結晶シリコンウエハの機械的特性の関係を調査・研究することにより、相関を見出し、多結晶シリコンウエハ表面の傷の大きさを制御(調整)することにより、単結晶ウエハの機械的特性とが類似する多結晶シリコンウエハの条件を見出すことができた。
本発明の多結晶シリコンウエハは、溶解法により作製した外径が450mm以上の多結晶シリコンウエハであり、該ウエハに存在する傷の深さが10μm以下である多結晶シリコンウエハを提供する。この程度の傷の深さの場合は、傷の幅が大きくてもシリコンウエハの機械的特性を低下させることはないので、傷の幅は表示していない。以下、同様である。これにより、シリコンウエハの機械的特性を向上させることができ、単結晶ウエハの機械的特性と類似する多結晶シリコンウエハを得ることが可能となった。
本願発明においては、上記の通り、傷の深さが10μm以下とするものであるが、傷の深さが0μm又は深さが10μm以下の傷が0個を意味するものではない。これは、コスト高となるCMP(Chemical Mechanical Polishing)を行わずに、単結晶シリコンウエハと同等の機械的強度を得ることを目的とするものであるから、深さ2μm未満の傷は存在する。すなわち、深さ2μm未満の傷については、CMPを実施しない傷として存在する。
しかしながら、上記のレベルの傷は、多結晶シリコンウエハの機械的特性を低下させる要因とはならないので、無視できる。この傷を、高輝度ハロゲンランプを用いて観察した様子を図1に示す。また、傷の形状に制限はなく、長方形、四角形等の矩形、円形(真円、楕円形状)、その他の異形を含むものであり、いずれの場合も、多結晶シリコンウエハの表面から一筋に見える傷(小さな欠陥の集合体の場合もある)を基準に、傷の幅は、最長の幅であり、深さは最大深さである。
また、本願発明は、単結晶ウエハと同等の機械的強度が得られる条件として、溶解法により作製した外径が450mm以上の多結晶シリコンウエハであり、該ウエハに存在する幅が40μm以上100μm以下、深さが10μm超40μm以下である傷が、ウエハ全体を100mm角に区分した場合の一区分当たりの最大個数が1個以下であり、残余の傷の深さが10μm以下である多結晶シリコンウエハを提供する。
この場合も、CMPを実施しないので、深さ2μm未満の傷は存在する。すなわち、深さ2μm未満の傷については、CMPを実施しない傷として存在する。上記と同様に、このレベルの傷は、多結晶シリコンウエハの機械的特性を低下させる要因とはならないので、無視できる。
また、本願発明は、単結晶ウエハと同等の機械的強度が得られる条件として、溶解法により作製した外径が450mm以上の多結晶シリコンウエハであり、該ウエハに存在する幅が20μm以上40μm以下、深さが20μm超40μm以下である傷が、ウエハ全体を100mm角に区分した場合の一区分当たりの最大個数が1個以下であり、残余の傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハを提供する。この場合も、CMPを実施しないので、深さ2μm未満の傷は存在する。すなわち、深さ2μm未満の傷については、CMPを実施しない傷として存在する。上記と同様に、このレベルの傷は、多結晶シリコンウエハの機械的特性を低下させる要因とはならないので、無視できる。
また、本願発明は、単結晶ウエハと同等の機械的強度が得られる条件として、溶解法により作製した外径が450mm以上の多結晶シリコンウエハであり、該ウエハに存在する幅が20μm以上40μm以下、深さが10μm超20μm以下である傷が、ウエハ全体を100mm角に区分した場合の一区分当たりの傷の最大個数が3個以下であり、残余の傷の深さが10μm以下である多結晶シリコンウエハを提供する。
この場合も、CMPを実施しないので、深さ2μm未満の傷は存在する。すなわち、深さ2μm未満の傷については、CMPを実施しない傷として存在する。上記と同様に、このレベルの傷は、多結晶シリコンウエハの機械的特性を低下させる要因とはならないので、無視できる。
上記により、単結晶ウエハの機械的特性と類似し、且つ低コストの多結晶シリコンウエハを得ることができる。外径が450mm以上のウエハを100mm角の格子で区分した例を、図6に示す。傷が、2区分以上に跨る場合もあるが、100mm角に区分した場合の各区分内での傷のサイズは、それぞれの区分内での最長の幅と最大深さを意味する。以下、同様である。
以上により、単結晶ウエハの機械的特性と類似し、且つ低コストの多結晶シリコンウエハを得ることができる。シリコンウエハのサイズが外径450mm以上である多結晶シリコンウエハに好適であり、メカニカルウエハとして使用することができる。また、シリコンの純度が3N~7N、さらにそれ以上である多結晶シリコンウエハを提供することも可能である。本願発明はこれらを含むものである。
以上に説明した多結晶シリコンウエハは、高純度のシリコン素材の純度を用いて、ウエハ表面の清浄度を高くした場合には、メカニカルウエハとしてだけでなく、縦型炉等の半導体製造装置で必要となるダミーフィラーウエハとしても使用することができる。また以上の表面傷の分類はスパッタリングターゲットや半導体製造装置のホルダー等の各種部品として応用することもできる。
多結晶シリコンウエハを製造する際の、重力たわみ量を単結晶と近似させるアニール処理は、スライス前のブロック状の多結晶シリコンインゴットで行なう場合と、マルチワイヤーソーでスライスした後に行なう場合がある。いずれも昇温速度、保持温度、保持時間、降温速度、真空度、荷重を適度に調整する必要がある。
ブロック状でアニールする方が取り扱いは容易だが、単結晶ウエハの重力たわみと近似させるには、ウエハ形状に近いスライスした後に行なう方がどのウエハも安定して近似する特徴がある。
スライス後のアニールは、マルチワイヤーソー加工後に行なってもよいし、ラップ工程やポリッシュ工程後に行なっても良い。但し、各工程でウエハの厚みが異なるので、その分を考慮して単結晶ウエハの重力たわみ量に近似させる必要がある。また不要な不純物の熱拡散を避けるため、アニール前にウエハの表面洗浄が適宜必要となる。
これによって、単結晶シリコンウエハの機械的物性に類似した大型の外径が450mm以上の多結晶シリコンウエハを得ることができ、メカニカルウエハとして使用される単結晶シリコンの機械的物性に類似した大型の多結晶シリコンウエハを提供することができる。また、CMP工程を省略できるので、歩留まりを大きく向上させ、製造コストを大幅に低減できるという大きな特徴を有する。
 次に、実施例に基づいて本発明を説明する。なお、以下の実施例は発明を容易に理解できるようにするためのものであり、本発明はこれらの実施例に制限されるものではない。すなわち、本発明の技術思想に基づく他の例又は変形は、当然本発明に含まれるものである。なお、特性の対比のために、比較例も示す。
(実施例1)
シリカ製坩堝内でシリコンを溶融させ、一方向凝固で坩堝底部の方から固化させて、純度6Nの690x690x250mmのシリコンインゴットを作製した。このインゴットは四つ角を切り落とし、円筒研削することにより外径がΦ451mm、長さが200mmになるように加工した。
次に、この直径451mmの多結晶シリコンインゴットをマルチワイヤーソー加工でスライスし、重力たわみ量を単結晶と近似させるアニール処理を行った後、ベベリングとノッチ加工を施し、ラップ加工と一次ポリッシュ加工を行い直径450mm、厚さ925μmの両面鏡面仕上げのウエハを作製した。
次に、ダイシングソーを用いて100mm×100mmのサイズに切断し、多数のサンプルを準備した。切断は切断面に亀裂が入ることを防止するために細かい目のブレードを用いて低速で行い、また切断面は念のため酸でエッチングしてダメージを除去した。
この100mm×100mm×925μmtのサンプルは、マイクロスコープで表面に存在する傷の数及び傷の幅や深さを観察したところ、幅100μm以下、深さ10μm以下の表面傷であった。
そして4点曲げ試験機(図2)で100mm角にしたウエハの曲げ強度を測定した。その結果、幅100μm以下、深さ10μm以下の表面傷では、幅や長さや数量に大きく依存することなく、120MPaの曲げ強度があった。
(実施例2)
実施例1で作製した100mm×100mm×925μmtのサンプルで、表面傷の深さを調べた様子を図3に示す。図3では、傷の幅が28μmであり、深さは14μmであった。傷の深さが10~20μmでその幅が20~40μmの場合は、100mm角当たり3本までは、傷が皆無の市販の単結晶ウエハの曲げ強度とほとんど差がなかった。因みに、この範囲のサンプルの曲げ強度は、単結晶ウエハの平均曲げ強度である100MPaから±10%以下であった。
(実施例3)
実施例1で作製した100mm×100mm×925μmtのサンプルで、ウエハ表面の傷の幅が40μm以上100μm以下で深さが10~40μm以下の傷、若しくは幅が20μm以上40μm以下で深さが20μm以上40μm以下の場合は、100mm角当たり1本までは、傷が皆無の市販の単結晶ウエハの曲げ強度とほとんど差がなかった。この傷の例を図4に示す。図4では、傷の幅が63μmで、深さは27μmであった。
上記実施例では、100mm×100mmのサンプルサイズで評価したが、実際のウエハは直径450mmや675mmで使用される。しかし、100mm×100mmのサンプルサイズで、市販の単結晶ウエハの強度より著しく低い場合は、ウエハ全体においても弱点部となり、当然強度が低下する。従って100mm×100mmのサンプルサイズの評価はウエハ全面の評価と相関があると考えることができる。
(比較例1)
実施例1で作製した100mm×100mm×925μmtのサンプルを利用して、傷の本数を変更し、傷の幅が60μm程度、傷の深さが30μm程度の傷を2本以上としたところ、曲げ強度が60MPa以下に著しく低下した。
また、傷の幅が30μm程度、傷の深さが15μm程度の傷を4本以上としたところ、曲げ強度が60MPa以下に著しく低下した。
(比較例2)
実施例1で作製した100mm×100mm×925μmtのサンプルを利用して、傷のサイズを変更し、傷の幅が127μm、傷の深さが54μmである場合の様子を、図5に示す。表面傷の深さが40μm超又は傷の幅が100μm以上の場合は曲げ強度が60MPa以下に著しく低下した。
ウエハの重力たわみについては、表面傷の影響よりも基本的にアニール条件の影響が強いことが分かった。従って、上記のような非常に深く、幅が広い傷の場合を除いては、アニール条件で単結晶の重力たわみ量と近似させておけば、どのような表面傷でも単結晶の機械的特性と類似させることができる。
 上記の通り、多結晶シリコンウエハにおいて、傷の幅、傷の深さ、傷の個数、傷の分散形態は、機械的特性に大きな影響を与える。本願発明は、多くの実験の結果、上記の傷の形態を特定し、多結晶シリコンウエハの機械的強度を高め、単結晶シリコンウエハの機械的特性と類似させたものであるが、理解し難い面もあるので、従来の高コスト単結晶の例、実施例1~実施例3及び比較例1~2について、図7に示す例を参考に傷の例の概要を説明する。
 図7の、上段の左図は、単結晶のシリコンウエハの傷を点線で示す。傷の深さは2μm未満であるが、多数存在する。この傷を除去するためには、高コストのCMPの処理が必要となる。なお、傷を点線で示しているが、これは傷の形態(形状)を示すものではなく、後に述べる他の傷との比較が可能とするために、点線表示したものである。以下の線種は、同様の意味で使用する。
図7の、上段の左2番目の図は、本願実施例1の説明図であり、多結晶シリコンウエハの10μm以下(2μm~10μm)の傷を一点鎖線で示す。上記に記載する通り、このレベルの傷は、多結晶シリコンウエハの機械的特性を低下させる要因とはならない。当然のことであるが、点線で表示した2μm未満の傷も無視できるものである。
図7の、上段の左3番目の図は、本願実施例2の説明図であり、深さ10μm(超)~20μm以下の傷を細線で示す。上記に記載する通り、このレベルの傷は、ウエハ全体を100mm角に区分した場合の一区分当たりの傷の最大個数が3個以下であれば、多結晶シリコンウエハの機械的特性を低下させる要因とはならない。
当然のことであるが、点線及び一点鎖線で表示した10μm以下の傷は無視できる。なお、上記の説明では、傷の深さが大きな影響を与えるので、傷の深さのみの説明に留めた。しかし、上記の説明から明らかなように、傷の幅も制限を受けるものである。
図7の、上段の右図は、本願実施例3の説明図であり、深さ20μm(超)~40μm以下の傷を細線で示す。上記に記載する通り、このレベルの傷は、ウエハ全体を100mm角に区分した場合の一区分当たりの傷の最大個数が1個以下であれば、多結晶シリコンウエハの機械的特性を低下させる要因とはならない。
当然のことであるが、細線の傷は最大個数が3個以下、点線及び一点鎖線で表示した10μm以下の傷は無視できる。なお、上記の説明では、傷の深さが大きな影響を与えるので、傷の深さのみの説明に留めた。しかし、上記の説明から明らかなように、傷の幅も制限を受けるものである。
図7の、下段の左図は、比較例1の説明図であり、深さ20μm(超)~40μm以下の傷を太線で示す。上記に記載する通り、このレベルの傷は、ウエハ全体を100mm角に区分した場合の一区分当たりの傷の最大個数が1個以上(図では2個の場合もある)であると、多結晶シリコンウエハの機械的特性を低下させる要因となり、不適である。これは、細線の傷は最大個数が3個以下、点線及び一点鎖線で表示した10μm以下の傷が無視できるとしても、不適である。なお、上記の説明では、傷の深さが大きな影響を与えるので、傷の深さのみの説明に留めた。しかし、上記の説明から明らかなように、傷の幅も制限を受ける。
図7の、下段の右図は、比較例2の説明図であり、深さ40μm(超)の傷を太鎖線で示す。上記に記載する通り、このレベルの傷は、ウエハ全体を100mm角に区分した場合の一区分当たりの傷の最大個数が1個以上あると、多結晶シリコンウエハの機械的特性を低下させる要因となり、不適である。これは、他の傷が無視できるとしても、不適である。なお、上記の説明では、傷の深さが大きな影響を与えるので、傷の深さのみの説明に留めた。しかし、上記の説明から明らかなように、傷の幅も制限を受ける。
本発明は、大型の多結晶シリコンウエハであり、特にウエハサイズが外径450mm以上のシリコンウエハにおいて、ウエハ面の傷の発生が少量でかつ小さく、単結晶シリコンウエハの機械的物性に類似した大型の多結晶シリコンウエハを提供することができる優れた効果を有する。単結晶ウエハ、特にウエハが次世代サイズに移行する時期においては単結晶ウエハに比べ格段に低価格で試験が可能なウエハを供給することができ、曲げ強度や重力たわみ等の機械的特性は単結晶ウエハの特性と類似するために、ウエハケースの開発や搬送用ロボットの開発においては有効なウエハとなる。
このように、本発明の多結晶シリコンインゴット用いて製作した外径が450mm以上の多結晶シリコンウエハは、安価でかつ450mm以上の大型多結晶シリコンウエハとして、特にメカニカルシリコンウエハとして有用である。

Claims (5)

  1. 溶解法により作製した外径が450mm以上の多結晶シリコンウエハであって、該ウエハに存在する傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハ。
  2. 溶解法により作製した外径が450mm以上の多結晶シリコンウエハであって、該ウエハに存在する幅が40μm以上100μm以下、深さが10μm超40μm以下である傷が、ウエハ全体を100mm角に区分した場合の一区分当たりの最大個数が1個以下であり、残余の傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハ。
  3. 溶解法により作製した外径が450mm以上の多結晶シリコンウエハであって、該ウエハに存在する幅が20μm以上40μm以下、深さが20μm超40μm以下である傷が、ウエハ全体を100mm角に区分した場合の一区分当たりの最大個数が1個以下であり、残余の傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハ。
  4. 溶解法により作製した外径が450mm以上の多結晶シリコンウエハであって、該ウエハに存在する幅が20μm以上40μm以下、深さが10μm超20μm以下である傷が、ウエハ全体を100mm角に区分した場合の一区分当たりの傷の最大個数が3個以下であり、残余の傷の深さが10μm以下であることを特徴とする多結晶シリコンウエハ。
  5. 深さ2μm未満の傷については、CMPを実施しない傷として存在することを特徴とする請求項1~4のいずれか一項に記載の多結晶シリコンウエハ。
PCT/JP2013/054081 2012-03-12 2013-02-20 多結晶シリコンウエハ WO2013136922A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/381,431 US9053942B2 (en) 2012-03-12 2013-02-20 Polycrystalline silicon wafer
JP2014504750A JP5826915B2 (ja) 2012-03-12 2013-02-20 多結晶シリコンウエハ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-054826 2012-03-12
JP2012054826 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013136922A1 true WO2013136922A1 (ja) 2013-09-19

Family

ID=49160841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054081 WO2013136922A1 (ja) 2012-03-12 2013-02-20 多結晶シリコンウエハ

Country Status (4)

Country Link
US (1) US9053942B2 (ja)
JP (1) JP5826915B2 (ja)
TW (1) TWI558864B (ja)
WO (1) WO2013136922A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6502399B2 (ja) 2017-02-06 2019-04-17 Jx金属株式会社 単結晶シリコンスパッタリングターゲット
JP6546953B2 (ja) 2017-03-31 2019-07-17 Jx金属株式会社 スパッタリングターゲット−バッキングプレート接合体及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308352A (ja) * 2000-04-18 2001-11-02 Canon Inc 光起電力素子、該光起電力素子を用いた太陽電池モジュール及び該太陽電池モジュールの製造方法
WO2009119338A1 (ja) * 2008-03-28 2009-10-01 日鉱金属株式会社 焼結シリコンウエハ
JP2012017222A (ja) * 2010-07-08 2012-01-26 Jx Nippon Mining & Metals Corp ハイブリッドシリコンウエハ及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819863B2 (ja) 2003-03-25 2006-09-13 日鉱金属株式会社 シリコン焼結体及びその製造方法
US20100016144A1 (en) 2007-07-13 2010-01-21 Nippon Mining & Metals Co., Ltd. Sintered Silicon Wafer
WO2009011234A1 (ja) 2007-07-13 2009-01-22 Nippon Mining & Metals Co., Ltd. 焼結シリコンウエハ
ATE540906T1 (de) 2007-07-13 2012-01-15 Jx Nippon Mining & Metals Corp Gesinterter silicium-wafer
JP2009038220A (ja) 2007-08-02 2009-02-19 Shin Etsu Chem Co Ltd ダミーウェハ
JP5279828B2 (ja) 2008-07-10 2013-09-04 Jx日鉱日石金属株式会社 ハイブリッドシリコンウエハ及びその製造方法
EP2497849A4 (en) 2009-11-06 2014-08-06 Jx Nippon Mining & Metals Corp HYBRID SILICON WAFER
KR101382918B1 (ko) 2009-11-06 2014-04-08 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 하이브리드 실리콘 웨이퍼
US8252422B2 (en) 2010-07-08 2012-08-28 Jx Nippon Mining & Metals Corporation Hybrid silicon wafer and method of producing the same
US8647747B2 (en) 2010-07-08 2014-02-11 Jx Nippon Mining & Metals Corporation Hybrid silicon wafer and method of producing the same
KR101356303B1 (ko) 2011-03-15 2014-01-28 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 다결정 실리콘 웨이퍼

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308352A (ja) * 2000-04-18 2001-11-02 Canon Inc 光起電力素子、該光起電力素子を用いた太陽電池モジュール及び該太陽電池モジュールの製造方法
WO2009119338A1 (ja) * 2008-03-28 2009-10-01 日鉱金属株式会社 焼結シリコンウエハ
JP2012017222A (ja) * 2010-07-08 2012-01-26 Jx Nippon Mining & Metals Corp ハイブリッドシリコンウエハ及びその製造方法

Also Published As

Publication number Publication date
TW201402886A (zh) 2014-01-16
JP5826915B2 (ja) 2015-12-02
US20150108490A1 (en) 2015-04-23
US9053942B2 (en) 2015-06-09
JPWO2013136922A1 (ja) 2015-08-03
TWI558864B (zh) 2016-11-21

Similar Documents

Publication Publication Date Title
KR101356303B1 (ko) 다결정 실리콘 웨이퍼
JP5682471B2 (ja) シリコンウェーハの製造方法
US8058173B2 (en) Methods for producing smooth wafers
US20210301421A1 (en) SiC WAFER AND MANUFACTURING METHOD FOR SiC WAFER
TWI439585B (zh) Mixed with silicon wafers
JP5212472B2 (ja) シリコンエピタキシャルウェーハの製造方法
CN114303232A (zh) SiC衬底的制造方法
JP2013004825A5 (ja)
TWI510682B (zh) 晶棒表面奈米化製程、晶圓製造方法及其晶圓
JP5826915B2 (ja) 多結晶シリコンウエハ
TWI680512B (zh) 矽晶圓之研磨方法、矽晶圓之製造方法及矽晶圓
JP2009038220A (ja) ダミーウェハ
Goldstein et al. 450 mm silicon wafers challenges-wafer thickness scaling
JP4127233B2 (ja) シリコン単結晶ウェーハの評価方法およびこれを用いたシリコン単結晶ウェーハ
JP2014209620A (ja) シリコン部材及びシリコン部材の製造方法
WO2024209588A1 (ja) 三酸化二ガリウム単結晶基板、三酸化二ガリウム単結晶の製造方法、および三酸化二ガリウム単結晶基板の製造方法
JP2009035481A (ja) シリコン単結晶ウエーハ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14381431

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13760673

Country of ref document: EP

Kind code of ref document: A1