WO2013136656A1 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
WO2013136656A1
WO2013136656A1 PCT/JP2013/000526 JP2013000526W WO2013136656A1 WO 2013136656 A1 WO2013136656 A1 WO 2013136656A1 JP 2013000526 W JP2013000526 W JP 2013000526W WO 2013136656 A1 WO2013136656 A1 WO 2013136656A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plasma generation
generation space
substrate
film
Prior art date
Application number
PCT/JP2013/000526
Other languages
English (en)
French (fr)
Inventor
沢田 郁夫
雅人 森嶋
幸正 齋藤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2014504653A priority Critical patent/JP5920453B2/ja
Priority to KR1020147025581A priority patent/KR20140135202A/ko
Publication of WO2013136656A1 publication Critical patent/WO2013136656A1/ja
Priority to US14/484,598 priority patent/US20140373783A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a technique for forming a thin film such as silicon on a large area substrate used for a solar cell or the like or a semiconductor wafer used for manufacturing a semiconductor device.
  • Thin-film silicon solar cells have been actively studied in recent years because they consume less silicon than bulk type crystalline silicon solar cells, are relatively easy to increase in area, and are low in manufacturing costs.
  • a tandem thin-film silicon solar cell (hereinafter simply referred to as a solar cell) has an amorphous silicon film laminated on the top surface of a microcrystalline silicon film, and each layer absorbs light in different wavelength regions, thereby converting light energy conversion efficiency. It is a thing that raised.
  • a-Si film amorphous silicon film
  • ⁇ c-Si film a microcrystalline silicon film
  • CVD Chemical Vapor Deposition
  • silicon is deposited on the substrate by reacting with.
  • the a-Si film and the ⁇ c-Si film can be separately formed by adjusting the partial pressure ratio between the SH 4 gas and the H 2 gas.
  • Patent Document 1 A film forming apparatus using a plasma CVD method is developed (Patent Document 1).
  • the present invention has been made under such a background, and an object thereof is to provide a film forming apparatus capable of forming a thin film having a good film quality and a uniform film thickness.
  • a film forming apparatus is a film forming apparatus for forming a thin film on a substrate by reacting a plurality of types of reaction gases in a processing container.
  • a mounting table provided in the processing container for mounting a substrate; In order to form a strong plasma generation space between the substrates placed on this mounting table, they are arranged in the horizontal direction at intervals between each other in the vertical orientation, and the lower end portion and the above-mentioned
  • a plurality of plate-like electrode portions forming a weak plasma generation space for generating plasma having a light emission intensity lower than that of the plasma formed in the strong plasma generation space in a gap between the substrate,
  • a first reactive gas supply unit for supplying a first reactive gas to the strong plasma generation space;
  • a second reaction gas for supplying a second reaction gas for forming a thin film on the substrate by reacting with the active species of the first reaction gas in the lower part of the strong plasma generation space or the weak plasma generation space.
  • a reaction gas supply unit An exhaust part for exhausting the reaction gas from the weak plasma generation space;
  • a first high-frequency power supply unit that applies high-frequency powers having different phases to one and the other of the electrode units adjacent to each other across the strong plasma generation space, and a second high-frequency power supply unit,
  • the distance between adjacent electrode parts across the strong plasma generation space is in the range of 2 mm or more and 20 mm or less,
  • the distance between the substrate on the mounting table and the electrode portion is in the range of 5 mm or more and 100 mm or less.
  • the film forming apparatus may have the following features.
  • the lower surface of the plate-like electrode portion is formed with an inclined surface portion that is inclined from the both side wall surfaces of the electrode portion toward the central portion side.
  • the mounting table includes a moving mechanism that reciprocates the substrate mounted on the mounting table along a direction in which the plurality of electrode portions are arranged.
  • the planar shape of the electrode part is formed such that the distance between adjacent electrode parts across the strong plasma generation space is wide in a region where the film formation rate is high and narrow in a region where the film formation rate is low. That.
  • a plurality of notch parts formed by notching the side wall surfaces of the electrode parts adjacent to each other with the strong plasma generation space interposed therebetween are arranged at intervals.
  • the plate-like electrode portion is divided so that a strong plasma space is also formed in a crossing direction intersecting with the strong plasma forming space formed between the plate-like electrode portions, and the first high frequency wave is divided.
  • the power supply unit and the second high-frequency power supply unit apply high-frequency powers having different phases to adjacent electrode units across the strong plasma space extending in the intersecting direction.
  • the electrode portion may be a wide plate-like covering the upper side of the plate surface of the substrate, instead of arranging the plurality of plate-like electrode portions in the vertical orientation and spaced apart from each other in the lateral direction.
  • a plurality of openings are provided at intervals, and a gap is formed between the inner surface of the opening and the second electrode portion inside the opening.
  • the strong plasma generation space is formed by arranging.
  • the exhaust part includes an exhaust path formed in the electrode part, and an exhaust hole provided in a lower surface of the electrode for exhausting the reaction gas in the weak plasma generation space to the exhaust path.
  • the first reaction gas is hydrogen gas
  • the second reaction gas is silicon compound gas.
  • the pressure in the processing container is 100 Pa or more and 2000 Pa or less.
  • the present invention applies high-frequency power having different phases to one and the other of the plate-like electrode portions arranged at intervals from each other, and generates plasma in a strong plasma generation space sandwiched between these electrode portions, Plasma having a light emission intensity lower than that of the plasma formed in the strong plasma generation space is also formed in the gap between the substrate on which the film is formed and each electrode portion.
  • the strong plasma generation space the active species of the first reaction gas is generated, while in the weak plasma generation space, the reaction between the active species generated in the strong plasma generation space and the second reaction gas proceeds.
  • a thin film with few defects can be uniformly formed on the substrate surface.
  • capacitively coupled plasma is formed between adjacent electrode portions, and H 2 (first reaction gas) is activated to react with SH 4 (second reaction gas).
  • H 2 first reaction gas
  • SH 4 second reaction gas
  • a film forming apparatus 1 includes a mounting table 2 on which a substrate S to be formed is mounted inside a processing container 10 that is a vacuum container, and an H on the surface of the substrate S on the mounting table 2.
  • a strong plasma generation space 101 is formed in order to supply two active species and an electrode portion 41 for forming a weak plasma generation space 102 in which a reaction between the active species and SiH 4 proceeds is arranged. It has become.
  • the processing container 10 is configured as a flat and metal container that can be sealed, and has a size that can store a large glass substrate S of, for example, 1100 mm ⁇ 1400 mm or more.
  • 11 is a loading / unloading port through which the short side of the substrate S provided in the processing vessel 10 can pass
  • 12 is a gate valve for opening and closing the loading / unloading port 11.
  • an exhaust pipe 13 for evacuating the inside of the processing container 10 is provided on the side wall surface of the processing container 10.
  • the space in 10 can be adjusted to 100 Pa to 2000 Pa, for example.
  • the short side direction of the substrate S installed in the processing container 10 will be described as the vertical direction
  • the long side direction of the substrate S will be described as the horizontal direction.
  • a mounting table 2 made of a dielectric or the like is disposed on the floor surface in the processing container 10.
  • the substrate S described above is mounted on the mounting table 2 to form a ⁇ c-Si film.
  • the transfer of the substrate S between an external substrate transfer mechanism (not shown) that carries the substrate S in and out and the mounting table 2 is performed by using a lift pin 22 configured to be lifted and lowered by a lift mechanism 25 via a lift plate 24. Done with.
  • reference numeral 23 denotes a bellows provided so as to surround the elevating pins 22 in order to keep the inside of the processing vessel 10 in a vacuum atmosphere.
  • a temperature adjusting unit 21 made of, for example, a resistance heating element is embedded in the mounting table 2, and the temperature adjusting unit 21 generates heat by electric power supplied from a power supply unit (not shown) and passes through the upper surface of the mounting table 2.
  • the substrate S can be adjusted to a temperature of 200 ° C. to 300 ° C., for example.
  • the temperature adjusting unit 21 is not limited to the one that heats the substrate S, and may employ, for example, a Peltier element that cools the substrate S and adjusts it to a predetermined temperature according to the process conditions.
  • the active species SiH 3 necessary for the growth of the ⁇ c-Si film is supplied at a high concentration to a region near the surface of the substrate S, while Si, SiH, SiH 2, etc.
  • the following functions can be obtained. It has become.
  • a space to which H 2 (first reaction gas) is supplied is configured as a strong plasma generation space 101 to obtain H radicals that are active species.
  • the space on the upper surface of the substrate S in which the H radical reacts with SiH 4 (second reactive gas) is configured as a weak plasma generation space 102 that generates plasma having a light emission intensity lower than that of the strong plasma generation space 101.
  • SiH 3 is supplied to the surface of the substrate S at a high concentration while suppressing generation of unnecessary active species.
  • the film forming apparatus 1 is spaced apart from each other in the lateral direction so as to divide the space in the processing container 10 above the substrate S placed on the mounting table 2.
  • a plate-like electrode portion 41 arranged with a gap is arranged.
  • Each electrode part 41 is comprised as an elongate plate-shaped metal member, for example, and is arrange
  • the length of the electrode portion 41 in the longitudinal direction is longer than the short side of the substrate S.
  • the electrode portions 41 are arranged at equal intervals in the direction of the long side (lateral direction) of the substrate S, and thereby, between the two electrode portions 41 adjacent to each other, the short side direction ( An elongated space (strong plasma generation space 101) extending in the vertical direction is formed.
  • Each electrode part 41 is fixed to the ceiling part of the processing container 10 via the insulating member 31, and the high-frequency power is supplied from the first and second power supply parts 61 and 62 to the strong plasma generation space 101.
  • plasma is generated, the detailed configuration of the power supply system will be described later.
  • the distance w between the electrode portions 41 arranged adjacent to each other with the strong plasma generation space 101 interposed therebetween is, for example, in the range of 2 mm or more and 20 mm or less, more preferably 4 mm or more and 10 mm or less. It has been adjusted.
  • the distance between the electrode portions 41 is less than 2 mm, plasma is not generated in the strong plasma generation space 101, while when this distance is greater than 20 mm, the plasma generated in the processing vessel 10 is weakened to generate H radicals. The amount decreases, causing a decrease in film formation rate.
  • the distance h between the lower surface of the electrode part 41 and the surface of the substrate S is adjusted to 5 mm or more and 100 mm or less, more preferably 7 mm or more and 30 mm or less.
  • the distance between the electrode part 41 and the substrate S is greater than 100 mm, the plasma generated in the weak plasma generation space 102 becomes weak and the film formation rate decreases.
  • the distance between the electrode portion 41 and the substrate S is smaller than 5 mm, the intensity of the plasma generated in the weak plasma generation space 102 approaches the intensity of the plasma generated in the strong plasma generation space 101, and SiH Decomposition of 4 proceeds excessively and becomes a factor of deteriorating the quality of the ⁇ c-Si film.
  • FIGS. 1 and 3 a mechanism for supplying a reactive gas to the strong plasma generating space 101 and the weak plasma generating space 102 and exhausting the reacted gas will be described.
  • a space is formed between the upper surface side of the insulating member 31 that fixes the electrode portion 41 and the processing container 10, and strong plasma is generated in this space.
  • An H 2 supply path 32 for supplying H 2 to the space 101 is provided.
  • the H 2 supply path 32 is disposed on the upper side of each strong plasma generation space 101 and is connected to the H 2 supply path 32 along the direction in which the electrode portion 41 extends as shown in FIGS. 3, 4, and 6. H 2 can be supplied into the strong plasma generation space 101 through the branched path 323 and the H 2 supply hole 321 formed in the insulating member 31.
  • the plurality of H 2 supply paths 32 are connected to a common H 2 supply line 511, and an H 2 supply unit 51 configured by an H 2 cylinder and a flow rate adjusting valve or the like.
  • the hydrogen can be received from the gas and a predetermined amount of H 2 can be supplied to each strong plasma generation space 101.
  • the H 2 supply path 32, the H 2 supply line 511, the H 2 supply unit 51, and the like correspond to the first reaction gas supply unit of this example.
  • each electrode portion 41 has a SiH 4 supply path 42 for supplying SiH 4 to the weak plasma generation space 102 and a reaction supplied to the weak plasma generation space 102.
  • An exhaust passage 43 for discharging gas is formed.
  • the SiH 4 supply path 42 in this example is provided in a region on the lower side of the electrode portion 41 and in a region close to both side walls of the electrode portion 41 (two in total). And is formed along the direction in which the electrode portion 41 extends.
  • a plurality of branch paths 423 extend downward from each SiH 4 supply path 42 at intervals, and are formed on the lower surface of the electrode portion 41 as shown in FIGS. 3, 4, and 6.
  • SiH 4 can be supplied toward the weak plasma generation space 102 from the SiH 4 supply holes 421 arranged in two rows along both side walls on the front and rear sides of the electrode portion 41.
  • the SiH 4 supply hole 421 is not limited to the case where the SiH 4 supply hole 421 is provided on the bottom surface of the electrode part 41.
  • the branch path 423 extends from the SiH 4 supply path 42 in the horizontal direction to the side wall surface on the lower side of the electrode part 41.
  • a SiH 4 supply hole 421 may be formed to supply SiH 4 to the lower side of the strong plasma generation space 101.
  • the SiH 4 supply path 42 formed in each electrode portion 41 is connected to a common SiH 4 supply line 521, and is composed of a SiH 4 cylinder and a flow rate adjusting valve. It is possible to receive SiH 4 from the SiH 4 supply unit 52 and supply a predetermined amount of SiH 4 .
  • the SiH 4 supply path 42, the SiH 4 supply line 521, the SiH 4 supply unit 52, and the like correspond to the second reaction gas supply unit in this example.
  • the exhaust passage 43 of the two on the inner side of the upper region than SiH 4 supply channel 42 described above is, along a direction parallel to extension of the electrode portions 41 and the SiH 4 supply channel 42 Is formed.
  • a plurality of branch passages 433 extend downward from the two exhaust passages 43 at intervals from each other, and the two branch passages 433 join in the middle and are formed on the lower surface of the electrode portion 41.
  • the exhaust hole 431 is connected. As shown in FIG. 4, the exhaust holes 431 are arranged in one row at the center of the lower surface of the electrode portion 41 so as to be sandwiched between the rows of SiH 4 supply holes 421 arranged in two rows.
  • the exhaust passage 43 formed in each electrode portion 41 is connected to an external exhaust means 53 constituted by a vacuum pump or the like via a common exhaust line 531.
  • the reactive gas in the weak plasma generation space 102 can be discharged to the outside.
  • the exhaust path 43, the exhaust line 531, the exhaust means 53, and the like correspond to the exhaust part of this example.
  • the electrode part 41 on one side (indicated as the electrode part 41a in FIG. 5) across the strong plasma generation space 101 is, for example, 13.56 MHz, 2500 W / piece (1
  • the first power supply unit 61 first high frequency power supply unit for applying the high frequency power of the electrode portion
  • the other electrode part 41 (denoted as electrode part 41b in FIG. 5) across the strong plasma generation space 101 has a phase of 180 ° with respect to the high-frequency power supplied from the first power supply part 61.
  • second power supply unit 62 (second high-frequency power supply unit) that applies the high-frequency power of, for example, 13.56 MHz and 2500 W / line which is delayed (phase is inverted).
  • reference numerals 612 and 622 denote matching units for matching high-frequency power supplied from the power supply units 61 and 62, respectively.
  • the first and second power supply units 61 and 62 are configured as externally synchronized power sources capable of outputting high frequency power synchronized with a frequency signal input from the outside.
  • the first and second power supply units 61 and 62 are connected to the common frequency signal generator 63, the first signal line 611 that connects the first power supply unit 61 and the frequency signal generator 63 is used.
  • the second signal line 621 connecting the second power source 62 and the frequency signal generator 63 is longer than the second power line 62.
  • the frequency signal output from the frequency signal generator 63 is input to the second power supply unit 62 with a delay from the timing input to the first power supply unit 61, and the phase of the high frequency power is utilized using this delay. Is adjusted. It has been experimentally confirmed that the phase of the high-frequency power output from each of the power supply units 61 and 62 can be adjusted by this method, as shown in the embodiments described later. However, the method of adjusting the phase difference between the first power supply unit 61 and the second power supply unit 62 is not limited to a specific method, and other methods may be adopted.
  • a forced balun circuit is connected to the output of one high frequency power supply unit, one output of the forced balun circuit is applied to the electrode unit 41a, and another output whose phase is inverted from the one output is applied to the electrode unit 41b. It is good also as composition to do.
  • the substrate S placed on the placement table 2 is: It is in an electrically floating state. For this reason, plasma weaker than the plasma formed in the strong plasma generation space 101 is generated in the space (weak plasma generation space 102) between the electrode portions 41 and the substrate S.
  • the relative intensity ratio of the plasma formed in the strong plasma generation space 101 and the weak plasma generation space 102 is determined as follows. Can be grasped by the ratio of the emission intensity when the image is taken. When the ratio of the emission intensity of the weak plasma generation space 102 to the emission intensity of the strong plasma generation space 101 is less than 1, a weaker plasma than the plasma generated in the strong plasma generation space 101 is generated in the weak plasma generation space 102. It can be said that.
  • the film forming apparatus 1 having the above-described configuration is connected to the control unit 7 as shown in FIGS.
  • the control unit 7 includes, for example, a computer including a CPU and a storage unit (not shown).
  • the operation of the film forming apparatus 1, that is, the substrate S is loaded into the processing container 10 and placed on the mounting table 2.
  • a program in which a group of steps (commands) for control and the like related to operations from when a ⁇ c-Si film having a predetermined film thickness is formed on the substrate S is carried out is recorded.
  • This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.
  • the film forming apparatus 1 opens the gate valve 12 of the loading / unloading port 11 and causes the lift pins 22 to protrude from the mounting table 2 to remove the substrate S from the substrate transport mechanism. receive.
  • the substrate transport mechanism is retracted out of the processing container 10 to close the gate valve 12 and the lifting pins 22 are lowered to place the substrate S on the mounting table 2. Further, in parallel with this operation, the processing chamber 10 is evacuated, the processing chamber 10 is adjusted to, for example, 900 Pa in the range of 100 Pa to 2000 Pa, and the temperature adjustment unit 21 controls the temperature so that the substrate S becomes 250 ° C., for example. Make adjustments.
  • the H 2 supply unit 51 passes through the H 2 supply line 511 and the H 2 supply path 32 to generate H 2 of a total amount of, for example, 40,000 sccm for a strong plasma generation space.
  • H 2 is converted into plasma by supplying high-frequency power to each electrode unit 41 from the first and second power supply units 61 and 62 while supplying the plasma to the electrode 101.
  • a total amount of 400 sccm of SiH 4 is supplied from the SiH 4 supply unit 52 to the weak plasma generation space 102 via the SiH 4 supply line 521 and the SiH 4 supply path 42.
  • H 2 supplied from H 2 supply passage 32 flows toward the lower side is the strong plasma generating space 101 is formed.
  • H 2 collides with electrons supplied from the electrode portion 41, it is turned into plasma and active species are formed.
  • H 2 is a molecule consisting of only two hydrogen atoms, only hydrogen radicals are generated as active species from the hydrogen plasma as shown in the following formula (1).
  • SiH 4 flowing out from SiH 4 supply hole 421 is supplied to the weak plasma generating space 102 between the electrode portion 41 and the substrate S, it is mixed with the H radicals flowing from the upstream side of the surface of the substrate S spread.
  • a mixed gas of the H radical and SiH 4 is supplied to the surface of the substrate S, and a reaction represented by the following formula (2) proceeds in the mixed gas.
  • SiH 4 + H ⁇ SiH 3 + H 2 ... (2) In this way, high-concentration SiH 3 is supplied to the surface of the substrate S, and a high-quality ⁇ c-Si film is formed on the surface of the substrate S from this SiH 3 .
  • Si as compared with a conventional capacitively coupled film forming apparatus using parallel plates is used. It is possible to advance the progress of the reaction of (2) above while maintaining the condition that unnecessary active species such as SiH and SiH 2 are not easily generated, and to reduce ion damage to the substrate S.
  • SiH 3 generated by the above formula (2) further reacts with H radicals as time passes, and SiH 2 , SiH, and Si are sequentially generated. Therefore, these active species and their polymers Higher order silane and fine particles are taken into the ⁇ c-Si film and the film quality is deteriorated.
  • the film forming apparatus 1 is provided with exhaust holes 431 for exhausting the reaction gas in the weak plasma generation space 102 on the lower surface of each electrode part 41.
  • the inside of the processing chamber 10 is constantly evacuated through the exhaust hole 431 toward the exhaust passage 43, and the mixed gas spreading in the weak plasma generation space 102 reaches the surface of the substrate S and then moves upward in the flow direction. Then, the gas is quickly exhausted from the processing container 10 through the exhaust hole 431.
  • the exhaust hole 431 is provided on the lower surface of the electrode portion 41 in this way, the residence time of the mixed gas on the surface of the substrate S is shortened, and the reaction between the H radical and SiH 4 is advanced in the weak plasma generation space 102.
  • the space to which H 2 is supplied is configured as a strong plasma generation space 101 to obtain a large amount of H radicals as active species, while the space to which SiH 4 is supplied is a weak plasma generation space.
  • SiH 3 can be supplied to the surface of the substrate S at a high concentration while suppressing ion damage to the substrate S.
  • the film forming apparatus 1 has the following effects. For example, high-frequency power having a phase difference of 180 ° is applied to one and the other of the plate-like electrode portions 41 that are spaced apart from each other, and plasma is generated in the strong plasma generation space 101 sandwiched between these electrode portions 41. On the other hand, a weaker plasma than the plasma formed in the strong plasma generation space 101 is also formed in the weak plasma generation space 102 where film formation is performed. In the strong plasma generation space 101, H radicals are generated, while in the weak plasma generation space 102, the reaction between the H radicals and SiH 4 proceeds to uniformly form a ⁇ c-Si film with few defects on the surface of the substrate S. Can be formed.
  • the distance w between the adjacent electrode portions 41 is adjusted to a range of 2 to 20 mm, and the distance h between the lower surface of the electrode portion 41 and the substrate S is adjusted to a range of 5 to 100 mm.
  • methods for forming a more uniform ⁇ c-Si film on the substrate S are listed below.
  • an inclined surface portion 46 is provided on the lower surface of each electrode portion 41 c so as to rise from the both side wall surfaces of the electrode portion 41 c toward the central portion, and the distance from the substrate S to the lower end of the inclined surface portion 46. than h 2 is an example configured as towards the distance h 1 from the substrate S to both side wall surfaces of the electrode portion 41c is increased. Both side wall surfaces of the electrode portion 41c correspond to the exit (opening portion) of the strong plasma generation space 101, and it has been confirmed in the simulation described later that uniform plasma is formed in the vicinity of this region.
  • h 2 is adjusted within a range of 5 to 100 mm.
  • the mounting table 2 a is supported on the floor surface in the processing container 10 via the caster part 26, and the mounting table 2 a is aligned along the arrangement direction of the electrode parts 41 by the drive mechanism 27. May be reciprocated. Even when the electron density in the vicinity of the exit of the strong plasma generation space 101 is high, the substrate S is moved back and forth in the lateral direction to move the region of the substrate S facing the region having the high electron density, thereby The film thickness formed on S can be made uniform.
  • FIG. 10 shows the plasma intensity in the strong plasma generation space 101 in the region by separating the distance w between the electrode portions 41 in the region where the deposition rate of the ⁇ c-Si film formed on the substrate S is increased.
  • the example of the electrode part 41d which improves the in-plane uniformity of a film thickness by reducing is shown.
  • the region on the center side of the substrate S where the SiH 4 supply holes 421 and the exhaust holes 431 are dense is close to the inner wall surface of the processing vessel 10 and has fewer SiH 4 supply holes 421 and exhaust holes 431 than the center side. Compared with the side region of S, the supply amount of H radicals and SiH 4 is large, and the film formation rate tends to be high.
  • the planar shape of the electrode part 41d is not limited to the example shown in FIG.
  • a preliminary experiment is performed using the electrode unit 41 shown in FIG. 4 to identify a region where the deposition rate is high, and the distance w between the electrode units 41d located in this region is relatively large.
  • the planar shape of the electrode part 41d can be adjusted as appropriate.
  • interval of the adjacent electrode part 41 is not limited to when changing the distance between electrode parts 41d uniformly, as shown in FIG.
  • a notch part 45 is provided at an interval on the side wall surface of the electrode part 41e having a distance w, and the distance between the electrode parts 41e and 41 in the notch part 45 is w ′. You may make it become.
  • the notch portion 45 is formed so that the average value of the distances between the electrode portions 41e and 41 in the region in which the notch portion 45 is provided and the region in which the notch portion 45 is not provided is w 1 described above. It is recommended to adjust the notch depth and the arrangement interval.
  • FIGS. 12 to 15 components having the same functions as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals as those shown in these drawings.
  • the ⁇ c-Si film formed on the wafer in the manufacturing process of the semiconductor device is required to have a higher level of in-plane uniformity compared to the case where the film is formed on the substrate for the solar cell. Therefore, in the film forming apparatus of this example, as shown in FIG. 12, the shape of the bottom surface of the electrode part 41f is, for example, a square, and these electrode parts 41f are not only in the X-axis direction but also in the Y-axis direction in the figure.
  • the difference from the film forming apparatus 1 according to the first embodiment is that the long and thin plate-like electrode portions 41 are spaced apart only in the X-axis direction. In other words, the electrode part 41f of FIG.
  • the electrode portion 41 is configured by dividing it in the Y-axis direction.
  • the distance between the electrode parts 41f arranged adjacent to each other across the strong plasma generation space 101 is, for example, 2 mm or more and 20 mm or less, more preferably 4 mm or more and 10 mm or less.
  • the first embodiment is that the distance h between the lower surface of the electrode part 41 and the surface of the substrate S is adjusted to 5 mm or more and 100 mm or less, more preferably 7 mm or more and 30 mm or less. It is the same as the form.
  • SiH 4 supply holes 421 are provided on the bottom surface of each electrode portion 41 f at, for example, four corners of a square, and the center surrounded by these SiH 4 supply holes 421.
  • An exhaust hole 431 is provided in the part.
  • strong plasma generating space 101 between the electrode portions 41f adjacent is formed, in order to supply of H 2 to the strong plasma generation space 101, H 2 in the insulating member 31 constituting the ceiling portion of the processing chamber 10
  • the supply hole 321 is provided in the same manner as the film forming apparatus 1 of the first embodiment.
  • SiH 4 gas or H 2 gas is supplied through branch paths 423 and 323 penetrating the electrode portion 41f. Further, the mixed gas flowing into the exhaust hole 431 is discharged to the outside through the branch path 433 and the exhaust path 43.
  • FIG. 14 only one set of each of the supply / exhaust passages 42, 32, 43 and the branch passages 423, 323, 433 is shown in order to avoid complication of the drawing.
  • each electrode portion 41 f is connected to the first and second power supply portions 61 and 62 so that high-frequency power whose phase is inverted is applied to the adjacent electrode portion 41 f.
  • the electrode portion 41f to which the electric power with reversed phase is applied is surrounded by a strong plasma generation space 101 extending so as to intersect in a lattice pattern, like a checkered pattern. It will be in the state where it lined up.
  • the electrode portion 41 f connected to the first power supply portion 61 is denoted by “41 a”
  • the electrode portion 41 f connected to the second power supply portion 62 is denoted by “41 b”.
  • subjected is the same as that of the case of FIG.
  • the shape of the bottom surface of the electrode portion 41f is, for example, a square, and these electrode portions 41f are arranged in the front-rear and left-right directions, and by applying power whose phase is reversed to the adjacent electrode portions 41f, only the left-right direction (X axis direction in FIG. In addition, the plasma is dispersed in the front-rear direction (Y-axis direction in FIG. 12). Therefore, even if there is a slight difference in the film formation speed in the respective regions below the electrode portion 41f and the strong plasma generation space 101, the regions having different film formation rates are arranged in a distributed manner. Become.
  • the length of one side of the bottom surface of the electrode portions 41g to 41j formed in a square shape is The example which comprised so that it might become long gradually toward the peripheral part side from the part side is shown.
  • This example corresponds to the example of the electrode part 41d shown in FIG. 10, and for example, the distance between the adjacent electrode parts g to 41j so as to offset the difference in the arrangement density of the SiH 4 supply holes 421 and the exhaust holes 431.
  • the shape of the bottom surface of the electrode portion is not limited to a rectangular shape such as a square, and an electrode portion 41k having a circular bottom surface may be used as shown in FIG. May be.
  • the strong plasma forming spaces 101 that intersect with each other and extend in a lattice shape are not limited to being orthogonal, and the strong plasma forming spaces 101 may be crossed obliquely.
  • the shape of the bottom surface of the electrode portion is, for example, a rhombus.
  • FIG. 18 shows an example in which one of the electrode portions 41m (41n) (first electrode portion) is integrated among the electrode portions 41m and 41n to which high-frequency powers whose phases are reversed are applied.
  • the first electrode portion 41m is made of a wide metal plate that covers the upper side of the plate surface of the wafer, and the second electrode portion 41n (second electrode portion) is disposed at a position where the second electrode portion 41n (second electrode portion) is disposed.
  • An opening 103 that is slightly larger than the planar shape of the electrode portion 41n is formed. Then, by inserting the second electrode portion 41n into the opening 103, there is a gap between the inner surface of the opening 103 and the outer surface of the second electrode portion 41n disposed inside thereof.
  • the gap is formed and the strong plasma generation space 101 is formed.
  • the opening 103 in this example is similar to the electrode part 41f shown in FIG. 12 described above, and is provided with electrode parts 41m and 41n to which high-frequency power with reversed phase is applied (shown separately in white and gray). Are arranged in a checkered pattern.
  • the shapes of the integrated first electrode portion 41m and the second electrode portion 41n inserted into the opening 103 are not limited to the example shown in FIG.
  • FIG. 19 shows an example in which hexagonal openings 103 are regularly arranged in the first electrode part 41 East formed in a hexagonal shape, and the second electrode part 41p is inserted into the opening part 103.
  • a hexagonal region (indicated by a broken line in FIG. 19) of the first electrode part 41 East sandwiched between the openings 103 and the second electrode part 41p are arranged in a honeycomb shape.
  • the electrode portions 41 East and 41p are highly symmetrical as viewed from the wafer.
  • the shape of the second electrode portion may be another shape such as a circle.
  • the area of the second electrode portion and the strong plasma space 101 are Of course, the width of the gap formed may be changed between the central portion side and the peripheral portion side of the wafer.
  • a rotation axis that rotates around the vertical axis is provided at the center on the lower surface side of the mounting table 2 that supports the wafer, and film formation is performed while the wafer on the mounting table 2 is rotated. In-plane uniformity may be further improved.
  • the disc-shaped wafer is formed in the same size as shown in FIG. 12, for example, because the circumferential length is different between the position on the center side and the position on the outer periphery side.
  • the outer peripheral portion of the wafer is exposed to the plasma concentration portion (for example, the lower region of the strong plasma forming space 101) more frequently than the inner peripheral portion, and the film formation rate is not uniform when viewed in the radial direction. There is also a concern that this will expand.
  • the plasma concentration portion for example, the lower region of the strong plasma forming space 101
  • An electrode portion 41l divided by 101 may be provided. Since the number of electrode portions 41l arranged above the electrode portion 41l divided in this way is the same at the position on the center side of the wafer and the position on the outer peripheral portion side, the wafer is rotated one revolution. Further, the number of electrode portions 41l passing therethrough and the number of strong plasma forming spaces 101 extending in the radial direction are uniform, and the film formation rate can be made uniform when viewed in the radial direction.
  • the phase difference of the high frequency power applied from the first and second power supply units 61 and 62 is smaller than 180 °, for example, 30 °.
  • the plasma intensity may be made smaller than that in the case where the phase is inverted (the phase is shifted by 180 °) by adjusting to a range of from above to less than 180 °.
  • the high frequency power applied to the electrode part 41 is not restricted to the example of 13.56 MHz, Of course, other frequencies, for example, 100 MHz or other high frequency power may be applied.
  • the film forming apparatus 1 shown in FIG. 1 the example in which the reaction gas in the weak plasma generation space 102 is exhausted to the outside through the exhaust hole 431 opened on the lower surface of the electrode portion 41 is shown. Is not limited to the case of forming in the electrode part 41. For example, when a good film quality can be obtained even if exhaust is performed from the exhaust pipe 13 shown in FIG. 1, the case where the exhaust pipe 13 is used as an exhaust part is not denied.
  • the present invention is not limited to the case where the present invention is applied to the formation of a Si film using H 2 and SiH 4 .
  • the present invention can be applied to the case where the first reactive gas is H 2 and the second reactive gas is a silicon compound gas other than SiH 4 , for example, SiH 2 Cl 2 to form microcrystalline Si.
  • the inside of the container 10 was photographed with a CCD camera with a transmission wavelength filter, and the emission intensity of plasma was measured.
  • FIG. 21 (a) A photograph of the measurement result of the light emission intensity related to (Example 1) is shown in FIG. 21 (a), and the measurement result related to (Comparative Example 1) is shown in FIG. 21 (b).
  • FIG. 22 shows an in-plane portion of the deposition rate of the ⁇ c-Si film in (Example 1) and (Comparative Example 1).
  • the horizontal axis in FIG. 22 is the distance in the horizontal direction from the center of the electrode unit 41 connected to or grounded to the second power supply unit 62, and the vertical axis is the deposition rate of the ⁇ c-Si film at that position [ nm / second].
  • the results of (Example 1) are plotted with diamonds
  • the results of (Comparative Example 1) are plotted with squares.
  • FIG. 21A related to (Example 1)
  • the light emission intensity on the lower surface of the electrode portions 41 arranged side by side is comparable
  • Comparative Example 1 the lower surface of the electrode unit 41 connected to the first power supply unit 61 is bright and the lower surface of the grounded electrode unit 41 is clearly visible.
  • Simulation 2 The distribution of the electron density in the weak plasma generation space 102 was simulated when the inclined surface portion 46 was not provided in the electrode portion 41.
  • Example 2-1 Simulation conditions (Example 2-1)
  • 13.56 MHz, 400 W / piece from the first power supply portion 61 A strong plasma generation space in a state in which a high frequency power of 13.56 MHz and 600 W / line, which is 180 degrees out of phase with the high frequency power of the first power supply unit 61, is applied from the second power supply unit 62.
  • the electron density distribution in the weak plasma generation space 102 was simulated by a plasma fluid model. References for plasma fluid models include M.I. J. et al. Kushner: J.A. Phys.
  • Example 2-1 The simulation result of (Example 2-1) is shown in FIG. 23 (a), and the simulation result of (Example 2-2) is shown in FIG. 23 (b).
  • Example 2-1 shown in FIG. 23A a region having a high electron density was confirmed on the lower side of the opening of the strong plasma generation space 101.
  • Example 2-2 shown in FIG. 23B an inclined surface portion 46 is provided on the lower surface of the electrode portion 41c.
  • the inclined surface portion 46 is inclined from both side wall surfaces of the electrode portion 41c toward the central portion.
  • the region having a high electron density observed in (Example 2-1) is considerably eliminated, and the plasma is uniformly formed over the entire weak plasma generation space 102. This is thought to be because the concentration of the electron density at the outlet of the strong plasma generation space 101 is relaxed by strengthening the coupling with the substrate S at the tip of the inclined surface portion 46.
  • Example 3 As shown in FIG. 5, the frequency signal generator 63 and the first and second power supply units 61 and 62 are connected via the first and second signal lines 611 and 621, and the second signal line 621 is connected.
  • A. Experimental conditions Example 3-1 The length of the first signal line 611 from the frequency signal generator 63 to the first power supply unit 61 is 1 m, and the length of the second signal line 621 from the frequency signal generator 63 to the second power supply unit 62 is Was 8.4 m.
  • Example 2 is the same as Example 3-1, except that the length of the second signal line 621 from the frequency signal generator 63 to the second power supply unit 62 is 2.85 m.
  • Example 3-3 Example 2 is the same as Example 3-1 except that the length of the second signal line 621 from the frequency signal generator 63 to the second power supply unit 62 is 4.7 m.
  • FIGS. 24 (a) to 24 (c) The measurement results of the waveform of the high frequency power in (Example 3-1) to (Example 3-3) are shown in FIGS. 24 (a) to 24 (c), respectively.
  • the waveform of the high frequency power output from the first power supply unit 61 is indicated by a solid line
  • the waveform of the high frequency power output from the second power supply unit 62 is indicated by a broken line.
  • the first and second power sources are set by setting the difference in length between the first and second signal lines 611 and 621 to 7.4 m. It was possible to shift the phase difference of the high-frequency power output from the units 61 and 62 by 180 ° (invert the phase). Also in the case of (Example 3-2) shown in FIG. 24B and (Example 3-3) shown in FIG. 24C, the lengths of the first and second signal lines 611 and 621, respectively. By setting the difference in height to 1.85 m and 3.7 m, the phase difference of the high-frequency power could be changed to 45 ° and 90 °.
  • Example 4 Simulation conditions (Example 4) Under the same conditions as in Example 2-1, the pressure in the processing vessel 10 was changed from 200 to 1000 Pa in increments of 200 Pa, and the change in the electric field strength with respect to the change in pressure was simulated. (Comparative Example 4-1) A simulation was performed under the same conditions as in (Example 4) except that the in-phase power (phase shift was 0 °) was applied to the adjacent electrode portions 41. (Comparative Example 4-2) The strength of the electric field with respect to the pressure change when the substrate S is placed on the lower electrode of a parallel plate having a gap width of 5 mm and high frequency power of 13.56 MHz and 500 W is applied. The change of was simulated.
  • FIG. 25 shows the simulation results of Example 4 and Comparative Examples 4-1 and 4-2.
  • the horizontal axis indicates the pressure (Pa) in the processing container 10
  • the vertical axis indicates the electric field strength (V / m) on the substrate S.
  • the results of (Example 4) are shown by rhombus plots
  • the results of (Comparative Examples 4-1 and 4-2) are shown by square and triangle plots, respectively.
  • the phase of the high frequency power applied to the adjacent electrode portions 41 was inverted (the phase was shifted by 180 °), and (Example 4) was compared at any pressure (comparison).
  • Examples 2-1 and 2-2 the intensity of the electric field on the substrate S is smaller.
  • the weak plasma generation space 102 having a lower electric field strength than the case where the phases of the high-frequency power applied to the adjacent electrode portions 41 are in phase or the conventional parallel plate, which is unnecessary. It can be said that SiH 3 can be supplied to the surface of the substrate S at a high concentration while suppressing the generation of active species.
  • Example 5 Under the same conditions as in Example 2-1, the H 2 / SiH 4 values were 25 (H 2 and SiH 4 were 1000 sccm and 40 sccm, respectively), 33 (1000 sccm and 30 sccm), 50 (1000 sccm and 20 sccm), 100 (1000 sccm, 10 sccm), and the film formation rate and the crystallinity of the ⁇ c-Si film (peak intensity corresponding to the mass% of the crystallized portion (Xc)) were measured by Raman spectroscopy.
  • An experiment was performed under the same conditions as in (Example 5) except that in-phase power (phase shift was 0 °) was applied to adjacent electrode portions 41.
  • Example 5 Experimental results of Example 5 and Comparative Example 5 are shown in FIG.
  • the horizontal axis indicates the value of H 2 / SiH 4
  • the left vertical axis indicates the deposition rate (mm / sec)
  • the right vertical axis indicates the crystallinity (Xc%).
  • the result of (Example 5) is shown by a rhombus plot
  • the result of (Comparative Example 5) is shown by a square plot.
  • the black-filled plot indicates the film formation rate
  • the white plot indicates the crystallinity (peak intensity% of the crystallized portion). According to the results shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

【課題】膜質が良好で均一な膜厚の薄膜を成膜することが可能な成膜装置を提供する。 【解決手段】処理容器10内にて反応ガスを反応させて基板Sに薄膜を成膜する成膜装置1において、電極部41は、各々縦向きの姿勢で互いに間隔をおいて横方向に配置され、隣り合う電極部41の一方及び他方に互いに位相が異なる高周波電力を印加することにより、載置台2に載置された基板Sの上方に強プラズマ生成空間101が形成されると共に、電極部41と基板Sとの隙間には、発光強度が弱いプラズマが生成される弱プラズマ生成空間102が形成される。強プラズマ生成空間101には第1の反応ガスが供給され、また弱プラズマ生成空間102には、第1の反応ガスの活性種と反応して基板上に薄膜を成膜する第2の反応ガスが供給され、弱プラズマ生成空間102内の反応ガスは排気部43から排気される。

Description

成膜装置
 本発明は、太陽電池などに用いられる大面積基板や半導体装置の製造に用いられる半導体ウエハに対して、シリコンなどの薄膜を成膜する技術に関する。
 薄膜シリコン太陽電池は、バルク型の結晶シリコン太陽電池と比較してシリコンの消費量が少なく、大面積化が比較的容易であり、また製造コストも低いため近年盛んに研究がなされている。例えばタンデム型の薄膜シリコン太陽電池(以下、単に太陽電池という)は、微結晶シリコン膜の上面にアモルファスシリコン膜を積層して、各層で異なる波長域の光を吸収することにより光エネルギーの変換効率を高めたものである。
 大面積基板上にアモルファスシリコン膜(a-Si膜)や微結晶シリコン膜(μc-Si膜)を成膜する場合には、例えば真空雰囲気でモノシラン(SH)ガスと水素(H)ガスとを反応させて基板上にシリコンを堆積させるCVD(Chemical Vapor Deposition)法などが採用される。a-Si膜とμc-Si膜とは、SHガスとHガスとの分圧比を調節することなどにより作り分けることができる。
 出願人は、高周波電力やマイクロ波などを印加してSHやHをプラズマ化し、生成された活性種を反応させて、ガラス基板などの大型の基板にμc-Si膜などの成膜を行うプラズマCVD法を利用した成膜装置を開発している(特許文献1)。
 このような成膜装置の開発過程で、大型の基板の面内で膜の厚さをより均一にする技術や、また未結合手を持ったまま膜中に取り込まれたり、高次シランがさらに成長して微粒子化した状態で取り込まれたりすることにより形成されるSi膜の欠陥を低減する技術の開発が課題となっている。 
 また、半導体装置の製造に用いられる半導体ウエハ(以下、ウエハという)についても同様に、低欠陥で面内均一性の高いSi膜の成膜が要求されている。
特開2011- 86912号公報:請求項1、図1、図12、図17
 本発明はこのような背景の下になされたものであり、膜質が良好で均一な膜厚の薄膜を成膜することが可能な成膜装置を提供することを目的とする。
 本発明に係る成膜装置は、処理容器内にて複数種類の反応ガスを反応させて基板に薄膜を成膜する成膜装置において、
 前記処理容器内に設けられ、基板を載置するための載置台と、
 この載置台に載置された基板の上方にて、その間に強プラズマ生成空間を形成するために、各々縦向きの姿勢で互いに間隔をおいて横方向に配置されると共に、その下端部と前記基板との間の隙間に、前記強プラズマ生成空間に形成されるプラズマよりも発光強度が弱いプラズマを生成するための弱プラズマ生成空間を形成する板状の複数の電極部と、
 前記強プラズマ生成空間に第1の反応ガスを供給するための第1の反応ガス供給部と、
 前記強プラズマ生成空間の下部側、または前記弱プラズマ生成空間に、第1の反応ガスの活性種と反応して基板上に薄膜を成膜する第2の反応ガスを供給するための第2の反応ガス供給部と、
 前記弱プラズマ生成空間から反応ガスを排気するための排気部と、
 前記強プラズマ生成空間を挟んで隣り合う電極部の一方及び他方に互いに位相が異なる高周波電力を印加する第1の高周波電源部、及び第2の高周波電源部と、を備え、
 前記強プラズマ生成空間を挟んで隣り合う電極部間の距離が2mm以上、20mm以下の範囲であり、
 前記載置台上の基板と電極部との距離が5mm以上、100mm以下の範囲であることを特徴とする。
 前記成膜装置は以下の特徴を備えていてもよい。 
 (a)前記板状の電極部の下面には、この電極部の両側壁面側から中央部側へ向けて傾斜する傾斜面部が形成されていること。 
 (b)前記載置台は、前記複数の電極部が並んでいる方向に沿って、当該載置台上に載置された基板を往復移動させる移動機構を備えていること。 
 (c)前記電極部の平面形状は、前記強プラズマ生成空間を挟んで隣り合う電極部間の距離が、成膜速度の速い領域で広く、成膜速度の遅い領域で狭くなるように形成されていること。 
 (d)前記電極部の側壁面には、前記強プラズマ生成空間を挟んで隣り合う電極部の側壁面を切り欠いて形成された複数の切り欠き部が互いに間隔をおいて配置されていること。
 (e)前記板状の電極部の間に形成された強プラズマ形成空間と交差する交差方向にも強プラズマ空間が形成されるように前記板状の電極部を分割し、前記第1の高周波電源部、及び第2の高周波電源部は、この交差方向に伸びる強プラズマ空間を挟んで隣り合う電極部にも互いに位相が異なる高周波電力を印加すること。または、前記電極部は、板状の複数の電極部を各々縦向きの姿勢で互いに間隔をおいて横方向に配置することに替えて、基板の板面の上方側を覆う幅広な板状の第1の電極部の面内に、互いに間隔を開けて複数の開口部を設け、前記開口部の内側に、当該開口部の内側面との間に隙間を形成して第2の電極部を配置することにより、前記強プラズマ生成空間を形成したこと。
 (f)前記排気部は、前記電極部内に形成された排気路と、前記弱プラズマ生成空間の反応ガスをこの排気路に排気するために当該電極の下面に設けられた排気孔とを備えていること。
 (g)第1の反応ガスは水素ガスであり、第2の反応ガスはシリコン化合物ガスであること。
 (h)前記処理容器内の圧力が100Pa以上、2000Pa以下であること。
 本発明は、互いに間隔をおいて配置された板状の電極部の一方と他方とに位相が異なる高周波電力を印加し、これら電極部に挟まれた強プラズマ生成空間にプラズマを発生させる一方、成膜が行われる基板と各電極部との間の隙間にも前記強プラズマ生成空間に形成されるプラズマよりも発光強度の弱いプラズマを形成する。そして、強プラズマ生成空間では、第1の反応ガスの活性種を生成する一方、弱プラズマ生成空間では強プラズマ生成空間で生成した活性種と第2の反応ガスとの反応を進行させることにより、欠陥の少ない薄膜を基板表面に均一に成膜することができる。
本発明の実施の形態に係わる成膜装置の縦断側面図である。 前記成膜装置の外観構成を示す斜視図である。 前記成膜装置に設けられた電極部の構成を示す一部破断斜視図である。 前記電極部の平面図である。 前記電極部に高周波電力を供給する電力供給系統の構成を示す説明図である。 前記成膜装置の作用を示す説明図である。 第2の実施の形態に係わる成膜装置の説明図である。 第3の実施の形態に係わる成膜装置の第1の説明図である。 第3の実施の形態に係わる成膜装置の第2の説明図である。 第4の実施の形態に係わる成膜装置の電極部の構成を示す平面図である。 第5の実施の形態に係わる成膜装置の電極部の構成を示す平面図である。 第6の実施の形態に関わる成膜装置の電極部の配置を示す平面図である。 第6の実施の形態に関わる電極部の底面の拡大図である。 第6の実施の形態に関わる電極部の一部破断斜視図である。 第6の実施の形態に関わる成膜装置の電力供給系統の説明図である。 第6の実施の形態に関わる電極部の変形例を示す平面図である。 第6の実施の形態に関わる電極部の第2変形例を示す平面図である。 第6の実施の形態に関わる電極部の第3変形例を示す平面図(その1)である。 第6の実施の形態に関わる電極部の第3変形例を示す平面図(その2)である。 ウエハを回転させる場合の電極部の構成を示す平面図である。 実施例及び比較例に係わる成膜装置内の放電状態を示す説明図である。 前記成膜装置の成膜速度の分布を示す説明図である。 実施例に係わる成膜装置の電子密度分布をシミュレーションした結果を示す説明図である。 実施例に係わる成膜装置に供給される高周波電力の波形図である。 処理容器内の圧力と基板上に形成される電界の強度との関係を示す説明図である。 反応ガスの流量比と成膜速度、及び結晶化度との関係を示す説明図である。
 本発明の実施の形態として、隣り合って配置された電極部間に容量結合プラズマを形成し、H(第1の反応ガス)を活性化させてSH(第2の反応ガス)と反応させ、薄膜であるμc-Si膜の成膜を行う成膜装置の装置構成について図1~図5を参照しながら説明する。
 図1に示すように、成膜装置1は、真空容器である処理容器10の内部に、成膜対象の基板Sが載置される載置台2と、載置台2上の基板S表面にHの活性種を供給するために強プラズマ生成空間101を形成すると共に、この活性種とSiHとの反応を進行させる弱プラズマ生成空間102を形成するための電極部41と、を配置した構成となっている。図1、図2に示すように処理容器10は、密閉可能で扁平な金属製の容器として構成され、例えば1100mm×1400mm以上の大型のガラス基板Sを格納可能なサイズに構成されている。
 図中、11は処理容器10に設けられた基板Sの短辺が通過可能な搬入出口、12は搬入出口11を開閉するためのゲートバルブである。また処理容器10の側壁面には、処理容器10内を真空排気するための排気管13が設けられており、排気管13の下流側に設けられた不図示の真空ポンプの作用により、処理容器10内の空間を例えば100Pa~2000Paに調節することができる。以下、処理容器10内に設置された基板Sの短辺方向を縦方向とし、基板Sの長辺方向を横方向として説明を行う。
 処理容器10内の床面には、誘電体などからなる載置台2が配置されており、この載置台2上に既述の基板Sを載置してμc-Si膜の成膜が実行される。基板Sの搬入出を行う外部の基板搬送機構(不図示)と載置台2との間の基板Sの受け渡しは、昇降板24を介して昇降機構25により昇降自在に構成された昇降ピン22を用いて行われる。図1中、23は処理容器10内を真空雰囲気に保つため昇降ピン22を囲むように設けられたベローズである。
 載置台2には、例えば抵抗発熱体からなる温度調整部21が埋設されており、この温度調整部21は不図示の電力供給部から供給される電力により発熱し、載置台2の上面を介して基板Sを例えば200℃~300℃の温度に調節することができる。ここで温度調整部21は基板Sを加熱するものに限られず、プロセス条件に応じて基板Sを冷却して所定の温度に調節する例えばペルチェ素子などを採用してもよい。
 本実施の形態に係る成膜装置1は、μc-Si膜の成長に必要な活性種SiHについては基板S表面の近傍領域に高濃度で供給する一方で、SiやSiH、SiHなどのSiH以外の活性種、高次シランやその微粒子などのμc-Si膜の膜質低下を引き起こす物質については基板S表面への供給を抑えるため、以下に列記する作用を得ることが可能な構成となっている。
 (1)H(第1の反応ガス)が供給される空間を強プラズマ生成空間101として構成し活性種であるHラジカルを得る。一方、このHラジカルとSiH(第2の反応ガス)とを反応させる基板Sの上面の空間は、前記強プラズマ生成空間101よりも発光強度の弱いプラズマを生成する弱プラズマ生成空間102として構成することにより不要な活性種の発生を抑えつつSiHを高濃度で基板S表面に供給する。 
 (2)HラジカルとSiHとの混合ガスを基板S表面から速やかに排気することにより、HラジカルとSiHとのラジカル反応が必要以上に進行することに伴う不要な活性種の発生を抑制する。 
 以下、上述の作用を得るために成膜装置1に設けられている電極部41等の構成について説明する。
 図1、図3、図6に示すように、成膜装置1には載置台2に載置された基板Sの上方に、処理容器10内の空間を分割するように、横方向に互いに間隔をおいて配置された板状の電極部41が配置されている。各電極部41は例えば細長い板状の金属製部材として構成され、処理容器10の天井部(後述の絶縁部材31)から縦向きの姿勢で下方側へ伸び出すように配置されている。また電極部41の縦方向の長さは基板Sの短辺よりも長尺に形成されている。
 各電極部41は、基板Sの長辺の方向(横方向)に、等間隔で配置されており、これにより互いに隣り合う2本の電極部41の間には、基板Sの短辺方向(縦方向)に伸びる細長い空間(強プラズマ生成空間101)が形成される。各電極部41は絶縁部材31を介して処理容器10の天井部に固定されており、第1、第2の電源部61、62から高周波電力を供給することにより、この強プラズマ生成空間101にプラズマが生成されるが、電力供給系統の詳細な構成については後述する。
 図6に示すように、強プラズマ生成空間101を挟んで隣り合って配置されている電極部41間の距離wは、例えば2mm以上、20mm以下、より好適には4mm以上、10mm以下の範囲に調節されている。電極部41間の距離が2mmよりも小さくなると、強プラズマ生成空間101内にプラズマが立たなくなる一方、この距離が20mmよりも大きくなると、処理容器10に生成するプラズマが弱くなってHラジカルの生成量が低下し、成膜速度の低下などを引き起こす。
 また電極部41は、電極部41の下面と基板S表面との間の距離hが5mm以上、100mm以下、より好適には7mm以上、30mm以下に調節されている。電極部41と基板Sとの距離が100mmよりも大きくなると、弱プラズマ生成空間102に生成するプラズマが弱くなって成膜速度が低下する。また、電極部41と基板Sとの距離が5mmより小さくなった場合には、弱プラズマ生成空間102に生成するプラズマの強度が強プラズマ生成空間101に生成するプラズマの強度に近づいてしまい、SiHの分解などが過剰に進行して、μc-Si膜の膜質を低下させる要因となる。
 次いで、強プラズマ生成空間101や弱プラズマ生成空間102に反応ガスを供給し、反応後のガスを排気する機構について説明する。図1、図3に示すように、電極部41を固定している絶縁部材31の上面側には、処理容器10との間に空間が形成されており、この空間内には、強プラズマ生成空間101にHを供給するためのH供給路32が配設されている。
 H供給路32は、各強プラズマ生成空間101の上方側に配置されており、図3、図4、図6に示すように電極部41の伸びる方向に沿ってH供給路32に接続された分岐路323、及び絶縁部材31に穿設されたH供給孔321を介して強プラズマ生成空間101内にHを供給することができる。
 図1~図3に示すように、これら複数本のH供給路32は共通のH供給ライン511に接続されており、Hボンベと流量調整弁などにより構成されるH供給部51から水素を受け入れて、予め設定された量のHを各強プラズマ生成空間101に供給することができる。H供給路32、H供給ライン511、H供給部51などは、本例の第1の反応ガス供給部に相当する。
 また図1、図3に示すように、各電極部41の内部には、弱プラズマ生成空間102にSiHを供給するためのSiH供給路42と、弱プラズマ生成空間102に供給された反応ガスを排出するための排気路43とが形成されている。 
 本例のSiH供給路42は、図3中に破線で示すように、電極部41の下部側の領域であって、当該電極部41の両側壁面に近い領域にそれぞれ設けられ(合計2本)ており、電極部41の伸びる方向に沿って形成されている。
 各SiH供給路42からは、複数の分岐路423が互いに間隔をおいて下方側へ向けて伸び出しており、図3、図4、図6に示すように電極部41の下面に形成され、電極部41の前後の両側壁面に沿って2列に並ぶSiH供給孔421から弱プラズマ生成空間102に向けてSiHを供給することができる。ここでSiH供給孔421は、電極部41の底面に設ける場合に限られるものではなく、例えばSiH供給路42から分岐路423を水平方向に伸ばして電極部41の下部側の側壁面にSiH供給孔421を形成し、強プラズマ生成空間101の下部側にSiHを供給するように構成してもよい。
 図1~図3に示すように、各電極部41の内部に形成されたSiH供給路42は共通のSiH供給ライン521に接続されており、SiHボンベと流量調整弁などにより構成されるSiH供給部52からSiHを受け入れて、予め設定された量のSiHを供給することができる。SiH供給路42、SiH供給ライン521、SiH供給部52などは本例の第2の反応ガス供給部に相当する。
 さらに各電極部41の内部には、既述のSiH供給路42よりも内側の上方領域に2本の排気路43が、前記SiH供給路42と平行に電極部41の伸びる方向に沿って形成されている。これら2本の排気路43からも複数の分岐路433が互いに間隔をおいて下方側へ向けて伸び出しており、2本の分岐路433は途中で合流し、電極部41の下面に形成された排気孔431に接続されている。図4に示すように排気孔431は、2列に並ぶSiH供給孔421の列に挟まれるように電極部41の下面の中央部に1列に配置されている。
 図1~図3に示すように、各電極部41の内部に形成された排気路43は共通の排気ライン531を介し、真空ポンプなどにより構成される外部の排気手段53に接続されており、弱プラズマ生成空間102の反応ガスを外部へと排出することができる。これら排気路43、排気ライン531や排気手段53などは本例の排気部に相当している。
 次いで、処理容器10内の各電極部41に高周波電力を供給する電力供給系統について説明する。図5に示すように、強プラズマ生成空間101を挟んで一方側の電極部41(図5に電極部41aと記してある)は、各電極部41aに例えば13.56MHz、2500W/本(1本の電極部)の高周波電力を印加する第1の電源部61(第1の高周波電源部)と接続されている。一方、強プラズマ生成空間101を挟んで他方側の電極部41(図5中に電極部41bと記してある)は、第1の電源部61から供給される高周波電力に対して位相が180°遅れた(位相が反転した)、例えば13.56MHz、2500W/本の高周波電力を印加する第2の電源部62(第2の高周波電源部)に接続されている。図中、612、622は各電源部61、62から供給される高周波電力のマッチングを行う整合器である。
 図5に示した例では第1、第2の電源部61、62は、外部から入力された周波数信号に同期した高周波電力を出力することが可能な外部同期型の電源として構成されている。そして、これら第1、第2の電源部61、62を共通の周波数信号発生器63に接続する際に、第1の電源部61と周波数信号発生器63とを接続する第1の信号線611よりも第2の電源部62と周波数信号発生器63とを接続する第2の信号線621の方が長くなっている。
 これにより、周波数信号発生器63から出力された周波数信号は、第1の電源部61に入力されるタイミングより遅れて第2の電源部62に入力され、この遅れを利用して高周波電力の位相が調整される。本法により各電源部61、62から出力される高周波電力の位相を調整できることは、後述の実施例に示すように実験的に確かめてある。 
 但し、第1の電源部61と第2の電源部62との位相差を調整する手法は特定の方法に限定されるものではなく、他の方法を採用してもよい。例えば1つの高周波電源部の出力に強制バラン回路を接続し、当該強制バラン回路の一の出力を電極部41aに印加し、当該一の出力と位相が反転した他の出力を電極部41bに印加する構成としてもよい。
 このように強プラズマ生成空間101を挟んで隣り合う電極部41(41a、41b)に位相の反転した高周波電力を印加することにより、電極部41同士の隙間に供給されたHをプラズマ化してHラジカルを生成する強プラズマ生成空間101が形成される。また、各電極部41と、その下方側に載置された基板Sとの間にも電極部41に印加される高周波電力に起因するプラズマが形成される。
 ここで、互いに位相が反転し、いわゆるプッシュ-プルの状態で電極部41a、41bに高周波電力が印加される強プラズマ生成空間101とは異なり、載置台2上に載置された基板Sは、電気的に浮いた状態となっている。このため、各電極部41と基板Sとの隙間の空間(弱プラズマ生成空間102)には、強プラズマ生成空間101に形成されるプラズマよりも弱いプラズマが生成される。
 ここで強プラズマ生成空間101及び弱プラズマ生成空間102に形成されるプラズマの相対的な強度比、例えばプラズマ中の電子温度や電子密度の比は、処理容器10の内部を透過波長フィルタ付きCCDカメラにより撮影したときの発光強度の比で把握することができる。強プラズマ生成空間101の発光強度に対する弱プラズマ生成空間102の発光強度の比が1未満の場合に、弱プラズマ生成空間102には強プラズマ生成空間101に生成するプラズマよりも弱いプラズマが生成しているといえる。
 上述の構成を備えた成膜装置1は、図1、図5に示すように制御部7と接続されている。制御部7は例えば図示しないCPUと記憶部とを備えたコンピュータからなり、記憶部には当該成膜装置1の作用、つまり処理容器10内に基板Sを搬入し、載置台2上に載置された基板Sに所定の膜厚のμc-Si膜を成膜してから搬出するまでの動作に係わる制御等についてのステップ(命令)群が組まれたプログラムが記録されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカード等の記憶媒体に格納され、そこからコンピュータにインストールされる。
 以上に説明した構成を備えた成膜装置1の作用について説明する。初めに外部の基板搬送機構よって基板Sが搬送されてくると、成膜装置1は搬入出口11のゲートバルブ12を開き、載置台2から昇降ピン22を突出させて基板搬送機構から基板Sを受け取る。
 基板Sの受け渡しを終えたら基板搬送機構を処理容器10の外に退避させてゲートバルブ12を閉じると共に、昇降ピン22を降下させて載置台2上に基板S載置する。また、この動作と平行して処理容器10内の真空排気を行い、処理容器10内を100Pa~2000Paの範囲の例えば900Paに調節し温度調整部21により基板Sが例えば250℃となるように温度調節を行う。
 処理容器10内の圧力調節及び基板Sの温度調節を終えたら、H供給部51からH供給ライン511、H供給路32を介して、総量で例えば40000sccmのHを強プラズマ生成空間101に供給すると共に第1、第2の電源部61、62から各電極部41に高周波電力を印加してHをプラズマ化する。一方、SiH供給部52からSiH供給ライン521、SiH供給路42を介して例えば総量で400sccmのSiHを弱プラズマ生成空間102に向けて供給する。
 この結果、図6に模式的に示すように、強プラズマ生成空間101内にはH供給路32から供給されたHが下方側へ向け流れる下降流が形成される。このHが電極部41から供給された電子と衝突することによりプラズマ化して活性種が形成される。Hは2個の水素原子のみからなる分子なので、水素プラズマからは下記(1)式に示すように活性種としては水素ラジカルのみが生成される。 
 H+e→2H+e…(1) 
 一方でSiH供給孔421から流出したSiHは、電極部41と基板Sとの間の弱プラズマ生成空間102に供給され、上流側から流れてきたHラジカルと混合されて基板Sの表面を広がる。この結果、基板Sの表面には、前記HラジカルとSiHとの混合ガスが供給され、この混合ガス内で下記の(2)式に示す反応が進行する。 
 SiH+H→SiH+H
…(2) 
 こうして高濃度のSiHが基板S表面に供給され、このSiHから良質なμc-Si膜が基板Sの表面に成膜される。
 このとき、弱プラズマ生成空間102に強プラズマ生成空間101よりも弱いプラズマを形成することにより、後述の実験結果に示すように従来の平行平板を用いた容量結合型の成膜装置に比べてSiやSiH、SiHなどの不要な活性種が生成されにくい条件を維持しつつ上記(2)の反応進行を進行させ、かつ基板Sへのイオンダメージを低減できる。
 また、例えば電極部41a、41bのいずれか一方側例えば41bを接地して強プラズマ生成空間101にプラズマを形成する場合には、接地された電極部41bと基板Sとの間の空間にはプラズマが生成されにくく、また電極部41aと基板Sとの間の空間には比較的強いプラズマが生成される。このため、弱プラズマ生成空間102内にプラズマが生成される領域と、プラズマが生成されない領域とが形成され、基板Sに形成されるμc-Si膜において良好な面内均一性が得られない場合がある。
 これに比べて、隣り合う電極部41a、41bの双方に逆位相の高周波電力を印加する場合には、いずれの電極部41についても基板Sとの間の空間で一様に弱いプラズマが生成されやすくなり、より面内均一性の高いμc-Si膜を得ることができる。
 また、混合ガス内では時間の経過につれて上記(2)式で生成されたSiHがさらにHラジカルと反応し、SiH、SiH、Siが順次生成されるので、これらの活性種やその重合体である高次シランや微粒子がμc-Si膜中に取り込まれ、その膜質を低下させることとなる。
 そこで本実施の形態に係る成膜装置1は、各電極部41の下面に弱プラズマ生成空間102内の反応ガスを排気する排気孔431が設けられている。そして処理容器10内はこの排気孔431を介して排気路43へ向けて常時真空排気されており、弱プラズマ生成空間102内を広がる混合ガスは、基板S表面に到達した後、流れ方向を上方側へ変え、排気孔431を介して処理容器10から速やかに排気される。
 このように電極部41の下面に排気孔431を設けることにより、基板S表面における混合ガスの滞留時間を短くし、弱プラズマ生成空間102内でHラジカルとSiHとの反応を進行させた場合でも、基板S表面に高濃度のSiHを供給しつつ不要な活性種の生成を抑え、良好な膜質のμc-Si膜を得ることができる。
 以上に説明した構成により、(1)Hが供給される空間を強プラズマ生成空間101として構成し活性種であるHラジカルを多量に得る一方、SiHが供給される空間を弱プラズマ生成空間102として構成し、成膜が行われる基板Sの上面に一様に弱いプラズマを形成することにより基板Sへのイオンダメージを抑えつつSiHを高濃度で基板S表面に供給できる。また、(2)HラジカルとSiHとの混合ガスを基板S表面から速やかに排気することにより、HラジカルとSiHとのラジカル反応が必要以上に進行することに伴う不要な活性種の発生を抑制することができる。
 こうして予め設定した時間だけ基板S表面への成膜を実行し、所望の膜厚のμc-Si膜が得られたら、H及びSiHの供給、高周波電力の印加を停止して、外部の基板搬送機構により搬入時とは逆の動作で基板Sを処理容器10から搬出して一連の動作を終える。
 本実施の形態に係る成膜装置1によれば以下の効果がある。互いに間隔をおいて配置された板状の電極部41の一方と他方とに例えば180°の位相差を有する高周波電力を印加し、これら電極部41に挟まれた強プラズマ生成空間101にプラズマを発生させる一方、成膜が行われる弱プラズマ生成空間102にも前記強プラズマ生成空間101に形成されるプラズマよりも弱いプラズマを形成する。そして、強プラズマ生成空間101では、Hラジカルを生成する一方、弱プラズマ生成空間102ではこのHラジカルとSiHとの反応を進行させることにより、欠陥の少ないμc-Si膜を基板S表面に均一に成膜できる。
 このように、隣り合う電極部41同士の距離wが2~20mmの範囲に調整され、電極部41の下面と基板Sとの間の距離hが5~100mmの範囲に調整された成膜装置において、基板Sにさらに均一な膜厚のμc-Si膜を成膜する手法を以下に列記する。
 例えば、図7は各電極部41cの下面に、当該電極部41cの両側壁面側から中央部側へ向けて盛り上がるように傾斜する傾斜面部46を設け、基板Sから傾斜面部46の下端までの距離hよりも基板Sから電極部41cの両側壁面までの距離hの方が大きくなるように構成した例である。電極部41cの両側壁面は強プラズマ生成空間101の出口(開口部)に相当し、この領域の近傍に均一なプラズマが形成されることは後述のシミュレーションでも確認している。
 強プラズマ生成空間101の出口の位置よりも傾斜面部46の下端部の位置を基板Sに近づけて配置することにより、傾斜面部46の下端部と基板Sとの結合を相対的に強化し、その位置でのプラズマ強度を高めることができる。したがって強プラズマ生成空間101の出口付近に形成されるプラズマの強度を低減することができ、弱プラズマ生成空間102内のプラズマの均一性を高めることとなる。なお、本例においてはhについて5~100mmの範囲内に調整されることとなる。
 また、図8、図9に示すように処理容器10内の床面上に、キャスター部26を介して載置台2aを支持し、駆動機構27によって載置台2aを電極部41の並び方向に沿って往復移動させてもよい。強プラズマ生成空間101の出口近傍の電子密度が高い場合であっても、基板Sを横方向に往復移動させて、当該電子密度の高い領域と対向する基板Sの領域を移動させることにより、基板Sに成膜される膜厚を均一化することができる。
 次いで図10は、基板Sに成膜されるμc-Si膜の成膜速度が速くなる領域の電極部41間の距離wを離して、当該領域における強プラズマ生成空間101内のプラズマの強度を低減することにより、膜厚の面内均一性を向上させる電極部41dの例を示している。例えばSiH供給孔421や排気孔431が密集している基板Sの中央側の領域は、処理容器10の内壁面に近く、中央側に比べてSiH供給孔421や排気孔431が少ない基板Sの側端領域に比べてHラジカルやSiHの供給量が多く、成膜速度が速くなる傾向がある。
 そこで図10の平面図に示すように、成膜速度が速い領域において隣り合う電極部41d同士の距離wが大きくなるように電極部41dの側壁面に凹部44を形成している。この結果、成膜速度の遅い領域では、同速度が速い領域に比べて相対的に電極部41d同士の距離wが小さくなっている。このような構成を採用することにより、成膜速度が速くなる領域ではプラズマの強度を小さくして、成膜速度を均一化し、膜厚の面内均一性の向上を図ることが可能となる。
 ここで電極部41dの平面形状は、図10に示した例に限られるものではない。例えば図4に示した電極部41を用いて予備実験を行い、成膜速度が速くなる領域を特定し、この領域に位置する電極部41d間の距離wが相対的に大きくなるようにすることで、電極部41dの平面形状は適宜、調整することができる。
 また隣り合う電極部41の間隔の調整方法は、図10に示したように電極部41d間の距離を一様に変化させる場合に限定されない。例えば図11の電極部41eに示すように、距離がwの電極部41eの側壁面に間隔をおいて切り欠き部45を設け、この切り欠き部45における電極部41e、41の距離がw’となるようにしてもよい。これら切り欠き部45が設けられている領域と、切り欠き部45が設けられていない領域とにおける電極部41e、41の距離の平均値が既述のwとなるように切り欠き部45の切り欠きの深さや配置間隔などを調整するとよい。
 次に、半導体装置の製造に用いられるウエハへの成膜に適した電極部41fを備えた成膜装置の構成例について図12~図15を参照しながら説明する。図12~図15においては、図1~図5に示す第1の実施の形態と共通の機能を有する構成要素には、これらの図に示すものと共通の符号を付してある。
 半導体装置の製造工程にてウエハ上に成膜されるμc-Si膜は、太陽電池用の基板に成膜される場合に比べて、より高い水準の膜厚の面内均一性が求められる。
 そこで、本例の成膜装置においては、図12に示すように電極部41fの底面の形状を例えば正方形とし、これらの電極部41fが図中のX軸方向のみならず、Y軸方向にも互いに間隔をおいて配置されている点が、細長い板状の電極部41をX軸方向にのみ間隔をおいて配置した、第1の実施の形態に関わる成膜装置1と異なっている。言い替えると、図12の電極部41fは、図4に示した強プラズマ空間101が伸びる方向(Y軸方向)と交差する交差方向(X軸方向)にも強プラズマ空間101が形成されるように、当該電極部41をY軸方向にも分割することにより構成されているともいえる。
 一方、これらの電極部41fにおいても、強プラズマ生成空間101を挟んで隣り合って配置されている電極部41f間の距離は、例えば2mm以上、20mm以下、より好適には4mm以上、10mm以下の範囲に調節され、また、電極部41の下面と基板S表面との間の距離hが5mm以上、100mm以下、より好適には7mm以上、30mm以下に調節されている点は、第1の実施の形態と同じである。
 図13に拡大して示すように、各電極部41fの底面には、例えば正方形の四隅の位置に各々SiH供給孔421が設けられ、また、これらのSiH供給孔421に囲まれた中央部に排気孔431が設けられている。一方、隣り合う電極部41f同士の間には強プラズマ生成空間101が形成され、この強プラズマ生成空間101にHを供給するために、処理容器10の天井部を成す絶縁部材31にH供給孔321が設けられている点は、第1の実施の形態の成膜装置1と同じである。
 図14に示すように、これらSiH供給孔421やH供給孔321に対しては、絶縁部材31の上面側に設けられたSiH、Hの供給路42、32、及び絶縁部材31や電極部41fを貫通する分岐路423、323を介してSiHガスやHガスが供給される。また、排気孔431に流れ込んだ混合ガスは、分岐路433や排気路43を介して外部へ排出される。なお、図が煩雑になることを避けるため、図14においては供給・排気路42、32、43及び分岐路423、323、433を各々1組ずつだけ示してある。
 そして図15に模式的に示すように、隣り合う電極部41fに対して位相の反転した高周波電力が印加されるように各電極部41fを第1、第2の電源部61、62に接続すると、図12に白と灰色とで塗り分けて示すように、格子状に交差して伸びる強プラズマ生成空間101に囲まれて、位相の反転した電力が印加された電極部41fが市松模様のように並んだ状態となる。ここで図15において、第1の電源部61に接続されている電極部41fに「41a」の符号を付し、第2の電源部62に接続されている電極部41fに「41b」の符号を付している点は、図5の場合と同様である。
 電極部41fの底面の形状を例えば正方形としてこれらの電極部41fを前後左右に並べ、隣り合う電極部41fに位相の反転した電力を印加することにより、左右方向(図12のX軸方向)のみならず、前後方向(図12のY軸方向)へもプラズマが分散される。従って、電極部41fの下方側や、強プラズマ生成空間101の下方側の各領域において成膜速度に若干の違いがあったとしても、成膜速度の異なる領域が分散して配置されることになる。この結果、ウエハには、膜厚の異なる小さな領域がウエハの全面に分散して形成され、ウエハ全体を見ると膜厚の面内均一性が向上することになる。なお図12には、電極部41fの下方側に配置されるウエハの外周の位置を一点鎖線で示してある。
 図16には、電極部41g~41jの配置密度をウエハの中央側で小さく、周縁部側で大きくするために、正方形に形成された電極部41g~41jの底面の一辺の長さを、中央部側から周縁部側へ向けて次第に長くなるように構成した例を示している。本例は、図10に示した電極部41dの例に対応しており、例えばSiH供給孔421や排気孔431の配置密度の違いを相殺するように隣り合う電極部g~41j同士の間隔を変化させることにより、成膜速度を均一化し、膜厚の面内均一性の向上を図っている。
 また、電極部の底面の形状は、正方形などの矩形形状に限られるものではなく、図17に示すように底面が円形の電極部41kを用いてもよいし、他の形状のものを利用してもよい。また、互いに交差して格子状に伸びる強プラズマ形成空間101は、直交する場合に限定されず、強プラズマ形成空間101を斜めに交差させてもよい。この場合には、電極部の底面の形状は例えばひし形となる。
 図18は、互いに位相が反転した高周波電力が印加される電極部41m、41nのうち、一方側の電極部41m(第1の電極部)を一体化した例を示している。例えば、第1の電極部41mは、ウエハの板面の上方側を覆う幅広の金属板からなり、他方側の電極部41n(第2の電極部)が配置される位置に、当該第2の電極部41nの平面形状よりも一回り大きな開口部103が形成されている。そして、この開口部103内に第2の電極部41nを挿入することにより、前記開口部103の内側面と、その内側に配置された第2の電極部41nの外側面との間に隙間が形成され、この隙間が強プラズマ生成空間101となる。本例の開口部103は、既述の図12に示した電極部41fと同様に、位相の反転した高周波電力が印加される電極部41m、41n(白と灰色に塗り分けて示してある)が市松模様状に並ぶように配列されている。本例のように第1の電極部41mを一体化することにより、第1の電極部41mや給電供給系統の部品点数を減らしてコスト低減を図ることができる。
 ここで、一体化された第1の電極部41mや、開口部103内に挿入される第2の電極部41nの形状は、図18に示した例に限定されるものではない。図19には、六角形に形成された第1の電極部41оに、六角形の開口部103を規則正しく配置し、この開口部103内に第2の電極部41pを挿入した例を示している。本例は、開口部103の間に挟まれた、第1の電極部41оの六角形状の領域(図19中に破線で示してある)と、第2の電極部41pとがハニカム状に配列され、ウエハから見て対称性の高い電極部41о、41p配置となっている。この結果、反応ガスの流れやプラズマの分布の対称性を向上させ、均一な成膜を行うことができる。また、図17に示したように、第2の電極部の形状を円形など他の形状にしてもよいし、図16に示したように、第2の電極部の面積や強プラズマ空間101を成す隙間の幅をウエハの中央部側と周縁部側とで変化させてもよいことは勿論である。
 この他、ウエハを支持する載置台2の下面側中央部に鉛直軸周りに回転する回転軸を設け、載置台2上のウエハを回転させながら成膜を行うことにより、周方向の膜厚の面内均一性をさらに向上させてもよい。一方で、円板形状のウエハは、中央部側の位置と、外周部側の位置とで周方向の長さが異なっているので、例えば図12に示すように、同じ大きさに形成され、市松模様のように配置された電極部41fの下方でウエハを回転させると、ウエハが一回転する間に、その上方を通り過ぎる電極部41fの数が、中央部側と外周部側とで異なってしまう。この結果、ウエハの外周部側が内周部側よりもプラズマ集中部分(例えば強プラズマ形成空間101の下方領域)に高い頻度で曝されることとなり、径方向で見ると成膜速度の不均一性が拡大する懸念もある。
 そこでウエハを回転させる場合には、図20に示すように、ウエハの周方向に沿って伸びる強プラズマ空間101、及びこの方向と交差する方向、即ち、ウエハの径方向に沿って伸びる強プラズマ空間101によって分割された電極部41lを設けるとよい。このように分割された電極部41lは、ウエハの中央部側の位置と、外周部側の位置とでその上方に配置される電極部41lの数が同じであるので、ウエハが一回転する間にその上方を通過する電極部41l、及び径方向に伸びる強プラズマ形成空間101の数が揃っており、径方向で見たときの成膜速度の均一化を図ることができる。
 さらに、強プラズマ生成空間101に形成されるプラズマの強度を調整する手法として、第1、第2の電源部61、62から印加される高周波電力の位相差を180°よりも小さい、例えば30°以上~180°未満の範囲に調整して、当該位相を反転させる(位相を180°ずらす)場合よりもプラズマ強度が小さくなるようにしてもよい。 
 また、電極部41に印加される高周波電力は、13.56MHzの例に限られるものではなく、他の周波数、例えば100MHzやこれ以外の高周波電力を印加してもよいことは勿論である。
 また、図1に示した成膜装置1では、電極部41の下面に開口する排気孔431を介して弱プラズマ生成空間102内の反応ガスを外部へ排気する例を示したが、排気路43は電極部41内に形成する場合に限られない。例えば図1に示した排気管13から排気を行っても良好な膜質が得られる場合には、この排気管13を排気部として利用する場合を否定するものではない。
 さらにまた本発明は、HとSiHとによるSi膜の成膜に適用する場合に限定されるものではない。例えば第1の反応ガスをHとし、第2の反応ガスをSiH以外のシリコン化合物ガス、例えばSiHClとして微結晶Siを成膜する場合などにも適用することができる。
 (実験1) 
 隣り合う電極部41間に、位相が反転した高周波電力を印加する本例の成膜装置1と、隣り合う電極部41の一方側を接地した成膜装置とで弱プラズマ生成空間102のプラズマ強度及び、μc-Si膜の成膜速度分布を比較した。
 A.実験条件 
 (実施例1) 
 図1に示した成膜装置1につき、電極部41間の距離をw=5mm、電極部41の下面と基板Sとの距離をh=20mmとし、第1の電源部61から13.56MHz、400W/本の高周波電力を印加し、第2の電源部62から第1の電源部61の高周波電力とは位相が180°ずれた13.56MHz、600W/本の高周波電力を印加して、処理容器10内を透過波長フィルタ付きCCDカメラで撮影しプラズマの発光強度を計測した。また、H供給路32からHを1000sccmで供給し、SiH供給路42からSiHを10sccmで供給して、μc-Si膜の成膜速度の面内分布を計測した。処理容器10内の圧力は900Paである。 
 (比較例1) 
 第1の電源部61から印加する電力を500W/本とし、(実施例1)にて第2の電源部62に接続されていた電極部41を接地した点以外は、(実施例1)と同様の条件で発光強度、及びμc-Si膜の成膜速度の面内分布の計測を行った。
 B.実験結果 
 (実施例1)に係わる発光強度の計測結果の写真を図21(a)に示し、(比較例1)に係わる計測結果を図21(b)に示す。また、(実施例1)、(比較例1)におけるμc-Si膜の成膜速度の面内分を図22に示す。図22の横軸は、第2の電源部62に接続され、または接地されている電極部41の中心からの横方向への距離、縦軸はその位置におけるμc-Si膜の成膜速度[nm/秒]を示している。図22中、(実施例1)の結果は菱形でプロットしてあり、(比較例1)の結果は四角でプロットしてある。
 図21(a)と図21(b)とを比較すると、(実施例1)に係わる図21(a)では、隣り合って並ぶ電極部41下面の発光強度が同程度であるの対し、(比較例1)では、第1の電源部61に接続された電極部41下面が明るく、接地された電極部41下面が暗くなっている様子がはっきりと現れている。
 このような発光強度の違いは、μc-Si膜の成膜速度の分布にも反映されており、図22に示すように(実施例1)の成膜速度は各電極部41間で比較的均一であるのに対し、(比較例1)の成膜速度は、接地された電極部41が配置されている領域で明らかに低い。これは(実施例1)では、各電極部41と基板Sとの間に弱いプラズマが均一に形成されてHラジカルとSiHの反応の進行が促進されているのに対し、(比較例1)では接地された電極部41の下方にプラズマが形成されにくいため、HラジカルとSiHとの反応が主として基板Sの加熱にのみ支配されている結果であると解釈できる。
 (シミュレーション2) 
 電極部41に傾斜面部46を設けた場合と設けない場合とにおける、弱プラズマ生成空間102内の電子密度の分布をシミュレーションした。
 A.シミュレーション条件
 (実施例2-1)
 図6に示した例につき、電極部41間の距離をw=10mm、電極部41の下面と基板Sとの距離をh=20mmとし、第1の電源部61から13.56MHz、400W/本の高周波電力を印加し、第2の電源部62から第1の電源部61の高周波電力とは位相が180°ずれた13.56MHz、600W/本の高周波電力を印加した状態における強プラズマ生成空間101、弱プラズマ生成空間102の電子密度分布をプラズマ流体モデルによりシミュレーションした。プラズマ流体モデルの参考文献としては、M.J.Kushner:J.Phys.D42、194013(2009)が挙げられる。なお処理容器10内の圧力は900Paとした。 
 (実施例2-2) 
 図7に示した例と同様に電極部41の下面に傾斜面部46を設け、h=20mm、h=10mmとした点以外は(実施例2-1)と同様の条件でシミュレーションを行った。
 B.シミュレーション結果 
 (実施例2-1)のシミュレーション結果を図23(a)に示し、(実施例2-2)のシミュレーション結果を図23(b)に示す。 
 図23(a)に示した(実施例2-1)の結果によれば、強プラズマ生成空間101の開口部の下部側に電子密度の高い領域が確認された。これに対して、図23(b)に示す(実施例2-2)では、電極部41cの下面に、電極部41cの両側壁面側から中央部側へ向けて傾斜する傾斜面部46を設けることにより、(実施例2-1)で観察された電子密度の高い領域がかなり解消され、弱プラズマ生成空間102全体に渡り均一にプラズマが形成されている。これは傾斜面部46の先端で基板Sとの結合が強化されることで、強プラズマ生成空間101の出口において電子密度の集中が緩和されたものと考えられる。
 (実験3) 
 図5に示すように、周波数信号発生器63と第1、第2の電源部61、62とを第1、第2の信号線611、621を介して接続し、第2の信号線621の長さを変化させたときに第1、第2の電源部61、62から出力される高周波電力の波形をオシロスコープで測定した。 
 A.実験条件 
 (実施例3-1) 
 周波数信号発生器63から第1の電源部61までの第1の信号線611の長さを1mとし、周波数信号発生器63から第2の電源部62までの第2の信号線621の長さを8.4mとした。 
 (実施例3-2) 
 周波数信号発生器63から第2の電源部62までの第2の信号線621の長さを2.85mとした点以外は(実施例3-1)と同様である。 
 (実施例3-3) 
 周波数信号発生器63から第2の電源部62までの第2の信号線621の長さを4.7mとした点以外は(実施例3-1)と同様である。
 B.実験結果 
 (実施例3-1)~(実施例3-3)における高周波電力の波形の測定結果を各々図24(a)~図24(c)に示す。各図において第1の電源部61から出力される高周波電力の波形を実線で示し、第2の電源部62から出力される高周波電力の波形を破線で示してある。
 図24(a)に示した(実施例3-1)の場合、第1、第2の信号線611、621の長さの差を7.4mとすることで、第1、第2の電源部61、62から出力される高周波電力の位相差を180°ずらす(位相を反転させる)ことができた。また、図24(b)に示す(実施例3-2)、図24(c)に示す(実施例3-3)の場合にも、各々第1、第2の信号線611、621の長さの差を1.85m、3.7mとすることにより、高周波電力の位相差を45°、90°と変化させることがでた。これらの結果から、図5に示すように周波数信号発生器63から入力される周波数信号に同期させて第1、第2の電源部61、62から高周波電力を出力する場合に、第1、第2の信号線611、621の長さを異ならせることにより、隣り合う電極部41に印加される高周波電力の位相差を調整できることを確認できた。
 (シミュレーション4) 
 処理容器10内の圧力を変化させたとき、基板Sの表面に形成される電界の強度をシミュレーションした。
 A.シミュレーション条件
 (実施例4)
 (実施例2-1)と同様の条件で処理容器10内の圧力を200~1000Paまで200Pa刻みで変化させ、圧力の変化に対する電界の強度の変化をシミュレーションした。
 (比較例4-1)隣り合う電極部41に同相(位相のずれが0°)の電力を印加する条件とした他は、(実施例4)と同様の条件でシミュレーションを行った。
 (比較例4-2)電極間の隙間幅が5mmの平行平板の下部電極上に基板Sを載置し、13.56MHz、500Wの高周波電力を印加した場合における、圧力の変化に対する電界の強度の変化をシミュレーションした。
 B.シミュレーション結果
 (実施例4、比較例4-1、4-2)のシミュレーション結果を図25に示す。図の横軸は処理容器10内の圧力(Pa)を示し、縦軸は基板S上の電界の強度(V/m)を示す。また、(実施例4)の結果をひし形のプロットで示し、(比較例4-1、4-2)の結果を各々四角及び三角のプロットで示す。 
 図25に示した結果によれば、隣り合う電極部41に印加される高周波電力の位相を反転させた(位相を180°ずらした)、(実施例4)は、いずれの圧力においても(比較例2-1、2-2)に比べて基板S上の電界の強度が小さくなっている。従って、隣り合う電極部41に印加される高周波電力の位相が同相の場合や従来の平行平板に比べて、電界の強度が弱い、弱プラズマ生成空間102を形成することが可能であり、不要な活性種の発生を抑えつつSiHを高濃度で基板S表面に供給することができるといえる。
 (実験5) 
 SiHガスに対するHガスの供給比(H/SiH)を変化させたとき、成膜速度及び成膜されたμc-Si膜の結晶化度を測定した。
 A.実験条件
 (実施例5)
 (実施例2-1)と同様の条件でH/SiHの値を25(H、SiHを各々1000sccm、40sccm)、33(同1000sccm、30sccm)、50(1000sccm、20sccm)、100(1000sccm、10sccm)と変化させ、成膜速度及び、ラマン分光によりμc-Si膜の結晶化度(結晶化部分(Xc)の質量%に対応するピーク強度)を計測した。
 (比較例5)隣り合う電極部41に同相(位相のずれが0°)の電力を印加した他は、(実施例5)と同様の条件で実験を行った。
 B.実験結果
 (実施例5、比較例5)の実験結果を図26に示す。図の横軸はH/SiHの値を示し、左側の縦軸は成膜速度(mm/秒)、右側の縦軸は結晶化度(Xc%)を示す。また、(実施例5)の結果をひし形のプロットで示し、(比較例5)の結果を四角のプロットで示す。各プロットのうち、黒く塗り潰したプロットは成膜速度、白抜きのプロットは結晶化度(結晶化部分のピーク強度%)を示している。
 図26に示した結果によれば、H/SiHの値を変化させたとき、いずれの値においても(実施例5)の方が(比較例5)よりも成膜速度が遅かった。これは、シミュレーション4の結果からわかるように、隣り合う電極部41に印加する高周波電力の位相を反転させた方が、同相の場合よりも基板Sの表面の電界強度が小さく、弱プラズマ生成空間102における活性種の発生量が少ないためではないかと考えられる。一方、(実施例5、比較例5)のいずれの場合においてもH/SiHの値を小さくし、SiHガスの相対的な供給量を増やすと成膜速度が上昇していることが分かる。
 また結晶化度については、H/SiHの値を変化させたとき、いずれの値においても(実施例5)の方が(比較例5)よりもμc-Si膜に含まれている結晶が多く、結晶化度の高い、良好な膜質のμc-Si膜が得られているといえる。また、(実施例5、比較例5)のいずれの場合においてもH/SiHの値を大きくし、Hガスの相対的な供給量を増やすと結晶化度が向上する傾向がみられる。従って、H/SiHの値をプロセス変数とすることにより、要求される膜質の品質を満たしつつ、より成膜速度の大きな条件を選択して成膜を行うことが可能であるといえる。
 

Claims (10)

  1.  処理容器内にて複数種類の反応ガスを反応させて基板に薄膜を成膜する成膜装置において、
     前記処理容器内に設けられ、基板を載置するための載置台と、
     この載置台に載置された基板の上方にて、その間に強プラズマ生成空間を形成するために、各々縦向きの姿勢で互いに間隔をおいて横方向に配置されると共に、その下端部と前記基板との間の隙間に、前記強プラズマ生成空間に形成されるプラズマよりも発光強度が弱いプラズマを生成するための弱プラズマ生成空間を形成する板状の複数の電極部と、
     前記強プラズマ生成空間に第1の反応ガスを供給するための第1の反応ガス供給部と、
     前記強プラズマ生成空間の下部側、または前記弱プラズマ生成空間に、第1の反応ガスの活性種と反応して基板上に薄膜を成膜する第2の反応ガスを供給するための第2の反応ガス供給部と、
     前記弱プラズマ生成空間から反応ガスを排気するための排気部と、
     前記強プラズマ生成空間を挟んで隣り合う電極部の一方及び他方に互いに位相が異なる高周波電力を印加する第1の高周波電源部、及び第2の高周波電源部と、を備え、
     前記強プラズマ生成空間を挟んで隣り合う電極部間の距離が2mm以上、20mm以下の範囲であり、
     前記載置台上の基板と電極部との距離が5mm以上、100mm以下の範囲であることを特徴とする成膜装置。
  2.  前記板状の電極部の下面には、この電極部の両側壁面側から中央部側へ向けて傾斜する傾斜面部が形成されていることを特徴とする請求項1に記載の成膜装置。
  3.  前記載置台は、前記複数の電極部が並んでいる方向に沿って、当該載置台上に載置された基板を往復移動させる移動機構を備えていることを特徴とする請求項1に記載の成膜装置。
  4.  前記電極部の平面形状は、前記強プラズマ生成空間を挟んで隣り合う電極部間の距離が、成膜速度の速い領域で広く、成膜速度の遅い領域で狭くなるように形成されていることを特徴とする請求項1に記載の成膜装置。
  5.  前記電極部の側壁面には、前記強プラズマ生成空間を挟んで隣り合う電極部の側壁面を切り欠いて形成された複数の切り欠き部が互いに間隔をおいて配置されていることを特徴とする請求項1に記載の成膜装置。
  6.  前記板状の電極部の間に形成された強プラズマ形成空間と交差する交差方向にも強プラズマ空間が形成されるように前記板状の電極部を分割し、前記第1の高周波電源部、及び第2の高周波電源部は、この交差方向に伸びる強プラズマ空間を挟んで隣り合う電極部にも互いに位相が異なる高周波電力を印加することを特徴とする請求項1に記載の成膜装置。
  7.  前記電極部は、板状の複数の電極部を各々縦向きの姿勢で互いに間隔をおいて横方向に配置することに替えて、基板の板面の上方側を覆う幅広な板状の第1の電極部の面内に、互いに間隔を開けて複数の開口部を設け、前記開口部の内側に、当該開口部の内側面との間に隙間を形成して第2の電極部を配置することにより、前記強プラズマ生成空間を形成したことを特徴とする請求項1に記載の成膜装置。
  8.  前記排気部は、前記電極部内に形成された排気路と、前記弱プラズマ生成空間の反応ガスをこの排気路に排気するために当該電極の下面に設けられた排気孔とを備えていることを特徴とする請求項1に記載の成膜装置。
  9.  第1の反応ガスは水素ガスであり、第2の反応ガスはシリコン化合物ガスであることを特徴とする請求項1に記載の成膜装置。
  10.  前記処理容器内の圧力が100Pa以上、2000Pa以下であることを特徴とする請求項1に記載の成膜装置。
     
     

     
PCT/JP2013/000526 2012-03-15 2013-01-31 成膜装置 WO2013136656A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014504653A JP5920453B2 (ja) 2012-03-15 2013-01-31 成膜装置
KR1020147025581A KR20140135202A (ko) 2012-03-15 2013-01-31 성막 장치
US14/484,598 US20140373783A1 (en) 2012-03-15 2014-09-12 Film forming device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-058852 2012-03-15
JP2012058852 2012-03-15
JP2012179386 2012-08-13
JP2012-179386 2012-08-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/484,598 Continuation US20140373783A1 (en) 2012-03-15 2014-09-12 Film forming device

Publications (1)

Publication Number Publication Date
WO2013136656A1 true WO2013136656A1 (ja) 2013-09-19

Family

ID=49160609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000526 WO2013136656A1 (ja) 2012-03-15 2013-01-31 成膜装置

Country Status (4)

Country Link
US (1) US20140373783A1 (ja)
JP (2) JP5920453B2 (ja)
KR (1) KR20140135202A (ja)
WO (1) WO2013136656A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119103A (ja) * 2013-12-19 2015-06-25 三菱重工業株式会社 真空処理装置及び膜厚分布調整方法
JP2016178115A (ja) * 2015-03-18 2016-10-06 株式会社東芝 流路構造、吸排気部材、及び処理装置
JPWO2016013131A1 (ja) * 2014-07-25 2017-06-08 東芝三菱電機産業システム株式会社 ラジカルガス発生システム
JP2019504356A (ja) * 2016-01-21 2019-02-14 エーエスエムエル ネザーランズ ビー.ブイ. Euv容器及びeuvコレクタのターゲット材料デブリクリーニングのためのシステム、方法、及び装置
JPWO2017169556A1 (ja) * 2016-03-30 2019-02-28 東京エレクトロン株式会社 プラズマ電極およびプラズマ処理装置
JP2021528849A (ja) * 2018-06-18 2021-10-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 対にされた動的平行板の容量結合プラズマ
JP2022074076A (ja) * 2020-10-30 2022-05-17 台湾ナノカーボンテクノロジー股▲ふん▼有限公司 プラズマ支援原子層堆積技術を用いて製造された半導体デバイス及びその方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458206B1 (ja) 2017-06-27 2019-01-23 キヤノンアネルバ株式会社 プラズマ処理装置
KR20220031132A (ko) * 2017-06-27 2022-03-11 캐논 아네르바 가부시키가이샤 플라스마 처리 장치
TWI693860B (zh) 2017-06-27 2020-05-11 日商佳能安內華股份有限公司 電漿處理裝置
WO2019003309A1 (ja) 2017-06-27 2019-01-03 キヤノンアネルバ株式会社 プラズマ処理装置
WO2019212270A1 (ko) * 2018-05-03 2019-11-07 주성엔지니어링(주) 기판 처리 장치
SG11202009122YA (en) 2018-06-26 2020-10-29 Canon Anelva Corp Plasma processing apparatus, plasma processing method, program, and memory medium
CN110894595B (zh) * 2018-09-13 2022-05-27 北京北方华创微电子装备有限公司 气相沉积设备及其清洗方法
JP7285152B2 (ja) * 2019-07-08 2023-06-01 東京エレクトロン株式会社 プラズマ処理装置
WO2023174571A1 (de) * 2022-03-17 2023-09-21 Ccr Gmbh, Beschichtungstechnologie Verfahren und anlage zur plasmabeschichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237226A (ja) * 2000-02-23 2001-08-31 Kobe Steel Ltd プラズマ処理装置
JP2003031555A (ja) * 2001-07-13 2003-01-31 Anelva Corp 表面処理装置
JP2003059839A (ja) * 2001-08-14 2003-02-28 Sharp Corp プラズマ処理装置およびプラズマ処理方法
JP2007103970A (ja) * 2007-01-09 2007-04-19 Masayoshi Murata 電極への電力供給方法、該電力供給方法を用いたプラズマ表面処理方法及びプラズマ表面処理装置
JP2011146745A (ja) * 2011-04-27 2011-07-28 Masayoshi Murata プラズマcvd装置及びプラズマcvd装置を用いたシリコン系膜の製造方法
JP2011151105A (ja) * 2010-01-20 2011-08-04 Toray Ind Inc プラズマcvd装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144892A (ja) * 1997-11-12 1999-05-28 Sakae Tanaka プラズマ装置
JP4046207B2 (ja) * 1998-08-06 2008-02-13 株式会社エフオーアイ プラズマ処理装置
JP2001152347A (ja) * 1999-11-24 2001-06-05 Kanegafuchi Chem Ind Co Ltd プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
EP1686092A4 (en) * 2003-11-17 2012-03-07 Konica Minolta Holdings Inc PROCESS FOR PRODUCING NANOSTRUCTURED CARBON MATERIAL, NANOSTRUCTURED CARBON MATERIAL PRODUCED THEREBY, AND SUBSTRATE COMPRISING NANOSTRUCTURED CARBON MATERIAL OF THIS TYPE
JP2005310834A (ja) * 2004-04-16 2005-11-04 Sharp Corp プラズマプロセス装置
JP4279218B2 (ja) * 2004-07-20 2009-06-17 三菱重工業株式会社 給電装置およびこれを備えたプラズマ処理装置並びにプラズマ処理方法
JP2006041443A (ja) * 2004-07-30 2006-02-09 Sharp Corp プラズマプロセス装置および電子デバイスの製造方法
JP5168907B2 (ja) * 2007-01-15 2013-03-27 東京エレクトロン株式会社 プラズマ処理装置、プラズマ処理方法及び記憶媒体
US8470718B2 (en) * 2008-08-13 2013-06-25 Synos Technology, Inc. Vapor deposition reactor for forming thin film
US8258025B2 (en) * 2009-08-07 2012-09-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and thin film transistor
JP5648349B2 (ja) * 2009-09-17 2015-01-07 東京エレクトロン株式会社 成膜装置
JP2011155308A (ja) * 2011-05-09 2011-08-11 Masayoshi Murata プラズマcvd装置及びプラズマcvd装置を用いたシリコン系膜の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237226A (ja) * 2000-02-23 2001-08-31 Kobe Steel Ltd プラズマ処理装置
JP2003031555A (ja) * 2001-07-13 2003-01-31 Anelva Corp 表面処理装置
JP2003059839A (ja) * 2001-08-14 2003-02-28 Sharp Corp プラズマ処理装置およびプラズマ処理方法
JP2007103970A (ja) * 2007-01-09 2007-04-19 Masayoshi Murata 電極への電力供給方法、該電力供給方法を用いたプラズマ表面処理方法及びプラズマ表面処理装置
JP2011151105A (ja) * 2010-01-20 2011-08-04 Toray Ind Inc プラズマcvd装置
JP2011146745A (ja) * 2011-04-27 2011-07-28 Masayoshi Murata プラズマcvd装置及びプラズマcvd装置を用いたシリコン系膜の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119103A (ja) * 2013-12-19 2015-06-25 三菱重工業株式会社 真空処理装置及び膜厚分布調整方法
JPWO2016013131A1 (ja) * 2014-07-25 2017-06-08 東芝三菱電機産業システム株式会社 ラジカルガス発生システム
JP2016178115A (ja) * 2015-03-18 2016-10-06 株式会社東芝 流路構造、吸排気部材、及び処理装置
US10312113B2 (en) 2015-03-18 2019-06-04 Kabushiki Kaisha Toshiba Flow passage structure, intake and exhaust member, and processing apparatus
JP2019504356A (ja) * 2016-01-21 2019-02-14 エーエスエムエル ネザーランズ ビー.ブイ. Euv容器及びeuvコレクタのターゲット材料デブリクリーニングのためのシステム、方法、及び装置
US11013096B2 (en) 2016-01-21 2021-05-18 ASML Nettherlands B.V. System, method and apparatus for target material debris cleaning of EUV vessel and EUV collector
JPWO2017169556A1 (ja) * 2016-03-30 2019-02-28 東京エレクトロン株式会社 プラズマ電極およびプラズマ処理装置
JP2021528849A (ja) * 2018-06-18 2021-10-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 対にされた動的平行板の容量結合プラズマ
JP7078762B2 (ja) 2018-06-18 2022-05-31 アプライド マテリアルズ インコーポレイテッド 対にされた動的平行板の容量結合プラズマ
JP2022074076A (ja) * 2020-10-30 2022-05-17 台湾ナノカーボンテクノロジー股▲ふん▼有限公司 プラズマ支援原子層堆積技術を用いて製造された半導体デバイス及びその方法
JP7263484B2 (ja) 2020-10-30 2023-04-24 台湾ナノカーボンテクノロジー股▲ふん▼有限公司 プラズマ支援原子層堆積技術を用いて製造された半導体デバイス及びその方法

Also Published As

Publication number Publication date
JP5920453B2 (ja) 2016-05-18
US20140373783A1 (en) 2014-12-25
JPWO2013136656A1 (ja) 2015-08-03
JP2016174159A (ja) 2016-09-29
KR20140135202A (ko) 2014-11-25
JP6103104B2 (ja) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6103104B2 (ja) 成膜装置
US10480073B2 (en) Rotating semi-batch ALD device
TWI360164B (ja)
JP2014201804A5 (ja)
US20120097641A1 (en) Method and device for plasma treatment of a flat substrate
TWI496928B (zh) 薄膜蒸鍍裝置
US20140357064A1 (en) Tensile stressed doped amorphous silicon
JP2000195810A (ja) 多結晶シリコン薄膜形成方法及び薄膜形成装置
US20170330733A1 (en) Substrate processing device and substrate processing method
JP5089669B2 (ja) 薄膜形成装置
JP2011071499A (ja) 光電変換装置の作製方法
WO2010079766A1 (ja) プラズマ処理装置
JP5748858B2 (ja) プラズマ成膜装置およびプラズマ成膜方法
US8931433B2 (en) Plasma processing apparatus
WO2016002591A1 (ja) 成膜装置
JP2016014185A (ja) 成膜装置
WO2013018292A1 (ja) 成膜方法
JP5496073B2 (ja) 微結晶半導体薄膜製造装置および微結晶半導体薄膜製造方法
JP2016072065A (ja) プラズマ処理装置
JP2008524782A (ja) プラズマ装置を作動させるための方法および装置
JP5862027B2 (ja) プラズマcvd装置及び薄膜基板の製造方法
WO2013031142A1 (ja) 成膜方法及び記憶媒体
WO2011040537A1 (ja) プラズマ処理方法およびプラズマ処理装置
US20220235462A1 (en) Film forming method and film forming apparatus
JP2009038317A (ja) 薄膜太陽電池の成膜方法、および成膜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504653

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147025581

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760561

Country of ref document: EP

Kind code of ref document: A1