WO2013133231A1 - 光学用積層構造体の製造方法および製造装置 - Google Patents

光学用積層構造体の製造方法および製造装置 Download PDF

Info

Publication number
WO2013133231A1
WO2013133231A1 PCT/JP2013/055894 JP2013055894W WO2013133231A1 WO 2013133231 A1 WO2013133231 A1 WO 2013133231A1 JP 2013055894 W JP2013055894 W JP 2013055894W WO 2013133231 A1 WO2013133231 A1 WO 2013133231A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
thickened
uncured
thickening
Prior art date
Application number
PCT/JP2013/055894
Other languages
English (en)
French (fr)
Inventor
木村 滋
Original Assignee
淀川メデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淀川メデック株式会社 filed Critical 淀川メデック株式会社
Publication of WO2013133231A1 publication Critical patent/WO2013133231A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates

Definitions

  • the present invention begins with the OCR coating method (method of coating a liquid optical transparent resin on a substrate), the conventional OCA bonding method (substrate) as well as the conventional OCR coating method is used.
  • the present invention relates to a method for manufacturing an optical laminated structure and a manufacturing apparatus having an advantage over a method for adhering a sheet-like optical transparent adhesive.
  • OCR optical transparent resin
  • OCA optical transparent adhesive
  • OCR optical Clear Resin
  • OCA is an abbreviation for Optical Clear Adhesive, and is handled in the form of an adhesive in the form of a sticky sheet (in the case of narrow width, tape). Since OCA has adhesiveness, it is in the form of a “separator / OCA / separator” laminate in which both sides of OCA are coated with separators (sheets having peelability), or a sheet having double-sided peelability is used as a separator. It is obtained or prepared in the form of a wound product of “double-sided peelable separator / OCA”.
  • Part 2 Problems of the OCA sticking method-
  • the latter OCA pasted on one substrate is the other substrate (a black and white printing stepped portion called “decorative portion” is provided around the other substrate and bordered.
  • the sag and unevenness of the resin liquid does not occur as in the case of the OCR coating method described above, but the printed step portion around the other substrate and the OCA sticking. It is easy to produce a gap between the parts.
  • the white decorative part is easier to pass light than the black decorative part, so either add a white layer to increase the thickness, or provide a black undercoat layer on top of it.
  • OCA is a sheet-like adhesive that is compressively deformed but does not inherently have fluidity, as described in detail below, it should be adhered tightly so as not to create a gap in a predetermined area of the substrate. This is because it is difficult in principle. This will be described with reference to FIG.
  • FIG. 5 (A) is an explanatory diagram showing the positional relationship when a substrate (2) having a printed border (2E) formed on the periphery is bonded to a substrate (1) having a sheet-like OCA attached thereto. It is.
  • the OCA on the substrate (1) may be positioned exactly inside the step (2E) of the edge (2E) of the substrate (2) by bonding. It turns out that it is not easy. This is because there are four sides of the border (2E) and four corners of the border (2E), and it is extremely difficult to make OCA interpose all over them. Then, if a gap remains on the inner side or corner portion of the edging (2E), as shown in the plan view (perspective view) when viewed from the substrate (2) side in FIG. The band-like bubbles (b) can be visually observed along the level difference with 2E), and the laminated structure of “substrate (2) / OCA / substrate (1)” in such a state has a commercial value. It will be lost.
  • the portion around the OCA on the substrate (1) reaches the middle portion of the edge (2E) of the substrate (2) by bonding. It can be said that it is certain to prevent the occurrence.
  • the peripheral part reaching the part in the middle of the edging (2E) is crushed, so that the OCA of the crushed part becomes a thin film compared to other parts.
  • the thin film portion is between the inner side and the outer side of the edging (2E)
  • the error can be absorbed. Therefore, if the OCA sticking operation is performed with high accuracy, defective products should not be produced.
  • the thickness (that is, the level difference) of the rim (2E) is, for example, 50 to 60 ⁇ m as in the white “decorating portion” described above, the above-mentioned attention is no longer taken. Was reaching the limit of being unable to deal with.
  • Patent Literature 1 is a document that describes the vacuum bonding between substrates and the use of an ultraviolet curable adhesive.
  • Patent Document 2 is a document relating to a display device having a structure in which a substrate and a display panel are laminated and bonded via an ultraviolet curable resin layer, and also describes provisional curing and main curing of the ultraviolet curable resin. . Therefore, these patent documents 1 and 2 seem to be the prior art which should be contrasted with this invention.
  • Patent Document 1 -1- Claim 1 of Japanese Patent Application Laid-Open No. 2001-250289 (Patent Document 1) discloses the following method of vacuum bonding of substrates. -A method of bonding two substrates together with an adhesive, A step of annularly applying a cationic ultraviolet curable adhesive to at least one of the two substrates, A step of spreading the annularly applied adhesive over substantially the entire substrate; An ultraviolet irradiation step of irradiating the adhesive with ultraviolet rays to initiate a curing reaction of the adhesive; A step of bonding the two substrates in a vacuum atmosphere via an adhesive whose curing reaction has been started, and a method for vacuum bonding the substrates. (Note that claim 4 shows a substrate vacuum bonding apparatus comprising an adhesive application device, an adhesive diffusion device, an ultraviolet irradiation device, and a vacuum atmosphere forming device.)
  • the above adhesive is “a transparent, cationic UV-curable adhesive that does not significantly impede the transmission of DVD laser light mainly having a wavelength of 635 nm or 650 nm. It is stipulated.
  • Paragraph 0017 states that “It is a transparent cationic cationic UV-curing adhesive having a low viscosity (3500 cps or less) and a fast curing speed” (paragraph 0017).
  • paragraph 0020 “Use a cationic UV-curable adhesive that is transparent, has a low viscosity (3500 cps or less), and has a fast curing speed (for example, within 5 minutes)”.
  • a dispenser is used as an example of an adhesive application device.
  • Paragraph 0030 states that “the curing time as an example of the present embodiment is about 5 minutes, so that the bonding is performed within 1 to 2 minutes after irradiation with ultraviolet rays”.
  • Paragraph 0037 states that “curing may be completed outside the vacuum atmosphere because the cationic adhesive has the property of being completely cured in a certain period of time after being irradiated with ultraviolet rays”.
  • this adhesive is made into a transparent or cationic translucent cationic UV-curable adhesive that does not significantly impede the transmission of DVD laser light mainly having a wavelength of 635 nm or 650 nm, It can be applied not only to bonding substrates that do not allow UV light to pass through, but also to bonding substrates that pass UV light, and can be used widely for bonding optical disks that currently exist. "
  • Patent Document 2 -1- Claim 1 of Japanese Patent Application Laid-Open No. 2011-145534
  • Patent Document 2 shows the following manufacturing method.
  • the manufacturing method of the display apparatus with a front window characterized by these.
  • the claim 10 shows a display device with a front window
  • the claim 14 shows a bonding device for the display device with a front window.
  • application is performed by discharging the ultraviolet curable resin in a linear manner from the dispenser to the back side of the front window and changing the position to reciprocate (paragraph 0021).
  • the display area is, for example, 3 inches diagonal (the length of the diagonal is 3 inches) (paragraph 0022).
  • the initial viscosity of the ultraviolet curable resin is, for example, 2300 mPa ⁇ sec (paragraph 0024).
  • the “liquid crystal panel” and the “inverted front window after application of optical resin” are pasted together, then temporarily fixed by performing the first ultraviolet irradiation, and left to stand. Curing is achieved by performing secondary ultraviolet irradiation. During the standing after the temporary curing, the ultraviolet curable resin that has not been temporarily cured flows to an optimum thickness, and the bubbles diffuse to the outside (paragraph 0035).
  • An example of the ultraviolet transmission pattern formed on the ultraviolet irradiation mask is nine circles (paragraph 0032, FIG. 11), and therefore the ultraviolet curable resin is temporarily cured into a columnar shape corresponding to the nine circle portions ( Paragraph 0032).
  • Other examples of the ultraviolet transmission pattern are a cross and a line (paragraph 0033, FIG. 12), and a combination of a line and a circle (paragraph 0033, FIG. 13).
  • Patent Document 1 (Regarding Patent Document 1) -1-
  • the invention of Patent Document 1 is understood to have the most characteristic technical idea in the idea of “applying a cationic ultraviolet curable adhesive to at least one of the substrates when the substrates are bonded together”. This is because the cationic ultraviolet curable adhesive has such a property that once the ultraviolet ray is irradiated to start the curing reaction, the curing reaction continues even after the ultraviolet ray irradiation is stopped to reach the main curing. Then, the object of the invention of Patent Document 1 is to attach recording substrates having reflective films such as aluminum and gold, as in paragraphs 0006 to 0008 and paragraph 0039, that is, a recording substrate that does not allow ultraviolet rays to pass through.
  • Patent Document 1 the object (targeted), technical idea, specific means and operational effects of the invention of Patent Document 1 are basically different from those of the present invention.
  • Patent Document 2 (Regarding Patent Document 2) -1-
  • an ultraviolet curable resin is formed between a display panel and a substrate, and then a portion of the ultraviolet curable resin is temporarily cured by partially irradiating ultraviolet rays through a mask from the substrate side. (Only the transparent part of the mask is temporarily cured), and after leaving for a predetermined time, the entire ultraviolet curable resin is fully cured by irradiating ultraviolet rays from the substrate side, thereby bonding the substrate and the display panel. It is characterized by doing.
  • the temporary curing and the main curing from the substrate side by the irradiation of ultraviolet rays are both performed in the laminated state of “substrate / ultraviolet curable resin layer / display panel”.
  • the temporary curing in the invention of Patent Document 2 does not mean “semi-curing” of the entire ultraviolet curable resin layer, but only the pattern portion (for example, if the transmission pattern of the mask is a circle, Since the temporary curing of the resin layer is performed in the thickness direction of the resin layer, the temporary cured portion is a cylinder).
  • the invention of Patent Document 2 is fundamentally different from the present invention in technical idea and specific means.
  • the present invention is based on the OCR coating method (method of applying a liquid optical transparent resin to the substrate), the problems of the OCR coating method are solved, and the OCA bonding method is used.
  • Method for producing an optical laminated structure having advantages over a method for attaching a sheet-like or tape-like optical transparent adhesive to a substrate) (and an apparatus for producing such an optical laminated structure) ).
  • the OCR coating method and the OSA adhering method both of which are conventional techniques, are technical techniques that involve the side of the master but have the side of the poor, and the present invention relates to these conventional techniques.
  • the purpose is to provide a technology that eliminates the disadvantages of all at once.
  • the manufacturing method of the optical laminated structure of the present invention is as follows.
  • a radical polymerization type active energy ray-curable optically transparent resin liquid (R) on the substrate (1), the resin liquid (R) has a single-layered fluid uncured state on the substrate (1).
  • the uncured layer (L1) has reduced fluidity.
  • the optical laminated structure manufacturing apparatus of the present invention includes: By applying a radical polymerization type active energy ray-curable optically transparent resin liquid (R) on the substrate (1), the resin liquid (R) has a single-layered fluid uncured state on the substrate (1).
  • M2 active energy ray irradiating means
  • the ultraviolet curable resin composition includes a radical polymerization type represented by an acrylate type and a cationic polymerization type represented by an epoxy type. There is also a radical polymerization type mainly composed of silicone. Comparing radical polymerization type ultraviolet curable resin composition (referred to as “the former”) and cationic polymerization type ultraviolet curable resin composition (referred to as “the latter”), according to the literature, the following tendencies are observed. It is said that there is. (A) Regarding the cure shrinkage, the latter has a smaller shrinkage than the former. (Ii) Regarding the oxygen curing inhibition, the former is hard to be inhibited by oxygen, whereas the latter is hard to be inhibited by oxygen. (C) When the ultraviolet irradiation is stopped, the curing reaction is stopped in the former, whereas the curing reaction is continued in the latter.
  • Patent Document 1 described in the section of [Background Art] previously requires the use of a cationic ultraviolet curable adhesive. Therefore, when the curing reaction is started by ultraviolet irradiation, the curing reaction proceeds even if the ultraviolet irradiation is stopped, and it is difficult to be inhibited by oxygen, so that the main curing takes about 5 minutes after the irradiation is stopped. Understood.
  • the uncured layer (L1) formed in the first step (P1) is irradiated with an active energy ray to cure, thereby increasing the viscosity of the uncured layer (L1) with reduced fluidity.
  • the second step (P2) After carrying out the second step (P2) to obtain a layered product of “thickening layer (L2) / substrate (1)” changed to (L2), the layered product is left as it is in the third step (P3). Even if it is allowed to stand, the thickened layer (L2) after the second step (P2) can be maintained in its thickened state.
  • the thickening layer (L2) still remains in the thickened state. Can be maintained.
  • the thickening layer (L2) after the second step (P2) is in contact with air (that is, oxygen) during the period of being left standing or waiting. Contributes to maintaining the thickened state.
  • the substrate (1) is coated with a radical polymerization type optical transparent resin liquid (R).
  • R a radical polymerization type optical transparent resin liquid
  • This first step (P1) is in common with a conventional OCR coating method (a method of coating a substrate with a liquid optical transparent resin).
  • the uncured layer (L1) formed in the step (P1) is irradiated with an active energy ray to advance the curing, whereby the uncured layer (L1) has a reduced viscosity and the thickened layer (L2). Since the laminated body having the layer configuration of “thickening layer (L2) / substrate (1)” that has been changed to “3” is obtained, drooping and unevenness can be eliminated while ensuring the necessary fluidity and leveling properties. . That is, the advantages of the conventional OCR coating method are utilized and the disadvantages of the conventional OCR coating method are eliminated.
  • the present invention is not a technique positioned between the conventional OCR coating method and the conventional OCA adhesion method, and both of these methods are new qualitatively different in terms of technical idea and effect. It can be said that it is the creation of a technical idea.
  • FIG. 1 is a schematic explanatory view of a manufacturing method and a manufacturing apparatus of the present invention.
  • the method for producing an optical laminated structure of the present invention comprises a first step (P1), a second step (P2), and a third step (P3), as will be described in detail below.
  • a fourth step (P4) and a fifth step (P5) described later can be provided.
  • the fourth step (P4) and the fifth step (P5) can be carried out as an integrated step (that is, in-line) following the first to third steps (P1 to P3 steps).
  • a radical polymerization type optically transparent resin liquid (R) is applied onto the substrate (1), so that the single layer fluidity of the resin liquid (R) is applied onto the substrate (1).
  • the optical transparent resin liquid (R) is applied onto the substrate (1) by using the application means (M1) (in particular, by using a coater with a slit nozzle that discharges from a wide slit). This will be described in detail in the description of the apparatus of the present invention.
  • substrates various types of substrates such as glass substrates, plastics substrates, ceramic substrates, semiconductor substrates, woven fabric substrates, substrates with conductive layers, liquid crystal modules, liquid crystal display panels, etc.
  • substrates with conductive layers such as display modules and recording substrates with a reflective layer are used. From a functional viewpoint, cover glass, sensor glass, various modules, and the like are exemplified.
  • the optically transparent resin liquid (R) is the “optically transparent resin (OCR)” described in the background section.
  • the second step (P2) (and the fifth step (P5)). Therefore, the optically transparent resin liquid (R) is used to increase the viscosity or cure when irradiated with active energy rays (that is, ultraviolet rays or electron beams).
  • active energy rays that is, ultraviolet rays or electron beams.
  • an ultraviolet curable resin composition or an electron beam curable resin composition can be used as the optical transparent resin liquid (R).
  • an electron beam curable resin composition is used, the burden of equipment costs is large. Therefore, when the productivity corresponding to it is required, an electron beam curable resin composition is often used.
  • an electron beam curable resin composition When an electron beam curable resin composition is used, it is not necessary to use a photoinitiator or a sensitizer in the composition. Therefore, it is recommended to use an ultraviolet curable resin composition for production on a normal scale. In describing the present invention, the case where an ultraviolet curable resin composition is used will be described below, but this does not exclude the use of an electron beam curable resin composition.
  • an ultraviolet curable resin composition is used as the optical transparent resin liquid (R), a composition composed of a photopolymerizable prepolymer (photopolymerizable oligomer), a photopolymerizable monomer, a photoinitiator, an auxiliary agent, and the like is used.
  • a composition composed of a photopolymerizable prepolymer (photopolymerizable oligomer), a photopolymerizable monomer, a photoinitiator, an auxiliary agent, and the like is used.
  • various ultraviolet curable resin compositions are marketed by many manufacturers.
  • examples of the photopolymerizable prepolymer include polyester acrylate, polyurethane acrylate, epoxy acrylate, polyester urethane acrylate, and polyol acrylate.
  • Acrylate is a concept that includes methacrylate.
  • Examples of photopolymerizable monomers are monofunctional, bifunctional, trifunctional or higher polyfunctional acrylates.
  • the resin is applied onto the substrate (1) by applying a radical polymerization type optical transparent resin liquid (R) onto the substrate (1).
  • This is a step of obtaining a laminate having a layer configuration of “uncured layer (L1) / substrate (1)” in which a single-layered fluid uncured layer (L1) of liquid (R) is formed.
  • an uncured layer (L1) of the resin liquid (R) is formed on the substrate (1), and the resin liquid (R) is “between two substrates”. The uncured layer (L1) is not formed.
  • the viscosity according to ASTM D1084 is, for example, 10 to Since the thing of about 50000 mPa / 25 degreeC can be procured from a market, the thing of a suitable viscosity is selected from them. In general, those having a viscosity of 500 to 30000 mPa / 25 ° C., more preferably 800 to 20000 mPa / 25 ° C., particularly 1000 to 15000 mPa / 25 ° C. are often used.
  • the thickness of the single layer application of the optical transparent resin liquid (R) on the substrate (1) is not particularly limited, but is applied to electronic devices such as input devices and display devices. In the case, it is often 0.01 to 2 mm, more preferably 0.05 to 1.0 mm, and particularly 0.08 to 0.5 mm.
  • the uncured layer (L1) is formed by irradiating the active energy ray to the uncured layer (L1) formed in the first step (P1) to advance the curing.
  • the uncured layer (L1) is formed by irradiating the active energy ray to the uncured layer (L1) formed in the first step (P1) to advance the curing.
  • a typical example of the active energy ray to be irradiated is ultraviolet rays, and an electron beam can be used in some cases.
  • a model “Varian 610-IR” manufactured by VARIAN was used, and the thickened material was set in a sample holder for analysis.
  • an appropriate peak that can be quantitatively measured is selected from those whose peaks decrease with the progress of the curing reaction due to ultraviolet irradiation, and the peak of interest is selected.
  • the curing rate (or the degree of curing) was determined from the degree of decrease in the peak height or area accompanying the curing reaction.
  • the curing rate (or the degree of curing) is 0%, and the curing rate (or the degree of curing) when the curing progresses to become a completely cured product is 100%.
  • a more preferred range is 25 to 70%, and a particularly preferred range is 30 to 60%.
  • the thickening layer (L2) of the layered structure of “thickening layer (L2) / substrate (1)” after the second step (P2) is increased. It is a process of maintaining a viscous state. The maintenance of the thickened state is based on the property of the “thickened layer (L2)” formed in the second step (P2).
  • the third step (P3) plays a role of maintaining the curing rate (or the curing degree) related to the degree of viscosity of the thickened layer (L2) after the second step (P2).
  • the maintenance time can be, for example, a relatively short time of about 10 seconds to a long time of several hours, several days or more, but the following steps (fourth step (P4) and fifth step (described later)) Since the third process (P3) can be performed using the storage and standby time during P5)), the process is not disadvantageous.
  • This third step (P3) appears to be a passive step, but ensures the properties and quality of the final product (input device or display device) by maintaining the degree of viscosity of the thickening layer (L2). It can be said that this is a necessary process.
  • next fourth step (P4) and fifth step (P5) can be carried out (in-line or at another facility in the factory).
  • the laminated structure after the third step (P3) (a laminated body having a layer structure of “thickening layer (L2) / substrate (1))” can itself be supplied to the market as a product. Therefore, the next fourth step (P4) and fifth step (P5) may be performed in a factory of a supplier company (for example, a company having a bonding apparatus).
  • a 5th process (P5) is a process of irradiating an active energy ray with respect to the laminated body after a 4th process (P4), and making the said thickening layer (L2) into a hardened layer (L3).
  • the substrate (1) “a variety of single-layer or multi-layer (composite) substrates including a glass substrate, a plastic substrate, a ceramic substrate, a semiconductor substrate, a woven fabric substrate, and various modules” is used.
  • the other substrate (2) used in the fourth step (P4) is a substrate to be a counterpart when mating with the substrate (1). The same thing is used.
  • main curing which is a new curing reaction
  • the thickening layer (L2) described above is intermediate between “substrate (2) / thickening layer (L2) / substrate (1)” or “substrate (1) / thickening layer (L2) / substrate (2)”. Since both sides of the layer are covered with the substrate, air (that is, oxygen having an action of inhibiting the curing reaction) is blocked.
  • the curing reaction of the thickened layer (L2) proceeds smoothly by the second irradiation of active energy rays, and the thickened layer (L2) becomes the main cured layer (L3).
  • the irradiation with the active energy ray in the fifth step (P5) may be performed from either the substrate (1) or the substrate (2) as long as the active energy ray is transparent.
  • Optical laminated structure manufacturing apparatus / part 1 Manufacturing apparatus for performing the first step (P1) to the third step (P3)) -1- An apparatus for manufacturing an optical laminated structure of the present invention for carrying out the first step (P1) to the third step (P3) of the manufacturing method described above, By applying a radical polymerization type active energy ray-curable optically transparent resin liquid (R) on the substrate (1), the resin liquid (R) has a single-layered fluid uncured state on the substrate (1).
  • Linkage control means (C1) It comprises.
  • the coating means (M1) for forming the uncured layer (L1) is not particularly limited as long as it is a means that can apply the radical polymerization type optical transparent resin liquid (R) in layers on the substrate (1).
  • the means for applying using the dispenser is to reciprocate the dispenser in order to apply the optical transparent resin liquid (R) so as to cover the entire predetermined area of the substrate (1). Since the resin liquid (R) after application must flow so that the remaining gap portion of the application is filled after being applied in the form of streaks or dots, the dispenser scanning time and the resin liquid (R) There is an aspect that the time required for the flow becomes long and the improvement of the processing speed is limited.
  • the means for applying by screen printing is means for printing the optically transparent resin liquid (R) on the substrate (1) through the eyes of the screen, but the viscosity of the resin liquid (R) must be set high; In order to form a thick print layer, it is necessary to make the screen coarser, and in that case, the peripheral edge of the print layer is difficult to sharpen; the screen gradually becomes clogged as operations are repeated. Since it is unavoidable, the film thickness tends to become thin, and the printing operation must be interrupted occasionally to clean the screen; to lift the screen and spread the coating liquid on the screen Since this printing method involves squeegee operation, there is a disadvantage in that an occupied space required for coating must be secured.
  • the means for applying by the ink jet method has a limitation in that it is difficult to form a thick coating layer; there is a limitation in continuous operation time because nozzle clogging is likely to occur.
  • the means for applying by these dispensers, the means for applying by screen printing, and the means for applying by the ink jet method can be adopted as the applying means (M1) in the first step (P1) of the present invention. It is hard to say that it is an optimal means or a suitable means.
  • the coating means (M1) for forming the uncured layer (L1) the means described below, that is, the optically transparent resin liquid (R) is applied to the substrate (1).
  • UV irradiation apparatus As the active energy ray irradiation means (M2), as the ultraviolet irradiation apparatus (UV irradiation apparatus) means, there is an irradiation apparatus using a lamp such as a high-pressure mercury lamp, a metal halide lamp (mercury-xenon lamp, etc.), a xenon lamp, or an LED lamp. can give. There are ozone-less types and ozone-type ones, and it is said that there is a difference in surface curability of the coating layer. The coating film output varies.
  • the lamp includes a condensing type and a diffusing type.
  • the wavelength it is possible to select a lamp that emits light of various wavelengths, including those having high ultraviolet intensity of 365 nm, those having high ultraviolet intensity of 254 nm, and those containing visible light of 405 nm and 436 nm in addition to these ultraviolet rays. It can.
  • Various apparatuses can be obtained from each company for the electron beam irradiation apparatus (EB apparatus) in the active energy beam irradiation means (M2).
  • Linkage control means (C1)) -1- The linkage control means (C1) is configured to form the uncured layer (L1) on the substrate (1), the thickened layer (L2), and the thickened state of the thickened layer (L2). This is a means for linking and controlling each process of maintenance.
  • the process between each process may be a single wafer process for a single substrate (1), or may be a continuous process for a long substrate material or a continuous substrate.
  • This linkage control means (C1) sets the substrate (1) at a predetermined position on the line (stage, etc.), and then the first step (P1), the second step (P2), and the third step (P3).
  • a laminating means (M3) for forming a laminate having a layer structure of “layer (L2) / substrate (1)” or “substrate (1) / thickening layer (L2) / substrate (2)”;
  • Active energy ray irradiation means (M4) for main curing for irradiating active energy rays in the bonded state to make the thickened layer (L2) into a main cured layer (L3);
  • Coordination control means (C2) for linking and controlling the bonding and main curing processes. Is required.
  • Nonding means (M3) An example of the bonding means (M3) is schematically shown in the examples described later.
  • this bonding means (M3) various vacuum bonding apparatuses that have already been put into practical use by the applicant and apparatuses similar to conventionally known vacuum bonding apparatuses can also be used. Note that “vacuum conditions” when pasting together under vacuum conditions means “under reduced pressure conditions”.
  • the active energy ray irradiating means (M4) for main curing for making the thickened layer (L2) described above into the main cured layer (L3) is the same as the active energy ray irradiating means (M2) described above. Is used.
  • Linkage control means (C2) The linkage control means (C2) supplies or moves the substrate (1) and the substrate (2) to a predetermined part in order to perform the fourth step (P4) and the fifth step (P5), Adjust the height, invert, adjust the angle with the help of auxiliary means such as a camera, superimpose both substrates (1) and (2), and adjust the irradiation timing of the energy beam irradiation means (M3) Means for controlling and taking out are included.
  • FIG. 1 is a schematic explanatory view of the manufacturing method and manufacturing apparatus of the present invention as described above.
  • 2A and 2B are explanatory views schematically showing an example of the manufacturing method and the manufacturing apparatus of the present invention, in which FIG. 2A is a plan view and FIG. 2B is a front view.
  • FIG. 3 is an explanatory view (plan view) schematically showing an example of a vacuum bonding apparatus corresponding to the fourth step (P4) and the fifth step (P5) of the manufacturing method of the present invention.
  • (S) is a stage.
  • the right side of the stage (S) is a set part (S1)
  • the left side of the stage (S) is an application part (S2)
  • the central part of the stage (S) is an active energy ray irradiation part (S3).
  • the substrate (1) returns to the position of the first set part (S1) again through the stage (S) through “set part (S1) ⁇ application part (S2) ⁇ active energy ray irradiation part (S3)”. Is taken out of the system. Subsequent substrates (1) are also put in this cycle one after another. (In FIG.
  • the substrate (1) is manually set on the set unit (S1) on the right side of the stage (S), and then the substrate (1) is applied on the left side of the stage (S) (S2). It was moved by electric.
  • the substrate (1) is moved toward the right direction in FIG. 2 at a constant speed, and is directed toward the upper surface of the substrate (1) as an example of the coating means (M1).
  • a predetermined amount of the ultraviolet curable resin liquid (R) is discharged from a coater (with a fixed discharge pump) with a wide slit nozzle and allowed to flow down, whereby an uncured layer (L1) of the resin liquid (R) is formed on the substrate (1). ).
  • the active energy ray irradiating means A predetermined amount of ultraviolet irradiation was performed from (M2) to thicken the uncured layer (L1) formed on the substrate (1) to form a thickened layer (L2). (Second step (P2))
  • the substrate (1) on which the thickening layer (L2) is formed is electrically moved at the same speed as described above, and moved to the original set position (S1) on the right side of the stage (S). Then, the substrate (1) on which the thickening layer (L2) was formed was manually moved to a standby part (not shown).
  • the laminated structure “thickening layer (L2) / substrate (1)” was stored for an arbitrary time (for example, several hours to several days), but the thickening layer (L2) remained in the same thickened state. Kept in. In this standby state, the thickening layer (L2) is exposed to air (that is, oxygen), but no phenomenon has been observed in which the curing proceeds to the main curing. (Third step (P3))
  • the lower left part of FIG. 3 is a set part (Z1) of one substrate or the like (substrate or substrate laminate) to be bonded, and the lower right part of FIG. 3 is the other substrate or the like (substrate or substrate) to be bonded. It is a set part (Z2) of a board
  • the upper left part of FIG. 3 is a delivery part (Z3) for delivering a substrate or the like from the lower left part to the upper right part.
  • the upper right portion in FIG. 3 is a bonding portion (Z4) for bonding a substrate or the like from the upper left portion and a substrate or the like from the lower right portion under vacuum.
  • the substrate (2) in the upper left set part (Z3) is moved to the upper right bonding part (Z4), and the “thickening layer (L2) / substrate (1) in the lower right set part (Z2) is moved. ) ”Was placed by moving it to the upper right bonding portion (Z4), and then a fourth step (P4) was performed in which bonding was performed under vacuum at the bonding portion (Z4).
  • -Substrate (1) Glass substrate, size is 190 mm x 240 mm -Substrate (2): A substrate with a 15 mm width border (2E) which is a white decorative part, the size is 190 mm x 240 mm ⁇
  • uncured layer (L1) 160 mm x 210 mm ⁇ Uncured layer (L1) thickness: 150 ⁇ m and 200 ⁇ m in two levels ⁇ Uncured layer (L1) viscosity ⁇ : almost the same as the viscosity of the resin liquid (R) ⁇ Uncured layer (L2) cure rate: 0 % -Curing rate of thickening layer (L2): 3 levels of 30%, 50%, 70%-Curing rate of main cured layer (L3): almost 100% ⁇ Thickness of edge (2E) of substrate (2): two levels of 80 ⁇ m and 50 ⁇ m
  • optical laminated structure produced by the method and apparatus of the present invention is extremely useful as an electronic device including a display device and an input device.

Abstract

 OCR塗布法を端緒とするものであるにもかかわらずそのOCR塗布法の問題点が解消され、しかもOCA貼着法を超えるメリットを有する光学用積層構造体を製造する方法および装置を提供することを目的とする。 第1工程(P1)においては、基板(1)上にラジカル重合型の活性エネルギー線硬化性光学透明樹脂液(R)を塗布して基板(1)上に単層状の流動性ある未硬化層(L1)を形成する。第2工程(P2)においては、その未硬化層(L1)に対して活性エネルギー線を照射して硬化を進行させることにより、該未硬化層(L1)を流動性の減じた増粘層(L2)に変化させる。第3工程(P3)においては、その増粘層(L2)の増粘状態を維持する。

Description

光学用積層構造体の製造方法および製造装置
 本発明は、OCR塗布法(基板に対して液状の光学透明樹脂の塗布を行う方法)を端緒とするものであるにもかかわらず、従来のOCR塗布法はもとより従来のOCA貼着法(基板に対してシート状の光学透明接着剤の貼着を行う方法)を超えるメリットを有する光学用積層構造体の製造方法および製造装置に関するものである。
[光学透明樹脂(OCR)と光学透明接着剤(OCA)]
(用語の意味)
-1-
 入力装置や表示装置をはじめとする各種の電子装置に搭載される光学用積層構造体にかかる技術分野においては、OCRやOCAという用語が使われることが多い。
-2-
 OCRは、光学透明樹脂(Optical Clear Resin)の略称であって、樹脂液の状態で取り扱われる。
-3-
 OCAは、光学透明接着剤(Optical Clear Adhesive)の略称であって、粘着性のあるシート状(狭幅の場合はテープ状)の接着剤の状態で取り扱われる。OCAは粘着性を有するため、OCAの両面をセパレータ(剥離性を有するシート)で被覆した「セパレータ/OCA/セパレータ」の積層品の形態で、あるいは、セパレータとして両面剥離性を有するシートを用いて「両面剥離性セパレータ/OCA」の巻回品の形態で、入手または準備される。
(OCRとOCAの代表的な使い方)
-1-
 前者のOCRを用いる光学用積層構造体においては、片方の基板と他方の基板との間に(たとえば、「カバーガラスとセンサーガラスとの間」や「カバーガラスと液晶モジュールとの間」に)、OCRとしての硬化性樹脂液を介在させたものを用いることが多い。
両基板間への硬化性樹脂液の介在は、通常は片方の基板上に樹脂液をディスペンサなどにより塗布し、ついでその塗布層の上から他方の基板を被覆することによって達成される。場合によっては、2枚の基板を近接させた状態においてその隙間に樹脂液を注入することも可能である。
 基板間に介在させた硬化性樹脂液の硬化は、その樹脂液が熱硬化型であるときは加熱により、その樹脂液が紫外線硬化型であるときは紫外線照射により行われる。
-2-
 一方、後者のOCAを用いる光学用積層構造体においては、上記のようにOCAの両面をセパレータで被覆した積層品の形態で入手または準備したものである場合を例にとると、まずそのセパレータの片方を剥離除去しながら片面が露出したOCAを片方の基板の片面に貼着し、ついでその貼り付けたOCAに被覆されている残余のセパレータを剥離除去しながらその剥離除去面が露出したOCA上から他方の基板を貼着する使い方をする。
(OCR塗布法とOCA貼着法の問題点)
(その1)OCR塗布法の問題点
 樹脂液であるOCRを上述の方法により両基板間へ介在させるようにするときは、図4に模式図を示したように、種々のトラブルが生ずることを防止しがたい。図4の左側の図は、基板(1)上に樹脂液であるOCRを塗布した直後の図である。しかしながら、図4の右上の図のように、塗布された塗布層の周縁エッジ部が経時的にダレを生じてしまう傾向がある。また、図4の右下の図のように、OCR塗布後の基板(1)を図示せざる他方の基板(2)との積層のために移動操作したり上下反転操作したりするときには、重力や遠心力によって塗布層の厚みに偏りが生じてしまう傾向がある。そのほか、基板(1)と基板(2)との間に挟まれたOCRが、その構造体の周縁エッジ部からはみ出すなどのトラブルを生ずることもある。
(その2)OCA貼着法の問題点
-1-
 一方、後者のOCAを片方の基板に貼ったものを他方の基板(その周辺に「加飾部」と称されるデザイン上の観点からの黒や白の印刷段差部を設けて縁取りしたものを用いることが多い)との貼り合わせ工程に供するときは、上記のOCR塗布法の場合のような樹脂液のダレや偏りは生じないものの、その他方の基板の周辺の印刷段差部とOCA貼着部との間に隙間を生じやすい。(付言するに、白色の加飾部は黒色の加飾部に比し光が通りやすいので、白色の層を重ね塗りしてその厚みを厚くするか、黒色の下塗り層を設けてからその上に白色の上塗り層を塗ることにより形成される。そのため、白色の加飾部は黒色の加飾部に比し厚みが厚くなることを免れない。)
 OCAは圧縮変形はするものの本来は流動性を有しないシート状の接着剤であるため、下記に詳述するように、基板の所定の領域に隙間を生じないようにきっちりと貼着するようにすることが原理的にも難しいからである。このことを図5を用いて説明する。
-2-
 図5(A)は、シート状のOCAを貼着した基板(1)に対して、周辺に印刷による縁取り(2E)を形成した基板(2)を貼り合わせるときの配置関係を示した説明図である。
-3-
 図5(B)のように、貼り合わせにより基板(1)上のOCAが、基板(2)の縁取り(2E)の段差の内側のところにまでぴったりと位置するようにすることは、一見して容易ではないことがわかる。というのは、縁取り(2E)は4辺ある上、その縁取り(2E)のコーナー部も4箇所あるところ、それらの全てにわたって隙間なくOCAが介在するようにすることは極めて難しいからである。
 そして、縁取り(2E)の内側の辺やコーナー部に隙間が残ると、図5(C)に基板(2)の側から見たときの平面図(透視図)を示したように、縁取り(2E)との段差に沿って帯状の気泡(b)が目視されるようになり、そのような状態となった「基板(2)/OCA/基板(1)」の積層構造体は商品価値が失われてしまう。
-4-
 そこで、図5(D)のように、貼り合わせにより基板(1)上のOCAの周辺の部位が基板(2)の縁取り(2E)の途中の部位にまで達するようにする方が、隙間の発生防止のためには確実であるということができる。このときには、OCAのうち、縁取り(2E)の途中の部位にまで達した周辺部位が押し潰されるため、その押し潰された部分のOCAは他の部位に比し薄膜になる。その薄膜部分が縁取り(2E)の内側の辺と外側の辺との間にある限りは、OCAのショート(充填不足)やはみ出し(充填過多)のトラブルは生じないことになり、貼り合わせ時の誤差が吸収できる。そのため、精度良くOCA貼着操作を行えば、不良品を生ずることはなくなるはずである。
 しかしながら、この場合においても、OCAが図5(D)に矢印の先で示した箇所の隙間を埋めることは容易ではない。OCAはもともと流動性を有しないからである。そのため、その箇所を外部から見ると、図5(C)のように段差の内側の辺に沿って帯状の気泡(b)が目視されることがある。
(OCR塗布法およびOCA貼着法における対策と限界)
-1-
 まず、前者のOCR塗布法に依るときは、従来は、円滑塗布性やレベリング性(いずれも流動性に関連する性質である)を若干犠牲にしても、塗布液の粘度をできるだけ高くすることによりダレや偏りを生じにくいようにしていた。
 しかしながら、このOCR塗布法に依るときは、流動性やレベリング性を確保しながらダレや偏りを解消することは至難であった。というのは、「流動性やレベリング性」を有することと「ダレ防止性や偏り防止性」を有することとは、もともと相反する性質であるからである。
-2-
 一方、後者のOCA貼着法に依るときは、OCAが流動性を有しないという原理的な制約があるため、従来は基板の定められた領域に可能な限り正確にOCAを貼着することに意を注ぐと共に、その貼着工程における圧力と温度のコントロールに留意してOCAの柔軟化を図ることにより前記の帯状の気泡(b)の発生を防止するようにしていた。
 その結果、基板(1)上のOCAの厚みがたとえば200μm程度で、基板(2)に印刷により設けてある縁取り(2E)の厚み(つまり段差)がたとえば6~10μm程度というようなケースにおいては、上記のような留意を払うことにより何とか対処することができた。
 しかしながら、上に述べた白色の「加飾部」のように上記の縁取り(2E)の厚み(つまり段差)がたとえば50~60μmとなるようなケースにおいては、もはや上記のような留意を払っても対処しえないという限界に立ち至っていた。
[特許文献]
 次に、本発明に関連すると思われる特許文献について検討する。
 下記の特許文献1は、基板同士の真空貼り合わせ、紫外線硬化型接着剤の使用につき記載のある文献である。
 また、下記の特許文献2は、基板と表示パネルとが紫外線硬化樹脂層を介して積層・接着した構造の表示装置にかかる文献であり、紫外線硬化樹脂の仮硬化と本硬化についても記載がある。
 よって、これらの特許文献1、2は、本発明と対比すべき従来技術であると思われる。
(特許文献1)
-1-
 特開2001-250289(特許文献1)の請求項1には、次のような基板の真空貼り合わせ方法が示されている。
・2枚の基板同士を接着剤を介して貼り合わせる方法であって、
・上記2枚の基板のうち、少なくとも一方の基板にカチオン系の紫外線硬化型接着剤を環状に塗布する工程と、
・上記環状に塗布された接着剤を上記基板の大略全体に広げる工程と、
・上記接着剤に紫外線を照射して上記接着剤の硬化反応を開始させる紫外線照射工程と、
・真空雰囲気内で上記2枚の基板を上記硬化反応が開始された接着剤を介して貼り合わせる工程
とを含むことを特徴とする基板の真空貼り合わせ方法。
(なお、その請求項4には、接着剤塗布装置と、接着剤拡散装置と、紫外線照射装置と、真空雰囲気形成装置とからなる基板の真空貼り合わせ装置が示されている。)
-2-
 この特許文献1の請求項2および8においては、上記の接着剤が、「635nmあるいは650nmの波長を主体としたDVD用レーザー光の透過を著しく妨げない透明色系のカチオン系紫外線硬化型接着剤であること」を規定している。
-3-
 この特許文献1の下記の段落には、次のような記載がある。
 段落0017には、「粘度が低く(3500cps以下)、硬化速度の速い透明色系のカチオン系紫外線硬化型接着剤である」こと(段落0017)とある。
 段落0020には、「透明色系で、粘度が低く(3500cps以下)、硬化速度の速い(例えば5分以内)カチオン系紫外線硬化型接着剤を使用する。」とある。
 この段落0020および図1には、接着剤塗布装置の一例として、ディスペンサを用いることが示されている。
 段落0030には、「本実施形態の一例としての硬化時間は5分程度であるので、紫外線照射後、1~2分以内を目安に貼り合わせている。」とある。
 段落0037には、「カチオン系接着剤は、紫外線を照射したのち、ある一定時間で完全に硬化するといった性質を有するため、真空雰囲気外で硬化を完了させるようにしてもよい。」とある。
 段落0039には、「この接着剤を透明若しくは半透明の635nmあるいは650nmの波長を主体としたDVD用レーザー光の透過を著しく妨げない透明色系のカチオン系の紫外線硬化型接着剤にすれば、紫外線を通さない基板同士の貼り合わせだけでなく、紫外線を通す基板の貼り合わせにも応用でき、現在存在する光ディスクの貼り合わせに幅広く利用できるものである。」とある。
(特許文献2)
-1-
 特開2011-145534号公報(特許文献2)の請求項1には、次の製造方法が示されている。
・基板と表示パネルとが紫外線硬化樹脂によって接着されているフロントウインドウ付き表示装置の製造方法であって、
・前記表示パネルと前記基板との間に紫外線硬化樹脂を形成し、
・前記基板の側から紫外線を照射し前記紫外線硬化樹脂を部分的に仮硬化させ(つまり、紫外線照射マスクの透過パターンに対応する部分のみを仮硬化させ)、所定の時間放置した後、
・前記基板側から紫外線を照射することによって前記紫外線硬化樹脂を本硬化させることによって前記基板と前記表示パネルとを接着すること、
を特徴とするフロントウインドウ付き表示装置の製造方法。
(なお、その請求項10にはフロントウインドウ付き表示装置が示されており、その請求項14にはフロントウインドウ付き表示装置の貼り合わせ装置が示されている。)
-2-
 ここで、「前記基板の側から部分的に紫外線を照射し前記紫外線硬化樹脂を部分的に仮硬化させ、」の構成要件における「部分的に硬化」とは、先にも述べたように、「紫外線照射マスクを介して照射を紫外線硬化樹脂の一部の領域に対してのみ行い、マスクされた部分の紫外線硬化樹脂は硬化しておらず、流動性を保っている。」(その段落0012を参照)ということである。
-3-
 この特許文献2の実施例においては、フロントウインドウの裏側に対してディスペンサから紫外線硬化樹脂を線状に吐出すると共にその位置を変えて往復させることにより塗布を行っている(段落0021)。表示領域はたとえば対角3インチ(対角線の長さで3インチのこと)である(段落0022)。紫外線硬化樹脂の当初の粘度はたとえば2300mPa・secである(段落0024)。
-4-
 その図7においては、「液晶パネル」と「光学樹脂塗布後のフロントウインドウを反転させたもの」とを貼り合わせ、ついで第1次の紫外線照射を行って仮固定し、放置してから、第2次の紫外線照射を行って硬化を図っている。仮硬化の後の放置の間に、仮硬化していない紫外線硬化樹脂は流動して最適な厚さになり、気泡も外部に拡散する(段落0035)。
-5-
 紫外線照射マスクに形成された紫外線透過パターンの例は、9個の円(段落0032、図11)であり、従って紫外線硬化樹脂は9個の円の部分に対応して円柱状に仮硬化する(段落0032)。
 紫外線透過パターンの他の例は、十字と線状(段落0033、図12)、線状と円状との組み合わせ(段落0033、図13)である。
特開2001-250289号公報 特開2011-145534号公報
(特許文献1について)
-1-
 特許文献1の発明は、「基板同士の貼り合わせに際して、少なくとも一方の基板にカチオン系の紫外線硬化型接着剤を塗布する」という工夫に最も特徴的な技術思想があるものと理解される。カチオン系の紫外線硬化型接着剤は、一旦紫外線を照射して硬化反応を開始すれば、紫外線照射停止後も硬化反応が持続して本硬化に至るという性質を有するからである。
 そして、特許文献1の発明の狙いとするところは、その段落0006~0008および段落0039のように、アルミニウムや金などの反射膜を有する記録基板同士を貼り合わせること、つまり紫外線を通過させない記録基板同士を貼り合わせること(典型的には光ディスクの貼り合わせに応用すること)、にある。
 (なお、特許文献1の発明においては、紫外線硬化型接着剤の塗布方法については、その段落0020およびその図1のように、ディスペンサにより環状に塗布する方法について言及があるのみである。)
-2-
 しかしながら、特許文献1の発明の目的(狙いとするところ)、技術思想、具体的手段および作用効果は、本発明とは基本的に相違している。
(特許文献2について)
-1-
 特許文献2の発明は、表示パネルと基板との間に紫外線硬化樹脂を形成してから、その基板の側からマスクを介して部分的に紫外線を照射して紫外線硬化樹脂の一部を仮硬化させ(仮硬化するのはマスクの透過部分のみである)、所定の時間放置した後、基板側から紫外線を照射することによって紫外線硬化樹脂全体を本硬化させることにより、基板と表示パネルとを接着することを特徴としている。
-2-
 このように、特許文献2の発明においては、紫外線の照射による基板の側からの仮硬化と本硬化とは、いずれも「基板/紫外線硬化樹脂層/表示パネル」の積層状態において行っているので、本発明とは基本的に相違している。また、特許文献2の発明における仮硬化は、紫外線硬化樹脂層全体の「半硬化」という意味ではなくて、パターン部分のみの硬化のことであり(たとえば、マスクの透過パターンが円であれば、樹脂層の仮硬化は樹脂層の厚み方向に対してなされるので、仮硬化部分は円柱になる)、この点でも本発明とは基本的に相違している。
 特許文献2の発明は、本発明とは技術思想も具体的手段も基本的に相違しているのである。
(発明の目的)
 本発明は、OCR塗布法(基板に対して液状の光学透明樹脂の塗布を行う方法)を端緒とするものであるにもかかわらずそのOCR塗布法の問題点が解消され、しかもOCA貼着法(基板に対してシート状ないしテープ状の光学透明接着剤の貼着を行う方法)を超えるメリットを有する光学用積層構造体を製造する方法(およびそのような光学用積層構造体を製造する装置)を提供することを目的とするものである。
 換言すれば、従来技術であるOCR塗布法とOSA貼着法とは、いずれも、得手の側面を有する反面、不得手の側面を伴う技術手法であったところ、本発明はこれらの従来の手法の不得手の側面を一挙に解消した技術を提供することを目的とするものである。
 本発明の光学用積層構造体の製造方法は、
 基板(1)上にラジカル重合型の活性エネルギー線硬化性光学透明樹脂液(R)を塗布することにより、前記基板(1)上に前記樹脂液(R)の単層状の流動性ある未硬化層(L1)が形成された「未硬化層(L1)/基板(1)」の層構成の積層体を得る第1工程(P1)、
 前記の第1工程(P1)により得られた積層体の未硬化層(L1)に対して活性エネルギー線を照射して硬化を進行させることにより、該未硬化層(L1)が流動性の減じた増粘層(L2)に変化した「増粘層(L2)/基板(1)」の層構成の積層体を得る第2工程(P2)、および、
 前記の第2工程(P2)後の「増粘層(L2)/基板(1)」の層構成の積層体の増粘層(L2)をその増粘状態に維持する第3工程(P3)
からなることを特徴とするものである。
 本発明の光学用積層構造体の製造装置は、
基板(1)上にラジカル重合型の活性エネルギー線硬化性光学透明樹脂液(R)を塗布することにより、前記基板(1)上に前記樹脂液(R)の単層状の流動性ある未硬化層(L1)が形成された「未硬化層(L1)/基板(1)」の層構成の積層体を得るための塗布手段(M1)と、
 その「未硬化層(L1)/基板(1)」の層構成の積層体の未硬化層(L1)に対して活性エネルギー線を照射して硬化を進行させることにより、該未硬化層(L1)が流動性の減じた増粘層(L2)に変化した「増粘層(L2)/基板(1)」の層構成の積層体となすための増粘用の活性エネルギー線照射手段(M2)と、
 前記基板(1)上への前記未硬化層(L1)の形成、前記増粘層(L2)の形成、さらにはその増粘層(L2)の増粘状態の維持、の各工程を連係制御するための連係制御手段(C1)
とを具備してなるものである。
(本発明の作用機構1)
-1-
 一般に、紫外線硬化型樹脂組成物には、アクリレート系に代表されるようなラジカル重合型のものと、エポキシ系に代表されるようなカチオン重合型のものとがある。シリコーンを主成分とするラジカル重合型のものもある。
 ラジカル重合型の紫外線硬化型樹脂組成物(「前者」とする)とカチオン重合型の紫外線硬化型樹脂組成物(「後者」とする)とを対比すると、文献によれば次のような傾向があるとされている。
(ア)硬化収縮率については、前者より後者の方が収縮率が小さい。
(イ)酸素の硬化阻害性については、前者が酸素による硬化阻害を受けるのに対して、後者は酸素による硬化阻害を受けがたい。
(ウ)紫外線照射を停止したときは、前者は硬化反応が停止するに対して、後者は硬化反応が持続する。
-2-
 先に[背景技術]の箇所で述べた特許文献1の請求項1の発明は、カチオン系の紫外線硬化型接着剤を用いることを必須要件としている。そのため、紫外線照射により硬化反応が開始したときは、紫外線照射を停止しても硬化反応が進む上、酸素による硬化阻害を受けがたいので、照射停止後5分程度で本硬化してしまうものと理解される。
-3-
 これに対し、本発明においては、ラジカル重合型の光学透明樹脂液(R)を用いることを必須要件としている。そのため、第1工程(P1)により形成された未硬化層(L1)に対して活性エネルギー線を照射して硬化を進行させることによって該未硬化層(L1)が流動性の減じた増粘層(L2)に変化した「増粘層(L2)/基板(1)」の層構成の積層体を得る第2工程(P2)を実施した後、第3工程(P3)によりその積層体をそのまま放置しておいても、第2工程(P2)後の増粘層(L2)をその増粘状態のまま維持することができる。
 そして、その第3工程(P3)後に後述の第4工程(P4)を経て第5工程(P5)にとりかかるまで待機させておいても、依然としてその増粘層(L2)をその増粘状態に維持することができる。
 なお、これらの放置または待機の期間に第2工程(P2)工程後の増粘層(L2)が空気(つまり酸素)に触れることになるが、そのことはむしろ増粘層(L2)をその増粘状態のままに維持させるのに貢献する。
 このように、本発明は、特許文献1の発明とは技術思想が基本的に相違している。
(本発明の作用機構2)
 すでに述べたように、特許文献2の発明においては、紫外線の照射による基板の側からの仮硬化と本硬化とは、いずれも「基板/紫外線硬化樹脂層/表示パネル」の積層状態において行っているので、本発明とは基本的に相違している。
 また、特許文献2の発明における仮硬化は、形成した紫外線硬化樹脂の層の全体の「仮硬化」ではなくて、パターン部分のみの硬化であり(たとえばパターンが円であれば仮硬化部分は円柱になる)、この点でも本発明とは基本的に相違している。
 このように、本発明は、特許文献2の発明とは技術思想も具体的手段も基本的に相違している。
(本発明の効果)
-1-
 本発明の光学用積層構造体の製造方法の端緒となる第1工程(P1)は、基板(1)上にラジカル重合型の光学透明樹脂液(R)を塗布することにより、前記基板(1)上に前記樹脂液(R)の単層状の流動性ある未硬化層(L1)が形成された「未硬化層(L1)/基板(1)」の層構成の積層体を得る工程である。
この第1工程(P1)は、従来のOCR塗布法(基板に対して液状の光学透明樹脂の塗布を行う方法)と共通しているところがある。
 ところで、従来のOCR塗布法に依るときは、流動性やレベリング性を確保しながらダレや偏りを解消することは至難であったが、本発明においては、第2工程(P2)において、第1工程(P1)により形成された未硬化層(L1)に対して活性エネルギー線を照射して硬化を進行させることにより、該未硬化層(L1)が流動性の減じた増粘層(L2)に変化した「増粘層(L2)/基板(1)」の層構成の積層体を得るようにしているので、必要な流動性やレベリング性を確保しながらダレや偏りを解消することができる。すなわち、従来のOCR塗布法の利点は生かされかつ従来のOCR塗布法の欠点は解消される。
-2-
 シート状の接着剤を用いる従来のOCA貼着法は、OCR塗布法のようなダレや偏りというトラブルを有しないので基板への貼着操作は容易であるが、基板の周辺の縁取り(印刷段差)の内側の辺に沿って隙間を生じやすく、その段差の程度によっては上記の隙間を埋めることが困難となる。
 しかるに、本発明における第2工程(P2)による増粘層(L2)は適度の流動性を有しているので、上記の隙間をきれいに埋めることができる。
 また、爾後の工程においてその増粘層(L2)の上から第4工程(P4)に従って他の基板(2)を貼り合わせる場合も、その貼り合わせ時の圧力にこの増粘層(L2)が追従するように流動するので、貼り合わせ後の積層体にその増粘層(L2)の充填不足による死角が生ずることがなく、そのため第5工程(P5)に従って本硬化を行っても、その本硬化層(L3)と他の基板(2)との間に気泡が残るようなことがない。
 このように、本発明においては、第1工程(P1)により形成された未硬化層(L1)が第2工程(P2)における活性エネルギー線の照射により増粘層(L2)になっているので、従来のOCA貼着法の役割を果たしているのみならず、そのOCA貼着法においては克服が難しい欠点を完全に解消しているのである。
-3-
 上記のように、本発明は、従来のOCR塗布法と従来のOCA貼着法との中間に位置する技術ではなく、それら両方法とは技術思想の点でも効果の点でも質的に異なる新たな技術的思想の創作であるということができる。
 以下、本発明を詳細に説明する。
 図1は、本発明の製造方法および製造装置の模式的な説明図である。
[光学用積層構造体の製造方法]
 本発明の光学用積層構造体の製造方法は、以下に詳述するように、第1工程(P1)、第2工程(P2)および第3工程(P3)からなる。
 第3工程(P3)の後には、後述の第4工程(P4)と第5工程(P5)とを設けることもできる。また、その第4工程(P4)と第5工程(P5)とを、第1~第3工程(P1~P3工程)に引き続いて一貫工程として(つまりインライン化して)実施することもできる。
(第1工程(P1))
-1-
 第1工程(P1)は、基板(1)上にラジカル重合型の光学透明樹脂液(R)を塗布することにより、その基板(1)上に該樹脂液(R)の単層状の流動性ある未硬化層(L1)が形成された「未硬化層(L1)/基板(1)」の層構成の積層体を得る工程である。
 基板(1)上への光学透明樹脂液(R)の塗布は、塗布手段(M1)を用いることによって(特に、広幅のスリットから吐出するスリットノズル付きのコーターを用いることによって)なされるが、これについては本発明の装置の説明の箇所で詳述する。
-2-
 基板(1)としては、ガラス基板、プラスチックス基板、セラミックス基板、半導体基板、織布基板をはじめとする種々の単層の基板や、導電層付きの基板、液晶モジュールや液晶表示パネル等の各種の表示モジュール、反射層付きの記録基板をはじめとする種々の複層ないし複合の基板が用いられる。機能的な観点からは、カバーガラス、センサーガラス、各種モジュールなどが例示される。
-3-
 光学透明樹脂液(R)とは、背景技術の箇所で述べた「光学透明樹脂(OCR)」のことであるが、本発明においては第2工程(P2)(および第5工程(P5))において活性エネルギー線を照射することにより増粘や硬化を行うので、光学透明樹脂液(R)は活性エネルギー線(つまり紫外線または電子線)の照射により増粘や硬化をするものが用いられる。
 光学透明樹脂液(R)としては紫外線硬化性樹脂組成物と電子線硬化性樹脂組成物とのどちらも使用可能であるが、電子線硬化性樹脂組成物を用いるときは設備費の負担が大きくなるので、それに見合う生産性を必要とする場合に電子線硬化性樹脂組成物を用いることが多い。なお、電子線硬化性樹脂組成物を用いるときは、組成物中に光開始剤や増感剤を使わないで済む。
 そこで、通常規模の生産を行う場合は、紫外線硬化性樹脂組成物を用いることが勧められる。
本発明を説明するにあたり、以下においては紫外線硬化性樹脂組成物を用いる場合について述べるが、電子線硬化性樹脂組成物を用いることを排除する趣旨ではない。
-4-
 光学透明樹脂液(R)として紫外線硬化性の樹脂組成物を用いるときは、光重合性プレポリマー(光重合性オリゴマー)、光重合性モノマー、光開始剤、助剤などからなる組成のものが用いられる。現在においては、多数のメーカーから多種の紫外線硬化性の樹脂組成物が上市されている。
 ここで、光重合性プレポリマーの例は、ポリエステルアクリレート、ポリウレタンアクリレート、エポキシアクリレート、ポリエステルウレタンアクリレート、ポリオールアクリレートなどである。アクリレートは、メタクリレートを包含する概念である。
 光重合性モノマーの例は、単官能、2官能、3官能またはそれ以上の多官能アクリレートである。
 光開始剤は、増感剤と併用して用いることも多い。
 助剤としては、光安定剤、熱安定剤、可塑剤などがあげられる。溶剤は、原則的には使わないが、少量であれば使用可能である。
-5-
 先に述べたように、本発明の第1工程(P1)は、基板(1)上にラジカル重合型の光学透明樹脂液(R)を塗布することにより、前記基板(1)上に前記樹脂液(R)の単層状の流動性ある未硬化層(L1)が形成された「未硬化層(L1)/基板(1)」の層構成の積層体を得る工程である。
 この第1工程(P1)においては、基板(1)上に該樹脂液(R)の未硬化層(L1)を形成するのであって、「2枚の基板間」に該樹脂液(R)の未硬化層(L1)を形成するのではない。
-6-
 塗布に供するラジカル重合型の光学透明樹脂液(R)の粘性の度合い(その塗布層である未硬化層(L1)の粘性の度合いとはほぼ同じ)については、ASTM D1084による粘度においてたとえば10~50000mPa/25℃程度のものが市場から調達できるので、その中から適宜の粘度のものが選択される。通常は500~30000mPa/25℃のもの、さらには800~20000mPa/25℃のもの、殊に1000~15000mPa/25℃のものを用いることが多い。そのような粘度のうち中間的な粘度のものは、25℃の室温条件下におけるハチミツの粘性度合いやチクソトロピー性(揺変性)を想起するものである。
 なお、塗布に供する上記の光学透明樹脂液(R)およびその塗布層である未硬化層(L1)の硬化率(または硬化度)は、活性エネルギー線照射前の段階の樹脂液であるので、ほぼ0であるか、0に近いものである。
-7-
 基板(1)上への光学透明樹脂液(R)の単層状の塗布厚、すなわち未硬化層(L1)の厚みは、特に限定はないものの、入力装置や表示装置などの電子装置に適用するケースにおいては、たとえば0.01~2mm、さらには0.05~1.0mm、特に0.08~0.5mmとすることが多い。
(第2工程(P2))
-1-
 第2工程(P2)は、上記の第1工程(P1)により形成された未硬化層(L1)に対して活性エネルギー線を照射して硬化を進行させることにより、該未硬化層(L1)が流動性の減じた増粘層(L2)に変化した「増粘層(L2)/基板(1)」の層構成の積層体を得る工程である。照射する活性エネルギー線の代表例は紫外線であり、場合によっては電子線を用いることもできる。
-2-
 本発明においては、VARIAN社製の型番「Varian 610-IR」を用い、増粘した材料をサンプルホルダーにセットして分析を行った。予備的な実験において、紫外線照射による硬化反応の進行に伴ってピークが減少するものの中からその減少の様子が定量的に測定しやすい適切なピークを選んで着目ピークとすると共に、そのピークの未硬化時のピーク高さまたは面積をベースにして、硬化反応に伴うそのピークの高さまたは面積の減少度合いから硬化率(または硬化度)を求めた。未硬化物は減少度合いが0であるので硬化率(または硬化度)は0%であり、硬化が進んで完全硬化物となったときの硬化率(または硬化度)は100%である。
 そして、本発明においては、上記の増粘層(L2)の硬化率(または硬化度)を20~80%の範囲内に設定することが望ましい。より好ましい範囲は25~70%、特に好ましい範囲は30~60%である。
(第3工程(P3))
-1-
 本発明の第3工程(P3)は、前記の第2工程(P2)後の「増粘層(L2)/基板(1)」の層構成の積層体の増粘層(L2)をその増粘状態に維持する工程である。増粘状態の維持は、第2工程(P2)により形成された「増粘層(L2)」が具備する性質に基くものである。
 このように、第3工程(P3)は、第2工程(P2)後の増粘層(L2)の粘性の度合いに関連する硬化率(または硬化度)を維持する役割を果たす。維持時間は、たとえば10秒前後の比較的短い時間から、数時間、数日あるいはそれ以上の長期間とすることができるが、次の工程(後述の第4工程(P4)および第5工程(P5))への間の保管や待機の時間を利用してこの第3工程(P3)とすることができるので、工程的に不利になるわけではない。
 この第3工程(P3)は、消極的な工程のように見えるが、増粘層(L2)の粘性の度合いを維持することによって最終製品(入力装置や表示装置)の特性や品質を担保するのに必要な工程であるということができる。
-2-
 上記の第2工程(P2)において活性エネルギー線の照射を停止すると、元となる光学透明樹脂液(R)がラジカル重合型の樹脂液であるので増粘層(L2)の粘性の度合いがそこで停止し、以後はその値が事実上維持される。基板(1)上に形成されている増粘層(L2)が空気雰囲気(つまり酸素雰囲気)に曝されていることも、増粘層(L2)の粘性の度合いがそのままあるいは事実上維持されることに貢献している。
(第4工程(P4)と第5工程(P5))
-1-
 上記の第3工程(P3)後には、引き続き(インラインであるいは工場内の他の施設において)、次の第4工程(P4)と第5工程(P5)とを実施することができる。
 ただし、第3工程(P3)後の積層構造体(「増粘層(L2)/基板(1)」の層構成の積層体)はそれ自体を製品として市場に供給することができるものであるので、次の第4工程(P4)と第5工程(P5)とは供給先の企業(たとえば貼り合わせ装置を有している企業)の工場内において行われることもある。
-2-
 この第4工程(P4)は、前記の第3工程(P3)後に、その「増粘層(L2)/基板(1)」の層構成の積層体を他の基板(2)と真空条件下に貼り合わせて「基板(2)/増粘層(L2)/基板(1)」または「基板(1)/増粘層(L2)/基板(2)」の層構成の積層体となす工程である。
第5工程(P5)は、第4工程(P4)後の積層体に対して活性エネルギー線を照射して、前記増粘層(L2)を本硬化層(L3)となす工程である。
-3-
 先に、基板(1)としては「ガラス基板、プラスチックス基板、セラミックス基板、半導体基板、織布基板、各種モジュールをはじめとする種々様々の単層または複層(複合)の基板」が用いられることを述べたが、この第4工程(P4)において用いる他の基板(2)は、基板(1)と組み合わせるときのカウンターパート(相手方)となる基板であるので、上記の基板(1)におけるものと同様のものが用いられる。
-4-
 第5工程(P5)における活性エネルギー線の照射により、硬化反応が完全にまたは事実上停止していた増粘層(L2)につき、新たな硬化反応である本硬化が開始される。先に述べた増粘層(L2)は「基板(2)/増粘層(L2)/基板(1)」または「基板(1)/増粘層(L2)/基板(2)」の中間に位置する層となっており、その両側を基板で覆われているために空気(つまり硬化反応を阻害する作用のある酸素)とは遮断されている。そのため、2回目の活性エネルギー線の照射により円滑に増粘層(L2)の硬化反応が進行して、その増粘層(L2)は本硬化層(L3)となる。
 なお、この第5工程(P5)における活性エネルギー線の照射は、活性エネルギー線透過性を有する限り、基板(1)または基板(2)のどちらの側から行ってもよい。
[光学用積層構造体の製造装置/その1]
(第1工程(P1)から第3工程(P3)を実施するための製造装置)
-1-
 上述の製造方法の第1工程(P1)から第3工程(P3)を実施するための本発明の光学用積層構造体の製造装置は、
 基板(1)上にラジカル重合型の活性エネルギー線硬化性光学透明樹脂液(R)を塗布することにより、前記基板(1)上に前記樹脂液(R)の単層状の流動性ある未硬化層(L1)が形成された「未硬化層(L1)/基板(1)」の層構成の積層体を得るための塗布手段(M1)と、
 その「未硬化層(L1)/基板(1)」の層構成の積層体の未硬化層(L1)に対して活性エネルギー線を照射して硬化を進行させることにより、該未硬化層(L1)が流動性の減じた増粘層(L2)に変化した「増粘層(L2)/基板(1)」の層構成の積層体となすための増粘用の活性エネルギー線照射手段(M2)と、
 前記基板(1)上への前記未硬化層(L1)の形成、前記増粘層(L2)の形成、さらにはその増粘層(L2)の増粘状態の維持、の各工程を連係制御するための連係制御手段(C1)
とを具備してなるものである。
(塗布手段(M1))
-1-
 未硬化層(L1)を形成するための塗布手段(M1)は、基板(1)上にラジカル重合型の光学透明樹脂液(R)を層状に塗布しうる手段であれば特に限定はない。
-2-
 塗布手段(M1)としてまず念頭に浮かぶものは、[背景技術]の箇所であげた特許文献1および特許文献2において使用しているようなディスペンサを用いて塗布する手段である。次に念頭に浮かぶのは、スクリーン印刷により塗布する手段とインクジェット方式により塗布する手段である。
-3-
 しかしながら、これらの塗布手段のうち、ディスペンサを用いて塗布する手段は、基板(1)の所定の領域の全体を覆うように光学透明樹脂液(R)を塗布するためには、ディスペンサを往復移動させながら筋状やドット状に塗布して後、塗布残りの隙間部分が埋まるように塗布後の樹脂液(R)が流れるようにしなければならないので、ディスペンサの走査時間や樹脂液(R)の流れに要する時間が長くなり、処理速度の向上に限界があるという側面がある。
-4-
 スクリーン印刷により塗布する手段は、スクリーンの目を通して光学透明樹脂液(R)を基板(1)上に印刷する手段であるが、樹脂液(R)の粘度を高めに設定しなければならないこと;印刷層を厚膜に形成するためにはスクリーンの目を粗くしなければならないところ、そのようにすると印刷層の周辺エッジ部分がシャープになりにくいこと;操作を重ねるとしだいにスクリーンが目詰まりしていくことを免れないので、膜厚が薄くなっていく傾向がある上、時々印刷操作を中断してスクリーンの洗浄をしなければならないこと;スクリーンの昇降や塗布液をスクリーン上に拡げるためのスキージの操作を伴う印刷法であるので、塗布に要する占有空間を確保しなければならないこと;などの不利を伴うという側面がある。
-5-
 インクジェット方式による塗布する手段は、厚膜の塗布層を形成するのが難しいこと;ノズルの目詰まりを生じやすいので連続操作時間に制限があること;などの限界があるという側面がある。
-6-
 よって、これらのディスペンサにより塗布する手段、スクリーン印刷により塗布する手段、インクジェット方式により塗布する手段は、本発明の第1工程(P1)における塗布手段(M1)としては、採用は可能であるが、最適の手段または好適な手段であるとは言い難い。
-7-
 本発明の目的を達成するためには、前記未硬化層(L1)を形成するための塗布手段(M1)として、次に述べる手段、すなわち、上記の光学透明樹脂液(R)を基板(1)の塗布領域に見合った「広幅のスリットから吐出するスリットノズル付きのコーター」であることが特に好ましい。そして、このコーターは、基板(1)の枚葉処理にも対処できるように、1回の吐出量を厳密に設定できるものであることが好ましい。
(活性エネルギー線照射手段(M2))
 活性エネルギー線照射手段(M2)のうち紫外線照射装置(UV照射装置)手段としては、高圧水銀ランプ、メタルハライドランプ(水銀-キセノンランプ等)、キセノンランプ、LEDランプなどのランプを使用する照射装置があげられる。オゾンレスタイプとオゾンタイプのものとがあり、塗布層の表面硬化性の点で差があるとされている。塗膜出力は様々である。ランプには、集光型のものや拡散型のものがある。波長については、365nmの紫外線強度が高いもの、254nmの紫外線強度が高いもの、これらの紫外線のほかに405nmや436nmの可視光を含むものをはじめ、種々波長の光を発するランプを選択することができる。
 活性エネルギー線照射手段(M2)のうち電子線照射装置(EB装置)についても、各社から種々の装置を入手することができる。
(連係制御手段(C1))
-1-
 連係制御手段(C1)は、上述の基板(1)上への前記の未硬化層(L1)の形成、前記の増粘層(L2)の形成およびその増粘層(L2)の増粘状態の維持、の各工程を連係制御するための手段である。なお、各工程間の処理は、枚葉の基板(1)に対する枚葉処理であってもよく、長尺の基板材料または連設した基板に対する連続処理であってもよい。
-2-
 この連係制御手段(C1)は、基板(1)をライン(ステージ等)の所定の位置にセットした後、上述の第1工程(P1)、第2工程(P2)、第3工程(P3)を実施するために、基板(1)を所定の場所に移動させたり高さ調整したりする手段のほか、
 第1工程(P1)において、基板(1)に対する塗布手段(M1)の進退、塗布量の調節、塗布の開始と中断のタイミングの制御を行う手段;
 第2工程(P2)において、基板(1)上の未硬化層(L1)を増粘させるための活性エネルギー線照射手段(M2)の照射タイミングを制御する手段;
 第3工程(P3)において、基板(1)上の増粘層(L2)をその増粘の度合いのまま維持するための手段(一時的または待機のためにライン外に置く手段);
などがあげられる。
[光学用積層構造体の製造装置/その2]
(第4工程(P4)から第5工程(P5)を実施するための製造装置)
 上述の製造方法の第1工程(P1)から第3工程(P3)を実施した後、さらに第4工程(P4)から第5工程(P5)を実施するときには、
 第3工程(P3)後の「増粘層(L2)/基板(1)」の層構成の積層体を他の基板(2)と真空条件下に貼り合わせて「基板(2)/増粘層(L2)/基板(1)」または「基板(1)/増粘層(L2)/基板(2)」の層構成の積層体となすための貼り合わせ手段(M3)と、
 その貼り合わせた状態において活性エネルギー線を照射して前記増粘層(L2)を本硬化層(L3)となすための本硬化用の活性エネルギー線照射手段(M4)と、
 前記の貼り合わせおよび本硬化の各工程を連係制御するための連係制御手段(C2)
とが必要となる。
(貼り合わせ手段(M3))
 この貼り合わせ手段(M3)の一例は、後述の実施例に模式的に示してある。この貼り合わせ手段(M3)としては、本出願人がすでに実用化している種々の真空貼り合わせ装置や従来公知の真空貼り合わせ装置と同様の装置を用いることもできる。なお、真空条件下に貼り合わせるときの「真空条件下」とは、「減圧条件下」の意味である。
(活性エネルギー線照射手段(M4))
 先に述べた増粘層(L2)を本硬化層(L3)となすための本硬化用の活性エネルギー線照射手段(M4)としては、上記の活性エネルギー線照射手段(M2)と同様のものが用いられる。
(連係制御手段(C2))
 連係制御手段(C2)は、第4工程(P4)および第5工程(P5)を実施するために、基板(1)と基板(2)とを所定の部位に供給したり、移動させたり、高さ調整したり、反転させたり、カメラなどの補助手段の助けを借りながら角度調節したり、両基板(1)、(2)を重ね合わせたり、エネルギー線照射手段(M3)の照射タイミングを制御したり、取り出しを行ったりする手段などがあげられる。
 次に実施例をあげて本発明をさらに説明する。
[実施例]
(図面の説明)
 図1は、先にも述べたように、本発明の製造方法および製造装置の模式的な説明図である。
 図2は、本発明の製造方法および製造装置の一例を模式的に示した説明図であり、(A)は平面図、(B)は正面図である。
 図3は、本発明の製造方法の第4工程(P4)および第5工程(P5)に相当する真空貼り合わせ装置の一例を模式的に示した説明図(平面図)である。
(第1工程(P1)から第3工程(P2))
-1-
 図2(A),(B)において、(S)はステージである。ステージ(S)の右側はセット部(S1)、ステージ(S)の左側は塗布部(S2)、ステージ(S)の中央部は活性エネルギー線照射部(S3)である。
 基板(1)は、ステージ(S)上を「セット部(S1)→塗布部(S2)→活性エネルギー線照射部(S3)」を経て、再び最初のセット部(S1)の位置に戻ってから、系外に取り出される。後続の基板(1)・・についても、次々にこのサイクルに投じられる。(なお、図2においては、セット部(S1)と取り出し部とが同一箇所になっているので、取り出しのための増粘層(L2)付きの基板(1)はセット部(S1)には図示されていない。上記の一連のサイクルは、「工程(P1)→工程(P2)→工程(P3)」をこの順に直列に描いた図1を見た方がわかりやすい。)
-2-
 図2により1サイクルについて説明する。
 この実施例においては、まず、基板(1)をステージ(S)の右側のセット部(S1)に手動によりセットし、ついでその基板(1)をステージ(S)の左側の塗布部(S2)にまで電動により移動させた。
-3-
 ついで、その塗布部(S2)において、基板(1)を図2の右方向に向けて定速度で移動させながら、その基板(1)の上面に向けて、塗布手段(M1)の一例としての広幅スリットノズル付きのコーター(定量吐出ポンプ付き)から所定量の紫外線硬化性樹脂液(R)を吐出、流下させることにより、基板(1)上に該樹脂液(R)の未硬化層(L1)を形成させていった。(第1工程(P1))
-4-
 続いて、未硬化層(L1)が形成された基板(1)がステージ(S)の中央部の活性エネルギー線照射部(S3)を上記と同じ速度で通過する間に、活性エネルギー線照射手段(M2)から所定量の紫外線照射を行って、基板(1)に形成されている未硬化層(L1)を増粘させて増粘層(L2)となした。(第2工程(P2))
-5-
 引き続き、増粘層(L2)が形成された基板(1)を上記と同じ速度で電動で動かして、元の位置であるステージ(S)の右側のセット部(S1)にまで移動させてから、その増粘層(L2)が形成されている基板(1)を手動により図示せざる待機部に移動させた。
-6-
 その待機部において「増粘層(L2)/基板(1)」の積層構造体を任意の時間(たとえば数時間ないし数日)保管したが、増粘層(L2)は同じ増粘状態のままに保たれた。この待機状態においては、増粘層(L2)は空気(つまり酸素)に曝された状態にあるが、硬化が進行して本硬化に至る現象は見られなかった。(第3工程(P3))
(第4工程(P4)から第5工程(P5))
-1-
 第4工程(P4)および第5工程(P5)を実施するために、上記の待機状態に置いた第3工程(P3)の「増粘層(L2)/基板(1)」からなる積層構造体を、図3に示した真空貼り合わせ装置に供給した。
-2-
 図3の左下の部位は貼り合わせに供する一方の基板等(基板または基板積層体)のセット部(Z1)であり、図3の右下の部位は貼り合わせに供する他方の基板等(基板または基板積層体)のセット部(Z2)である。
 図3の左上の部位は、左下の部位からの基板等を右上の部位に受け渡すための受け渡し部(Z3)である。
 図3の右上の部位は、左上の部位からの基板等と右下の部位からの基板等とを真空下に貼り合わせるための貼り合わせ部(Z4)である。
-3-
 まず、右下のセット部(Z2)に、上記の第2工程(P2)を経た第3工程(P3)後の「増粘層(L2)/基板(1)」の積層構造体をセットした。
 一方、左下のセット部(Z1)には基板(2)をセットした。
 ついで、この基板(2)を左上のセット部(Z3)に移動させた。
-4-
 ついで、左上のセット部(Z3)にある基板(2)を右上の貼り合わせ部(Z4)に移動させると共に、右下のセット部(Z2)にある「増粘層(L2)/基板(1)」の積層構造体を右上の貼り合わせ部(Z4)に移動させることにより載置し、ついでこの貼り合わせ部(Z4)において真空下の貼り合わせを行う第4工程(P4)を実施した。
-5-
 これにより、真空条件下における貼り合わせがなされ、「基板(2)/増粘層(L2)/基板(1)」の層構成の貼り合わせ構造物が得られたので、図3においては図示を省略している活性エネルギー線照射手段(M3)からの紫外線照射により、先の増粘層(L2)を本硬化層(L3)となす第5工程(P5)を実施した。
-6-
 真空を解除してから、その貼り合わせ構造物を図3の右下のセット部(Z2)に移動させると共に、真空貼り合わせ装置の外に取り出した。これにより、「基板(1)/本硬化層(L3)/基板(2)」からなる最終的な積層構造体が作製された。
(設定した条件と結果)
-1-
 この実施例においては、条件を次のように設定した。
・基板(1):ガラス基板、サイズは190mm×240mm
・基板(2):白色の加飾部である幅15mmの縁取り(2E)付きの基板、サイズは190mm×240mm
・光学透明樹脂液(R):ラジカル重合型のアクリル系の紫外線硬化性樹脂液
・上記の光学透明樹脂液(R)の粘性度合いη:ASTM D1084に準じて測定した粘度で3000mPa/25℃
・未硬化層(L1)の塗布面積:160mm×210mm
・未硬化層(L1)の厚み:150μm、200μmの2水準
・未硬化層(L1)の粘性度合いη:樹脂液(R)の粘度とほぼ同じ
・未硬化層(L2)の硬化率:0%
・増粘層(L2)の硬化率:30%、50%、70%の3水準
・本硬化層(L3)の硬化率:ほぼ100%
・基板(2)の縁取り(2E)の厚み:80μm、50μmの2水準
-2-
 上記の2水準×3水準×2水準の計12通りの順列組み合わせのそれぞれについて基板(2)の側から目視したところ、これら12水準のいずれの場合も、縁取り(2E)との段差に沿う帯状の気泡(b)は全く認められなかった。
 ちなみに、従来のOCA貼着法に従って上記の基板(1)と上記の縁取り(2E)付き基板(2)とを用いて貼り合わせを行ったときは、縁取り(2E)との段差に沿う帯状の気泡(b)が見られることを避け得なかった。
 本発明の方法および装置により製造される光学用積層構造体は、表示装置や入力装置をはじめとする電子装置として極めて有用である。
本発明の製造方法および製造装置の模式的な説明図である。 本発明の製造方法および製造装置の一例を模式的に示した説明図であり、(A)は平面図、(B)は正面図である。 本発明の製造方法の第4工程(P4)および第5工程(P5)に相当する真空貼り合わせ装置の一例を模式的に示した説明図(平面図)である。 従来のOCR塗布法の問題点を説明するための模式図である。 従来のOCA貼着法の問題点を説明するための模式図である。
(1)…基板、
(2)…基板、
(2E)…縁取り、
(L1)…未硬化層、
(L2)…増粘層、
(L3)…本硬化層、
(P1)…第1工程、
(P2)…第2工程、
(P3)…第3工程、
(P4)…第4工程、
(P5)…第5工程、
(M1)…塗布手段、
(M2)…活性エネルギー線照射手段、
(M3)…活性エネルギー線照射手段、
(S)…ステージ、
(S1)…セット部、
(S2)…塗布部、
(S3)…活性エネルギー線照射部、
(Z1)…セット部、
(Z2)…セット部、
(Z3)…待機部、
(Z4)…貼り合わせ部、
(OCR)…光学透明樹脂、
(OCA)…光学透明接着剤、
(b)…帯状の気泡
 
 

Claims (5)

  1.  基板(1)上にラジカル重合型の活性エネルギー線硬化性光学透明樹脂液(R)を塗布することにより、前記基板(1)上に前記樹脂液(R)の単層状の流動性ある未硬化層(L1)が形成された「未硬化層(L1)/基板(1)」の層構成の積層体を得る第1工程(P1)、
     前記の第1工程(P1)により得られた積層体の未硬化層(L1)に対して活性エネルギー線を照射して硬化を進行させることにより、該未硬化層(L1)が流動性の減じた増粘層(L2)に変化した「増粘層(L2)/基板(1)」の層構成の積層体を得る第2工程(P2)、および、
     前記の第2工程(P2)後の「増粘層(L2)/基板(1)」の層構成の積層体の増粘層(L2)をその増粘状態に維持する第3工程(P3)
    からなることを特徴とする光学用積層構造体の製造方法。
  2.  前記の第3工程(P3)後に、
     その「増粘層(L2)/基板(1)」の層構成の積層体を他の基板(2)と真空条件下に貼り合わせて「基板(2)/増粘層(L2)/基板(1)」または「基板(1)/増粘層(L2)/基板(2)」の層構成の積層体となす第4工程(P4)と、
     その貼り合わせた状態において活性エネルギー線を照射して前記増粘層(L2)を本硬化層(L3)となす第5工程(P5)
    とを設けること、を特徴とする請求項1記載の製造方法。
  3.  基板(1)上にラジカル重合型の活性エネルギー線硬化性光学透明樹脂液(R)を塗布することにより、前記基板(1)上に前記樹脂液(R)の単層状の流動性ある未硬化層(L1)が形成された「未硬化層(L1)/基板(1)」の層構成の積層体を得るための塗布手段(M1)と、
     その「未硬化層(L1)/基板(1)」の層構成の積層体の未硬化層(L1)に対して活性エネルギー線を照射して硬化を進行させることにより、該未硬化層(L1)が流動性の減じた増粘層(L2)に変化した「増粘層(L2)/基板(1)」の層構成の積層体となすための増粘用の活性エネルギー線照射手段(M2)と、
     前記基板(1)上への前記未硬化層(L1)の形成、前記増粘層(L2)の形成、さらにはその増粘層(L2)の増粘状態の維持、の各工程を連係制御するための連係制御手段(C1)
    とを具備してなる光学用積層構造体の製造装置。
  4.  前記未硬化層(L1)を形成するための塗布手段(M1)が、前記光学透明樹脂液(R)を広幅のスリットから吐出するスリットノズル付きのコーターであること、
    を特徴とする請求項3記載の製造装置。
  5.  前記未硬化層(L1)の形成、前記増粘層(L2)の形成、さらにはその増粘層(L2)の増粘状態の維持の後、その「増粘層(L2)/基板(1)」の層構成の積層体を他の基板(2)と真空条件下に貼り合わせて「基板(2)/増粘層(L2)/基板(1)」または「基板(1)/増粘層(L2)/基板(2)」の層構成の積層体となすための貼り合わせ手段(C2)と、
     その貼り合わせた状態において活性エネルギー線を照射して前記増粘層(L2)を本硬化層(L3)となすための本硬化用の活性エネルギー線照射手段(M3)と、
     前記の貼り合わせおよび本硬化の各工程を連係制御するための連係制御手段(C3)
    とを具備してなる請求項3記載の製造装置。
     
     
PCT/JP2013/055894 2012-03-07 2013-03-05 光学用積層構造体の製造方法および製造装置 WO2013133231A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012049864A JP2015099622A (ja) 2012-03-07 2012-03-07 光学用積層構造体の製造方法および製造装置
JP2012-049864 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013133231A1 true WO2013133231A1 (ja) 2013-09-12

Family

ID=49116706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055894 WO2013133231A1 (ja) 2012-03-07 2013-03-05 光学用積層構造体の製造方法および製造装置

Country Status (3)

Country Link
JP (1) JP2015099622A (ja)
TW (1) TW201341184A (ja)
WO (1) WO2013133231A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003016702A (ja) * 2001-06-29 2003-01-17 Tdk Corp 光情報媒体の製造方法
JP2007000865A (ja) * 2005-06-25 2007-01-11 Lg Phillips Lcd Co Ltd 塗布液塗布装置及びこれを利用した液晶表示装置の製造方法
JP2009521066A (ja) * 2005-12-22 2009-05-28 ジングルス・テヒノロギース・アクチェンゲゼルシャフト 2つのディスクの間に均一性の高いスペース層を形成する方法
JP2010184196A (ja) * 2009-02-12 2010-08-26 Seiko Epson Corp 薄膜の形成方法、配向膜の形成方法
JP2012071281A (ja) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp 接着剤供給装置及び接着剤供給方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003016702A (ja) * 2001-06-29 2003-01-17 Tdk Corp 光情報媒体の製造方法
JP2007000865A (ja) * 2005-06-25 2007-01-11 Lg Phillips Lcd Co Ltd 塗布液塗布装置及びこれを利用した液晶表示装置の製造方法
JP2009521066A (ja) * 2005-12-22 2009-05-28 ジングルス・テヒノロギース・アクチェンゲゼルシャフト 2つのディスクの間に均一性の高いスペース層を形成する方法
JP2010184196A (ja) * 2009-02-12 2010-08-26 Seiko Epson Corp 薄膜の形成方法、配向膜の形成方法
JP2012071281A (ja) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp 接着剤供給装置及び接着剤供給方法

Also Published As

Publication number Publication date
JP2015099622A (ja) 2015-05-28
TW201341184A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
JP6033313B2 (ja) 液体でありかつ光学的に透明である接着剤を剛性基材上にコーティングする方法
CN109917566B (zh) 图像显示装置的制造方法、树脂用分配器
US9889461B2 (en) Display panel substrate assembly and an apparatus and method for forming a display panel substrate assembly
WO2016041307A1 (zh) 基板贴合方法、触控基板、显示装置
JP6479589B2 (ja) 画像表示装置の製造方法
TWI763627B (zh) 光學構件之製造方法及光硬化性樹脂組成物
JP2011233711A (ja) 半導体装置の製造方法
JP7442471B2 (ja) 積層体の製造方法
JP5358847B2 (ja) 板状部材の貼り合せ方法及び貼り合せ装置
JP5512061B1 (ja) 貼合デバイスの製造方法
JP2013011699A (ja) ディスプレイ装置用保護板及びその製造方法
JP2000258780A (ja) 液晶表示装置およびその製造方法
CN107077021B (zh) 基板接合方法和由该基板接合方法制备的显示基板
TWI712666B (zh) 用於黏合基材之方法及藉由彼所製造之用於顯示器之基材
JP2013076934A (ja) 貼合構造体及びその製造方法
WO2013133231A1 (ja) 光学用積層構造体の製造方法および製造装置
JP7184843B2 (ja) 光学部材の製造方法
KR20130032626A (ko) 자외선 라미네이션용 지그 및 그 지그를 이용한 자외선 라미네이션 방법
TWI429608B (zh) The manufacturing method of the layered body
JP5430044B1 (ja) 表示機器用保護板の製造方法及びその製造装置
KR102115184B1 (ko) 패널 제조 장치 및 이를 이용한 패널 제조 방법
JP2016126284A (ja) 表示装置の製造方法
JP2016210084A (ja) インクジェット記録ヘッドの製造方法
JPH09269494A (ja) 液晶素子の製造方法
JP2016036968A (ja) 液体吐出ヘッドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP