WO2013129259A1 - 偏光板の製造方法 - Google Patents

偏光板の製造方法 Download PDF

Info

Publication number
WO2013129259A1
WO2013129259A1 PCT/JP2013/054567 JP2013054567W WO2013129259A1 WO 2013129259 A1 WO2013129259 A1 WO 2013129259A1 JP 2013054567 W JP2013054567 W JP 2013054567W WO 2013129259 A1 WO2013129259 A1 WO 2013129259A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
drying
polarizing plate
polarizing
drying step
Prior art date
Application number
PCT/JP2013/054567
Other languages
English (en)
French (fr)
Inventor
圭二 網谷
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201380011175.6A priority Critical patent/CN104136948B/zh
Priority to KR1020147023506A priority patent/KR101764965B1/ko
Publication of WO2013129259A1 publication Critical patent/WO2013129259A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing

Definitions

  • the present invention relates to a method for producing a polarizing plate.
  • Liquid crystal display devices are used in various display devices by taking advantage of features such as low power consumption, low voltage operation, light weight and thinness.
  • the liquid crystal display device is composed of many materials such as a liquid crystal cell, a polarizing plate, a retardation film, a condensing sheet, a diffusion film, a light guide plate, and a light reflecting sheet. Therefore, improvements aimed at productivity, weight reduction, brightness improvement, etc. are actively performed by reducing the number of constituent films or reducing the thickness of the film or sheet.
  • the polarizing plate usually has a configuration in which a protective film is laminated on both sides or one side of a polarizing film made of a polyvinyl alcohol-based resin having a dichroic dye adsorbed and oriented.
  • a polarizing plate having good hue and good durability a polyvinyl alcohol film is dyed with iodine, and then crosslinked in a boric acid aqueous solution and uniaxially stretched.
  • a polarizing plate is disclosed in which a protective film is provided on the surface of a polarizer produced in this manner.
  • Patent Document 2 describes a constant ratio between the thickness of the synthetic resin film, the thickness of the polarizer after the protective film is bonded, and the total draw ratio. A polarizing plate that satisfies this relationship is disclosed.
  • the polarizing film is subjected to a drying treatment in order to bring the moisture content of the polarizing film into an appropriate range. Is bonded via a water-based adhesive, and then a drying process is performed to remove the solvent of the adhesive. Since the thickness of the polarizing film can be reduced by the drying treatment, this is preferable in order to contribute to the thinning of the polarizing plate. However, the width of the polarizing film is reduced by the drying treatment, and the effective use area of the polarizing plate is reduced. Sometimes narrowed.
  • the present invention provides a production method for producing a polarizing plate having sufficient optical performance by controlling the drying treatment so as to suppress the shrinkage of the width of the polarizing film while reducing the thickness of the polarizing film. With the goal.
  • the present inventor conducted a first drying step performed on the polarizing film after the crosslinking treatment and before the protective film was bonded, and the lamination after the protective film was bonded to the polarizing film.
  • the drying degree of a 1st drying process and a 2nd drying process is controlled so that the thickness of the polarizing film after each drying process may satisfy
  • the present inventors have found that a polarizing plate having excellent optical performance can be produced by suppressing the shrinkage of the width of the polarizing film while reducing the thickness of the polarizing film.
  • the present invention includes a dyeing process for dyeing a polyvinyl alcohol film with a dichroic dye, a crosslinking process in which the dyed polyvinyl alcohol film is immersed in a solution containing a crosslinking agent, and the crosslinked polyvinyl alcohol.
  • the manufacturing method which manufactures the polarizing plate which consists of a bonding process which forms a body, and the 2nd drying process which dries the said laminated body in order, and manufactures a laminated body, Comprising: Polarized light in the polarizing plate after a 2nd drying process
  • the ratio Ta / Tb of the thickness Ta of the polarizing film after the first drying step and before the bonding step with respect to the film thickness Tb is 1.02-1. It is 0.
  • the width of the polarizing film is suppressed from shrinking while the thickness of the polarizing film is reduced. can do.
  • the ratio Wb / Wa of the width Wb of the polarizing film in the polarizing plate after the second drying step to the width Wa of the polarizing film after the first drying step and before the bonding step is 0.960 or more and 1.000. It is preferable to control the degree of drying in the first drying step and the second drying step so as to be less than the minimum.
  • the first drying step it is preferable to perform the first drying step so that the moisture content of the polarizing film after the first drying step and before the bonding step is 12 to 45%.
  • the content of boron in the polarizing film in the finally obtained polarizing plate is preferably 2.5 to 4.5 wt%.
  • the second drying step preferably includes a step of performing treatment at a drying temperature higher than the maximum drying temperature of the first drying step.
  • the second drying step preferably includes a step of performing treatment at a drying temperature higher than the drying temperature at the start of the step.
  • the production method of the present invention it is possible to produce a polarizing plate that is thin and has excellent polarization performance, while suppressing the shrinkage of the width of the polarizing film that occurs in the production stage.
  • the method for producing a polarizing plate of the present invention includes a dyeing step of dyeing a polyvinyl alcohol film with a dichroic dye, a crosslinking step of immersing the dyed polyvinyl alcohol film in a solution containing a crosslinking agent, and crosslinking.
  • the first drying step of drying the polyvinyl alcohol film is sequentially performed to produce a polarizing film made of the polyvinyl alcohol film, and then a protective film is bonded to at least one surface of the polarizing film via an adhesive layer.
  • the polarizing plate which performs the bonding process which forms a laminated body, and the 2nd drying process which dries a laminated body in order, and consists of a laminated body.
  • the ratio Ta / Tb of the thickness Ta of the polarizing film after the first drying step and before the bonding step is 1 with respect to the thickness Tb of the polarizing film in the polarizing plate after the second drying step.
  • the degree of drying in the first drying step and the second drying step is controlled so as to be 0.02 to 1.30.
  • Polyvinyl alcohol film examples of the polyvinyl alcohol-based resin that forms the polyvinyl alcohol-based film used in the production method of the present invention are typically saponified polyvinyl acetate-based resins.
  • the degree of saponification is usually 85 mol% or more, preferably 90 mol% or more, more preferably 99 mol% to 100 mol%.
  • Polyvinyl acetate resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith, such as ethylene-vinyl acetate copolymer. Examples include coalescence.
  • Examples of other copolymerizable monomers include unsaturated carboxylic acids, olefins, vinyl ethers, and unsaturated sulfonic acids.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually about 1000 to 10,000, preferably about 1500 to 5,000.
  • polyvinyl alcohol resins may be modified.
  • polyvinyl formal modified with aldehydes, polyvinyl acetal, polyvinyl butyral, and the like may be used.
  • an unstretched film of a polyvinyl alcohol film having a thickness of 20 to 100 ⁇ m, preferably 30 to 80 ⁇ m is used as a starting material for producing a polarizing film.
  • a stretched film that has been previously stretched may be used. Industrially, the width of the film is practically 1500 mm to 6000 mm.
  • a polarizing film is manufactured by performing a swelling process, a dyeing process, a crosslinking process, a washing process, and a first drying process.
  • the stretching process is performed either in any step or as a separate step in a wet or dry manner. Stretching can be performed by a known stretching method. Known stretching methods include inter-roll stretching that stretches with a difference in peripheral speed between two nip rolls that transport the film, a hot roll stretching method as described in Japanese Patent No. 2731813, a tenter stretching method, and the like. . Even when a stretched film is used, a stretching process may be further performed.
  • the thickness of the polarizing film finally obtained through the first drying step is, for example, 5 to 50 ⁇ m.
  • the swelling step is performed for the purpose of removing foreign matter from the film surface, removing the plasticizer in the film, imparting easy dyeability in the next dyeing step, and plasticizing the film.
  • the processing conditions are determined in such a range that these objectives can be achieved and in which a problem such as extreme dissolution and devitrification of the film does not occur.
  • the film is immersed in an aqueous solution at 20 ° C. to 70 ° C., preferably 30 ° C. to 60 ° C.
  • the immersion time of the film is preferably about 30 seconds to 300 seconds, more preferably about 60 seconds to 240 seconds.
  • the film When the unstretched original film is swollen, for example, the film is immersed in an aqueous solution at 10 ° C. to 50 ° C., preferably 20 ° C. to 40 ° C.
  • the immersion time of the film is preferably about 30 seconds to 300 seconds, more preferably about 60 seconds to 240 seconds.
  • the draw ratio is usually 1.2 to 3.0 times, preferably 1.3 to 2.5 times.
  • the speed of the transport roll before and after the treatment tank is set to eliminate sagging of the film in the transport direction. It is preferable to take measures such as control.
  • boric acid described in JP-A-10-153709
  • chloride described in JP-A-06-281816
  • inorganic acid inorganic salt
  • water-soluble bath can be used as a swelling bath. It is also possible to use an aqueous solution to which an organic solvent, alcohol or the like is added in an amount of 0.01 to 10% by weight.
  • the dyeing step with the dichroic dye is performed for the purpose of adsorbing and orienting the dichroic dye on the film.
  • the processing conditions are determined in such a range that these objectives can be achieved and in which a problem such as extreme dissolution and devitrification of the film does not occur.
  • the immersion treatment is performed at a concentration of 1 to 10/100 for 30 seconds to 600 seconds, preferably 60 seconds to 300 seconds.
  • potassium iodide instead of potassium iodide, other iodides such as zinc iodide may be used. Other iodides may be used in combination with potassium iodide. In addition, compounds other than iodide, such as boric acid, zinc chloride, and cobalt chloride, may coexist.
  • boric acid When boric acid is added, it is distinguished from the following boric acid treatment in that it contains iodine. Any dye containing 0.003 parts by weight or more of iodine with respect to 100 parts by weight of water can be regarded as a dyeing tank.
  • the immersion treatment is performed at a concentration of 1/100 for 30 seconds to 600 seconds, preferably 60 seconds to 300 seconds.
  • the aqueous solution of the dichroic dye to be used may have a dyeing assistant or the like, and may contain, for example, an inorganic salt such as sodium sulfate, a surfactant or the like.
  • the dichroic dye may be used alone, or two or more dichroic dyes may be used at the same time.
  • the film When an unstretched polyvinyl alcohol film is processed in the order of a swelling process, a dyeing process, and a crosslinking process, the film can be stretched also in a dyeing tank.
  • the total draw ratio including the draw ratio in the dyeing step is usually 1.6 to 4.5 times, preferably 1.8 to 4.0 times.
  • the integrated draw ratio including the draw ratio in the dyeing process is less than 1.6 times, the frequency of film breakage increases, and the yield tends to deteriorate.
  • Stretching is performed by a method of giving a peripheral speed difference to the nip rolls before and after the dyeing tank.
  • a widening roll (expander roll), a spiral roll, a crown roll, a cross guider, a bend bar and the like can be installed in the dyeing bath and / or at the dyeing bath entrance / exit.
  • the crosslinking step is performed by immersing a polyvinyl alcohol film dyed with a dichroic dye in an aqueous solution containing 1 to 10 parts by weight of boric acid with respect to 100 parts by weight of water.
  • the dichroic dye is iodine
  • iodide include potassium iodide and zinc iodide.
  • compounds other than iodide, such as zinc chloride, cobalt chloride, zirconium chloride, sodium thiosulfate, potassium sulfite, sodium sulfate, etc. may coexist.
  • the cross-linking step is performed for water resistance and hue adjustment (preventing bluishness, etc.) by cross-linking.
  • a cross-linking agent such as glyoxal or glutaraldehyde other than boric acid or together with boric acid can be used as necessary.
  • crosslinking process for water resistance may be called with names, such as a water resistance process and an immobilization process.
  • the crosslinking process for hue adjustment is referred to as a complementary color process, a re-dying process, or the like.
  • the crosslinking step is performed by appropriately changing the concentrations of boric acid and iodide and the temperature of the treatment bath according to the purpose.
  • the crosslinking step for water resistance and the crosslinking step for adjusting the hue are not particularly distinguished, but are carried out under the following conditions.
  • 3 to 10 boric acid is added to 100 parts by weight of water.
  • a boric acid treatment bath containing 1 to 20 parts by weight of iodide and 1 to 20 parts by weight of iodide is used, and the reaction is usually performed at a temperature of 50 to 70 ° C, preferably 53 to 65 ° C.
  • the immersion time is usually about 10 to 600 seconds, preferably 20 to 300 seconds, and more preferably 20 to 200 seconds.
  • the temperature of the boric acid treatment bath is usually 50 ° C. to 85 ° C., preferably 55 ° C. to 80 ° C. .
  • a crosslinking treatment for adjusting the hue may be performed.
  • the dichroic dye is iodine
  • a boric acid treatment bath containing 1 to 5 parts by weight of boric acid and 3 to 30 parts by weight of iodide for 100 parts by weight of water is used. Usually, it is carried out at a temperature of 10 ° C to 45 ° C.
  • the immersion time is usually 1 to 300 seconds, preferably 2 to 100 seconds.
  • cross-linking treatments may be performed a plurality of times and are usually performed 2 to 5 times in many cases.
  • the aqueous solution composition and temperature of each boric acid treatment tank to be used may be the same or different within the above range.
  • the boric acid treatment for water resistance and the boric acid treatment for hue adjustment may be performed in a plurality of steps, respectively.
  • the boron content in the polarizing film is preferably set to 2.5 to 4.5% by weight.
  • the boric acid concentration in the crosslinking step is set to 100% by weight of water.
  • the amount is preferably 2.0 to 5.0 parts by weight with respect to parts.
  • the final integrated draw ratio of the polarizing film in this embodiment is usually 4.5 to 7 times, preferably 5 to 6.5 times.
  • the crosslinking step After the crosslinking step, it is subjected to a water washing step.
  • the water washing step is performed, for example, by immersing a polyvinyl alcohol film treated with boric acid for water resistance and / or color tone adjustment in water, spraying water as a shower, or using both immersion and spraying.
  • the temperature of water in the washing step is usually about 2 to 40 ° C., and the immersion time is preferably 2 to 120 seconds.
  • First drying step After the water washing step, the polyvinyl alcohol film is subjected to the first drying step.
  • the thickness of the polyvinyl alcohol film is reduced by the first drying step.
  • an appropriate degree of drying is represented by a thickness ratio. That is, in the present invention, the ratio Ta / Tb of the thickness Ta of the polarizing film after the first drying step and before the bonding step is relative to the thickness Tb of the polarizing film in the polarizing plate after the second drying step described later.
  • the drying temperature and drying time of the first drying step and the second drying step described later are controlled so as to satisfy the relationship of 1.02 to 1.30.
  • the drying temperature in the first drying step can be, for example, 20 to 90 ° C., and the drying time can be, for example, 10 to 300 seconds.
  • the drying temperature is preferably 20 to 70 ° C. and the drying time is preferably 10 to 120 seconds.
  • the moisture content of the polarizing film is adjusted to 12 to 45%, more preferably 15 to 40%. If it is lower than 12%, the effect of reducing the thickness in the second drying step described later is reduced, and if it is higher than 45%, adhesion with the protective film is not sufficiently exhibited, resulting in poor appearance and film in the line. The problem of breaking and contaminating the process is likely to occur.
  • the first drying step may include a plurality of zones having different temperatures. By combining a plurality of drying steps with different temperatures and times, the polarizing film can be easily dried to a desired moisture content and can be appropriately colored.
  • the moisture content here refers to the moisture content determined by the dry weight method, and is obtained from the change in moisture content before and after the heat treatment at 105 ° C. for 120 minutes.
  • Moisture content (weight before heat treatment ⁇ weight after heat treatment) / weight before heat treatment ⁇ 100 (weight / weight%) Can be obtained by calculation.
  • the method of drying by contacting with a heat roll is preferable in that the drying time can be shortened because the drying efficiency is improved, and the film can be widened by suppressing shrinkage in the width direction of the film. is there.
  • the drying temperature in the drying process means the atmospheric temperature in the drying furnace in the case of a drying facility provided with a drying furnace such as a method of blowing hot air or an IR heater, and is a contact type drying such as a hot roll. In the case of equipment, it means the surface temperature of the hot roll.
  • a polarizing film is manufactured through the above process.
  • a protective film is bonded to one side or both sides of the polarizing film via an adhesive layer.
  • the material constituting the protective film examples include cycloolefin resins, cellulose acetate resins, polyethylene terephthalate, polyethylene naphthalate, polyester resins such as polybutylene terephthalate, polycarbonate resins, acrylic resins, and polypropylene. Mention may be made of film materials that have been widely used in the field. When a protective film is bonded on both surfaces of a polarizing film, each protective film may be the same and may be a different kind of film.
  • the cycloolefin resin is a thermoplastic resin (also referred to as a thermoplastic cycloolefin resin) having a monomer unit made of a cyclic olefin (cycloolefin), such as norbornene or a polycyclic norbornene monomer.
  • the cycloolefin-based resin may be a hydrogenated product of the above-mentioned cycloolefin ring-opening polymer or a ring-opening copolymer using two or more cycloolefins, and has a cycloolefin, a chain olefin, and a vinyl group.
  • An addition polymer with an aromatic compound or the like may be used. Those having a polar group introduced are also effective.
  • examples of the chain olefin include ethylene and propylene
  • examples of the aromatic compound having a vinyl group include Examples include styrene, ⁇ -methylstyrene, and nuclear alkyl-substituted styrene.
  • the monomer unit composed of cycloolefin may be 50 mol% or less (preferably 15 to 50 mol%).
  • the amount of the monomer unit composed of cycloolefin can be made relatively small as described above.
  • the unit of monomer composed of a chain olefin is usually 5 to 80 mol%
  • the unit of monomer composed of an aromatic compound having a vinyl group is usually 5 to 80 mol%.
  • Cycloolefin-based resins may be commercially available products such as Topas (manufactured by Ticona), Arton (manufactured by JSR), ZEONOR (manufactured by Nippon Zeon), ZEONEX (manufactured by Nippon Zeon ( Co., Ltd.), Apel (manufactured by Mitsui Chemicals, Inc.), Oxis (OXIS) (manufactured by Okura Kogyo Co., Ltd.) and the like can be suitably used.
  • a known method such as a solvent casting method or a melt extrusion method is appropriately used.
  • cycloolefin resin films such as Essina (manufactured by Sekisui Chemical Co., Ltd.), SCA40 (manufactured by Sekisui Chemical Co., Ltd.), Zeonoa Film (manufactured by Optes Co., Ltd.), etc. You may use goods.
  • the cycloolefin resin film may be uniaxially stretched or biaxially stretched.
  • Stretching is usually performed continuously while unwinding a film roll, and in a heating furnace, the roll traveling direction (film longitudinal direction), the direction perpendicular to the traveling direction (film width direction), or both Stretched.
  • the temperature of the heating furnace a range from the vicinity of the glass transition temperature of the cycloolefin resin to the glass transition temperature + 100 ° C. is usually employed.
  • the stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times.
  • the cycloolefin-based resin film When the cycloolefin-based resin film is in a roll-wound state, the films tend to adhere to each other and easily cause blocking. Therefore, the cycloolefin-based resin film is usually rolled after the protective film is bonded.
  • the surface to be bonded to the polarizing film is subjected to surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, and saponification treatment. Is preferred.
  • plasma treatment that can be carried out relatively easily, particularly atmospheric pressure plasma treatment, and corona treatment are preferable.
  • the cellulose acetate-based resin is a cellulose part or a completely esterified product, and examples thereof include a film made of cellulose acetate ester, propionate ester, butyrate ester, and mixed ester thereof. More specifically, a triacetyl cellulose film, a diacetyl cellulose film, a cellulose acetate propionate film, a cellulose acetate butyrate film, and the like can be given.
  • a cellulose ester-based resin film As such a cellulose ester-based resin film, an appropriate commercially available product, for example, Fujitac TD80 (manufactured by Fuji Film Co., Ltd.), Fujitac TD80UF (manufactured by Fuji Film Co., Ltd.), Fujitac TD80UZ (manufactured by Fuji Film Co., Ltd.) KC8UX2M (manufactured by Konica Minolta Opto) KC8UY (manufactured by Konica Minolta Opto) Fujitac TD60UL (manufactured by FUJIFILM Corporation), KC4UYW (manufactured by Konica Minolta Opto), KC6UAW (Konica Minolta Opto) Etc.) can be used preferably.
  • Fujitac TD80 manufactured by Fuji Film Co., Ltd.
  • Fujitac TD80UF manufactured by Fuji Film Co.
  • a cellulose acetate-based resin film imparted with retardation characteristics is also preferably used.
  • Commercially available cellulose acetate resin films with such retardation characteristics include WV BZ 438 (manufactured by FUJIFILM Corporation), KC4FR-1 (manufactured by Konica Minolta Opto), KC4CR-1 (Konica Minolta). Opt Co., Ltd.), KC4AR-1 (Konica Minolta Opto Co., Ltd.) and the like.
  • Cellulose acetate is also called acetyl cellulose or cellulose acetate.
  • the thickness of the protective film used in the method for producing a polarizing plate of the present invention is preferably thin, but if it is too thin, the strength is lowered and the processability is poor. On the other hand, when it is too thick, problems such as a decrease in transparency and a longer curing time after lamination occur. Therefore, a suitable thickness of the protective film is, for example, 5 to 200 ⁇ m, preferably 10 to 150 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the polarizing film and / or protective film may be subjected to corona treatment, flame treatment, plasma treatment, ultraviolet treatment, primer coating treatment, saponification treatment, etc.
  • a surface treatment may be applied.
  • the protective film may be subjected to surface treatments such as anti-glare treatment, anti-reflection treatment, hard coat treatment, antistatic treatment, and antifouling treatment alone or in combination of two or more.
  • the protective film and / or the protective film surface protective layer may contain a UV absorber such as a benzophenone compound or a benzotriazole compound, or a plasticizer such as a phenyl phosphate compound or a phthalate compound.
  • the protective film has a function as a retardation film, a function as a brightness enhancement film, a function as a reflection film, a function as a transflective film, a function as a diffusion film, a function as an optical compensation film, etc.
  • an optical functional film such as a retardation film, a brightness enhancement film, a reflection film, a transflective film, a diffusion film, a function as an optical compensation film, etc.
  • the protective film itself can be provided with such a function.
  • a protective film may have a plurality of functions such as a diffusion film having a function of a brightness enhancement film.
  • the above-described protective film is subjected to a stretching process described in Japanese Patent No. 2841377, Japanese Patent No. 3094113, or the like, or a process described in Japanese Patent No. 3168850 can be used as a retardation film.
  • the function of can be provided.
  • the retardation characteristics of the retardation film can be appropriately selected, for example, such that the front retardation value is in the range of 5 to 100 nm and the thickness direction retardation value is in the range of 40 to 300 nm.
  • two or more layers having different center wavelengths of selective reflection are formed in the protective film by forming micropores by a method as described in JP-A No. 2002-169025 and JP-A No. 2003-29030. By superimposing these cholesteric liquid crystal layers, a function as a brightness enhancement film can be imparted.
  • a function as a reflective film or a transflective film can be imparted.
  • a function as a diffusion film can be imparted.
  • the function as an optical compensation film can be provided by coating and aligning liquid crystalline compounds, such as a discotic liquid crystalline compound, on said protective film.
  • you may make the protective film contain the compound which expresses retardation.
  • various optical functional films may be directly bonded to the polarizing film using an appropriate adhesive.
  • optical functional films examples include brightness enhancement films such as DBEF (manufactured by 3M, available from Sumitomo 3M Co., Ltd. in Japan), and viewing angle improvements such as WV films (manufactured by Fuji Film Co., Ltd.).
  • Film, Arton Film (manufactured by JSR Corporation), Zeonore Film (manufactured by Optes Corporation), Essina (manufactured by Sekisui Chemical Co., Ltd.), VA-TAC (manufactured by Comic Minolta Opto Corporation), Sumikalite (Sumitomo) (Chemical Co., Ltd.) etc. can be mentioned.
  • Adhesive layer examples of the adhesive constituting the adhesive layer include a water-based adhesive and an active energy ray-curable adhesive.
  • the polarizing film and the adhesive can be dried at the same time in the second drying step, which is preferable.
  • water-based adhesive examples include a polyvinyl alcohol-based resin aqueous solution and a water-based two-component urethane emulsion adhesive.
  • Polyvinyl alcohol resins used as adhesives include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, as well as other single quantities copolymerizable with vinyl acetate. And vinyl alcohol copolymers obtained by saponifying the copolymer with the polymer, and modified polyvinyl alcohol polymers obtained by partially modifying the hydroxyl groups.
  • a polyhydric aldehyde, a water-soluble epoxy compound, a melamine compound, a zirconia compound, a zinc compound, or the like may be added as an additive to the water-based adhesive.
  • the adhesive layer obtained therefrom is usually much thinner than 1 ⁇ m.
  • the aqueous adhesive is applied at a temperature of 15 to 40 ° C. after its preparation, and the bonding temperature is usually in the range of 15 to 30 ° C.
  • the active energy ray-curable adhesive examples include an adhesive made of an epoxy resin composition containing an epoxy resin that is cured by irradiation with active energy rays from the viewpoint of weather resistance, refractive index, cationic polymerization, and the like.
  • the present invention is not limited to this, and various active energy ray-curable adhesives (organic solvent adhesives, hot melt adhesives, solventless adhesives) that have been used in the manufacture of polarizing plates. Etc.) can be adopted.
  • the laminate composed of the polarizing film and the protective film is subjected to a second drying step to produce a polarizing plate.
  • the adhesive is dried and dried so that the polarizing plate has an appropriate moisture content.
  • the thickness of the polyvinyl alcohol film is further reduced by the second drying step.
  • an appropriate degree of drying is represented by a thickness ratio. That is, as described above, the ratio Ta / Tb of the polarizing film thickness Ta after the first drying step and before the bonding step to the thickness Tb of the polarizing film in the polarizing plate after the second drying step is 1.02.
  • the drying temperature and drying time of the second drying step are controlled so as to satisfy the relationship of ⁇ 1.30.
  • an appropriate degree of drying is also represented by the width ratio. That is, as described above, the ratio Wb / Wa of the width Wb of the polarizing film in the polarizing plate after the second drying step to the width Wa of the polarizing film after the first drying step and before the bonding step is 0.960.
  • the drying temperature and the drying time in the second drying step are controlled so as to satisfy the relationship of above 1.000.
  • the drying temperature in the second drying step can be, for example, 30 to 100 ° C., and the drying time can be, for example, 60 to 1200 seconds.
  • the drying method in the second drying step is the same as that in the first drying step. It is preferable to provide a plurality of zones having different temperatures in the second drying step.
  • the second drying step preferably includes a step of performing the treatment at a drying temperature higher than the maximum drying temperature of the first drying step.
  • a 2nd drying process includes the process performed at a drying temperature higher than the drying temperature at the time of a process start.
  • the moisture content of the finally obtained polarizing plate is preferably 1.5 to 3.0%. If it is out of this range, the problem of curling or poor appearance tends to occur. In particular, when it is higher than 3.0%, the effect of reducing the thickness may be reduced.
  • the second drying step a part of the drying for obtaining an appropriate moisture content of the polarizing film by including a step of performing the treatment at a drying temperature higher than the maximum drying temperature of the first drying step. Only the first drying step is performed, and the second drying step performed after the protective film is bonded, the remaining drying is adjusted to an appropriate moisture content as the final product, thereby suppressing the width shrinkage of the polarizing film. This is preferable.
  • the second drying step includes a step of performing the treatment at a drying temperature higher than the drying temperature at the start of the step. That is, in the second drying step in which a plurality of zones are provided, it is preferable to have a zone for processing at a temperature higher than that of the first zone after the second zone.
  • the temperature of the first zone is less than 60 ° C.
  • the temperature of at least one of the drying ovens is 60 ° C. or more
  • the drying oven having this temperature of 60 ° C. or more is The temperature is preferably set in the range of 60 ° C to 100 ° C.
  • the ratio Ta / Tb of the thickness exceeds 1.30, the degree of drying in the first drying step is not sufficient, and the drying conditions in the second drying step need to be strict. There may be a problem of process contamination such as generation of wrinkles and film breakage in the process, and deterioration of quality such as poor appearance of the polarizing plate.
  • the polarizing plate can be manufactured so as to satisfy the relationship of the thickness ratio by controlling the degree of drying in the first drying step and the second drying step. And the degree of contraction of the width of the polarizing film can be suppressed.
  • the drying process performed for evaporating the solvent of the adhesive can be set as the second drying process.
  • the polarizing plate produced as described above includes a polarizing film and a protective film bonded to at least one surface of the polarizing film, and can be used as a polarizing plate for a liquid crystal display device.
  • a polarizing plate having optical characteristics with a visibility corrected single transmittance of 41.5% or more and a visibility corrected polarization degree of 99.99% or more can be manufactured. Since the polarizing plate has such optical characteristics, when the polarizing plate is used as a polarizing plate of a liquid crystal display device, a display with a favorable contrast ratio can be obtained.
  • Example 1 Preparation of polarizing film
  • a 75 ⁇ m-thick polyvinyl alcohol film (Kurarevinilon VF-PS # 7500, polymerization degree 2,400, saponification degree 99.9 mol% or more) is kept in pure water at 30 ° C. so that the film does not loosen.
  • the film was immersed as it was to swell the film sufficiently (swelling step).
  • aqueous solution of iodine / potassium iodide / water in a weight ratio of 0.04 / 2.0 / 100 (dyeing step), potassium iodide / boric acid / water.
  • a polarizing film was obtained by performing a drying treatment under a second drying condition (first drying step).
  • the obtained polarizing film had a thickness (Ta) of 33.1 ⁇ m, a width (Wa) of 225 mm, and a moisture content of 30%.
  • a saponified triacetyl cellulose film 80 ⁇ m thick (KC8UX2MW, manufactured by Konica Minolta Opto Co., Ltd.) is pasted on both surfaces of the previously obtained polarizing film with a nip roll through the adhesive.
  • the resultant was dried under the drying conditions of a drying temperature of 75 ° C. and a drying time of 150 seconds (second drying step) to obtain a polarizing plate.
  • the polarizing film in the obtained polarizing plate had a thickness (Tb) of 27.0 ⁇ m, a width (Wb) of 221 mm, and a boron content of 3.8 wt%. That is, Ta / Tb was 1.23 and Wb / Wa was 0.982.
  • the polarizing plate was set in an ultraviolet-visible spectrophotometer V7100 manufactured by JASCO Corporation, and the UV-visible spectrum of the polarizing plate in the transmission direction and the absorption direction was measured.
  • the single transmittance and the degree of polarization were obtained by calculation in accordance with JIS-Z8729.
  • the visibility corrected single transmittance was 42.5%, and the visibility corrected polarization degree was 99.995%.
  • Example 2 (Preparation of polarizing film) A polarizing film was produced in the same manner as in Example 1 except that the drying conditions in the first drying step were a drying temperature of 50 ° C. and a drying time of 50 seconds.
  • the obtained polarizing film had a thickness (Ta) of 32.1 ⁇ m, a width (Wa) of 219 mm, and a moisture content of 16%.
  • a polarizing plate was obtained in the same manner as in Example 1.
  • the polarizing film in the obtained polarizing plate had a thickness (Tb) of 28.0 ⁇ m, a width (Wb) of 217 mm, and a boron content of 3.8 wt%. That is, Ta / Tb was 1.15 and Wb / Wa was 0.991.
  • the optical characteristics of the polarizing plate of Example 2 were a visibility corrected single transmittance of 42.5% and a visibility corrected polarization degree of 99.997%.
  • Example 3 (Preparation of polarizing film) A polarizing film was produced in the same manner as in Example 1. As in Example 1, the obtained polarizing film had a thickness (Ta) of 33.1 ⁇ m, a width (Wa) of 225 mm, and a moisture content of 30%.
  • a polarizing plate was produced in the same manner as in Example 1 except that the drying conditions in the second drying step were a drying temperature of 90 ° C. and a drying time of 150 seconds.
  • the polarizing film in the obtained polarizing plate had a thickness (Tb) of 26.6 ⁇ m, a width (Wb) of 219 mm, and a boron content of 3.8 wt%. That is, Ta / Tb was 1.24 and Wb / Wa was 0.973.
  • the visibility corrected single transmittance was 42.5%, and the visibility corrected polarization degree was 99.996%.
  • Example 4 (Preparation of polarizing film) A polarizing film was produced in the same manner as in Example 2 except that the weight ratio of potassium iodide / boric acid / water in the crosslinking treatment was 12 / 3.1 / 100.
  • the obtained polarizing film had a thickness (Ta) of 32.8 ⁇ m, a width (Wa) of 226 mm, and a moisture content of 22%.
  • a polarizing plate was obtained in the same manner as in Example 2.
  • the polarizing film in the obtained polarizing plate had a thickness (Tb) of 27.2 ⁇ m, a width (Wb) of 223 mm, and a boron content of 3.2 wt%. That is, Ta / Tb was 1.21 and Wb / Wa was 0.987.
  • the visibility corrected single transmittance was 42.5%, and the visibility corrected polarization degree was 99.993%.
  • Example 1 (Preparation of polarizing film) A polarizing film was produced in the same manner as in Example 1 except that the drying conditions in the first drying step were a drying temperature of 80 ° C. and a drying time of 150 seconds.
  • the obtained polarizing film had a thickness (Ta) of 29.5 ⁇ m, a width (Wa) of 213 mm, and a moisture content of 9%.
  • a polarizing plate was obtained in the same manner as in Example 1.
  • the polarizing film in the obtained polarizing plate had a thickness (Tb) of 29.5 ⁇ m, a width (Wb) of 213 mm, and a boron content of 3.9 wt%. That is, Ta / Tb was 1.00 and Wb / Wa was 1.00.
  • the visibility corrected single transmittance was 42.5%, and the visibility corrected polarization degree was 99.996%.
  • a polarizing plate was obtained in the same manner as in Example 1.
  • the polarizing film in the obtained polarizing plate had a thickness (Tb) of 34.2 ⁇ m, a width (Wb) of 227 mm, and a boron content of 3.9 wt%. That is, Ta / Tb was 1.01 and Wb / Wa was 1.00.
  • the optical properties of the polarizing plate of Comparative Example 2 were a visibility corrected single transmittance of 42.5% and a visibility corrected polarization degree of 99.980%.
  • Table 1 shows the results of Examples 1 to 4 and Comparative Examples 1 and 2.
  • the polarizing plate produced by the production method of the present invention can be effectively applied to various display devices including liquid crystal display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、ポリビニルアルコール系フィルムを、染色、架橋した後に、乾燥する第1乾燥工程とにより偏光フィルムを製造し、偏光フィルムの少なくとも一方の面に接着剤層を介して保護フィルムを貼合して積層体を形成する貼合工程と、当該積層体を乾燥する第2乾燥工程とを行ない偏光板を製造する製造方法であって、第2乾燥工程後の偏光板中の偏光フィルムの厚みTbに対する、第1乾燥工程後であって貼合工程前の偏光フィルムの厚みTaの比Ta/Tbが1.02~1.30である。

Description

偏光板の製造方法
 本発明は、偏光板の製造方法に関する。
 液晶表示装置は、消費電力が少なく、低電圧で動作し、軽量で薄型である等の特徴を生かして、各種の表示用デバイスに用いられている。液晶表示装置は、液晶セル、偏光板、位相差フィルム、集光シート、拡散フィルム、導光板、光反射シート等、多くの材料から構成されている。そのため、構成フィルムの枚数を減らしたり、フィルムまたはシートの厚さを薄くしたりすることで、生産性や軽量化、明度の向上等を目指した改良が盛んに行われている。
 偏光板は通常、二色性色素が吸着配向したポリビニルアルコール系樹脂からなる偏光フィルムの両面又は片面に、保護フィルムが積層された構成を有する。例えば、特開2004-341503号公報(特許文献1)には、色相が良好で、耐久性の良い偏光板として、ポリビニルアルコール系フィルムをヨウ素染色し、その後ホウ酸水溶液中で架橋するとともに一軸延伸して作製した偏光子の表面に保護フィルムを設けた偏光板が開示されている。
 また、特開2002-40256号公報(特許文献2)には、合成樹脂フィルムの原反の厚さ、保護フィルムを貼り合わせた後の偏光子のみの厚さ及び全延伸倍率との間に一定の関係を成立させた偏光板が開示されている。
特開2004-341503号公報 特開2002-40256号公報
 特許文献1,2に記載されているような偏光板の製造方法においては、通常、架橋処理の後に偏光フィルムの水分率を適切な範囲とするために乾燥処理を行ない、偏光フィルムと保護フィルムとを水系接着剤を介して貼合した後に、接着剤の溶媒を除去するために乾燥処理を行なう。乾燥処理によると、偏光フィルムの厚みを低減させることもできるのでこの点では偏光板の薄型化に寄与するために好ましいが、乾燥処理により、偏光フィルムの幅が収縮し、偏光板の有効利用面積が狭くなってしまう場合があった。
 本発明は、偏光フィルムの厚みを低減させつつ、偏光フィルムの幅が収縮するのを抑制するように乾燥処理を制御して、十分な光学性能を有する偏光板を製造する製造方法を提供することを目的とする。
 本発明者は、鋭意検討の結果、架橋処理の後であって保護フィルムの貼合を行なう前の偏光フィルムに対して行なう第1乾燥工程と、偏光フィルムに保護フィルムを貼合した後の積層体に対して行なう第2乾燥工程とを含む乾燥処理について、第1乾燥工程と第2乾燥工程の乾燥程度を、各乾燥工程後の偏光フィルムの厚さが所定の関係を満たすように制御することにより、偏光フィルムの厚みを低減させつつ偏光フィルムの幅の収縮を抑制し、さらには優れた光学性能を有する偏光板を製造することができることを見出し本発明に至った。
 すなわち、本発明は、ポリビニルアルコール系フィルムを二色性色素で染色する染色工程と、染色した当該ポリビニルアルコール系フィルムを架橋剤を含む溶液に浸漬して架橋する架橋工程と、架橋した当該ポリビニルアルコール系フィルムを乾燥する第1乾燥工程と、を順に行ないポリビニルアルコール系フィルムからなる偏光フィルムを製造した後に、当該偏光フィルムの少なくとも一方の面に接着剤層を介して保護フィルムを貼合して積層体を形成する貼合工程と、当該積層体を乾燥する第2乾燥工程と、を順に行ない積層体からなる偏光板を製造する製造方法であって、第2乾燥工程後の偏光板中の偏光フィルムの厚みTbに対する、第1乾燥工程後であって貼合工程前の偏光フィルムの厚みTaの比Ta/Tbが1.02~1.30である。
 第1乾燥工程と、第2乾燥工程との乾燥の程度を、偏光フィルムの厚みが上述の関係を満たすように制御することで、偏光フィルムの厚みを低減させつつ偏光フィルムの幅の収縮を抑制することができる。
 また、第1乾燥工程後であって貼合工程前の偏光フィルムの幅Waに対する、第2乾燥工程後の偏光板中の偏光フィルムの幅Wbの比Wb/Waが0.960以上1.000未満となるように、第1乾燥工程と、第2乾燥工程との乾燥の程度を制御することが好ましい。
 なお、上記のように制御するためには、第1乾燥工程後であって貼合工程前の偏光フィルムの水分率が12~45%となるように第1乾燥工程を行なうことが好ましい。
 また、本発明においては、最終的に得られる偏光板中の偏光フィルムのホウ素の含有率が、2.5~4.5wt%であることが好ましい。
 本発明においては、上記第2乾燥工程は、上記第1乾燥工程の最高乾燥温度より高い乾燥温度で処理を行なう工程を含むことが好ましい。また、本発明において、上記第2乾燥工程は、工程開始時の乾燥温度より高い乾燥温度で処理を行なう工程を含むことが好ましい。
 また、本発明においては、貼合工程前にポリビニルアルコール系フィルムの両端部を切断して除去する除去工程をさらに有してもよい。
 本発明の製造方法によれば、製造段階で生じる偏光フィルムの幅の収縮を抑制しつつ、薄型で優れた偏光性能を有する偏光板を製造することができる。
 本発明の偏光板の製造方法は、ポリビニルアルコール系フィルムを二色性色素で染色する染色工程と、染色したポリビニルアルコール系フィルムを架橋剤を含む溶液に浸漬して架橋する架橋工程と、架橋したポリビニルアルコール系フィルムを乾燥する第1乾燥工程と、を順に行ないポリビニルアルコール系フィルムからなる偏光フィルムを製造した後に、偏光フィルムの少なくとも一方の面に接着剤層を介して保護フィルムを貼合して積層体を形成する貼合工程と、積層体を乾燥する第2乾燥工程と、を順に行ない積層体からなる偏光板を製造する製造方法である。本発明の製造方法においては、第2乾燥工程後の偏光板中の偏光フィルムの厚みTbに対する、第1乾燥工程後であって貼合工程前の偏光フィルムの厚みTaの比Ta/Tbが1.02~1.30となるように、第1乾燥工程と第2乾燥工程における乾燥の程度を制御する。以下、本発明で用いる各材料および各工程の詳細を説明する。
 (ポリビニルアルコール系フィルム)
 本発明の製造方法で用いるポリビニルアルコール系フィルムを形成するポリビニルアルコール系樹脂は、通常、ポリ酢酸ビニル系樹脂をケン化したものが例示される。ケン化度としては、通常85モル%以上、好ましくは90モル%以上、より好ましくは99モル%~100モル%である。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体、例えば、エチレン-酢酸ビニル共重合体などが挙げられる。共重合可能な他の単量体としては、例えば不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類などが挙げられる。ポリビニルアルコール系樹脂の重合度としては、通常1000~10000、好ましくは1500~5000程度である。
 これらのポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラールなども使用しうる。通常、偏光フィルム製造の開始材料としては、厚さが20μm~100μm、好ましくは30μm~80μmのポリビニルアルコール系フィルムの未延伸フィルムを用いる。なお、予め延伸処理が施されている延伸フィルムを用いてもよい。工業的には、フィルムの幅は1500mm~6000mmが実用的である。
 本発明の一実施形態としては、まず、未延伸のポリビニルアルコール系フィルムを用いて、膨潤工程、染色工程、架橋工程、水洗工程、第1乾燥工程による処理を行ない偏光フィルムを製造する。未延伸フィルムを用いる場合は、いずれかの工程中に、あるいは別工程として湿式または乾式にて延伸処理を行なう。延伸は公知の延伸方法により行なうことができる。公知の延伸方法としては、フィルムを搬送する2つのニップロール間に周速差をつけて延伸を行なうロール間延伸、特許第2731813号公報に記載のような熱ロール延伸法、テンター延伸法などがある。延伸フィルムを用いる場合であっても、さらに延伸処理を行なってもよい。最終的に第1乾燥工程を経て得られる偏光フィルムの厚さは、たとえば5~50μmである。
 [膨潤工程]
 膨潤工程は、フィルム表面の異物除去、フィルム中の可塑剤除去、次の染色工程での易染色性の付与、フィルムの可塑化などの目的で行われる。処理条件はこれらの目的が達成できる範囲で、かつフィルムの極端な溶解、失透などの不具合が生じない範囲で決定される。予め気体中で延伸したフィルムを膨潤させる場合には、たとえば20℃~70℃、好ましくは30℃~60℃の水溶液にフィルムを浸漬して行われる。フィルムの浸漬時間は、好ましくは30秒~300秒、更に好ましくは60秒~240秒程度である。未延伸の原反フィルムを膨潤させる場合には、たとえば10℃~50℃、好ましくは20℃~40℃の水溶液にフィルムを浸漬して行われる。フィルムの浸漬時間は、好ましくは30秒~300秒、更に好ましくは60秒~240秒程度である。
 膨潤工程においてポリビニルアルコール系フィルムの一軸延伸を行ってもよい。この場合の延伸倍率は、通常1.2~3.0倍、好ましくは1.3~2.5倍である。
 膨潤工程では、フィルムが幅方向に膨潤してフィルムにシワが入るなどの問題が生じやすいので、拡幅ロール(エキスパンダーロール)、スパイラルロール、クラウンロール、クロスガイダー、ベンドバー、テンタークリップなど公知の拡幅装置でフィルムのシワを取りつつフィルムを搬送することが好ましい。膨潤浴中のフィルム搬送を安定化させる目的で、膨潤浴中での水流を水中シャワーで制御したり、EPC装置(Edge Position Control装置:フィルムの端部を検出し、フィルムの蛇行を防止する装置)などを併用したりすることも有用である。本工程では、フィルムの走行方向にもフィルムが膨潤拡大するので、フィルムに積極的な延伸を行わない場合は、搬送方向のフィルムのたるみを無くすために、たとえば処理槽前後の搬送ロールの速度をコントロールするなどの手段を講ずることが好ましい。また、使用する膨潤浴には、純水の他、ホウ酸(特開平10-153709号公報に記載)、塩化物(特開平06-281816号公報に記載)、無機酸、無機塩、水溶性有機溶媒、アルコール類などを0.01重量%~10重量%の範囲で添加した水溶液を使用することも可能である。
 [染色工程]
 二色性色素による染色工程は、フィルムに二色性色素を吸着、配向させるなどの目的で行われる。処理条件はこれらの目的が達成できる範囲で、かつフィルムの極端な溶解、失透などの不具合が生じない範囲で決定される。二色性色素としてヨウ素を用いる場合、たとえば10℃~45℃、好ましくは20℃~35℃の温度で、かつ重量比でヨウ素/ヨウ化カリウム/水=0.003~0.2/0.1~10/100の濃度で30秒~600秒、好ましくは60秒~300秒間浸漬処理を行う。ヨウ化カリウムに代えて、他のヨウ化物、たとえばヨウ化亜鉛などを用いてもよい。また、他のヨウ化物をヨウ化カリウムと併用してもよい。また、ヨウ化物以外の化合物、たとえばホウ酸、塩化亜鉛、塩化コバルトなどを共存させてもよい。ホウ酸を添加する場合、ヨウ素を含む点で下記のホウ酸処理と区別される。水100重量部に対し、ヨウ素を0.003重量部以上含んでいるものであれば染色槽と見なせる。
 二色性色素として水溶性二色性染料を用いる場合、たとえば20℃~80℃、好ましくは30℃~70℃の温度で、かつ重量比で二色性染料/水=0.001~0.1/100の濃度で30秒~600秒、好ましくは60秒~300秒間浸漬処理を行う。使用する二色性染料の水溶液は、染色助剤などを有していてもよく、たとえば硫酸ナトリウムなどの無機塩、界面活性剤などを含有していてもよい。二色性染料は単独でもよいし、2種類以上の二色性染料を同時に用いることもできる。
 未延伸のポリビニルアルコール系フィルムを膨潤工程、染色工程、架橋工程の順に処理する場合、染色槽においてもフィルムの延伸を行なうことができる。染色工程での延伸倍率を合わせた積算の延伸倍率は、通常1.6~4.5倍、好ましくは1.8~4.0倍である。また、染色工程での延伸倍率を合わせた積算の延伸倍率が1.6倍未満の場合、フィルムの破断の頻度が多くなり、歩留りを悪化させる傾向にある。
 延伸は染色槽の前後のニップロールに周速差を持たせるなどの方法で行われる。また、膨潤工程と同様に、拡幅ロール(エキスパンダーロール)、スパイラルロール、クラウンロール、クロスガイダー、ベンドバーなどを、染色浴中および/または染色浴出入り口に設置することもできる。
 [架橋工程]
 架橋工程は、水100重量部に対してホウ酸を1~10重量部含有する水溶液に、二色性色素で染色したポリビニルアルコール系フィルムを浸漬することにより行われる。二色性色素がヨウ素の場合、ヨウ化物を1~30重量部含有させることが好ましい。ヨウ化物としてはヨウ化カリウム、ヨウ化亜鉛などが挙げられる。また、ヨウ化物以外の化合物、例えば塩化亜鉛、塩化コバルト、塩化ジルコニウム、チオ硫酸ナトリウム、亜硫酸カリウム、硫酸ナトリウムなどを共存させてもよい。
 架橋工程は、架橋による耐水化や色相調整(青味がかるのを防止する等)等のために実施される。架橋による耐水化には、必要に応じて、ホウ酸以外に、またはホウ酸と共に、グリオキザール、グルタルアルデヒドなどの架橋剤も使用することができる。なお、耐水化のための架橋工程を、耐水化工程、固定化工程などの名称で呼称する場合もある。また、色相調整のための架橋工程を、補色工程、再染色工程などの名称で呼称する場合もある。
 架橋工程は、その目的によって、ホウ酸およびヨウ化物の濃度、処理浴の温度を適宜変更して行なわれる。耐水化のための架橋工程、色相調整のための架橋工程は特に区別されるものではないが、下記の条件で実施される。未延伸のフィルムを用いて膨潤工程を行ない、その後染色工程、架橋工程を行なう場合であって、架橋工程が耐水化を目的としている場合は、水100重量部に対してホウ酸を3~10重量部、ヨウ化物を1~20重量部含有するホウ酸処理浴を使用し、通常、50℃~70℃、好ましくは53℃~65℃の温度で行われる。浸漬時間は、通常、10~600秒程度、好ましくは20~300秒、より好ましくは20~200秒である。なお、予め延伸したフィルムを用いて膨潤工程を行ない、その後染色工程、架橋工程を行なう場合は、ホウ酸処理浴の温度は、通常、50℃~85℃、好ましくは55℃~80℃である。
 耐水化のための架橋処理後、色相調整のための架橋処理を行なってもよい。たとえば二色性染料がヨウ素の場合、色相調整の目的のためには、水100重量部に対してホウ酸を1~5重量部、ヨウ化物を3~30重量部含有するホウ酸処理浴を使用し、通常、10℃~45℃の温度で行われる。浸漬時間は、通常、1~300秒、好ましくは2~100秒である。
 これらの架橋処理は複数回行なってもよく、通常、2~5回行われることが多い。この場合、使用する各ホウ酸処理槽の水溶液組成、温度は上記の範囲内で同じであっても、異なっていてもよい。上記耐水化のためのホウ酸処理、色相調整のためのホウ酸処理をそれぞれ複数の工程で行なってもよい。その際、本発明の効果を十分に得るために、偏光フィルム中のホウ素含有率を2.5~4.5重量%とすることが好ましく、その場合、架橋工程におけるホウ酸濃度を水100重量部に対して、2.0~5.0重量部とすることが好ましい。
 本実施形態における偏光フィルムの延伸の最終的な積算延伸倍率は、通常4.5~7倍、好ましくは5~6.5倍である。
 [水洗工程]
 架橋工程の後、水洗工程に供される。水洗工程は、たとえば、耐水化および/または色調調整のためにホウ酸処理したポリビニルアルコール系フィルムを水に浸漬、水をシャワーとして噴霧、あるいは浸漬と噴霧を併用することによって行われる。水洗工程における水の温度は、通常、2~40℃程度であり、浸漬時間は2~120秒であるのがよい。
 [第1乾燥工程]
 水洗工程の後、ポリビニルアルコール系フィルムを第1乾燥工程に供する。第1乾燥工程によりポリビニルアルコール系フィルムの厚みが低減される。本発明においては、厚みの比により適切な乾燥の程度を表すこととする。すなわち、本発明においては、後述する第2乾燥工程後の偏光板中の偏光フィルムの厚みTbに対する、第1乾燥工程後であって貼合工程前の偏光フィルムの厚みTaの比Ta/Tbが1.02~1.30の関係を満たすように第1乾燥工程および後述する第2乾燥工程の乾燥温度および乾燥時間を制御する。第1乾燥工程における乾燥温度は、たとえば、20~90℃とすることができ、乾燥時間は、たとえば、10~300秒間とすることができる。第1乾燥工程において、乾燥温度が20~70℃であり、乾燥時間が10~120秒間であることが好ましい。
 第1乾燥工程における、偏光フィルムの水分率は12~45%となるように調整され、より好ましくは15~40%に調整される。12%より低い場合、後述する第2乾燥工程における厚みを低減させる効果が小さくなり、45%より高い場合、保護フィルムとの密着性が十分に発現し難くなり、外観の不良やフィルムがライン中で破断して工程を汚染するといった問題が発生し易くなる。第1乾燥工程は、温度の異なるゾーンが複数あってもよい。複数の温度、時間の異なる乾燥工程を組み合わせることにより、偏光フィルムを所望の水分率まで乾燥させ易くなるとともに、適度に彩色化することができる。
 ここで言う水分率とは、乾燥重量法で求められる水分量を示し、105℃で120分の熱処理前後での水分量変化から得られ、次の式:
水分率=(熱処理前の重量-熱処理後の重量)/熱処理前の重量×100(重量/重量%)
により計算して求めることができる。
 第1乾燥工程における乾燥方法は、熱風を吹き付ける方法、熱ロールに接触させる方法、IRヒーターで加熱する方法など、種々の方法があるが、いずれも好適に用いることができる。熱ロールに接触させて乾燥させる方法は、乾燥効率が向上するため乾燥時間を短縮化することができ、またフィルムの幅方向の収縮を抑制して広幅化が可能である等の点で好適である。なお、乾燥工程における乾燥温度とは、熱風を吹き付ける方法やIRヒーターなどのように乾燥炉を設ける乾燥設備の場合には乾燥炉内の雰囲気温度を意味し、熱ロールのような接触型の乾燥設備の場合には、熱ロールの表面温度を意味する。以上の工程を経て、偏光フィルムを製造する。
 [除去工程]
 偏光フィルムの製造工程において、ポリビニルアルコール系フィルムの両端部分に厚みムラが生じることがあるため、この場合は厚みムラが顕著な両端部分を切断して除去する除去工程を有してもよい。除去工程は、たとえば、架橋工程の後であって第1乾燥工程の前に、または、第1乾燥工程の後であって次に説明する貼合工程の前に行なうことができる。本発明においては、偏光フィルムの幅の収縮を抑制することができるので、除去工程により両端部を除去しても、十分な幅を有し、より厚みの均一な偏光フィルムを製造することができる。以上のように製造した偏光フィルムを用いて、さらに以下の工程を経て偏光板を製造する。
 [貼合工程]
 偏光フィルムの片面または両面に接着剤層を介して保護フィルムを貼合する。
 (保護フィルム)
 保護フィルムを構成する材料としては、たとえば、シクロオレフィン系樹脂、酢酸セルロース系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレート、ポリブチレンテレフタレートのようなポリエステル系樹脂、ポリカーボネート系樹脂、アクリル系樹脂、ポリプロピレンなど、当分野において従来より広く用いられているフィルム材料を挙げることができる。偏光フィルムの両面に保護フィルムが貼合される場合、各々の保護フィルムは同じものであってもよく、異なる種類のフィルムであってもよい。
 シクロオレフィン系樹脂とは、たとえば、ノルボルネン、多環ノルボルネン系モノマーのような、環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する熱可塑性の樹脂(熱可塑性シクロオレフィン系樹脂とも呼ばれる)である。シクロオレフィン系樹脂は、上記シクロオレフィンの開環重合体または2種以上のシクロオレフィンを用いた開環共重合体の水素添加物であってもよく、シクロオレフィンと鎖状オレフィン、ビニル基を有する芳香族化合物などとの付加重合体であってもよい。また、極性基が導入されているものも有効である。
 シクロオレフィンと鎖状オレフィンまたは/およびビニル基を有する芳香族化合物との共重合体を用いる場合、鎖状オレフィンとしては、エチレン、プロピレンなどが挙げられ、またビニル基を有する芳香族化合物としては、スチレン、α-メチルスチレン、核アルキル置換スチレンなどが挙げられる。このような共重合体において、シクロオレフィンからなるモノマーのユニットが50モル%以下(好ましくは15~50モル%)であってもよい。特に、シクロオレフィンと鎖状オレフィンとビニル基を有する芳香族化合物との三元共重合体を用いる場合、シクロオレフィンからなるモノマーのユニットは、上述したように比較的少ない量とすることができる。かかる三元共重合体において、鎖状オレフィンからなるモノマーのユニットは、通常5~80モル%、ビニル基を有する芳香族化合物からなるモノマーのユニットは、通常5~80モル%である。
 シクロオレフィン系樹脂は、適宜の市販品、たとえば、Topas(Ticona社製)、アートン(JSR(株)製)、ゼオノア(ZEONOR)(日本ゼオン(株)製)、ゼオネックス(ZEONEX)(日本ゼオン(株)製)、アペル(三井化学(株)製)、オキシス(OXIS)(大倉工業社製)などを好適に用いることができる。このようなシクロオレフィン系樹脂を製膜してフィルムとする際には、溶剤キャスト法、溶融押出法などの公知の方法が適宜用いられる。また、たとえばエスシーナ(積水化学工業(株)製)、SCA40(積水化学工業(株)製)、ゼオノアフィルム((株)オプテス製)などの予め製膜されたシクロオレフィン系樹脂製のフィルムの市販品を用いてもよい。
 シクロオレフィン系樹脂フィルムは、一軸延伸または二軸延伸されたものであってもよい。延伸することで、シクロオレフィン系樹脂フィルムに任意の位相差値を付与することができる。延伸は、通常、フィルムロールを巻き出しながら連続的に行われ、加熱炉にて、ロールの進行方向(フィルムの長手方向)、その進行方向と垂直の方向(フィルムの幅方向)、あるいはその両方へ延伸される。加熱炉の温度は、通常、シクロオレフィン系樹脂のガラス転移温度近傍からガラス転移温度+100℃の範囲が、採用される。延伸の倍率は、通常1.1~6倍であり、好ましくは1.1~3.5倍である。
 シクロオレフィン系樹脂フィルムは、ロール巻き状態にあると、フィルム同士が接着してブロッキングを生じ易い傾向にあるため、通常は、プロテクトフィルムを貼合した後にロール巻きとされる。また、シクロオレフィン系樹脂フィルムは、一般に表面活性が劣るため、偏光フィルムと接着させる表面には、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理などの表面処理を行うのが好ましい。中でも、比較的容易に実施可能なプラズマ処理、特に大気圧プラズマ処理、コロナ処理が好適である。
 酢酸セルロース系樹脂とは、セルロースの部分または完全エステル化物であって、たとえば、セルロースの酢酸エステル、プロピオン酸エステル、酪酸エステル、それらの混合エステルなどからなるフィルムを挙げることができる。より具体的には、トリアセチルセルロースフィルム、ジアセチルセルロースフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルムなどが挙げられる。このようなセルロースエステル系樹脂フィルムとしては、適宜の市販品、たとえば、フジタックTD80(富士フイルム(株)製)、フジタックTD80UF(富士フイルム(株)製)、フジタックTD80UZ(富士フイルム(株)製)、KC8UX2M(コニカミノルタオプト(株)製)、KC8UY(コニカミノルタオプト(株)製)フジタックTD60UL(富士フイルム(株)製)、KC4UYW(コニカミノルタオプト(株)製)、KC6UAW(コニカミノルタオプト(株)製)などを好適に用いることができる。
 また、保護フィルムとして、位相差特性を付与した酢酸セルロース系樹脂フィルムも好適に用いられる。かかる位相差特性が付与された酢酸セルロール系樹脂フィルムの市販品としては、WV BZ 438(富士フイルム(株)製)、KC4FR-1(コニカミノルタオプト(株)製)、KC4CR-1(コニカミノルタオプト(株)製)、KC4AR-1(コニカミノルタオプト(株)製)などが挙げられる。酢酸セルロースは、アセチルセルロースとも、セルロースアセテートとも呼ばれる。
 本発明の偏光板の製造方法に用いられる保護フィルムの厚みは、薄い方が好ましいが、余り薄すぎると強度が低下し、加工性に劣るものとなる。一方で厚すぎると透明性が低下したり、積層後に必要な養生時間が長くなったりするなどの問題が生じる。そこで、保護フィルムの適当な厚みは、たとえば5~200μmであり、好ましくは10~150μm、より好ましくは10~100μmである。
 接着剤と偏光フィルムおよび/または保護フィルムとの接着性を向上させるために、偏光フィルムおよび/または保護フィルムに、コロナ処理、火炎処理、プラズマ処理、紫外線処理、プライマー塗布処理、ケン化処理などの表面処理を施してもよい。
 また、保護フィルムには、アンチグレア処理、アンチリフレクション処理、ハードコート処理、帯電防止処理、防汚処理などの表面処理が、それぞれ単独で、または2種以上組み合わせて施されてもよい。また、保護フィルムおよび/または保護フィルム表面保護層は、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物などの紫外線吸収剤や、フェニルホスフェート系化合物、フタル酸エステル化合物などの可塑剤を含有していてもよい。
 さらに、保護フィルムに、位相差フィルムとしての機能、輝度向上フィルムとしての機能、反射フィルムとしての機能、半透過反射フィルムとしての機能、拡散フィルムとしての機能、光学補償フィルムとしての機能など、光学的機能を持たせることができる。この場合、例えば、保護フィルムの表面に、位相差フィルム、輝度向上フィルム、反射フィルム、半透過反射フィルム、拡散フィルム、光学補償フィルムなどの光学機能性フィルムを積層することにより、このような機能を持たせることができるほか、保護フィルム自体にこのような機能を付与することもできる。また、輝度向上フィルムの機能を持った拡散フィルムなどのように、複数の機能を保護フィルムに持たせてもよい。
 たとえば、上述した保護フィルムに、特許第2841377号公報、特許第3094113号公報などに記載の延伸処理を施したり、特許第3168850号公報に記載された処理を施したりすることにより、位相差フィルムとしての機能を付与することができる。位相差フィルムにおける位相差特性は、例えば、正面位相差値が5~100nm、厚み方向位相差値が40~300nmの範囲など、適宜選択できる。また、上記の保護フィルムに、特開2002-169025号公報や特開2003-29030号公報に記載されるような方法で微細孔を形成することにより、あるいは選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより、輝度向上フィルムとしての機能を付与することができる。
 上記の保護フィルムに蒸着やスパッタリングなどで金属薄膜を形成すれば、反射フィルムまたは半透過反射フィルムとしての機能を付与することができる。上述した保護フィルムに微粒子を含む樹脂溶液をコーティングすることにより、拡散フィルムとしての機能を付与することができる。また、上記の保護フィルムにディスコティック液晶性化合物などの液晶性化合物をコーティングして配向させることにより、光学補償フィルムとしての機能を付与することができる。また、保護フィルムに位相差を発現する化合物を含有させてもよい。さらに、適当な接着剤を用いて、各種の光学機能性フィルムを偏光フィルムに直接貼合してもよい。光学機能性フィルムの市販品としては、例えば、DBEF(3M社製、日本では住友スリーエム(株)から入手できる)などの輝度向上フィルム、WVフィルム(富士フイルム(株)製)などの視野角改良フィルム、アートンフィルム(JSR(株)製)、ゼオノアフィルム((株)オプテス製)、エスシーナ(積水化学工業(株)製)、VA-TAC(コミカミノルタオプト(株)製)、スミカライト(住友化学(株)製)などの位相差フィルムなどを挙げることができる。
 (接着剤層)
 接着剤層を構成する接着剤としては、水系接着剤、活性エネルギー線硬化型の接着剤などが挙げられる。水系接着剤を用いた場合は、第2乾燥工程において、偏光フィルムの乾燥と接着剤の乾燥を同時に行なうことができるので、好適である。
 水系接着剤としては、たとえば、ポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤などが挙げられる。接着剤として用いるポリビニルアルコール系樹脂には、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマーのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるビニルアルコール系共重合体、さらにはそれらの水酸基を部分的に変性した変性ポリビニルアルコール系重合体などがある。水系接着剤には、多価アルデヒド、水溶性エポキシ化合物、メラミン系化合物、ジルコニア化合物、亜鉛化合物などが添加剤として添加されてもよい。このような水系の接着剤を用いた場合、それから得られる接着剤層は、通常1μmよりもはるかに薄い。水系接着剤は、その調製後、15~40℃の温度下で塗布され、貼合温度は、通常15~30℃の範囲である。
 活性エネルギー線硬化型の接着剤としては、耐候性や屈折率、カチオン重合性などの観点から、活性エネルギー線の照射により硬化するエポキシ樹脂を含有するエポキシ系樹脂組成物からなる接着剤が挙げられる。ただし、これに限定されるものではなく、従来から偏光板の製造に使用されている各種の活性エネルギー線硬化型の接着剤(有機溶剤系接着剤、ホットメルト系接着剤、無溶剤型接着剤など)が採用可能である。
 [第2乾燥工程]
 貼合工程の後、偏光フィルムと保護フィルムとからなる積層体を第2乾燥工程に供して偏光板を製造する。第2乾燥工程により、接着剤を乾燥させ、また偏光板が適切な水分率となるように乾燥させる。第2乾燥工程により、さらにポリビニルアルコール系フィルムの厚みが低減される。本発明においては、厚みの比により適切な乾燥の程度を表すこととする。すなわち、上述の通り、第2乾燥工程後の偏光板中の偏光フィルムの厚みTbに対する、第1乾燥工程後であって貼合工程前の偏光フィルムの厚みTaの比Ta/Tbが1.02~1.30の関係を満たすように第2乾燥工程の乾燥温度および乾燥時間を制御する。
 また、本発明において、幅の比よっても適切な乾燥の程度を表すこととする。すなわち、上述の通り、第1乾燥工程後であって貼合工程前の偏光フィルムの幅Waに対する、第2乾燥工程後の偏光板中の偏光フィルムの幅Wbの比Wb/Waが0.960以上1.000未満の関係を満たすように第2乾燥工程の乾燥温度および乾燥時間を制御する。第2乾燥工程における乾燥温度は、たとえば、30~100℃とすることができ、乾燥時間は、たとえば、60~1200秒間とすることができる。第2乾燥工程における乾燥方法は、上述の第1乾燥工程と同様である。第2乾燥工程は温度の異なるゾーンを複数設けるのが好ましく、複数の温度、時間の異なる乾燥工程を組み合わせることにより、偏光板を所望の水分率まで乾燥させ易くなるとともに、偏光板の色相、外観品質、カールを適度に調整することができる。第2乾燥工程は、第1乾燥工程の最高乾燥温度より高い乾燥温度で処理を行なう工程を含むことが好ましい。また、第2乾燥工程は、工程開始時の乾燥温度より高い乾燥温度で処理を行なう工程を含むことが好ましい。
 最終的に得られる偏光板の水分率は1.5~3.0%であることが好ましい。この範囲を外れた場合、カールや外観不良の問題が発生しやすくなり、特に3.0%より高い場合は、厚みを低減させる効果が小さくなる場合がある。
 上記厚みの比Ta/Tbについて、1.02未満である場合、偏光フィルムの水分率を調整するために行なう乾燥の大部分を第1乾燥工程で行なうことになる。しかしながら、第1乾燥工程における乾燥の程度が大きいほど、偏光フィルムの幅の収縮が顕著となり好ましくない。したがって、本発明においては、第2乾燥工程において、第1乾燥工程の最高乾燥温度より高い乾燥温度で処理を行なう工程を含むことにより、適切な偏光フィルムの水分率とするための乾燥の一部のみを第1乾燥工程で行ない、保護フィルムを貼合した後に行なう第2乾燥工程により、最終製品として適切な水分率に調整する残りの乾燥を行なうことにより、偏光フィルムの幅の収縮を抑制することができるので好ましい。
 また、第2乾燥工程では、工程開始時の乾燥温度より高い乾燥温度で処理を行なう工程を含むことが好ましい。すなわち、複数のゾーンが設けられた第2乾燥工程では、2番目のゾーン以降に、1番目のゾーンよりも高い温度で処理するゾーンを有することが好ましい。たとえば、1番目のゾーンの温度は60℃未満であり、2番目のゾーン以降については、これらのうち少なくとも1つの乾燥炉の温度が60℃以上で、この温度が60℃以上の乾燥炉は、好ましくは60℃~100℃の範囲に設定される。そうすることで、偏光フィルムと保護フィルムの接着を進行させた後に、偏光フィルムの厚みを十分に収縮させることができる。
 一方、上記厚みの比Ta/Tbが1.30を超える場合、第1乾燥工程での乾燥の程度が十分ではなく、第2乾燥工程の乾燥条件を厳しい条件とする必要があり、第2乾燥工程でのシワの発生やフィルム破断などの工程汚染の問題や、偏光板の外観不良などの品質の低下を招く場合がある。
 上述のように、第1乾燥工程および第2乾燥工程の乾燥の程度を制御することにより、上記厚みの比の関係を満たすように偏光板を製造することができる。そして、偏光フィルムの幅の収縮の程度を抑制することができる。保護フィルムの貼合において、水系の接着剤を用いる場合には、接着剤の溶剤を蒸発させるために行なう乾燥工程を第2乾燥工程とすることができる。
 以上のようにして製造した偏光板は、偏光フィルムと、偏光フィルムの少なくとも一方の面に貼合された保護フィルムとを備え、液晶表示装置の偏光板として用いることができる。また、本発明の製造方法によると、たとえば、視感度補正単体透過率が41.5%以上、視感度補正偏光度が99.99%以上の光学特性を有する偏光板を製造することができる。偏光板がこのような光学特性を有することにより、偏光板を液晶表示装置の偏光板として用いた場合に良好なコントラスト比の表示が得られる。
 [実施例1]
 (偏光フィルムの作製)
 厚さ75μmのポリビニルアルコールフィルム(クラレビニロンVF-PS#7500、重合度2,400、ケン化度99.9モル%以上)を30℃の純水に、フィルムが弛まないように緊張状態を保ったまま浸漬しフィルムを十分に膨潤させた(膨潤工程)。次にヨウ素/ヨウ化カリウム/水が重量比で0.04/2.0/100の30℃の水溶液に浸漬しつつ一軸延伸を行った後(染色工程)、ヨウ化カリウム/ホウ酸/水が重量比で12/4.2/100の56℃水溶液に浸漬して架橋処理しつつ原反からの積算延伸倍率が5.7倍になるまで一軸延伸を行った(架橋工程および延伸工程)。次に、ヨウ化カリウム/ホウ酸/水が重量比で9/2.9/100の40℃水溶液に浸漬し、続いて5℃の純水で洗浄した後、乾燥温度30℃、乾燥時間50秒の乾燥条件で乾燥処理して偏光フィルムを得た(第1乾燥工程)。得られた偏光フィルムは、厚み(Ta)33.1μm、幅(Wa)225mm、水分率30%であった。
 (接着剤の調製)
 アセトアセチル基変性ポリビニルアルコール系樹脂(商品名「ゴーセファイマーZ-200」、日本合成化学工業(株)製、4%水溶液粘度12.4mPa・sec、ケン化度99.1モル%)を純水に溶解し、10%濃度の水溶液を調製した。このアセトアセチル基変性ポリビニルアルコール系樹脂水溶液と、架橋剤となるグリオキシル酸ナトリウムとを、前者:後者の固形分重量比が1:0.1となるように混合し、さらに水100部に対してアセトアセチル基変性ポリビニルアルコール系樹脂が1部となるように純水で希釈し、接着剤組成物を調製した。
 (偏光板の作製)
 先に得られた偏光フィルムの両面に、ケン化処理が施されたトリアセチルセルロースからなる厚み80μmのフィルム(KC8UX2MW、コニカミノルタオプト(株)製)を、上記接着剤を介して、ニップロールにより貼合し、乾燥温度75℃、乾燥時間150秒の乾燥条件で乾燥処理して(第2乾燥工程)、偏光板を得た。得られた偏光板中の偏光フィルムは、厚み(Tb)27.0μm、幅(Wb)221mm、ホウ素含有率3.8wt%であった。すなわち、Ta/Tbが1.23、Wb/Waが0.982であった。
 (偏光板の光学特性)
 得られた偏光板の光学性能を求めるために、(株)日本分光製の紫外可視分光光度計V7100に偏光板をセットし、透過方向と吸収方向の偏光板の紫外可視スペクトルを測定した。単体透過率、偏光度(視感度補正偏光度)はJIS-Z8729に準拠して計算にて求めた。実施例1の偏光板の光学特性は、視感度補正単体透過率が42.5%、視感度補正偏光度が99.995%であった。
 [実施例2]
 (偏光フィルムの作製)
 第1乾燥工程における乾燥条件を、乾燥温度50℃、乾燥時間50秒間とした点以外は、実施例1と同様にして偏光フィルムを作製した。得られた偏光フィルムは、厚み(Ta)32.1μm、幅(Wa)219mm、水分率16%であった。
 (偏光板の作製)
 実施例1と同様にして偏光板を得た。得られた偏光板中の偏光フィルムは、厚み(Tb)28.0μm、幅(Wb)217mm、ホウ素含有率3.8wt%であった。すなわち、Ta/Tbが1.15、Wb/Waが0.991であった。実施例2の偏光板の光学特性は、視感度補正単体透過率が42.5%、視感度補正偏光度が99.997%であった。
 [実施例3]
 (偏光フィルムの作製)
 実施例1と同様にして偏光フィルムを作製した。得られた偏光フィルムは、実施例1と同様に、厚み(Ta)33.1μm、幅(Wa)225mm、水分率30%であった。
 (偏光板の作製)
 第2乾燥工程における乾燥条件を、乾燥温度90℃、乾燥時間150秒間とした点以外は、実施例1と同様にして偏光板を作製した。得られた偏光板中の偏光フィルムは、厚み(Tb)26.6μm、幅(Wb)219mm、ホウ素含有率3.8wt%であった。すなわち、Ta/Tbが1.24、Wb/Waが0.973であった。実施例3の偏光板の光学特性は、視感度補正単体透過率が42.5%、視感度補正偏光度が99.996%であった。
 [実施例4]
 (偏光フィルムの作製)
 架橋処理におけるヨウ化カリウム/ホウ酸/水が重量比を12/3.1/100とした以外は実施例2と同様にして偏光フィルムを作製した。得られた偏光フィルムは、厚み(Ta)32.8μm、幅(Wa)226mm、水分率22%であった。
 (偏光板の作製)
 実施例2と同様にして偏光板を得た。得られた偏光板中の偏光フィルムは、厚み(Tb)27.2μm、幅(Wb)223mm、ホウ素含有率3.2wt%であった。すなわち、Ta/Tbが1.21、Wb/Waが0.987であった。実施例4の偏光板の光学特性は、視感度補正単体透過率が42.5%、視感度補正偏光度が99.993%であった。
 [比較例1]
 (偏光フィルムの作製)
 第1乾燥工程における乾燥条件を、乾燥温度80℃、乾燥時間150秒間とした点以外は、実施例1と同様にして偏光フィルムを作製した。得られた偏光フィルムは、厚み(Ta)29.5μm、幅(Wa)213mm、水分率9%であった。
 (偏光板の作製)
 実施例1と同様にして偏光板を得た。得られた偏光板中の偏光フィルムは、厚み(Tb)29.5μm、幅(Wb)213mm、ホウ素含有率3.9wt%であった。すなわち、Ta/Tbが1.00、Wb/Waが1.00であった。比較例1の偏光板の光学特性は、視感度補正単体透過率が42.5%、視感度補正偏光度が99.996%であった。
 [比較例2]
 (偏光フィルムの作製)
 積算延伸倍率を5.0倍とした以外は、比較例1と同様にして偏光フィルムを作製した。得られた偏光フィルムは、厚み(Ta)34.4μm、幅(Wa)227mm、水分率9.5%であった。
 (偏光板の作製)
 実施例1と同様にして偏光板を得た。得られた偏光板中の偏光フィルムは、厚み(Tb)34.2μm、幅(Wb)227mm、ホウ素含有率3.9wt%であった。すなわち、Ta/Tbが1.01、Wb/Waが1.00であった。比較例2の偏光板の光学特性は、視感度補正単体透過率が42.5%、視感度補正偏光度が99.980%であった。
 表1は、実施例1~4および比較例1,2の上記結果を表す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、第1乾燥工程および第2乾燥工程の乾燥条件を、Ta/Tbが1.02~1.30となるように調整した実施例1~4によると、比較例1,2より薄く、幅が広く、かつ光学性能の良好な偏光フィルムを有する偏光板が得られることがわかった。
 本発明の製造方法により作製される偏光板は、液晶表示装置をはじめとする各種表示装置に有効に適用することができる。

Claims (7)

  1.  ポリビニルアルコール系フィルムを二色性色素で染色する染色工程と、
     染色した前記ポリビニルアルコール系フィルムを架橋剤を含む溶液に浸漬して架橋する架橋工程と、
     架橋した前記ポリビニルアルコール系フィルムを乾燥する第1乾燥工程と、を順に行ないポリビニルアルコール系フィルムからなる偏光フィルムを製造した後に、
     前記偏光フィルムの少なくとも一方の面に接着剤層を介して保護フィルムを貼合して積層体を形成する貼合工程と、
     前記積層体を乾燥する第2乾燥工程と、を順に行ない前記積層体からなる偏光板を製造する製造方法であって、
     前記第2乾燥工程後の前記偏光板中の前記偏光フィルムの厚みTbに対する、前記第1乾燥工程後であって前記貼合工程前の前記偏光フィルムの厚みTaの比Ta/Tbが1.02~1.30である、偏光板の製造方法。
  2.  前記第1乾燥工程後であって前記貼合工程前の前記偏光フィルムの幅Waに対する、前記第2乾燥工程後の前記偏光板中の前記偏光フィルムの幅Wbの比Wb/Waが0.960以上1.000未満である、請求項1に記載の偏光板の製造方法。
  3.  前記第1乾燥工程後であって前記貼合工程前の前記偏光フィルムの水分率が12~45%である、請求項1または2に記載の偏光板の製造方法。
  4.  前記第2乾燥工程後の前記偏光板中の前記偏光フィルムのホウ素の含有率が2.5~4.5wt%である、請求項1~3のいずれかに記載の偏光板の製造方法。
  5.  前記第2乾燥工程は、前記第1乾燥工程の最高乾燥温度より高い乾燥温度で処理を行なう工程を含む、請求項1~4のいずれかに記載の偏光板の製造方法。
  6.  前記第2乾燥工程は、工程開始時の乾燥温度より高い乾燥温度で処理を行なう工程を含む、請求項1~5のいずれかに記載の偏光板の製造方法。
  7.  前記貼合工程前に前記ポリビニルアルコール系フィルムの両端部を切断して除去する除去工程をさらに有する、請求項1~6のいずれかに記載の偏光板の製造方法。
PCT/JP2013/054567 2012-02-28 2013-02-22 偏光板の製造方法 WO2013129259A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380011175.6A CN104136948B (zh) 2012-02-28 2013-02-22 偏振板的制造方法
KR1020147023506A KR101764965B1 (ko) 2012-02-28 2013-02-22 편광판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012041662A JP5722255B2 (ja) 2012-02-28 2012-02-28 偏光板の製造方法
JP2012-041662 2012-02-28

Publications (1)

Publication Number Publication Date
WO2013129259A1 true WO2013129259A1 (ja) 2013-09-06

Family

ID=49082459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054567 WO2013129259A1 (ja) 2012-02-28 2013-02-22 偏光板の製造方法

Country Status (5)

Country Link
JP (1) JP5722255B2 (ja)
KR (1) KR101764965B1 (ja)
CN (1) CN104136948B (ja)
TW (1) TWI570456B (ja)
WO (1) WO2013129259A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645727B2 (ja) * 2014-07-14 2020-02-14 住友化学株式会社 偏光性積層フィルムの製造方法
CN107076912B (zh) * 2014-10-01 2020-08-11 住友化学株式会社 偏振性层叠膜或偏振板的制造方法
JP6460732B2 (ja) * 2014-11-10 2019-01-30 住友化学株式会社 光学積層体、液晶パネル及び液晶表示装置
KR102645969B1 (ko) * 2014-12-12 2024-03-08 스미또모 가가꾸 가부시키가이샤 편광 필름의 제조 방법 및 편광 필름
CN107111035B (zh) * 2014-12-12 2020-05-29 住友化学株式会社 偏振膜的制造方法和偏振膜
JP6333168B2 (ja) 2014-12-25 2018-05-30 住友化学株式会社 偏光板の製造方法
KR101839672B1 (ko) * 2015-02-12 2018-03-16 스미또모 가가꾸 가부시키가이샤 편광 필름 및 그것을 포함하는 편광판
WO2016195440A1 (ko) * 2015-06-03 2016-12-08 주식회사 엘지화학 편광자의 제조방법 및 이를 이용하여 제조된 편광자
JP2017003954A (ja) * 2015-06-12 2017-01-05 住友化学株式会社 偏光フィルム及びそれを含む偏光板
JP6144731B2 (ja) * 2015-07-22 2017-06-07 住友化学株式会社 偏光板
TWI568579B (zh) * 2015-11-02 2017-02-01 住華科技股份有限公司 偏光板
KR101803675B1 (ko) * 2016-01-19 2017-11-30 스미또모 가가꾸 가부시키가이샤 편광판 및 화상 표시 장치
JP2017227893A (ja) * 2016-06-21 2017-12-28 住友化学株式会社 偏光板セット
KR102535102B1 (ko) * 2016-08-18 2023-05-19 스미또모 가가꾸 가부시키가이샤 편광 필름의 제조 방법 및 제조 장치
CN110361804B (zh) * 2018-04-09 2022-11-04 日东电工株式会社 偏振片的制造方法
KR20210130626A (ko) * 2019-02-26 2021-11-01 닛토덴코 가부시키가이샤 편광자의 제조 방법, 편광 필름의 제조 방법, 적층 편광 필름의 제조 방법, 화상 표시 패널의 제조 방법, 및 화상 표시 장치의 제조 방법
WO2021054346A1 (ja) * 2019-09-20 2021-03-25 日東電工株式会社 偏光膜の製造方法、および偏光フィルムの製造方法
CN114080416A (zh) * 2019-09-20 2022-02-22 日东电工株式会社 偏光膜的制造方法、及偏振膜的制造方法
WO2021054356A1 (ja) * 2019-09-20 2021-03-25 日東電工株式会社 偏光膜の製造方法、および偏光フィルムの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040247A (ja) * 2000-07-21 2002-02-06 Nitto Denko Corp 偏光板及びそれを用いた液晶表示装置
JP2002040256A (ja) * 2000-07-31 2002-02-06 Nitto Denko Corp 偏光板及びそれを用いた液晶表示装置
WO2011125958A1 (ja) * 2010-03-31 2011-10-13 住友化学株式会社 偏光性積層フィルム、偏光板、およびそれらの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894537B2 (ja) * 2001-10-11 2007-03-22 日東電工株式会社 反り応力の測定方法およびそれを用いた偏光板の製造方法
JP2005222013A (ja) * 2004-01-06 2005-08-18 Nitto Denko Corp 偏光板の製造方法、偏光板、光学フィルムおよび画像表示装置
JP4581690B2 (ja) * 2005-01-05 2010-11-17 住友化学株式会社 偏光フィルムの製造方法
JP4581689B2 (ja) * 2005-01-05 2010-11-17 住友化学株式会社 偏光フィルムの製造方法
US20070048457A1 (en) * 2005-08-25 2007-03-01 Fuji Film Corporation Producing method of film having coated layer, film having coated layer, optical film, polarizing plate and liquid crystal display
JP2007286331A (ja) * 2006-04-17 2007-11-01 Fujifilm Corp 光学補償シートならびに、これを用いた偏光板および液晶表示装置
JP2008129427A (ja) * 2006-11-22 2008-06-05 Sumitomo Chemical Co Ltd 偏光板およびその製造方法
CN101354457B (zh) * 2007-07-23 2010-06-30 达信科技股份有限公司 光学膜、其形成方法及包含该光学膜的显示装置
JP5105425B2 (ja) * 2008-01-31 2012-12-26 住友化学株式会社 偏光板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040247A (ja) * 2000-07-21 2002-02-06 Nitto Denko Corp 偏光板及びそれを用いた液晶表示装置
JP2002040256A (ja) * 2000-07-31 2002-02-06 Nitto Denko Corp 偏光板及びそれを用いた液晶表示装置
WO2011125958A1 (ja) * 2010-03-31 2011-10-13 住友化学株式会社 偏光性積層フィルム、偏光板、およびそれらの製造方法

Also Published As

Publication number Publication date
TWI570456B (zh) 2017-02-11
JP5722255B2 (ja) 2015-05-20
KR20140138647A (ko) 2014-12-04
CN104136948B (zh) 2016-08-24
JP2013178356A (ja) 2013-09-09
TW201339663A (zh) 2013-10-01
CN104136948A (zh) 2014-11-05
KR101764965B1 (ko) 2017-08-03

Similar Documents

Publication Publication Date Title
JP5722255B2 (ja) 偏光板の製造方法
KR101606594B1 (ko) 편광 필름의 제조 방법, 편광판 및 광학 적층체
KR101483793B1 (ko) 편광 필름의 제조 방법 및 편광판의 제조 방법
JP5257645B2 (ja) 偏光フィルムの製造方法および偏光板の製造方法
KR101553411B1 (ko) 편광 필름, 편광판 및 이들의 제조 방법
KR101638196B1 (ko) 편광 필름의 제조 방법
KR20180105604A (ko) 편광자의 제조 방법
JP4323269B2 (ja) 偏光フィルムの製造方法
JP2009237124A (ja) 偏光フィルムの製造方法およびその用途
JP2005227650A (ja) 偏光フィルムの製造方法、偏光板および光学積層体
JP2005084506A (ja) 偏光フィルムとその製造方法、偏光板および光学積層体
WO2013133063A1 (ja) 偏光板の製造方法
CN107340558B (zh) 偏振板及其制造方法以及图像显示装置
JP4754510B2 (ja) 偏光子の製造方法
JP4421886B2 (ja) ヨウ素系偏光フィルムの製造方法および偏光板の製造方法
JP4581689B2 (ja) 偏光フィルムの製造方法
JP4483329B2 (ja) 偏光フィルムの製造方法
JP6636729B2 (ja) 偏光フィルム、偏光板、及び偏光フィルムの製造方法
KR20100114388A (ko) 편광자의 제조방법, 편광자 및 이것이 구비된 편광판
JP2005173216A (ja) 偏光フィルムの製造方法、偏光板の製造方法および光学積層体の製造方法
JP2009237096A (ja) 偏光フィルムの製造方法、並びに偏光板および光学積層体
JP7430745B2 (ja) 偏光板およびその製造方法
WO2023218822A1 (ja) 偏光膜の製造方法
JP2020052405A (ja) 偏光フィルム、偏光板、及び偏光フィルムの製造方法
JP2019066502A (ja) 偏光板及びその製造方法、並びに表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147023506

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754867

Country of ref document: EP

Kind code of ref document: A1