WO2013128663A1 - 溶接トランス、溶接トランス組体、溶接装置、および抵抗溶接方法 - Google Patents

溶接トランス、溶接トランス組体、溶接装置、および抵抗溶接方法 Download PDF

Info

Publication number
WO2013128663A1
WO2013128663A1 PCT/JP2012/066646 JP2012066646W WO2013128663A1 WO 2013128663 A1 WO2013128663 A1 WO 2013128663A1 JP 2012066646 W JP2012066646 W JP 2012066646W WO 2013128663 A1 WO2013128663 A1 WO 2013128663A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
coil
negative
positive
electrode plate
Prior art date
Application number
PCT/JP2012/066646
Other languages
English (en)
French (fr)
Inventor
甲斐 孝治
和生 寳山
煕 永井
一宏 鈴木
Original Assignee
株式会社 向洋技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 向洋技研 filed Critical 株式会社 向洋技研
Priority to AU2012371845A priority Critical patent/AU2012371845B2/en
Priority to EP12870286.7A priority patent/EP2749373B1/en
Priority to US13/813,174 priority patent/US9202622B2/en
Priority to KR1020137032926A priority patent/KR101417791B1/ko
Publication of WO2013128663A1 publication Critical patent/WO2013128663A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • H01F38/085Welding transformers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F2027/408Association with diode or rectifier

Definitions

  • the present invention relates to a large-capacity welding transformer, a welding transformer assembly, a welding apparatus, and a resistance welding method which are used for resistance welding and enable high quality welding in a short time.
  • Patent Document 1 There is known a technology that enables control of a welding current with high accuracy by controlling a primary current of a welding transformer for a resistance welding machine with an inverter (see Patent Document 1). In addition, there is also known a technology that enables higher-speed control by devising a winding structure of a welding transformer applied to this known technology (see Patent Document 1). Resistance welding is widely spread in various industrial fields including automobile and other vehicle manufacturing industries. That is, it is generally used, for example, in bonding of metal members and the like constituting the casings of various devices in various industrial fields. In those industries, in order to overcome competition on a global level, productivity improvement is considered a prerequisite. Furthermore, development of energy saving technology to reduce CO 2 from the viewpoint of global environmental protection is also an urgent issue. However, conventional resistance welding methods for steel plates having poor weldability have a tendency to go against productivity and energy saving. Then, various resistance welding methods suitable for various applications have already been developed (see Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4).
  • FIG. 23 is a cross-sectional view of the main part of the welding portion of the resistance welding device.
  • the workpieces 120A and 120B such as steel plates stacked on each other are pressed by the electrodes 122A and 122B to flow a current. Joule heat is generated at the contact portion of the workpieces 120A and 120B, and a part of the workpieces 120A and 120B is melted to form the nugget 124.
  • spot welding, seam welding, etc. as a welding method to which this method is applied.
  • the calorific value at the time of welding can be expressed by the following equation.
  • Heat quantity 0.24i 2 rt
  • i Current value (unit A amperes)
  • r Resistance of welded material (unit ohm)
  • t Power on time (units second)
  • Calorific value calorific value generated (per unit calorie. When unit is measured in joules, 0.24 in the equation disappears and the right side is simply i 2 rt)
  • the best condition is specified by RWMA (American Resistance Welding Manufacturers Association).
  • RWMA American Resistance Welding Manufacturers Association
  • the current application time is 160 to 640 msec (milliseconds) (8 to 32 cycles), and the welding current is 7800 to 17400 A (amps).
  • Weldability is poor for steel plates whose plating thickness is increased to enhance the anti-sustaining effect, and high-tensile steel plates whose strength is increased. Since materials having poor weldability are used for many products, the current-carrying time tends to be longer as such materials to be welded are frequently used. In known welding techniques, shortening of the welding time has been a major issue in resistance welding of such a large current.
  • the present invention has been made to address the problems as described above. That is, according to the present invention, the welding current of a large value can be stably secured even when controlling the primary current at a high frequency, and the magnetic saturation can be suppressed, and the power consumption can be largely reduced. It is an object of the present invention to provide a welding transformer assembly and a welding apparatus using this welding transformer. Another object of the present invention is to provide a resistance welding method that achieves dramatic improvement in productivity and energy saving in resistance welding.
  • a transformer unit in which a primary coil 12 and a secondary coil in which a positive side coil 14 and a negative side coil 16 are connected in series are wound around a magnetic core, and one end of one rectifying element 18 at one end of the positive side coil 14 And one end of the other rectification element 20 to one end of the negative side coil 16, and the other end of the one rectification element 18 and the other end of the other rectification element 20 are connected to the plus electrode 22; And a secondary circuit connecting the other end of the positive side coil and the other end of the negative side coil to the negative electrode 24 and connecting the positive electrode 22 and the negative electrode 24 to the welder 28, and the primary coil An inverter is supplied with a pulse-shaped primary current whose polarity is inverted at a constant repetition frequency by an inverter, and the positive coil 14 and the negative coil 16 have the primary coil 12 between them.
  • One end of the positive side coil 14 is electrically connected to the positive side conductor 30 via the first connecting electrode plate 44, and one end of the negative side coil 16 is electrically connected to the negative side conductor 32 via the second connecting electrode plate 46
  • the positive side conductor 30 and the negative side conductor 32 are disposed in intimate contact with each other via the insulating layer 31, and the rectifying elements 18 and 20 are provided on both sides of the positive side conductor 30 and the negative side conductor 32.
  • the first electrode plate 34 and the second electrode plate 36 are electrically connected by the third electrode plate 38, and the third electrode plate 38 is connected to the positive electrode 22.
  • a negative electrode 24 is connected to the other end of the positive side coil and the other end of the negative side coil.
  • ⁇ Configuration 5> In the welding transformer described in Configuration 1, a coil unit coaxially wound so that the negative coil 16 is disposed at the center, the primary coil 12 is disposed thereon, and the positive coil 14 is disposed at the outermost periphery , The positive side coil 14 is disposed at the center, the primary coil 12 is disposed thereon, and the coil unit coaxially wound so as to dispose the negative side coil 16 at the outermost periphery is disposed on the magnetic core And a welding transformer.
  • ⁇ Configuration 6> In the welding transformer described in Configuration 5, a first coil coaxially wound so that the negative coil 16 is disposed at the center, the primary coil 12 is disposed thereon, and the positive coil 14 is disposed at the outermost periphery. A unit and a second coil unit coaxially wound so that the positive side coil 14 is disposed at the center, the primary coil 12 is disposed thereon, and the negative side coil 16 is disposed at the outermost periphery; A welding transformer characterized in that it is arranged alternately without gaps in the axial direction of the magnetic core.
  • the plurality of positive side coils 14 and the plurality of negative side coils 16 are alternately arranged so as to be wound around the parallel portion 25 a of the annular magnetic core 25 and to be sandwiched one by one in the gaps 12 a provided in the primary coil 12.
  • the arrayed secondary coils 14 and 16 and the plurality of positive side coils 14 may all be connected in parallel, or all or part or all may be connected in series, and the plurality of negative side coils 16 may all be connected in parallel. And the positive coil 14 and the negative coil 16 such that the plurality of positive coils 14 and the negative coils 16 connected in series are connected in series with each other. And a connection base 62 for supporting and fixing all the positive side coil 14 and the negative side coil 16 on one side by the conductor group.
  • One end of the plurality of positive side coils 14 is electrically connected to the first connecting electrode plate 44 extending in the direction parallel to the parallel portion 25 a of the annular magnetic core 25 on the other surface side of the connection base 62.
  • One end of the negative side coil 16 is electrically connected to the second connecting electrode plate 46 extending in a direction parallel to the parallel portion 25 a of the annular magnetic core 25 on the other surface side of the connection base 62. And the other end of the negative side coil 16 are both The other side of the connection base 62 is electrically connected to the third connecting electrode plate 48 extending in a direction parallel to the parallel portion 25 a of the annular magnetic core 25, and the first connecting electrode plate 44 has a positive side conductor 30 are connected, the negative side conductor 32 is connected to the second connecting electrode plate 46, and the other side of the connection base 62 is formed by the positive side conductor 30 and the negative side conductor 32.
  • a pair of conductor plates are formed so as to overlap each other through the insulating layer 31 disposed in the boundary surface extending in the direction away from the surface in the vertical direction, and sandwiched between the positive side conductor 30 and the first electrode plate 34.
  • the negative coil 16 is disposed at the center of the annular magnetic core 25 which is constituted by the parallel portion 25a and the U-shaped curved portions 25b at both ends, and the primary coil is disposed thereon.
  • a coil 12 is disposed, and a first coil unit coaxially wound so as to dispose the positive side coil 14 at the outermost periphery, and the positive side coil 14 disposed at the center, and the primary coil 12 is formed thereon
  • the side coils 14 are all connected in parallel, or all or part are connected in series, and the plurality of negative side coils 16 are all connected in parallel or all or part are connected in series,
  • the connection base 62 supports and fixes all the positive side coils 14 and the negative side coils 16 on one side by a group, and one end of the plurality of positive side coils 14 is the other side of the connection base
  • the third connecting electrode plate 48 extends in a direction parallel to the parallel portion 25 a of the annular magnetic core 25 and is electrically connected to the first connecting electrode plate 44, and the positive side conductor 30 is connected to the first connecting electrode plate 44. Is connected to the negative side conductor 32, and the positive side conductor 30 and the negative side conductor 32 are disposed on the other side of the connection base 62 at the boundary surface extending in the direction away from the other side.
  • a pair of conductor plates stacked together through the formed insulating layer 31 is formed, and sandwiched between the positive side conductor 30 and the first electrode plate 34, and the negative electrode is brought into contact with the positive side conductor 30 to make the first electrode plate 34 with the positive electrode in contact with the positive electrode 34, and the negative side conductor 32 and the second A rectifying element 20 in which a negative electrode is brought into contact with the negative side conductor 32 and a positive electrode is brought into contact with the second electrode plate 36 by being sandwiched by the electrode plate 36, and the first electrode plate 34 and the second electrode plate 36 are supported. And a third electrode plate 38 electrically connecting the two.
  • connection base 62 has a hollow portion, and the hollow portion constitutes a refrigerant passage.
  • each of the positive side coil 14, the negative side coil 16 and the connection base 62 has a hollow portion, and each hollow portion is connected to a pipe to constitute a refrigerant passage Welding transformer characterized by
  • connection base 62 supports two side surfaces of the coil group in a state in which the positive side coil 14 and the negative side coil 16 are interposed one by one in the gap 12 a of the primary coil 12.
  • the welding transformer is characterized in that it is formed in an L-shaped cross section.
  • ⁇ Configuration 12> A welding transformer assembly in which two or more welding transformers according to any one of constitutions 1 to 11 are combined.
  • a positive electrode 22 In the welding transformer assembly according to the twelfth aspect, a positive electrode 22, a negative electrode 24, a second electrode other than the two side surfaces parallel to a surface extending in a direction away from the other surface of the connection base 62 in the direction perpendicular thereto.
  • a welding apparatus comprising the welding transformer according to any one of constitutions 1 to 11.
  • a welding apparatus in which high frequency alternating current is supplied to a primary coil of a welding transformer, current generated in a secondary coil is converted to DC, and supplied to an electrode, and a welding control power supply device, a welding transformer, a main body of a resistance welding machine and welding conditions
  • the welding control power supply reads out data specifying the level of welding current and supply timing from the welding condition database stored in the storage device, and supplies the welding current to the welding material through the pair of electrodes.
  • the portion from which the current increase rate is maximum from the welding current supply start time t0 to the subsequent time t1 is called the start-up control period T1
  • the subsequent time t1 is
  • the period for maintaining the current at a predetermined level close to the peak current value C1 until time t2 is called peak level control period T2
  • the period from time t2 to the current cutoff time t3 is the temperature maintenance control period T3.
  • the welding control power supply device sets the start-up control period T1 to 10 milliseconds or less and sets (T1 + T2) time of the sum of the start-up control period T1 and the peak level control period T2 to 15 milliseconds or less. And controlling the welding current.
  • a welding apparatus in which high frequency alternating current is supplied to a primary coil of a welding transformer, current generated in a secondary coil is converted to direct current, and supplied to an electrode, the resistance welding machine main body, welding transformer, welding control power supply device and storage device And the resistance welding machine main body includes a pair of electrodes for pressing the welding materials stacked one on another to pass a welding current, and a mechanism for applying a desired pressing force to these electrodes, and the welding transformer has a parallel portion An annular magnetic core 25 constituted by U-shaped curved portions 25b at both ends 25a, and a primary coil 12 divided into a plurality of portions and divided and wound in a plurality of portions on the parallel portion 25a of the annular magnetic core 25 A plurality of positive side coils 14 and a plurality of negatives are wound around the parallel portion 25a of the annular magnetic core 25 together with the primary coil 12, and one by one in each of the gaps 12a provided in the primary coil 12.
  • the positive side coil 14 and the negative side are connected such that the plurality of connected positive side coils 14 and the plurality of negative side coils 16 are connected in series with each other.
  • a conductor group for electrically connecting between the terminals with the coil 16 is provided, and a connection base 62 for supporting and fixing all the positive side coil 14 and the negative side coil 16 on one side by the conductor group is provided.
  • one end of the plurality of positive side coils 14 is electrically connected to a first connecting electrode plate 44 extending in a direction parallel to the parallel portion 25 a of the annular magnetic core 25 on the other surface side of the connection base 62.
  • the plurality of negative sides One end of the coil 16 is electrically connected to the second connecting electrode plate 46 extending in a direction parallel to the parallel portion 25a of the annular magnetic core 25 on the other surface side of the connection base 62, and the positive side coil 14 and the negative side
  • the other ends of the side coils 16 are both electrically connected to the third connecting electrode plate 48 extending in a direction parallel to the parallel portion 25 a of the annular magnetic core 25 on the other surface side of the connection base 62,
  • the positive electrode 30 is connected to the connecting electrode plate 44
  • the negative electrode 32 is connected to the second connecting electrode plate 46
  • the connection base 62 is formed by the positive electrode 30 and the negative electrode 32.
  • a pair of conductor plates are formed on the other surface side of the other through the insulating layer 31 disposed on the boundary surface extending in the direction separating vertically from the other surface, and the positive side conductor 30 and the first pole are formed.
  • the negative electrode is brought into contact with the positive side conductor 30 by being sandwiched by the plate 34
  • the welding control power source device includes: a rectifying element 20 in contact with a positive electrode; and a third electrode plate 38 supporting the first electrode plate 34 and the second electrode plate 36 and electrically connecting the two.
  • T1 The portion with the largest current increase rate from the supply start time t0 to the subsequent time t1 is referred to as the start-up control period T1
  • the current at a predetermined level close to the peak current value C1 from the subsequent time t1 to the time t2 is Peak maintenance period
  • T3 the welding control power supply device has a rise control period T1 of 10 milliseconds or less.
  • the welding current is controlled based on the data held by the storage device such that the (T1 + T2) time of the sum of the start control period T1 and the peak level control period T2 is 15 milliseconds or less.
  • the storage device is configured to store a welding condition database that defines a control mode of welding in the welding control power supply device.
  • a welding apparatus in which high frequency alternating current is supplied to a primary coil of a welding transformer, current generated in a secondary coil is converted to direct current, and supplied to an electrode, the resistance welding machine main body, welding transformer, welding control power supply device and storage device And the resistance welding machine main body comprises a pair of electrodes for pressing the welding materials which have been superposed and passing a welding current, and a mechanism for applying a desired pressing force to these electrodes, and the welding transformer is
  • the next coil is configured to include the positive side coil 14 and the negative side coil 16, and the negative side coil 16 is disposed at the center with the annular magnetic core 25 formed by the parallel portion 25a and the U-shaped curved portions 25b at both ends.
  • first coil unit coaxially wound so as to dispose the primary coil 12 thereon and to dispose the positive coil 14 at the outermost periphery, and the positive coil 14 disposed at the center
  • the plurality of positive coils 14 are all connected in parallel, or all or part are connected in series, and the plurality of negative coils 16 are all connected in parallel or all or part are connected in series, It has a conductor group for electrically connecting the terminals of the positive coil 14 and the negative coil 16 so that the plurality of positive coils 14 connected and the plurality of negative coils 16 are connected in series with each other, And a connection base 62 for supporting and fixing all the positive side coils 14 and the negative side coils 16 on one side by the conductor group, and one end of the plurality of positive side coils 14 is the connection base 62.
  • the other surface side is electrically connected to a first connecting electrode plate 44 extending in a direction parallel to the parallel portion 25 a of the annular magnetic core 25, and one end of the plurality of negative coils 16 is the other of the connection base 62. It is electrically connected to the second connecting electrode plate 46 extending in a direction parallel to the parallel portion 25a of the annular magnetic core 25 on the surface side, and the other ends of the positive side coil 14 and the negative side coil 16 both are the connection base
  • the other side of the surface 62 is electrically connected to the third connecting electrode plate 48 extending in a direction parallel to the parallel portion 25 a of the annular magnetic core 25, and the positive side conductor 30 is connected to the first connecting electrode plate 44.
  • the second connecting electrode plate 46 is connected to the negative side conductor 32, and the positive side conductor 30 and the negative side conductor 32 make the other surface of the connection base 62 perpendicular to the other side.
  • the insulating layer 31 disposed at the boundary surface extending in the direction away from the A commutated pair of conductor plates are formed and sandwiched between the positive side conductor 30 and the first electrode plate 34 so that the negative electrode is in contact with the positive side conductor 30 and the positive electrode is in contact with the first electrode plate 34
  • a third electrode plate 38 for supporting the second electrode plate 36 and electrically connecting the two, and the welding control power supply device is configured to weld current from the welding condition database stored in the storage device.
  • the welding control power supply sets the startup control period T1 to 10 milliseconds or less, and the sum of the startup control period T1 and the peak level control period T2 T1 + T2) is configured to control the welding current based on data held by the storage device such that the time is 15 milliseconds or less, the storage device controlling the welding in the welding control power supply device
  • a welding condition database defining an aspect is stored.
  • connection base 62 has a hollow portion, and the hollow portion constitutes a refrigerant passage.
  • each of the positive side coil 14, the negative side coil 16, and the connection base 62 has a hollow portion, and each hollow portion is connected to a pipe.
  • a welding apparatus comprising a refrigerant passage.
  • connection base 62 is a coil in a state in which the positive side coil 14 and the negative side coil 16 are sandwiched in the gap 12a of the primary coil 12.
  • a welding device characterized in that it has an L-shaped cross section so as to support two side faces of a group.
  • each welding transformer assembly in which each positive electrode 22 connected to each third electrode plate 38 of each welding transformer is connected and fixed by a common positive electrode 64 and each negative electrode of each welding transformer is connected and fixed by a common negative electrode 66 is Welding device characterized in that
  • the plus electrode 22, the minus electrode 24, and the third electrode plate 38 are provided on surfaces other than the two side surfaces parallel to the surface extending in the direction away from the other surface of the connection base 62. And a welding transformer assembly in which the coolant supply port 74 is disposed.
  • ⁇ Configuration 24> A resistance welding method applied to a welding apparatus of a system in which high frequency alternating current is supplied to a primary coil of a welding transformer and current generated in a secondary coil is converted to direct current and supplied to an electrode.
  • the portion where the current increase rate is the largest until time t1 is called the start-up control period T1
  • the period during which the current of a predetermined level close to the peak current value C1 is maintained from time t1 to time t2 is peak level
  • the start-up control period T1 is 10 milliseconds or less
  • the start-up control period T1 is set.
  • time of the sum of T2 and peak level control period T2 is 15 milliseconds or less.
  • the (T1 + T2 + T3) time of the sum of the start control period T1, the peak level control period T2, and the temperature maintenance control period T3 is 50 milliseconds or less.
  • the rise control period T1 is set to 5 milliseconds or less
  • the (T1 + T2) time of the sum of the rise control period T1 and the peak level control period T2 is set to 15 milliseconds or less.
  • a resistance welding method characterized in that (T1 + T2 + T3) time of the sum of the start control period T1, the peak level control period T2 and the temperature maintenance control period T3 is set to 20 milliseconds or less.
  • the welding current between the rising control period T1 and the peak level control period T2 is a maximum welding current reaching a temperature not higher than the melting point and lower than the allowable value.
  • a method of resistance welding characterized in that it is supplied and then the welding current is tapered until an appropriately sized nugget is formed.
  • ⁇ Configuration 28> In the resistance welding method according to Configuration 27, the welding current is gradually decreased stepwise from the welding current value after the peak level control period T2 has elapsed to the end value of the welding current at the current interruption time t3 Resistance welding method.
  • a resistance welding method comprising: controlling a welding current at an initial stage of welding so as to reach a maximum value in seconds and terminating welding in an energization time of 50 milliseconds or less from the start of energization of the welding current.
  • ⁇ Effect of Configuration 1> The positive side conductor 30 and the negative side conductor 32 are closely attached via the insulating layer, and the primary coil 12 is disposed between the positive side coil 14 and the negative side coil 16 so that the commutation of the secondary circuit When the inductance is reduced, commutation time is shortened, and high frequency inverter control becomes possible.
  • ⁇ Effect of Configuration 2> By separately winding the primary coil, the positive side coil on the secondary side, and the negative side coil, coupling between the primary and secondary coils can be improved, and magnetic saturation due to a large current on the secondary side can be prevented.
  • ⁇ Effect of Configuration 3> The relationship among the primary coil 12, the positive side coil 14 and the negative side coil 16 can be equally spaced close to one another anywhere.
  • ⁇ Effect of Configuration 4> Both of the positive side coil 14 and the negative side coil 16 through which a large current flows are made simple one turn coils, the inductance is also minimized, and split winding is facilitated.
  • ⁇ Effects of configurations 5 and 6> Even when the negative side coil 16, the primary coil 12, and the positive side coil 14 are coaxially wound, the same effect as that described above can be obtained.
  • the relationship among the primary coil 12, the positive side coil 14 and the negative side coil 16 can be evenly arranged in close contact with each other at any place.
  • a refrigerant is supplied to the hollow portion of the connection base 62 to cool the positive side coil 14 and the negative side coil 16.
  • the primary coil 12 is arranged by the positive side coil 14 and the negative side coil 16 because the respective portions of the dividedly wound primary coil 12 are interposed between the plurality of positive side coils 14 and the plurality of negative side coils 16. It is possible to cool the entire transformer efficiently.
  • ⁇ Effects of configurations 9 and 10> The positive side coil 14, the negative side coil 16 and the connection base 62 are sufficiently cooled by the refrigerant.
  • connection base 62 formed in an L-shaped cross section improves the strength and the cooling efficiency.
  • connection base 62 formed in an L-shaped cross section improves the strength and the cooling efficiency.
  • ⁇ Effect of Configuration 26> Depending on the nature of the material, the total welding time can be compressed in a very short time. ⁇ Effect of Configuration 27> Although reducing the welding time as a whole makes it difficult to control the welding current, the method of supplying the maximum welding current initially to gradually reduce the welding current makes the control relatively easy. ⁇ Effect of Configuration 28> By gradually reducing the welding current, it is possible to control the welding temperature with high accuracy. ⁇ Effect of Configuration 29> Good welding can be performed even if the current application time is significantly reduced. Therefore, it is possible to realize the drastic improvement of productivity and energy saving by downsizing of the welding transformer, durability of the electrode, simplification of the cooling device and the like.
  • FIG. 13 is a connection diagram showing a circuit operation when a forward current flows in the rectifying element 18;
  • FIG. 10 is a connection diagram showing a circuit operation when a forward current flows in the rectifying element 20.
  • A shows a control pulse for controlling the current supplied to the primary side of the transformer by the inverter
  • b shows the primary current
  • c shows the welding current after rectification.
  • A shows a control pulse for controlling the current supplied to the primary side of the transformer by the inverter
  • (b) shows the primary current
  • (c) shows the welding current after rectification.
  • It is the disassembled perspective view and side view of an experiment example.
  • It is explanatory drawing which shows the electric current of the secondary circuit of the transformer in commutation time.
  • It is a perspective view which shows an example of the primary coil used by this invention, a secondary coil, and a magnetic core.
  • FIG. 7 is an exploded perspective view showing a further practical configuration of the welding transformer 10 of the first embodiment.
  • FIG. 6 is a perspective view of a positive side coil 14, a negative side coil 16, and a connection base 62.
  • FIG. 6 is an exploded perspective view of the first connecting electrode plate 44, the second connecting electrode plate 46, the third connecting electrode plate 48, and the like. It is a perspective view which shows the state after fixing each electrode plate to the connection base
  • FIG. It is a disassembled perspective view which shows the state in front of attaching the rectification element 18 or the rectification element 20.
  • FIG. It is a perspective view of the welding transformer which almost completed assembling. It is a perspective view of a welding transformer in the state where a plus electrode and a minus electrode were attached. It is a perspective view of the welding transformer assembly which combined the two welding transformers shown in FIG.
  • FIG. 6 is a side view showing the relationship between the positive side coil 14, the negative side coil 16, and the connection base 62.
  • 16 is a perspective view of a primary coil 12, a positive coil 14 and a negative coil 16 of a fourth embodiment. It is a principal part perspective view which shows the modification of arrangement
  • FIG. 18 is an explanatory diagram of a welding current control method of a seventh embodiment.
  • FIG. 1 is a connection diagram of a power supply circuit of a welding apparatus employed in the present invention.
  • a primary current which will be described later with reference to FIG. 4, is supplied to the primary coil 12 of the welding transformer 26.
  • the rectifier circuit employs single-phase full-wave rectification. This circuit itself is well known. Although it is not necessary to consider the polarity in the secondary coil itself, for convenience, the secondary coil will be referred to as a series connection of the positive side coil 14 and the negative side coil 16.
  • One end of the rectifying element 18 is connected to one end of the positive side coil 14, one end of the rectifying element 20 is connected to one end of the negative side coil 16, and the other end of the rectifying element 18 and the other end of the rectifying element 20 are collectively Connect to 22
  • the other end of the positive coil and the other end of the negative coil are connected via a connection point, and this connection point is connected to the negative electrode 24.
  • the plus electrode 22 and the minus electrode 24 are connected to the welder 28.
  • FIG. 2 shows the circuit operation when a forward current flows in the rectifying element 18.
  • FIG. 3 shows the circuit operation when a forward current flows in the rectifying element 20.
  • the equivalent inductance components that cause problems in circuit operation are added to FIGS. That is, the inductance of the positive side conductor 30 connecting the positive side coil 14 and the rectifying element 18, the negative side conductor 32 connecting the negative side coil 16 and the rectifying element 20, and the conductor inside the welder 28 is the performance of the welding apparatus It is thought to affect the The details will be described later.
  • FIG. 4 is a control pulse for controlling the current supplied to the primary side of the transformer with an inverter
  • (b) of FIG. 4 is a primary current
  • (c) of FIG. Indicates
  • a pulse of width W controlled by an inverter (not shown) is supplied to the primary coil a fixed number of times within a fixed time H, here a total of 10 times in the positive direction pulse and the negative direction pulse.
  • a current as shown in FIG. 4 (b) flows in the primary coil 12 (FIG. 1) of the transformer.
  • Full-wave rectification is performed on the secondary side of the transformer to generate a welding current as shown in FIG.
  • the welding current can be adjusted by increasing or decreasing the pulse width W shown in FIG. 4 (a).
  • the welding time can be adjusted by increasing or decreasing the number of times the balus is supplied.
  • the welding time can be finely adjusted by increasing the repetition frequency of the pulse. By increasing the power supplied to the primary coil, larger welding current can be extracted from the secondary coil.
  • the conventional welding apparatus is configured to supply a welding current of, for example, 200 ms to 700 ms at 10,000 amperes, but try to double the welding current to 20,000 amperes.
  • the welding apparatus has a very large power loss which is consumed by heat energy at places other than the welds. On the other hand, even if the welding current is doubled, the power consumption can be reduced to one fifth by shortening the welding time to one tenth. This makes it possible to achieve the same welding quality as the conventional welding at 10,000 amps.
  • control pulse for controlling the current supplied to the primary side of the welding transformer by the inverter has conventionally used one having a repetition frequency of about 1 kHz.
  • higher resolution control pulses are required.
  • the full-wave rectification type secondary circuit using two rectifying elements 18 and 20 as shown in FIG. 1 has a smaller number of rectifying elements, a smaller size, and less power loss than a circuit using a bridge. It is known to be suitable for welding equipment.
  • FIG. 5 is an exploded perspective view and a side view of the experimental example. Both (a) and (b) of FIG. 5 show an exploded perspective view on the left side and a side view after assembly on the right side.
  • the primary coil 12, the positive side coil 14, and the negative side coil 16 are wound around a magnetic core (not shown).
  • a hollow structure for supplying cooling water to the inside is adopted so that a large current can be taken out, and the positive side conductor 30 and the negative side conductor 32 are made of thick copper plates.
  • the rectifying elements 18 and 20 are disposed on both sides of a block in which the positive side conductor 30 and the negative side conductor 32 are overlapped with the thin insulating layer 31 interposed therebetween.
  • the rectifying elements 18 and 20 arranged in this manner are sandwiched between the first electrode plate 34 and the second electrode plate 36 from the outer surfaces having the same polarity.
  • the first electrode plate 34 and the second electrode plate 36 are electrically connected by the third electrode plate 38, and the plus electrode 22 is fixed to the third electrode plate 38.
  • a copper plate (not shown) is connected to a connection point between the positive side coil 14 and the negative side coil 16 to attach a negative electrode 24 (FIG. 1, FIG. 2, FIG. 3).
  • the primary coil 12 is disposed so as to be sandwiched between the positive side coil 14 and the negative side coil 16.
  • the third electrode plate 38 is disposed between the positive side conductor 30 and the negative side conductor 32.
  • the rectifying element 18 is sandwiched between the third electrode plate 38 and the positive side conductor 30.
  • the rectifying element 20 is sandwiched between the third electrode plate 38 and the negative side conductor 32.
  • the positive electrode 22 is fixed to the third electrode plate 38.
  • a copper plate (not shown) is connected to a connection point between the positive side coil 14 and the negative side coil 16 to attach a negative electrode 24 (FIG. 1, FIG. 2, FIG. 3).
  • FIG. 6 is an explanatory view showing the current of the secondary circuit of the transformer during the commutation time. Using this figure, the above experimental example is verified.
  • FIG. 6 three-dimensionally shows the connections of the positive side coil 14 and the negative side coil 16 that constitute the secondary coil, and the description will be given also in consideration of the positional relationship between the two.
  • the positive side coil 14 and the negative side coil 16 are wound on a continuous magnetic core (not shown), and the positive side conductor 30 and the negative side conductor 32 are drawn to the side, and the rectifier 18 and the rectifier 20 are formed. Connected to
  • the positive side conductor 30 and the negative side conductor 32 having substantially the same shape are in close contact with each other via the thin insulating layer 31.
  • the magnetic flux mutually cancels each other out, and the inductances of both are canceled. That is, the inductances of the positive side conductor 30 and the negative side conductor 32 appear to be minimal. Therefore, the commutation time can be further shortened.
  • the positive side coil 14 and the negative side coil 16 are disposed in close contact with each other as shown in FIG. 5A, as shown in FIG. 6, the positive side coil 14 and the negative side coil 16 are oriented in the C2 and C3 directions. It has been found that the inductances of these coils greatly affect the flowing current. That is, it has been found that the inductance of the positive side coil 14 and the negative side coil 16 delays the commutation time.
  • the time M from the start of the fall of the current of the primary coil to the end of the rise of the current of the opposite polarity becomes short. Fortunately.
  • the positive side coil 14 and the negative side coil 16 are disposed close to each other, the magnetic flux due to the large current flowing through the secondary coil is concentrated in the vicinity of the secondary coil to easily cause magnetic saturation.
  • FIG. 5B when the structure in which the primary coil 12 is sandwiched between the positive side coil 14 and the negative side coil 16 is adopted, the positional relationship between the primary coil 12 and the positive side coil 14 is the primary The positional relationship between the coil 12 and the negative coil 16 is the same, and no imbalance in magnetic coupling occurs. Further, by sandwiching the primary coil 12 between the positive side coil 14 and the negative side coil 16, the distance between the positive side coil 14 and the negative side coil 16 is increased, and an inductance for the current flowing during the commutation time is obtained. Can be made smaller. In addition, magnetic saturation is less likely to occur compared to the structure of FIG. However, in the example of FIG. 5 (b), since the distance between the positive side conductor 30 and the negative side conductor 32 is large, the inductance of the positive side conductor 30 and the negative side conductor 32 is greater than the example of FIG. Will also grow.
  • FIG. 7 is a perspective view showing an example of a primary coil, a secondary coil and a magnetic core used in the present invention.
  • the present invention has improved the structure of the transformer portion as follows in consideration of the above-described embodiments and the like.
  • the primary coil 12 is, for example, a multi-layered coil wound around a rectangular insulation wire as a magnetic core.
  • the secondary coil two one-turn coils obtained by cutting a copper plate into a C shape are connected in series and used.
  • (B) is the positive side coil 14 and
  • (c) is the negative side coil 16. These are wound around a magnetic core 25 as shown in (d).
  • the magnetic core 25 has an annular shape including a parallel portion 25a and U-shaped curved portions 25b at both ends.
  • the efficiency of the transformer is increased by lowering the magnetic resistance.
  • the primary coil 12, the positive coil 14, and the negative coil 16 are arranged without gaps in the parallel portion 25 a of the magnetic core 25 to minimize the leakage flux.
  • FIG. 7E shows an example of the conductor group structure of the connection base 62 for electrically connecting the coil groups.
  • the positive side coil 14 and the negative side coil 16 have hollow portions inside as shown by the broken lines. These are manufactured, for example, by molding a hollow pipe.
  • the conductor 78, the conductor 82, and the conductor 90 constitute a connection base 62 for electrically connecting the positive side coil 14 and the negative side coil 16. Further, hollow portions (not shown) are formed in the conductor 78, the conductor 82 and the conductor 90, respectively, and the refrigerant can flow through the hollow portions.
  • the conductor 78 is provided with the same number of protrusions 76 as the positive side coil 14.
  • the conductor 82 is provided with the same number of projections 80 as the negative side coil 16.
  • the conductor 90 is provided with branches 88 equal in number to the number of connection points of the positive side coil 14 and the negative side coil 16, a projection 84, and a projection 86.
  • Each branch 88 also has a hollow portion communicating with the hollow portion in the conductor 90.
  • Each protrusion is a pipe-like conductor and is fixed to the wall surface of each conductor.
  • the protrusion 76 is connected to one end of all the positive coils 14. That is, the projection 76 and the conductor 78 have a function of supplying a refrigerant such as cooling water to each coil through the hollow portion and a function of electrically connecting one end of the positive side coil 14 in parallel.
  • the protrusion 80 is connected to one end of all the negative side coils 16. That is, the projection 80 and the conductor 82 have a function of supplying a coolant such as cooling water to each coil through the hollow portion and a function of electrically connecting one end of the negative side coil 16 in parallel.
  • the protrusion 86 is connected to the other end (the connection point side) of all the positive side coils 14.
  • the projection 84 is connected to the other end (the connection point side) of all the negative side coils 16.
  • the branch 88 electrically connects the other end of the positive coil 14 and the other end of the negative coil 16. All branches 88 are integral with conductor 90.
  • the projections 84, the projections 86, the branches 88, and the conductors 90 have a function of discharging the refrigerant such as the cooling water from the coils through the hollow portion described above.
  • the projection 84, the projection 86, the branch 88 and the conductor 90 have a function of electrically connecting in parallel the connection point of the positive side coil 14 and the negative side coil 16.
  • the projections 84, the projections 86, the branches 88, and the conductors 90 may be replaced by hollows as described above, and may be provided with appropriate flow paths such as pipes that allow the refrigerant to flow.
  • connection base 62 The conductor 78, the conductor 82, and the conductor 90 which constitute the connection base 62 are integrated in a state in which an insulating paint or the like is coated. The state is shown in FIG. On the other hand, it is possible to make the shape of the connection base 62 close to a rectangular solid so as to further increase the contact efficiency between the conductor 78, the conductor 82, the conductor 90, and each coil to enhance the cooling efficiency. Such an example is shown in FIG.
  • FIG. 8 is an exploded perspective view and a side view showing the main part in the first embodiment of the welding transformer of the present invention.
  • a total of six pairs of three pairs in which the primary coil 12 is sandwiched by the positive coil 14 and the negative coil 16 are used to form a two-row coil group.
  • each coil sandwiched by the pair of the positive side coil 14 and the negative side coil 16 is each portion of the primary coil 12 configured by split winding. Since the figure becomes complicated, the coil group in the second row is indicated by a broken line. Moreover, the magnetic core 5 was also displayed with the broken line.
  • All of the separately wound primary coils 12 may be connected in series, or all or part of them may be connected in parallel.
  • the plurality of positive coils 14 may all be connected in parallel, or all or some may be connected in series.
  • the plurality of negative coils 16 may all be connected in parallel, or all or some may be connected in series.
  • the number of positive side coils 14 and negative side coils 16 may be increased as appropriate.
  • the plurality of positive coils 14 and the plurality of negative coils 16 are connected in series. One end of the positive side coil 14 is electrically connected to the positive side conductor 30 via the first connecting electrode plate 44. One end of the negative side coil 16 is electrically connected to the negative side conductor 32 via the second connecting electrode plate 46. The other end of the positive side coil 14 and the other end of the negative side coil 16 are electrically connected to the third connecting electrode plate 48.
  • the third connecting electrode plate 48 is connected to the negative electrode 24.
  • the first connecting electrode plate 44, the second connecting electrode plate 46, and the third connecting electrode plate 48 all extend in a direction parallel to the parallel portion 25a of the annular magnetic core 25.
  • a long conductor is used in the arrangement direction of the positive side coil 14, the primary coil 12 and the negative side coil 16.
  • the coil group, the connection base 62, and the connection conductor group are accommodated in a rectangular frame elongated in the same direction.
  • the coil group is supported and fixed on one surface side of the connection base 62.
  • connection substrates 62 are Both the surface side and the other surface side fit in a rectangular solid of the same thickness. Therefore, as described later with reference to FIG. 18 and the like, the shape can be made flat and compact.
  • the positive side conductor 30 and the negative side conductor 32 are stacked so as to be in close contact with the insulating layer 31 therebetween to form a block body.
  • the rectifying elements 18 and 20 are disposed on the left and right sides of the block body, and the outside is further sandwiched by the first electrode plate 34 and the second electrode plate 36.
  • the first plate 34 and the second plate 36 are electrically connected by the third plate 38.
  • the positive electrode 22 is fixed to the third electrode plate 38.
  • the first connecting electrode plate 44 and the second connecting electrode plate 46 are in close contact via the insulating layer 31.
  • These thin insulating layers 31 are, for example, thin insulating layers such as insulating paint impregnated layers.
  • connection base 62 is electrically connected between the plurality of positive side coils 14 and the plurality of negative side coils 16, and the first connecting electrode plate 44, the second connecting electrode plate 46 and the third connecting electrode plate 48. Arranged to get a connection.
  • the plurality of projections provided on the upper surface of the connection base 62 are electrically connected to the ends of the positive side coil 14 and the negative side coil 16. In the illustrated embodiment, these projections are cylindrical, and cooling water flows through the hollow portions of the positive coil 14 and the negative coil 16 through these projections.
  • connection base 62 can be arbitrarily designed as long as the same wire connection can be made.
  • connection base 62 is directly connected to the plurality of positive side coils 14 and the plurality of negative side coils 16, the positive side coil 14, the negative side coil 16 and the primary coil can be made strong if they are hollow and cooled. Can be cooled.
  • the positive side coil 14 and the negative side coil 16 can also be configured by a hollow copper plate.
  • the first connecting electrode plate 44 and the second connecting electrode plate 46 are disposed close to each other, and the positive side conductor 30 and the negative side conductor 32 are disposed close to each other.
  • the inductance of the conductor 30 and the negative side conductor 32 can be minimized.
  • the distance between the positive side coil 14 and the negative side coil 16 is separated, the inductance of the positive side coil 14 and the negative side coil 16 in the commutation time can be reduced. Therefore, the commutation time on the secondary side of the welding transformer can be effectively shortened. For this reason, the drive frequency of the inverter on the primary side of the welding transformer is increased to enable control with high resolution such that the repetition frequency of the pulse-like primary current extends to about 5 kHz to 50 kHz.
  • the primary coil 12 is disposed between the positive side coil 14 and the negative side coil 16
  • the balance of the magnetic coupling between the primary coil 12 and the positive side coil 14 or the negative side coil 16 is good, Stable and good welding current can be obtained.
  • the positive side coil 14 and the negative side coil 16 configured by connecting in parallel a one-turn coil through which a large current of the same phase flows are separated, an appropriate magnetic flux leakage occurs, so both coils are arranged close to each other
  • the magnetic saturation of the magnetic core 25 can be made less likely to occur.
  • FIG. 9 is an explanatory view showing the positional relationship between the primary coil, the positive coil and the negative coil in the embodiment of FIG.
  • the coil group (12, 14, 16) is viewed from the front, and the positive side conductor 30, the negative side conductor 32, etc. are viewed from the side.
  • This device has good adhesion between the primary coil 12, the positive coil 14 and the negative coil 16, and the balance is also optimally configured.
  • FIG. 9A in order from the top, each of the positive side coil 14, the primary coil 12, the negative side coil 16, the primary coil 12, the positive side coil 14, the primary coil 12, and so on. The coils are arranged.
  • FIG. 9 (b) illustrates only the part where the current flows effectively when the current of the positive side coil 14 is supplied to the welder side.
  • (C) of FIG. 9 illustrates only a portion where the current flows effectively when the current of the negative side coil 16 is supplied to the welder side.
  • any primary coil 12 is in close contact with any positive coil 14. Further, as shown in FIG. 9C, any primary coil 12 is in close contact with any one of the negative coils 16. This is because the positive coil 14 and the negative coil 16 are disposed so as to sandwich the divided primary coil 12 at all places on the magnetic core.
  • both the magnetic coupling between the primary coil 12 and the positive coil 14 and the magnetic coupling between the primary coil 12 and the negative coil 16 are good, and the positive coil 14 and the negative coil 16 are completely complete. It is balanced.
  • FIG. 10 is an explanatory view showing the positional relationship between the primary coil, the positive coil, the negative coil, and the magnetic core.
  • the magnetic core 25 is provided with U-shaped curved portions 25b at both ends thereof, and although the curved portions 25b are exposed, the coil group is wound around the parallel portions 25a without a gap. As a result, leakage flux is reduced and miniaturized.
  • FIG. 10A the structure and arrangement of the coil groups in two rows are completely the same. That is, the coils are arranged in the order of the positive side coil 14, the primary coil 12 and the negative side coil 16 from the left.
  • the coils are arranged in the order of the positive side coil 14, the primary coil 12 and the negative side coil 16 in order from the left in one example, and the other row is in the order from the left
  • the coils are arranged in the order of the primary coil 12 and the positive coil 14.
  • FIG. 10A shows a portion where two positive side coils 14 are adjacent to both ends of the magnetic core 25; There is a portion where two negative side coils 16 are adjacent to each other. In any case, the primary coil 12 is not interposed therebetween.
  • FIG. 10 there are portions where the positive side coil 14 and the negative side coil 16 are adjacent to each other at both ends of the magnetic core 25.
  • the primary coil 12 is not sandwiched. Thus, a portion may have a portion with inferior characteristics as compared to other portions. The purpose can be achieved by providing many places where the positive side coil 14, the primary coil 12 and the negative side coil 16 are arranged in this order as a whole.
  • FIG. 11 is a perspective view showing an example of connection of the secondary coil.
  • FIG. 11 (a) shows the connection of the embodiment of FIG. 10 (a)
  • FIG. 11 (b) shows the connection of the embodiment of FIG. 10 (b).
  • three pairs of the positive side coil 14 and the negative side coil 16 connected in series are arranged in order from the front of the figure in the direction of their central axes. . Then, one end of each pair of positive side coils 14 is connected to the first connecting electrode plate 44, and one end of the negative side coil 16 is connected to the second connecting electrode plate 46.
  • the connection of FIG. 11 (a) is realized by the arrangement and connection of conductors as described above with reference to FIG. 7 (e).
  • the positive side coil 14 and the negative side coil 16 are arranged side by side so that their central axes are parallel to form a pair. Then, four pairs of the positive side coil 14 and the negative side coil 16 arranged side by side are arranged such that the left and right relationship is sequentially interchanged in the direction along the central axis thereof. Focusing on the electrical connection relationship, one end of each of the positive side coil 14 and the negative side coil 16 is connected to the first connecting electrode plate 44 and the second connecting electrode plate 46 so as to be replaced in pairs. This connection is realized. The connection point between the positive side coil 14 and the negative side coil 16 is connected to the third connecting electrode plate 48.
  • the positive side coil 14 and the negative side coil 16 may not necessarily have the same number. Moreover, the thickness and shape of the individual coils may not necessarily be the same.
  • the positive side coil 14 (or coil group) and the negative side coil 16 (or coil group) are connected in series with each other. The connections between each coil and the plates are relatively complex as shown. In this case, for example, when conductor groups as shown in FIG. 8 are arranged three-dimensionally and wired, the entire transformer can be effectively operated by the cooling action of the refrigerant passing through the above-described hollow portion of the connection base 62. It becomes possible to cool.
  • the length of the conductor between each coil and the first connecting electrode plate 44 and the second connecting electrode plate 46 is short.
  • the first connecting electrode plate 44 or the second connecting electrode plate 46 and the positive side conductor 30 or the negative side conductor 32 connected thereto are longer than the coil size. Therefore, the inductance of this part becomes a problem. Therefore, as described above, the positive conductor 30 and the negative conductor 32 are disposed close to each other to reduce the inductance as much as possible.
  • the third connecting electrode plate 48 is disposed between the first connecting electrode plate 44 and the second connecting electrode plate 46. Not doing so is also effective in reducing the inductance.
  • FIG. 12 is an exploded perspective view showing a further practical configuration of the welding transformer 10 of the first embodiment. Seven sets of the positive side coil 14 and the negative side coil 16 are arranged. The primary coil 12 is disposed between the positive side coil 14 and the negative side coil 16. The conductor portion forming the input end 58 for supplying the primary current to the primary coil 12 is drawn laterally. The dividedly wound primary coils 12 are all connected in series.
  • the magnetic core 25 is mounted. Although the magnetic core 25 is divided into two, it is united and integrated by the binding band 60. Since the primary coil 12, the positive side coil 14 and the negative side coil 16 are disposed so as to cover the entire parallel portion 25a of the magnetic core 25, good characteristics are obtained with a small leakage flux.
  • FIG. 13 is a perspective view of the positive side coil 14, the negative side coil 16 and the connection base 62.
  • FIG. 14 is an exploded perspective view of the first connecting electrode plate 44, the second connecting electrode plate 46, the third connecting electrode plate 48, and the like.
  • FIG. 15 is a perspective view showing a state after fixing each connecting electrode plate to the connection base 62.
  • FIG. 16 is an exploded perspective view showing the rectifier 18 and the rectifier 20 just before mounting.
  • the positive side coil 14 and the negative side coil 16 are supported and fixed on one surface side of the connection base 62 by partially integrating the connection base 62 with the connection base 62.
  • FIG. 13A in the front row, the positive side coil 14, the negative side coil 16, the positive side coil 14, the negative side coil 16, the positive side coil 14, the negative side coil 16, the positive side sequentially from the left The coils 14 are arranged.
  • the negative side coil 16, the positive side coil 14, the negative side coil 16, the positive side coil 14, the negative side coil 16, the positive side coil 14, and the negative side coil 16 are arranged in order from the left There is.
  • the terminal 67, the terminal 68, and the terminal 69 are arranged in a line on the other surface side of the connection base 62, respectively.
  • One end of all the positive side coils 14 is connected to one of four terminals 67 inside the connection base 62.
  • One end of all the negative side coils 16 is connected to one of four terminals 68 inside the connection base 62.
  • the connection point of all the positive side coils 14 and the negative side coil 16 is connected to any one of the four terminals 69 inside the connection base 62.
  • the four terminals 67 are connected to the first connecting plate 44.
  • the four terminals 68 are connected to the second connecting plate 46.
  • the four terminals 69 are electrically connected to the third connecting plate 48.
  • the first connecting electrode plate 44 is integrated with the positive side conductor 30. Further, the second connection electrode plate 46 is integrated with the negative side conductor 32.
  • the first connecting electrode plate 44, the second connecting electrode plate 46, and the third connecting electrode plate 48 all have a shape extending in a direction parallel to the parallel portion 25a of the annular magnetic core 25.
  • many holes drawn in the component of each figure of FIG. 13 or less are for passing refrigerants, such as a cooling water, connect the pipe which is not shown in figure, and a cooling water etc. are supplied from the outside. Moreover, cooling water etc. are discharged from another hole.
  • the first connecting electrode plate 44, the second connecting electrode plate 46, and the third connecting electrode plate 48 are supported and fixed on the other surface side of the connection base 62.
  • the positive side conductor 30 and the negative side conductor 32 have a structure in which the other side of the connection base 62 extends in the direction perpendicular to the other side.
  • the other surface of the connection base 62 is partially exposed.
  • a refrigerant supply passage 72 which is a refrigerant passage for supplying the refrigerant from the holes is attached.
  • the rectifying element 18 and the rectifying element 20 are brought into close contact with the positive side conductor 30 and the negative side conductor 32 respectively, and sandwiched between the first electrode plate 34 and the second electrode plate 36.
  • connection base 62 When the refrigerant is supplied to the hollow portion of the connection base 62, the cooling of the connection base 62 is promoted by the refrigerant, and the positive coil 14 and the negative coil 16 are effectively cooled accordingly.
  • the primary coil 12 is arranged by the positive side coil 14 and the negative side coil 16 because the respective portions of the dividedly wound primary coil 12 are interposed between the plurality of positive side coils 14 and the plurality of negative side coils 16. It is possible to cool the entire transformer efficiently.
  • FIG. 17 is a perspective view of the welding transformer which has been substantially assembled.
  • FIG. 18 is a perspective view of a welding transformer in a state where positive and negative electrodes are attached. As shown in the drawing, the plus electrode 22 and the minus electrode 24 are fixed to one short side of the connection base 62 of the welding transformer 10. By configuring in this manner, the width in the short side direction of the connection base 62 can be sufficiently narrowed, and welding transformers of the same configuration can be overlapped and connected as described later.
  • a refrigerant supply plug 74 is attached to the third electrode plate 38 and the negative electrode 24. That is, both the third electrode plate 38 and the negative electrode 24 have hollow portions, and a refrigerant such as cooling water is supplied to the inside thereof. Moreover, those hollow portions are connected to the hollow portions of the connection base 62, the positive side coil 14 and the negative side coil 16 by piping, so that the entire welding transformer can be cooled.
  • a refrigerant supply plug 74 may be attached to the positive electrode 22.
  • the surface to which the third electrode plate 38 of the welding transformer 10 is fixed is taken as the P-side surface
  • the surface to which the negative electrode 24 is fixed is taken as the Q-side surface.
  • the opposite surface is referred to as the R-side surface
  • the surface opposite to the negative electrode 24 is referred to as the S-side surface.
  • the third electrode plate 38 may be provided on any of the surface on the P side, the surface on the Q side, and the surface on the S side.
  • the negative electrode 24 may be provided on any of the surface on the P side, the surface on the Q side, and the surface on the R side.
  • the refrigerant supply plug 74 may be provided on any of the P side, Q side, S side and R side.
  • FIG. 19 is a perspective view of a welding transformer assembly 11 in which two welding transformers shown in FIG. 18 are combined.
  • the portion of the plus electrode 22 is connected by the common plus electrode 64
  • the portion of the minus electrode 24 is connected by the common minus electrode 66.
  • two welding transformers can be connected in parallel to supply a large current.
  • the conductors and electrode plates described in FIGS. 12, 17 and 18 may be independent or integrated.
  • the third connecting electrode plate 48 and the negative electrode 24 may be integrated.
  • the first electrode plate 34, the second electrode plate 36, the third electrode plate 38, and the positive electrode 22 may be integrated in any combination.
  • the second connecting electrode plate 46 and the negative side conductor 32, and the first connecting electrode plate 44 and the positive side conductor 30 may be integrated.
  • each welding transformer is disposed on the same side.
  • two or more welding transformers can be combined and electrically and mechanically coupled and used by the common plus electrode 64 and the common minus electrode 66.
  • the primary coil 12, the positive side coil 14 and the negative side coil 16 are disposed on one side of the connection base 62, and an electrode plate or a rectifying element for electrical connection is disposed on the other side of the connection base 62. , The whole can be accommodated in the thickness of the coil portion.
  • the common positive electrode 64 and the common negative electrode 66 may be provided on any of the P side, the Q side, the S side, and the R side described with reference to FIG. 18.
  • the plurality of welding transformers are all connected with their side surfaces facing each other. .
  • FIG. 20 is a side view showing the relationship between the positive side coil 14, the negative side coil 16, and the connection base.
  • the side and positive coils 14 and the negative coil 16 are disposed on one surface of the connection base 62. This is the state of (a) of FIG.
  • the positive side conductor 30 and the negative side conductor 32, the rectifying element 18, the rectifying element 20, the first electrode plate 34, and the second electrode plate 36 are in this order Are superimposed on each other.
  • the first electrode plate 34 and the second electrode plate 36 are connected by a third electrode plate 38.
  • the positive side coil 14 and the negative side coil 16 are disposed so as to be stacked on one surface of the connection base 62. Then, for connection of the positive side coil 14 and the negative side coil 16, the connection base 62 is provided with the auxiliary connection base 63 along the direction intersecting with it. The positive coil 14 and the negative coil 16 are connected by the connection base 62 having such an auxiliary connection base 63, and connected to the positive conductor 30 and the negative conductor 32 on the other surface side of the connection base 62.
  • the welding transformer can be integrated into a flat and small size as a whole. Also, as described with reference to FIG. 19, a plurality of welding transformers can be stacked and connected in parallel and used. Further, the strength is improved by the connection base 62 formed in an L-shaped cross section, and the cooling efficiency is also improved.
  • FIG. 21 is a perspective view of the primary coil 12, the positive coil 14, and the negative coil 16 in the fourth embodiment.
  • the primary coil 12, the positive side coil 14 and the negative side coil 16 are arranged as close as possible on the magnetic core 25 to eliminate leakage flux and optimize the magnetic coupling between the coils.
  • the degree of magnetic coupling between the coils is enhanced by overlapping and winding the primary coil 12, the positive side coil 14 and the negative side coil 16.
  • FIG. 21A shows a first coil unit coaxially wound so that the negative coil 16 is disposed at the center, the primary coil 12 is disposed thereon, and the positive coil 14 is disposed at the outermost periphery. is there.
  • FIG. 21 (b) is a second coil unit coaxially wound so that the positive coil 14 is disposed at the center, the primary coil 12 is disposed thereon, and the negative coil 16 is disposed at the outermost periphery. is there.
  • Both the positive side coil 14 and the negative side coil 16 are one-turn coils having the same width as the primary coil 12. This is to eliminate the leakage flux and to enhance the magnetic coupling between the primary coil and the secondary coil.
  • the perspective view of the positive side coil 14 and the negative side coil 16 is shown to FIG.21 (c) and (d).
  • the first coil unit shown in FIG. 21 (a) and the second coil unit shown in FIG. make up the body. This makes it possible to minimize the leakage flux from adjacent coils arranged in the axial direction of the magnetic core.
  • the primary coil 12 is disposed between the positive side coil 14 and the negative side coil 16
  • the magnetic coupling between the positive side coil 14 and the negative side coil 16 can be reduced. Therefore, the inductance for the current flowing during the commutation time can be reduced, and the same effect as the embodiment described above can be obtained.
  • the imbalance of the characteristic of the positive side coil 14 and the negative side coil 16 does not make a problem, even a 1st coil unit or a 2nd coil unit single-piece becomes practical.
  • FIG. 21 (a) and FIG. 21 (b) When the ones shown in FIG. 21 (a) and FIG. 21 (b) are alternately arranged, when the positive side coil 14 and the negative side coil 16 having different winding diameters are connected in series or in parallel, , The inductance of each coil can be equalized. Further, since the positive side coil 14 and the negative side coil 16 are not directly adjacent to each other, the magnetic coupling between the positive side coil 14 and the negative side coil 16 can be reduced. Furthermore, compared with the welding transformer shown in the previous embodiment, the manufacturing cost of the positive side coil 14 and the negative side coil 16 can be reduced.
  • FIG. 22 is a main part perspective view showing a modification of the arrangement of the rectifying elements.
  • the rectifying element 18 and the rectifying element 20 are disposed with the positive side conductor 30 and the negative side conductor 32 interposed therebetween.
  • the first electrode plate 34 and the second electrode plate 36 are disposed on both sides thereof.
  • the first electrode plate 34 and the second electrode plate 36 are connected by the third electrode plate 38.
  • the positive side conductor 30 and the negative side conductor 32 are disposed with the insulating layer 31 in between, and only the negative side conductor 32 is extended to one side. There is.
  • the rectifying element 20 is disposed at the extension of the negative side conductor 32.
  • the rectifying element 18 is sandwiched between the positive side conductor 30 and the first electrode plate 34.
  • the rectifying element 20 is sandwiched between the negative side conductor 32 and the second electrode plate 36.
  • the first electrode plate 34 and the second electrode plate 36 are formed of a continuous integral conductive plate. Accordingly, it can be considered as a structure in which the first electrode plate 34 and the second electrode plate 36 are connected by the third electrode plate 38. Accordingly, the electrical characteristics of the embodiment of FIG. 22 (b) are also substantially equivalent to the embodiment of FIG. 22 (a). For this reason, the inductance of the positive side conductor 30 and the negative side conductor 32 in commutation time can be minimized, and the same effect as the embodiment described above can be obtained.
  • the welding transformer and the welding apparatus according to the present invention having the above-described configuration have the following effects when viewed electrically and when viewed thermally.
  • the first connecting electrode plate 44 and the second connecting electrode plate 46 for electrically connecting the positive coil 14 and the rectifying element 18 are disposed close to each other, and the positive conductor 30 and the negative conductor 32 are connected. By arranging closely, the inductance of the secondary circuit at commutation time can be minimized, and commutation time can be shortened.
  • the heat dissipation of the secondary coil can be improved by distributively arranging the secondary coil through which a large current flows and interposing the primary coil therebetween on the magnetic core.
  • the transformer that supplies a large current generates heat in both the primary coil and the secondary coil. Abnormal heat generation causes a failure such as deterioration of the insulator.
  • the secondary coil through which a large current flows is the most violently heated, but if it is formed into a hollow structure and cooled by supplying cooling water to the inside, the temperature can be lowered compared to the primary coil. Therefore, the primary coil sandwiched by the secondary coils is also cooled by the cooling water flowing through the secondary coils. With the above structure, the primary coil can be cooled efficiently.
  • a coil group can be disposed on one surface side of the connection base, and an electrode plate or the like can be disposed on the other surface side, so that a flat and compact shape as a whole can be obtained. Therefore, a small-sized, large-capacity welding transformer can be easily realized.
  • the welding apparatus of the present invention is not limited to the above embodiment.
  • a copper plate was illustrated for connection of a secondary circuit and an example which connected each part by screwing etc. was shown, for example, positive side coil 14 and the 1st connection pole plate 44 may be unified.
  • the first connecting electrode plate 44 and the positive side conductor 30 may be integrated.
  • the first electrode plate 34, the second electrode plate 36, and the third electrode plate 38 may be integrated, for example, as in the embodiment of FIG. 22 (b).
  • the relationship between the negative coil 16 and the connecting electrode plate is the same as in the positive coil.
  • Each electrode plate may be plate-like or rod-like. It is preferable to provide a through hole for supplying cooling water to the inside of each secondary coil or electrode plate.
  • FIG. 24 is a block diagram of a welding apparatus according to the present invention
  • FIG. 25 is a circuit diagram illustrating a welding control power supply device portion of the welding apparatus.
  • FIG. 25 a connection example of the welding control power supply 112, the welding transformer 114, and the resistance welding machine main body 118 is shown.
  • the welding apparatus for carrying out the resistance welding method according to the present invention applies a pair of electrodes 122A, 122B which apply welding current by pressing the welding materials 120A, 120B which are overlapped,
  • a resistance welder body 118 is provided that provides the electrodes 122A, 122B with the desired pressure.
  • the welding control power supply 112 and the welding transformer 114 are for supplying a desired welding current to the welding materials 120A and 120B pressurized by the resistance welding machine main body 118 via the electrodes 122A and 122B.
  • the storage device 116 storing the welding condition database stores data specifying the welding current level and the supply timing of the welding control power supply 112.
  • the joint surfaces of the two welding materials 120A and 120B between the pair of electrodes 122A and 122B are melted to generate the nugget 124.
  • the end face of the electrode in contact with the welding material has, for example, a spherical shape or a loose conical shape.
  • the nugget shape formed in the weld also conforms to the shape of the electrode end face, so it becomes substantially circular and has a disk shape as a whole.
  • the size of the nugget is indicated by its diameter (nugget diameter).
  • the welding control power supply 112 controls, for example, the secondary current of the welding transformer 114 with a resolution of 10 khz.
  • the welding transformer 114 can supply a welding current of about 5000A to 20000A.
  • the welding transformer 114 the welding transformer 10 to the welding transformer assembly 11 described with reference to FIGS. 1 to 22 can be applied.
  • the welding apparatus of FIG. 24 and the resistance welding method according to this apparatus will be specifically exemplified later. Since the conventional welding transformer is controlled at a resolution of about 1 kHz, this apparatus can control the welding current to increase or decrease the welding current at the initial stage of welding in a unit of time (resolution) of about 1/10 of the conventional.
  • FIG. 26 is an explanatory view showing the time change of the welding current and the displacement amount of the electrode accompanying the current flow by the resistance welding method according to the present invention.
  • the electrode displacement amount is a displacement amount of the electrode following the expansion and contraction of the material to be welded under pressure by the electrode.
  • the electrode displacement increases due to the thermal expansion of the material to be welded.
  • the amount of displacement of the electrode decreases.
  • a welding current is supplied to the welding material as shown in FIG. 23, the welding material starts melting due to the current flowing to the contact portion between the welding materials.
  • the welding current at the initial stage of welding is controlled so that the welding current reaches a maximum value within 5 msec (milliseconds) from the start of energization, and welding is performed in an energization time of 50 msec or less finish.
  • FIG. 26 shows the growth process of the welded portion when the welding current is rapidly raised to the maximum value within 5 msec.
  • (B) of FIG. 26 shows the growth process of the welded portion when the welding current is slowly raised with the welding time of about 300 msec by the conventional method.
  • data is displayed only for 15 msec after the start of welding.
  • FIG. 26 shows by comparison how welding current at the initial stage of welding affects the weldability.
  • a cold-rolled steel plate (SPC) having a thickness of 1.2 mm is used as a welding material, and two steel plates are overlapped and welded.
  • the electrode displacement amount is 5 ⁇ m in 5 msec. In 15 msec, the target nugget can not be formed. From this data, it can be seen that the amount of displacement of the electrode differs by about 4 times simply by rapidly raising the welding current at the initial stage of welding.
  • FIG. 27 is a cross-sectional view of the main part of the welding portion, showing the state of the nugget 15 msec after the start of welding current supply.
  • (A) of FIG. 27 is a weld portion main part sectional view showing a state of the nugget 125 15 msec after the start of welding current supply in the case of welding as shown in (a) of FIG.
  • FIG. 27 (b) is a cross-sectional view of the main part of the weld showing the state of the nugget 125 15 msec after the start of the welding current supply in the case of welding as shown in FIG. 26 (b).
  • 27B when the nugget diameter and tensile strength were measured 15 msec after the start of welding current supply, in the case of FIG.
  • the nugget diameter D1 is 4 mm, and the tensile strength is 4.8 KN. (Kilonewton).
  • the nugget diameter D2 was 3 mm and the tensile strength was 3.0 KN.
  • a case exceeding this reference value is regarded as a good product, and a case less than this is regarded as a defective product.
  • the nugget diameter is a value close to the reference value.
  • the nugget diameter is considerably smaller than the reference value, and it takes more time to grow the nugget. That is, in the conventional case, a long welding current such as 300 msec is required.
  • FIG. 28 shows an example in which a cold-rolled steel plate (SPC) having a thickness of 1.2 mm is used as a material to be welded, two steel plates are stacked, and welding is performed for 40 msec.
  • SPC cold-rolled steel plate
  • the maximum nugget diameter is 4.17 mm
  • the maximum nugget depth is 1.73 mm
  • the amount of electrode displacement is maximum 89.8 ⁇ m.
  • FIG. 29 is a measurement example of nugget diameter and tensile strength when using an electrogalvanized steel plate having a thickness of 0.6 mm as a material to be welded.
  • Part A in the figure is an example using the welding method of the present invention. In the case of this example, the nugget diameter and the tensile strength are measured when welding is performed for a short time of 40 msec (two cycles).
  • Part B in the figure is an example using a conventional welding method. In the case of this example, the nugget diameter and tensile strength are measured when welding is performed for 220 msec (11 cycles).
  • the embodiment of the welding method of the present invention can form a nugget having the same size and the same strength in about 1/5 of the current example of the conventional welding method. This indicates that the welding method of the present invention can achieve dramatic improvement in productivity and energy saving as compared with the conventional welding method.
  • FIG. 30 is a measurement example of welding energy when using an electrogalvanized steel plate having a thickness of 0.6 mm as a material to be welded.
  • Part A in the figure is an example using the welding method of the present invention. In the case of this example, welding energy is measured when welding is performed for a short time of 40 msec (two cycles).
  • Part B in the figure is an example using a conventional welding method. In the case of this example, the welding energy when welding is performed for 220 msec (11 cycles) is measured.
  • FIG. 31 is an explanatory view comparing the temperature change of the central part of the weld according to the present invention and the conventional welding method, focusing on the welding energy.
  • curve B the welds slowly rise in temperature, and the formation of nuggets starts when the weld temperature exceeds the melting point of the weld material.
  • NT 2 hours the nugget grows to the proper size and stops the welding current here.
  • a nugget refers to a portion shaped like a meteorites (a disc shape with a substantially elliptical cross section), which refers to a portion melted and then solidified by welding, but here a melted state before it is solidified I will call it the nugget.
  • the temperature of the weld is rapidly raised in a short time. After exceeding the melting point, the temperature is rapidly raised to the allowable value (t.degree. C.) to rapidly grow nuggets. This allows the nugget to grow to an appropriate size in NT1 hours sufficiently shorter than NT2 hours.
  • the nugget grows to an appropriate size before the temperature is raised to the above-mentioned degree t. That is, nuggets can not be grown at high temperatures above the melting point.
  • the method of curve A the method of the present invention
  • the method of curve B the conventional method
  • FIG. 32 is an explanatory diagram comparing an example of temperature distribution around the nugget.
  • DT1 + NT1 time shown in FIG. 31 is 15 msec
  • DT2 + NT2 time shown in FIG. 31 is 100 msec or more.
  • the amount of heat that escapes from the weld to the outside per unit time is a substantially constant value determined by the structure of the weld and the cooling device.
  • metals with good thermal conductivity such as gold, silver, copper, and aluminum, metals such as iron, cobalt, nickel, chromium, and tin, and alloys containing these have a thermal conductivity of about 1 ⁇ 5. It is. When welding such a metal having a lower thermal conductivity at a large current of 5000 A or more, a tendency as shown in FIG. 32 is remarkably observed. According to the experiment, it was found that the temperature distribution as shown in (a) of FIG. 32 can be achieved when the time of DT1 + NT1 is 50 msec or less, preferably 20 msec or less.
  • the method of the present invention can significantly reduce energy losses, taking into account the welding time and the temperature rise around the weld.
  • a welding current of 13 V 5500 A was supplied for 300 msec.
  • 99.5% was wasted by heat loss because it supplied 150 times as much energy as the net energy necessary for nugget formation.
  • 5% of the total energy supplied is used for nugget formation, since only 13 msec of 14000 A welding current is supplied for 15 msec. Therefore, in this example, about eight times the efficiency can be realized.
  • FIG. 33 is an explanatory diagram of a welding current control method according to a seventh embodiment of the present invention. A more specific control method of the welding current will be described with reference to FIG.
  • the upper graph of FIG. 33 shows the time change of the welding current, the vertical axis shows the welding current (unit A), and the horizontal axis shows the passage of time (unit msec).
  • the lower graph in FIG. 33 shows a state in which the nugget diameter P (diameter of the melted portion) increases with time, and the vertical axis shows the nugget diameter or the nugget depth (unit mm).
  • the scales of the horizontal axes of the upper and lower graphs are matched.
  • FIGS. 33, 34, and 35 show the time change of the welding current when welding a cold-rolled steel plate is actually performed using a welding transformer described later.
  • the time axis of the graph in the figure is divided into four for the following explanation.
  • the portion where the current increase rate from the welding current supply start time t0 to the time t2 is maximum is referred to as a start-up control period T1.
  • a period in which a current of a predetermined level close to the peak current value C1 from time t2 to time t3 is maintained is referred to as a peak level control period T2.
  • a period from time t2 to the current interruption time t3 will be referred to as a temperature maintenance control period T3.
  • the period after the current interruption time t3 is a period during which the welded portion is allowed to cool naturally.
  • the startup control period T1 is 10 msec or less, preferably 5 msec or less.
  • the sum (T1 + T2) time of the start-up control period T1 and the peak level control period T2 is preferably 15 msec or less.
  • the temperature of the weld is raised to an acceptable value exceeding the melting point of the weld material.
  • the temperature is raised to the optimum temperature for the nugget to grow rapidly and normally.
  • the temperature maintenance control period T3 the temperature is maintained at a certain level or more until the nugget is formed.
  • (T1 + T2 + T3) is 50 msec or less, preferably 20 msec or less. This is to terminate the welding before the state of FIG. 32 (a) breaks down.
  • the peak current value C1 and the heating end current value C2 for raising the temperature of the welding material to an allowable value are selected according to the type of material.
  • the peak level control period T2 and the temperature maintenance control period T3 are also selected according to the nature of the material.
  • This data is included in the welding condition database shown in FIG. This data is read from storage 116 (FIG. 24) at the start of welding and is used for welding current control.
  • the amount of heat supplied to the resistance weld is proportional to the square of the current. Set the target temperature above the melting point and below the allowable value. As the current supplied is larger, the weld reaches the target temperature in a short time. After the weld reaches the target temperature, a nugget of appropriate size and depth can be formed if the temperature around it can be maintained for a time depending on the nature of the material. As a result, a weld of the desired strength is obtained.
  • the amount of heat that escapes from the weld in a fixed time is substantially constant, but this amount of heat is now referred to as Q.
  • Q this amount of heat
  • the temperature rise of the surrounding area can be suppressed and the temperature of the weld can be rapidly raised.
  • the amount of heat continues to be supplied even after the temperature of the weld reaches the target temperature, an appropriately shaped nugget can not be formed. There is also a risk that the molten metal will scatter.
  • the melting point is about 1500 degrees Celsius, but if the target temperature is set to around 1800 degrees Celsius, nuggets can be grown safely. There is a bad effect if it exceeds 2000 degrees Celsius. Therefore, the start control period T1 is set to be sufficiently short, and peak level control is performed when the temperature of the weld reaches the target temperature.
  • the welding transformer in the start-up control period T1, the welding transformer is controlled so as to reach the maximum current as fast as possible to increase the current rising speed.
  • the welding current approaches the peak current value C1
  • the control state if the control state is maintained as it is, the welding current may become excessive. Therefore, control is performed at time t1 so that the current value can be maintained without exceeding the peak current value C1. Adjust the current value.
  • the actual current value fluctuates slightly because it is extremely short and stable control is not easy.
  • the welding portion is set to the target value higher than the melting point.
  • the control is switched so as to supply a welding current sufficient to maintain the temperature of the weld in an appropriate range.
  • the control current is controlled to be lowered stepwise from the peak current value C1 to the heating end current value C2.
  • the temperature maintenance control period T3 is a time for waiting for the nugget to grow into an appropriate shape.
  • FIG. 34 shows the results of controlling a cold-rolled steel plate having the same plate thickness as above with a thickness of 1.0 mm at a peak current value C1 of 14000 A and a heating end current value C2 of 10000 A.
  • the start control period T1 is 3 msec
  • the sum (T1 + T2) of the start control period T1 and the peak level control period T2 is 9 msec
  • the temperature maintenance control period T3 is 6 msec
  • a good nugget is formed. That is, (T1 + T2 + T3) was 15 msec.
  • FIG. 35 shows the results when a stainless steel plate having a thickness of 1.0 mm is controlled at a peak current value C1 of 14000 A and a heating end current value C2 of 10000 A.
  • a good nugget having a start control period T1 of 3 msec, a sum (T1 + T2) of the start control period T1 and the peak level control period T2 of 6.5 msec, and a temperature maintenance control period T3 of 8.5 msec. was formed. That is, (T1 + T2 + T3) was 15 msec.
  • control can also be made to gradually reduce the welding current value according to the growth rate of the nugget. It is not easy to raise the current value up to several tens of thousands of amps in a short time such as several milliseconds, but it is not easy to control the current with such precision as rapidly reducing the current value to the target value after several milliseconds. Therefore, after rapidly raising the welding current within the range of the capacity of the welding transformer, the welding current is gradually switched and gradually reduced to the end of welding within this range of capacity. Below, the welding transformer which can perform such control is illustrated.
  • FIG. 36 is an explanatory view for explaining a specific operation of the welding transformer.
  • the welding transformer described using FIG. 25 is controlled at timing as shown in this figure.
  • the inverter generates a control pulse at the timing shown in FIG.
  • the control pulse switches and controls the primary current of the welding transformer.
  • the pulse period of switching is R msec in (a) of FIG. 36, and if the frequency is 10 kHz, the welding current is controlled with a resolution of 0.1 msec.
  • the primary current shown in (b) of FIG. 36 increases or decreases according to the switching pulse width W.
  • the welding current is controlled to an output close to the maximum up to 5 msec, and thereafter the welding current is maintained at the peak for 5 to 10 msec as in the above embodiment.
  • Resistance welding has been used in many industrial fields for many years, but has not undergone major technological innovation. Although the mainstream shifted from AC resistance welding to inverter resistance welding, the welding method was the same.
  • the resistance welding method of the present invention has an energy saving effect close to 1/10 and is very desirable for the preservation of the global environment. In addition, since the power-on time can be shortened to 1 ⁇ 5 to 1/10 or less and the productivity can be dramatically improved, significant technological innovation can be made.
  • the present invention only the vicinity of the weld portion is rapidly heated to a high temperature without heating the entire product to a high temperature, so the thermal deformation (strain due to heat) of the product is reduced and the product quality is improved. Furthermore, since it is not necessary to heat the surface of the product to high heat, burning and deformation due to overheating of the surface and the back surface of the weld are reduced, and a very important effect of maintaining the beauty of the material is obtained.
  • the present invention excellent in energy saving effect can be used in all industries.
  • shortening of the energizing time in mass production lines such as the automobile industry can dramatically reduce costs by improving productivity.
  • high precision control of welding in a minute time by the welding method of the present invention can greatly contribute to welding quality.
  • the notion of a completely new concept of resistance welding is a feature of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】高速で精密な大電流の溶接制御を可能にし消費電力も節減する。 【解決手段】環状磁心(25)と、分割巻きされた1次コイル(12)と、1次コイル(12)の各間隙(12a)に交互に1個ずつ挟み込まれた複数の正側コイル(14)と複数の負側コイル(16)とを備える。複数の正側コイル(14)と複数の負側コイル(16)とで2次コイルを構成する。正側コイル(14)は第1連結極板(44)を介して正側導体(30)に電気接続される。負側コイル(16)は第2連結極板(46)を介して負側導体(32)に電気接続される。正側コイル(14)と負側コイル(16)の接続部は第3連結極板(48)に電気接続される。薄い絶縁層(31)を挟んで、一方に正側導体(30)と整流素子(18)と第1極板(34)を配置する。他方に負側導体(32)と整流素子(20)と第2極板(36)とを配置する。第1極板(34)と第2極板(36)を第3極板(38)で電気接続する。小型大容量の溶接トランスを実現できる。

Description

溶接トランス、溶接トランス組体、溶接装置、および抵抗溶接方法
 本発明は、抵抗溶接に使用され、短時間で高品質な溶接を可能にする大容量の溶接トランス、溶接トランス組体、溶接装置、および抵抗溶接方法に関する。
 抵抗溶接機用溶接トランスの1次電流をインバータにより制御することによって、溶接電流を高精度で制御することを可能にした技術が公知である(特許文献1参照)。また、この公知技術に適用される溶接トランスの巻線構造を工夫することにより、さらに高速な制御を可能にする技術も公知である(特許文献1参照)。
 抵抗溶接は、自動車やその他の車両の製造業等を含む種々の産業分野で広く普及している。即ち、種々の産業分野で、例えば、各種装置の筐体を構成する金属部材などの接合などにも一般的に使われている。それらの産業では、世界レベルでの競争に打ち勝つために、生産性の向上が必須条件とされる。さらに、地球環境保護の観点からCO2 を削減する省エネルギー技術の開発も緊急な課題である。しかし、溶接性の悪い鋼板に対する、従来の抵抗溶接方法は、生産性や省エネルギーに逆行する様相を呈している。そして、既に、各種用途に適する様々な抵抗溶接方法が開発されている(特許文献1、特許文献2、特許文献3、特許文献4参照)。
特許第4687930号公報 特開2008-105041号公報 特開2009-291827号公報 特開2011-5544号公報
 大電流で短時間の溶接を可能にするには、溶接トランスの1次電流を高い周波数で制御する必要がある。これに加えて高品質な溶接を実現するには、この1次電流を従来の数倍から数十倍の周波数で制御することが望まれる。しかしながら、従来の溶接装置では、1次電流の周波数を従来の一般的値の数倍以上に上げていくと、所要の溶接電流が得られないという問題や、動作が不安定になるといった問題があった。さらにまた、大容量化をはかるために2次コイルの電流を大きくすると、磁気飽和によって溶接トランスに障害を生じるおそれもあった。
 図23は、抵抗溶接装置の溶接部の主要部断面図である。
 抵抗溶接では、図23に示すように、重ね合わせた鋼板等の被溶接材120A、120Bを電極122A、122Bで加圧して電流を流す。被溶接材120A、120Bの接触部位にジュール熱を発生させ、被溶接材120A、120Bの一部を溶解させてナゲット124を形成する。この方法を応用した溶接法にスポット溶接、シーム溶接等がある。溶接時の発熱量は以下の式であらわすことができる。
 熱量=0.24i2rt 
  式中の各値の意味;
 i: 電流値(単位 A アンペア) 
 r: 被溶接材の抵抗値(単位 オーム) 
 t: 通電時間(単位 秒) 
 熱量:発生する熱量(単位カロリー。単位をジュールで計ると、式中の0.24が消え、右辺は単に i2rt となる。) 
 例えば、板厚が0.8~3.2mmの軟鋼板の抵抗溶接では、最良条件がRWMA(アメリカ抵抗溶接製造者協会)により規定されている。この規定では、通電時間が160~640msec(ミリ秒)(8~32サイクル)、溶接電流が7800~17400 A(アンペア)である。防請効果を強めるためにメッキ厚を増した鋼板や、強度を増した高張力鋼板などは、溶接性が悪い。溶接性が悪い被溶接材が数多くの製品に利用されるため、このような被溶接材が多用されるに従って、通電時間はもっと長くなる傾向にある。既知の溶接技術では、こうした大電流の抵抗溶接において、溶接時間の短縮が大きな課題になっていた。
 本発明は、上述のような問題に対処するべくなされたものである。
 即ち、本発明は、1次電流を高い周波数で制御する場合においても安定的に大きな値の溶接電流が確保され、また、磁気飽和が抑制され、かつ、消費電力を大幅に節減可能な溶接トランス、この溶接トランスを使用した溶接トランス組体、および、溶接装置を提供することを目的とする。
 また、本発明は、抵抗溶接において飛躍的な生産性の向上と省エネルギーを実現する抵抗溶接方法を提供することを目的とする。
 以下の構成はそれぞれ上記の課題を解決するための手段である。
 〈構成1〉
 1次コイル12と、正側コイル14と負側コイル16とを直列接続した2次コイルとを、磁心に巻回したトランス部と、前記正側コイル14の一端に一方の整流素子18の一端を接続し、前記負側コイル16の一端に他方の整流素子20の一端を接続し、前記一方の整流素子18の他端と前記他方の整流素子20の他端をプラス電極22に接続し、前記正側コイルの他端と前記負側コイルの他端をマイナス電極24に接続し、前記プラス電極22と前記マイナス電極24を溶接機28に接続する2次回路とを備え、前記1次コイルには、インバータにより一定の繰り返し周波数で極性を反転させるパルス状の1次電流が供給されており、前記正側コイル14と前記負側コイル16とは、両者の間に前記1次コイル12を挟むように配置され、前記正側コイル14の一端は第1連結極板44を介して正側導体30に電気接続され、前記負側コイル16の一端は第2連結極板46を介して負側導体32に電気接続され、前記正側導体30と前記負側導体32とは、絶縁層31を介して密着するように配置され、前記正側導体30と前記負側導体32の両側に前記整流素子18、20を配置して、第1極板34と第2極板36で挟み、前記第1極板34と第2極板36は第3極板38により電気接続され、第3極板38にプラス電極22が接続され、前記正側コイルの他端と前記負側コイルの他端にはマイナス電極24が接続されていることを特徴とする溶接トランス。
 〈構成2〉
 構成1に記載の溶接トランスにおいて、前記正側コイル14と前記負側コイル16とを交互に配置し、それぞれの間に分割巻きした前記1次コイル12を配置し、分割した前記1次コイル12は、全て直列接続されるかもしくは全部または一部が並列接続され、前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、前記複数の正側コイル14と前記複数の負側コイル16とは相互に直列接続され、前記複数の正側コイル14の一端を第1連結極板44に接続し、前記複数の負側コイル16の一端を第2連結極板46に接続し、複数の正側コイル14の他端と複数の負側コイル16の他端を第3連結極板48に接続したことを特徴とする溶接トランス。
 〈構成3〉
 構成2に記載の溶接トランスにおいて、磁心上の全ての場所で、正側コイル14と負側コイル16が分割された1次コイルを挟むように配置されていることを特徴とする溶接トランス。
 〈構成4〉
 構成3に記載の溶接トランスにおいて、2次コイルには、銅板をC字状に切削加工したワンターンコイルを2個直列接続して使用することを特徴とする溶接トランス。
 〈構成5〉
 構成1に記載の溶接トランスにおいて、中心に負側コイル16を配置し、その上に1次コイル12を配置し、最外周に正側コイル14を配置するように同軸巻きされたコイルユニット、または、中心に正側コイル14を配置し、その上に1次コイル12を配置し、最外周に負側コイル16を配置するように同軸巻きされたコイルユニットを、磁心上に配置したことを特徴とする溶接トランス。
 〈構成6〉
 構成5に記載の溶接トランスにおいて、中心に負側コイル16を配置し、その上に1次コイル12を配置し、最外周に正側コイル14を配置するように同軸巻きされた第1のコイルユニットと、中心に正側コイル14を配置し、その上に1次コイル12を配置し、最外周に負側コイル16を配置するように同軸巻きされた第2のコイルユニットとを、磁心上に磁心の軸方向に交互に隙間なく配列したことを特徴とする溶接トランス。
 〈構成7〉
 高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置に適用される溶接トランスであって、平行部25aと両端のU字状の湾曲部25bにより構成される環状磁心25と、前記環状磁心25の平行部25aに、複数の部分に分けて間隙12aを空けて分割巻きされる1次コイル12と、前記1次コイル12と共に環状磁心25の平行部25aに巻回され、前記1次コイル12に設けられた前記各間隙12aに1個ずつ挟み込むように、複数の正側コイル14と複数の負側コイル16とを交互に配列した2次コイル14,16と、前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、前記複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、前記接続された複数の正側コイル14と前記複数の負側コイル16とが互いに直列接続されるように、前記正側コイル14と負側コイル16との端子間を電気接続する導体群が設けられ、かつ、前記導体群により、前記全ての正側コイル14と負側コイル16とを一方の面側に支持固定する接続基体62が設けられ、前記複数の正側コイル14の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第1連結極板44に電気接続され、前記複数の負側コイル16の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第2連結極板46に電気接続され、前記正側コイル14と負側コイル16の他端は、共に、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第3連結極板48に電気接続され、前記第1連結極板44には、正側導体30が連結され、前記第2連結極板46には、負側導体32が連結され、前記正側導体30と負側導体32とによって、前記接続基体62の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層31を介して重ね合わされた一対の導体板が形成され、前記正側導体30と第1極板34に挟まれて、前記正側導体30に負極を接触させ前記第1極板34に正極を接触させた整流素子18と、前記負側導体32と第2極板36に挟まれて、前記負側導体32に負極を接触させ前記第2極板36に正極を接触させた整流素子20と、前記第1極板34と前記第2極板36を支持し、両者を電気接続する第3極板38とを備えていることを特徴とする溶接トランス。
 〈構成8〉
 高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置に適用される溶接トランスであって、この2次コイルは正側コイル14と負側コイル16とを含んで構成され、平行部25aと両端のU字状の湾曲部25bにより構成される環状磁心25と、中心に前記負側コイル16を配置し、その上に1次コイル12を配置し、最外周に前記正側コイル14を配置するように同軸巻きされた第1のコイルユニットと、中心に前記正側コイル14を配置し、その上に前記1次コイル12を配置し、最外周に前記負側コイル16を配置するように同軸巻きされた第2のコイルユニットとを、前記環状磁心25の平行部25aに交互に隙間なく配列したコイルユニット配列体と、前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、前記複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、前記接続された複数の正側コイル14と前記複数の負側コイル16とが互いに直列接続されるように、前記正側コイル14と負側コイル16の端子間を電気接続をする導体群を有し、かつ、前記導体群により、前記全ての正側コイル14と負側コイル16とを一方の面側に支持固定する接続基体62を備え、前記複数の正側コイル14の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第1連結極板44に電気接続され、前記複数の負側コイル16の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第2連結極板46に電気接続され、前記正側コイル14と負側コイル16の他端は、共に、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第3連結極板48に電気接続され、前記第1連結極板44には、正側導体30が連結され、前記第2連結極板46には、負側導体32が連結され、前記正側導体30と負側導体32とによって、前記接続基体62の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層31を介して重ね合わされた一対の導体板が形成され、前記正側導体30と第1極板34に挟まれて、前記正側導体30に負極を接触させ前記第1極板34に正極を接触させた整流素子18と、前記負側導体32と第2極板36に挟まれて、前記負側導体32に負極を接触させ前記第2極板36に正極を接触させた整流素子20と、前記第1極板34と前記第2極板36を支持し、両者を電気接続する第3極板38とを備えていることを特徴とする溶接トランス。
 〈構成9〉
 構成7または8に記載の溶接トランスにおいて、前記接続基体62は中空部を有し、この中空部は冷媒通路を構成していることを特徴とする溶接トランス。
 〈構成10〉
 構成9に記載の溶接トランスにおいて、前記正側コイル14と負側コイル16と前記接続基体62とは、いずれも、中空部を有し、各中空部は配管に連結されて、冷媒通路を構成していることを特徴とする溶接トランス。
 〈構成11〉
 構成7に記載の溶接トランスにおいて、前記接続基体62は、前記1次コイル12の間隙12aに前記正側コイル14と負側コイル16を1個ずつ挟み込んだ状態のコイル群の2側面を支持するように、断面L字状に形成されていることを特徴とする溶接トランス。
 〈構成12〉
 構成1乃至11のいずれかに記載の溶接トランスを2台以上組み合わせた溶接トランス組体。
 〈構成13〉
 構成12に記載の溶接トランス組体であって、各溶接トランスの前記環状磁心25の平行部25aが互いに平行になり、前記接続基体62の他方の面から垂直に離れる方向に伸びる面に平行な面を突き合わせ、前記各溶接トランスの各第3極板38に連結した各プラス電極22を共通プラス電極64により連結固定し、前記各溶接トランスの各マイナス電極を共通マイナス電極66により連結固定したことを特徴とする溶接トランス組体。
 〈構成14〉
 構成12に記載の溶接トランス組体であって、前記接続基体62の他方の面から垂直に離れる方向に伸びる面に平行な2個の側面以外の面に、プラス電極22、マイナス電極24、第3極板38及び冷媒供給口74を配置したことを特徴とする溶接トランス組体。
 〈構成15〉
 構成1乃至11のいずれかに記載の溶接トランスを備えた溶接装置。
 〈構成16〉
 高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置であって、溶接制御電源装置と溶接トランスと抵抗溶接機本体と溶接条件データベースを記憶した記憶装置とを備え、前記抵抗溶接機本体は、重ね合せた溶接材を加圧して溶接電流を流す一対の電極と、これらの電極に所望の加圧力を与える機構を備え、前記溶接制御電源装置は、前記記憶装置に記憶された溶接条件データベースから、溶接電流のレベルと供給タイミングを指定するデータを読み出して、前記一対の電極を介して前記溶接材に溶接電流を供給するためのものであって、溶接電流供給開始時刻t0からその後の時刻t1までの、電流増加率が最大の部分を立ち上げ制御期間T1と呼び、これに続く時刻t1から時刻t2までの、ピーク電流値C1に近い所定レベルの電流を維持する期間をピークレベル制御期間T2と呼び、その後の時刻t2から電流遮断時刻t3に至るまでの期間を、温度維持制御期間T3と呼ぶとき、前記溶接制御電源装置は、前記立ち上げ制御期間T1は10ミリ秒以下とし、前記立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間は15ミリ秒以下とするように、前記溶接電流を制御することを特徴とする溶接装置。
 〈構成17〉
 高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置であって、抵抗溶接機本体と溶接トランスと溶接制御電源装置と記憶装置とを備え、前記抵抗溶接機本体は、重ね合せた溶接材を加圧して溶接電流を流す一対の電極と、これらの電極に所望の加圧力を与える機構を備え、前記溶接トランスは、平行部25aと両端のU字状の湾曲部25bにより構成される環状磁心25と、前記環状磁心25の平行部25aに、複数の部分に分けて間隙12aを空けて分割巻きされる1次コイル12と、前記1次コイル12と共に環状磁心25の平行部25aに巻回され、前記1次コイル12に設けられた前記各間隙12aに1個ずつ挟み込むように、複数の正側コイル14と複数の負側コイル16とを交互に配列した2次コイル14,16と、前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、前記複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、前記接続された複数の正側コイル14と前記複数の負側コイル16とが互いに直列接続されるように、前記正側コイル14と負側コイル16との端子間を電気接続する導体群が設けられ、かつ、前記導体群により、前記全ての正側コイル14と負側コイル16とを一方の面側に支持固定する接続基体62が設けられ、前記複数の正側コイル14の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第1連結極板44に電気接続され、前記複数の負側コイル16の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第2連結極板46に電気接続され、前記正側コイル14と負側コイル16の他端は、共に、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第3連結極板48に電気接続され、前記第1連結極板44には、正側導体30が連結され、前記第2連結極板46には、負側導体32が連結され、前記正側導体30と負側導体32とによって、前記接続基体62の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層31を介して重ね合わされた一対の導体板が形成され、前記正側導体30と第1極板34に挟まれて、前記正側導体30に負極を接触させ前記第1極板34に正極を接触させた整流素子18と、前記負側導体32と第2極板36に挟まれて、前記負側導体32に負極を接触させ前記第2極板36に正極を接触させた整流素子20と、前記第1極板34と前記第2極板36を支持し、両者を電気接続する第3極板38とを備え、前記溶接制御電源装置は、前記記憶装置に記憶された溶接条件データベースから、溶接電流のレベルと供給タイミングを指定するデータを読み出して、前記一対の電極を介して前記溶接材に溶接電流を供給するためのものであって、溶接電流供給開始時刻t0からその後の時刻t1までの、電流増加率が最大の部分を立ち上げ制御期間T1と呼び、これに続く時刻t1から時刻t2までの、ピーク電流値C1に近い所定レベルの電流を維持する期間をピークレベル制御期間T2と呼び、その後の時刻t2から電流遮断時刻t3に至るまでの期間を、温度維持制御期間T3と呼ぶとき、前記溶接制御電源装置は、前記立ち上げ制御期間T1は10ミリ秒以下とし、前記立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間は15ミリ秒以下とするように、前記記憶装置が保有するデータに依拠して、前記溶接電流を制御するように構成され、前記記憶装置は、前記溶接制御電源装置における溶接の制御態様を規定する溶接条件データベースを記憶したものであることを特徴とする溶接装置。
 〈構成18〉
 高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置であって、抵抗溶接機本体と溶接トランスと溶接制御電源装置と記憶装置とを備え、前記抵抗溶接機本体は、重ね合せた溶接材を加圧して溶接電流を流す一対の電極と、これらの電極に所望の加圧力を与える機構を備え、前記溶接トランスは、その2次コイルが正側コイル14と負側コイル16とを含んで構成され、平行部25aと両端のU字状の湾曲部25bにより構成される環状磁心25と、中心に前記負側コイル16を配置し、その上に1次コイル12を配置し、最外周に前記正側コイル14を配置するように同軸巻きされた第1のコイルユニットと、中心に前記正側コイル14を配置し、その上に前記1次コイル12を配置し、最外周に前記負側コイル16を配置するように同軸巻きされた第2のコイルユニットとを、前記環状磁心25の平行部25aに交互に隙間なく配列したコイルユニット配列体と、前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、前記複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、前記接続された複数の正側コイル14と前記複数の負側コイル16とが互いに直列接続されるように、前記正側コイル14と負側コイル16の端子間を電気接続する導体群を有し、かつ、前記導体群により、前記全ての正側コイル14と負側コイル16とを一方の面側に支持固定する接続基体62を備え、前記複数の正側コイル14の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第1連結極板44に電気接続され、前記複数の負側コイル16の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第2連結極板46に電気接続され、前記正側コイル14と負側コイル16の他端は、共に、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第3連結極板48に電気接続され、前記第1連結極板44には、正側導体30が連結され、前記第2連結極板46には、負側導体32が連結され、前記正側導体30と負側導体32とによって、前記接続基体62の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層31を介して重ね合わされた一対の導体板が形成され、前記正側導体30と第1極板34に挟まれて、前記正側導体30に負極を接触させ前記第1極板34に正極を接触させた整流素子18と、前記負側導体32と第2極板36に挟まれて、前記負側導体32に負極を接触させ前記第2極板36に正極を接触させた整流素子20と、前記第1極板34と前記第2極板36を支持し、両者を電気接続する第3極板38と、を備え、前記溶接制御電源装置は、前記記憶装置に記憶された溶接条件データベースから、溶接電流のレベルと供給タイミングを指定するデータを読み出して、前記一対の電極を介して前記溶接材に溶接電流を供給するためのものであって、溶接電流供給開始時刻t0からその後の時刻t1までの、電流増加率が最大の部分を立ち上げ制御期間T1と呼び、これに続く時刻t1から時刻t2までの、ピーク電流値C1に近い所定レベルの電流を維持する期間をピークレベル制御期間T2と呼び、その後の時刻t2から電流遮断時刻t3に至るまでの期間を、温度維持制御期間T3と呼ぶとき、前記溶接制御電源装置は、前記立ち上げ制御期間T1は10ミリ秒以下とし、前記立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間は15ミリ秒以下とするように、前記記憶装置が保有するデータに依拠して、前記溶接電流を制御するように構成され、前記記憶装置は、前記溶接制御電源装置における溶接の制御態様を規定する溶接条件データベースを記憶したものであることを特徴とする溶接装置。
 〈構成19〉
 構成17または18に記載の溶接装置において、前記溶接トランスは、前記接続基体62は中空部を有し、この中空部は冷媒通路を構成していることを特徴とする溶接装置。
 〈構成20〉
 構成19に記載の溶接装置において、前記溶接トランスは、前記正側コイル14と負側コイル16と前記接続基体62とは、いずれも、中空部を有し、各中空部は配管に連結されて、冷媒通路を構成していることを特徴とする溶接装置。
 〈構成21〉
 構成17または18に記載の溶接装置において、前記溶接トランスは、前記接続基体62は、前記1次コイル12の間隙12aに前記正側コイル14と負側コイル16を1個ずつ挟み込んだ状態のコイル群の2側面を支持するように、断面L字状に形成されていることを特徴とする溶接装置。
 〈構成22〉
 構成21に記載の溶接装置において、各溶接トランスの前記環状磁心25の平行部25aが互いに平行になり、前記接続基体62の他方の面から垂直に離れる方向に伸びる面に平行な面を突き合わせ、前記各溶接トランスの各第3極板38に連結した各プラス電極22を共通プラス電極64により連結固定し、前記各溶接トランスの各マイナス電極を共通マイナス電極66により連結固定した溶接トランス組体を成していることを特徴とする溶接装置。
 〈構成23〉
 構成22に記載の溶接装置において、前記接続基体62の他方の面から垂直に離れる方向に伸びる面に平行な2個の側面以外の面に、プラス電極22、マイナス電極24、第3極板38及び冷媒供給口74を配置した溶接トランス組体を成していることを特徴とする溶接装置。
 〈構成24〉
 高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置に適用される抵抗溶接方法であって、溶接電流供給開始時刻t0からその後の時刻t1までの、電流増加率が最大の部分を立ち上げ制御期間T1と呼び、これに続く時刻t1から時刻t2までの、ピーク電流値C1に近い所定レベルの電流を維持する期間をピークレベル制御期間T2と呼び、その後の時刻t2から電流遮断時刻t3に至るまでの期間を、温度維持制御期間T3と呼ぶとき、前記立ち上げ制御期間T1は10ミリ秒以下とし、前記立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間は15ミリ秒以下としたことを特徴とする抵抗溶接方法。
 〈構成25〉
 構成24に記載の抵抗溶接方法において、前記立ち上げ制御期間T1とピークレベル制御期間T2と温度維持制御期間T3の和の(T1+T2+T3)時間は、50ミリ秒以下としたことを特徴とする抵抗溶接方法。
 〈構成26〉
 構成24に記載の抵抗溶接方法において、前記立ち上げ制御期間T1は5ミリ秒以下とし、前記立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間は15ミリ秒以下とし、前記立ち上げ制御期間T1とピークレベル制御期間T2と温度維持制御期間T3の和の(T1+T2+T3)時間は20ミリ秒以下としたことを特徴とする抵抗溶接方法。
 〈構成27〉
 構成25または26に記載の抵抗溶接方法において、前記立ち上げ制御期間T1とピークレベル制御期間T2の間に、溶接部温度が融点以上であって、許容値以下の温度に達する最大の溶接電流を供給し、その後、適切なサイズのナゲットが形成されるまで、溶接電流を漸減させることを特徴とする抵抗溶接方法。
 〈構成28〉
 構成27に記載の抵抗溶接方法において、前記ピークレベル制御期間T2経過後の溶接電流値から、前記電流遮断時刻t3における溶接電流の終了値まで、溶接電流を段階的に漸減することを特徴とする抵抗溶接方法。
 〈構成29〉
 高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置に適用される抵抗溶接方法であって、溶接電流が通電開始から5ミリ秒以内で最大値になるように溶接初期の溶接電流を制御し、前記溶接電流の通電開始から50ミリ秒以下の通電時間で溶接を終了することを特徴とする抵抗溶接方法。
 上記の各構成毎に、それぞれ次のような効果がある。
 〈構成1の効果〉
 正側導体30と負側導体32とを絶縁層を介して密着させ、正側コイル14と負側コイル16との間に1次コイル12を挟むように配置したので、2次回路の転流時のインダクタンスを低減して、転流時間を短くし、高い周波数のインバータ制御が可能になる。
 〈構成2の効果〉
 1次コイルと2次側の正側コイルと負側コイルとを分割巻きして、1次2次コイル間の結合を良くし、2次側の大電流による磁気飽和を防止できる。
 〈構成3の効果〉
 1次コイル12と正側コイル14と負側コイル16との関係がどの場所でも均等で互いに密接して配置させることができる。
 〈構成4の効果〉
 大電流を流す正側コイル14と負側コイル16をいずれも単純なワンターンコイルにして、インダクタンスも極小にし、分割巻きをし易くした。
 〈構成5と6の効果〉
 負側コイル16と1次コイル12と正側コイル14とを同軸巻きしても、上記の構成と同様の効果を得ることができる。
 〈構成7の効果〉
(1)正側導体30と負側導体32とを絶縁層を介して密着させ、正側コイル14と負側コイル16との間に1次コイル12を挟むように配置したので、2次回路の転流時のインダクタンスを低減して、転流時間を短くし、高い周波数のインバータ制御が可能になる。
(2)複数の正側コイル14と複数の負側コイル16との間に分割巻きされた1次コイル12の各部を挟むように配置したので、トランス全体の熱分布が均一になる。
(3)1次コイルと2次側の正側コイルと負側コイルとを分割巻きして、1次2次コイル間の結合を良くし、2次側の大電流による磁気飽和を防止できる。
(4)1次コイル12と正側コイル14と負側コイル16との関係がどの場所でも均等で互いに密接して配置させることができる。
 〈構成8の効果〉
 接続基体62の中空部に冷媒が供給されて、正側コイル14や負側コイル16を冷却する。複数の正側コイル14と複数の負側コイル16との間に分割巻きされた1次コイル12の各部を挟むように配置したので、正側コイル14と負側コイル16によって1次コイル12を含むトランス全体を効率よく冷却できる。
 〈構成9と10の効果〉
 正側コイル14と負側コイル16と接続基体62とが冷媒により十分に冷却される。
 〈構成11の効果〉
 断面L字状に形成された接続基体62により強度が向上し、冷却効率も良くなる。
 〈構成13と14の効果〉
 接続基体62の一方の側に、1次コイル12と正側コイル14と負側コイル16を配置し、接続基体62の他方の側に、電気接続のための極板や整流素子を配置したので、全体をコイル部分の厚みに納めることができる。従って、複数の溶接トランスを共通プラス電極64及びまたは共通マイナス電極66により連結して、任意の大容量の溶接トランスを組み立てることができる。
 (構成16~18の効果)
 通電時間を大幅に短縮しても良好な溶接を可能にし、溶接トランスの小型化による溶接装置全体としての小型化、電極の耐久性、冷却装置の簡素化等による生産性の飛躍的な向上と省エネルギーを実現できる。
 〈構成24の効果〉
 溶接初期の溶接電流を短時間で立ち上げると、従来と比較して大幅に供給電力量の節約ができる。
 〈構成15の効果〉
 溶接初期の溶接電流を短時間で立ち上げると、ナゲット形成のための時間がより短縮できる。
 〈構成26の効果〉
 材料の性質によるが、合計の溶接時間をきわめて短時間に圧縮できる。
 〈構成27の効果〉
 全体として溶接時間を短縮すると溶接電流の制御が難しくなるが、初期に最大の溶接電流を供給して溶接電流を漸減させる方法によれば、比較的制御が容易になる。
 〈構成28の効果〉
 溶接電流を段階的に漸減することにより、精度の高い溶接温度の管理が可能になる。
 〈構成29の効果〉
 通電時間を大幅に短縮しても良好な溶接をすることができる。したがって、溶接トランスの小型化、電極の耐久性、冷却装置の簡素化等による生産性の飛躍的な向上と省エネルギーを実現できる。
本発明で採用する溶接装置の電源回路の結線図である。 整流素子18に順方向電流が流れたときの回路動作を示す結線図である。 整流素子20に順方向電流が流れたときの回路動作を示す結線図である。 (a)はトランスの1次側に供給される電流をインバータで制御するための制御パルス、(b)は1次電流、(c)は整流後の溶接電流を示す。 実験例の分解斜視図と側面図である。 転流時間中におけるトランスの2次回路の電流を示す説明図である。 本発明で使用する1次コイルと2次コイルおよび磁心の一例を示す斜視図である。 本発明の溶接トランスの実施例における主要部を示す分解斜視図と側面図である。 図8の実施例における1次コイルと正側コイルと負側コイルの位置関係を示す説明図である。 1次コイルと正側コイルと負側コイルと磁心の関係を示す説明図である。 2次コイルの結線例を示す斜視図である。 実施例1の溶接トランス10の更に実際的な構成を示す分解斜視図である。 正側コイル14と負側コイル16と接続基体62の斜視図である。 第1連結極板44と第2連結極板46と第3連結極板48等の分解斜視図である。 接続基体62に各極板を固定した後の状態を示す斜視図である。 整流素子18や整流素子20を取り付ける直前の状態を示す分解斜視図である。 ほぼ組み立てを完了した溶接トランスの斜視図である。 プラス電極とマイナス電極を取り付けた状態の溶接トランスの斜視図である。 図18に示した溶接トランスを2個組み合わせた溶接トランス組体の斜視図である。 正側コイル14と負側コイル16と接続基体62の関係を示す側面図である。 実施例4の1次コイル12と正側コイル14と負側コイル16の斜視図である。 整流素子の配置の変形例を示す主要部斜視図である。 抵抗溶接装置の溶接部の主要部側面図である。 本発明に係る溶接装置のブロック図である。 溶接装置の一例を示す回路図である。 抵抗溶接方法による溶接電流の時間変化と電流の流れに伴う電極変位量を示す説明図である。 溶接電流供給開始から15msec後のナゲットの状態を示す溶接部主要部断面図である。 鋼板2枚を重ねて通電時間40msec で溶接を行った事例を示す説明図である。 本発明と従来方法のナゲット径と引張強度を測定した事例の比較説明図である。 本発明と従来方法の溶接エネルギーを測定した事例の比較説明図である。 本発明と従来の溶接方法による溶接部の中心部の温度変化を比較した説明図である。 ナゲット周辺の温度分布例を比較した説明図である。 実施例7の溶接電流制御方法の説明図である。 冷間圧延鋼板をピーク電流値C1が14000A加熱終了時電流値C2が10000Aで制御した結果説明図である。 ステンレス板をピーク電流値C1が14000A加熱終了時電流値C2が10000Aで制御した結果説明図である。 溶接トランスの具体的な動作を説明する説明図である。
 図1は、本発明で採用する溶接装置の電源回路の結線図である。
 溶接トランス26の1次コイル12には、後で図4を用いて説明する1次電流が供給される。整流回路は、単相全波整流式を採用する。この回路自体は良く知られている。2次コイル自体に極性を考慮する必要はないが、便宜上、2次コイルを、正側コイル14と負側コイル16とを直列接続したものと呼ぶことにする。正側コイル14の一端に整流素子18の一端を接続し、負側コイル16の一端に整流素子20の一端を接続し、整流素子18の他端と整流素子20の他端をまとめてプラス電極22に接続する。正側コイルの他端と負側コイルの他端は接続点を介して連結しているが、この接続点をマイナス電極24に接続する。プラス電極22とマイナス電極24が溶接機28に接続されている。
 図2は、整流素子18に順方向電流が流れたときの回路動作を示す。図3は整流素子20に順方向電流が流れたときの回路動作を示す。
 回路動作上問題になる等価的なインダクタンス成分を図2と3に書き加えた。即ち、正側コイル14と整流素子18を接続する正側導体30と、負側コイル16と整流素子20を接続する負側導体32、及び溶接機28内部の導体のインダクタンスが、溶接装置の性能に影響を及ぼすと考えられる。その詳細は後で説明する。
 溶接トランス26や溶接機28に発生する大量の熱の発生を抑制することができれば、溶接装置の省エネルギー化を図ることができる。従来よりも大電流を短時間溶接部に供給するように制御して、溶接時間を短縮すれば、大きな節電効果が期待できる。
 一方、溶接される材料や構造等に最適な溶接電流を供給するためには、溶接電流の供給時間をきわめて高精度に制御しなければならない。
 このために、溶接電流を供給するトランスの1次側にインバータを接続して、PWM制御により溶接電流の大きさと供給時間とを制御することが行われている。
 図4の(a)はトランスの1次側に供給される電流をインバータで制御するための制御パルス、図4の(b)は1次電流、図4の(c)は整流後の溶接電流を示す。
 図示しないインバータにより制御された幅Wのパルスが、一定時間H内に一定回数、ここでは正方向のパルスと負方向のパルスとで合計10回、1次コイルに供給される。その結果、トランスの1次コイル12(図1)には、図4の(b)に示すような電流が流れる。トランスの2次側で全波整流をして、図4の(c)に示すような溶接電流を発生させる。
 図4の(a)に示したパルスの幅Wを増減すると溶接電流を調整できる。バルスの供給回数を増減すれば溶接時間を調整できる。このパルスの繰り返し周波数を高くすると、溶接時間をより細かく微調整できる。1次コイルに供給する電力を増やせば、2次コイルからより大きな溶接電流を取り出せる。
 従来の溶接装置は、例えば、1万アンペアで200m秒~700m秒の溶接電流を供給するようにしていたが、溶接電流をその2倍の2万アンペアにしてみる。溶接装置は、溶接部以外の場所で熱エネルギーになって消費される電力損失がきわめて大きい。一方、溶接電流を2倍にしても、溶接時間を10分の1に短縮すると、消費電力を5分の1にすることができる。これで、従来の1万アンペアでの溶接と同等の溶接品質が可能になる。
 一方、溶接トランスの1次側に供給される電流をインバータで制御するための制御パルスは、従来、繰り返し周波数が1kHz程度のものを使用していた。しかしながら、大電流を短時間供給するには、もっと分解能の高い制御パルスが必要になる。望ましくは、繰り返し周波数が5kHz~50kHz程度のパルスを使用することが望ましい。
 このように、従来の数倍から数十倍の高い繰り返し周波数の制御パルスでインバータを駆動することによって溶接トランスの1次コイルの電流を制御した場合に、従来構造の溶接トランスでは、予定した溶接電流が得られないことがわかった。即ち、このような制御で2次コイルから大電流を出力するためには、トランスの構造に様々な改善が要求される。
 図1に示すような2個の整流素子18、20を使用した全波整流型の2次回路は、ブリッジを使用した回路に比べて整流素子数が少なく、小型化できて電力損失も少ないため、溶接装置に適することが知られている。
 しかしながら、この回路では、1次コイル12に流れる電流の極性反転によって、2次コイルに誘起される電圧が極性反転したとき、一方の整流素子を通じて供給されていた負荷電流が他方の整流素子側に流れを変える転流が生じる。
 溶接電流が大電流になると、回路各部のインダクタンスに蓄積された電流エネルギーは非常に大きくなる。この電流エネルギーが一方の整流素子から他方の整流素子の側に移る転流時間は、図2や図3に示した2次コイルの各部のインダクタンスが大きいほど長くなる。
 図4の(b)に示した1次コイルの電流の立ち下がり開始から反対極性の電流の立ち上がり終了までの時間Mの間に2次回路の転流が完了しないと、2次電流の立ち上がりが遅れて、図4の(c)に破線で示すように、予定した溶接電流が得られなくなる。
 図5は実験例の分解斜視図と側面図である。
 図5の(a)も(b)も、左側に分解斜視図を示し、右側に組み立て後の側面図を示した。図5(a)の例では、1次コイル12と正側コイル14と負側コイル16とが図示しない磁心に巻回されている。大電流を取り出せるように、内部に冷却水を供給する中空構造を採り、正側導体30や負側導体32は、厚い銅板で構成している。正側導体30と負側導体32とが薄い絶縁層31を挟んで重ね合わされたブロックの両側に整流素子18、20が配置される。さらに、このように配置される整流素子18、20を、同極性である各外面から第1極板34と第2極板36とで挟むようにしている。第1極板34と第2極板36は第3極板38により電気接続され、第3極板38にプラス電極22が固定される。正側コイル14と負側コイル16の接続点には図示しない銅板を接続してマイナス電極24(図1、図2、図3)を取り付ける。
 図5(b)の例では、正側コイル14と負側コイル16との間に1次コイル12を挟むように配置した。この構造では、正側導体30と負側導体32との間に第3極板38を配置した。そして、第3極板38と正側導体30の間に整流素子18を挟んだ。また、第3極板38と負側導体32との間に整流素子20を挟んだ。第3極板38にプラス電極22が固定される。正側コイル14と負側コイル16の接続点には図示しない銅板を接続してマイナス電極24(図1、図2、図3)を取り付ける。
 図6は、転流時間中におけるトランスの2次回路の電流を示す説明図である。
 この図を用いて、上記の実験例の検証をする。図6は、2次コイルを構成する正側コイル14と負側コイル16の結線を立体的に表示したもので、両者の位置関係も意識して説明する。正側コイル14と負側コイル16とは連続した磁心(図示しない)上に巻回されており、正側導体30と負側導体32とは側方に引き出されて整流素子18や整流素子20に接続される。
 転流時間中には、正側導体30にC1、正側コイル14にC2、負側コイル16にC3、負側導体32にC4の方向の電流が流れる。この状態は正側コイル14に直前までC1と反対方向に電流が流れており、転流が開始されると、正側コイル14に蓄積された電流エネルギーが負側コイル16の方向に放出されるところを示している。正側コイル14には、整流素子18方向から電流が流れ込まないので、蓄積されたエネルギーが放出されるとC1方向の電流は消滅する。これで転流が終了する。
 図5(a)の実験例では、ほぼ同一形状の正側導体30と負側導体32とを薄い絶縁層31を介して密着させている。このような構造にすると、図6に示したように、正側導体30と負側導体32の電流の向きが反対だから、磁束が相互に打ち消しあって、両者のインダクタンスが相殺される。即ち、正側導体30と負側導体32のインダクタンスが見かけ上極小になる。従って転流時間をより短縮できる。
 ところが、図5(a)に示すように正側コイル14と負側コイル16とを密着させて配置すると、図6に示すように、正側コイル14と負側コイル16にC2とC3方向に流れる電流に対して、これらのコイルのインダクタンスが大きく影響することがわかった。即ち、正側コイル14と負側コイル16のインダクタンスが転流時間を遅らせることが分かった。
 また、図5(a)の構造の場合に、正側コイル14に負荷電流が流れている状態と、負側コイル16に負荷電流が流れている状態とでは、1次コイル12との磁気的結合の程度が異なる。負側コイル16に負荷電流が流れている状態では漏れ磁束が増大する。このような磁気的結合のアンバランスは異常電流を引き起こし易い。
 さらに、高い繰り返し周波数のパルスを1次コイルに供給すると、1次コイルの電流の立ち下がり開始から反対極性の電流の立ち上がり終了までの時間Mが短くなるので、急激な磁束変化により磁心が磁気飽和を生じやすい。正側コイル14と負側コイル16とを近接配置すると、2次コイルに流れる大電流による磁束が2次コイル付近に集中して、磁気飽和を生じやすい。
 一方、図5(b)に示すように、1次コイル12を正側コイル14と負側コイル16とで挟む構造を採用すると、1次コイル12と正側コイル14の位置関係は、1次コイル12と負側コイル16の位置関係と同じになり、磁気的結合のアンバランスを生じない。また、正側コイル14と負側コイル16の間に1次コイル12を挟むことにより、正側コイル14と負側コイル16との間の距離を離して、転流時間中に流れる電流に対するインダクタンスを小さくできる。また、図5(a)の構造に比べて磁気飽和を生じにくい。しかしながら、図5(b)の例では、正側導体30と負側導体32の間の距離が離れているから、正側導体30と負側導体32のインダクタンスが図5(a)の例よりも大きくなる。
 図7は本発明で使用する1次コイルと2次コイルおよび磁心の一例を示す斜視図である。
 本発明は、上記の実施例等を考慮して、トランスの部分の構造を次のように改良した。
 まず、1次コイル12は、例えば、図7の(a)に示すように、平角絶縁線を磁心を軸にして多層に巻き付けたものを使用する。2次コイルには、銅板をC字状に切削加工したワンターンコイルを2個直列接続して使用する。(b)が正側コイル14で(c)が負側コイル16である。これらは(d)に示したような磁心25に巻き付けられる。
 この磁心25は、平行部25aと両端のU字状の湾曲部25bにより構成される環状のものである。磁気抵抗を低くしてトランスの効率を上げている。また、あとで説明するように、磁心25の平行部25aに1次コイル12と正側コイル14と負側コイル16とを隙間なく配列して、漏れ磁束を最小にしている。
 図7(e)は、コイル群を電気接続する接続基体62の導体群構造の一例を示す。図の例では、正側コイル14および負側コイル16が、破線に示すように内部に中空部を有する。これらは、例えば、中空パイプを成形して製造される。導体78と導体82と導体90とは、正側コイル14と負側コイル16とを電気接続するための接続基体62を構成する。また、これら導体78、導体82、および、導体90には、それぞれ図示しない中空部が形成され、それらの中空部を通して冷媒を流すことができる。導体78には、正側コイル14と同数の突起76が設けられている。導体82には、負側コイル16と同数の突起80が設けられている。導体90には、正側コイル14と負側コイル16の接続点の数と同数の枝88と、突起84と、突起86とが設けられている。なお、各枝88にも導体90内の中空部と連通する中空部が形成されている。
 各突起はパイプ状の導体で、各導体の壁面に固定されている。全ての正側コイル14の一端に突起76が接続される。即ち、突起76と導体78とは、中空部を通じて冷却水等の冷媒を各コイルに供給する機能と、正側コイル14の一端を電気的に並列接続する機能を持つ。
 全ての負側コイル16の一端に突起80が接続される。即ち、突起80と導体82とは、中空部を通じて冷却水等の冷媒を各コイルに供給する機能と、負側コイル16の一端を電気的に並列接続する機能を持つ。
 全ての正側コイル14の他端(上記接続点側)に突起86が接続される。全ての負側コイル16の他端(上記接続点側)に突起84が接続される。枝88は、正側コイル14の他端と負側コイル16の他端を電気接続する。全ての枝88は導体90と一体化されている。そして、突起84、突起86,枝88および導体90は、既述の中空部を通じて冷却水等の冷媒を各コイルから排出する機能を有する。同時に、突起84、突起86,枝88および導体90は、正側コイル14と負側コイル16の接続点を、電気的に並列接続する機能を持つ。なお、突起84、突起86,枝88および導体90には、既述のような中空部に替えて、冷媒の流通を可能にするパイプなど適宜の流路を設けてもよい。
 接続基体62を構成する導体78と導体82と導体90とは、絶縁塗料等が被覆された状態で一体化される。その状態を図8に示した。一方、さらに導体78と導体82と導体90と各コイルとの接触面積を広げて、冷却効率を高めるように、接続基体62の形状を直方体に近づけることができる。そのような例を図12以下に示した。
 図8は、本発明の溶接トランスの実施例1における主要部を示す分解斜視図と側面図である。
 図の例では、正側コイル14と負側コイル16とで1次コイル12を左右から挟んだペアを3組ずつ、合計6組使用して、2列構成のコイル群を形成する。この場合、正側コイル14と負側コイル16とのペアによって挟まれた各コイルは、分割巻きにより構成した1次コイル12の各部分である。図が煩雑になるので、2列目のコイル群は破線で表示した。また、磁心5も破線で表示した。
 分割巻きした1次コイル12は全て直列接続してもよいし全部または一部を並列接続してもよい。複数の正側コイル14は全て並列接続してもよいし全部または一部を直列接続してもよい。複数の負側コイル16は全て並列接続してもよいし全部または一部を直列接続してもよい。
 また、正側コイル14と負側コイル16の数を適宜増やしてよい。複数の正側コイル14と複数の負側コイル16とは直列接続される。正側コイル14の一端は第1連結極板44を介して正側導体30に電気接続される。負側コイル16の一端は第2連結極板46を介して負側導体32に電気接続される。正側コイル14の他端と負側コイル16の他端は第3連結極板48に電気接続される。第3連結極板48はマイナス電極24に接続される。
 なお、第1連結極板44と第2連結極板46と第3連結極板48とは、いずれも、環状磁心25の平行部25aに平行な方向に伸びている。換言すれば、正側コイル14と1次コイル12と負側コイル16の配列方向に長い導体を使用している。これにより、コイル群と接続基体62と連結導体群とが同じ方向に長い長方形の枠内に収まる。そして、接続基体62の一方の面側にコイル群を支持固定している。さらに、正側導体30と負側導体32とは、接続基体62の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面を有する形状にしたので、接続基体62の一方の面側も他方の面側も同じ厚さの直方体の中に収まる。従って、後で図18等を用いて説明するように、扁平でコンパクトな形状にできる。
 正側導体30と負側導体32とはそれらの間に絶縁層31を密着するように挟んで重ね合わされてブロック体を成している。このブロック体の左右両側に整流素子18、20を配置して、さらにその外側を第1極板34と第2極板36で挟む。第1極板34と第2極板36は第3極板38により電気接続される。第3極板38にプラス電極22が固定される。第1連結極板44と第2連結極板46とは、絶縁層31を介して密着している。これらの薄い絶縁層31は、例えば、絶縁塗料含浸層のような薄い絶縁層である。
 既述のように、接続基体62は、複数の正側コイル14と複数の負側コイル16と、第1連結極板44、第2連結極板46および第3連結極板48の間の電気接続を得るために配置されている。接続基体62の上面に設けられた複数の突起は、正側コイル14や負側コイル16の端部と電気接続される。図示の実施例では、これらの突起が筒状になっており、これらの突起を通じて冷却水が正側コイル14や負側コイル16の中空部を流れる。
 この接続基体62の導体構造は、同等の結線ができるものであれば任意に設計できる。特に、接続基体62は、複数の正側コイル14と複数の負側コイル16に直結しているから、中空構造にして冷却すれば、正側コイル14や負側コイル16や1次コイルを強力に冷却できる。正側コイル14や負側コイル16も、中空構造の銅板により構成することができる。
 上記の構造によれば、第1連結極板44と第2連結極板46とを近接配置し、かつ、正側導体30と負側導体32とを近接配置したので、転流時間における正側導体30と負側導体32のインダクタンスを極小にできる。また、正側コイル14と負側コイル16との間の距離を離したので、転流時間における正側コイル14と負側コイル16のインダクタンスを低下させることができる。従って、溶接トランスの2次側における転流時間を効果的に短縮することができる。このため、溶接トランスの一次側におけるインバータの駆動周波数を高めてパルス状の1次電流の繰り返し周波数が5kHz~50kHz程度にまで及ぶような高い分解能での制御が可能になる。
 また、正側コイル14と負側コイル16との間に1次コイル12を配置したので、1次コイル12と正側コイル14や負側コイル16との間の磁気的結合のバランスが良く、安定で良好な溶接電流が得られる。さらに、同相の大電流の流れるワンターンコイルを並列接続して構成した正側コイル14と負側コイル16とを離すことにより、適度な磁束漏れを生じるため、双方のコイルを近接して配した場合に比し、磁心25の磁気飽和も起こり難くすることができる。
 図9は、図8の実施例における1次コイルと正側コイルと負側コイルの位置関係を示す説明図である。この図9では、コイル群(12,14,16)を正面から見た状態を示し、正側導体30や負側導体32等は側面から見た状態を示している。
 この装置は、1次コイル12と正側コイル14と負側コイル16との密着が良く、バランスも最適に構成されている。図9(a)に示すように、上から順に、正側コイル14、1次コイル12、負側コイル16、1次コイル12、正側コイル14、1次コイル12・・というように、各コイルが配列されている。
 複数の正側コイル14は全て並列接続されて、一端が正側導体30に接続されているものとする。また、負側コイル16も全て並列接続されて、一端が負側導体32に接続されているものとする。接続基体62が、これらを電気接続している。
 図9(b)は、正側コイル14の電流が溶接機側に供給されるときの、電流が有効に流れる部分のみを図示したものである。
 図9の(c)は、負側コイル16の電流が溶接機側に供給されるときの、電流が有効に流れる部分のみを図示したものである。
 図9(b)を見てわかるように、どの1次コイル12もいずれかの正側コイル14に密着している。また、図9(c)を見てわかるように、どの1次コイル12もいずれかの負側コイル16に密着している。これは、磁心上の全ての場所で、正側コイル14と負側コイル16とが、分割された1次コイル12を挟むように配置されているからである。
 これにより、1次コイル12と正側コイル14との磁気的結合も、1次コイル12と負側コイル16との磁気的結合も良好で、正側コイル14と負側コイル16とが完全に均衡をとれている。
 図10は、1次コイルと正側コイルと負側コイルと磁心の位置関係を示す説明図である。
 図のように、磁心25はその両端にU字状の湾曲部25bを備えており、湾曲部25bは露出しているが、平行部25aには、隙間なくコイル群が巻回されている。これにより、漏れ磁束の減少と小型化を図っている。ここで、図10(a)は、2列のコイル群の構造も配列も全く同一にしている。即ち、左から順に、正側コイル14、1次コイル12、負側コイル16の順にコイルが配列されている。
 一方、図10(b)は、一方の例は左から順に、正側コイル14、1次コイル12、負側コイル16の順にコイルが配列され、他方の列は左から順に、負側コイル16、1次コイル12、正側コイル14の順にコイルが配列されている。それぞれ、生産性、磁気特性、接続基体62の構成等に一長一短がある。全体のサイズやコイル数等に応じて、最適な構成を選択するとよい。
 また、磁心25のループに沿って正側コイル14と負側コイル16の配列を調べてみたとき、図10(a)は磁心25の両端に、正側コイル14が2個隣接した部分と、負側コイル16が2個隣接した部分がある。いずれも、間に1次コイル12を挟んでいない。図10の(b)では、磁心25の両端に、正側コイル14と負側コイル16とが隣接した部分がある。ここも、1次コイル12を挟んでいない。このように、一部に、他の部分に比べて特性が劣る部分が含まれていても構わない。正側コイル14と1次コイル12と負側コイル16をこの順に配置した場所を全体として多く設けることにより目的を達成できる。
 図11は、2次コイルの結線例を示す斜視図である。
 図11の(a)は図10の(a)の実施例の結線を示し、図11の(b)は図10(b)の実施例の結線を示す。
 図11の(a)の場合には、図の手前から、直列接続された正側コイル14と負側コイル16とのペア3組がそれらの中心軸の方向に順次整列して配置されている。そして、各ペアの正側コイル14の一端が第1連結極板44に接続され、負側コイル16の一端が第2連結極板46にそれぞれ接続されている。図11の(a)の結線は、図7の(e)を参照して既述のような導体の配置と接続によって実現される。
 図11の(b)の場合は、正側コイル14と負側コイル16とがそれらの中心軸が平行になるように左右に並んでペアをなすように配置されている。そして、これら左右に並んだ正側コイル14と負側コイル16とのペア4組が、それらの中心軸に沿う方向に、順次左右の関係が入れ替わって整列するように配置されている。電気的な接続関係に着目すると、正側コイル14と負側コイル16との各一端が、第1連結極板44と第2連結極板46とに対して、一組毎に入れ替わるように接続されて、この結線が実現されている。そして、正側コイル14と負側コイル16の接続点は第3連結極板48に接続されている。
 なお、正側コイル14と負側コイル16とは、必ずしも同数でなくて構わない。また、個々のコイルの太さや形状も必ずしも同一でなくて構わない。正側コイル14(またはコイル群)と負側コイル16(またはコイル群)とは相互に直列接続される。各コイルと極板との間の結線は、図のように比較的複雑になる。この場合、例えば、図8に示したような導体群を立体的に配置して結線を行うように構成すると、接続基体62の既述の中空部を通る冷媒の冷却作用によりトランス全体を効果的に冷却することが可能になる。
 各コイルと第1連結極板44や第2連結極板46との間の導体の長さは短い。しかし、第1連結極板44や第2連結極板46とこれに接続される正側導体30や負側導体32はコイルサイズに比べて長い。従って、この部分のインダクタンスが問題になる。そこで、上述したように、正側導体30と負側導体32とを近接配置してインダクタンスを極力低減するようにしている。なお、第1連結極板44や第2連結極板46は、必然的に近接配置されるが、第3連結極板48を第1連結極板44と第2連結極板46の間に配置しないこともインダクタンスの低減には有効である。
 図12は、実施例1の溶接トランス10の更に実際的な構成を示す分解斜視図である。
 正側コイル14と負側コイル16とを7組配置する。これらの正側コイル14と負側コイル16の間に、1次コイル12を配置する。1次コイル12に1次電流を供給するための入力端58を成す導体部は側方に引き出す。分割巻きされた1次コイル12は全て直列接続されている。
 1次コイル12に設けられた各間隙12aに正側コイル14と負側コイル16を1個ずつ挟み込んだ後で、磁心25を装着する。磁心25は2分割されているが、結束バンド60で結束一体化する。磁心25の平行部25a全体を覆うように1次コイル12と正側コイル14と負側コイル16とを配置するので、漏れ磁束が少なくて良好な特性を得る。
 図13は、正側コイル14と負側コイル16と接続基体62の斜視図である。図14は、第1連結極板44と第2連結極板46と第3連結極板48等の分解斜視図である。図15は接続基体62に各連結極板を固定した後の状態を示す斜視図である。図16は、整流素子18や整流素子20を取り付ける直前の状態を示す分解斜視図である。
 以上の各図を参照しながら、実際の溶接トランスを組み立てる工程を説明する。図13に示すように、正側コイル14と負側コイル16とは、接続基体62と一部を一体化させて、接続基体62の一方の面側に支持固定されている。図13(a)において、手前の列には、左から順番に、正側コイル14、負側コイル16、正側コイル14、負側コイル16、正側コイル14、負側コイル16、正側コイル14が配列されている。後側の列には、左から順番に、負側コイル16、正側コイル14、負側コイル16、正側コイル14、負側コイル16、正側コイル14、負側コイル16が配列されている。
 接続基体62の他方の面側には、端子67と端子68と端子69とがそれぞれ一列に並んでいる。端子67は4個ある。全ての正側コイル14の一端が、接続基体62の内部で4個の端子67のいずれかに接続されている。端子68は4個ある。全ての負側コイル16の一端が、接続基体62の内部で4個の端子68のいずれかに接続されている。端子69は4個ある。全ての正側コイル14と負側コイル16の接続点が、接続基体62の内部で4個の端子69のいずれかに接続されている。4個の端子67は第1連結極板44に接続される。4個の端子68は第2連結極板46に接続される。4個の端子69は第3連結極板48に電気接続される。
 図14に示す例では、第1連結極板44は正側導体30と一体化されている。また、第2連結極板46は負側導体32と一体化されている。第1連結極板44と、第2連結極板46と、第3連結極板48は、いずれも、環状磁心25の平行部25aに平行な方向に伸びた形状をしている。なお、図13以下の各図の構成部品に描かれた多数の孔は、冷却水等の冷媒を通すためのもので、図示しないパイプを接続して、外部から冷却水等が供給される。また、別の孔から、冷却水等が排出される。
 図15に示すように、接続基体62の他方の面側に、第1連結極板44と第2連結極板46と第3連結極板48とを支持固定する。このように固定すると、正側導体30と負側導体32とは、接続基体62の他方の面側において、当該他方の面から垂直に離れる方向に伸びた構造になる。なお、接続基体62の他方の面が一部露出している。ここには、多数の孔が空いている。これらの孔は、接続基体62の中空部を介して正側コイル14や負側コイル16の中空部に冷却水等の冷媒を供給するためのものである。これらの穴から冷媒を供給する冷媒通路となる冷媒供給路72を図16に示すように取り付ける。さらに、図16に示すように、正側導体30と負側導体32にそれぞれ整流素子18と整流素子20を密着させ、第1極板34と第2極板36とで挟む。
 接続基体62の中空部に冷媒が供給されると、この冷媒によって接続基体62の冷却が促進され、これにともない、正側コイル14や負側コイル16が効果的に冷却される。
 複数の正側コイル14と複数の負側コイル16との間に分割巻きされた1次コイル12の各部を挟むように配置したので、正側コイル14と負側コイル16によって1次コイル12を含むトランス全体を効率よく冷却できる。
 図17はほぼ組み立てを完了した溶接トランスの斜視図である。図18は、プラス電極とマイナス電極を取り付けた状態の溶接トランスの斜視図である。
 図のように、溶接トランス10の接続基体62のいずれか一方の短辺側に、プラス電極22とマイナス電極24を固定している。このように構成することで、接続基体62の短辺方向の幅を十分に狭くし、後で説明するように、同じ構成の溶接トランスを重ね合わせて連結できる。
 また、第3極板38とマイナス電極24には冷媒供給栓74が取り付けられている。即ち、第3極板38もマイナス電極24も中空部を有し、その内部に冷却水等の冷媒が供給される。また、それらの中空部は、配管により、接続基体62や正側コイル14や負側コイル16の中空部に接続されており、溶接トランス全体を冷却できる。プラス電極22に冷媒供給栓74を取り付けてもよい。
 図18において、溶接トランス10の第3極板38を固定した面をP側の面とし、マイナス電極24を固定した面をQ側の面とし、溶接トランス10に対して第3極板38と反対側の面をR側の面とし、マイナス電極24と反対側の面をS側の面と呼ぶことにする。
 この場合に、第3極板38は、P側の面とQ側の面とS側の面のいずれに設けてもよい。また、マイナス電極24は、P側の面とQ側の面とR側の面のいずれに設けてもよい。冷媒供給栓74は、P側、Q側、S側、R側の面のいずれに設けてもよい。
 図19は、図18に示した溶接トランスを2個組み合わせた溶接トランス組体11の斜視図である。
 図の1次コイル12は、プラス電極22の部分を共通プラス電極64で連結し、マイナス電極24の部分を共通マイナス電極66で連結している。これにより、2個の溶接トランスを並列接続して、大電流を供給することができる。なお、図12や図17や図18において説明した各導体や極板は、それぞれ独立していても一体化されていても構わない。例えば、第3連結極板48とマイナス電極24とは一体化されていてよい。また、第1極板34と第2極板36と第3極板38とプラス電極22とは、任意の組み合わせで一体化されていてよい。図14で説明したとおり、第2連結極板46と負側導体32、第1連結極板44と正側導体30はそれぞれ一体化されていてよい。
 図のように、各溶接トランスの、環状磁心25の平行部25aが互いに平行になり、第3極板38が最短距離で隣接するように配置した。このとき、各溶接トランスの各第3極板38が同面側に配置される。この状態で、共通プラス電極64や共通マイナス電極66により、溶接トランスを2台以上組み合わせて電気的に、かつ、機械的に連結して使用できる。
 接続基体62の一方の側に、1次コイル12と正側コイル14と負側コイル16を配置し、接続基体62の他方の側に、電気接続のための極板や整流素子を配置したので、全体をコイル部分の厚みに納めることができる。なお、共通プラス電極64や共通マイナス電極66は、図18で説明したP側、Q側、S側、R側の面いずれに設けてもよい。ここで、P側、Q側、S側、R側の面以外の2面を溶接トランスの側面と定義したとき、複数の溶接トランスは、いずれもその側面を対向させて連結されることになる。
 図20は、正側コイル14と負側コイル16と接続基体の関係を示す側面図である。
 上記実施例では、接続基体62の一方の面に、横並びに正側コイル14と負側コイル16とを配置した。これが、図20の(a)の状態である。接続基体62の他方の面側には、既述のように、正側導体30と負側導体32及び、整流素子18と整流素子20、第1極板34と第2極板36とが順番に重ね合わされている。第1極板34と第2極板36とは第3極板38で連結されている。
 一方、図20の(b)の実施例(実施例3)では、接続基体62の一方の面に積み重ねるように、正側コイル14と負側コイル16とを配置した。そして、正側コイル14と負側コイル16の結線のために、接続基体62にそれと交差する方向に沿った補助接続基体63を設けた。このような補助接続基体63を有する接続基体62により正側コイル14と負側コイル16を結線し、接続基体62の他方の面側の正側導体30と負側導体32に接続する。
 即ち、1次コイル12が正側コイル14と負側コイル16を1個ずつ挟み込んだ状態のコイル群の2側面を支持するように、接続基体62を補助接続基体63が連接された断面L字状に形成する。このような構成でも、溶接トランスを全体として扁平に小型にまとめることができる。また、図19を参照して説明したとおりに、複数の溶接トランスを重ね合わせて並列接続して使用することができる。また、断面L字状に形成された接続基体62により強度が向上し、冷却効率も良くなる。
 図21は、実施例4における、1次コイル12と正側コイル14と負側コイル16の斜視図である。
 既述の実施例では、1次コイル12と正側コイル14と負側コイル16とを磁心25上に可能な限り隙間なく配列して、漏れ磁束を無くし、各コイル間の磁気的結合を最適化した。一方、図21の実施例では、1次コイル12と正側コイル14と負側コイル16とを重ね巻きすることによって、各コイル間の磁気的結合度を高める。
 図21(a)は、中心に負側コイル16を配置し、その上に1次コイル12を配置し、最外周に正側コイル14を配置するように同軸巻きされた第1のコイルユニットである。図21(b)は、中心に正側コイル14を配置し、その上に1次コイル12を配置し、最外周に負側コイル16を配置するように同軸巻きされた第2のコイルユニットである。正側コイル14と負側コイル16とは、いずれも、1次コイル12と同じ幅のワンターンコイルである。漏れ磁束を無くして、1次コイルと2次コイルの磁気的結合を高めるためである。図21(c)と(d)に正側コイル14と負側コイル16の斜視図を示す。
 図21(a)に示した第1のコイルユニットと図21(b)に示した第2のコイルユニットとを図21(e)に示すように、磁心上に隙間無く配列してコイルユニット配列体を構成している。これにより、磁心の軸方向に配列された隣接するコイル間からの漏れ磁束を最小にできる。また、正側コイル14と負側コイル16との間に1次コイル12を配置したので、正側コイル14と負側コイル16との間の磁気的結合を小さくできる。従って、転流時間中に流れる電流に対するインダクタンスを小さくでき、既述の実施例と同様の効果を得る。なお、正側コイル14と負側コイル16の特性のアンバランスを問題としない場合には、第1のコイルユニットまたは第2のコイルユニット単体でも実用になる。
 図21(a)と図21(b)に示したものを交互に配列すると、巻き径の異なる正側コイル14や負側コイル16を直列接続し、あるいは並列接続して使用したとき、全体として、各コイルのインダクタンスを平準化できる。また、正側コイル14と負側コイル16とが直接隣接しないので、正側コイル14と負側コイル16との間の磁気的結合を小さくすることができる。さらに、先の実施例に示した溶接トランスと比較すると、正側コイル14や負側コイル16の製造コストを下げることもできる。
 図22は、整流素子の配置の変形例を示す主要部斜視図である。
 図22の(a)は、図5の(a)や図8を参照して既に説明したとおり、正側導体30と負側導体32を挟んで整流素子18と整流素子20を配置し、さらにその両側に第1極板34と第2極板36とを配置している。第1極板34と第2極板36とを第3極板38で連結する。
 一方、図22の(b)の実施例(実施例5)では、絶縁層31を挟んで正側導体30と負側導体32とを配置して、負側導体32だけを一方に延長している。その負側導体32の延長部分に、整流素子20を配置した。整流素子18を正側導体30と第1極板34とで挟む。整流素子20を負側導体32と第2極板36とで挟む。この例では、第1極板34と第2極板36とを、連続した一体構造の導体板により構成した。従って、第1極板34と第2極板36とを第3極板38により接続した構造と見なすことができる。従って、図22の(b)の実施例も、その電気的特性は図22の(a)の実施例と実質的に等価である。このため、転流時間における正側導体30と負側導体32のインダクタンスを極小にでき、既述の実施例と同様の効果が得られる。
 以上の構成の本発明の溶接トランスおよび溶接装置は、電気的に見たときと熱的にみたときとで、それぞれ次のような効果を有する。
(電気的効果)
(1)正側コイル14と整流素子18とを電気接続するための第1連結極板44と第2連結極板46とを近接配置し、かつ、正側導体30と負側導体32とを近接配置することにより、転流時間における2次回路のインダクタンスを極小にして、転流時間を短くすることができる。
(2)磁心上で、2次コイルの正側コイルと負側コイルの間に1次コイルを挟むように配置することにより、2次コイルの正側コイルと負側コイルのインダクタンスによる2次電流の転流時間の遅れを抑制することができる。
(3)大電流の流れる2次コイルを磁心上に分散配置したので、磁心全体に磁束を分散させて、磁気飽和を防止することができる。
(4)従来よりも高い周波数の1次電流制御ができれば、大電流を供給できるトランスを小型化し、冷却効率も高めることが可能になる。
(熱的効果)
 大電流の流れる2次コイルを磁心上に分散配置し、間に1次コイルを挟むことにより、2次コイルの放熱を良くすることができる。大電流を供給するトランスは、1次コイルも2次コイルも発熱する。異常に発熱すると、絶縁体を劣化させる等の障害を発生する。大電流を流す2次コイルは最も激しく発熱するが、中空構造にして内部に冷却水を供給して冷却すれば、1次コイルよりも温度を下げることができる。従って、2次コイルに挟まれた1次コイルも2次コイルを流れる冷却水により冷却される。上記の構造では、効率よく1次コイルを冷却できる。
(構造上の効果)
 接続基体の一方の面側にコイル群を配置し、他方の面側に極板等を配置して、全体として扁平なコンパクトな形状にすることができる。従って、小型で大容量の溶接トランスを容易に実現できる。
 本発明の溶接装置は、上記の実施例に限定されない。例えば、2次回路の結線には銅板を例示し、各部をビス止め等で連結する例を示したが、例えば、正側コイル14と第1連結極板44とが一体化されていてもよい。また、第1連結極板44と正側導体30とは一体化されていてもよい。第1極板34と第2極板36と第3極板38とが、例えば、図22の(b)の実施例におけるように、一体化されていてもよい。負側コイル16と連結極板との関係についても正側コイルにおける場合と同様である。また、各極板は板状でも棒状でもよい。各2次コイルや極板の内部に冷却水を供給する透孔を設けることが好ましい。
 以下に本発明の実施の形態を添付図面に基づいて説明する。
 図24は本発明に係る溶接装置のブロック図、図25は溶接装置の溶接制御電源装置部分を例示する回路図である。この図25では、溶接制御電源装置112と溶接トランス114と抵抗溶接機本体118の結線例が示されている。
 本発明に係る抵抗溶接方法を実施する溶接装置は、図23に示したものと同様に、重ね合せた溶接材120A、120Bを加圧して溶接電流を流す一対の電極122A、122Bと、これらの電極122A、122Bに所望の加圧力を与える抵抗溶接機本体118を備える。
 溶接制御電源装置112と溶接トランス114は、この抵抗溶接機本体118により加圧された溶接材120A、120Bに電極122A、122Bを介して所望の溶接電流を供給するためのものである。溶接条件データベースを記憶した記憶装置116には、溶接制御電源装置112による溶接電流のレベルや供給タイミング等を指定するデータが記憶されている。
 図23で説明したように、溶接の過程で一対の電極122A、122B間の2枚の溶接材120A、120Bの接合面が溶融してナゲット124が生成される。溶接材に接する電極の端面は、例えば、球面または緩やかな円錐台形をしている。
 抵抗溶接が良好ならば、溶接部に形成されるナゲット形状も電極端面の形状にならうので、ほぼ円形になり、全体として円盤状のものになる。この場合、ナゲットの大きさはその直径(ナゲット径)で示される。
 溶接制御電源装置112は、例えば、10khzの分解能で溶接トランス114の2次電流を制御する。溶接トランス114は、5000A~20000A程度の溶接電流を供給できるものである。この溶接トランス114としては、図1乃至図22を用いて説明した溶接トランス10乃至溶接トランス組体11を適用することができる。図24の溶接装置およびこの装置に係る抵抗溶接方法については、後に具体的に例示する。従来の溶接トランスは1kHz程度の分解能で制御されていたから、この装置は、溶接初期の溶接電流を従来の10分の1程度の時間単位(分解能)で、溶接電流を増減制御できる。
 図26は本発明に係る抵抗溶接方法による溶接電流の時間変化と電流の流れに伴う電極変位量を示す説明図である。電極変位量とは、電極による加圧下での被溶接材の膨張収縮に追随した、当該電極の変位量である。ナゲットが生成されているときには被溶接材の熱膨張によって電極変位量は増加する。その後、溶融部の固化に準じて膨張部分が次第に収縮するに伴って、電極変位量は減少する。
 図23に示したような溶接材に溶接電流を供給すると、両溶接材相互間の接触部位に流れる電流により、溶接材が溶融を開始する。本発明の溶接方法では、溶接電流が通電開始から5msec(ミリ秒)以内で最大値になるように溶接初期の溶接電流を制御し、前記溶接電流の通電開始から50msec以下の通電時間で溶接を終了する。
 図26の例では、15msecで溶接を完了している。2枚の溶接材120A、120Bの接合面に生成されるナゲット124は、溶接の過程で漸次、径方向および厚さ方向に膨張し電極を押圧して変位させる力が生じる。この電極の変位を測定すると、ナゲットの成長の過程を間接的に測定できる。
 図26の(a)は、5msec以内に溶接電流を最大値まで急速に立ち上げた場合の溶接部分の成長過程を示している。図26の(b)は、従来方法により、溶接時間が300msec程度でゆっくりと溶接電流を立ち上げた場合の溶接部分の成長過程を示している。なお、図26の(b)は、溶接開始後15msec分しか、データを表示していない。
 図26の(a)、(b)は、溶接初期の溶接電流がどのように溶接性に影響するかを比較して示している。この事例では、溶接材として板厚1.2mmの冷間圧延鋼板(SPC)を使用し、この鋼板2枚を重ねて溶接している。
 図26の(a)に示すように、溶接初期の5msecの通電時間における電極変位量を観測すると、溶接電流の立ち上がりを速くした場合は、5msecで電極変位量が20μmに達した。
 一方、図26の(b)のような制御をした場合には、5msecで電極変位量が5μmである。15msecでは、目的とするナゲットを形成できない。このデータにより、溶接初期の溶接電流の立ち上がりを急速にするだけで電極変位量が約4倍も違ってくることがわかる。
 図27は、溶接電流供給開始から15msec後のナゲットの状態を示す溶接部主要部断面図である。
 図27の(a)は、図26の(a)のような溶接をした場合の、溶接電流供給開始から15msec後のナゲット125の状態を示す溶接部主要部断面図である。図27の(b)は、図26の(b)のような溶接をした場合の、溶接電流供給開始から15msec後のナゲット125の状態を示す溶接部主要部断面図である
 図27の(a)、(b)に示される、溶接電流供給開始から通電時間15msec後におけるナゲット径と引張強度を測定したところ、図27の(a)の場合は、ナゲット径D1は4mm、引張強度4.8KN(キロニュートン)である。これに対して、図27の(b)の場合は、ナゲット径D2が3mm、引張強度3.0KNであった。
 一般的な溶接品質指標を参考としてナゲット径=4√tを基準値とし、この基準値を超えた場合を良品とし、未満の場合を不良品とする。ナゲット径=4√tに板厚t=1.2mmを代入しナゲット径=4.3mmを基準値とすると、図27の(a)の場合は、ナゲット径が基準値にほぼ近い値である。一方、図27の(b)の場合はナゲット径が基準値よりもかなり小さく、より時間をかけてナゲットを成長させなければならない。即ち、従来の場合には、300msecといった長時間の溶接電流が必要になる。
 図28は、被溶接材として板厚1.2mmの冷間圧延鋼板(SPC)を使用し、この鋼板2枚を重ねて通電時間40msec で溶接を行った事例を示している。
 本発明に係る抵抗溶接方法を実施した場合は、ナゲット径は最大4.17mm、ナゲット深さは最大1.73mm、電極変位量は最大89.8μmの数値となった。
 図29は、被溶接材として板厚0.6mmの電気亜鉛めっき鋼板を使用したときの、ナゲット径と引張強度の測定例である。
 図中のA部分は、本発明の溶接方法を使用した例である。この例の場合では、通電時間を40msec(2サイクル)の微少時間で溶接をしたときのナゲット径と引張強度を測定している。
 図中のB部分は、従来の溶接方法を使用した例である。この例の場合では、通電時間を220msec(11サイクル)で溶接したときのナゲット径と引張強度を測定している。
 本発明の溶接方法の実施例は、従来の溶接方法の実施例と比べて約1/5の通電時間で同程度のサイズで同程度の強度のナゲットが形成できる。これは、従来の溶接方法と比較して本発明の溶接方法が、飛躍的な生産性の向上と省エネルギーを実現できることを示している。
 図30は、被溶接材として板厚0.6mmの電気亜鉛めっき鋼板を使用したときの、溶接エネルギーの測定例である。
 図中のA部分は、本発明の溶接方法を使用した例である。この例の場合では、通電時間を40msec(2サイクル)の微少時間で溶接をしたときの溶接エネルギーを測定している。
 図中のB部分は、従来の溶接方法を使用した例である。この例の場合では、通電時間を220msec(11サイクル)で溶接したときの溶接エネルギーを測定している。
 図31は、本発明と従来の溶接方法による溶接部の中心部の温度変化を、溶接エネルギーに着目して比較した説明図である。
 従来は、曲線Bのように、溶接部がゆっくりと温度上昇をし、溶接部の温度が溶接材の融点を越えるとナゲットの生成が開始される。NT2時間でナゲットは適切なサイズまで成長して、ここで溶接電流を止める。なお、ナゲットとは、溶接により溶融してその後固化した部分のことを指す、碁石のような形状(断面が略楕円形の円盤状)の部分であるが、ここでは固化する前の状態の溶融した部分もナゲットと呼ぶことにする。
 本発明の方法では、曲線Aのように、短時間で急激に溶接部の温度を上昇させる。融点を越えた後も許容値(摂氏t度)まで一気に温度を上昇させて、急速にナゲットを成長させる。これにより、NT2時間よりも十分に短いNT1時間でナゲットが適切な大きさまで成長する。
 なお、曲線Bのような溶接電流の立ち上がり速度では、上記の摂氏t度まで温度上昇させる前にナゲットが適切なサイズまで成長してしまう。即ち、融点を越えた高い温度でナゲットを成長させることができない。また、曲線Aの方法(本発明の方法)と曲線Bの方法(従来方法)とを比較したとき、従来は溶接部の温度が溶接材の融点に達するまでにDT2時間かかっていたが、本発明ではDT1時間で融点に達する。
 図32はナゲット周辺の温度分布例を比較した説明図である。
 本発明の方法では、図31に示したDT1+NT1時間が15msec、従来法では図31に示したDT2+NT2時間が100msec以上である。両者の間に大きな開きがある。溶接部から単位時間あたりに外部に逃げる熱量は、溶接部や冷却装置の構造により決まるほぼ一定値である。本発明のように短時間で加熱をして溶接を完了すると、図32の(a)に示すように、ナゲット124の周辺の小領域を一気に加熱するだけでよい。これに対して溶接時間が長くなると、図32の(b)に示すように、ナゲット124の周辺全体に熱が広がって、熱損失が増える。
 なお、金、銀、銅、アルミニュームのような熱伝導率の良い金属に対して、鉄、コバルト、ニッケル、クロム、スズといった金属やこれらを含む合金は、熱伝導率が5分の1程度である。こうした熱伝導率が低いほうの金属を5000A以上の大電流で溶接するような場合に、図32に示すような傾向が顕著に見られる。実験によれば、DT1+NT1時間を50msec以下、好ましくは20msec以下にすると、図32の(a)に示すような温度分布を達成できることが分かった。
 溶接時間と溶接部周囲の温度上昇を考慮に入れると、全体として、本発明の方法はエネルギー損失を大幅に減少させることができる。具体的に、厚みが1.0mmの冷間圧延鋼板を2枚重ねて溶接をし、直径4mmのナゲットを形成する場合に、従来は、13V5500Aの溶接電流を300msec供給するようにしていた。概略計算をしてみると、ナゲット形成に必要な正味のエネルギーに対してその150倍のエネルギーを供給していたから、99.5%は熱損失で無駄になっていたということができる。本発明の実施例では、13V14000Aの溶接電流を15msec供給するだけだから、全供給エネルギーの5%がナゲット形成に使用される。従って、この例では、従来の約8倍の効率を実現できる。
 図33は、本発明の実施例7の溶接電流制御方法の説明図である。
 図33を参照して、溶接電流のさらに具体的な制御方法を説明する。図33の上部のグラフは、溶接電流の時間変化を示すもので、縦軸は溶接電流(単位A)、横軸は時間の経過(単位msec)を示す。図33の下部のグラフは、ナゲット径P(溶融部分の直径)が時間とともに増加していく状態を示し、縦軸はナゲット径あるいはナゲット深さ(単位mm)を示す。上下のグラフの横軸のスケールは一致させてある。
 既述の図33、および、図34、図35は、後で説明する溶接トランスを使用して、実際に、冷間圧延鋼板の溶接を行った場合の溶接電流の時間変化を示している。ここで、以下の説明のために、図のグラフの時間軸を4つに区分する。まず、溶接電流供給開始時刻t0から時刻t2までの電流増加率が最大の部分を、立ち上げ制御期間T1と呼ぶことにする。これに続く、時刻t2から時刻t3までのピーク電流値C1に近い所定レベルの電流を維持する期間をピークレベル制御期間T2と呼ぶことにする。そして、その後の、時刻t2から電流遮断時刻t3に至るまでの期間を温度維持制御期間T3と呼ぶことにする。電流遮断時刻t3以降の期間は、溶接部が自然放冷される期間である。
 具体的に、本発明の方法では、立ち上げ制御期間T1は10msec以下、好ましくは5msec以下である。これにより、周囲に熱が伝搬する前に狭い領域を一気に加熱できる。また、立ち上げ制御期間T1とピークレベル制御期間T2の和(T1+T2)時間は15msec以下が好ましい。この間に溶接材の融点を越えた許容値まで溶接部の温度を上昇させる。ナゲットを急速にかつ正常な状態で成長させるために最適な温度まで上昇させる。その後、温度維持制御期間T3で、ナゲットが形成されるまで、一定以上の温度を維持する。(T1+T2+T3)は、50msec以下、好ましくは20msec以下である。図32の(a)の状態が崩れる前に溶接を終了させるためである。
 なお、溶接材の温度を許容値まで上昇させるためのピーク電流値C1と加熱終了時電流値C2は材料の種類に応じて選定する。また、ピークレベル制御期間T2や温度維持制御期間T3も材料の性質に応じて選定する。このデータは、図24に示した溶接条件データベースに含められる。溶接開始時にこのデータが記憶装置116(図24)から読み出されて、溶接電流制御に使用される。
 抵抗溶接部に供給される熱量は電流の二乗に比例する。融点以上で許容値以下に目標温度を設定する。供給する電流が大きいほど、溶接部は短時間で目標温度に達する。溶接部が目標温度に達した後は、材料の性質に応じた時間だけ、その付近の温度を維持できれば、適切な大きさと深さのナゲットが形成される。これにより、目的とする強度の溶接部が得られる。
 従来は、溶接トランスの2次回路のインダクタンスにより、5000A以上の溶接電流を急速に立ち上げることが困難であった。しかしながら、図1乃至図22を用いて説明した溶接トランス10乃至溶接トランス組体11を適用することにより、5msec以下で、溶接電流を溶接部の加熱に適する電流値に立ち上げることが可能になり、かつ、その後の精密な電流制御が可能になった。
 図32で説明したように、一定時間内に溶接部から外部に逃げる熱量はほぼ一定であるが、今、この熱量をQとする。このQと比べて十分に大きな熱量を、短時間に一気に供給することにより、周囲の温度上昇を抑制して溶接部の温度を急速に高めることができる。しかし、溶接部の温度が目標温度に達した後もさらに過剰な熱量を供給し続けると、適切な形状のナゲットを形成できない。溶融した金属が飛散するおそれもある。
 例えば、冷間圧延鋼板では、融点が約摂氏1500度であるが、摂氏1800度付近を目標温度に設定すれば、安全にナゲットを急成長させることができる。摂氏2000度を越えると弊害がある。従って、立ち上げ制御期間T1を十分に短く設定するとともに、溶接部の温度が目標温度に達したときに、ピークレベル制御を行う。
 図33のグラフで説明すれば、立ち上げ制御期間T1では、可能な限り速く最大電流に到達するように溶接トランスを制御して電流の立ち上げ速度を速める。溶接電流がピーク電流値C1に近づいたとき、そのままの制御状態を維持すると溶接電流が過大になるおそれもあるため、ピーク電流値C1を越えないでこの電流値を維持できるように時刻t1で制御電流値を調整する。きわめて短時間であり、安定な制御が容易でないから、実際の電流値は若干変動している。
 時刻t1から時刻t2までの期間で、溶接部を融点以上の目標値にさせる。時刻t2以後は、溶接部の温度を適正範囲に維持できるだけの溶接電流を供給するように制御を切り替える。ピーク電流値C1から加熱終了時電流値C2まで段階的に制御電流を切り下げるように制御する。温度維持制御期間T3は、ナゲットが適切な形状に成長するまで待機する時間である。
 実験によれば、板厚が1.0mmの冷間圧延鋼板を、ピーク電流値C1が10000A、加熱終了時電流値C2が7000Aで制御したとき、立ち上げ制御期間T1が5msec、立ち上げ制御期間T1とピークレベル制御期間T2の和(T1+T2)が9msec、温度維持制御期間T3が31msecで、良好なナゲットが形成された。即ち、(T1+T2+T3)は40msecであった。
 図34は、上記と同じ板厚が1.0mmの冷間圧延鋼板を、ピーク電流値C1が14000A、加熱終了時電流値C2が10000Aで制御したときの結果を示す。この例の場合には、立ち上げ制御期間T1が3msec、立ち上げ制御期間T1とピークレベル制御期間T2の和(T1+T2)が9msec、温度維持制御期間T3が6msecで、良好なナゲットが形成された。即ち、(T1+T2+T3)は15msecであった。
 図35は、板厚が1.0mmのステンレス板を、ピーク電流値C1が14000A、加熱終了時電流値C2が10000Aで制御したときの結果を示す。この例の場合には、立ち上げ制御期間T1が3msec、立ち上げ制御期間T1とピークレベル制御期間T2の和(T1+T2)が6.5msec、温度維持制御期間T3が8.5msecで、良好なナゲットが形成された。即ち、(T1+T2+T3)は15msecであった。
 図33の例と比較すると、ピークレベル制御期間T2を経過した時刻t2以後は、ナゲットが形成されるべき微少な部分を溶接材の融点の温度以上に維持できればよい。また、ナゲットが成長するにつれて溶融部分の電気抵抗が高まり、一定の電流値を維持しようとすると電気抵抗の上昇分だけ発熱量が増える。従って、発熱量を一定に維持するには、図のように電流値を段階的に低下させる。
 3msec程度の間に一気に供給電流を最大値近くまで上昇させる能力のある電源を使用すれば、ナゲットの成長速度に応じて溶接電流値を段階的に減少させる制御も可能になる。数ミリ秒といった短時間に数万アンペアまで電流値を立ち上げること自体も容易でないが、その数ミリ秒経過後に、電流値を目標値まで一気に低下させるような精度の高い電流制御も容易でない。従って、溶接トランスの能力の範囲内で溶接電流を急速に立ち上げた後に、この能力の範囲内で、溶接終了まで溶接電流を段階的に切り替えて漸減していく。以下に、こうした制御が可能な溶接トランスを例示する。
 図36は、溶接トランスの具体的な動作を説明する説明図である。
 図25を用いて説明した溶接トランスは、この図に示すようなタイミングで制御される。まず、インバータは、図36の(a)に示すタイミングで、制御パルスを発生する。この制御パルスにより溶接トランスの一次電流がスイッチング制御される。
 スイッチングのパルス周期は図36の(a)ではRmsecで、周波数が10kHzなら、0.1msecの分解能で溶接電流を制御する。図36の(b)に示す1次電流は、スイッチングのパルス幅Wに応じて増減する。5msecまで、最大に近い出力となるように溶接電流を制御し、その後は、上記の実施例のように、溶接電流を5~10msecだけピークに維持する。
 溶接トランスの2次コイルのインダクタンスや溶接部の条件等の影響により、スイッチングパルス幅の変化に対して溶接電流の応答が若干遅れるから、図33~図35のような溶接電流の不規則な変化が現れる。従って、スイッチングパルスの制御タイミングは、溶接材に応じて予め最適条件をみつけておき、上記の溶接条件データベースに記憶させておくことが必要になる。このような溶接トランスを使用して溶接制御をすれば、上記の溶接方法を実現できる。
 抵抗溶接は長年に渡り多くの産業分野で使われてきたが、大きな技術的革新がなかった。交流式抵抗溶接からインバータ式抵抗溶接に主流が移ったものの、その溶接方法は同じであった。本発明の抵抗溶接方法は、1/10に近い省エネルギー効果があり、地球環境の保全には大変望ましい。また、通電時間を1/5ないし1/10 以下に短縮でき飛躍的な生産性向上が可能であることから、大きく技術的な革新ができる。
 また、本発明によれば、製品全体を高温まで加熱することなく、溶接部近傍のみを一気に高温に加熱するので、製品の熱変形(熱による歪)が減少し製品品質が向上する。さらに、製品の表面まで高熱に加熱しないですむため、溶接部の表面や裏面の過熱による焼けや変形などが減少し、材料の美麗さが保持できるというきわめて重要な効果が得られる。
 省エネルギー効果に優れた本発明は全ての産業に利用できることは勿論である。特に、自動車産業などの量産ラインでの通電時間の短縮は生産性の向上による飛躍的なコストダウンが可能である。また、本発明の溶接方法による微少時間での溶接の高精度な制御が溶接品質にも大きく貢献できる。従来にない全く新しい抵抗溶接方法の概念が本発明の特長である。
  10 溶接トランス
  11 溶接トランス組体
  12 1次コイル
  14 正側コイル
  16 負側コイル
  18 整流素子
  20 整流素子
  22 プラス電極
  24 マイナス電極
  25 磁心
  25a 平行部
  25b 湾曲部
  26 溶接トランス
  28 溶接機
  30 正側導体
  31 絶縁層
  32 負側導体
  34 第1極板
  36 第2極板
  38 第3極板
  44 第1連結極板
  46 第2連結極板
  48 第3連結極板
  58 入力端
  60 結束バンド
  62 接続基体
  63 補助接続基体
  64 共通プラス電極
  66 共通マイナス電極
  67 端子
  68 端子
  69 端子
  72 冷媒供給路
  74 冷媒供給栓
  76 突起
  78 導体
  80 突起
  82 導体
  84 突起
  86 突起
  88 枝
  90 導体
  112 溶接制御電源装置
  114 溶接トランス
  116 記憶装置
  118 抵抗溶接機本体
  120A 被溶接材
  120B 被溶接材
  122A 電極
  122B 電極
  124 ナゲット 

Claims (29)

  1.  1次コイル12と、正側コイル14と負側コイル16とを直列接続した2次コイルとを、磁心に巻回したトランス部と、
     前記正側コイル14の一端に一方の整流素子18の一端を接続し、前記負側コイル16の一端に他方の整流素子20の一端を接続し、前記一方の整流素子18の他端と前記他方の整流素子20の他端をプラス電極22に接続し、前記正側コイルの他端と前記負側コイルの他端をマイナス電極24に接続し、前記プラス電極22と前記マイナス電極24を溶接機28に接続する2次回路とを備え、
     前記1次コイルには、インバータにより一定の繰り返し周波数で極性を反転させるパルス状の1次電流が供給されており、
     前記正側コイル14と前記負側コイル16とは、両者の間に前記1次コイル12を挟むように配置され、
     前記正側コイル14の一端は第1連結極板44を介して正側導体30に電気接続され、前記負側コイル16の一端は第2連結極板46を介して負側導体32に電気接続され、
     前記正側導体30と前記負側導体32とは、絶縁層31を介して密着するように配置され、
     前記正側導体30と前記負側導体32の両側に前記整流素子18、20を配置して、第1極板34と第2極板36で挟み、前記第1極板34と第2極板36は第3極板38により電気接続され、第3極板38にプラス電極22が接続され、
     前記正側コイルの他端と前記負側コイルの他端にはマイナス電極24が接続されていることを特徴とする溶接トランス。
  2.  請求項1に記載の溶接トランスにおいて、
     前記正側コイル14と前記負側コイル16とを交互に配置し、それぞれの間に分割巻きした前記1次コイル12を配置し、分割した前記1次コイル12は、全て直列接続されるかもしくは全部または一部が並列接続され、
     前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、
     前記複数の正側コイル14と前記複数の負側コイル16とは相互に直列接続され、前記複数の正側コイル14の一端を第1連結極板44に接続し、前記複数の負側コイル16の一端を第2連結極板46に接続し、複数の正側コイル14の他端と複数の負側コイル16の他端を第3連結極板48に接続したことを特徴とする溶接トランス。
  3.  請求項2に記載の溶接トランスにおいて、
     磁心上の全ての場所で、正側コイル14と負側コイル16が分割された1次コイルを挟むように配置されていることを特徴とする溶接トランス。
  4.  請求項3に記載の溶接トランスにおいて、
     2次コイルには、銅板をC字状に切削加工したワンターンコイルを2個直列接続して使用することを特徴とする溶接トランス。
  5.  請求項1に記載の溶接トランスにおいて、
     中心に負側コイル16を配置し、その上に1次コイル12を配置し、最外周に正側コイル14を配置するように同軸巻きされたコイルユニット、または、中心に正側コイル14を配置し、その上に1次コイル12を配置し、最外周に負側コイル16を配置するように同軸巻きされたコイルユニットを、磁心上に配置したことを特徴とする溶接トランス。
  6.  請求項5に記載の溶接トランスにおいて、
     中心に負側コイル16を配置し、その上に1次コイル12を配置し、最外周に正側コイル14を配置するように同軸巻きされた第1のコイルユニットと、中心に正側コイル14を配置し、その上に1次コイル12を配置し、最外周に負側コイル16を配置するように同軸巻きされた第2のコイルユニットとを、磁心上に磁心の軸方向に交互に隙間なく配列したことを特徴とする溶接トランス。
  7.   高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置に適用される溶接トランスであって、
     平行部25aと両端のU字状の湾曲部25bにより構成される環状磁心25と、
     前記環状磁心25の平行部25aに、複数の部分に分けて間隙12aを空けて分割巻きされる1次コイル12と、
     前記1次コイル12と共に環状磁心25の平行部25aに巻回され、前記1次コイル12に設けられた前記各間隙12aに1個ずつ挟み込むように、複数の正側コイル14と複数の負側コイル16とを交互に配列した2次コイル14,16と、
     前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、前記複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、前記接続された複数の正側コイル14と前記複数の負側コイル16とが互いに直列接続されるように、前記正側コイル14と負側コイル16との端子間を電気接続する導体群が設けられ、かつ、前記導体群により、前記全ての正側コイル14と負側コイル16とを一方の面側に支持固定する接続基体62が設けられ、
     前記複数の正側コイル14の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第1連結極板44に電気接続され、
     前記複数の負側コイル16の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第2連結極板46に電気接続され、
     前記正側コイル14と負側コイル16の他端は、共に、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第3連結極板48に電気接続され、
     前記第1連結極板44には、正側導体30が連結され、
     前記第2連結極板46には、負側導体32が連結され、
     前記正側導体30と負側導体32とによって、前記接続基体62の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層31を介して重ね合わされた一対の導体板が形成され、
     前記正側導体30と第1極板34に挟まれて、前記正側導体30に負極を接触させ前記第1極板34に正極を接触させた整流素子18と、
     前記負側導体32と第2極板36に挟まれて、前記負側導体32に負極を接触させ前記第2極板36に正極を接触させた整流素子20と、
     前記第1極板34と前記第2極板36を支持し、両者を電気接続する第3極板38とを備えていることを特徴とする溶接トランス。
  8.  高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置に適用される溶接トランスであって、
     この2次コイルは正側コイル14と負側コイル16とを含んで構成され、
     平行部25aと両端のU字状の湾曲部25bにより構成される環状磁心25と、
     中心に前記負側コイル16を配置し、その上に1次コイル12を配置し、最外周に前記正側コイル14を配置するように同軸巻きされた第1のコイルユニットと、中心に前記正側コイル14を配置し、その上に前記1次コイル12を配置し、最外周に前記負側コイル16を配置するように同軸巻きされた第2のコイルユニットとを、前記環状磁心25の平行部25aに交互に隙間なく配列したコイルユニット配列体と、
     前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、前記複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、前記接続された複数の正側コイル14と前記複数の負側コイル16とが互いに直列接続されるように、前記正側コイル14と負側コイル16の端子間を電気接続をする導体群を有し、かつ、前記導体群により、前記全ての正側コイル14と負側コイル16とを一方の面側に支持固定する接続基体62を備え、
     前記複数の正側コイル14の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第1連結極板44に電気接続され、
     前記複数の負側コイル16の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第2連結極板46に電気接続され、
     前記正側コイル14と負側コイル16の他端は、共に、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第3連結極板48に電気接続され、
     前記第1連結極板44には、正側導体30が連結され、
     前記第2連結極板46には、負側導体32が連結され、
     前記正側導体30と負側導体32とによって、前記接続基体62の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層31を介して重ね合わされた一対の導体板が形成され、
     前記正側導体30と第1極板34に挟まれて、前記正側導体30に負極を接触させ前記第1極板34に正極を接触させた整流素子18と、
     前記負側導体32と第2極板36に挟まれて、前記負側導体32に負極を接触させ前記第2極板36に正極を接触させた整流素子20と、
     前記第1極板34と前記第2極板36を支持し、両者を電気接続する第3極板38とを備えていることを特徴とする溶接トランス。
  9.  請求項7または8に記載の溶接トランスにおいて、
     前記接続基体62は中空部を有し、この中空部は冷媒通路を構成していることを特徴とする溶接トランス。
  10.  請求項9に記載の溶接トランスにおいて、
     前記正側コイル14と負側コイル16と前記接続基体62とは、いずれも、中空部を有し、各中空部は配管に連結されて、冷媒通路を構成していることを特徴とする溶接トランス。
  11.  請求項7に記載の溶接トランスにおいて、
     前記接続基体62は、前記1次コイル12の間隙12aに前記正側コイル14と負側コイル16を1個ずつ挟み込んだ状態のコイル群の2側面を支持するように、断面L字状に形成されていることを特徴とする溶接トランス。
  12.  請求項1乃至11のいずれかに記載の溶接トランスを2台以上組み合わせた溶接トランス組体。
  13.  請求項12に記載の溶接トランス組体であって、
     各溶接トランスの前記環状磁心25の平行部25aが互いに平行になり、前記接続基体62の他方の面から垂直に離れる方向に伸びる面に平行な面を突き合わせ、前記各溶接トランスの各第3極板38に連結した各プラス電極22を共通プラス電極64により連結固定し、前記各溶接トランスの各マイナス電極を共通マイナス電極66により連結固定したことを特徴とする溶接トランス組体。
  14.  請求項12に記載の溶接トランス組体であって、
     前記接続基体62の他方の面から垂直に離れる方向に伸びる面に平行な2個の側面以外の面に、プラス電極22、マイナス電極24、第3極板38及び冷媒供給口74を配置したことを特徴とする溶接トランス組体。
  15.  請求項1乃至11のいずれかに記載の溶接トランスを備えた溶接装置。
  16.  高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置であって、
     溶接制御電源装置と溶接トランスと抵抗溶接機本体と溶接条件データベースを記憶した記憶装置とを備え、
     前記抵抗溶接機本体は、重ね合せた溶接材を加圧して溶接電流を流す一対の電極と、これらの電極に所望の加圧力を与える機構を備え、
     前記溶接制御電源装置は、前記記憶装置に記憶された溶接条件データベースから、溶接電流のレベルと供給タイミングを指定するデータを読み出して、前記一対の電極を介して前記溶接材に溶接電流を供給するためのものであって、
     溶接電流供給開始時刻t0からその後の時刻t1までの、電流増加率が最大の部分を立ち上げ制御期間T1と呼び、これに続く時刻t1から時刻t2までの、ピーク電流値C1に近い所定レベルの電流を維持する期間をピークレベル制御期間T2と呼び、その後の時刻t2から電流遮断時刻t3に至るまでの期間を、温度維持制御期間T3と呼ぶとき、
     前記溶接制御電源装置は、
     前記立ち上げ制御期間T1は10ミリ秒以下とし、
    前記立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間は15ミリ秒以下とするように、前記溶接電流を制御することを特徴とする溶接装置。
  17.  高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置であって、
     抵抗溶接機本体と溶接トランスと溶接制御電源装置と記憶装置とを備え、
     前記抵抗溶接機本体は、重ね合せた溶接材を加圧して溶接電流を流す一対の電極と、これらの電極に所望の加圧力を与える機構を備え、
     前記溶接トランスは、
     平行部25aと両端のU字状の湾曲部25bにより構成される環状磁心25と、
     前記環状磁心25の平行部25aに、複数の部分に分けて間隙12aを空けて分割巻きされる1次コイル12と、
     前記1次コイル12と共に環状磁心25の平行部25aに巻回され、前記1次コイル12に設けられた前記各間隙12aに1個ずつ挟み込むように、複数の正側コイル14と複数の負側コイル16とを交互に配列した2次コイル14,16と、
     前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、
     前記複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、
     前記接続された複数の正側コイル14と前記複数の負側コイル16とが互いに直列接続されるように、前記正側コイル14と負側コイル16との端子間を電気接続する導体群が設けられ、かつ、
     前記導体群により、前記全ての正側コイル14と負側コイル16とを一方の面側に支持固定する接続基体62が設けられ、
     前記複数の正側コイル14の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第1連結極板44に電気接続され、
     前記複数の負側コイル16の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第2連結極板46に電気接続され、
     前記正側コイル14と負側コイル16の他端は、共に、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第3連結極板48に電気接続され、
     前記第1連結極板44には、正側導体30が連結され、
     前記第2連結極板46には、負側導体32が連結され、
     前記正側導体30と負側導体32とによって、前記接続基体62の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層31を介して重ね合わされた一対の導体板が形成され、
     前記正側導体30と第1極板34に挟まれて、前記正側導体30に負極を接触させ前記第1極板34に正極を接触させた整流素子18と、
     前記負側導体32と第2極板36に挟まれて、前記負側導体32に負極を接触させ前記第2極板36に正極を接触させた整流素子20と、
     前記第1極板34と前記第2極板36を支持し、両者を電気接続する第3極板38とを備え、
     前記溶接制御電源装置は、前記記憶装置に記憶された溶接条件データベースから、溶接電流のレベルと供給タイミングを指定するデータを読み出して、前記一対の電極を介して前記溶接材に溶接電流を供給するためのものであって、
     溶接電流供給開始時刻t0からその後の時刻t1までの、電流増加率が最大の部分を立ち上げ制御期間T1と呼び、これに続く時刻t1から時刻t2までの、ピーク電流値C1に近い所定レベルの電流を維持する期間をピークレベル制御期間T2と呼び、その後の時刻t2から電流遮断時刻t3に至るまでの期間を、温度維持制御期間T3と呼ぶとき、
     前記溶接制御電源装置は、
     前記立ち上げ制御期間T1は10ミリ秒以下とし、前記立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間は15ミリ秒以下とするように、前記記憶装置が保有するデータに依拠して、前記溶接電流を制御するように構成され、
     前記記憶装置は、前記溶接制御電源装置における溶接の制御態様を規定する溶接条件データベースを記憶したものであることを特徴とする溶接装置。
  18.  高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置であって、
     抵抗溶接機本体と溶接トランスと溶接制御電源装置と記憶装置とを備え、
     前記抵抗溶接機本体は、重ね合せた溶接材を加圧して溶接電流を流す一対の電極と、これらの電極に所望の加圧力を与える機構を備え、
     前記溶接トランスは、その2次コイルが正側コイル14と負側コイル16とを含んで構成され、
     平行部25aと両端のU字状の湾曲部25bにより構成される環状磁心25と、
     中心に前記負側コイル16を配置し、その上に1次コイル12を配置し、最外周に前記正側コイル14を配置するように同軸巻きされた第1のコイルユニットと、
     中心に前記正側コイル14を配置し、その上に前記1次コイル12を配置し、最外周に前記負側コイル16を配置するように同軸巻きされた第2のコイルユニットとを、
     前記環状磁心25の平行部25aに交互に隙間なく配列したコイルユニット配列体と、
     前記複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、
     前記複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、
     前記接続された複数の正側コイル14と前記複数の負側コイル16とが互いに直列接続されるように、前記正側コイル14と負側コイル16の端子間を電気接続する導体群を有し、かつ、
     前記導体群により、前記全ての正側コイル14と負側コイル16とを一方の面側に支持固定する接続基体62を備え、
     前記複数の正側コイル14の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第1連結極板44に電気接続され、
     前記複数の負側コイル16の一端は、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第2連結極板46に電気接続され、
     前記正側コイル14と負側コイル16の他端は、共に、前記接続基体62の他方の面側で、前記環状磁心25の平行部25aに平行な方向に伸びた第3連結極板48に電気接続され、
     前記第1連結極板44には、正側導体30が連結され、
     前記第2連結極板46には、負側導体32が連結され、
     前記正側導体30と負側導体32とによって、前記接続基体62の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層31を介して重ね合わされた一対の導体板が形成され、
     前記正側導体30と第1極板34に挟まれて、前記正側導体30に負極を接触させ前記第1極板34に正極を接触させた整流素子18と、
     前記負側導体32と第2極板36に挟まれて、前記負側導体32に負極を接触させ前記第2極板36に正極を接触させた整流素子20と、
     前記第1極板34と前記第2極板36を支持し、両者を電気接続する第3極板38と、を備え、
     前記溶接制御電源装置は、前記記憶装置に記憶された溶接条件データベースから、溶接電流のレベルと供給タイミングを指定するデータを読み出して、前記一対の電極を介して前記溶接材に溶接電流を供給するためのものであって、
     溶接電流供給開始時刻t0からその後の時刻t1までの、電流増加率が最大の部分を立ち上げ制御期間T1と呼び、これに続く時刻t1から時刻t2までの、ピーク電流値C1に近い所定レベルの電流を維持する期間をピークレベル制御期間T2と呼び、その後の時刻t2から電流遮断時刻t3に至るまでの期間を、温度維持制御期間T3と呼ぶとき、
     前記溶接制御電源装置は、
     前記立ち上げ制御期間T1は10ミリ秒以下とし、
     前記立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間は15ミリ秒以下とするように、
     前記記憶装置が保有するデータに依拠して、前記溶接電流を制御するように構成され、
     前記記憶装置は、前記溶接制御電源装置における溶接の制御態様を規定する溶接条件データベースを記憶したものであることを特徴とする溶接装置。
  19.  請求項17または18に記載の溶接装置において、
     前記溶接トランスは、
     前記接続基体62は中空部を有し、この中空部は冷媒通路を構成していることを特徴とする溶接装置。
  20.  請求項19に記載の溶接装置において、
     前記溶接トランスは、
     前記正側コイル14と負側コイル16と前記接続基体62とは、いずれも、中空部を有し、各中空部は配管に連結されて、冷媒通路を構成していることを特徴とする溶接装置。
  21.  請求項17または18に記載の溶接装置において、
     前記溶接トランスは、
     前記接続基体62は、前記1次コイル12の間隙12aに前記正側コイル14と負側コイル16を1個ずつ挟み込んだ状態のコイル群の2側面を支持するように、断面L字状に形成されていることを特徴とする溶接装置。
  22.  請求項21に記載の溶接装置において、
     各溶接トランスの前記環状磁心25の平行部25aが互いに平行になり、前記接続基体62の他方の面から垂直に離れる方向に伸びる面に平行な面を突き合わせ、前記各溶接トランスの各第3極板38に連結した各プラス電極22を共通プラス電極64により連結固定し、前記各溶接トランスの各マイナス電極を共通マイナス電極66により連結固定した溶接トランス組体を成していることを特徴とする溶接装置。
  23.  請求項22に記載の溶接装置において、
     前記接続基体62の他方の面から垂直に離れる方向に伸びる面に平行な2個の側面以外の面に、プラス電極22、マイナス電極24、第3極板38及び冷媒供給口74を配置した溶接トランス組体を成していることを特徴とする溶接装置。
  24.  高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置に適用される抵抗溶接方法であって、
     溶接電流供給開始時刻t0からその後の時刻t1までの、電流増加率が最大の部分を立ち上げ制御期間T1と呼び、これに続く時刻t1から時刻t2までの、ピーク電流値C1に近い所定レベルの電流を維持する期間をピークレベル制御期間T2と呼び、その後の時刻t2から電流遮断時刻t3に至るまでの期間を、温度維持制御期間T3と呼ぶとき、
     前記立ち上げ制御期間T1は10ミリ秒以下とし、
    前記立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間は15ミリ秒以下としたことを特徴とする抵抗溶接方法。
  25.  請求項24に記載の抵抗溶接方法において、
     前記立ち上げ制御期間T1とピークレベル制御期間T2と温度維持制御期間T3の和の(T1+T2+T3)時間は、50ミリ秒以下としたことを特徴とする抵抗溶接方法。
  26.  請求項24に記載の抵抗溶接方法において、
     前記立ち上げ制御期間T1は5ミリ秒以下とし、
    前記立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間は15ミリ秒以下とし、
     前記立ち上げ制御期間T1とピークレベル制御期間T2と温度維持制御期間T3の和の(T1+T2+T3)時間は20ミリ秒以下としたことを特徴とする抵抗溶接方法。
  27.  請求項25または26に記載の抵抗溶接方法において、
     前記立ち上げ制御期間T1とピークレベル制御期間T2の間に、溶接部温度が融点以上であって、許容値以下の温度に達する最大の溶接電流を供給し、その後、適切なサイズのナゲットが形成されるまで、溶接電流を漸減させることを特徴とする抵抗溶接方法。
  28.  請求項27に記載の抵抗溶接方法において、
     前記ピークレベル制御期間T2経過後の溶接電流値から、前記電流遮断時刻t3における溶接電流の終了値まで、溶接電流を段階的に漸減することを特徴とする抵抗溶接方法。
  29.  高周波交流を溶接トランスの1次コイルに供給し2次コイルに生起する電流を直流化して電極に供給する方式の溶接装置に適用される抵抗溶接方法であって、
     溶接電流が通電開始から5ミリ秒以内で最大値になるように溶接初期の溶接電流を制御し、前記溶接電流の通電開始から50ミリ秒以下の通電時間で溶接を終了することを特徴とする抵抗溶接方法。
PCT/JP2012/066646 2012-02-29 2012-06-29 溶接トランス、溶接トランス組体、溶接装置、および抵抗溶接方法 WO2013128663A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2012371845A AU2012371845B2 (en) 2012-02-29 2012-06-29 Welding transformer, welding transformer assembly, welding device, and resistance welding method
EP12870286.7A EP2749373B1 (en) 2012-02-29 2012-06-29 Welding transformer, welding transformer assembly and welding device
US13/813,174 US9202622B2 (en) 2012-02-29 2012-06-29 Welding transformer and welding transformer assembly and welding apparatus
KR1020137032926A KR101417791B1 (ko) 2012-02-29 2012-06-29 용접 트랜스, 용접 트랜스 조립체, 및 용접 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-042873 2012-02-29
JP2012042873A JP5220931B1 (ja) 2012-02-29 2012-02-29 溶接トランスと溶接トランス組体と溶接装置

Publications (1)

Publication Number Publication Date
WO2013128663A1 true WO2013128663A1 (ja) 2013-09-06

Family

ID=48778741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066646 WO2013128663A1 (ja) 2012-02-29 2012-06-29 溶接トランス、溶接トランス組体、溶接装置、および抵抗溶接方法

Country Status (8)

Country Link
US (1) US9202622B2 (ja)
EP (1) EP2749373B1 (ja)
JP (1) JP5220931B1 (ja)
KR (1) KR101417791B1 (ja)
CN (1) CN203277072U (ja)
AU (1) AU2012371845B2 (ja)
TW (1) TWI509645B (ja)
WO (1) WO2013128663A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491560B2 (ja) * 2011-03-24 2014-05-14 株式会社向洋技研 抵抗溶接方法と溶接装置
JP5892390B2 (ja) * 2013-08-22 2016-03-23 株式会社向洋技研 スタッド溶接方法および抵抗溶接機
CN105239994A (zh) * 2014-07-11 2016-01-13 中国石油集团长城钻探工程有限公司 用于变压器短节的电子骨架和变压器短节
EP3232453B1 (en) * 2016-04-14 2019-06-12 Robert Bosch Gmbh Transformer arrangement
JP6421947B2 (ja) * 2016-04-29 2018-11-14 株式会社向洋技研 溶接装置及び溶接方法
JP6497629B2 (ja) * 2016-08-09 2019-04-10 株式会社向洋技研 スポット溶接用電極
CN106683828B (zh) * 2016-11-16 2018-08-21 国网山东省电力公司龙口市供电公司 一种变电用互感器组
KR101716143B1 (ko) * 2016-12-19 2017-03-14 태경 주식회사 인버터 저항용접기의 변압기
JP6447847B2 (ja) * 2017-05-17 2019-01-09 株式会社向洋技研 抵抗溶接装置
SI25571A (sl) 2017-12-19 2019-06-28 Univerza v Mariboru Fakulteta za elektrotehniko, računalništvo in informatiko Izvedba transformatorja
EP3796345A1 (en) * 2019-09-19 2021-03-24 Robert Bosch GmbH Welding transformer, method for producing a module for a welding transformer and method for producing a welding transformer
CN110722245B (zh) * 2019-11-27 2021-10-01 郴州宇晖电子科技有限公司 用于大功率变压器铜片绕组与汇流柱脚之间焊接的治具
JP6831612B1 (ja) * 2019-12-03 2021-02-17 株式会社向洋技研 溶接トランス
CN113611495A (zh) * 2021-07-23 2021-11-05 保定天威保变电气股份有限公司 一种低压侧双分裂式高阻抗变压器的内置电抗器结构及布置方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127973A (ja) * 1990-09-18 1992-04-28 Sumitomo Metal Ind Ltd 異種金属の接合方法
JPH0623564A (ja) * 1992-07-10 1994-02-01 Honda Motor Co Ltd 直流抵抗溶接機用トランス
JPH06151211A (ja) * 1992-11-06 1994-05-31 Honda Motor Co Ltd 溶接機用トランス
JPH06170551A (ja) * 1992-09-14 1994-06-21 Origin Electric Co Ltd 抵抗溶接機
JPH08197260A (ja) * 1995-01-25 1996-08-06 Nasu Toa Kk インバータ制御交流式抵抗溶接装置及びその抵抗溶接 方法
JPH1085947A (ja) * 1996-09-11 1998-04-07 Miyachi Technos Corp 抵抗溶接制御方法及び装置
JP2002144050A (ja) * 2000-11-07 2002-05-21 Nissan Motor Co Ltd 溶接装置および溶接方法
JP2002263839A (ja) * 2001-03-07 2002-09-17 Sansha Electric Mfg Co Ltd 溶接電源装置
JP2007038227A (ja) * 2005-07-29 2007-02-15 Kyocera Kinseki Corp 溶接方法
JP2008105041A (ja) 2006-10-24 2008-05-08 Honda Motor Co Ltd 抵抗溶接方法
JP2009291827A (ja) 2008-06-06 2009-12-17 Honda Motor Co Ltd 抵抗溶接方法及び溶接構造体
JP2010020547A (ja) * 2008-07-10 2010-01-28 Toyota Auto Body Co Ltd 溶接打点データの作成ミス判別システム、該システムの動作を制御するプログラム、該プログラムを記憶した記録媒体
JP2011005544A (ja) 2009-05-27 2011-01-13 Nippon Steel Corp 高強度鋼板のスポット溶接方法
JP2011082478A (ja) * 2009-09-10 2011-04-21 Koyo Giken:Kk 溶接トランス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160820A (en) * 1990-03-30 1992-11-03 Honda Giken Kogyo Kabushiki Kaisha Welding transformer and method of manufacturing same
DE29705789U1 (de) * 1997-04-02 1997-06-05 Expert Maschinenbau Gmbh, 64653 Lorsch Transformator
ITBO20020173A1 (it) * 2002-04-03 2003-10-03 Tecna Spa Trasformatore a media frequenza per saldatrici
US6794976B2 (en) * 2002-12-24 2004-09-21 Illinois Tool Works Inc. HF transformer assembly having a higher leakage inductance boost winding
US7492246B2 (en) * 2007-05-01 2009-02-17 Zippy Technology Corp. Winding structure of transformer

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127973A (ja) * 1990-09-18 1992-04-28 Sumitomo Metal Ind Ltd 異種金属の接合方法
JPH0623564A (ja) * 1992-07-10 1994-02-01 Honda Motor Co Ltd 直流抵抗溶接機用トランス
JPH06170551A (ja) * 1992-09-14 1994-06-21 Origin Electric Co Ltd 抵抗溶接機
JPH06151211A (ja) * 1992-11-06 1994-05-31 Honda Motor Co Ltd 溶接機用トランス
JPH08197260A (ja) * 1995-01-25 1996-08-06 Nasu Toa Kk インバータ制御交流式抵抗溶接装置及びその抵抗溶接 方法
JPH1085947A (ja) * 1996-09-11 1998-04-07 Miyachi Technos Corp 抵抗溶接制御方法及び装置
JP2002144050A (ja) * 2000-11-07 2002-05-21 Nissan Motor Co Ltd 溶接装置および溶接方法
JP2002263839A (ja) * 2001-03-07 2002-09-17 Sansha Electric Mfg Co Ltd 溶接電源装置
JP2007038227A (ja) * 2005-07-29 2007-02-15 Kyocera Kinseki Corp 溶接方法
JP2008105041A (ja) 2006-10-24 2008-05-08 Honda Motor Co Ltd 抵抗溶接方法
JP2009291827A (ja) 2008-06-06 2009-12-17 Honda Motor Co Ltd 抵抗溶接方法及び溶接構造体
JP2010020547A (ja) * 2008-07-10 2010-01-28 Toyota Auto Body Co Ltd 溶接打点データの作成ミス判別システム、該システムの動作を制御するプログラム、該プログラムを記憶した記録媒体
JP2011005544A (ja) 2009-05-27 2011-01-13 Nippon Steel Corp 高強度鋼板のスポット溶接方法
JP2011082478A (ja) * 2009-09-10 2011-04-21 Koyo Giken:Kk 溶接トランス
JP4687930B2 (ja) 2009-09-10 2011-05-25 株式会社向洋技研 溶接トランス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749373A4 *

Also Published As

Publication number Publication date
TW201335959A (zh) 2013-09-01
AU2012371845A1 (en) 2014-09-18
TWI509645B (zh) 2015-11-21
KR20140026558A (ko) 2014-03-05
JP5220931B1 (ja) 2013-06-26
KR101417791B1 (ko) 2014-07-09
JP2013179205A (ja) 2013-09-09
EP2749373B1 (en) 2017-04-26
US9202622B2 (en) 2015-12-01
EP2749373A1 (en) 2014-07-02
AU2012371845B2 (en) 2016-04-28
EP2749373A4 (en) 2015-09-02
CN203277072U (zh) 2013-11-06
US20140360994A1 (en) 2014-12-11
CN103295750A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2013128663A1 (ja) 溶接トランス、溶接トランス組体、溶接装置、および抵抗溶接方法
US20160228974A1 (en) Electric resistance welding method and use thereof, and electrode welding head used
KR20140092867A (ko) 멀티-포인트 접촉을 갖는 강전류 변류기, 변류기 엘리먼트, 콘택 플레이트, 2차 권선 및 이러한 강전류 변류기를 제조하기 위한 방법
CN105269161B (zh) 用于优化的反应冶金接合的电流排程
KR100727377B1 (ko) 금속부재 접합방법 및 리플로 납땜방법
KR101649294B1 (ko) 전력 소스 및 이러한 전력 소스를 냉각하기 위한 방법
CN110073451A (zh) 变压器和非晶薄带
JP2001204177A (ja) 金属部材接合用又はリフローハンダ付用の交流波形インバータ式電源装置
JP5892390B2 (ja) スタッド溶接方法および抵抗溶接機
US10259068B2 (en) Aluminium/copper heterogeneous welding
KR102005690B1 (ko) 접합 부재의 제조 방법 및 접합 부재 제조 장치
US6756558B2 (en) High current, low impedance resistance welding device
JP2017062945A (ja) ヒータチップ及び接合装置及び接合方法
JP2010253503A (ja) ヒータチップ及び接合装置
JP2018012200A (ja) ヒータチップ及び接合装置及び接合方法
JPS60170907A (ja) 巻磁心及びその製造方法
JP5491560B2 (ja) 抵抗溶接方法と溶接装置
JP2014136237A (ja) 溶接方法と溶接装置
CN1161204C (zh) 双芯焊条及单弧焊接工艺
JP6331198B2 (ja) 溶接装置
JP4573616B2 (ja) キャパシタモジュールの製造方法
JP6421947B2 (ja) 溶接装置及び溶接方法
JPH0910958A (ja) 抵抗溶接機用変圧器および抵抗溶接機
JP2017035707A5 (ja)
JP2018067456A (ja) 保護素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13813174

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870286

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012870286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012870286

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137032926

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012371845

Country of ref document: AU

Date of ref document: 20120629

Kind code of ref document: A