WO2013128548A1 - ロボットシステム - Google Patents

ロボットシステム Download PDF

Info

Publication number
WO2013128548A1
WO2013128548A1 PCT/JP2012/054773 JP2012054773W WO2013128548A1 WO 2013128548 A1 WO2013128548 A1 WO 2013128548A1 JP 2012054773 W JP2012054773 W JP 2012054773W WO 2013128548 A1 WO2013128548 A1 WO 2013128548A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
motor
shaft
measuring device
rotation
Prior art date
Application number
PCT/JP2012/054773
Other languages
English (en)
French (fr)
Inventor
岡本 健
健一 元永
松村 潤
輝久 喜多川
良治 永島
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2014501856A priority Critical patent/JP5910725B2/ja
Priority to CN201280070785.9A priority patent/CN104136166A/zh
Priority to EP12869913.9A priority patent/EP2821177A4/en
Priority to PCT/JP2012/054773 priority patent/WO2013128548A1/ja
Publication of WO2013128548A1 publication Critical patent/WO2013128548A1/ja
Priority to US14/469,738 priority patent/US20140364986A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/30End effector
    • Y10S901/44End effector inspection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/46Sensing device
    • Y10S901/47Optical

Definitions

  • the disclosed embodiment relates to a robot system.
  • measurement methods such as image measurement by image processing and contact measurement by a probe are often used for shapes of various workpieces and processed products transferred onto a conveyor by a robot.
  • the above-described automatic measurement system has room for further improvement in that it measures the shape of a workpiece that is formed to include a rotating shaft like a motor and operates with a rotational motion.
  • a motor is usually required to rotate a shaft, which is a rotating shaft, accurately and without shaking, but in this regard, the perpendicularity or concentricity of the member supporting the shaft with respect to the shaft is accurately measured.
  • a shaft which is a rotating shaft
  • the perpendicularity or concentricity of the member supporting the shaft with respect to the shaft is accurately measured.
  • One aspect of the embodiment has been made in view of the above, and an object thereof is to provide a robot system capable of accurately measuring the assembly accuracy of a workpiece formed including a rotating shaft.
  • a robot system includes a robot and an accuracy measuring device.
  • the robot conveys a workpiece formed including a rotating shaft.
  • the accuracy measuring apparatus holds the rotation axis of the workpiece conveyed by the robot substantially parallel to the vertical direction, and rotates the entire rotation of the workpiece by rotating the rotation shaft to assemble the workpiece. Measure accuracy.
  • FIG. 1 is a schematic top view illustrating the overall configuration of the robot system according to the embodiment.
  • FIG. 2 is a schematic perspective view showing the configuration of the robot.
  • FIG. 3A is a schematic perspective view illustrating the configuration of the robot hand.
  • FIG. 3B is a schematic perspective view illustrating a state in which the robot hand holds the motor.
  • FIG. 4 is a schematic perspective view of the cogging torque measuring device.
  • FIG. 5A is a front view of the accuracy measuring apparatus.
  • FIG. 5B is a side view of the accuracy measuring apparatus.
  • FIG. 6A is a schematic side view of the motor.
  • FIG. 6B is a schematic diagram illustrating a load side of the motor.
  • FIG. 6C is a schematic diagram illustrating the non-load side of the motor.
  • FIG. 1 is a schematic top view illustrating the overall configuration of the robot system according to the embodiment.
  • FIG. 2 is a schematic perspective view showing the configuration of the robot.
  • FIG. 3A is a schematic
  • FIG. 7A is an explanatory diagram for explaining the operation of the accuracy measuring apparatus.
  • FIG. 7B is a schematic diagram illustrating a sensor unit included in the accuracy measuring apparatus.
  • FIG. 7C is a schematic diagram illustrating a sensor unit included in the accuracy measuring apparatus.
  • FIG. 8 is a schematic perspective view of the seal press-fitting device.
  • FIG. 9A is an explanatory diagram for explaining a seal press-fitting preparation operation.
  • FIG. 9B is an explanatory diagram for explaining a seal press-fitting preparation operation.
  • FIG. 10A is a schematic perspective view of a grease applying apparatus.
  • FIG. 10B is an explanatory diagram for explaining the grease application operation.
  • FIG. 10C is an explanatory diagram for explaining the seal press-fitting operation.
  • FIG. 10A is a schematic perspective view of a grease applying apparatus.
  • FIG. 10B is an explanatory diagram for explaining the grease application operation.
  • FIG. 10C is an explanatory diagram for explaining the seal press-fitting
  • FIG. 10D is an explanatory diagram for explaining the seal press-fitting operation.
  • FIG. 11A is a schematic side view of the adhesive application device.
  • FIG. 11B is a diagram illustrating an example of a camera unit included in the adhesive application device.
  • FIG. 12 is a schematic perspective view of the buffer stage.
  • a description will be given by taking as an example a robot system that uses a motor that has been roughly assembled in the previous process as a processed product and measures the assembly accuracy of the motor. Further, as an example showing the assembly accuracy, a so-called geometric tolerance such as a squareness or a concentricity is taken as an example.
  • FIG. 1 is a schematic top view showing the overall configuration of the robot system 1 according to the embodiment.
  • FIG. 1 shows a three-dimensional orthogonal coordinate system including the Z axis with the vertical upward direction as the positive direction for easy understanding. Such an orthogonal coordinate system may be shown in other drawings used in the following description.
  • the robot system 1 includes a cell 2 that forms a rectangular parallelepiped work space.
  • the robot system 1 includes a robot 10, a carry-in path 20, a cogging torque measuring device 30, an accuracy measuring device 40, a seal press-fitting device 50, a seal stocker 60, and a grease applying device inside the cell 2. 70, an adhesive application device 80, a buffer stage 90, and a carry-out path 100.
  • the cell 2 is provided with an opening (not shown), and the carry-in path 20, the seal stocker 60, and the carry-out path 100 communicate with the outside of the cell 2 through the opening.
  • a control device (not shown) is connected to various devices in the cell 2 including the robot 10 so as to transmit information.
  • control device is a control unit that controls the operation of various connected devices, and includes various control devices, arithmetic processing devices, storage devices, and the like.
  • the robot 10 is a manipulator that operates in response to an operation instruction from the control device, and includes a robot hand (described later) as an end effector. Details of the configuration of the robot 10 will be described later with reference to FIGS. 2, 3A, and 3B.
  • the cogging torque measuring device 30 is a device that measures the cogging torque and shaft shake of the motor transferred from the loading path 20 by the robot 10. Details of the cogging torque measuring device 30 will be described later with reference to FIG.
  • the accuracy measuring device 40 is a device that measures the geometric tolerance of the motor transferred from the cogging torque measuring device 30 by the robot 10. Details of the accuracy measuring apparatus 40 will be described later with reference to FIGS. 5A to 7C.
  • the seal press-fitting device 50 is a device that seals the periphery of the shaft with a seal member for the load side bracket of the motor transferred from the accuracy measuring device 40 by the robot 10. At this time, the seal member is taken out from the seal stocker 60 by the robot 10 and applied with grease in the grease applying device 70. A series of operations related to the seal press-fitting device 50 will be described later with reference to FIGS. 8 to 10D.
  • the adhesive application device 80 is a device that applies an adhesive to the gap between the outer race of the bearing and the bracket and fixes the bearing to the bracket on the non-load side of the motor transferred from the seal press-fitting device 50 by the robot 10. It is. Further, the adhesive application device 80 confirms the application state of the adhesive with a camera. Details of the adhesive application device 80 will be described later with reference to FIGS. 11A and 11B.
  • the buffer stage 90 is an area where the adhesive is dried for a specified time for the motor transferred from the adhesive application device 80 by the robot 10.
  • the buffer stage 90 will be described later with reference to FIG.
  • the carry-out path 100 may also serve as a carry-out path for a motor that has been determined to be abnormal within the cell 2, for example, a motor whose geometrical tolerance is outside the allowable range in the accuracy measuring device 40. In this embodiment, it is assumed that the motor is carried out from the carry-out path 100 in both cases where the normal determination is received and the abnormality determination is received.
  • FIG. 2 is a schematic perspective view showing the configuration of the robot 10.
  • the robot 10 is a single cage type multi-axis robot. Specifically, the robot 10 includes a first arm unit 11, a second arm unit 12, a third arm unit 13, and a fourth arm unit 14.
  • the first arm portion 11 is supported at the base end portion by the second arm portion 12.
  • the second arm portion 12 is supported at the base end portion by the third arm portion 13 and supports the first arm portion 11 at the distal end portion.
  • the third arm portion 13 is supported at the base end portion by the fourth arm portion 14 and supports the second arm portion 12 at the tip end portion.
  • the fourth arm portion 14 is supported at the base end portion by a base portion (not shown) fixed to the floor surface of the cell 2 (see FIG. 1), and supports the third arm portion 13 at the tip end portion.
  • each joint portion (not shown), which is each connecting portion of the first arm portion 11 to the fourth arm portion 14, is equipped with an actuator, and the robot 10 performs multi-axis operation by driving each actuator. Do.
  • the actuator of the joint part connecting the first arm part 11 and the second arm part 12 rotates the first arm part 11 in the direction of the double arrow 201 with the joint part as a fulcrum. Further, the joint actuator that connects the second arm portion 12 and the third arm portion 13 rotates the second arm portion 12 in the direction of a double-headed arrow 202 with the joint portion as a fulcrum.
  • the actuator of the joint part connecting the third arm part 13 and the fourth arm part 14 rotates the third arm part 13 in the direction of the double arrow 203 with the joint part as a fulcrum.
  • the robot 10 individually rotates the first arm unit 11 in the direction of a double arrow 204, the second arm unit 12 in the direction of a double arrow 205, and the fourth arm unit 14 in the direction of a double arrow 206.
  • the actuator is provided.
  • FIG. 3A is a schematic perspective view showing the configuration of the robot hand 15
  • FIG. 3B is a schematic perspective view showing a state where the robot hand 15 holds the motor M.
  • the robot hand 15 includes a first gripper 15a, a second gripper 15b, and a gripper driving unit 15c.
  • the first gripper 15a has four gripping claws.
  • the first gripper 15a grips the motor M by gripping a flange portion formed on the load side of the motor M with the gripping claws.
  • the second gripper 15b has two gripping claws, and grips a relatively small member such as a seal member described later with the gripping claws.
  • the gripper drive unit 15c drives the first gripper 15a and the second gripper 15b based on the drive instruction from the control device described above.
  • the robot hand 15 is fixedly attached to the first arm portion 11 shown in FIG. That is, the robot hand 15 can be rotated in the direction of a double arrow 204 (see FIG. 2) together with the first arm portion 11, thereby freely adjusting the direction of the gripped motor M and the seal member along the double arrow 204. Can be changed to
  • FIG. 4 is a schematic perspective view of the cogging torque measuring device 30.
  • the cogging torque refers to a magnetic attractive force generated in the radial direction when the shaft M1 (and the rotor fixed thereto) is rotated in a non-excited state.
  • the cogging torque measuring device 30 includes a motor slider portion 31, a first positioning portion 32, a second positioning portion 33, a rotating mechanism 34, a torque measuring portion 35, and a brake releasing portion 36.
  • the shaft shake measuring unit 37 is provided.
  • the motor slider unit 31 is a mounting table for a motor M that is slidably disposed along the X-axis direction in the figure.
  • the motor M is mounted with the load side facing in the negative direction of the X axis and the anti-load side facing in the positive direction of the X axis.
  • the first positioning portion 32 presses the load side bracket of the motor M in the direction of the arrow 301 in the drawing to slide the motor M together with the motor slider portion 31, and the external shaft 34 a and the motor M included in the rotation mechanism 34.
  • the shaft M1 is connected.
  • the second positioning portion 33 locks the connecting portion between the external shaft 34a and the shaft M1 from the direction of the arrow 302 in the drawing.
  • the shaft M1 is held by the rotation mechanism 34 on the opposite load side of the motor M.
  • the rotation mechanism 34 rotates the shaft M1 in a non-excited state by rotating the external shaft 34a in the direction of the double arrow 303.
  • the torque measurement part 35 measures the cogging torque at the time of this rotation.
  • the brake of the motor M is released by the brake release portion 36.
  • the shaft shake measuring unit 37 brings the sensor 37a into contact with the shaft M1 on the load side of the motor M and measures the shaft shake of the shaft M1.
  • the cogging torque measured by the cogging torque measuring device 30 and the measurement result of shaft runout are notified to the control device.
  • the control device instructs the robot 10 to transfer the motor M to the accuracy measuring device 40 if the measurement result is within the allowable range. If the measurement result is out of the allowable range, the robot 10 is instructed to transport the motor M to the carry-out path 100.
  • FIG. 5A is a front view of the accuracy measuring device 40
  • FIG. 5B is a side view of the accuracy measuring device 40.
  • the accuracy measuring device 40 includes a first holding unit 41 (first holding unit), a second holding unit 42 (second holding unit), and a first servo motor 43 ( Drive source), a second servo motor 44, and a slide groove 45.
  • the first holding portion 41 is a member whose tip is formed in a substantially conical shape.
  • the first holding unit 41 is connected to the first servo motor 43, and rotates around the axis AXZ substantially parallel to the vertical direction by the rotational drive of the first servo motor 43.
  • the tip of the first holding portion 41 is provided with a convex portion for fitting with the end portion on the side opposite to the load of the shaft M1.
  • the second holding portion 42 is also a member whose tip is formed in a substantially conical shape.
  • the second holding portion 42 is pivotally supported by a bearing (not shown) in the base portion 42a, and is disposed so as to be freely rotatable around the axis AXZ.
  • the second holding portion 42 can slide along the slide groove 45 cut substantially parallel to the vertical direction by driving the second servo motor 44, and the height position of the tip portion can be freely set. Can be adjusted.
  • the accuracy measuring device 40 includes other sensors for measuring the geometric tolerance of the motor M. This point will be described later with reference to FIGS. 7B and 7C.
  • FIG. 6A is a schematic side view of the motor M.
  • FIG. 6B is a schematic diagram illustrating the load side of the motor M, and
  • FIG. 6C is a schematic diagram illustrating the anti-load side of the motor M.
  • the motor M is a processed product formed in a substantially cylindrical shape including a shaft M1 that is a rotating shaft.
  • a substantially columnar shape is such that a rotor (not shown) including a shaft M1 is disposed opposite to a stator (not shown) fixed to the inner periphery of a substantially cylindrical housing M2, and a bracket is placed on the load side of the housing M2.
  • M3 is formed by attaching a bracket M4 to the non-load side.
  • the bracket M3 has a concentric convex portion M3a centering on the axis of the shaft M1.
  • the convex portion M3a is a portion that becomes a fitting portion when the motor M is disposed as a product.
  • the shaft M1 has a hollow structure and has a hole M1a at the end on the load side.
  • the hole M1a serves as an engaging portion into which the convex portion provided at the distal end portion of the second holding portion 42 described above is inserted.
  • the accuracy measuring device 40 measures the concentricity of the convex portion M3a with respect to the shaft M1.
  • the accuracy measuring device 40 also measures the squareness of the periphery of the convex portion M3a.
  • the bracket M3 has a seal portion M3b around the shaft M1.
  • the seal portion M3b will be described later in the description of the seal press-fitting device 50.
  • the bracket M4 has a concentric recess M4a centered on the axis of the shaft M1.
  • the recess M4a is also a part that becomes the above-described fitting portion.
  • the accuracy measuring device 40 measures the concentricity of the recess M4a with respect to the shaft M1. In addition, the accuracy measuring device 40 measures the squareness of the inlay of the recess M4a.
  • the shaft M1 has a hole M1b at the end on the side opposite to the load.
  • the hole M1b serves as an engaging portion into which the convex portion provided at the distal end portion of the first holding portion 41 described above is inserted.
  • the bracket M4 has an adhesive hole M4b.
  • the adhesive hole M4b will be described later in the description of the adhesive application device 80.
  • FIG. 7A is an explanatory diagram for explaining the operation of the accuracy measuring device 40.
  • 7B and 7C are schematic diagrams illustrating a sensor unit included in the accuracy measuring device 40.
  • FIG. 7A is an explanatory diagram for explaining the operation of the accuracy measuring device 40.
  • 7B and 7C are schematic diagrams illustrating a sensor unit included in the accuracy measuring device 40.
  • the motor M transported from the cogging torque measuring device 30 by the robot 10 is set so that the anti-load side faces vertically downward, and the tip of the first holding portion 41 is moved to the hole M1b (see FIG. 6C) of the shaft M1. While being inserted, it is placed on the first holding portion 41 as shown in FIG. 7A.
  • the second holding portion 42 is slid to lower its height position so that the tip portion is inserted into the hole portion M1a (see FIG. 6B) of the shaft M1, and engages with the shaft M1. That is, the motor M is held by the shaft M1 being sandwiched between the first holding part 41 and the second holding part 42 from both ends.
  • the second holding portion 42 that can freely rotate about the axis AXZ is also driven and rotated (see arrow 404 in the figure). That is, in the accuracy measuring apparatus 40, the motor M rotates around the axis AXZ while the shaft M1 is held along the axis AXZ substantially parallel to the vertical direction.
  • the shaft M1 is easily concentric since the both ends thereof are held by the first holding part 41 and the second holding part 42 having a substantially conical tip. That is, since the motor M can be rotated with high accuracy, the assembly accuracy of the motor M can be accurately measured.
  • the accuracy measuring device 40 includes a first sensor unit 46 a and a second sensor unit 46 b in the vicinity of the first holding unit 41.
  • 1st sensor part 46a measures the squareness of bracket M4 (refer to Drawing 6C) on the non-load side of motor M.
  • the second sensor unit 46b measures the concentricity of the bracket M4.
  • the accuracy measuring apparatus 40 includes a third sensor unit 46c and a fourth sensor unit 46d.
  • the third sensor unit 46c measures the squareness of the bracket M3 on the load side of the motor M.
  • the fourth sensor unit 46d measures the concentricity of the bracket M3.
  • a non-contact type sensor can be used for the 3rd sensor part 46c and the 4th sensor part 46d. Further, by making the non-contact sensor movable, measurement that is not affected by the size of the motor M can be performed. In addition, this point does not prevent using a contact-type sensor.
  • the accuracy measuring device 40 can simultaneously measure the assembly accuracy on the load side and the anti-load side while rotating the motor M. Thereby, not only accurate measurement can be performed, but also throughput can be improved.
  • the measurement result of the geometric tolerance measured by the accuracy measuring device 40 is notified to the control device as in the case of the cogging torque measuring device 30 described above.
  • the control device instructs the robot 10 to transport the motor M to the seal press-fitting device 50 if the measurement result is within the allowable range. If the measurement result is out of the allowable range, the robot 10 is instructed to transport the motor M to the carry-out path 100.
  • FIG. 8 is a schematic perspective view of the seal press-fitting device 50.
  • the seal press-fitting device 50 includes a mounting table 51, a seal press-fitting part 52, and a jig stocker 53.
  • the mounting table 51 is a table on which the motor M conveyed from the accuracy measuring device 40 by the robot 10 is literally mounted. In this mounting table 51, the motor M is mounted with the load side facing vertically upward.
  • the seal press-fit portion 52 is configured using an air cylinder or the like, and press-fits a seal member described later into the seal portion M3b (see FIG. 6B) of the bracket M3.
  • the jig stocker 53 is a member that suspends a seal press-fitting jig, which will be described later, and its tip is formed in a bifurcated manner.
  • FIGS. 9A to 10B are explanatory diagrams for explaining the seal press-fitting preparation operation.
  • 10A is a schematic perspective view of the grease applying device 70
  • FIG. 10B is an explanatory diagram for explaining the grease applying operation.
  • the seal press-fitting jig J is held in a jig stocker 53 before press-fitting the seal.
  • the seal press-fitting jig J is formed in a hollow structure with a constricted neck, and the neck is suspended by being sandwiched between two ends of the tip of the jig stocker 53.
  • the motor M transported from the accuracy measuring device 40 by the robot 10 has the load side vertically upward, and the shaft M1 is inserted into the seal press-fitting jig J as indicated by an arrow 501 in FIG. 9A. It is.
  • the motor M is moved in the direction of the arrow 502, so that the motor M is pulled out from the jig stocker 53 with the seal press-fitting jig J mounted on the shaft M ⁇ b> 1, and then mounted. It is mounted on the mounting table 51.
  • the grease application device 70 applies grease to the seal member.
  • the grease applying device 70 includes a plurality of applying portions 71 having different diameters depending on the inner diameter of the annular seal member S. That is, the seal member S is passed through the application portion 71 having a diameter corresponding to the inner diameter (see arrow 601 in the figure).
  • the application part 71 has the hole part 71a each provided with the predetermined space
  • the grease is applied to the seal member S by the robot 10. That is, as shown in FIG. 10B, the seal member S is gripped by the second gripper 15 b (see FIG. 3A) of the robot 10 and passed through the application unit 71.
  • seal member S is cut out from a seal cutting device (not shown) or the like and previously stored in the seal stocker 60 (see FIG. 1) is taken out by the robot 10.
  • the seal member S is pressed against the application unit 71 while being rotated about an axis AXZ2 substantially parallel to the vertical direction (see a double-headed arrow 602 in the drawing), Apply grease.
  • the seal member S may be slightly tilted and rotated from the direction orthogonal to the axis AXZ2.
  • FIGS. 10C and 10D are explanatory diagrams for explaining the seal press-fitting operation.
  • the seal member S coated with the grease in the grease applying device 70 is passed by the robot 10 to the seal press-fitting jig J that is still attached to the shaft M1 of the motor M (in the drawing). (See arrow 701).
  • the seal press-fitting portion 52 of the seal press-fitting device 50 is driven in the direction of the arrow 702 in the drawing (that is, vertically downward).
  • the seal press-fit portion 52 has a hollow structure as shown in FIG. 10D, and presses only the seal member S into the seal portion M3b (see FIG. 6B) through the seal press-fit jig J.
  • FIG. 11A is a schematic side view of the adhesive application device 80
  • FIG. 11B is a diagram illustrating an example of the camera unit 82 included in the adhesive application device 80.
  • the adhesive application device 80 includes a nozzle portion 81 and a camera portion 82.
  • the nozzle unit 81 is a supply device that is disposed with the discharge port vertically downward, and discharges a predetermined amount of adhesive according to a discharge instruction from the control device.
  • the camera unit 82 is an imaging device for confirming the application state of the adhesive by imaging data.
  • the motor M conveyed from the seal press-fitting device 50 while the anti-load side is directed vertically upward by the robot 10 is first positioned below the nozzle portion 81 by the robot 10. Then, injection of the adhesive discharged from the nozzle portion 81 is received in the above-described bonding hole M4b (see FIG. 6C).
  • the adhesive hole M4b corresponds to the gap between the outer race of the bearing on the non-load side of the motor M and the bracket M4, and the injected adhesive fixes both the members.
  • the robot 10 moves the motor M in the direction of the arrow 801 in the drawing, and positions the motor M in the imaging area of the camera unit 82. Then, the camera unit 82 notifies the control device of the captured image data.
  • the control device analyzes the imaging data and instructs the robot 10 to transport the motor M to the buffer stage 90 if the adhesive application state is good. If the application state is poor, the robot 10 is instructed to apply the adhesive again in the adhesive application device 80.
  • an ultraviolet light 83 may be provided in the vicinity of the camera unit 82 as shown in FIG. 11B. This makes it possible to perform visual confirmation of the application state of the adhesive with higher accuracy.
  • the ultraviolet light 83 may be provided in the same manner.
  • FIG. 12 is a schematic perspective view of the buffer stage 90.
  • the buffer stage 90 includes a plurality of loading platforms 91 arranged in multiple stages.
  • the loading platform 91 further includes a motor receiver 91a.
  • the motor M coated with the adhesive in the adhesive coating device 80 is transported to the buffer stage 90 by the robot 10 and placed on the motor receiver 91a with the non-load side facing vertically upward.
  • the motor M is placed on the buffer stage 90 for a specified time for drying the adhesive, it is transferred to the carry-out path 100 (see FIG. 1) by the robot 10 and conveyed to the next process such as encoder incorporation. It will be.
  • the specified time is managed by the control device.
  • the robot system includes a robot and an accuracy measuring device.
  • the robot conveys a workpiece formed including a rotating shaft like a motor.
  • the accuracy measuring apparatus holds the rotation axis of the workpiece conveyed by the robot substantially parallel to the vertical direction, and measures the assembly accuracy of the workpiece while rotating the entire workpiece by rotating the rotation shaft.
  • the case where the geometric tolerances such as the perpendicularity and the concentricity of the motor bracket are mainly measured is taken as an example.
  • the assembly accuracy is measured.
  • the measurement object is not limited to the bracket, for example, a housing.
  • the processed product is a motor
  • the processed product is not limited to a motor, and may be a processed product including a rotating shaft such as a shaft. .
  • seal press-fitting device and the adhesive application device are configured as separate devices.
  • the present invention is not limited to this.
  • a predetermined member is incorporated around the rotation shaft. You may comprise as one embedded apparatus.
  • the cogging torque measuring device and the accuracy measuring device may be configured as one device.
  • the motor is held with the shaft along the vertical direction, and the cogging torque is measured by releasing the brake and rotating only the shaft.
  • the single-arm robot is exemplified, but the present invention is not limited to this.
  • a double-arm robot or a multi-arm robot having three or more arms may be used.
  • the six-axis robot is exemplified, but the number of axes is not limited.
  • the shapes of various devices, various members, processed products, and the like exemplified in the above-described embodiments are not limited to the illustrated examples. Therefore, the part to be measured for assembly accuracy may be determined according to the shape of the processed product, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Automatic Assembly (AREA)

Abstract

 回転軸を含んで形成された加工品の組立精度を正確に測定することができるロボットシステムを提供することを課題とする。かかる課題を解決するために、実施形態の一態様に係るロボットシステム(1)は、ロボット(10)と、精度測定装置(40)とを備える。上記ロボット(10)は、回転軸を含んで形成された加工品を搬送する。上記精度測定装置(40)は、上記ロボット(10)によって搬送された加工品の回転軸を鉛直方向と略平行に保持し、かかる回転軸を回転させることによって加工品全体を回転させながらかかる加工品の組立精度を測定する。

Description

ロボットシステム
 開示の実施形態は、ロボットシステムに関する。
 従来、加工品の製造ラインなどにおいて人によってなされていた作業をロボットに行わせることで自動化するロボットシステムが種々提案されている。
 たとえば、かかるロボットシステムの一つに、加工品の組立作業に用いられる各種の機械部品(以下、「ワーク」と記載する)や加工品自体の形状を自動で測定する自動測定システムがある(たとえば、特許文献1参照)。
 なお、かかる自動測定システムでは、ロボットによってコンベア上へ移載された各種ワークや加工品の形状について、画像処理による画像測定や探針による接触測定といった測定手法が用いられる場合が多い。
特開平10-288518号公報
 しかしながら、上述した自動測定システムには、モータのように回転軸を含んで形成され、回転運動をともなって動作する加工品の形状を測定する点で更なる改善の余地がある。
 たとえば、モータには通常、回転軸であるシャフトをブレなく正確に回転させることが求められるが、かかる点については、シャフトを軸支する部材のシャフトに対する直角度や同心度などを正確に測定する必要がある。
 しかし、従来技術のように測定対象がコンベア上で静止した状態においては、上述の直角度や同心度などを正確に測定しづらい場合があった。
 実施形態の一態様は、上記に鑑みてなされたものであって、回転軸を含んで形成された加工品の組立精度を正確に測定することができるロボットシステムを提供することを目的とする。
 実施形態の一態様に係るロボットシステムは、ロボットと、精度測定装置とを備える。前記ロボットは、回転軸を含んで形成された加工品を搬送する。前記精度測定装置は、前記ロボットによって搬送された前記加工品の前記回転軸を鉛直方向と略平行に保持し、該回転軸を回転させることによって前記加工品全体を回転させながら該加工品の組立精度を測定する。
 実施形態の一態様によれば、回転軸を含んで形成された加工品の組立精度を正確に測定することができる。
図1は、実施形態に係るロボットシステムの全体構成を示す上面模式図である。 図2は、ロボットの構成を示す斜視模式図である。 図3Aは、ロボットハンドの構成を示す斜視模式図である。 図3Bは、ロボットハンドがモータを保持した状態を示す斜視模式図である。 図4は、コギングトルク測定装置の斜視模式図である。 図5Aは、精度測定装置の正面図である。 図5Bは、精度測定装置の側面図である。 図6Aは、モータの側面模式図である。 図6Bは、モータの負荷側を示す模式図である。 図6Cは、モータの反負荷側を示す模式図である。 図7Aは、精度測定装置の動作を説明するための説明図である。 図7Bは、精度測定装置が備えるセンサ部を示す模式図である。 図7Cは、精度測定装置が備えるセンサ部を示す模式図である。 図8は、シール圧入装置の斜視模式図である。 図9Aは、シール圧入の準備動作を説明するための説明図である。 図9Bは、シール圧入の準備動作を説明するための説明図である。 図10Aは、グリス塗布装置の斜視模式図である。 図10Bは、グリス塗布動作を説明するための説明図である。 図10Cは、シール圧入動作を説明するための説明図である。 図10Dは、シール圧入動作を説明するための説明図である。 図11Aは、接着剤塗布装置の側面模式図である。 図11Bは、接着剤塗布装置が備えるカメラ部の一例を示す図である。 図12は、バッファステージの斜視模式図である。
 以下、添付図面を参照して、本願の開示するロボットシステムの実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
 また、以下に示す実施形態では、前工程において粗組み立てが完了したモータを加工品とし、かかるモータの組立精度の測定などを行うロボットシステムを例に挙げて説明を行う。また、組立精度を示す例として、直角度や同心度などのいわゆる幾何公差を例に挙げることとする。
 図1は、実施形態に係るロボットシステム1の全体構成を示す上面模式図である。なお、図1には、説明を分かりやすくするために、鉛直上向きを正方向とするZ軸を含む3次元の直交座標系を図示している。かかる直交座標系は、以下の説明で用いる他の図面においても示す場合がある。
 また、以下では、複数個で構成される構成要素については、複数個のうちの1個にのみ符号を付し、その他については符号の付与を省略する場合がある。かかる場合、符号を付した1個とその他とは同様の構成であるものとする。
 図1に示すように、ロボットシステム1は、直方体状の作業スペースを形成するセル2を備える。また、ロボットシステム1は、かかるセル2の内部に、ロボット10と、搬入路20と、コギングトルク測定装置30と、精度測定装置40と、シール圧入装置50と、シールストッカ60と、グリス塗布装置70と、接着剤塗布装置80と、バッファステージ90と、搬出路100とを備える。
 なお、セル2には図示略の開口部が設けられており、かかる開口部を介して上述の搬入路20、シールストッカ60および搬出路100はセル2の外部へ通じている。また、ロボット10を含むセル2内部の各種装置には、図示略の制御装置が情報伝達可能に接続される。
 ここで、制御装置は、接続された各種装置の動作を制御する制御部であり、種々の制御機器や演算処理装置、記憶装置などを含んで構成される。
 ロボット10は、かかる制御装置からの動作指示を受けて動作するマニュピレータであり、エンドエフェクタとしてロボットハンド(後述)を備える。なお、ロボット10の構成の詳細については、図2、図3Aおよび図3Bを用いて後述する。
 搬入路20からは、前工程において粗組み立ての完了したモータが搬入される。コギングトルク測定装置30は、ロボット10によって搬入路20から移載されたモータのコギングトルクおよび軸ブレを測定する装置である。かかるコギングトルク測定装置30の詳細については、図4を用いて後述する。
 精度測定装置40は、ロボット10によってコギングトルク測定装置30から移載されたモータの幾何公差を測定する装置である。かかる精度測定装置40の詳細については、図5Aから図7Cを用いて後述する。
 シール圧入装置50は、ロボット10によって精度測定装置40から移載されたモータの負荷側ブラケットについて、シャフトの周囲をシール部材でシールする装置である。なお、このときシール部材は、ロボット10によってシールストッカ60から取り出され、グリス塗布装置70においてグリスを塗布される。かかるシール圧入装置50に係る一連の動作については、図8から図10Dを用いて後述する。
 接着剤塗布装置80は、ロボット10によってシール圧入装置50から移載されたモータの反負荷側のブラケットについて、軸受のアウターレースとかかるブラケットとの間隙に接着剤を塗布し、軸受を固定する装置である。また、接着剤塗布装置80は、カメラによってかかる接着剤の塗布状態を確認する。かかる接着剤塗布装置80の詳細については、図11Aおよび図11Bを用いて後述する。
 バッファステージ90は、ロボット10によって接着剤塗布装置80から移載されたモータについて、規定時間の間、接着剤を乾燥させる領域である。かかるバッファステージ90については、図12を用いて後述する。
 搬出路100からは、セル2内部における工程を完了したモータが搬出される。なお、搬出路100は、セル2内部で異常判定を受けたモータ、たとえば、精度測定装置40において幾何公差が許容範囲外であったモータの搬出路を兼ねてもよい。なお、本実施形態では、正常判定を受けた場合および異常判定を受けた場合のいずれについても、モータは搬出路100から搬出されるものとする。
 次に、ロボット10の構成例について、図2を用いて説明する。図2は、ロボット10の構成を示す斜視模式図である。
 図2に示すように、ロボット10は、単椀型の多軸ロボットである。具体的には、ロボット10は、第1アーム部11と、第2アーム部12と、第3アーム部13と、第4アーム部14とを備える。
 第1アーム部11は、基端部を第2アーム部12によって支持される。第2アーム部12は、基端部を第3アーム部13によって支持され、先端部において第1アーム部11を支持する。
 第3アーム部13は、基端部を第4アーム部14によって支持され、先端部において第2アーム部12を支持する。第4アーム部14は、セル2(図1参照)の床面などに固定された基台部(図示略)によって基端部を支持され、先端部において第3アーム部13を支持する。
 また、第1アーム部11~第4アーム部14の各連結部分である各関節部(図示略)にはそれぞれアクチュエータが搭載されており、かかる各アクチュエータの駆動により、ロボット10は多軸動作を行う。
 具体的には、第1アーム部11および第2アーム部12を連結する関節部のアクチュエータは、かかる関節部を支点として、第1アーム部11を両矢印201の向きに回動させる。また、第2アーム部12および第3アーム部13を連結する関節部のアクチュエータは、かかる関節部を支点として、第2アーム部12を両矢印202の向きに回動させる。
 また、第3アーム部13および第4アーム部14を連結する関節部のアクチュエータは、かかる関節部を支点として、第3アーム部13を両矢印203の向きに回動させる。
 また、ロボット10は、第1アーム部11を両矢印204の向きに、第2アーム部12を両矢印205の向きに、第4アーム部14を両矢印206の向きに、それぞれ回動させる個別のアクチュエータを備える。
 なお、第1アーム部11の先端部には、ロボットハンドが取り付けられる。次に、かかるロボットハンドの構成例について、図3Aおよび図3Bを用いて説明する。図3Aは、ロボットハンド15の構成を示す斜視模式図であり、図3Bは、ロボットハンド15がモータMを保持した状態を示す斜視模式図である。
 図3Aに示すように、ロボットハンド15は、第1グリッパ15aと、第2グリッパ15bと、グリッパ駆動部15cとを備える。第1グリッパ15aは、4個の把持爪を有しており、図3Bに示すように、かかる把持爪でモータMの負荷側に形成されたフランジ部を把持することによってモータMを把持する。
 また、図3Aに示すように、第2グリッパ15bは、2個の把持爪を有しており、かかる把持爪で後述するシール部材などの比較的小さな部材を把持する。グリッパ駆動部15cは、上述した制御装置からの駆動指示に基づき、これら第1グリッパ15aおよび第2グリッパ15bを駆動する。
 なお、ロボットハンド15は、図2にも示した第1アーム部11に固定して取り付けられている。すなわち、ロボットハンド15は、第1アーム部11とともに両矢印204(図2参照)の向きに回動可能であり、これにより、把持したモータMやシール部材の向きを両矢印204に沿って自在に変えることができる。
 次に、コギングトルク測定装置30の構成例について、図4を用いて説明する。図4は、コギングトルク測定装置30の斜視模式図である。なお、ここでコギングトルクとは、非励磁状態でシャフトM1(およびそれに固着された回転子)を回転させた際にラジアル方向に生じる磁気吸引力のことを指す。
 図4に示すように、コギングトルク測定装置30は、モータスライダ部31と、第1位置決め部32と、第2位置決め部33と、回転機構34と、トルク測定部35と、ブレーキ開放部36と、軸ブレ測定部37とを備える。
 まず、モータMは、ロボット10によって搬入路20からモータスライダ部31へ移載される。モータスライダ部31は、図中のX軸方向に沿ってスライド可能に配設されたモータMの載置台である。
 このとき、モータMは、負荷側をX軸の負方向へ、反負荷側をX軸の正方向へ、それぞれ向けて載置される。
 そして、第1位置決め部32が、図中の矢印301の向きにモータMの負荷側ブラケットを押圧して、モータMをモータスライダ部31ごとスライドさせ、回転機構34の有する外部シャフト34aとモータMのシャフトM1とを連結させる。
 つづいて、第2位置決め部33が、かかる外部シャフト34aとシャフトM1との連結部を図中の矢印302の向きから係止する。これにより、シャフトM1は、モータMの反負荷側において回転機構34によって保持されたこととなる。
 そして、回転機構34が、外部シャフト34aを両矢印303の向きに回転させることによって、シャフトM1を非励磁状態で回転させる。そして、トルク測定部35が、かかる回転時のコギングトルクを測定する。なお、かかる際、モータMのブレーキは、ブレーキ開放部36によって開放されている。
 また、かかるコギングトルクの測定とあわせて、軸ブレ測定部37が、センサ37aをモータMの負荷側においてシャフトM1へ接触させ、シャフトM1の軸ブレを測定する。
 なお、コギングトルク測定装置30によって測定されたコギングトルクおよび軸ブレの測定結果は制御装置へ通知される。制御装置は、かかる測定結果が許容範囲内であるならば、モータMを精度測定装置40へ搬送するようにロボット10に対して指示する。また、測定結果が許容範囲外であるならば、モータMを搬出路100へ搬送するようにロボット10に対して指示する。
 次に、精度測定装置40の構成例について、図5Aおよび図5Bを用いて説明する。図5Aは、精度測定装置40の正面図であり、図5Bは、精度測定装置40の側面図である。
 図5Aおよび図5Bに示すように、精度測定装置40は、第1保持部41(第1の保持部)と、第2保持部42(第2の保持部)と、第1サーボモータ43(駆動源)と、第2サーボモータ44と、スライド溝45とを備える。
 第1保持部41は、先端部が略円錐状に形成された部材である。また、第1保持部41は、第1サーボモータ43に連結されており、かかる第1サーボモータ43の回転駆動によって、鉛直方向に略平行な軸AXZまわりに回転する。なお、図示していないが、第1保持部41の先端部には、シャフトM1の反負荷側の端部と嵌合するための凸部が設けられている。
 第2保持部42もまた同様に、先端部が略円錐状に形成された部材である。また、第2保持部42は、その基部42aにおいて図示略の軸受によって軸支されており、軸AXZまわりに自在に回動可能に配設される。
 また、第2保持部42は、第2サーボモータ44の駆動により、鉛直方向に略平行に切られたスライド溝45に沿ってスライドすることが可能であり、その先端部の高さ位置を自在に調整することができる。
 なお、精度測定装置40は、ほかにモータMの幾何公差を測定するセンサ類を備えるが、かかる点については図7Bおよび図7Cを用いて後述する。
 ここで、かかる幾何公差に関連して、モータMの形状について図6Aから図6Cを用いて説明しておく。図6Aは、モータMの側面模式図である。また、図6Bは、モータMの負荷側を示す模式図であり、図6Cは、モータMの反負荷側を示す模式図である。
 図6Aに示すように、モータMは、回転軸であるシャフトM1を含んで略円柱状に形成された加工品である。かかる略円柱状の形状は、略円筒状のハウジングM2の内周に固着された固定子(図示略)へシャフトM1を含む回転子(図示略)を対向配置させ、ハウジングM2の負荷側へブラケットM3を、反負荷側へブラケットM4を取り付けることによって形成される。
 また、図6Bに示すように、ブラケットM3は、シャフトM1の軸心を中心とした同心円状の凸部M3aを有する。凸部M3aは、モータMが製品として配設される際の嵌合部となる部位である。なお、シャフトM1は中空構造となっており、負荷側の端部には穴部M1aを有する。かかる穴部M1aは、上述した第2保持部42の先端部に設けられた凸部が挿し込まれる係合部となる。
 精度測定装置40は、かかる凸部M3aのシャフトM1に対する同心度を測定する。また、精度測定装置40は、あわせてかかる凸部M3aの周縁の直角度を測定する。
 なお、図6Bに示すように、ブラケットM3は、シャフトM1の周囲にシール部M3bを有する。かかるシール部M3bについては、シール圧入装置50に関する説明で後述する。
 また、図6Cに示すように、ブラケットM4は、シャフトM1の軸心を中心とした同心円状の凹部M4aを有する。凹部M4aもまた、上述の嵌合部となる部位である。精度測定装置40は、かかる凹部M4aのシャフトM1に対する同心度を測定する。また、精度測定装置40は、あわせてかかる凹部M4aのインローの直角度を測定する。
 なお、図6Cに示すように、シャフトM1は、反負荷側の端部に穴部M1bを有する。かかる穴部M1bは、上述した第1保持部41の先端部に設けられた凸部が挿し込まれる係合部となる。
 また、図6Cに示すように、ブラケットM4は、接着孔M4bを有する。かかる接着孔M4bについては、接着剤塗布装置80に関する説明において後述する。
 次に、図7Aから図7Cを用いて、精度測定装置40における一連の動作を説明する。図7Aは、精度測定装置40の動作を説明するための説明図である。また、図7Bおよび図7Cは、精度測定装置40が備えるセンサ部を示す模式図である。
 まず、ロボット10によってコギングトルク測定装置30から搬送されるモータMは、あわせて反負荷側を鉛直下向きとされ、シャフトM1の穴部M1b(図6C参照)へ第1保持部41の先端部を挿し込ませつつ、図7Aに示すように第1保持部41へ載置される。
 そして、第2保持部42が、スライドされてその高さ位置を下げることによってシャフトM1の穴部M1a(図6B参照)へその先端部を挿し込ませ、シャフトM1と係合する。すなわち、モータMは、第1保持部41と第2保持部42とにシャフトM1を両端から挟みつけられることによって保持される。
 そして、第1サーボモータ43が回転駆動することによって、第1保持部41が軸AXZまわりに回転する(図中の矢印401参照)。このとき、第1保持部41の先端部には、図中の矢印402に示すモータMの荷重にともなう相当の摩擦力が作用しているため、第1保持部41の回転は、あわせてモータM全体を回転させる(図中の矢印403参照)。
 また、上述したように軸AXZまわりに自在に回転可能である第2保持部42もあわせて従動して回転させる(図中の矢印404参照)。すなわち、精度測定装置40においてモータMは、シャフトM1を鉛直方向と略平行な軸AXZに沿わせて保持されたまま、かかる軸AXZまわりに回転する。
 これにより、同心度などの幾何公差の測定を精度よく容易に行うことが可能となる。また、シャフトM1を鉛直方向に沿わせて回転させるので、回転方向に対して均一に荷重がかかり、モータMを滑らかに回転させることができる。すなわち、モータMの組立精度を正確に測定することができる。
 また、シャフトM1は、先端部が略円錐状の第1保持部41および第2保持部42によってその両端を保持されるので軸心が定まりやすい。すなわち、精度よくモータMを回転させることができるので、やはりモータMの組立精度を正確に測定することができる。
 なお、ここで幾何公差を測定するセンサ部について説明する。図7Bに示すように、精度測定装置40は、第1保持部41の近傍に、第1センサ部46aと、第2センサ部46bとを備える。
 第1センサ部46aは、モータMの反負荷側のブラケットM4(図6C参照)の直角度を測定する。第2センサ部46bは、同じくブラケットM4の同心度を測定する。
 なお、ブラケットM4の凹部M4a(図6C参照)のように凹んだ形状を測定する場合、第1センサ部46aおよび第2センサ部46bには、接触式センサを用いるのが好適である。なお、かかる点は、非接触式センサを用いることを妨げるものではない。
 また、図7Cに示すように、精度測定装置40は、第3センサ部46cと、第4センサ部46dとを備える。第3センサ部46cは、モータMの負荷側のブラケットM3の直角度を測定する。第4センサ部46dは、同じくブラケットM3の同心度を測定する。
 なお、ブラケットM3の凸部M3a(図6B参照)のように凸状の形状を測定する場合、第3センサ部46cおよび第4センサ部46dには、非接触式センサを用いることができる。また、かかる非接触式センサを可動式とすることで、モータMの大きさに影響を受けない測定を行うことができる。なお、かかる点は、接触式センサを用いることを妨げるものではない。
 これらのセンサ部を用いて、精度測定装置40は、モータMを回転させつつ、負荷側および反負荷側の組立精度を同時に測定することができる。これにより、精度のよい測定を行うだけでなく、あわせてスループットの向上も図ることができる。
 なお、精度測定装置40によって測定された幾何公差の測定結果は、上述したコギングトルク測定装置30の場合と同様に制御装置へ通知される。制御装置は、かかる測定結果が許容範囲内であるならば、モータMをシール圧入装置50へ搬送するようにロボット10に対して指示する。また、測定結果が許容範囲外であるならば、モータMを搬出路100へ搬送するようにロボット10に対して指示する。
 次に、シール圧入装置50の構成例について、図8を用いて説明する。図8は、シール圧入装置50の斜視模式図である。
 図8に示すように、シール圧入装置50は、載置台51と、シール圧入部52と、治具ストッカ53とを備える。
 載置台51は、ロボット10によって精度測定装置40から搬送されるモータMが文字通り載置される台である。なお、かかる載置台51において、モータMは、負荷側を鉛直上向きとして載置される。
 シール圧入部52は、エアシリンダなどを用いて構成され、後述するシール部材をブラケットM3のシール部M3b(図6B参照)へ圧入する。治具ストッカ53は、後述するシール圧入治具を吊持する部材であり、その先端部は二股に形成される。
 ここで、シール圧入の準備動作およびシール部材へのグリス塗布について、図9Aから図10Bを用いて説明しておく。図9Aおよび図9Bは、シール圧入の準備動作を説明するための説明図である。また、図10Aは、グリス塗布装置70の斜視模式図であり、図10Bは、グリス塗布動作を説明するための説明図である。
 図9Aに示すように、シール圧入前においては、シール圧入治具Jは治具ストッカ53において保持されている。ここで、シール圧入治具Jは、首部がくびれた中空構造に形成されており、首部を治具ストッカ53の先端部の二股に挟まれて吊持されている。
 そして、まず、ロボット10によって精度測定装置40から搬送されたモータMは、あわせて負荷側を鉛直上向きとされ、さらに図9Aの矢印501に示すようにシャフトM1をシール圧入治具Jへ挿し込まれる。
 つづいて、図9Bに示すように、モータMは、矢印502の向きに移動されることによって、シール圧入治具JをシャフトM1へ装着したままの状態で治具ストッカ53から引き抜いた後、載置台51へ載置される。
 そして、グリス塗布装置70においてシール部材へのグリス塗布が行われる。図10Aに示すように、グリス塗布装置70は、環状のシール部材Sの内径に応じてそれぞれ異なる径を有する複数個の塗布部71を備える。すなわち、シール部材Sは、その内径に応じた径の塗布部71へ通される(図中の矢印601参照)。
 また、塗布部71は、それぞれ所定の間隔で設けられた孔部71aを有しており、かかる孔部71aからはグリスが漏出される。
 そして、シール部材Sへのグリス塗布は、ロボット10によって行われる。すなわち、図10Bに示すように、シール部材Sは、上述したロボット10の第2グリッパ15b(図3A参照)によって把持され、塗布部71へ通される。
 なお、シール部材Sは、シール切り出し装置(図示略)などから切り出されてあらかじめシールストッカ60(図1参照)へストックされたものがロボット10によって取り出される。
 そして、図10Bに示すように、シール部材Sは、たとえば、鉛直方向に略平行な軸AXZ2まわりに回動されながら塗布部71へ押し付けられ(図中の両矢印602参照)、その内周にグリスを塗布される。このとき、軸AXZ2の直交方向からシール部材Sをやや傾けて回動させてもよい。
 次に、シール圧入装置50におけるシール圧入動作について、図10Cおよび図10Dを用いて説明する。図10Cおよび図10Dは、シール圧入動作を説明するための説明図である。
 図10Cに示すように、グリス塗布装置70においてグリスを塗布されたシール部材Sは、モータMのシャフトM1へ装着されたままのシール圧入治具Jへ、ロボット10によって通される(図中の矢印701参照)。
 そして、図10Dに示すように、シール圧入装置50のシール圧入部52が図中の矢印702の向き(すなわち、鉛直下向き)に駆動される。シール圧入部52は、図10Dに示すように中空構造となっており、シール圧入治具Jを中に通してシール部材Sのみをシール部M3b(図6B参照)へ圧入する。
 次に、接着剤塗布装置80の構成例について、図11Aおよび図11Bを用いて説明する。図11Aは、接着剤塗布装置80の側面模式図であり、図11Bは、接着剤塗布装置80が備えるカメラ部82の一例を示す図である。
 図11Aに示すように、接着剤塗布装置80は、ノズル部81と、カメラ部82とを備える。
 ノズル部81は、吐出口を鉛直下向きにして配設され、制御装置の吐出指示に応じて接着剤を所定量吐出する供給デバイスである。カメラ部82は、接着剤の塗布状態を撮像データによって確認するための撮像デバイスである。
 そして、シール圧入装置50からロボット10によって反負荷側を鉛直上向きとされつつ搬送されたモータMは、つづいてロボット10によって、まず、ノズル部81の下方へ位置付けられる。そして、上述した接着孔M4b(図6C参照)においてノズル部81から吐出された接着剤の注入を受ける。
 接着孔M4bは、モータMの反負荷側の軸受のアウターレースとブラケットM4との間隙に対応しており、注入された接着剤はかかる双方の部材を固着させる。
 そして、ロボット10は、図中の矢印801の向きへモータMを移動させ、モータMをカメラ部82の撮像領域に位置付ける。そして、カメラ部82は、撮像した撮像データを制御装置へ通知する。
 制御装置は、撮像データを解析し、接着剤の塗布状態が良好であるならば、モータMをバッファステージ90へ搬送するようにロボット10に対して指示する。また、塗布状態が不良であるならば、ふたたび接着剤塗布装置80において接着剤を塗布するようにロボット10に対して指示する。
 なお、接着剤について、たとえば、蛍光着色剤などが添加されている場合には、図11Bに示すように、カメラ部82の近傍に紫外線ライト83を設けることとしてもよい。これにより、接着剤の塗布状態の視覚的な確認をより精度を増して行うことが可能となる。なお、接着剤が、紫外線硬化タイプのものである場合に、同様にかかる紫外線ライト83を設けることとしてもよい。
 次に、バッファステージ90の構成例について、図12を用いて説明する。図12は、バッファステージ90の斜視模式図である。
 図12に示すように、バッファステージ90は、多段に配列された複数個の載荷台91を備える。載荷台91は、モータ受け91aをさらに備える。
 接着剤塗布装置80において接着剤を塗布されたモータMは、ロボット10によってかかるバッファステージ90へ搬送され、反負荷側を鉛直上向きにモータ受け91aへ載置される。
 なお、載荷台91へ感圧センサを備え、載荷台91ごとの在荷状態を制御装置へ通知することとしてもよい。
 そして、モータMは、接着剤の乾燥の規定時間分、バッファステージ90へ置かれた後、ロボット10によって搬出路100(図1参照)へ移載され、エンコーダ組み込みなどの次工程へ搬送されることとなる。なお、かかる規定時間は、制御装置によって管理される。
 上述してきたように、実施形態に係るロボットシステムは、ロボットと、精度測定装置とを備える。ロボットは、モータのように回転軸を含んで形成された加工品を搬送する。精度測定装置は、ロボットによって搬送された加工品の回転軸を鉛直方向と略平行に保持し、かかる回転軸を回転させることによって加工品全体を回転させながらかかる加工品の組立精度を測定する。
 したがって、実施形態に係るロボットシステムによれば、回転軸を含んで形成された加工品の組立精度を正確に測定することができる。
 ところで、上述した実施形態では、主にモータのブラケットの直角度や同心度などの幾何公差を測定する場合を例に挙げたが、組立精度を示すものであればよく、たとえば、寸法公差を測定することとしてもよい。また、ブラケットに限らず、たとえば、ハウジングを測定対象とできることは言うまでもない。
 また、上述した実施形態では、加工品がモータである場合を例に挙げて説明したが、モータに限られるものではなく、シャフトのような回転軸を含んで形成された加工品であればよい。
 また、上述した実施形態では、シール圧入装置および接着剤塗布装置を別体の装置として構成した例を示したが、これに限られるものではなく、たとえば、回転軸の周囲へ所定の部材を組み込む1個の組み込み装置として構成してもよい。
 同様に、コギングトルク測定装置および精度測定装置を1装置として構成してもよい。なお、かかる場合、シャフトを鉛直方向に沿わせてモータを保持することとしたうえで、コギングトルクの測定にあたってはブレーキを開放してシャフトのみを回転させればよい。
 また、上述した実施形態では、単腕ロボットを例示したが、これに限られるものではなく、たとえば、双腕ロボットや3つ以上の腕を備える多腕ロボットを用いることとしてもよい。また、上述した実施形態では、6軸ロボットを例示したが、軸数を限定するものではない。
 また、上述した実施形態において例示した各種装置や各種部材、加工品などの形状は、図示した例に限定されるものではない。したがって、組立精度の測定対象となる部位は、たとえば、加工品の形状に応じたものとすればよい。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
   1  ロボットシステム
   2  セル
  10  ロボット
  11  第1アーム部
  12  第2アーム部
  13  第3アーム部
  14  第4アーム部
  15  ロボットハンド
  15a 第1グリッパ
  15b 第2グリッパ
  15c グリッパ駆動部
  20  搬入路
  30  コギングトルク測定装置
  31  モータスライダ部
  32  第1位置決め部
  33  第2位置決め部
  34  回転機構
  34a 外部シャフト
  35  トルク測定部
  36  ブレーキ開放部
  37  軸ブレ測定部
  37a センサ
  40  精度測定装置
  41  第1保持部
  42  第2保持部
  42a 基部
  43  第1サーボモータ
  44  第2サーボモータ
  45  スライド溝
  46a 第1センサ部
  46b 第2センサ部
  46c 第3センサ部
  46d 第4センサ部
  50  シール圧入装置
  51  載置台
  52  シール圧入部
  53  治具ストッカ
  60  シールストッカ
  70  グリス塗布装置
  71  塗布部
  71a 孔部
  80  接着剤塗布装置
  81  ノズル部
  82  カメラ部
  83  紫外線ライト
  90  バッファステージ
  91  載荷台
  91a モータ受け
 100  搬出路
   J  シール圧入治具
   M  モータ
   M1 シャフト
   M1a 穴部
   M1b 穴部
   M2 ハウジング
   M3 ブラケット
   M3a 凸部
   M3b シール部
   M4 ブラケット
   M4a 凹部
   M4b 接着孔
   S  シール部材

Claims (7)

  1.  回転軸を含んで形成された加工品を搬送するロボットと、
     前記ロボットによって搬送された前記加工品の前記回転軸を鉛直方向と略平行に保持し、該回転軸を回転させることによって前記加工品全体を回転させながら該加工品の組立精度を測定する精度測定装置と
     を備えることを特徴とするロボットシステム。
  2.  前記加工品は、
     前記回転軸を軸支する1対のブラケットを有しており、
     前記精度測定装置は、
     前記回転軸に対する前記ブラケットの直角度および同心度を同時に測定すること
     を特徴とする請求項1に記載のロボットシステム。
  3.  前記精度測定装置は、
     駆動源に連結されて設けられ、前記回転軸の一端を鉛直下側において保持する第1の保持部と、
     鉛直方向に沿ってスライド可能に設けられ、前記回転軸の他端を鉛直上側において保持する第2の保持部と
     を有し、
     前記ロボットによって前記第1の保持部へ載置された前記回転軸を前記第2の保持部をスライドさせて挟みつけることによって保持するとともに、前記駆動源の回転を前記第1の保持部を介して伝達することによって前記回転軸を回転させること
     を特徴とする請求項1または2に記載のロボットシステム。
  4.  前記第1の保持部および前記第2の保持部は、
     先端部が略円錐状に形成されており、
     前記精度測定装置は、
     前記先端部をそれぞれ前記回転軸の端部に設けられた穴部へ係合させて該回転軸を保持すること
     を特徴とする請求項3に記載のロボットシステム。
  5.  前記加工品はモータであって、
     前記回転軸を前記モータの反負荷側から保持して非励磁状態で回転させる回転機構と、
     前記回転機構による回転時の前記回転軸の軸ブレおよび前記モータのコギングトルクを測定するコギングトルク測定装置
     をさらに備えることを特徴とする請求項1に記載のロボットシステム。
  6.  前記精度測定装置および前記コギングトルク測定装置における測定結果が許容範囲内である場合に、前記ロボットによって搬送される前記モータについて前記回転軸の周囲へ所定の部材を組み込む組み込み装置
     をさらに備えることを特徴とする請求項5に記載のロボットシステム。
  7.  前記組み込み装置は、
     前記所定の部材として、前記ブラケットに設けられた軸受のアウターレースと該ブラケットとの間隙に塗布される接着剤および前記回転軸の周囲をシールするシール部材を組み込むこと
     を特徴とする請求項6に記載のロボットシステム。
PCT/JP2012/054773 2012-02-27 2012-02-27 ロボットシステム WO2013128548A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014501856A JP5910725B2 (ja) 2012-02-27 2012-02-27 ロボットシステム
CN201280070785.9A CN104136166A (zh) 2012-02-27 2012-02-27 机器人系统
EP12869913.9A EP2821177A4 (en) 2012-02-27 2012-02-27 ROBOT SYSTEM
PCT/JP2012/054773 WO2013128548A1 (ja) 2012-02-27 2012-02-27 ロボットシステム
US14/469,738 US20140364986A1 (en) 2012-02-27 2014-08-27 Robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054773 WO2013128548A1 (ja) 2012-02-27 2012-02-27 ロボットシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/469,738 Continuation US20140364986A1 (en) 2012-02-27 2014-08-27 Robot system

Publications (1)

Publication Number Publication Date
WO2013128548A1 true WO2013128548A1 (ja) 2013-09-06

Family

ID=49081807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054773 WO2013128548A1 (ja) 2012-02-27 2012-02-27 ロボットシステム

Country Status (5)

Country Link
US (1) US20140364986A1 (ja)
EP (1) EP2821177A4 (ja)
JP (1) JP5910725B2 (ja)
CN (1) CN104136166A (ja)
WO (1) WO2013128548A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620776A (zh) * 2018-05-09 2018-10-09 安徽知之信息科技有限公司 一种电动汽车覆盖件的表面焊接流水线
CN114955108A (zh) * 2021-02-24 2022-08-30 上海霞飞日化有限公司 一种用于化妆品盒塑封包装设备的翻转架

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044627B (zh) * 2015-06-09 2018-07-31 上海翡叶动力科技有限公司 一种电机转子磁通测试系统及其测试方法
CN106044307B (zh) * 2016-07-19 2018-04-24 马春阳 一种对材料条进行加工的装置及方法
TWI718945B (zh) * 2020-05-12 2021-02-11 國立彰化師範大學 主動式恆定施力感測控制系統
CN112452798B (zh) * 2020-11-11 2023-06-16 中国电子科技集团公司第三十八研究所 一种基于视觉测量的连接器分拣装配系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109565A (ja) * 1992-09-29 1994-04-19 Canon Inc モータのコギングトルク測定装置及び測定方法
JPH08163841A (ja) * 1994-11-30 1996-06-21 Toshiba Corp 回転子の偏心測定装置及び偏心矯正装置
JPH10103903A (ja) * 1996-10-02 1998-04-24 Mitsuba Corp 回転体の検査方法および検査装置
JPH10244426A (ja) * 1997-03-04 1998-09-14 Komatsu Koki Kk ピストンリングの複合加工装置
JPH10288518A (ja) 1997-04-14 1998-10-27 Nippon Steel Corp 機械部品の自動測定システム
JP2002187030A (ja) * 2000-12-19 2002-07-02 Asmo Co Ltd 回転電機の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633501A (en) * 1979-08-28 1981-04-04 Owari Seiki Kk Inspection device for headed screw
IT1200755B (it) * 1985-09-27 1989-01-27 Axis Spa Macchina per il collaudo automatico di indotti di motori elettrici
WO1990015982A1 (en) * 1989-06-20 1990-12-27 Fujitsu Limited Measuring robot system
KR930010017B1 (ko) * 1989-11-28 1993-10-14 미쯔비시덴끼 가부시기가이샤 테이핑장치 및 테이핑시스템
DE4014165A1 (de) * 1990-05-03 1991-11-14 Schenck Ag Carl Verfahren zum anschluss von elektromotoren an eine pruefeinrichtung und pruefeinrichtung fuer elektromotoren zur durchfuehrung des verfahrens
JPH0627839B2 (ja) * 1990-08-20 1994-04-13 関西電力株式会社 持出し物品汚染検査装置
JPH05220634A (ja) * 1991-08-07 1993-08-31 Matsushita Electric Ind Co Ltd 部品組立装置
US5404108A (en) * 1993-02-25 1995-04-04 Automation Technology, Inc. Method and apparatus for testing electric motor rotors
KR100261232B1 (ko) * 1997-12-31 2000-12-01 윤종용 비젼시스템을이용한동심도가공장치및방법
CN2449330Y (zh) * 2000-11-02 2001-09-19 英群企业股份有限公司 光碟片自动测试装置
CA2369845A1 (en) * 2002-01-31 2003-07-31 Braintech, Inc. Method and apparatus for single camera 3d vision guided robotics
US20040055131A1 (en) * 2002-09-24 2004-03-25 Abid Ghuman Method of assembling vehicles in a flexible manufacturing system
DE10319559B3 (de) * 2003-04-24 2004-11-18 Minebea Co., Ltd. Vorrichtung und Verfahren zur Drehmomentmessung an einem Elektromotor
US7462999B2 (en) * 2006-03-29 2008-12-09 Mitchell Electronics, Inc Brushless servo motor tester

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109565A (ja) * 1992-09-29 1994-04-19 Canon Inc モータのコギングトルク測定装置及び測定方法
JPH08163841A (ja) * 1994-11-30 1996-06-21 Toshiba Corp 回転子の偏心測定装置及び偏心矯正装置
JPH10103903A (ja) * 1996-10-02 1998-04-24 Mitsuba Corp 回転体の検査方法および検査装置
JPH10244426A (ja) * 1997-03-04 1998-09-14 Komatsu Koki Kk ピストンリングの複合加工装置
JPH10288518A (ja) 1997-04-14 1998-10-27 Nippon Steel Corp 機械部品の自動測定システム
JP2002187030A (ja) * 2000-12-19 2002-07-02 Asmo Co Ltd 回転電機の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821177A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620776A (zh) * 2018-05-09 2018-10-09 安徽知之信息科技有限公司 一种电动汽车覆盖件的表面焊接流水线
CN114955108A (zh) * 2021-02-24 2022-08-30 上海霞飞日化有限公司 一种用于化妆品盒塑封包装设备的翻转架

Also Published As

Publication number Publication date
JP5910725B2 (ja) 2016-04-27
JPWO2013128548A1 (ja) 2015-07-30
US20140364986A1 (en) 2014-12-11
EP2821177A1 (en) 2015-01-07
EP2821177A4 (en) 2015-12-16
CN104136166A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5910725B2 (ja) ロボットシステム
US20180099365A1 (en) Assembly equipment and assembly method
JP6173677B2 (ja) 産業用ロボットの原点位置復帰方法
US10315311B2 (en) Robots, robotic systems, and related methods
EP2821178A1 (en) Robotic system
TWI423377B (zh) Workpiece handling equipment
JP6252597B2 (ja) ロボットシステム
JP2012148401A (ja) 部品ハンドリング装置、システム及び方法
US20150019003A1 (en) Robot system
JP6892018B2 (ja) ロボット装置
CN107026110B (zh) 基板交接位置的示教方法和基板处理系统
JP2020536761A5 (ja)
US10322513B2 (en) Robot end effector applying tensile holding force
JP6299769B2 (ja) ロボットシステム
JP2010214510A (ja) 柱状体の搬送用チャック
JP2018001320A (ja) ロボット、ロボットの制御方法、教示用治具およびロボットの教示方法
JP6842948B2 (ja) 位置決め装置および位置決め方法
JP7237635B2 (ja) 保持装置および保持方法
JP2018006519A (ja) 搬送システム
Jonsson et al. Force feedback for assembly of aircraft structures
CN105775633A (zh) 分度工件输送装置
JP2023522854A (ja) 自動化されたコンポーネント組付けのためのシステムおよび方法
JP2012236262A (ja) 生産システム
JP2018139281A (ja) 位置決め装置および位置決め方法
JP2016175159A (ja) 搬送装置および搬送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014501856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012869913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012869913

Country of ref document: EP