WO2013125389A1 - Procédé de production de 1,3-butadiène - Google Patents

Procédé de production de 1,3-butadiène Download PDF

Info

Publication number
WO2013125389A1
WO2013125389A1 PCT/JP2013/053211 JP2013053211W WO2013125389A1 WO 2013125389 A1 WO2013125389 A1 WO 2013125389A1 JP 2013053211 W JP2013053211 W JP 2013053211W WO 2013125389 A1 WO2013125389 A1 WO 2013125389A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
component
butadiene
ethanol
preparation example
Prior art date
Application number
PCT/JP2013/053211
Other languages
English (en)
Japanese (ja)
Inventor
中谷哲
田中康隆
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2014500658A priority Critical patent/JP6084963B2/ja
Publication of WO2013125389A1 publication Critical patent/WO2013125389A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/50Silver
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • C07C2529/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)

Definitions

  • the present invention relates to a novel 1,3-butadiene production method for producing 1,3-butadiene, which is a raw material for synthetic rubber, which is important in many industrial fields including the automotive industry field and the electronic material field, from ethanol in one pass.
  • chemical industrial raw materials derived from biomass-derived raw materials have attracted attention instead of chemical industrial raw materials obtained from petroleum.
  • bioethanol derived from biomass such as sugar cane and corn is converted into 1,3-butadiene.
  • the technology to convert is anxious.
  • Patent Document 1 As a method for obtaining 1,3-butadiene using ethanol as a raw material, a method using MgO as a catalyst (Patent Document 1), a method using a mixture of Al 2 O 3 and ZnO (mixing ratio: 60/40) (non-contained) Patent Document 1) and the like are known.
  • the manufacturing technology is not as delicate and established as naphtha cracking, the catalyst is easily deteriorated by heat and difficult to recycle, the cost is increased, the ethanol conversion efficiency is low, and the yield of 1,3-butadiene is low.
  • an object of the present invention is to provide a method for producing 1,3-butadiene which obtains 1,3-butadiene from ethanol by a simple and industrially advantageous method.
  • the present invention relates to a method for producing 1,3-butadiene, which obtains 1,3-butadiene from ethanol, wherein the following raw materials are brought into contact with the following catalyst under heating: A manufacturing method is provided.
  • Raw material Including ethanol
  • Catalyst Periodic table Group 4-13 metal oxide (component A), magnesium oxide (component B), and catalyst containing binder component (component C) containing inorganic oxide other than the above
  • the present invention also provides the method for producing 1,3-butadiene as described above, wherein the inorganic oxide in component C is silicon dioxide.
  • the present invention also provides the method for producing 1,3-butadiene as described above, wherein the raw material is contacted with a catalyst in the presence of hydrogen.
  • the present invention also provides the method for producing 1,3-butadiene as described above, wherein the component C is zeolite.
  • the present invention also provides the method for producing 1,3-butadiene as described above, wherein the zeolite is a zeolite having a SiO 2 / Al 2 O 3 molar ratio of 12 or more and a pore diameter of 10 mm or less.
  • the present invention also provides the above-described method for producing 1,3-butadiene using magnesium silicate as component B and component C.
  • the present invention also provides the process for producing 1,3-butadiene as described above, wherein the magnesium silicate is magnesium phyllosilicate.
  • the present invention also provides the above-mentioned method for producing 1,3-butadiene, wherein the raw material is brought into contact with the following catalyst (A) and catalyst (B) in this order.
  • Catalyst (A) A catalyst containing a group 4-13 metal oxide (component A), magnesium oxide (component B), and a binder component (component C) containing an inorganic oxide other than those described above.
  • Catalyst having a selectivity of acetaldehyde of 10% or more obtained when ethanol is brought into contact with the catalyst (temperature: 400 ° C., space velocity: 360 hr ⁇ 1 )
  • 1,3-butadiene can be selectively produced from ethanol by a simple method.
  • the catalyst used in the present invention is hardly deteriorated by heat and can be used repeatedly. Therefore, the method for producing 1,3-butadiene according to the present invention is preferably used for a method for industrially producing 1,3-butadiene, which is an important raw material for synthetic rubber in many industrial fields, from ethanol. Can do.
  • the method for producing 1,3-butadiene according to the present invention is characterized in that the following raw materials are brought into contact with the following catalyst under heating.
  • Raw material Including ethanol
  • Catalyst Periodic table Group 4-13 metal oxide (component A), magnesium oxide (component B), and catalyst containing binder component (component C) containing inorganic oxide other than the above
  • the method for producing 1,3-butadiene of the present invention is considered to undergo the following reaction steps.
  • the raw material of the present invention contains at least ethanol.
  • the ethanol is not particularly limited, and examples thereof include ethanol derived from biomass such as sugar cane and corn, ethanol derived from petroleum or natural gas, and the like.
  • biomass-derived ethanol it is particularly preferable to use biomass-derived ethanol because it can greatly contribute to the reduction of greenhouse gases.
  • the ethanol content in the raw material (100% by weight) of the present invention is, for example, 50% by weight or more, preferably 70 to 100% by weight.
  • the raw material of the present invention may contain acetaldehyde together with ethanol.
  • acetaldehyde By containing acetaldehyde with ethanol, 1,3-butadiene can be obtained more selectively and with a high yield.
  • the molar ratio of ethanol to acetaldehyde is, for example, about 95/5 to 50/50, preferably 90/10 to 60/40, particularly preferably 85/15 to 65 / 35, most preferably in the range of 80/20 to 70/30.
  • the catalyst of the present invention contains an oxide (component A) of a metal of Groups 4 to 13 of the periodic table, magnesium oxide (component B), and a binder component (component C) containing an inorganic oxide other than those described above.
  • the catalyst of the present invention is obtained by joining a group 4-13 metal oxide (component A) and magnesium oxide (component B) with a binder component (component C) containing an inorganic oxide other than the above. Catalyst.
  • the group 4-13 metal oxide of the periodic table acts as a co-catalyst and exhibits an effect of improving the selectivity of 1,3-butadiene.
  • the step (a) In the step (d), the side reaction of dehydrating ethanol to suppress ethylene and suppressing the side reaction of obtaining ethylene to promote the reaction of dehydrating ethanol to obtain acetaldehyde.
  • O) has the effect of promoting the reaction of selectively hydrogenating, by-product of carbon-carbon double bond hydride of crotonaldehyde (for example, butyraldehyde, normal butanol, etc.) and condensation of crotonaldehyde Decomposition can be suppressed.
  • Examples of the metals in groups 4 to 13 of the periodic table include aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, tantalum, tungsten, and silver. Can be mentioned.
  • the Group 4-13 Group metal oxide (component A) is at least one selected from titanium, chromium, copper, zinc, gallium, zirconium, niobium, tantalum, and silver, among others.
  • the metal oxides are preferred.
  • the magnesium oxide (component B) is an active species in the catalytic reaction for obtaining 1,3-butadiene from ethanol.
  • the component C acts as a diluent for stabilizing fine particles of magnesium oxide (component B) which is an active species.
  • component B magnesium oxide
  • silicon dioxide is preferred. Therefore, in the present invention, it is preferable to use a binder component containing silicon dioxide as component C.
  • Component C may further contain an oxide (for example, Al 2 O 3 or the like) of the metals in groups 4 to 13 of the periodic table.
  • the specific surface area (BET specific surface area) of Component C is, for example, about 10 to 1000 m 2 / g, preferably 50 to 1000 m 2 / g, more preferably 100 to 1000 m 2 / g, and particularly preferably 250 to 1000 m 2 / g. Most preferably, it is 330 to 1000 m 2 / g.
  • BET specific surface area the specific surface area of Component C is below the above range, it tends to be difficult to stabilize the magnesium oxide (Component B) fine particles.
  • the specific surface area of component C exceeds the above range, the pore diameter becomes extremely small, so that pore clogging due to carbon deposition is likely to occur, and the diffusion of the substrate to the active site is inhibited, so the deactivation rate is Tend to be faster.
  • the shape of the component C is not particularly limited, and various shapes such as a granular material, a lump, a layer shape, a porous shape, a so-called honeycomb structure can be used.
  • component C examples include colloidal silica (silica sol), silica gel, fumed silica, diatomaceous earth, mica, mesoporous silica (MCM-41), zeolite, and silicoaluminophosphate. These can be used alone or in admixture of two or more.
  • the zeolite is a general term for crystalline aluminosilicates, and includes A type, X type, Y type, mordenite type, ferrierite type, ZSM-5 type, ⁇ type and the like. Zeolite is represented by the following formula.
  • M n + represents a cation such as Na + , K + , Ca 2+ and H + .
  • x represents a number of 2 or more, and y represents a number of 0 or more. (M n +) 2 / n O ⁇ Al 2 O 3 ⁇ xSiO 2 ⁇ yH 2 O
  • the SiO 2 / Al 2 O 3 molar ratio of zeolite is preferably 12 or more, particularly preferably 18 or more, and most preferably 300 or more.
  • the SiO 2 / Al 2 O 3 molar ratio of zeolite is adjusted to the above range, it is preferable in that strong acid sites can be reduced and side reactions that generate ethylene by dehydrating ethanol can be suppressed.
  • the SiO 2 / Al 2 O 3 molar ratio of the zeolite is out of the above range, the acid point increases and the amount of ethylene produced by ethanol dehydration tends to increase.
  • the pore diameter of the zeolite is preferably 10 mm or less, particularly preferably 4 to 8 mm. Zeolite having a pore diameter in the above range can suppress the by-generation and diffusion of large molecules having 5 or more carbon atoms, and can further improve the selectivity of 1,3-butadiene.
  • component C for example, trade name “Snowtex 30” (colloidal silica, silicon dioxide content ratio: 30 wt%, specific surface area: 300 ⁇ 100 m 2 / g, manufactured by Nissan Chemical Industries, Ltd.), product Name “Snowtex XS” (colloidal silica, silicon dioxide content ratio: 20% by weight, specific surface area: 800 ⁇ 200 m 2 / g, manufactured by Nissan Chemical Industries, Ltd.), trade name “Aerosil 380PE” (fumed silica, dioxide dioxide) Commercial products such as silicon content ratio: 99.9% by weight, specific surface area: 380 ⁇ 30 m 2 / g, manufactured by Nippon Aerosil Co., Ltd. may be used.
  • the component C may form a composite oxide (for example, magnesium silicate), an oxo acid salt, or the like together with the component B, and the composite oxide may have a layer structure ( For example, magnesium phyllosilicate).
  • a composite oxide for example, magnesium silicate
  • an oxo acid salt or the like
  • the composite oxide may have a layer structure ( For example, magnesium phyllosilicate).
  • each component in the catalyst (100% by weight) of the present invention is preferably in the following range.
  • Component A content for example 0.1 to 10% by weight, preferably 0.5 to 5% by weight, particularly preferably 1 to 5% by weight
  • Component B content for example 20 to 95% by weight, preferably 30 to 90% by weight, more preferably 50 to 90% by weight, particularly preferably 60 to 90% by weight, most preferably 75 to 85% by weight
  • Component C content for example 5 to 80% by weight, preferably 10 to 70% by weight, particularly preferably 15 to 25% by weight
  • the component A content in the catalyst is below the above range, the effect of improving the 1,3-butadiene selectivity tends to be difficult to obtain.
  • the component A content exceeds the above range, it does not disperse well on the catalyst, but rather tends to lower the catalytic activity by closing the active sites.
  • component B in the catalyst When the content of component B in the catalyst is below the above range, the active sites are decreased, so that the butadiene yield tends to be greatly decreased. On the other hand, when the component B content exceeds the above range, the basicity of the catalyst tends to increase, and the n-butanol selectivity tends to increase.
  • component C in the catalyst When the content of component C in the catalyst is below the above range, the specific surface area decreases due to aggregation of magnesium oxide (component B), and the ethanol conversion tends to decrease. On the other hand, when the component C content exceeds the above range, the acid point increases and the amount of ethylene produced by ethanol dehydration tends to increase.
  • the catalyst of the present invention may contain components other than the above components (for example, oxides of alkali metals such as Na 2 O and K 2 O).
  • the catalyst of the present invention preferably contains an oxide of an alkali metal such as Na 2 O or K 2 O from the viewpoint of further improving the selectivity of 1,3-butadiene.
  • the content of other components is about 0.01 to 1% by weight, preferably 0.05 to 0.5% by weight of the catalyst (100% by weight).
  • one type of the catalyst may be used, or two or more types may be used in combination.
  • Catalyst (A) a catalyst to be contacted first
  • catalyst to be contacted later hereinafter referred to as “catalyst (B)”.
  • A a catalyst to be contacted first
  • B a catalyst to be contacted later
  • Catalyst (A) A catalyst containing a group 4-13 metal oxide (component A), magnesium oxide (component B), and a binder component (component C) containing an inorganic oxide other than those described above.
  • acetaldehyde obtained when obtained by the selectivity is less than 10%, and 1,3-butadiene selectivity of 45% or more (Preferably 50% or more, particularly preferably 55% or more) as a catalyst
  • the Group 4-13 Group metal oxide includes, among others, the Group 11 or 12 metal oxides of the Periodic Table such as copper, zinc, silver, etc. This is preferable in that the reaction rate promoting action is excellent.
  • the Group 4-13 Group metal oxides include, among others, the Periodic Table Group 4 or 5 metal oxides such as titanium, zirconium, niobium, and tantalum.
  • D It is preferable at the point which is excellent in the reaction rate acceleration
  • the volume ratio (the former / the latter) of the catalyst (A) and the catalyst (B) is, for example, about 1/9 to 1/1 (preferably 1/7 to 1/2, particularly preferably 1/5 to 1/3).
  • the contact time ratio between the catalyst (A) and the catalyst (B) (the former / the latter) is, for example, about 1/9 to 1/1 (preferably 1/7 to 1/2, particularly preferably 1/5).
  • the space velocity ratio (the former / the latter) of the catalyst (A) and the catalyst (B) is, for example, about 9/1 to 1/1 (preferably 7/1 to 2/1, particularly Preferably within the range of 5/1 to 3/1)
  • volume ratio and / or contact time ratio of the catalyst (A) If the volume ratio and / or contact time ratio of the catalyst (A) is too large, 1,3-butadiene can be produced with excellent selectivity immediately after the start of the reaction. The rate tends to decrease, and the by-product of the compound having 4 or more carbon atoms tends to increase. On the other hand, if the volume ratio and / or contact time ratio of the catalyst (B) is too large, the effect of promoting the rate-determining step reaction is difficult to obtain, and the ethanol conversion tends to decrease.
  • Method for preparing catalyst examples include a kneading method, an impregnation method, a vapor deposition method, and a supported complex decomposition method.
  • a kneading method it is preferable to employ a kneading method because a catalyst that produces 1,3-butadiene with excellent selectivity can be prepared with good reproducibility.
  • a metal compound of Groups 4 to 13 of the periodic table for example, a copper compound, a zinc compound, a chromium compound, a silver compound, a titanium compound, a zirconium compound, a niobium compound, a tantalum compound
  • a magnesium compound for example, Magnesium hydroxide, magnesium nitrate, magnesium oxalate, etc.
  • a binder component containing an inorganic oxide other than the above and a compound corresponding to the above other components for example, sodium hydroxide, potassium hydroxide, etc.
  • a catalyst containing a binder component containing a metal oxide, magnesium oxide and an inorganic oxide other than the above can be prepared.
  • Examples of the copper compound include copper nitrate, copper sulfate, copper acetate, copper isopropoxide and the like.
  • Examples of the zinc compound include zinc nitrate, zinc sulfate, and bisacetylacetonato zinc.
  • chromium compound examples include chromium nitrate, chromium formate, and chromium sulfate.
  • Examples of the silver compound include silver nitrate, silver nitrite, silver carbonate, and silver acetate.
  • titanium compound examples include titanium tetrachloride, titanium trichloride, ammonium ammonium oxalate, titanium isopropoxide, and the like.
  • zirconium compound examples include zirconium oxynitrate, zirconium sulfate, zirconium carbonate, zirconium acetylacetonate and the like.
  • niobium compound examples include niobium oxalate and niobium ethoxide.
  • tantalum compound examples include tantalum ethoxide and tantalum chloride.
  • the method for producing 1,3-butadiene according to the present invention is a method for producing 1,3-butadiene to obtain 1,3-butadiene from ethanol.
  • the raw material is heated under the above catalyst (groups 4 to 13 of the periodic table).
  • a metal oxide (component A), magnesium oxide (component B), and a binder component (component C) containing an inorganic oxide other than the above are contacted.
  • the method for producing 1,3-butadiene of the present invention can be performed by a conventional method such as a batch method, a semi-batch method, or a continuous method.
  • a conventional method such as a batch method, a semi-batch method, or a continuous method.
  • the usage rate of the raw material can be made extremely high.
  • the method for producing 1,3-butadiene according to the present invention uses the above-described catalyst, even if a continuous method is adopted, ethanol as a raw material can be converted more efficiently than before, and unreacted raw material can be further converted. By reusing them in the reaction system, the usage rate of the raw material ethanol can be improved to a very high level. For this reason, it is preferable to employ a continuous system that can separate and recover 1,3-butadiene simply and efficiently.
  • Examples of the method for bringing the raw material into contact with the catalyst include a suspension bed method, a fluidized bed method, and a fixed bed method.
  • the present invention may be either a gas phase method or a liquid phase method.
  • the catalyst is filled into the reaction tube to form a catalyst layer in that mass synthesis is possible, the operation workload is light, and the catalyst is easily recovered and regenerated. It is preferable to use a fixed bed gas phase continuous flow reaction apparatus that is made to flow as a gas and react in the gas phase.
  • the raw material gas for example, ethanol gas, preferably a mixture of ethanol gas and acetaldehyde gas
  • the raw material gas may be supplied to the reactor without dilution, such as nitrogen, helium, argon, carbon dioxide gas, etc. It may be appropriately diluted with an inert gas and supplied to the reactor.
  • the selective hydrogenation reaction of crotonaldehyde to crotyl alcohol in the step (d) may be performed by bringing the raw material into contact with a catalyst in the presence of hydrogen. Is promoted, and condensation and decomposition of crotonaldehyde are suppressed, which is preferable in that the selectivity of 1,3-butadiene can be improved.
  • the molar ratio of the raw material to be brought into contact with the catalyst and hydrogen is, for example, about 10/90 to 95/5, preferably 20/80 to 90/10, particularly preferably 30/70 to 70/30. .
  • the reaction temperature is, for example, about 300 to 500 ° C., preferably 350 to 450 ° C. If the reaction temperature is below the above range, sufficient catalytic activity may not be obtained, the reaction rate may decrease, and the production efficiency may decrease. On the other hand, if the reaction temperature exceeds the above range, the catalyst may be deteriorated.
  • the reaction pressure can be appropriately set within a wide range from normal pressure to high pressure. From the viewpoint of production efficiency, device configuration, etc., it is preferable to set it to 1 MPa or less.
  • the contact time between the raw material and the catalyst is, for example, about 0.1 to 30 seconds, preferably 1 to 10 seconds. If the contact time is too short, ethanol does not convert to butadiene, and unreacted ethanol and acetaldehyde, crotonaldehyde, and the like as intermediates tend to increase at the reactor outlet. On the other hand, if the contact time with the catalyst becomes too long, condensation or polymerization of acetaldehyde, butadiene or the like proceeds and a large amount of high-boiling components tend to be generated.
  • the contact time between the raw material and the catalyst can be controlled by adjusting the feed rate of the raw material.
  • the ethanol gas space velocity is 100 to 50000 hr ⁇ 1 (preferably 200 to 10000 hr ⁇ 1 , particularly preferably 300 to It is preferable to adjust within the range of 5000 hr ⁇ 1 ).
  • reaction product After completion of the reaction, the reaction product can be separated and purified by, for example, separation means such as filtration, concentration, distillation, extraction, etc., or a separation means combining these.
  • separation means such as filtration, concentration, distillation, extraction, etc., or a separation means combining these.
  • the catalyst of the present invention comprises a group 4-13 metal oxide of the periodic table (component A), a catalyst active component magnesium oxide (component B), and a binder component (component C) containing an inorganic oxide other than the above.
  • component A group 4-13 metal oxide of the periodic table
  • component B catalyst active component magnesium oxide
  • component C binder component
  • the catalytically active component is not easily eluted in the reaction solution even in the organic synthesis reaction, and the reaction solution is filtered, centrifuged, etc. It can be easily recovered by the physical separation method. Unreacted raw materials may be recovered and reused.
  • the catalyst of the present invention is regenerated for 1 to 24 hours, preferably 3 to 6 hours, for example, by circulating air in the reactor under heating of, for example, about 350 to 500 ° C., preferably 450 to 500 ° C.
  • the catalyst activity is recovered to 90% or more with respect to the unused catalyst, and can be reused.
  • 1,3-butadiene is excellent in ethanol conversion and excellent selectivity. Can be manufactured.
  • the catalyst (A) accelerates the acetaldehyde generation process, which is the rate-limiting step of the reaction, and further the catalyst (B).
  • the reaction for obtaining crotyl alcohol from ethanol and crotonaldehyde is promoted, so that 1,3-butadiene can be produced with excellent ethanol conversion and excellent selectivity.
  • the method for producing 1,3-butadiene according to the present invention can selectively produce 1,3-butadiene, for example, after the start of the reaction when the reaction is carried out under conditions of a reaction temperature of 400 ° C. and a space velocity of 360 hr ⁇ 1.
  • the selectivity for 1,3-butadiene after 75 minutes is, for example, 45% or more, preferably 55% or more, particularly preferably 60% or more.
  • the method for producing 1,3-butadiene of the present invention is excellent in the conversion rate of ethanol.
  • the rate is, for example, 25% or more, preferably 30% or more, more preferably 40% or more, and particularly preferably 50% or more.
  • the 1,3-butadiene production method of the present invention has a very high selectivity for 1,3-butadiene as described above, the ethanol usage rate is improved by reusing unreacted ethanol in the reaction system. 1,3-butadiene can be produced industrially efficiently.
  • Preparation Example 11 A powder obtained by immersing Sepiolite 19.67 g in an aqueous solution in which 1.72 g of manganese nitrate hexahydrate is dissolved, evaporating to dryness on a hot water bath at 80 ° C., and baking at 500 ° C. for 4 hours. Then, compression molding, crushing, and classification with 10-20 mesh gave Catalyst (11) (Mn / Sepiolite) (Mn: 0.3 mmol / g-cat).
  • Preparation Example 12 The powder obtained by dipping 17.96 g of sepiolite in an aqueous solution in which 5.42 g of sodium vanadate is dissolved, evaporating to dryness on a hot water bath at 80 ° C., and baking for 4 hours at 500 ° C. Molding, crushing and classification with 10-20 mesh gave catalyst (12) (V / sepiolite) (V: 2 mmol / g-cat).
  • Preparation Example 13 17.35 g of magnesium hydroxide (manufactured by Kanto Chemical Co., Ltd.), colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, Ltd., specific surface area: 800 ⁇ 200 m 2 / g), 39.25 g of water And kneaded in an auto mill for 4 hours to obtain a sol.
  • the obtained sol was dried at 80 ° C. for 16 hours and then at 110 ° C. for 4 hours, then heated to 500 ° C. at 1 ° C./min and calcined at 500 ° C. for 2 hours to obtain a cake.
  • Preparation Example 17 Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ⁇ 200 m 2 / g), fumed silica (trade name “Aerosil 380PE”, manufactured by Nippon Aerosil Co., Ltd.)
  • Preparation Example 18 Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ⁇ 200 m 2 / g), Y-type zeolite (trade name “LZY-210”, JGC Universal Corporation)
  • Preparation Example 23 Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ⁇ 200 m 2 / g), mordenite zeolite (trade name “LZM-8”, JGC Universal Co., Ltd.)
  • the catalyst (23) (Ta 2 O 5 / Ta) was prepared in the same manner as in Preparation Example 1 except that the product, SiO 2 / AI 2 O 3 weight ratio: 18, specific surface area: 480 m 2 / g, pore diameter: 7 mm, was used.
  • MgO / mordenite zeolite (weight ratio) 2/83/15) was obtained.
  • Preparation Example 30 Preparation Example 26 except that 0.62 g of zinc (II) nitrate hexahydrate, 0.02 g of potassium carbonate and 0.38 g of tantalum ethoxide were used instead of 0.62 g of zinc (II) nitrate hexahydrate.
  • Preparation Example 31 Preparation Example 26 except that 0.62 g of zinc (II) nitrate hexahydrate, 0.08 g of potassium carbonate, and 0.38 g of tantalum ethoxide were used instead of 0.62 g of zinc (II) nitrate hexahydrate.
  • Preparation Example 33 Preparation example except that zinc nitrate (II) hexahydrate 0.62 g was used instead of zinc nitrate (II) hexahydrate 0.62 g, silver nitrate (I) 0.02 g and tantalum ethoxide 0.38 g
  • Example 1 to 8 are Preparation Examples 1 to 8
  • Example 9 is Preparation Example 2
  • Example 10 is Preparation Example 1
  • Example 11 is Preparation Example 9
  • Comparative Examples 1 to 5 are Comparative Examples 1 to 5, respectively.
  • the catalysts obtained in Preparation Examples 10-14 were used.
  • the reactor outlet gas was gas-liquid separated and then cooled by a cooler to recover the condensate.
  • the composition of the gas at the outlet of the reactor 60 to 75 minutes after the start of the reaction was analyzed with a gas chromatograph and a Karl Fischer moisture meter.
  • Example 12 except that 1.5 mL was thoroughly mixed and charged into a 10 mm ⁇ SUS reaction tube connected to a fixed bed type gas phase continuous flow reactor. The same was done.
  • Example 14 The same procedure as in Example 12 was performed except that 3.0 mL of the catalyst (15) obtained in Preparation Example 15 was charged into a 10 mm ⁇ SUS reaction tube connected to a fixed bed gas phase continuous flow reactor.
  • the gas composition at the outlet of the reactor was analyzed with a gas chromatograph and a Karl Fischer moisture meter. The results are summarized in Table 4 below.
  • the catalyst (A) and the catalyst (B) are used in combination, and ethanol is used as a catalyst as compared with the case where the catalyst (B) containing a metal oxide of Group 4 to 13 of the periodic table is used alone.
  • Examples 18-26 Example 17 was repeated except that the catalyst and the charged composition were changed as shown in Table 6.
  • Examples 18 and 19 are the catalyst (16) obtained in Preparation Example 16
  • Examples 20 to 24 are the catalyst (1) obtained in Preparation Example 1, and Examples 25 and 26 are obtained in Preparation Example 7.
  • Catalyst (7) was used. The results are summarized in Table 6 below.
  • Example 33-36 Example 21 was repeated except that the feed composition and the catalyst contact time of the raw materials were changed as shown in Table 8. The results are summarized in Table 8 below.
  • Examples 37-42 The reaction was performed in the same manner as in Example 35 except that the reaction temperature and the catalyst contact time of the raw materials were changed as shown in Table 9. The results are summarized in Table 9 below.
  • Example 41 was repeated except that the catalyst was changed to the catalyst shown in Table 10.
  • the catalysts obtained in Preparation Examples 17 to 25 were used. The results are summarized in Table 10 below.
  • Example 54 was repeated except that the reaction temperature, the catalyst contact time of the raw materials, and the feed composition were changed as shown in Table 13. The results are summarized in Table 13 below.
  • Example 61 The same procedure as in Example 59 was conducted, except that the catalyst and the charged composition were changed to those shown in Table 14.
  • Example 61 the catalyst obtained in Preparation Example 27 was used.
  • Example 62 and 69 the catalyst obtained in Preparation Example 28 was used.
  • Example 63 the catalyst obtained in Preparation Example 29 was used.
  • Example 64 the catalyst obtained in Preparation Example 30 was used.
  • Example 65 and 70 the catalyst obtained in Preparation Example 31 was used.
  • Example 66 the catalyst obtained in Preparation Example 32 was used.
  • Example 67 the catalyst obtained in Preparation Example 33 was used.
  • Example 68 the catalyst obtained in Preparation Example 34 was used.
  • Table 14 The results are summarized in Table 14 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

L'invention concerne un procédé de production de 1,3-butadiène pour l'obtention de 1,3-butadiène à partir d'éthanol par un procédé simple et industriellement avantageux. Ce procédé de production de 1,3-butadiène est un procédé d'obtention de 1,3-butadiène à partir d'éthanol, caractérisé par la mise en contact d'une matière première contenant de l'éthanol avec un catalyseur sous chauffage, le catalyseur comprenant un oxyde (composant A) d'un métal des groupes 4 à 13 du tableau périodique, un oxyde de magnésium (composant B) et un composant liant (composant C) qui contient un oxyde inorganique autre que ceux mentionnés précédemment.
PCT/JP2013/053211 2012-02-20 2013-02-12 Procédé de production de 1,3-butadiène WO2013125389A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014500658A JP6084963B2 (ja) 2012-02-20 2013-02-12 1,3−ブタジエンの製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012033692 2012-02-20
JP2012033975 2012-02-20
JP2012-033975 2012-02-20
JP2012-033692 2012-02-20
JP2012-134768 2012-06-14
JP2012134768 2012-06-14

Publications (1)

Publication Number Publication Date
WO2013125389A1 true WO2013125389A1 (fr) 2013-08-29

Family

ID=49005577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053211 WO2013125389A1 (fr) 2012-02-20 2013-02-12 Procédé de production de 1,3-butadiène

Country Status (2)

Country Link
JP (1) JP6084963B2 (fr)
WO (1) WO2013125389A1 (fr)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126264A1 (fr) * 2013-02-14 2014-08-21 Jx日鉱日石エネルギー株式会社 Procédé de production de composé diène conjugué
JP2014210755A (ja) * 2013-04-22 2014-11-13 昭和電工株式会社 ブタジエンの製造方法
JP2015034151A (ja) * 2013-08-09 2015-02-19 株式会社ダイセル 水熱合成法により調製した金属添加SiO2−MgO触媒によるエタノールからのブタジエン合成法
WO2016053201A1 (fr) * 2014-10-03 2016-04-07 Agency For Science, Technology And Research Procédé et système de production d'oléfine
WO2016066869A1 (fr) 2014-10-30 2016-05-06 Abengoa Research, S.L. Catalyseur microporeux avec encapsulation sélective d'oxydes métalliques utile pour produire des précurseurs de butadiène
JP2016094402A (ja) * 2014-11-06 2016-05-26 昭和電工株式会社 共役ジエン化合物の製造方法及びアリル型不飽和アルコールの脱水触媒
KR20160071216A (ko) * 2014-12-11 2016-06-21 주식회사 엘지화학 부타디엔 제조용 금속 복합산화물 촉매 및 이의 제조방법
WO2016111203A1 (fr) * 2015-01-05 2016-07-14 日揮株式会社 Procédé de production de 1,3-butadiène
WO2016114299A1 (fr) * 2015-01-13 2016-07-21 積水化学工業株式会社 Système de production de butadiène et procédé de production de butadiène
WO2016114306A1 (fr) * 2015-01-13 2016-07-21 積水化学工業株式会社 Système de production de butadiène et procédé de production de butadiène
WO2016136471A1 (fr) * 2015-02-27 2016-09-01 積水化学工業株式会社 Catalyseur pour la synthèse du 1,3-butadiène, procédé de production d'un catalyseur pour la synthèse du 1,3-butadiène, appareil de production de 1,3-butadiène et procédé de production de 1,3-butadiène
WO2016182516A1 (fr) * 2015-05-08 2016-11-17 The Siam Cement Public Company Limited Catalyseur pour la production de 1,3-butadiène à partir d'éthanol
WO2017009105A1 (fr) 2015-07-13 2017-01-19 IFP Energies Nouvelles Catalyseur oxyde mixte mesoporeux comprenant du silicium
WO2017009106A1 (fr) * 2015-07-13 2017-01-19 IFP Energies Nouvelles Production stabilisee de 1,3-butadiène en présence d'un oxyde de tantale dope par un element aldolisant
WO2017009108A1 (fr) 2015-07-13 2017-01-19 IFP Energies Nouvelles CATALYSEUR Ta-Nb POUR LA PRODUCTION DE 1,3-BUTADIÈNE
JP2017144359A (ja) * 2016-02-15 2017-08-24 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
JP2017197459A (ja) * 2016-04-26 2017-11-02 昭和電工株式会社 共役ジエン化合物の製造方法及びアリル型不飽和アルコールの脱水触媒
JP2018008248A (ja) * 2016-07-15 2018-01-18 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
JP2018513111A (ja) * 2015-02-23 2018-05-24 ヴェルサリス ソシエタ ペル アチオニ ジエンの製造方法
JP2018521842A (ja) * 2015-07-13 2018-08-09 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles エタノールのブタジエンへの転換のためのシリカに担持されたタンタル系触媒
US10358395B2 (en) 2014-09-16 2019-07-23 Sekisui Chemical Co., Ltd. Method for producing butadiene and device for producing butadiene
JP2020000998A (ja) * 2018-06-28 2020-01-09 横浜ゴム株式会社 固体触媒およびブタジエンの製造方法
JP2020001001A (ja) * 2018-06-28 2020-01-09 横浜ゴム株式会社 固体触媒およびブタジエンの製造方法
JP2020040065A (ja) * 2019-11-14 2020-03-19 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
JP2020132550A (ja) * 2019-02-15 2020-08-31 株式会社ダイセル 1,3−ブタジエンの製造方法
JP2020199502A (ja) * 2020-09-02 2020-12-17 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
CN112973767A (zh) * 2019-12-02 2021-06-18 中国石油化工股份有限公司 含有伊利石介孔复合材料的c4烯烃裂解催化剂及其制备方法和应用
WO2022003922A1 (fr) * 2020-07-02 2022-01-06 Toyo Tire株式会社 Catalyseur de synthèse de 1,3-butadiène et procédé de production de 1,3-butadiène
JP2022520249A (ja) * 2019-02-13 2022-03-29 エスシージー ケミカルズ カンパニー リミティド エタノールから1,3-ブタジエンを製造するための方法及び触媒
WO2022207896A1 (fr) * 2021-04-01 2022-10-06 Synthos S.A. Utilisation d'un système catalyseur dans la production de 1,3-butadiène à partir d'éthanol en deux étapes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859928A (ja) * 1981-10-02 1983-04-09 Takeda Chem Ind Ltd ブタジエンの製造法
WO1999038822A1 (fr) * 1998-01-30 1999-08-05 Kabushiki Kaisha Sangi Synthese de matiere premiere de l'industrie chimique et de carburant a indice d'octane eleve, et composition pour carburant a indice d'octane eleve
JP2008088140A (ja) * 2006-10-05 2008-04-17 Sangi Co Ltd 化学工業原料及び燃料組成物の合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859928A (ja) * 1981-10-02 1983-04-09 Takeda Chem Ind Ltd ブタジエンの製造法
WO1999038822A1 (fr) * 1998-01-30 1999-08-05 Kabushiki Kaisha Sangi Synthese de matiere premiere de l'industrie chimique et de carburant a indice d'octane eleve, et composition pour carburant a indice d'octane eleve
JP2008088140A (ja) * 2006-10-05 2008-04-17 Sangi Co Ltd 化学工業原料及び燃料組成物の合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BHATTACHARYYA, S. K. ET AL.: "Catalytic production of butadiene from EtOH by single- step process in fixed bed", JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, vol. 19B, 1960, pages 33 - 34 *
KITAYAMA, YOSHIE ET AL.: "Preparation of large surface area nickel magnesium silicate and its catalytic activity for conversion of ethanol into buta-1,3-diene", CATALYSIS LETTERS, vol. 36, no. 1,2, 1995, pages 95 - 97 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156408A (ja) * 2013-02-14 2014-08-28 Jx Nippon Oil & Energy Corp 共役ジエン化合物の製造方法
WO2014126264A1 (fr) * 2013-02-14 2014-08-21 Jx日鉱日石エネルギー株式会社 Procédé de production de composé diène conjugué
JP2014210755A (ja) * 2013-04-22 2014-11-13 昭和電工株式会社 ブタジエンの製造方法
JP2015034151A (ja) * 2013-08-09 2015-02-19 株式会社ダイセル 水熱合成法により調製した金属添加SiO2−MgO触媒によるエタノールからのブタジエン合成法
US10358395B2 (en) 2014-09-16 2019-07-23 Sekisui Chemical Co., Ltd. Method for producing butadiene and device for producing butadiene
WO2016053201A1 (fr) * 2014-10-03 2016-04-07 Agency For Science, Technology And Research Procédé et système de production d'oléfine
CN107001173A (zh) * 2014-10-03 2017-08-01 新加坡科技研究局 用于生产烯烃的方法和系统
WO2016066869A1 (fr) 2014-10-30 2016-05-06 Abengoa Research, S.L. Catalyseur microporeux avec encapsulation sélective d'oxydes métalliques utile pour produire des précurseurs de butadiène
JP2016094402A (ja) * 2014-11-06 2016-05-26 昭和電工株式会社 共役ジエン化合物の製造方法及びアリル型不飽和アルコールの脱水触媒
KR101714127B1 (ko) 2014-12-11 2017-03-08 주식회사 엘지화학 부타디엔 제조용 금속 복합산화물 촉매 및 이의 제조방법
KR20160071216A (ko) * 2014-12-11 2016-06-21 주식회사 엘지화학 부타디엔 제조용 금속 복합산화물 촉매 및 이의 제조방법
WO2016111203A1 (fr) * 2015-01-05 2016-07-14 日揮株式会社 Procédé de production de 1,3-butadiène
WO2016114306A1 (fr) * 2015-01-13 2016-07-21 積水化学工業株式会社 Système de production de butadiène et procédé de production de butadiène
US10189754B2 (en) 2015-01-13 2019-01-29 Sekisui Chemical Co., Ltd. Butadiene production system and butadiene production method
US10065902B2 (en) 2015-01-13 2018-09-04 Sekisui Chemical Co., Ltd. Butadiene production system and butadiene production method
WO2016114299A1 (fr) * 2015-01-13 2016-07-21 積水化学工業株式会社 Système de production de butadiène et procédé de production de butadiène
JPWO2016114306A1 (ja) * 2015-01-13 2017-10-19 積水化学工業株式会社 ブタジエン製造システム及びブタジエンの製造方法
JPWO2016114299A1 (ja) * 2015-01-13 2017-10-19 積水化学工業株式会社 ブタジエン製造システム及びブタジエンの製造方法
JP2018513111A (ja) * 2015-02-23 2018-05-24 ヴェルサリス ソシエタ ペル アチオニ ジエンの製造方法
JPWO2016136471A1 (ja) * 2015-02-27 2017-12-07 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエン合成用触媒の製造方法、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
WO2016136471A1 (fr) * 2015-02-27 2016-09-01 積水化学工業株式会社 Catalyseur pour la synthèse du 1,3-butadiène, procédé de production d'un catalyseur pour la synthèse du 1,3-butadiène, appareil de production de 1,3-butadiène et procédé de production de 1,3-butadiène
CN107107033A (zh) * 2015-02-27 2017-08-29 积水化学工业株式会社 1,3‑丁二烯合成用催化剂、1,3‑丁二烯合成用催化剂的制造方法、1,3‑丁二烯的制造装置及1,3‑丁二烯的制造方法
JP2018515339A (ja) * 2015-05-08 2018-06-14 ザ・サイアム・セメント・パブリック・カンパニー・リミテッド エタノールからの1,3−ブタジエン製造のための触媒
WO2016182516A1 (fr) * 2015-05-08 2016-11-17 The Siam Cement Public Company Limited Catalyseur pour la production de 1,3-butadiène à partir d'éthanol
FR3038849A1 (fr) * 2015-07-13 2017-01-20 Ifp Energies Now Catalyseur oxyde mixte mesoporeux comprenant du silicium
WO2017009108A1 (fr) 2015-07-13 2017-01-19 IFP Energies Nouvelles CATALYSEUR Ta-Nb POUR LA PRODUCTION DE 1,3-BUTADIÈNE
FR3038852A1 (fr) * 2015-07-13 2017-01-20 Ifp Energies Now Production stabilisee de 1,3-butadiene en presence d'un oxyde de tantale dope par un element aldolisant
US11213802B2 (en) 2015-07-13 2022-01-04 IFP Energies Nouvelles Mesoporous mixed oxide catalyst comprising silicon
JP2018521842A (ja) * 2015-07-13 2018-08-09 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles エタノールのブタジエンへの転換のためのシリカに担持されたタンタル系触媒
WO2017009106A1 (fr) * 2015-07-13 2017-01-19 IFP Energies Nouvelles Production stabilisee de 1,3-butadiène en présence d'un oxyde de tantale dope par un element aldolisant
WO2017009105A1 (fr) 2015-07-13 2017-01-19 IFP Energies Nouvelles Catalyseur oxyde mixte mesoporeux comprenant du silicium
US10975000B2 (en) 2015-07-13 2021-04-13 IFP Energies Nouvelles Stabilized production of 1,3-butadiene in the presence of a tantalum oxide doped by an aldolizing element
JP2017144359A (ja) * 2016-02-15 2017-08-24 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
JP2017197459A (ja) * 2016-04-26 2017-11-02 昭和電工株式会社 共役ジエン化合物の製造方法及びアリル型不飽和アルコールの脱水触媒
JP2018008248A (ja) * 2016-07-15 2018-01-18 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
JP7109018B2 (ja) 2018-06-28 2022-07-29 横浜ゴム株式会社 固体触媒およびブタジエンの製造方法
JP2020001001A (ja) * 2018-06-28 2020-01-09 横浜ゴム株式会社 固体触媒およびブタジエンの製造方法
JP7174947B2 (ja) 2018-06-28 2022-11-18 横浜ゴム株式会社 固体触媒およびブタジエンの製造方法
JP2020000998A (ja) * 2018-06-28 2020-01-09 横浜ゴム株式会社 固体触媒およびブタジエンの製造方法
JP2022520249A (ja) * 2019-02-13 2022-03-29 エスシージー ケミカルズ カンパニー リミティド エタノールから1,3-ブタジエンを製造するための方法及び触媒
US11969714B2 (en) 2019-02-13 2024-04-30 Scg Chemicals Company Limited Method and catalyst for the production of 1,3-butadiene from ethanol
JP2020132550A (ja) * 2019-02-15 2020-08-31 株式会社ダイセル 1,3−ブタジエンの製造方法
JP7316801B2 (ja) 2019-02-15 2023-07-28 株式会社ダイセル 1,3-ブタジエンの製造方法
JP2020040065A (ja) * 2019-11-14 2020-03-19 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
CN112973767A (zh) * 2019-12-02 2021-06-18 中国石油化工股份有限公司 含有伊利石介孔复合材料的c4烯烃裂解催化剂及其制备方法和应用
CN112973767B (zh) * 2019-12-02 2023-07-21 中国石油化工股份有限公司 含有伊利石介孔复合材料的c4烯烃裂解催化剂及其制备方法和应用
WO2022003922A1 (fr) * 2020-07-02 2022-01-06 Toyo Tire株式会社 Catalyseur de synthèse de 1,3-butadiène et procédé de production de 1,3-butadiène
JP2020199502A (ja) * 2020-09-02 2020-12-17 積水化学工業株式会社 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
WO2022207896A1 (fr) * 2021-04-01 2022-10-06 Synthos S.A. Utilisation d'un système catalyseur dans la production de 1,3-butadiène à partir d'éthanol en deux étapes

Also Published As

Publication number Publication date
JPWO2013125389A1 (ja) 2015-07-30
JP6084963B2 (ja) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6084963B2 (ja) 1,3−ブタジエンの製造方法
KR101955183B1 (ko) 프로필렌 제조용의 이중 촉매 시스템
KR101851542B1 (ko) 수소화 분해 촉매, 그의 제조 방법 및 용도
US9254479B2 (en) Process and catalyst for cracking of ethers and alcohols
US20100145127A1 (en) Catalytic composition for producing olefins by catalytic cracking
RU2656602C1 (ru) Одностадийный способ получения бутадиена
EA007767B1 (ru) Производство олефинов
JP6017386B2 (ja) 水熱合成法により調製した金属添加SiO2−MgO触媒によるエタノールからのブタジエン合成法
GB2049645A (en) Activated alumina catalyst for the conversion of ethanol to ethylene
CN104888842B (zh) 一种催化裂解催化剂及其制备方法与应用
TW200918487A (en) Process for production of propylene
US8609568B2 (en) Catalyst for oxidative dehydrogenation of propane to propylene
WO2014129248A1 (fr) Procédé de production sélective de buta-1,3-diène à partir d'éthanol
US10556229B2 (en) Composite catalyst, method for producing composite catalyst, method for producing lower olefin and method for regenerating composite catalyst
JP2015168644A (ja) エタノールからのブタジエン合成に有効な金属添加MgO−SiO2触媒の調製条件の改良
KR20190023054A (ko) Zsm-5-계 촉매 제조; 에틸벤젠 탈알킬화 공정에서의 용도
JP2014024007A (ja) ゼオライト触媒、ゼオライト触媒の製造方法および低級オレフィンの製造方法
JP2016533263A (ja) ゼオライトコーティング層を有するビスマスモリブデート系触媒、この製造方法、及びこれを利用した1,3−ブタジエンの製造方法
WO2019200778A1 (fr) Catalyseur pour préparer une base pyridine à partir de gaz de synthèse, procédé de préparation et utilisation associés
CN110721732A (zh) 一种生产对叔丁基苯酚的方法
CN116265106A (zh) 一种多产低碳烯烃催化裂化催化剂的制备方法
JP3342504B2 (ja) 改良された金属担持結晶質アルミノシリケートの製造方法及びそれを用いた炭化水素類の改質方法
JPS63248448A (ja) 触媒の製造方法およびオリゴマー化方法
JPH0446619B2 (fr)
WO2016125578A1 (fr) Procédé de production de 1,3-butadiène

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751934

Country of ref document: EP

Kind code of ref document: A1