WO2013125026A1 - 潤滑性調整液 - Google Patents

潤滑性調整液 Download PDF

Info

Publication number
WO2013125026A1
WO2013125026A1 PCT/JP2012/054552 JP2012054552W WO2013125026A1 WO 2013125026 A1 WO2013125026 A1 WO 2013125026A1 JP 2012054552 W JP2012054552 W JP 2012054552W WO 2013125026 A1 WO2013125026 A1 WO 2013125026A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricity
surfactant
water
adjusting
silicone rubber
Prior art date
Application number
PCT/JP2012/054552
Other languages
English (en)
French (fr)
Inventor
池田誠一
Original Assignee
ファインバイオメディカル有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファインバイオメディカル有限会社 filed Critical ファインバイオメディカル有限会社
Priority to PCT/JP2012/054552 priority Critical patent/WO2013125026A1/ja
Priority to US14/380,638 priority patent/US20150299600A1/en
Priority to JP2014500830A priority patent/JP5992031B2/ja
Priority to EP12869212.6A priority patent/EP2821467B1/en
Publication of WO2013125026A1 publication Critical patent/WO2013125026A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/10Materials for lubricating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0045Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
    • A61M2025/0046Coatings for improving slidability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M2025/0062Catheters; Hollow probes characterised by structural features having features to improve the sliding of one part within another by using lubricants or surfaces with low friction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/081Inorganic acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/042Sulfate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses

Definitions

  • the present invention is a lubricity adjusting liquid for adjusting the lubricity of the surface of the silicone rubber, and is suitable for use as a circulating fluid for a catheter simulator using a blood vessel model made of silicone rubber.
  • Silicone rubber is used as an elastic material in various industrial fields, and it may be necessary to control the lubricity of the surface of the silicone rubber.
  • the present inventor has developed and launched a catheter simulator simulating a human body shape (see Patent Document 1).
  • a catheter simulator simulating a human body shape
  • a partition member is built in a mannequin body made of a transparent material, and a blood vessel model as a three-dimensional model is supported on one surface of the partition member, and an auxiliary device for operating the blood vessel model is disposed.
  • the blood vessel model is formed of silicone rubber, and the auxiliary device includes a tank, a pump, and a connecting pipe. Circulating fluid is stored in the tank, and this circulating fluid is circulated in the blood vessel model through a connecting pipe by a pump.
  • Patent Document 2 As a document disclosing a technique related to the present invention.
  • the catheter can be inserted into the blood vessel model while circulating the circulating fluid through the blood vessel model made of silicone rubber.
  • Circulating fluids are mainly composed of silicone oil (oil-based circulating fluid) and water-based (aqueous circulating fluid), but due to cost and similarities to blood. From the viewpoint, an aqueous circulating fluid is preferable.
  • a surfactant is mixed with water as a lubricity adjuster. As a result, the contact resistance between the catheter and the inner wall of the blood vessel model is reduced, and the catheter can be smoothly inserted into the blood vessel model.
  • silicone oil is used as the circulating fluid, the above problems will not occur, but silicone oil is expensive, and so-called oil-based silicone oil has very different physical properties from blood. Disappear.
  • an attempt was made to increase the mixing amount of the surfactant but the problem of increased resistance and adhesion at the meandering site could not be solved.
  • it is not preferable to increase the mixing amount of the surfactant because a circulating feeling is generated in the circulating fluid.
  • the present inventors have obtained a surfactant as a lubricity adjusting agent. It has been found that the combined use of a water-soluble ionic compound makes the catheter insertion feeling into the blood vessel model very close to the catheter insertion feeling during actual surgery. As a result, the insertion resistance does not increase even in the meandering blood vessel model, and adhesion between the blood vessel model and the catheter hardly occurs. That is, the first aspect of the present invention is defined as follows. A lubricity adjusting liquid for adjusting the lubricity of the silicone rubber surface, A lubricity adjusting liquid containing water, a surfactant, and a water-soluble ionic compound.
  • the main component of the lubricity adjusting liquid is water, and a surfactant and a water-soluble ionic compound are added and mixed as a lubricity adjusting agent.
  • a surfactant itself is an ionic compound
  • a water-soluble ionic compound shall mean the water-soluble ionic compound except the surfactant in this specification.
  • the role of the surfactant is mainly to reduce the dynamic friction coefficient between the silicone rubber and the member in contact with the silicone rubber. Thereby, for example, when silicone rubber is a blood vessel model and the member that contacts the silicone rubber is a catheter, the resistance when inserting the catheter is reduced, and the operator can smoothly insert the catheter into the blood vessel model. Become.
  • the role of the water-soluble ionic compound is to prevent adhesion between the silicone rubber and the member in contact with the silicone rubber (that is, reduce the static friction coefficient) in addition to the reduction of the dynamic friction coefficient. That is, the lubricity adjusting liquid of the present invention is characterized in that not only the dynamic friction coefficient between the silicone rubber and the member in contact with the silicone rubber but also the static friction coefficient is reduced by the coexistence of the surfactant and the water-soluble ionic compound. It is to be.
  • the surfactant is a cationic surfactant
  • the resistance at the time of insertion of the catheter is reduced by further adding a water-soluble metal salt.
  • the surfactant one or more of the group consisting of a cationic surfactant, an anionic surfactant, a nonionic surfactant and an amphoteric surfactant can be used.
  • a cationic surfactant when used in combination with a water-soluble ionic compound, the resistance increase and adhesion at the meandering site are particularly small and preferable.
  • the cationic surfactant since it is excellent in bactericidal action, it can also exert fungicidal and bactericidal effects on the silicone rubber surface.
  • the concentration of the surfactant may be appropriately adjusted depending on the type of the surfactant, but is preferably 0.005 mmol / L or more and 100 mmol / L or less.
  • concentration of the surfactant is less than 0.005 mmol / L, the contact resistance between the silicone rubber and the member in contact with the silicone rubber increases or adhesion is not preferable.
  • the blending amount exceeds 100 mmol / L, the physical properties of the lubricity adjusting liquid are impaired (a null-null feeling appears), which is not preferable. More preferably, it is 0.05 mmol / L or more and 10 mmol / L or less.
  • a water-soluble ionic compound a water-soluble metal salt, a water-soluble ammonium salt (for example, ammonium chloride, ammonium sulfate), etc. can be used.
  • a water-soluble metal salt one or more members selected from the group consisting of alkali metal salts, alkaline earth metal salts, aluminum salts and iron salts can be used. According to the test results of the inventors, when these water-soluble metal salts are used in combination with a surfactant, the lubricity on the surface of the silicone rubber can be improved compared to the case of using only the surfactant, and adhesion can be achieved. Can also prevent problems.
  • the silicone rubber to which the lubricity adjusting liquid of the present invention is applied is not particularly limited as long as it has a siloxane skeleton in the basic skeleton.
  • the water-soluble alkali metal salt include sodium chloride, potassium chloride, cesium chloride, sodium sulfate, potassium sulfate, cesium sulfate, sodium nitrate, potassium nitrate, cesium nitrate and the like.
  • Examples of the water-soluble alkaline earth metal salt include magnesium chloride, calcium chloride, barium chloride, magnesium nitrate, calcium nitrate, and barium nitrate.
  • examples of the aluminum salt include aluminum chloride, aluminum sulfate, and aluminum nitrate.
  • examples of the iron salt include ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, ferrous nitrate, and ferric nitrate.
  • the concentration of the water-soluble metal salt in the lubricity adjusting liquid is preferably 1 mmol / L or more and 100 mmol / L or less.
  • concentration of the water-soluble metal salt is less than 1 mmol / L, adhesion between the silicone rubber and the member in contact with the silicone rubber tends to occur.
  • concentration of the water-soluble metal salt exceeds 100 mmol / L, metal corrosion due to the lubricating preparation liquid tends to occur. More preferred is 2 mmol / L or more and 50 mmol / L or less.
  • the water-soluble ionic compound is an ammonium salt such as ammonium chloride or ammonium sulfate
  • the inventors added 0.03 mol / L or more (preferably 0.07 mol / L) at the silicone rubber surface. It has been confirmed that the lubricity can be improved.
  • the lubricity adjusting liquid of the present invention can be prepared by adding water to a preparation containing a surfactant and a water-soluble ionic compound and dissolving it. That is, the preparation agent of the present invention is a preparation agent for a lubricity adjusting liquid for adjusting the lubricity of the surface of the silicone rubber, and includes a surfactant and a water-soluble ionic compound. To do.
  • the preparation kit of the present invention is a kit for preparing a lubricity adjusting liquid for adjusting the lubricity of the surface of the silicone rubber, and includes a first agent containing a surfactant and a water-soluble ionic compound. It consists of the 2nd agent containing. According to this preparation kit, the lubricity adjusting liquid can be easily prepared by mixing the first agent and the second agent.
  • 6 is a graph showing the relationship between the rotation angle and the metal salt concentration in the lubricity evaluation test of the lubricity adjusting liquids of Examples 1 to 8. It is a graph which shows the relationship between the rotation angle in the lubricity evaluation test of the lubricity adjustment liquid of Example 9 and Example 16, and the density
  • Example 1 In Examples 1 to 8, a 16% by weight aqueous solution containing sodium alkyl ether sulfate ester and fatty acid alkanolamide in a 2: 1 weight ratio as a surfactant was used, and various water-soluble metal salts shown in Table 1 were added. A lubricity adjusting liquid was used. In addition, the concentration of the water-soluble metal salt was 0.0025, 0.005, 0.01, 0.03, 0.07, and 0.20 (mol / L) in each example.
  • Comparative Examples 1 to 8 In Comparative Examples 1 to 8, no water-soluble metal salt was added (that is, Comparative Examples 1 to 8 all have the same composition). Others are the same as those in the first to eighth embodiments, and a description thereof will be omitted.
  • ⁇ Evaluation> A lubricity evaluation test and an adhesion evaluation test for the silicone rubber of the lubricity adjusting solutions of Examples 1 to 8 and Comparative Examples 1 to 8 were performed.
  • the evaluation method is as follows. ⁇ Lubricity evaluation test Silicone tube with 3 mm inner diameter (trade name: Laboran Silicone Tube manufactured by ASONE Co., Ltd.) was prepared. As shown in FIG. 1, a silicone tube was attached to a cylindrical tube 11 made of transparent acrylic resin with a diameter of 7 cm. A pseudo blood vessel model 10 was prepared in which 12 was wound and fixed three times, and both ends protruded and extended.
  • the catheter 20 (having a thickness of 6.0 F (2.0 mm ⁇ ) manufactured by Chaperon) was manually inserted from one end side of the silicone tube 12 with a constant force. As a result, the catheter 20 enters while rotating inside the silicone tube. Further, insertion was continued until the catheter 20 could not resist the frictional resistance and stopped, and the rotation angle at the stopped position was measured, and this angle was used as an index of lubricity. The measurement was performed a plurality of times. ⁇ Adhesiveness evaluation test Further, when the catheter 20 is held at the position where it is stopped for about 10 seconds and then pulled in the direction in which the catheter 20 retracts, it can be easily pulled out. Evaluated as “with adhesion”. The measurement was performed 3 times. Even in the case of adhesion, the catheter 20 was able to be pulled out by quickly repeating the force in the intrusion direction and the force in the backward direction on the catheter 20.
  • Example 9 to 13 magnesium chloride was used as the water-soluble metal salt, and mixed with various surfactants to prepare lubricity adjusting solutions (see Table 2).
  • concentration of surfactant prepared the solution of the density
  • Example 16 and Comparative Examples 10 to 13 In Example 16 and Comparative Examples 10 to 13, no magnesium chloride was added, and the others were the same as in Examples 9 to 13 (see Table 3).
  • ⁇ Evaluation> 3 to 6 show the evaluation results of the lubricity adjusting solutions of Examples 9 to 13, Example 16 and Comparative Examples 10 to 13, and Table 4 shows the evaluation results of the adhesion properties.
  • a silicone tube used for lubricity evaluation a 3 mm inner diameter Laboran silicone tube (As One Co., Ltd.) was used.
  • Example 9 and Example 16 using trimethylstearylammonium chloride which is a cationic surfactant as shown in FIG. 3, in Example 9 to which magnesium chloride was added, Example 16 to which magnesium chloride was not added and In comparison, the lubricity at a low surfactant concentration of 0.2 mmol / L or less was excellent.
  • the adhesion no adhesion occurred in any of Example 9 and Example 16 when the surfactant was 0.05 mmol / L or more.
  • the resistance when inserting the catheter was clearly smaller in Example 9 than in Example 16, and it was found that the catheter could be inserted very smoothly by coexisting magnesium chloride with the cationic surfactant. .
  • Examples 10 and 11 and Comparative Examples 10 and 11 using an anionic surfactant as shown in FIG. 4, in Examples 10 and 11 in which magnesium chloride was added, Comparative Examples in which magnesium chloride was not added. Compared with 10 and 11, the lubricity was remarkably excellent. Regarding the adhesion, in Examples 10 and 11, adhesion did not occur when the surfactant was 0.05 mmol / L or more, whereas in Comparative Example 10, the surfactant was 0.05 mmolL or less, and in Comparative Example 11, 0.2. Adhesion occurred below mmol / L. From the above, it was found that the coexistence of an anionic surfactant and magnesium chloride improves both lubricity and non-adhesiveness.
  • Example 12 and Comparative Example 12 using a zwitterionic (betaine type) surfactant as shown in FIG. 5, in Example 12 in which magnesium chloride was added, Comparative Example 12 in which magnesium chloride was not added. Compared with, the lubricity was excellent.
  • the adhesion as shown in Table 4 above, neither Example 9 nor Comparative Example 9 caused adhesion when the surfactant was 0.05 mmol / L or more. From the above, it was found that the coexistence of amphoteric (betaine) surfactant and magnesium chloride improves both lubricity and non-adhesiveness.
  • Example 13 and Comparative Example 13 using a nonionic surfactant both Example 13 and Comparative Example 13 were excellent in lubricity, as shown in FIG.
  • adhesion as shown in Table 4 above, in Comparative Example 13, adhesion occurred when the surfactant was 0.05 mmolL or less, whereas in Example 13, adhesion did not occur at 0.05 mmol / L or more.
  • the resistance when inserting the catheter was clearly smaller in Example 13 than in Comparative Example 13, and it was found that the catheter could be inserted very smoothly by coexisting magnesium chloride with the nonionic surfactant. .
  • Example 14 In Example 14, 500 ml of distilled water, 1 ml of a commercially available kitchen detergent (anionic surfactant + nonionic surfactant mixture, concentration 16% by weight), and a commercially available bitter solution (Aramami no Nigari Akanami Aramami Salt) A mixed solution of 4318 mg of magnesium, 3810 mg of potassium, 3048 mg of sodium and 2032 mg of calcium was prepared in 100 ml of this bitter solution manufactured by Co., Ltd., and this was used as a lubricity adjusting solution. The concentration of bitter juice was 0, 0.25, 5, 10, 15 (ml / distilled water 1 L), and evaluation was performed by the above-described evaluation methods for lubricity and adhesion. As the silicone tube used for the lubricity evaluation, a Labran silicone tube (As One Co., Ltd.) having an inner diameter of 3 mm was used.
  • Example 14-1 In Example 14-1, the same liquid as in Example 14 was used as the lubricity adjusting liquid without adding bitter juice.
  • Example 14-2 In Example 14-2, the same liquid as in Example 14 was used as the lubricity adjusting liquid without adding the surfactant.
  • Tables 5 to 7 show the evaluation of the lubricity and adhesion of Example 14, Comparative Example 14-1 and Comparative Example 14-2. Further, graphs of lubricity are shown in FIGS. In addition, as a silicone tube used for lubricity evaluation, a 3 mm inner diameter Laboran silicone tube (As One Co., Ltd.) was used.
  • Example 14 As shown in FIG.7 and Table 5, by adding bitter juice to the mixed solution of distilled water and a commercial kitchen detergent as a lubricity adjustment liquid, compared with before adding.
  • the rotation angle has increased dramatically. Furthermore, the rotation angle increased as the amount of bitter juice added was increased, and the rotation angle became a constant value when the bitter juice concentration reached a certain level. The maximum value of the rotation angle was 768 °.
  • Comparative Example 14-1 in which no bitter juice was added, as shown in FIG. 8 and Table 6, the rotation angle increased as the concentration of the commercial kitchen detergent increased, and when the concentration reached a certain concentration, the rotation The angle became a constant value.
  • the maximum rotation angle was 511 °, which was considerably lower than the maximum rotation angle of 768 ° in Example 14 in which bitter juice was added to the mixed solution. Furthermore, in Comparative Example 14-2 to which no surfactant was added, as shown in FIG. 9 and Table 7, the lubricity was extremely poor and the catheter could hardly be inserted.
  • Example 14 As shown in Table 5, it did not adhere at all.
  • Comparative Example 14-1 adhesion occurred when the surfactant concentration was not higher than a certain level as shown in Table 6.
  • Comparative Example 14-2 as shown in Table 7, adhesion sometimes occurred even when the concentration of bitter juice was increased.
  • Example 15 a lubricity adjusting liquid comprising a mixed solution of 1 L of distilled water, 0.29 g (0.001 mol / L) of sodium lauryl sulfate and magnesium chloride (hexahydrate) was prepared. The concentration of magnesium chloride in the lubricity adjusting solution was 0, 0.0025, 0.005, 0.01, 0.03, 0.07, 0.20 (mol / 1 L of distilled water). Using the lubricity adjusting liquid of Example 15, the lubricity and adhesion of the following two types of silicone rubber were evaluated.
  • Silicone rubber (1) Laboran silicone tube with an inner diameter of 3 mm (As One Corporation) Silicone rubber (2): ELASTOSIL on the inner wall of Laboran silicone tube (As One Co., Ltd.) with an inner diameter of 6 mm A silicone tube coated with M8520 (Asahi Kasei Wacker Silicone Co., Ltd.) with a thickness of 1.5 mm.
  • Table 8 shows the evaluation of lubricity and adhesion of silicone rubbers (1) and (2). Moreover, evaluation about lubricity is shown in FIG.
  • the silicone rubber to which the lubricity adjusting liquid of the present invention is applied is a rubber having a siloxane skeleton in the basic skeleton.
  • silicone rubber include the following.
  • Sodium chloride (99% or more, manufactured by the Salt Business Center)
  • Potassium chloride (99% or more, manufactured by Naito Shoten Co., Ltd.)
  • Magnesium chloride hexahydrate (99% or more, manufactured by Naito Shoten Co., Ltd.)
  • Calcium chloride (manufactured by Naito Shoten Co., Ltd.)
  • Aluminum sulfate 14-18 hydrate (Wako Pure Chemical Industries, Ltd.)
  • Ferric chloride hexahydrate (Wako Pure Chemical Industries, Ltd.)
  • Trimethyl stearyl ammonium chloride (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Sodium lauryl sulfate (Tokyo Chemical Industry Co., Ltd.)
  • Sodium 1-dodecanesulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • a blood vessel model made of silicone rubber is assembled to a case of a human body model provided by the applicant, and a tank, piping and a pump are attached as auxiliary devices.
  • 100 ml of this bitter solution contains 4318 mg of magnesium, 3810 mg of potassium, 3048 mg of sodium, and 2032 mg of calcium.
  • 40 ml of the surfactant used in Example 1 is added to a reference solution obtained by mixing a predetermined amount of bitter juice into water. It is preferable that the amount of the surfactant added can be adjusted by the user as desired.
  • pigments, bactericides, preservatives, and other auxiliaries can be added to the circulating fluid.
  • a plurality of doctors evaluated that the insertion feeling of the catheter into the blood vessel model was close to that at the time of surgery. More specifically, a catheter could be inserted without resistance into a meandering blood vessel model, and no adhesion occurred between the two even when the catheter was inserted into the blood vessel model.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Instructional Devices (AREA)
  • Lubricants (AREA)

Abstract

 水を主体とした循環液を用いたときの血管モデルに対するカテーテルの挿入感を実際の手術時の挿入感と等しくする。 水を主体とした潤滑性調整液に、その潤滑性調整剤として界面活性剤と水溶性の金属塩とを混合する。界面活性剤にはカチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤及び両性イオン界面活性剤を用いることができる。また、金属塩はアルカリ金属塩、アルカリ土類金属塩、アルミニウム塩、鉄塩等を用いることができる。実施例では水へ水溶性の金属塩を混合してなる潤滑性調整液を調製し、疑似血管モデルに対するカテーテルの潤滑性や非癒着性を向上させる。 

Description

潤滑性調整液
 本発明は、シリコーンゴムの表面の潤滑性を調整するための潤滑性調整液であり、シリコーンゴム製の血管モデルを用いたカテーテルシミュレータ用の循環液等に用いて好適である。
 シリコーンゴムは弾性材料としてさまざまな産業分野において利用されており、シリコーンゴム表面の潤滑性の制御が必要となる場合がある。
 本発明者は、人体形状を模したカテーテルシミュレータを開発し、上市している(特許文献1参照)。このカテーテルシミュレータでは、透明材料からなるマネキン本体に仕切り部材が内蔵され、立体モデルとしての血管モデルが該仕切り部材の一方の面で支持されるとともに、血管モデルを動作させるための補助器具が配置される。血管モデルはシリコーンゴムで形成され、補助器具はタンク、ポンプ及び連結管を備える。タンクには循環液が収容され、この循環液はポンプにより連結管を介して血管モデル中を循環する。カテーテルをこの血管モデルに挿入した場合において、シリコーンゴム表面の潤滑性が問題となる。
 また、本発明に関連する技術を開示する文献として特許文献2を参照されたい。
特開2006-267565号公報 特開平9-53064号公報
 特許文献1に開示のカテーテルシミュレータによれば、シリコーンゴム製の血管モデル中へ循環液を流通させつつ、カテーテルを血管モデル中へ挿入可能としている。
 循環液としては、シリコーンオイルを主体としたもの(油系循環液)と、水を主体としたもの(水系循環液)とが用いられているが、コストの関係上また血液との類似性の点から、水系循環液が好ましい。単に水を血管モデルに循環させた場合、血管モデルの内壁に対するカテーテルの接触抵抗が大きくなり、カテーテルを円滑に挿入することができない。
 そこで、潤滑性調整剤として界面活性剤を水に混合している。これにより、カテーテルと血管モデル内壁との接触抵抗が低減されて、血管モデルへカテーテルを円滑に挿入できるようになる。
 しかし、水に界面活性剤を混合してなる循環液を血管モデルへ循環させても、実際の血液が循環する血管を再現したものではない。従って、かかる循環液を用いたシミュレータにおいてはカテーテルの挿入感に、実際の手術時に比べて、違和感があることを否めなかった。例えば、血管モデルが蛇行する部位の接触抵抗が実際の手術時に比べて極めて大きくなっていた。また、挿入したカテーテルを数秒間静置しておくと、カテーテルと血管モデルとの静摩擦係数が異常に大きくなり、挿入したカテーテルの引き抜きが困難となる現象(以下、この現象を「癒着」という)がみられた。
 循環液としてシリコーンオイルを用いれば、上記の課題は生じないが、シリコーンオイルは高価であり、いわゆる油系のシリコーンオイルでは血液との物性があまりにも異なるので、カテーテル挿入時の取り扱い感にリアリティがなくなる。
 血管モデルの内壁に対する接触抵抗を低減させるべく、界面活性剤の混入量を多くすることも試みたが、上記蛇行部位の抵抗増大及び癒着の課題は解決できなかった。また、界面活性剤の混入量を多くすると、循環液にヌルヌル感が生じるので好ましくない。
 本発明者らは、いわゆる水系の循環液を用いたときのカテーテルの挿入感を実際の手術時の挿入感と等しくすべく、鋭意検討を重ねてきた結果、潤滑性調整剤として界面活性剤と、水溶性のイオン化合物とを併用することにより、血管モデルに対するカテーテルの挿入感が、実際の手術時のカテーテル挿入感に非常に近くなることに気がついた。これにより、蛇行した血管モデルの部位においても挿入抵抗が大きくならず、血管モデルとカテーテルとの癒着も殆ど生じない。
 即ち、この発明の第1の局面は次のように規定される。
シリコーンゴム表面の潤滑性を調整するための潤滑性調整液であって、
 水、界面活性剤、及び水溶性のイオン化合物を含む潤滑性調整液。
 潤滑性調整液の主体は水からなり、これに潤滑性調整剤として界面活性剤と水溶性のイオン化合物とを添加、混合する。なお、界面活性剤自身がイオン化合物である場合には、本明細書において水溶性のイオン化合物とは、その界面活性剤を除く水溶性のイオン化合物をいうものとする。
 界面活性剤の役割は、主としてシリコーンゴムとシリコーンゴムに接触する部材との動摩擦係数を低減することにある。これにより、例えばシリコーンゴムが血管モデルであり、シリコーンゴムに接触する部材がカテーテルの場合、カテーテルを挿入するときの抵抗が低減され、操作者はカテーテルをスムースに血管モデルに挿入することが可能となる。
 一方、水溶性のイオン化合物の役割は、上記動摩擦係数の低減の他、シリコーンゴムとシリコーンゴムに接触する部材との癒着を防止する(すなわち、静摩擦係数の低減)ことにある。
 すなわち、本発明の潤滑性調整液の特徴は、界面活性剤と水溶性のイオン化合物とを共存させることにより、シリコーンゴムとシリコーンゴムに接触する部材との動摩擦係数のみならず、静摩擦係数も低減することである。
 ただし、界面活性剤がカチオン界面活性剤である場合には、たとえ水溶性のイオン化合物が含まれていなくても、シリコーンゴムとシリコーンゴムに接触する部材との癒着を防止することは可能である。しかし、この場合であっても、さらに水溶性の金属塩を添加することにより、カテーテルの挿入時の抵抗感は低減される。
 界面活性剤としては、カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤及び両性イオン界面活性剤からなる群の1種又は2種以上を用いることができる。
 これらの中でも、カチオン系界面活性剤を水溶性のイオン化合物と併用した場合は蛇行部位の抵抗増大及び癒着が特に少なく好ましい。また、カチオン系界面活性剤は殺菌作用に優れているため、シリコーンゴム表面の防カビ、殺菌効果を発揮することもできる。
 一方、界面活性剤にはノニオン界面活性剤を用いることも好ましい。こうであれば、界面活性剤の添加による潤滑性調整液のイオンの濃度の上昇を防止でき、pHも中性に近くなり、金属が腐食し難くなる。
 界面活性剤の濃度は界面活性剤の種類等によって適宜調整すればよいが、0.005mmol/L以上100mmol/L以下が好ましい。界面活性剤の濃度が0.005mmol/L未満となると、シリコーンゴムとシリコーンゴムに接触する部材との間の接触抵抗が大きくなったり、癒着が生じたりするため好ましくない。また、その配合量が100mmol/Lを超えると、潤滑性調整液の物性が損ねられる(ヌルヌル感がでる)ので好ましくない。さらに好ましいのは0.05mmol/L以上10mmol/L以下である。
 また、水溶性のイオン化合物としては、水溶性の金属塩や水溶性のアンモニウム塩(例えば塩化アンモニウムや硫酸アンモニウム)等を用いることができる。水溶性の金属塩としては、アルカリ金属塩、アルカリ土類金属塩、アルミニウム塩及び鉄塩からなる群の1種又は2種以上を用いることができる。発明者らの試験結果によれば、これらの水溶性の金属塩を界面活性剤と併用した場合、界面活性剤のみの場合と比べて、シリコーンゴム表面での潤滑性を高めることができ、癒着の問題も防ぐことができる。その理由については明らかにはなっていないが、金属イオンがシリコーンゴムのシロキサン骨格の酸素に配位し、界面活性剤の吸着を阻止したり、シリコーンゴムに接触する部材に存在する極性基と水素結合を形成することを阻止したりすることによるものではないかと推測される。したがって、本発明の潤滑性調整液の適用対象となるシリコーンゴムは基本骨格にシロキサン骨格を有するゴムであれば特に限定はない。
 水溶性のアルカリ金属塩としては、塩化ナトリウム、塩化カリウム、塩化セシウム、硫酸ナトリウム、硫酸カリウム、硫酸セシウム、硝酸ナトリウム、硝酸カリウム、硝酸セシウム等が挙げられる。また、水溶性のアルカリ土類金属塩としては、塩化マグネシウム、塩化カルシウム、塩化バリウム、硝酸マグネシウム、硝酸カルシウム、硝酸バリウム等が挙げられる。さらに、アルミニウム塩としては、塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム等が挙げられる。また、鉄塩としては、塩化第1鉄、塩化第2鉄、硫酸第1鉄、硫酸第2鉄、硝酸第1鉄、硝酸第2鉄等が挙げられる。以上の他、水溶性のアルカリ金属塩、アルカリ土類金属塩、金属の有機酸塩(例えば酢酸ナトリウム等)や、錯体を用いることも可能である。
 また、潤滑性調整液中の水溶性金属塩の濃度は1mmol/L以上100mmol/L以下が好ましい。水溶性金属塩の濃度が1mmol/L未満となると、シリコーンゴムとシリコーンゴムに接触する部材との間の癒着が生じやすくなる。一方、水溶性金属塩の濃度が100mmol/Lを超えると、潤滑性調製液による金属の腐食が発生しやすくなる。さらに好ましいのは2mmol/L以上50mmol/L以下である。
 一方、水溶性のイオン化合物が塩化アンモニウムや硫酸アンモニウム等のアンモニウム塩の場合においては、発明者らは0.03mol/L以上(好ましくは0.07mol/L)の添加量で、シリコーンゴム表面での潤滑性を高めることができることを確認している。
 本発明の潤滑性調整液は、界面活性剤と水溶性のイオン化合物とを含む調製剤に水を加えて溶解させることによって調製することができる。
 すなわち、本発明の調製剤は、シリコーンゴムの表面の潤滑性を調整するための潤滑性調整液用の調製剤であって、界面活性剤と水溶性のイオン化合物とを含むこと、を特徴とする。
 また、本発明の調製キットは、シリコーンゴムの表面の潤滑性を調整するための潤滑性調整液を調製するためのキットであって、界面活性剤を含む第1剤と、水溶性のイオン化合物を含む第2剤とからなる。この調製キットによれば、第1剤と第2剤とを混合することにより、容易に潤滑性調整液を調製することができる。
潤滑性評価試験に用いた疑似血管モデルの正面図である。 実施例1~8の潤滑性調整液の潤滑性評価試験における回転角度と金属塩の濃度との関係を示すグラフである。 実施例9及び実施例16の潤滑性調整液の潤滑性評価試験における回転角度と金属塩の濃度との関係を示すグラフである。 実施例10、11及び比較例10,11の潤滑性調整液の潤滑性評価試験における回転角度と金属塩の濃度との関係を示すグラフである。 実施例12及び比較例12の潤滑性調整液の潤滑性評価試験における回転角度と金属塩の濃度との関係を示すグラフである。 実施例13及び比較例13の潤滑性調整液の潤滑性評価試験における回転角度と金属塩の濃度との関係を示すグラフである。 実施例14の潤滑性調整液の潤滑性評価試験における回転角度と添加した苦汁の濃度との関係を示すグラフである。 比較例14-1の潤滑性調整液の潤滑性評価試験における回転角度と添加した界面活性剤の濃度との関係を示すグラフである。 比較例14-2の潤滑性調整液の潤滑性評価試験における回転角度と添加した苦汁の濃度との関係を示すグラフである。 シリコーンゴム(1)及び(2)を用いた潤滑性評価試験における回転角度とMgClの添加量との関係を示すグラフである。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。また、特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
(実施例1~8)
 実施例1~8では、界面活性剤としてアルキルエーテル硫酸エステルナトリウムと脂肪酸アルカノールアミドとを2:1重量比で含む16重量%水溶液を用い、表1に示す各種の水溶性金属塩を添加して潤滑性調整液とした。なお、水溶性金属塩の濃度は、各実施例において0.0025, 0.005, 0.01, 0.03, 0.07,及び0.20(mol/L)の6種類とした。
(比較例1~8)
 比較例1~8では、水溶性の金属塩を添加しなかった(すなわち、比較例1~8は全て同じ組成である)。その他については、実施例1~8と同様であり説明を省略する。
Figure JPOXMLDOC01-appb-T000001
<評 価>
 上記実施例1~8及び比較例1~8の潤滑性調整液のシリコーンゴムに対する潤滑性評価試験及び癒着性評価試験を行った。評価方法は以下のとおりである。
・潤滑性評価試験
 内径3 mmのシリコーンチューブ(商品名:ラボランシリコーンチューブ アズワン株式会社製)を用意し、図1に示すように、直径7 cmの透明アクリル樹脂製の円柱管11にシリコーンチューブ12を3回転巻きつけ固定し、両端を突出して延在させた疑似血管モデル10を用意した。そして、カテーテル20(シャペロン社製の太さ6.0F(2.0mmφ))をシリコーンチューブ12の一端側から手動により一定の力で挿入した。これにより、カテーテル20はシリコーンチューブ内を回転しながら侵入する。さらに、カテーテル20が摩擦抵抗に抗しきれなくなって停止するまで挿入を続け、停止した個所における回転角度を測定し、この角度を潤滑性の指標とした。なお測定は複数回行った。
・癒着性評価試験
 さらに、カテーテル20が停止した位置でそのまま約10秒間保持し、その後カテーテル20が後退する方向に引っ張り、容易に引き抜きができる場合を「癒着なし」、容易に引き抜きができない場合を「癒着あり」と評価した。測定は3回行った。なお、癒着した場合であっても、カテーテル20に侵入方向への力と後退方向への力とを素早く繰り返すことにより、カテーテル20を引き抜くことができた。
 上記実施例1~8及び比較例1~8についての回転角度及び癒着の有無についての結果を表2に示す(表中の金属塩濃度が0の場合が比較例1~8に相当する)。また、回転角度と金属塩の濃度との関係を示すグラフを図2に示す。
Figure JPOXMLDOC01-appb-T000002
 図2に示すように、実施例1~8では界面活性剤の濃度は一定であっても、水溶性の金属塩を添加することによって、回転角度が飛躍的に上昇した。また、水溶性の金属塩(NaCl,KCl,MgCl2,CaCl2,Al2(SO3),FeCl3,MgCl2+ NaCl,CH3COONa)の添加量を増やすにつれて回転角度が上昇し、水溶性の金属塩の濃度が0.005mol/L以上においてはほぼ一定の値になった。以上の結果から、界面活性剤と水溶性の金属塩との併用により、シリコーンゴム表面の潤滑性が飛躍的に向上することが分かった。
 また、表2に示すように、界面活性剤に水溶性の金属塩を添加してない場合(すなわち、比較例1~8の場合)には、癒着が生ずる場合があった(24回測定中4回癒着した)のに対し、水溶性の金属塩を0.0025 mol/L以上添加した場合には、癒着を生ずる場合はなかった。
(実施例9~13)
 実施例9~13では、水溶性の金属塩は全て塩化マグネシウムを用い、さまざまな界面活性剤と混合して潤滑性調整液を調製した(表2参照)。なお、界面活性剤の濃度は、各実施例について0, 0.00005, 0.000075, 0.0001, 0.0002, 0.0004, 0.0005, 0.00075, 0.001, 0.002,及び0.004(mol/ L)の濃度の溶液を調製した。
(実施例16及び比較例10~13)
 実施例16及び比較例10~13では、塩化マグネシウムは添加せず、その他については実施例9~13と同様とした(表3参照)。
Figure JPOXMLDOC01-appb-T000003
<評 価>
 実施例9~13、実施例16及び比較例10~13の潤滑性調整液について、潤滑性の評価結果を図3~6に、癒着性についての評価結果を表4に、それぞれ示す。なお、潤滑性評価に用いたシリコーンチューブは、内径3 mmのラボランシリコーンチューブ(アズワン株式会社)を用いた。
Figure JPOXMLDOC01-appb-T000004
 カチオン界面活性剤であるトリメチルステアリルアンモニウムクロリドを用いた実施例9及び実施例16では、図3に示すように、塩化マグネシウムを添加した実施例9では、塩化マグネシウムを添加していない実施例16と比べて、0.2mmol/L以下という低い界面活性剤の濃度における潤滑性に優れていた。また、癒着性については、界面活性剤が0.05mmol/L以上において実施例9及び実施例16のいずれも癒着を生じなかった。しかしながら、カテーテルを挿入するときの抵抗感は実施例16よりも実施例9の方が明らかに小さく、カチオン界面活性剤に塩化マグネシウムとを共存させることにより、カテーテルを極めてスムースに挿入できることが分かった。
 また、アニオン界面活性剤を用いた実施例10、11及び比較例10、11では、図4に示すように、塩化マグネシウムを添加した実施例10、11では、塩化マグネシウムを添加していない比較例10、11と比べて、潤滑性が顕著に優れていた。また、癒着性については、実施例10、11では界面活性剤が0.05mmol/L以上において癒着を生じなかったのに対し、比較例10では界面活性剤が0.05mmolL以下で、比較例11では0.2mmol/L以下で癒着を生じた。以上のことから、アニオン界面活性剤と塩化マグネシウムとを共存させることにより、潤滑性及び非癒着性の双方を向上させることが分かった。
 さらに、両性イオン(ベタイン型)界面活性剤を用いた実施例12及び比較例12では、図5に示すように、塩化マグネシウムを添加した実施例12では、塩化マグネシウムを添加していない比較例12と比べて、潤滑性が優れていた。また、癒着性については上記表4に示すように、界面活性剤が0.05mmol/L以上において実施例9及び比較例9のいずれも癒着を生じなかった。以上のことから、両性型(ベタイン型)界面活性剤と塩化マグネシウムとを共存させることにより、潤滑性及び非癒着性の双方を向上させることが分かった
 また、ノニオン界面活性剤を用いた実施例13及び比較例13では、図6に示すように、実施例13、比較例13共に潤滑性に優れていた。
 また、癒着性については、上記表4に示すように、比較例13では界面活性剤が0.05mmolL以下で癒着を生じたのに対し、実施例13では0.05mmol/L以上で癒着を生じなかった。さらに、カテーテルを挿入するときの抵抗感は比較例13よりも実施例13の方が明らかに小さく、ノニオン界面活性剤に塩化マグネシウムとを共存させることにより、カテーテルを極めてスムースに挿入できることが分かった。
(実施例14)
 実施例14では、蒸留水500 ml、市販の台所用洗剤(アニオン界面活性剤+ノニオン界面活性剤混合品 濃度16重量%)1 ml、及び市販の苦汁溶液(あらなみの本にがり 赤穂あらなみ塩株式会社製、この苦汁溶液100mlには、マグネシウム4318mg、カリウム3810mg、ナトリウム3048mg、カルシウム2032mgが含まれている。)の混合溶液を調整し、これを潤滑性調整液とした。苦汁の濃度は、0, 0.25, 5, 10, 15(ml/蒸留水1 L) とし、それぞれ前述した潤滑性及び癒着性の評価方法により評価を行った。潤滑性評価に用いたシリコーンチューブは、内径3 mmのラボランシリコーンチューブ(アズワン株式会社)を用いた。
(比較例14-1)
 実施例14-1では、苦汁を添加することなく、その他については実施例14と同様の液を潤滑性調整液とした。
(比較例14-2)
 実施例14-2では、界面活性剤を添加することなく、その他については実施例14と同様の液を潤滑性調整液とした。
<評 価>
 実施例14、比較例14-1及び比較例14-2についての潤滑性及び癒着性の評価の表5~表7に示す。また、潤滑性についてのグラフを図7~図9に示す。なお、潤滑性評価に用いたシリコーンチューブは、内径3 mmのラボランシリコーンチューブ(アズワン株式会社)を用いた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
・潤滑性についての評価結果
 図7及び表5に示すように実施例14において、潤滑性調整液として蒸留水及び市販の台所用洗剤の混合溶液に苦汁を添加することによって、添加する前に比べて回転角度が飛躍的に上昇した。さらに、苦汁の添加量を増やすにつれて回転角度が上昇し、苦汁の濃度がある程度になると回転角度が一定の値になった。回転角度の最高値は768°であった。
 また、苦汁を添加しなかった比較例14-1では、図8及び表6に示すように、市販の台所用洗剤の濃度が高くなるにつれて回転角度が上昇し、ある一定の濃度に達すると回転角度は一定の値になった。しかしながら、回転角度の最高値は511°であり、混合溶液に苦汁を添加した実施例14の回転角度の最高値768°よりかなり低かった。
 さらに、界面活性剤を添加しなかった比較例14-2では、図9及び表7に示すように、潤滑性は極めて悪く、カテーテルをほとんど挿入できなかった。
・癒着性についての評価結果
 実施例14では、表5に示すように、まったく癒着しなかった。一方、比較例14-1では、表6に示すように界面活性剤の濃度がある程度以上ないと、癒着が生じた。さらに、比較例14-2では、表7に示すように、苦汁の濃度を高くしても癒着が生じる場合があった。
 以上の結果から、界面活性剤と苦汁とを併用した潤滑性調製液は、シリコーンゴム表面の潤滑性を向上させ、癒着現象を防止できることが分かった。
[各種シリコーンゴムについての評価]
 実施例15として、蒸留水1L、ラウリル硫酸ナトリウム0.29g(0.001 mol / L)及び塩化マグネシウム(6水和物)の混合溶液からなる潤滑性調整液を調製した。潤滑性調整液中の塩化マグネシウムの濃度は、0, 0.0025, 0.005, 0.01, 0.03, 0.07, 0.20(mol/蒸留水1 L)とした。
 実施例15の潤滑性調整液を用いて、次の2種類のシリコーンゴムの潤滑性及び癒着性について評価を行った。
 シリコーンゴム(1):
  内径3 mmのラボランシリコーンチューブ(アズワン株式会社)
 シリコーンゴム(2):
  内径6 mmのラボランシリコーンチューブ(アズワン株式会社)の内壁に、ELASTOSIL 
  M8520(旭化成ワッカーシリコーン株式会社製)を厚さ1.5 mmでコーティングした
  シリコーンチューブ。
(評 価)
 シリコーンゴム(1)及び(2)についての潤滑性及び癒着性の評価の表8に示す。また、潤滑性についての評価を図10に示す。
Figure JPOXMLDOC01-appb-T000008
・潤滑性についての評価結果
 表8及び図10に示すように、シリコーンゴム(1)及びシリコーンゴム(2)ともに、塩化マグネシウムの添加量の増加に従って、回転角度が飛躍的に大きくなる(すなわち、潤滑性が飛躍的に大きくなることが分かった。以上のことから、潤滑性について、シリコーンゴムの種類によらず、有効であることが強く支持された。
・癒着性についての評価結果
 表8に示すように、シリコーンゴム(1)及びシリコーンゴム(2)ともに、塩化マグネシウムの添加量の増加に従って、癒着の現象が起こらなくなることが分かった。以上のことから、癒着現象に対しても、シリコーンゴムの種類によらず、有効であることが強く支持された。
 上述のシリコーンゴム(1)及びシリコーンゴム(2)における評価結果に示されているように、本発明の潤滑性調整液の適用対象となるシリコーンゴムは基本骨格にシロキサン骨格を有するゴムであれば特に限定はない。このようなシリコーンゴムとして、具体的には以下のものが挙げられる。
ELASTOSIL N 2010、ELASTOSIL N 2034、ELASTOSIL N 2189、ELASTOSIL N 2197、ELASTOSIL N 9132S、ELASTOSIL RT K、WACKER SilGel 612、ELASTOSIL RT 601、ELASTOSIL RT 602、ELASTOSIL RT 604、ELASTOSIL RT 607、ELASTOSIL RT 741、ELASTOSIL RT 745、ELASTOSIL RT 745 “S”、ELASTOSIL RT 707 W、ELASTOSIL RT 713、SEMICOSIL 987 GR、SEMICOSIL 988/1K、SEMICOSIL 989/1K、ELASTOSIL M8520
 以上は全て旭化成ワッカーシリコーン株式会社製
ラボランシリコーンチューブ(アズワン株式会社製)
 実施例及び比較例で使用した試薬を以下に示す。
・塩化ナトリウム(99%以上、財団法人塩事業センター製)
・塩化カリウム(99%以上、株式会社内藤商店製)
・塩化マグネシウム・6水和物(99%以上、株式会社内藤商店製)
・塩化カルシウム(株式会社内藤商店製)
・硫酸アルミニウム14-18水和物(和光純薬工業株式会社製)
・塩化第2鉄・6水和物(和光純薬工業株式会社製)
・トリメチルステアリルアンモニウムクロリド(東京化成工業株式会社製)
・ラウリル硫酸ナトリウム(東京化成工業株式会社製)
・1-ドデカンスルホン酸ナトリウム(東京化成工業株式会社製)
・ミリスチルスルホベタイン(東京化成工業株式会社製)
・Tween20(東京化成工業株式会社製)
・苦汁(あらなみの本にがり 赤穂あらなみ塩株式会社製)
<シリコーンゴム製の血管モデルへの利用>
 シリコーンゴム製の血管モデルを出願人の提供する人体モデルの筐体へ組付け、さらに補助装置としてタンク、配管及びポンプを付設する。タンクに水道水10リットルを入れ、更に苦汁溶液300ml注入する。この苦汁溶液100mlには、マグネシウム4318mg、カリウム3810mg、ナトリウム3048mg、カルシウム2032mgが含まれている。水へ所定量の苦汁を混合してなる基準液に対して上記実施例1で用いた界面活性剤40mlを加える。界面活性剤の添加量は、使用者が好みに講じて調整できるようにすることが好ましい。
 循環液には必要に応じて顔料、殺菌剤、防腐剤、その他の助剤を加えることができる。かかる循環液を用いた場合、複数の医師より、血管モデルに対するカテーテルの挿入感が、手術時のそれに近いとの評価を受けた。
 より具体的には、蛇行した血管モデルの部分にも抵抗なくカテーテルを挿入でき、血管モデルにカテーテルを挿入放置しても両者の間に癒着が起こらなかった。
 本発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。
 10…疑似血管モデル、11…円柱管、12…シリコーンチューブ、20…カテーテル
 

Claims (13)

  1.  シリコーンゴム表面の潤滑性を調整するため潤滑性調整液であって、
     水、界面活性剤、及び水溶性のイオン化合物を含む潤滑性調整液。
  2.  前記イオン化合物は金属塩である請求項1に記載の潤滑性調整液。
  3.  前記シリコーンゴムはカテーテルシミュレート用血管モデルである請求項1又は2に記載の潤滑性調整液。
  4.  前記界面活性剤はカチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤及び両性イオン界面活性剤からなる群の1種又は2種以上である請求項1乃至3のいずれか1項に記載の潤滑性調整液。
  5.  前記イオン化合物はアルカリ金属塩、アルカリ土類金属塩、アルミニウム塩及び鉄塩からなる群の1種又は2種以上である請求項1乃至4のいずれか1項に記載の潤滑性調整液。
  6.  前記界面活性剤は少なくともカチオン系界面活性剤を含むことを特徴とする請求項1乃至5のいずれか1項に記載の潤滑性調整液。
  7.  シリコーンゴムの表面の潤滑性を調整するための潤滑性調整液用の調製剤であって、界面活性剤と水溶性のイオン化合物とを含むこと、を特徴とする調製剤。
  8.  シリコーンゴムの表面の潤滑性を調整するための潤滑性調整液を調製するためのキットであって、界面活性剤を含む第1剤と、水溶性のイオン化合物を含む第2剤とからなる調製キット。
  9.  シリコーンゴムの表面の潤滑性を調整する方法であって、前記潤滑性調整液に界面活性剤と水溶性のイオン化合物とを含ませる、ことを特徴とする潤滑性調整方法。
  10.  前記界面活性剤の種類及び濃度、並びに、前記水溶性のイオン化合物の種類及び濃度を規定することによりシリコーンゴムの潤滑性を調整することを特徴とする請求項9記載の潤滑性調整方法。
  11.  前記イオン化合物はアルカリ金属塩、アルカリ土類金属塩、アルミニウム塩及び鉄塩からなる群の1種又は2種以上である、ことを特徴とする請求項9又は10に記載の潤滑性調整方法。
  12.  水と、水溶性のイオン化合物とを含む基準液を準備するステップと、
     前記基準液に配合する界面活性剤の量を調整するステップと、を含むシリコーン樹脂製エラストマー材料の表面の潤滑性調整方法。
  13.  シリコーンゴム表面の潤滑性を調整するため潤滑性調整液であって、
     水及びカチオン界面活性剤を含む潤滑性調整液。
     
PCT/JP2012/054552 2012-02-24 2012-02-24 潤滑性調整液 WO2013125026A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/054552 WO2013125026A1 (ja) 2012-02-24 2012-02-24 潤滑性調整液
US14/380,638 US20150299600A1 (en) 2012-02-24 2012-02-24 Lubricant Regulating Agent
JP2014500830A JP5992031B2 (ja) 2012-02-24 2012-02-24 潤滑性調整液
EP12869212.6A EP2821467B1 (en) 2012-02-24 2012-02-24 Use of a lubricity regulating agent for silicone surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054552 WO2013125026A1 (ja) 2012-02-24 2012-02-24 潤滑性調整液

Publications (1)

Publication Number Publication Date
WO2013125026A1 true WO2013125026A1 (ja) 2013-08-29

Family

ID=49005245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054552 WO2013125026A1 (ja) 2012-02-24 2012-02-24 潤滑性調整液

Country Status (4)

Country Link
US (1) US20150299600A1 (ja)
EP (1) EP2821467B1 (ja)
JP (1) JP5992031B2 (ja)
WO (1) WO2013125026A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104593129A (zh) * 2013-10-30 2015-05-06 上海宝钢工业技术服务有限公司 全合成水基金属切削液及制备方法
JP2018035272A (ja) * 2016-08-31 2018-03-08 株式会社リコー ハイドロゲル構造体、並びにその製造方法及び用途
JP2020201485A (ja) * 2019-06-07 2020-12-17 イービーエム株式会社 穿刺手技訓練用人体モデル及び、それを用いたおよび穿刺手技訓練方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554984B2 (ja) * 2015-08-03 2019-08-07 住友ゴム工業株式会社 表面改質金属及び金属表面の改質方法
JP7002205B2 (ja) * 2017-03-23 2022-01-20 株式会社グッドマン シミュレータ用擬似体液及び医療用シミュレータ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261935A (ja) * 1993-03-12 1994-09-20 Fuji Syst Kk 医療用シリコーンゴム製カテーテル
JP3015310U (ja) * 1995-03-01 1995-08-29 ワン アベ シリコーンゴムカテーテル
JPH0953064A (ja) 1995-08-10 1997-02-25 San Purasuto Mikasa:Kk 表面処理剤
JPH09176677A (ja) * 1995-12-07 1997-07-08 Becton Dickinson & Co テフロン製品用水溶性潤滑剤
JPH11244375A (ja) * 1998-03-05 1999-09-14 Olympus Optical Co Ltd 内視鏡用親水性潤滑剤
JP2001517712A (ja) * 1997-09-23 2001-10-09 ボストン サイエンティフィック リミテッド 医用エマルジョン潤滑剤
WO2003096308A1 (en) * 2002-05-10 2003-11-20 Nagoya Industrial Science Research Institute Three-dimensional model
JP2006267565A (ja) 2005-03-24 2006-10-05 Univ Nagoya 人体モデル
JP2008158468A (ja) * 2006-12-21 2008-07-10 Seiichi Ikeda 血管モデルの連結構造、第1の血管モデル及びコネクタ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812046A (en) * 1970-11-18 1974-05-21 Colgate Palmolive Co Germicidal liquid cleaner
US5584943A (en) * 1987-06-01 1996-12-17 Henkel Corporation Cleaning and surface conditioning of formed metal surfaces
JPH02261609A (ja) * 1989-03-31 1990-10-24 Showa Electric Wire & Cable Co Ltd 離型剤
US5688747A (en) * 1994-08-22 1997-11-18 Becton Dickinson And Company Water based lubricant solution
JP3015310B2 (ja) * 1996-12-06 2000-03-06 キヤノン株式会社 定着方法
US5945056A (en) * 1997-05-28 1999-08-31 Simutech Limited Method of making a surgical simulator
US6281175B1 (en) * 1997-09-23 2001-08-28 Scimed Life Systems, Inc. Medical emulsion for lubrication and delivery of drugs
US6189740B1 (en) * 1998-12-30 2001-02-20 Steris Inc Antiseptic soap dispenser with selectively variable dose
KR100713726B1 (ko) * 2003-10-16 2007-05-02 나고야 인더스트리얼 사이언스 리서치 인스티튜트 입체 모델
DE602004017477D1 (de) * 2004-11-09 2008-12-11 Novagali Pharma Sa Öl-in-Wasser-Emulsion mit niedriger Konzentration des kationischen Mittels und positivem Zetapotential
WO2006120982A1 (ja) * 2005-05-06 2006-11-16 National University Corpration Nagoya University カテーテル手術シミュレータ
JP4883754B2 (ja) * 2005-10-31 2012-02-22 国立大学法人名古屋大学 カテーテル手術シミュレータ
JP4829673B2 (ja) * 2006-05-10 2011-12-07 川澄化学工業株式会社 頭部模型
JP5024700B2 (ja) * 2007-03-26 2012-09-12 学校法人関西医科大学 心血管系シミュレーションモデル
DE102009026775A1 (de) * 2009-06-05 2010-12-09 Henkel Ag & Co. Kgaa Tensidhaltiges kosmetisches Reinigungsmittel mit Gelee Royale
JP5236103B1 (ja) * 2012-07-13 2013-07-17 株式会社ジェイ・エム・シー 臓器モデルの製造方法、臓器モデル製造用の型、及び臓器モデル

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261935A (ja) * 1993-03-12 1994-09-20 Fuji Syst Kk 医療用シリコーンゴム製カテーテル
JP3015310U (ja) * 1995-03-01 1995-08-29 ワン アベ シリコーンゴムカテーテル
JPH0953064A (ja) 1995-08-10 1997-02-25 San Purasuto Mikasa:Kk 表面処理剤
JPH09176677A (ja) * 1995-12-07 1997-07-08 Becton Dickinson & Co テフロン製品用水溶性潤滑剤
JP2001517712A (ja) * 1997-09-23 2001-10-09 ボストン サイエンティフィック リミテッド 医用エマルジョン潤滑剤
JPH11244375A (ja) * 1998-03-05 1999-09-14 Olympus Optical Co Ltd 内視鏡用親水性潤滑剤
WO2003096308A1 (en) * 2002-05-10 2003-11-20 Nagoya Industrial Science Research Institute Three-dimensional model
JP2006267565A (ja) 2005-03-24 2006-10-05 Univ Nagoya 人体モデル
JP2008158468A (ja) * 2006-12-21 2008-07-10 Seiichi Ikeda 血管モデルの連結構造、第1の血管モデル及びコネクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821467A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104593129A (zh) * 2013-10-30 2015-05-06 上海宝钢工业技术服务有限公司 全合成水基金属切削液及制备方法
JP2018035272A (ja) * 2016-08-31 2018-03-08 株式会社リコー ハイドロゲル構造体、並びにその製造方法及び用途
JP2020201485A (ja) * 2019-06-07 2020-12-17 イービーエム株式会社 穿刺手技訓練用人体モデル及び、それを用いたおよび穿刺手技訓練方法
JP7429967B2 (ja) 2019-06-07 2024-02-09 イービーエム株式会社 穿刺手技訓練用人体モデル及び、それを用いたおよび穿刺手技訓練方法

Also Published As

Publication number Publication date
EP2821467B1 (en) 2018-02-14
JPWO2013125026A1 (ja) 2015-07-30
EP2821467A1 (en) 2015-01-07
US20150299600A1 (en) 2015-10-22
EP2821467A4 (en) 2015-11-11
JP5992031B2 (ja) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5992031B2 (ja) 潤滑性調整液
EP2969054B1 (en) Trimethylglycine as a freeze suppressant in fire fighting foams
CN106455557A (zh) 速效消毒组合物
JP2014091723A (ja) シャンプー
PH12016500571A1 (en) Three-pack type dialysis agent containing acetic acid and acetic acid salt
US20180094205A1 (en) Lubricant regulating agent
JP2006273801A (ja) 工業用抗菌組成物及び抗菌方法
JP6203508B2 (ja) 殺菌剤
JP2015127306A (ja) 抗菌剤組成物
CN104542655B (zh) 一种杀菌剂组合物及其在水处理中的应用
JP2014172882A5 (ja)
JP6359865B2 (ja) 非腐食性過酢酸製剤とその製造方法
JP2012005730A (ja) 消火液
JP6330399B2 (ja) 硝化細菌抑制剤及び硝化細菌抑制方法
CN104402126A (zh) 一种油田专用杀菌缓蚀剂
AR113175A1 (es) Composiciones para acondicionamiento de agua y control de deriva y métodos de uso
CN104705314B (zh) 一种杀菌剂组合物及其在水处理中的应用
JP2002020725A (ja) 水性媒体用摩擦抵抗低減剤及び輸送用水性媒体
JP2000024134A (ja) たん白泡消火薬剤
JP6046848B1 (ja) 入浴剤、水素発生量向上剤、及び水素発生量向上方法
JP2002348687A (ja) 防錆酸性水
KR102022747B1 (ko) 투명 겔형상 피부용 살균제
JP2017052795A (ja) 殺菌剤
JPH02290986A (ja) 蓄熱冷温水系金属腐食抑制剤
BR112021016547A2 (pt) Composição para remover resíduos químicos e usos da mesma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500830

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14380638

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012869212

Country of ref document: EP