WO2006120982A1 - カテーテル手術シミュレータ - Google Patents

カテーテル手術シミュレータ Download PDF

Info

Publication number
WO2006120982A1
WO2006120982A1 PCT/JP2006/309175 JP2006309175W WO2006120982A1 WO 2006120982 A1 WO2006120982 A1 WO 2006120982A1 JP 2006309175 W JP2006309175 W JP 2006309175W WO 2006120982 A1 WO2006120982 A1 WO 2006120982A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
model
stress
dimensional model
surgery simulator
Prior art date
Application number
PCT/JP2006/309175
Other languages
English (en)
French (fr)
Inventor
Toshio Fukuda
Seiichi Ikeda
Ikuo Takahashi
Original Assignee
National University Corpration Nagoya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005315832A external-priority patent/JP4997385B2/ja
Priority claimed from JP2005315893A external-priority patent/JP4883754B2/ja
Priority claimed from JP2005315894A external-priority patent/JP2007121174A/ja
Application filed by National University Corpration Nagoya University filed Critical National University Corpration Nagoya University
Priority to US11/913,301 priority Critical patent/US7583367B2/en
Priority to EP06746025.3A priority patent/EP1887543B1/en
Publication of WO2006120982A1 publication Critical patent/WO2006120982A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/285Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for injections, endoscopy, bronchoscopy, sigmoidscopy, insertion of contraceptive devices or enemas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00725Calibration or performance testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a catheter surgery simulator.
  • the present inventors have proposed a block-shaped three-dimensional model that reproduces a body cavity such as a blood vessel of a subject (Patent Document 1, Non-Patent Document 1).
  • This three-dimensional model is formed by layering a body cavity model such as a blood vessel based on the tomographic image data of the subject, surrounding the body cavity model with a three-dimensional model molding material, curing the three-dimensional model molding material, and then removing the body cavity model It is obtained from Toko.
  • liquids are sent to the cavity of the 3D model (reproduced blood vessels, etc.) or when catheters are inserted.
  • the dynamic deformation of the cavity can be observed.
  • Non-patent Document 2 a membrane-like three-dimensional model
  • Non-patent Document 3 a three-dimensional model composed of a gel-like substrate has been proposed.
  • Patent Literature l WO 03/096308
  • Non-patent document 1 Medical model for surgical trials reproducing the cerebral vascular lumen, Proceedings of the 20th Annual Conference of the Robotics Society of Japan, 2002
  • Non-patent document 2 Research on surgical simulator based on biological information for intravascular surgery, Robotics' Mechatronics Lecture Proceedings, 2003
  • Non-Patent Document 3 Solid model for surgical simulation reproducing the cerebral vascular lumen The 12th Annual Meeting of the Japan Society for Computer Aided Surgery, 2003
  • an object of the present invention is to make it possible to observe the stress state in the surrounding area of the cavity portion in the three-dimensional model.
  • the present invention has been made to solve the above-described problems, and is configured as follows.
  • a phase shift filter disposed inside the polarized light source and a polarization filter corresponding to the polarized light source
  • a catheter surgery simulator characterized in that a catheter inserted into the three-dimensional model is visible.
  • a part of the light transmitted through the first polarizing filter can pass through the second polarizing filter.
  • the catheter does not transmit light, and the catheter is observed as a shadow.
  • the photoelastic effect is observed in the region around the three-dimensional model in which the stress is changed by the catheter. If this phase shift filter does not exist, the light from the light source is completely blocked by the pair of polarizing filters, and only the light modulated by the photoelastic effect can be observed through the second polarizing filter. . In this case, the catheter itself cannot be observed.
  • the wavelength shift filter it is preferable to use a so-called one-wave plate or two-wave plate.
  • a single-wavelength plate is also called a sensitive color plate, which increases the observation sensitivity of the photoelastic effect.
  • FIG. 1 is an explanatory diagram of the photoelastic effect.
  • FIG. 2 is a schematic configuration diagram of a simulator according to one aspect of the present invention.
  • FIG. 5 is a perspective view showing the core 11 of the embodiment.
  • FIG. 6 is a cross-sectional view taken along the line AA of FIG. 5, showing the configuration of the core.
  • FIG. 7 shows a three-dimensional model of an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line BB of FIG. 7, showing a state in which the membranous model is embedded in the base material.
  • FIG. 9 is a schematic diagram showing a configuration of a catheter surgery simulator according to an embodiment of the present invention.
  • FIG. 10 is a flow chart showing the operation of the light receiving unit of the catheter surgery simulator of the example.
  • FIG. 11 is a schematic diagram showing a configuration of a catheter surgery simulator according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing a configuration of a catheter surgery simulator according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing a configuration of a catheter surgery simulator according to another embodiment of the present invention.
  • FIG. 14 is a flowchart showing the operation of the catheter surgery simulator.
  • FIG. 15 is a flowchart showing another operation of the catheter surgery simulator.
  • FIG. 16 is a schematic diagram showing a configuration of a catheter surgery simulator of another embodiment.
  • FIG. 17 shows a display mode of the display 75.
  • FIG. 18 is a schematic diagram showing the configuration of a catheter surgery simulator according to an embodiment of the present invention. It is.
  • FIG. 19 is a flowchart showing the operation of the light receiving unit of the catheter surgery simulator according to another embodiment of the present invention.
  • FIG. 20 is a schematic diagram showing the configuration of the stress observation apparatus according to the embodiment of the present invention.
  • FIG. 21 is a flowchart showing the same operation.
  • At least the part that requires the observation of the stress state is formed of an isotropic material.
  • the three-dimensional model shall be translucent.
  • Examples of powerful photoelastic materials include silicone rubber (silicone elastomer) and thermosetting polyurethane elastomers, as well as silicone resin, epoxy resin, polyurethane, unsaturated polyester, and phenol.
  • Thermosetting resin such as resin and urea resin, and thermoplastic resin such as polymethyl methacrylate can be used alone or in combination.
  • a material having a large system coefficient is preferred.
  • An example of such a material is gelatin (animal fertilizer).
  • polysaccharide gelling agents such as vegetable epilepsy, carrageenan, and locust bean gum may be employed.
  • the cavity can be a reproduction of a body cavity such as a blood vessel formed based on the tomographic image data of the subject.
  • the subject is the whole or part of the human body, but animals and plants can be the target of tomography. It does not exclude corpses.
  • the tomographic image data refers to data that is the basis for executing additive manufacturing.
  • three-dimensional shape data is constructed from tomographic data obtained by an X-ray CT device, MRI device, ultrasonic device, etc., and the three-dimensional shape data is decomposed into two-dimensional data to obtain tomographic image data.
  • the three-dimensional shape of the portion corresponding to the cavity region is given in the form of a stack of two-dimensional images.
  • Three-dimensional shape data of the target cavity is generated by interpolating the line three-dimensionally and reconstructing it as a three-dimensional curved surface.
  • the cavity area was first extracted from the input image by specifying a threshold value for the density value.
  • a specific density value that gives the cavity surface separately from this method.
  • input images may be stacked after region extraction by threshold specification (or surface extraction by specific density value specification).
  • the generation of a three-dimensional curved surface may be performed by polygon approximation.
  • the three-dimensional shape data can be modified or changed during or after the generation of the three-dimensional shape data. For example, adding a structure that does not exist in tomographic data, adding a support structure called a support, removing a part of the structure in tomographic data, or changing the shape of a cavity
  • the shape of the cavity formed inside the three-dimensional model can be freely modified or changed.
  • Three-dimensional shape data in which the layered modeling area is provided inside the cavity is generated.
  • the generated three-dimensional shape data of the cavity is converted into a format corresponding to the additive manufacturing system used for additive manufacturing of the body cavity model as necessary, and the additive manufacturing system to be used or the additive layer to be used is used. Send to software compatible with modeling system.
  • the additive manufacturing system (or software that supports additive manufacturing systems) is used to set various setting items such as the placement of the body cavity model and the stacking direction during additive manufacturing, and to maintain the shape during additive manufacturing.
  • Support (support structure) is added to the place where support is required (it is not necessary if it is not necessary).
  • slice data tomographic image data
  • support may be added after generating slice data.
  • the slice data is automatically generated by the additive manufacturing system used (or software corresponding to the additive manufacturing system), this procedure can be omitted.
  • the layered modeling thickness may be set. The same applies to the support attachment, and if the support is automatically generated by the additive manufacturing system (or software that supports additive manufacturing systems), it is not necessary to generate it manually (manual generation). You may).
  • 3D shape data is constructed from tomographic data, but when 3D shape data is given from the beginning as data, it is decomposed into 2D and the next product is obtained.
  • Tomographic image data used in the layer shaping process can be obtained.
  • the present invention is intended for body cavities such as blood vessels, where body cavities exist in various organs (skeletal, muscle, circulatory, respiratory, digestive, urogenital, endocrine, nerve, sensory organs, etc.) This refers to the cavity that is formed by the geometrical arrangement of these organs and body walls. Therefore, the lumens of various organs such as heart lumen, stomach lumen, intestinal lumen, uterine lumen, blood vessel lumen, ureter lumen, oral cavity, nasal cavity, gorge, middle ear Cavities, body cavities, joint cavities, and pericardial cavities include “body cavities”.
  • the body cavity model is formed from the tomographic image data.
  • layered modeling means that a thin layer is formed based on tomographic image data and a desired shape is obtained by sequentially repeating this.
  • the layered body cavity model must be disassembled and removed in a later process.
  • a material having a low melting point as a material used for additive manufacturing or a material that can be easily dissolved in a solvent.
  • a strong material a low melting point thermosetting resin or wax can be used.
  • V a photocurable resin commonly used in so-called stereolithography (included in additive manufacturing) can be used if it can be easily decomposed.
  • the body cavity model has a strength that can withstand external force such as pressure that is also applied with external force when surrounded by a three-dimensional model molding material in the next step, the inside of the body cavity model has a hollow structure and is thinned. can do.
  • the time and structure required for additive manufacturing are Elution of the body cavity model can be simplified in the subsequent elution process as well as the cost associated with the shape is reduced.
  • the additive manufacturing method include a powder sintering method, a molten resin ejection method, and a molten resin extrusion method.
  • the body cavity model produced by additive manufacturing can include various processes (removal and additional force) such as surface polishing and surface coating after additive manufacturing. It is possible to modify or change the shape of the body cavity model. As part of these processes, if a support that needs to be removed after additive manufacturing is added to the body cavity model, the support is removed.
  • the surface of the body cavity model By coating the surface of the body cavity model with other materials, it is possible to prevent some or all of the components of the body cavity model material from diffusing into the three-dimensional model molding material.
  • the diffusion can be prevented by physically treating the surface of the body cavity model (heat treatment, high frequency treatment, etc.) or chemically treating the surface.
  • a part or the whole of the body cavity model is surrounded by a three-dimensional model molding material and cured.
  • a three-dimensional model is formed by removing the body cavity model.
  • the three-dimensional model can also have a multilayer structure. That is,
  • a three-dimensional model is formed from a membranous model having a cavity that reproduces a body cavity such as a blood vessel and a base material surrounding the membranous model.
  • the membranous structure of a biological blood vessel and the structure of soft tissue around the blood vessel are individually reproduced, including physical characteristics.
  • the flexible membranous blood vessel model is embedded in the base material having viscoelastic properties of the tissue surrounding the blood vessel.
  • three-dimensional models are used in medical instrument and fluid insertion simulations.
  • the blood vessel model of the membrane structure inside the cell can be deformed flexibly in the base material in the same manner as the blood vessel in the living body, and it is suitable for reproducing the deformation characteristics of the living blood vessel.
  • the membranous model is obtained by thinly laminating the membranous model molding material on the surface of the body cavity model described above and curing it.
  • the molding material of the membranous model is not particularly limited as long as it is an isotropic material exhibiting a photoelastic effect.
  • elastomers such as silicone rubber (silicone elastomer) and thermosetting polyurethane elastomer
  • thermosetting resin such as fat, epoxy resin, polyurethane, unsaturated polyester, phenol resin, urea resin, and thermoplastic resin such as polymethylmethacrylate alone or in combination.
  • thermosetting resin such as fat, epoxy resin, polyurethane, unsaturated polyester, phenol resin, urea resin, and thermoplastic resin such as polymethylmethacrylate alone or in combination.
  • thermoplastic resin such as polymethylmethacrylate alone or in combination.
  • These materials are thinly laminated on the surface of the body cavity model by a method such as coating, spraying or dating, and then vulcanized or cured by a well-known method.
  • the target of the membranous model is a cerebrovascular model
  • a material that is transparent and has elasticity and flexibility close to that of living tissue is silicone rubber.
  • silicone rubber has contact characteristics equivalent to those of living tissue, a medical instrument such as a catheter can be inserted to be suitable for a trial of surgery.
  • the membranous model forming material can be formed from a plurality of layers.
  • the thickness can also be set arbitrarily.
  • the film model is formed with a substantially uniform thickness as a whole.
  • the base material is preferably a translucent material having physical properties similar to those of living tissue.
  • the biological tissue is a flexible tissue surrounding a blood vessel or the like reproduced by the membranous model.
  • a silicone gel and a dariserine gel were used as materials for reproducing the supple flexibility (physical properties).
  • Gelatin, orange, polysaccharide gel and the like can also be used. If the casing is airtight, a highly viscous liquid can be used as the base material.
  • the base material When gel is used as the material of the base material, the base material can be brought closer to a living tissue by using a plurality of materials having different physical properties.
  • the base material is preferably translucent.
  • film In order to clarify the boundary between the film model and the substrate, at least one of the film model or the substrate can be colored. Further, it is preferable that the refractive index of the material of the film model and the refractive index of the material of the substrate are substantially equal so that the dynamic behavior of the film model can be observed more accurately.
  • the entire membranous model need not be embedded in the substrate. That is, a part of the membranous model may be located in the gap. In addition, a part of the membranous model may be in a solid base material (having dissimilar physical properties to a biological tissue).
  • the base material shall have inertia.
  • the elastic modulus is low elasticity of 2.0 kPa to 100 kPa.
  • the substrate has sufficient elongation. Thereby, even if the membranous model is greatly deformed, the membranous model force does not peel off the substrate.
  • the base material has an elongation rate of 2 to 15 times that when no load is applied when it is pulled in a state in which adhesion to the membranous model is secured, assuming that no load is 1.
  • the term “elongation rate” refers to the maximum amount of deformation that the base material can return to.
  • the speed at which the base material returns to the original state when the load is removed from the base material deformed by applying a load is relatively slow.
  • the loss factor tan ⁇ (at 1 Hz), which is a viscoelastic parameter, can be set to 0.2 to 2.0.
  • the base material has characteristics similar to or close to those of tissue existing around blood vessels and the like, and the deformation of the membranous model is performed in an environment that is closer to reality. That is, the insertion feeling of the catheter or the like can be realistically reproduced.
  • a base material shall have adhesiveness with respect to a membranous model. Thereby, even when a catheter or the like is inserted into the membranous model and the membranous model is deformed, no deviation occurs between the base material and the membranous model. If there is a gap between the two, a change occurs in the stress acting on the membranous model, which may cause problems in, for example, a catheter insertion simulation, and may cause discomfort during the insertion.
  • the adhesion (adhesion strength) between the substrate and the membranous model is preferably set to lkPa to 20 kPa.
  • silicone gel and glycerin gel are used as the strong substrate, but the material is not particularly limited. It should be noted that a liquid having a high viscosity can be used as the base material as long as the casing is airtight. This is especially true for non-elastic biological assemblies It is suitable as a base material for a membranous model that reproduces a blood vessel surrounded by a weave. A suitable base material can be prepared by mixing these plural kinds of fluids and further mixing an adhesive agent thereto.
  • the base material When gel is used as the material of the base material, the base material can be brought closer to a living tissue by using a plurality of materials having different physical properties.
  • the base material is preferably translucent.
  • at least one of the membranous model and the substrate can be colored.
  • the refractive index of the material of the film model and the refractive index of the material of the substrate are substantially equal so that the dynamic behavior of the film model can be observed more accurately.
  • the entire membranous model need not be embedded in the substrate. That is, a part of the membranous model may be located in the gap. Also, a part of the membranous model may be in a solid substrate (having dissimilar physical properties as a biological tissue) or in a fluid.
  • the casing accommodates the base material and can take any shape. The whole or a part of it is made of a translucent material so that the dynamic behavior of the membranous model can be observed.
  • the strong casing can be formed of a light-transmitting synthetic resin (such as an acrylic plate) or a glass plate.
  • the casing has a hole communicating with the cavity of the membranous model. A catheter can be inserted through this hole.
  • the solid model is preferably translucent as a whole. From the viewpoint of observing the insertion state of the catheter, it is sufficient that at least the inside of the membranous model is visible.
  • this margin is a force that can be arbitrarily selected according to the object, application, etc. of the three-dimensional model.
  • the margin is preferably 10 to 100 times the film thickness of the membranous model.
  • the core in a state where the body cavity model is covered with the membranous model is set in the casing, and the base material is injected into the casing to be gelled. Thereafter, when the body cavity model is removed, the membranous model remains in the base material.
  • the method of removing the body cavity model is appropriately selected according to the modeling material of the body cavity model, and is not particularly limited as long as it does not affect other materials of the three-dimensional model!
  • Methods for removing the body cavity model include: (a) a heat melting method that melts by heating, (b) a solvent dissolution method that dissolves by a solvent, (c) a hybrid method that combines melting by heating and dissolution by a solvent, etc. Can be adopted. By these methods, the body cavity model is selectively fluidized and eluted out of the three-dimensional model to remove it.
  • Some of the components of the material of the body cavity model may diffuse into the membranous model, causing cloudiness in the membranous model and reducing its visibility. To remove this haze, it is preferable to reheat the sample after removing the body cavity model. This heating can be performed during the removal of the body cavity model.
  • the solid model can also be formed as follows.
  • the body cavity model is embedded as a core in a gel-like base material, and the body cavity model is removed. As a result, a cavity that reproduces the body cavity is formed in the base material. After that, a film-form model forming material is attached to the peripheral wall of the cavity and cured by polymerization or vulcanization.
  • the membranous model forming material can be attached to the peripheral wall of the body cavity by flowing the membranous model forming material into the cavity of the base material or by dating the base material on the membranous model forming material.
  • the peripheral wall of the cavity can be hydrophilized.
  • a water film is formed on the peripheral wall and the insertion resistance of the catheter is alleviated. That is, this water film corresponds to the membranous model.
  • peripheral wall of the cavity is hydrophobized (lipophilic treatment)
  • an oil film is formed on the peripheral wall when the cavity is filled with oil, and the insertion resistance of the catheter is alleviated. That is, this oil film corresponds to a film model.
  • the peripheral wall of the cavity is made hydrophilic or hydrophobic by a known method.
  • the peripheral wall of the cavity can be hydrophilized by forming a film having a polar group such as a surfactant on the peripheral wall.
  • an oily film such as oil or wax on the peripheral wall of the cavity, the peripheral wall of the cavity can be hydrophobized.
  • the body cavity model base can be formed of a light-transmitting gel material such as silicone rubber, and the peripheral wall of the body cavity can be entirely or partially covered with a material having a higher photoelastic coefficient than the gel material. .
  • a material having a high photoelastic coefficient can also be embedded in the base material.
  • the photoelastic effect is emphasized by a material having a high photoelastic coefficient.
  • An example of a material having a high photoelastic coefficient is epoxy resin. Since the thin film of epoxy resin is easily deformed by inserting a force tail, the photoelastic effect can be clearly observed by using this.
  • the casing accommodates the base material and can take any shape. The whole or a part of it is made of a translucent material so that the dynamic behavior of the membranous model can be observed.
  • the strong casing can be formed of a light-transmitting synthetic resin (such as an acrylic plate) or a glass plate.
  • the casing has a hole communicating with the cavity of the membranous model. A catheter can be inserted through this hole.
  • the solid model is preferably translucent as a whole. From the viewpoint of observing the insertion state of the catheter, it is sufficient that at least the inside of the membranous model is visible.
  • the photoelastic effect means that when an internal stress occurs in a translucent material, it temporarily has birefringence, and the refractive index differs in the direction of the maximum principal stress and the minimum principal stress. It means to proceed in a divided manner. Interference fringes are generated by the phase difference between the two waves, and the state of internal stress of the translucent material can be known by observing the interference fringes.
  • the polarization direction of the second polarizing plate is substantially perpendicular to the changing direction of the first polarizing plate.
  • an orthogonal-coll method, a parallel-coll method, a sensitive color method, and the like are known.
  • a method for detecting the photoelastic effect by interposing a pair of 1Z4 wavelength plates (1Z4 wavelength filter) between the polarizing plate and the three-dimensional model a circular polarization method, a senalmon method, and the like are known.
  • the position and state of the catheter itself can be observed by interposing a phase shift filter in the first polarizing filter on the light source side and the second change filter on the observer side. That is, by the presence of the phase shift filter, a part of the light transmitted through the first polarizing filter is transmitted through the second polarizing filter, thereby forming knock ground light.
  • a catheter exists in the three-dimensional model, it appears as a shadow, and its position, state and action are observed. That is, the photoelastic effect generated by the catheter and the catheter can be observed simultaneously.
  • a phase shift filter that shifts the light transmitted through the first polarizing filter by one wavelength or two wavelengths. This is because the sensitivity of the photoelastic effect is improved.
  • a plurality of wavelength shift filters may be used as long as background light can be extracted from the second polarizing filter on the observer side. Note that the force used by the 1Z4 wavelength plate in the circular polarization method and the Senarmon method, etc. In these methods, the background light cannot be extracted even by the second modified filter force. Impossible.
  • the thickness and shape of the phase shift filter such as a sheet shape or a plate shape can be designed arbitrarily.
  • the shadow of the catheter and the photoelastic effect can also be observed by the parallel-col method.
  • the polarization filter is placed in a non-orthogonal state with respect to the polarized light source, and part of the light from the polarized light source is transmitted through the change filter.
  • the observation of the photoelastic effect by the parallel-col method is low in sensitivity, but the configuration is simplified as compared with the type in which a phase shift filter is interposed.
  • a phase shift filter is disposed between the second polarizing filter on the observation side and the 1Z4 wavelength filter, and the phase shift filter is further disposed with respect to the optical axis of the 1Z4 wavelength filter. It is preferable to tilt it approximately 22.5 degrees.
  • Figure 2 shows the profitable configuration.
  • reference numeral 201 is a white light source
  • reference numerals 203 and 204 are polarization filters
  • reference numerals 205 and 206 are 1Z4 wavelength filters
  • reference numeral 207 is a solid model to be observed
  • reference numeral 209 is a phase shift filter (in this example, a two-wave plate) It is.
  • Equation 1 the observed light intensity I is expressed by Equation 1 below.
  • indicates the direction of stress
  • Re indicates the retardation due to the phase shift caused by the photoelastic effect. This Re corresponds to the stress intensity.
  • the observed color (wavelength) of light reflects the direction of stress and the intensity of stress.
  • the direction of stress and the strength of stress can be specified from the color of the observed light.
  • a display device is used as the light source.
  • the emission color can be arbitrarily set by controlling the display device with a control device.
  • the emission color can be easily and quickly switched.
  • a still image or a moving image can be arbitrarily displayed on the display, it is possible to give more information to the observer by allowing the display image and the photoelastic effect to be superimposed and observed.
  • liquid crystal display it is preferable to use a liquid crystal display as the display device. This is because the liquid crystal display can emit polarized light, so that the first polarizing filter can be omitted.
  • CRT CRT
  • plasma display and other general-purpose display devices can be used, but polarized light cannot be emitted.
  • the first polarizing filter must be used V, and the light source light from the display device must be polarized. There is.
  • This display device should be able to emit all RGB colors. This is because the emission color can be set arbitrarily.
  • a control device is attached to the display device, and an arbitrary image can be displayed on the display device by the control device.
  • Images include still images such as patterns, characters, figures, and photographs, and moving images. More specifically, numerical information and graphs that indicate the strength and direction of stress applied to the three-dimensional model, figures and patterns that point to specific areas of interest on the three-dimensional model, or to enhance the sense of reality of the catheter surgery simulation In-vivo images and in-vivo images, navigation images for catheter surgery training, remote doctor's image information obtained via the network, or color patterns to selectively extract specific photoelasticity information, etc. Can be projected.
  • the image data is taken into a storage device inside the computer by a 5.25-inch magneto-optical drive externally connected to a personal computer, and the image data is laminated using commercially available three-dimensional CAD software.
  • Three-dimensional shape data in the STL format (a format that expresses a three-dimensional curved surface as an aggregate of triangular patches) required for modeling was generated.
  • the input two-dimensional image is layered based on the imaging interval to construct a three-dimensional scalar field with the density value as a scalar quantity, and a specific blood vessel surface is given on the scalar field.
  • the density value By specifying the density value, after constructing the three-dimensional shape data of the blood vessel lumen as an isosurface (boundary surface of a specific scalar value), rendering of the triangular polygon approximation is performed on the constructed isosurface.
  • additional data was added to the three-dimensional shape data, and the end force of the body cavity model 12 (see FIG. 6) also caused the guide portion 13 to bulge (see FIG. 5).
  • the guide portion 13 is a hollow columnar member. By providing the hollow portion 31, the layered manufacturing time is shortened. The tip of the guide portion 13 is expanded in diameter, and this portion is exposed on the surface of the three-dimensional model, thereby forming a large-diameter opening portion 25 (see FIG. 6).
  • the generated three-dimensional shape data in the STL format is then transferred to the additive manufacturing system using the melted resin jet method, and at the same time as determining the layout, stacking direction, and stacking thickness of the model in the modeling system. Added support for models.
  • the data for additive manufacturing produced in this way was sliced on a computer to a predetermined additive manufacturing thickness (13 m) to generate a large number of slice data.
  • a modeling material mainly composed of ⁇ -toluenesulfonamide and ⁇ -ethylbenzensulfonamide (melting point: about 100 degrees, easily dissolved in acetone)
  • Laminated molding was performed by laminating and spraying a resin-cured layer with a specified thickness having a shape that matches each slice data, by melting and spraying.
  • a layered modeling model body cavity model 12
  • the surface of the body cavity model 12 is processed and smoothed.
  • a silicone rubber layer 15 was formed on the entire surface of the body cavity model 12 to a thickness of approximately 1 mm (see FIG. 6).
  • the silicone rubber layer 15 is obtained by drying the body cavity model 12 by rotating the body cavity model 12 that has been taken out by heading the body cavity model 12. This silicone rubber layer becomes a membranous model.
  • a desired portion of the body cavity model 12 in which the entire surface of the body cavity model 12 is covered with the silicone rubber layer 15 can be partially covered with the silicone rubber layer 15.
  • a core 11 formed by covering the body cavity model 12 with a membrane model composed of a silicone rubber layer 15 is set in a rectangular parallelepiped casing 24.
  • the casing 24 is made of a transparent acrylic plate. The material of the base material 22 is injected into the casing and gelled.
  • a two-component mixed silicone gel was used as a material for the substrate 22 .
  • This silicone gel It is transparent and elastic, and has physical properties that are very close to the soft tissue surrounding the blood vessels.
  • a condensation polymerization type silicone gel can also be used.
  • the base material has translucency and elasticity, and also has adhesion to the membranous model.
  • the physical properties of the material of the substrate 22 are adjusted so as to match the physical properties of the surrounding tissue such as a blood vessel that is the object of the membranous model.
  • penetration, fluidity, adhesiveness, stress relaxation, etc. are used as indicators, and finally the physical properties are brought closer to the living tissue by the operator's touch (catheter insertion feeling). And then.
  • the physical properties can be adjusted by blending the silicone gel as well as preparing the polymer backbone.
  • a glycerin gel can also be used.
  • This glycerin gel is obtained as follows. That is, gelatin is immersed in water, and glycerin and carboxylic acid are added thereto and dissolved by heating. Filter while the temperature is high, and when it reaches a temperature that does not affect the core, pour it into the casing and let it cool.
  • the body cavity model 12 in the core 11 is removed.
  • the hybrid method was adopted as the removal method. That is, the sample is heated so that the material of the body cavity model flows out from the opening 25 to the outside.
  • acetone is injected into the cavity to dissolve and remove the body cavity model material.
  • the sample was heated in a constant temperature layer set at 120 ° C. for about 1 hour, and the film model (silicone rubber layer 15) was clouded.
  • the three-dimensional model 21 obtained in this way has a configuration in which a film model 15 is embedded in a base material 22 such as a silicone gel as shown in FIGS. Since the silicone gel has physical properties close to that of living tissue, the membranous model 15 exhibits dynamic behavior equivalent to that of blood vessels.
  • the film model 15 can be omitted from the three-dimensional model 21.
  • gelatin as a base material having a high photoelastic coefficient.
  • FIG. 9 shows a configuration of the catheter surgery simulator 60 according to the embodiment of the present invention.
  • the catheter surgery simulator 60 of this embodiment includes a light source 61, a pair of polarizing plates 62 and 6 3 and 1 wave plate 68, and the three-dimensional model 21 and the light receiving unit 70 shown in FIG.
  • the light source 61 is preferably a white light source. Sunlight can also be used as a light source. It is also possible to use a monochromatic light source.
  • the first polarizing plates 62 and 63 have polarization directions orthogonal to each other. Thereby, the photoelastic effect caused by the internal stress of the three-dimensional model 21 can be observed on the second polarizing plate 63 side.
  • a non-transparent member such as a catheter that transmits the second polarizing plate 63 as a light background light having a wavelength of around 530 nm can be obtained. Observed as a shadow.
  • a wavelength shift filter typified by the one-wave plate 68 may be interposed between the first polarizing plate 62 and the three-dimensional model 21.
  • the light source 61, the first polarizing plate 62, the three-dimensional model 21 and the second polarizing plate 63 are arranged on a straight line, but the second polarizing plate 63 is shifted (ie, It can also be placed with the force on the straight line shifted. This is because light is diffusely reflected in the cavity of the three-dimensional model 21, and the photoelastic effect may be observed more clearly if the second polarizing plate 63 is shifted in the shape of the cavity. .
  • the light receiving unit 70 includes an imaging device 71 having CCD equal power, an image processing device 70 that processes a photoelastic effect image captured by the imaging device 71, a display 75 that outputs a processing result of the image processing unit 70, and A printer 77 is provided.
  • the image processing device 73 performs the following processing (see FIG. 10).
  • an external force is applied to the three-dimensional model 21, and the initial image is captured as a background image (step 1).
  • the three-dimensional model 21 is made of a material having a high fluorescence coefficient, a photoelastic effect may occur due to its own weight. Therefore, after irradiating light from the light source 61 and capturing an interference fringe image due to the photoelastic effect when an external force is applied (for example, when a catheter is inserted) (step 3), the background image is subjected to differential processing. (Step 5).
  • the three-dimensional model 21 is formed of a material with a high photoelastic coefficient, fine interference fringes appear in a repetitive pattern depending on the internal stress.
  • the image processing device 73 digitizes the internal stress by counting the number of the patterns per unit area (Step 7). Then, in the image relating to the shape of the three-dimensional model 21 obtained through the second polarizing plate 63, a color corresponding to the numerical value is given to the portion where the internal stress is generated and displayed externally (step 9).
  • the interference fringes due to the photoelastic effect are image-processed by the light receiving unit 70, but the observer may observe the interference fringes directly or via the imaging device 71.
  • FIG. 11 shows a catheter surgery simulator 80 of another embodiment. Elements that are the same as those shown in FIG. 12 are given the same reference numerals, and descriptions thereof are omitted.
  • the first 1Z4 polarizing plate 82 is interposed between the first polarizing plate 62 and the three-dimensional model 21, and the second 1Z4 polarizing plate 83 is interposed between the three-dimensional model 21 and the second polarizing plate 63. Is interposed.
  • the force used for observation with the imaging device 71 facing the second polarizing plate 62 can be directly observed by a human by visual observation.
  • FIG. 12 shows an example suitable for visual observation.
  • glasses 90 are prepared.
  • the lens portion of the glasses 90 has a two-layer structure.
  • a second polarizing plate 63 is disposed on the observer side
  • a one-wave plate 68 is disposed outside the second polarizing plate 63.
  • the three-dimensional model 21 is illuminated with the light that has passed through the first polarizing plate 62, and the structure of the catheter and its blood vessel structure can be visually observed.
  • the configuration of FIG. 9 is basically formed, so that the state of the catheter and the photoelastic effect corresponding to the stress state of the three-dimensional model by the catheter can be observed simultaneously.
  • the glasses 90 are used. However, if a plate on which a second polarizing plate and a phase shift filter are laminated is prepared by the observer side force.
  • a phase shift filter represented by a single wavelength plate is connected to the first polarizing plate 62 and the three-dimensional model 21. If it is placed between the two, the lens part of the glasses may be formed only by the second polarizing plate.
  • FIG. 13 shows a catheter surgery simulator 160 according to another embodiment of the present invention. Note that the same elements as those in FIG. 9 are denoted by the same reference numerals and description thereof is omitted.
  • a display 175 and a printer 177 constitute an output unit that outputs the stress state of the membranous model.
  • the lamp device 178 and the speaker device 179 constitute an output unit that outputs an alarm.
  • a pair of polarizing plates 62 and 63 and a single wavelength plate as a phase shift filter constitute a photoelasticity observation unit.
  • step 11 The part of the second polarizing plate 63 facing the three-dimensional model 21 is imaged by the imaging device 71, and the luminance for each pixel is stored in a predetermined area of the memory of the image processing device as a feature quantity for specifying the state quantity of the film model. Save (step 11).
  • step 15 the pixel with the highest luminance is extracted (step 15), and the stress corresponding to the highest luminance is specified with reference to a previously prepared table or relational expression (step 17).
  • step 19 the level of stress specified according to the predetermined rule is specified (step 19).
  • the stress can be divided into three levels: a safety level, a caution level, and a danger level, from the least stressed.
  • the specified stress level can be displayed on the display 175 in the form of a numerical value, a character, or a bar graph (step 21).
  • the imaging screen of the imaging device 71 can be displayed on the display 175 in real time.
  • the stage can be voice-guided through the speaker device 179. It is preferable to give voice guidance when the stage changes (Step 23).
  • the lamp device 178 can be turned on according to the specified level (step 25). For example, a green lamp is lit during the safety stage, a yellow lamp is lit during the caution stage, and a red lamp is lit when the danger stage is reached.
  • the luminance is multiplied by a weighting factor based on a certain rule, and the luminance is obtained for a predetermined area or the entire area of the image.
  • the calculated value can be used as a feature value.
  • the stress is obtained from the brightness, but the brightness itself is calculated, that is, based on the magnitude of the brightness and the rate of change, the level at which no stress calculation is performed is determined and an alarm (voice guidance or Lamp) can also be operated.
  • the stress can be specified from the luminance obtained for each pixel, and the stress can be integrated in time series. This makes it possible to display the stress (stress history) accumulated in the part corresponding to the pixel in the membranous model. Also. Depending on the amount of accumulated stress (for example, when the accumulated stress exceeds a predetermined threshold), an alarm output can be activated.
  • FIG. 15 shows an embodiment that simulates the creation of a road map in catheter surgery.
  • a contrast medium is poured into the blood vessel portion (membrane model portion) of the three-dimensional model 21, and an image of the three-dimensional model 21 is taken.
  • at least one of the polarizing plates 62 and 63 is removed, preferably the polarizing plates 62 and 63 and the one-wave plate 68 are removed, and the light from the light source 61 is transmitted through the solid model 21.
  • the three-dimensional model with the contrast agent introduced is photographed with the blood vessel part stained, and the image is stored (step 31).
  • the photoelastic effect of the three-dimensional model, particularly the membranous model is photographed by the photographing device 71 (step 33).
  • FIG. 16 shows the configuration of a simulator 300 of another embodiment. Note that the same elements as those in FIG. 11 are denoted by the same reference numerals and description thereof is partially omitted.
  • a two-wave plate 301 is present between the second 1Z4 wave plate 83 and the second polarizing plate 63.
  • the two-wave plate is inclined 22.5 degrees with respect to the optical axis of the 1Z4 wave plate.
  • Such a configuration corresponds to the configuration shown in FIG.
  • the light source color is white light
  • the color (wavelength) of the light imaged by the imaging device 71 is compared with the color map shown in FIG. The direction is specified.
  • the image is stored in the color map camera 303 of FIG.
  • the value of the horizontal axis Re in FIG. 3 and the calculation formula for calculating the stress are also stored in the memory 303.
  • Reference numeral 305 denotes a pointing dino chair such as a mouse, and a desired portion can be designated with the cursor 310 on the display 75 that displays the captured image of the imaging device 71 (see FIG. 17).
  • the image processor 73 recognizes the color of the part specified by the cursor 310, and compares the color with the color map (see Fig. 3) stored in the memory 303 to identify the direction and magnitude of the stress. To do. Note that the magnitude of the stress can be obtained by substituting the delay Re specified in FIG. 3 into the relational expression stored in the memory 303. Then, as shown in FIG. 17, a pop-up window 320 is opened, and the magnitude of the stress specified by the cursor 310 is numerically displayed there, and the direction is indicated by an arrow.
  • FIG. 18 shows a configuration of a catheter surgery simulator 460 according to the embodiment of the present invention.
  • the catheter surgery simulator 460 of this embodiment includes a liquid crystal display 461, a control device 462 thereof, a polarizing plate 463 on the observation side, a single wavelength plate 468, and the three-dimensional model 21 shown in FIG.
  • the liquid crystal display 461 emits polarized light at right angles to the polarizing plate 463.
  • the control device 462 can cause the liquid crystal display to emit light in an arbitrary emission color.
  • an arbitrary image can be displayed on the liquid crystal display 461.
  • the image displayed on the liquid crystal display 461 can be observed through the polarizing plate 463 by the action of the single wavelength plate 468.
  • the control device 462 includes instructional video image data, and displays an exemplary image of catheter surgery (how a catheter is inserted into a three-dimensional model). As a result, the operator can visually compare the state of the catheter inserted into the three-dimensional model (appears as a shadow) and the exemplary image, and the training effect is improved.
  • FIG. 19 shows a configuration of a simulator 470 of another embodiment.
  • the same elements as those in FIG. 18 are denoted by the same reference numerals, and the description thereof is omitted.
  • a two-wavelength plate 475 is used as a phase shift filter, and the two-wavelength plate 475 is disposed between the 1Z4 wavelength plate 473 and the polarizing plate 463 on the observation side.
  • the two-wave plate 475 is inclined 22.5 degrees in the direction perpendicular to the optical axis.
  • Reference numeral 481 is an image pickup apparatus equipped with a CCD array.
  • the image processing device 483 processes the photoelastic effect image captured by the image capturing device 481.
  • the processing result is output to the display 487 and the printer 489.
  • the memory 485 stores the processing program of the image processing apparatus 483 !!
  • Such a configuration corresponds to the configuration shown in FIG.
  • the light source color is white light
  • the color (wavelength) of the light imaged by the image pickup device 8 is compared with the color map shown in Fig. 3, so that the stress in the part where the photoelastic effect is generated in the solid model
  • the color map power in Figure 3 is stored in S Memory 485.
  • the image processing apparatus 483 stores the captured color of the photoelastic effect in the memory 485 and compares it with a color map, and specifies the magnitude of the stress for each predetermined pixel, for example. Then, when the magnitude of the specified stress exceeds a predetermined threshold value, the image processing device 483 sends a signal to the control device 462. Based on the signal, the control device 462 controls the display mode (image) of the liquid crystal display so that the warning is superimposed on the portion corresponding to the pixel whose stress exceeds the threshold value.
  • the warning for example, the red color can be intensified, the part can be blinked, and characters can be displayed on the part.
  • an object of the present embodiment is to provide a stress detection device capable of specifying the stress distribution state inside the three-dimensional model.
  • this embodiment is configured as follows.
  • a stress detection device for detecting a photoelastic effect generated in light passing through a translucent three-dimensional model in which at least a peripheral region that reproduces a body cavity is formed of an elastic material and a catheter can be inserted,
  • An optical system comprising a polarization light source, a corresponding polarization filter, and an imaging device for imaging light transmitted through the polarization filter;
  • a rotating device that rotates the relative position of the optical system at least 180 degrees around the three-dimensional model disposed between the polarized light source and the polarizing filter;
  • an arithmetic device that processes a plurality of captured images and calculates a stress intensity distribution on a desired tomographic plane of the three-dimensional model
  • a stress detection device comprising:
  • the optical system is rotated at least 180 degrees around the three-dimensional model, so that the light from the light source (polarized light) is applied to the entire area of the three-dimensional model (all botasels). Can be transmitted).
  • the photoelastic effect (color of light) imaged by the imaging device at a predetermined rotation angle reflects the stress state in a plurality of voxels through which light from the light source force is transmitted. Therefore, simultaneous equations are established between the photoelastic effect picked up at every predetermined angle with the rotation of the optical system and the stress of the light-transmitted bocelle. By solving these simultaneous equations, the stress of each botasel is estimated.
  • the obtained stresses of the respective botasels in correspondence with the desired two-dimensional surface in the three-dimensional model, it is possible to specify the stress distribution on the desired tomographic plane of the three-dimensional model.
  • the three-dimensional stress of the three-dimensional model Distribution can be specified.
  • FIG. 20 shows a configuration of a stress detection device 550 according to the embodiment of the present invention.
  • the stress detection device 550 of this embodiment includes a three-dimensional model 21, an optical system 560, and an image processing device 571.
  • the optical system 560 includes a light source 561, a pair of polarizing plates 562 and 563, 1Z4 wavelength plates 565 and 566, and an imaging device 567. It is preferable to interpose a 1-wave plate or 2-wave plate as the phase shift filter 580 between the second quarter-wave plate 566 and the second polarizing plate 563.
  • the optical axis is inclined from ⁇ 5 degrees to ⁇ 40 degrees (preferably, ⁇ 22.5 degrees). These elements are fixed to a rotating plate 568, and the rotating plate 568 rotates 180 degrees around the three-dimensional model 21.
  • the image pickup device 567 employs a planar arrangement of light receiving elements such as a CCD. Therefore, the photoelastic effect of the three-dimensional model 21 can be photographed two-dimensionally with a single photographing. Imaging by the imaging device 567 is performed each time the rotating plate 568 rotates by a predetermined angle, and the captured two-dimensional image is stored in the memory 573.
  • the image processing device 571 includes a computer device for processing an image picked up by the image pickup device 567, whereby the distribution of the magnitude of the stress inside the three-dimensional model 21 is specified.
  • the identified results are displayed on monitor 575 and printed on paper by printer 577.
  • the input device 579 includes a keyboard and a pointing device for inputting various parameters necessary for image processing.
  • the memory 573 stores a control program that defines the operation of the computer apparatus of the image processing apparatus 571.
  • step 501 the two-dimensional image (photographed with the photoelastic effect) stored in the memory 573 is read, and in step 503, it is divided into slices l to n (step 503).
  • slices are set from l to n in the vertical direction of the paper, and a portion corresponding to the slice can be extracted from each two-dimensional image.
  • step 505 simultaneous equations are set up between the botasel (pixel unit) existing in slice m of the three-dimensional model and the photoelastic effect extracted from each two-dimensional image corresponding to slice m.
  • a solution of the simultaneous equations is obtained by using a Fourier transform technique. This solution is the stress intensity of the bot cell included in the slice m.
  • a color is given to each button cell according to the stress intensity.
  • the portion where the stress is zero can be colorless (background color), and the red or green can be stiffened as the stress increases.
  • the stress distribution in each slice is represented by a color (step 511).
  • step 513 the color-displayed slices obtained in step 511 are stacked, so that the magnitudes of the stresses of all the botasels are displayed in color.
  • the slice plane can be changed by arbitrarily extracting the botasels.
  • the distribution of stress intensity on a fault parallel to the paper surface can be obtained by selecting a botasel parallel to the paper surface.
  • a stress detection device that detects a photoelastic effect generated in light passing through a translucent three-dimensional model in which at least a region around a cavity that reproduces a body cavity is formed of an elastic material and a catheter can be inserted.
  • An optical system comprising a polarized light source, a corresponding polarizing filter, and an imaging device for imaging light transmitted through the polarizing filter;
  • a rotating device that rotates the relative position of the optical system at least 180 degrees around the three-dimensional model disposed between the polarized light source and the polarizing filter;
  • an arithmetic device that processes a plurality of captured images and calculates a stress distribution on a desired tomographic plane of the three-dimensional model
  • a stress detection device comprising:
  • the apparatus further comprises a second computing device that computes a three-dimensional stress distribution of the three-dimensional model by stacking stress intensity distributions on the tomographic plane.
  • the stress detection device according to (1).

Abstract

 立体モデルにおいて血管等の体腔を再現した腔所部分の周囲領域にかかる応力状態を観察できるようにすることを目的とする。カテーテルの挿入シミュレーションにおいて立体モデルの腔所の周囲領域に応力がかかったとき、カテーテルの状態とともに当該カテーテルによる周囲領域の応力状態に対応した光弾性効果を観察することができる。

Description

カテーテル手術シミュレータ
技術分野
[0001] この発明はカテーテル手術シミュレータに関する。
背景技術
[0002] 本発明者らは、被検体の血管などの体腔を再現したブロック状の立体モデルを提 案している(特許文献 1、非特許文献 1)。この立体モデルは被検体の断層像データ に基づき血管などの体腔モデルを積層造形し、該体腔モデルの周囲を立体モデル 成形材料で囲繞して該立体モデル成形材料を硬化させ、その後体腔モデルを除去 すること〖こより得られる。
立体モデル成形材料としてシリコーンゴムなどのエラストマ一材料を採用することに より、立体モデルの腔所 (血管などを再現したもの)へ液体を送り込んだり、またカテ 一テルを挿入したりしたときの当該腔所の動的変形を観察することができる。
また、膜状の立体モデル (非特許文献 2)を提案して!/ヽる。
また、ゲル状の基材で構成した立体モデルを提案している (非特許文献 3)
[0003] 特許文献 l :WO 03/096308
非特許文献 1:脳血管内腔を再現した手術試行用医療モデル、第 20回ロボット学会 学術講演会予稿集、 2002
非特許文献 2 :脳血管内手術を対象とした生体情報に基づく手術シミュレータに関す る研究、ロボテイクス 'メカトロニクス講演会予稿集、 2003
非特許文献 3 :脳血管内腔を再現した手術シミュレーション用立体モデル 第 12回日 本コンピュータ外科学会大会予稿集, 2003
発明の開示
発明が解決しょうとする課題
[0004] 上記のモデルによれば、カテーテルや液体の挿入シミュレーションに対して、体腔 を再現した腔所部分の動的な変形を目視により観察することができるが、腔所部分の 周囲領域の応力状態にっ 、ては何ら情報を得ることができな 、。 そこでこの発明は、立体モデルにおいて腔所部分の周囲領域の応力状態を観察 でさるよう〖こすることを目的とする。
課題を解決するための手段
[0005] この発明は上記課題を解決すべくなされたものであり、次のように構成される。
少なくとも体腔を再現した腔所の周囲領域が弾性材料で形成され、カテーテルの 挿入が可能な透光性の立体モデルを通過する光に生じる光弾性効果を検出する立 体モデルの応力観測装置であって、
偏光光源及びそれに対応する偏光フィルタと、
該偏光光源及びそれに対応する偏光フィルタの内側に配置される位相シフトフィル タと、を備え、
前記立体モデルへ挿入されたカテーテルを目視可能とした、ことを特徴とするカテ 一テル手術シミュレータ。
発明の効果
[0006] このように構成された立体モデルの応力観測装置によれば、カテーテルや液体の 挿入シミュレーションにおいて立体モデルの腔所の周囲領域に応力が力かったとき、 光弾性効果が生じてその応力状態を観察することができる。
また、例えば偏光光源を構成する第 1の偏光フィルタと観察者側の第 2の偏光フィ ルタとの間に位相シフトフィルタを配置させることにより、第 1の偏光フィルタを透過し た光の一部が第 2の偏光フィルタを透過可能となる。このとき、立体モデル内にカテ 一テルが挿入されていた場合、カテーテルは光を透過させないので、カテーテルが 影となって観察される。勿論、カテーテルにより応力変化の生じた立体モデルの周囲 領域においては光弾性効果が観察される。なお、この位相シフトフィルタが存在しな いと一対の偏光フィルタにより光源からの光は完全に遮断され、光弾性効果により変 調された光のみが第 2の偏光フィルタを透過して観察可能となる。この場合、カテー テル自体を観察することはできな 、。
[0007] 波長シフトフィルタとしては 、わゆる 1波長板又は 2波長板を用いることが好ま 、。
1波長板は鋭敏色板ともよばれて、光弾性効果の観察感度が上がる。
図面の簡単な説明 [図 1]図 1は光弾性効果の説明図である。
[図 2]図 2はこの発明の 1つの局面のシミュレータの概略構成図である。
[図 3]図 3は図 2のシミュレータにより得られる φ = 22. 5度のときのカラーマップを示 す。
[図 4]図 4は図 2のシミュレータにより得られる φ =0度及び φ = 90度のときのカラー マップを示す。
[図 5]図 5は実施例の中子 11を示す斜視図である。
[図 6]図 6は図 5の A— A線断面図であり、中子の構成を示す。
[図 7]図 7はこの発明の実施例の立体モデルを示す。
[図 8]図 8は図 7の B— B線断面図であり、基材中に膜状モデルが埋設された状態を 示す。
[図 9]図 9はこの発明の実施例のカテーテル手術シミュレータの構成を示す模式図で ある。
[図 10]図 10は実施例のカテーテル手術シミュレータの受光部の動作を示すフローチ ヤートである。
[図 11]図 11はこの発明の他の実施例のカテーテル手術シミュレータの構成を示す模 式図である。
[図 12]図 12はこの発明の他の実施例のカテーテル手術シミュレータの構成を示す模 式図である。
[図 13]図 13はこの発明の他の実施例のカテーテル手術シミュレータの構成を示す模 式図である。
[図 14]図 14は同じくカテーテル手術シミュレータの動作を示すフローチャートである。
[図 15]図 15は同じくカテーテル手術シミュレータの他の動作を示すフローチャートで ある。
[図 16]図 16は他の実施例のカテーテル手術シミュレータの構成を示す模式図である [図 17]図 17はディスプレイ 75の表示態様を示す。
[図 18]図 18はこの発明の実施例のカテーテル手術シミュレータの構成を示す模式図 である。
[図 19]図 19は実施例の他の実施例のカテーテル手術シミュレータの受光部の動作 を示すフローチャートである。
圆 20]図 20はこの発明の実施例の応力観察装置の構成を示す模式図である。
[図 21]図 21は同じく動作を示すフローチャートである。
符号の説明
[0009] 11 中子
12 体腔モデル
15、 55 シリコーンゴム層(膜状モデル)
21 立体モデノレ
22 基材
60、 80、 160、 300 カテーテル手術シミュレータ
61 光源
62、 63 偏光板
68 1波長板
70 受光部
82、 83 1Z4波長板
発明を実施するための最良の形態
[0010] 以下、発明の各構成要素を詳細に説明する。
(立体モデル形成材料)
立体モデルの応力状態を光弾性により観察するには、
Figure imgf000006_0001
、て少なく とも応力状態の観察が必要な部位を等方性材料で形成する。立体モデルは透光性 を有するものとする。
力かる光弾性を有する材料として、例えば、シリコーンゴム (シリコーンエラストマ一) や熱硬化性のポリウレタンエラストマ一等のエラストマ一の他、シリコーン榭脂、ェポ キシ榭脂、ポリウレタン、不飽和ポリエステル、フエノール榭脂、ユリア榭脂等の熱硬 化性榭脂や、ポリメタクリル酸メチル等の熱可塑性榭脂を単独で、或いは複数組み合 わせて使用することができる。 カテーテルや液体を立体モデルの腔所へ挿入したとき、当該腔所の周囲領域にお ける応力状態が光弾性効果として観察されるためには、少なくとも当該周囲領域が 弾性変形可能な材料で形成される必要がある。勿論、立体モデルを全体的に弾性 変形可能な材料で形成することができる。
力かる立体モデルの形成材料として、カテーテル等の挿入にともなって変形しやす く(即ち、縦弾性係数が大きく)、かつ僅かな変形でも大きな光弾性効果の変化を観 察できる(即ち、光弾性系係数が大きい)材料が好ましい。かかる材料としてゼラチン (動物性かんてん)を挙げることができる。また、植物性かんてんやカラギーナン、ロー カストビーンガムのような多糖類のゲル化剤を採用することもできる。
[0011] (立体モデルの形成方法)
立体モデルにおいて腔所は被検体の断層像データに基づき形成された血管など の体腔を再現したものとすることができる。
ここに、被検体は人体の全体若しくは一部を対象とするが、動物や植物を断層撮影 の対象とすることができる。また、死体を除くものではない。
断層像データは積層造形を実行するための基礎となるデータをいう。一般的に、 X 線 CT装置、 MRI装置、超音波装置などによって得られた断層撮影データから三次 元形状データを構築し、当該三次元形状データを二次元に分解して断層像データと する。
以下、断層像データ生成の一例を説明する。
[0012] ここでは、体軸方向に平行移動しながら等間隔に撮影することによって得られた複 数の二次元画像を入力データ(断層撮影データ)として使用する場合について説明 するが、他の撮影方法によって得られた二次元画像、或いは三次元画像を入力画像 とする場合でも同様な処理を行うことによって腔所の三次元形状データを得ることが できる。入力された各二次元画像は、まず撮影時の撮影間隔に基づいて正確に積 層される。次に、各二次元画像上に、画像濃度値に関しての閾値を指定することによ り、体腔モデルの対象とする腔所領域のみを各二次元画像中より抽出し、一方で他 の領域を積層された二次元画像中より削除する。これにより腔所領域に相当する部 分の三次元形状が二次元画像を積層した形で与えられ、この各二次元画像の輪郭 線を三次元的に補間し、三次元曲面として再構成することにより対象とする腔所の三 次元形状データが生成される。尚、この場合は濃度値に関しての閾値を指定すること によって、まず入力画像中より腔所領域の抽出を行ったが、この方法とは別に、腔所 表面を与える特定濃度値を指定することによって入力画像中より腔所表面の抽出し、 三次元補間することによって直接的に三次元曲面を生成することも可能である。また 、閾値指定による領域抽出 (或いは特定濃度値指定による表面抽出)を行った後に 入力画像の積層を行ってもよい。また、三次元曲面の生成はポリゴン近似によって行 つてもよい。
[0013] 尚、前記三次元形状データには、該三次元形状データの生成中、或いは生成後 において、形状の修正や変更を施すことが可能である。例えば、断層撮影データ中 には存在しな 、構造を付加することや、サポートと呼ばれる支持構造を付加すること や、或いは断層撮影データ中の構造を一部除去することや、腔所の形状を変更する ことなどが可能であり、これによつて、立体モデルの内部に形成される腔所の形状を 自由に修正或いは変更することができる。さらには、腔所の内部に非積層造形領域 を設けることも可能であり、後に説明する内部を中空の構造とし、非積層造形領域を 設けた体腔モデルを作製する場合には、そのような非積層造形領域を腔所の内部に 設けた三次元形状データを生成しておく。尚、これらの処理は、積層造形システム、 或いは積層造形システムに対応したソフトウェアにお 、て行ってもょ 、。
[0014] 次に、生成した腔所の三次元形状データを、必要に応じて体腔モデルの積層造形 に使用する積層造形システムに対応した形式に変換し、使用する積層造形システム 、或いは使用する積層造形システムに対応したソフトウェアへと送る。
積層造形システム (或いは積層造形システムに対応したソフトウェア)では、積層造 形時の体腔モデルの配置や積層方向などの各種設定項目の設定を行うと同時に、 積層造形中における形状保持などの目的で、サポート (支持構造)をサポートが必要 な箇所に付加する(必要なければ付加する必要はない)。最後に、このようにして得ら れた造形用データを積層造形時の造形厚さに基づいてスライスすることによって、積 層造形に直接利用されるスライスデータ(断層像データ)を生成する。尚、上記の手 順とは逆に、スライスデータの生成を行った後にサポートの付加を行ってもよい。また 、スライスデータが使用する積層造形システム(或いは積層造形システムに対応した ソフトウェア)によって自動的に生成される場合には、この手順を省略することができ る。但し、この場合でも積層造形厚さの設定を行っても良い。サポートの付カ卩につい ても同様であり、積層造形システム (或いは積層造形システムに対応したソフトウェア )によってサポートが自動的に生成される場合には、手動で生成する必要はない(手 動で生成してもよい)。
[0015] 上記の例では、断層撮影データから三次元形状データを構築しているが、データと して最初から三次元形状データが与えられた場合もこれを二次元に分解して次の積 層造形工程に用いる断層像データを得ることができる。
[0016] この発明では血管などの体腔を対象としており、ここに体腔とは諸器官 (骨格、筋、 循環器、呼吸器、消化器、泌尿生殖器、内分泌器、神経、感覚器など)に存在する 腔所、並びに、これらの諸器官や体壁などの幾何学的配置によって構成される腔所 を指す。したがって、心臓の内腔、胃の内腔、腸の内腔、子宮の内腔、血管の内腔、 尿管の内腔などの諸器官の内腔や、口腔、鼻腔、ロ峡、中耳腔、体腔、関節腔、囲 心腔などが「体腔」に含まれる。
[0017] 上記の断層像データから上記体腔モデルを形成する。
形成の方法は特に限定されるものではないが、積層造形が好ましい。ここに積層造 詣とは、断層像データに基づき薄い層を形成し、これを順次繰り返すことにより所望 の造形を得ることをいう。
積層造形された体腔モデルは後の工程で分解除去されなければならな ヽ。除去を 容易にするため、積層造形に用いる材料を低い融点の材料とするカゝ、若しくは溶剤 に容易に溶解する材料とすることが好ま 、。力かる材料としては低融点の熱硬化性 榭脂若しくはワックス等を用いることができる。 V、わゆる光造形法 (積層造形に含まれ る)において汎用される光硬化性榭脂においてもその分解が容易であれば、これを 用!/、ることができる。
[0018] 前記体腔モデルは、次の工程において立体モデル成形材料で囲繞する際に外部 力も付加される圧力等の外力に耐え得る強度を有する範囲であれば、その内部を中 空構造とし薄肉化することができる。これによつて、積層造形に所要される時間や造 形に伴うコストが低減されるだけでなぐ後の溶出行程において体腔モデルの溶出を 簡素化できる。
具体的な積層造形の方式として、例えば粉末焼結方式、溶融榭脂噴出方式、溶融 榭脂押出方式等を挙げることができる。
[0019] 尚、積層造形によって作製された体腔モデルには、積層造形の後に、表面研磨や 、表面コーティングの付加など各種の加工(除去カ卩工及び付加力卩ェ)をカ卩えることが 可能であり、これによつて体腔モデルの形状を修正或 、は変更することが可能である 。これらの加工の一環として、体腔モデルの作製にあたって、積層造形後の除去が 必要なサポートを付加した場合には、サポートの除去を行っておく。
体腔モデルの表面を他の材料でコーティングすることにより、体腔モデルの材料の 一部の成分又は全部の成分が立体モデル成形材料中に拡散することを防止するこ とができる。その他、体腔モデルの表面を物理的に処理 (熱処理、高周波処理等)、 若しくは化学的に処理することにより、当該拡散を防止することもできる。
[0020] 表面処理することにより体腔モデルの表面の段差を円滑ィ匕することが好ましい。こ れにより、立体モデルの内腔表面が円滑になり、より実際の血管等の体腔内表面を 再現できることとなる。表面処理の方法として、体腔モデルの表面を溶剤に接触させ ること、加熱して表面を溶融すること、コーティングすること及びこれらを併用すること が挙げられる。
[0021] 体腔モデルの一部又は全部を立体モデル成形材料で囲繞してこれを硬化する。体 腔モデルを除去することにより立体モデルが形成される。
[0022] (他の立体モデル)
立体モデルを多層構造とすることもできる。即ち、
血管などの体腔を再現した腔所をその内部に有する膜状モデルと、該膜状モデル を囲繞する基材から立体モデルを形成する。
このように構成された立体モデルでは、生体血管の有する膜状構造と血管周囲の 軟組織の構造が物理特性も含めて個別に再現される。これにより、柔軟性を有する 膜状構造の血管のモデルが、血管周囲組織の粘弾性特性を有する基材に埋設され た状態となる。このため、医療器具や流体の挿入シミュレーションに際して、立体モデ ル内部の膜状構造の血管モデルが基材内で生体内における血管と同様に柔軟に変 形することができ、生体血管の変形特性を再現するのに好適なものとなる。
ここに、膜状モデルは、既述の体腔モデルの表面へ膜状モデル成形材料を薄く積 層し、これを硬化して得られる。
膜状モデルの成形材料は光弾性効果を示す等方性材料であれば特に限定されず 、例えば、シリコーンゴム(シリコーンエラストマ一)や熱硬化性のポリウレタンエラスト マー等のエラストマ一の他、シリコーン榭脂、エポキシ榭脂、ポリウレタン、不飽和ポリ エステル、フエノール榭脂、ユリア榭脂等の熱硬化性榭脂や、ポリメタクリル酸メチル 等の熱可塑性榭脂を単独で、或いは複数組み合わせて使用することができる。これ らの材料を塗布、吹き付け、若しくはデイツビング等の方法で体腔モデルの表面へ薄 く積層し、その後周知の方法で加硫若しくは硬化させる。
膜状モデルの対象を脳血管モデルとするときには、透明でかつ生体組織に近い弾 力性及び柔軟性を備える材料を採用することが好ま ヽ。かかる材料としてシリコー ンゴムを挙げることができる。また、シリコーンゴムは生体組織と同等の接触特性を有 するので、カテーテル等の医療器具を挿入し手術の試行に適したものとなる。
膜状モデル形成材料を複数層から形成することができる。その厚みも任意に設定 できる。
膜状モデルはその全体が実質的に均一な厚さに形成されることが、光弾性効果を 観察する点から、好ましい。
基材は生体組織に類似した物理特性を有する透光性材料とすることが好ましい。 ここに、生体組織とは膜状モデルが再現した血管等を囲繞する柔軟な組織である。 力かる柔軟性 (物理特性)を再現する材料として、実施例ではシリコーンゲル及びダリ セリンゲルを用いた。ゼラチン、かんてん、多糖類のゲルなどを用いることもできる。な お、ケーシングに気密性を確保できれば高粘度の液体を基材として用いることもでき る。
基材の材料としてゲルを用いた場合、物理特性の異なる複数の材料を用いて基材 をより生体組織に近づけることができる。
膜状モデルの動的な挙動を観察するため、基材は透光性とすることが好ましい。膜 状モデルと基材との境界を明確にするため、膜状モデル若しくは基材の少なくとも一 方を着色することができる。また、膜状モデルの動的挙動をより正確に観察できるよう に、膜状モデルの材料の屈折率と基材の材料の屈折率とを実質的に等しくすること が好ましい。
膜状モデルの全部が当該基材内に埋設される必要はない。即ち、膜状モデル一部 は空隙部内に位置していてもよい。また、膜状モデルの一部はソリッド基材 (生体組 織と非類似の物理特性を有する)内にあってもよい。
基材は弹性を有するものとする。好ましくは、縦弾性係数が 2. 0kPa〜100kPaの 低弾性とする。更に好ましくは、基材は充分な伸びを有する。これにより、膜状モデル が大きく変形しても、膜状モデル力も基材が剥離することがない。例えば、無負荷時 を 1として、膜状モデルに対する接着性を確保した状態で引っ張ったときに基材は無 付カロ時の 2〜15倍の伸び率を有することが好ましい。ここで伸び率とは、基材が元に 戻ることの出来る最大変形量を指す。また、荷重を加えて変形させた基材から荷重を 除去したときに基材が元に戻る速度は比較的緩やかであることが好ましい。例えば、 粘弾性パラメータである損失係数 tan δ (1Hz時)は 0. 2〜2. 0とすることができる。 これにより、血管等の周囲に存在する組織と同等若しくは近い特性を基材が持ち、 膜状モデルの変形がより実際に近い環境で行われることとなる。即ち、カテーテル等 の揷入感をリアルに再現可能となる。
基材は膜状モデルに対して密着性を有するものとする。これにより、膜状モデルへ カテーテル等を挿入して膜状モデルを変形させも基材と膜状モデルとの間にズレの 生じることがない。両者の間にズレが生じると、膜状モデルに力かる応力に変化が生 じるので、例えばカテーテルの挿入シミュレーションをする場合に支障をきたし、その 挿入時に違和感を生じるおそれがある。
膜状モデルとして脳血管モデルを対象としたとき、基材と膜状モデルとの密着性( 接着強度)は lkPa〜20kPaとすることが好ましい。
力かる基材として実施例ではシリコーンゲル及びグリセリンゲルを用いて 、るが、そ の材質が特に限定されるものではない。なお、ケーシングに気密性を確保できれば 高粘度の液体を基材として用いることもできる。これは特に、弾性を有さない生体組 織に囲まれる血管を再現した膜状モデルに対する基材として好適である。これら複数 種類の流動体を混合し、さらにはこれらへ接着性の薬剤を混合することにより、好適 な基材を調製することもできる。
基材の材料としてゲルを用いた場合、物理特性の異なる複数の材料を用いて基材 をより生体組織に近づけることができる。
膜状モデルの動的な挙動を観察するため、基材は透光性とすることが好ましい。膜 状モデルと基材との境界を明確にするため、膜状モデル若しくは基材の少なくとも一 方を着色することができる。また、膜状モデルの動的挙動をより正確に観察できるよう に、膜状モデルの材料の屈折率と基材の材料の屈折率とを実質的に等しくすること が好ましい。
膜状モデルの全部が当該基材内に埋設される必要はない。即ち、膜状モデル一部 は空隙部内に位置していてもよい。また、膜状モデルの一部はソリッド基材 (生体組 織と非類似の物理特性を有する)内又は流体内にあってもよい。
[0024] ケーシングは基材を収容するものであり任意の形状をとることができる。膜状モデル の動的挙動を観察できるように全体若しくはその一部が透光性材料で形成される。 力かるケーシングは透光性の合成樹脂(アクリル板等)やガラス板で形成することがで きる。
ケーシングには膜状モデルの腔所に連通する穴が空けられている。この穴からカテ 一テルを挿入することができる。
立体モデルは全体として透光性であることが好まし 、。カテーテルの挿入状態を観 察する点からいえば、少なくともその膜状モデルの内部が視認できればよい。
ケーシングと膜状モデルとの間には充分な距離を設ける。これにより、弾性を有する 基材に充分なマージン (厚さ)が確保され、カテーテル挿入等により膜状モデルへ外 力がかけられたときその外力に応じて膜状モデルは自由に変形できることとなる。な お、このマージンは立体モデルの対象、用途等に応じて任意に選択できるものであ る力 例えば膜状モデルの膜厚の 10倍〜 100倍以上とすることが好ましい。
[0025] 体腔モデルを膜状モデルで被覆した状態の中子をケーシング中にセットし、該ケー シングへ基材材料を注入し、ゲル化する。 その後、体腔モデルを除去すると膜状モデルが基材中に残された状態となる。 体腔モデルの除去の方法は体腔モデルの造形材料に応じて適宜選択され、立体 モデルの他の材料に影響の出ない限り、特に限定されな!、。
体腔モデルを除去する方法として、 (a)加熱により溶融する加熱溶融法、 (b)溶剤に より溶解する溶剤溶解法、 (c)加熱による溶融と溶剤による溶解とを併用するハイプリ ッド法等を採用することができる。これらの方法により体腔モデルを選択的に流動化 し、立体モデルの外部へ溶出してこれを除去する。
[0026] 体腔モデルの材料の成分の一部が膜状モデルの内部へと拡散し、膜状モデルに 曇りが生じて、その視認性が低下するおそれがある。この曇りを除去するため、体腔 モデルを除去した後に試料を再度加熱することが好まし 、。この加熱は体腔モデル 除去の途中で実行することもできる。
[0027] 立体モデルは、また、次のようにして形成することもできる。
体腔モデルを中子としてゲル状の基材へ埋設し、当該体腔モデルを除去する。こ れにより、基材中に体腔を再現した腔所が形成される。その後、腔所の周壁へ膜状 モデルの形成材料を付着させ重合若しくは加硫等により硬化する。膜状モデル形成 材料を基材の腔所へ流すこと、若しくは基材を膜状モデル形成材料にデイツビング することにより、膜状モデル形成材料を基材の体腔周壁へ付着させることができる。
[0028] また、当該腔所の周壁へ膜状モデル形成材料を付着する代わりに当該腔所の周 壁を親水化処理することができる。これにより、立体モデルの腔所へ水若しくは水溶 液を充填したとき周壁に水膜が形成され、カテーテルの挿入抵抗が緩和される。即 ち、この水膜が膜状モデルに対応することとなる。
当該腔所の周壁を疎水化処理 (親油化処理)した場合も同様に、腔所へ油を充填 したとき周壁に油膜が形成され、カテーテルの挿入抵抗が緩和される。即ち、この油 膜が膜状モデルに対応する。
[0029] 腔所の周壁は周知の方法で親水化若しくは疎水化される。例えば基材としてシリコ ーンゲルを採用した場合、界面活性剤等の極性基を有する膜を当該周壁に形成す ることによりその腔所の周壁を親水化することができる。同様に、オイルやワックス等 の油性膜を腔所の周壁に形成することによりその腔所の周壁を疎水化することができ る。
[0030] 体腔モデルの基体をシリコーンゴム等の透光性ゲル材料で形成し、体腔部の周壁 を当該ゲル材料より光弾性係数の高い材料で全体的に若しくは部分的に被覆するこ とができる。光弾性係数の高い材料を基材内へ埋設することもできる。高い光弾性係 数を有する材料により光弾性効果が強調されることとなる。なお、光弾性係数の高い 材料としてエポキシ榭脂などを挙げることができる。エポキシ榭脂の薄膜は力テーテ ルの挿入によって容易に変形するので、これを用いることにより光弾性効果を明確に 観察することができる。
[0031] ケーシングは基材を収容するものであり任意の形状をとることができる。膜状モデル の動的挙動を観察できるように全体若しくはその一部が透光性材料で形成される。 力かるケーシングは透光性の合成樹脂(アクリル板等)やガラス板で形成することがで きる。
ケーシングには膜状モデルの腔所に連通する穴が空けられている。この穴からカテ 一テルを挿入することができる。
立体モデルは全体として透光性であることが好まし 、。カテーテルの挿入状態を観 察する点からいえば、少なくともその膜状モデルの内部が視認できればよい。
[0032] (光弾性効果)
光弾性効果とは、透光性材料において内部応力が生じると、一時的に複屈折性を おび、最大主応力と最小主応力の方向で屈折率が異なるため、入射光が 2つの平面 偏光に分かれて進むことをいう。当該 2つの波の位相差により干渉縞が生じ、この干 渉縞を観察することにより透光性材料の内部応力の状態を知ることができる。
この光弾性効果を生じさせるには、図 1に示すように、光源力 の光を第 1の偏光板 (偏光フィルタ)に通して偏光させ、立体モデルにこの直線偏光を通す。立体モデル にお 、て内部応力が生じて!/、ると内部応力に強さに応じて複屈折が生じ、最大主応 力(acos φ sin co t)と最小主応力(acos φ sin ( o t— A) )が生成する。これらの光は 速度が異なるため位相差を生じ、第 2の偏光板 (偏光フィルタ)を通して観察すると、 干渉縞が現れる。なお、この第 2の偏光板の偏光方向は第 1の偏光板の変更方向と 実質的に直交している。 一対の偏光板の間に立体モデルを介在させ、立体モデルを透過する光に生じる光 弾性効果を観察する方法として、直交-コル法、平行-コル法、鋭敏色法等が知ら れている。また、偏光板と立体モデルとの間に一対の 1Z4波長板(1Z4波長フィル タ)を介在させることにより光弾性効果を検出する方法として、円偏光法やセナルモン 法等が知られている。
[0033] このように、光弾性効果を用いることにより、立体モデルの腔所へカテーテルを挿入 したときの腔所の周囲領域の応力変化を観察することが可能となる。し力しながら、力 テーテル自体は何ら光弾性効果を生じさせな 、ので、周囲領域の応力変化にともな う光弾性効果とともにその位置及び状態を観察することができな力つた。
そこでこの発明では、光源側の第 1の偏光フィルタと観察者側の第 2の変更フィルタ との中へ位相シフトフィルタを介在させることにより、カテーテル自体の位置及び状態 を観察可能とした。即ち、位相シフトフィルタを存在させることにより、第 1の偏光フィ ルタを透過した光の一部が第 2の偏光フィルタを透過し、ノ ックグランド光を構成する 。ここに、立体モデル中にカテーテルが存在すると、それが影となって現れてその位 置、状態及び動作が観察される。即ち、カテーテルとカテーテルにより生じた光弾性 効果を同時に観察可能となる。
[0034] 位相シフトフィルタとしては、第 1の偏光フィルタを透過した光を 1波長若しくは 2波 長シフトさせるものを用いることが好ましい。光弾性効果の感度が向上するからである この発明では、観察者側の第 2の偏光フィルタからバックグランド光を取り出すこと ができれば、複数枚の波長シフトフィルタを用いてもよい。なお、円偏光法やセナル モン法等においては 1Z4波長板が用いられている力 これらの方法においてはバッ クグランド光を第 2の変更フィルタ力も取り出すことができな 、ので、カテーテルの観 察は不可能である。
位相シフトフィルタはシート状、板状などその厚さや形状は任意に設計可能である。
[0035] 平行-コル法によってもカテーテルの影の観察と光弾性効果の観察とが可能となる 。偏光光源に対して偏光フィルタを非直交状態とすれ偏光光源の光の一部が変更フ ィルタを透過する力 である。 なお、この平行-コル法による光弾性効果の観察は感度の低いものとなるが、位相 シフトフィルタを介在させるタイプよりも構成が簡素化される。
[0036] 本発明者らの検討により、観察側の第 2の偏光フィルタと 1Z4波長フィルタとの間 に位相シフトフィルタを配置し、更に当該位相シフトフィルタを当該 1Z4波長フィルタ の光学軸に対してほぼ 22. 5度傾斜させることが好ま 、。
カゝかる構成を図 2に示す。図 2において、符号 201は白色光源、符号 203及び 204 は偏光フィルタ、符号 205及び 206は 1Z4波長フィルタ、 207は観察対象である立 体モデル、 209は位相シフトフィルタ(この例では 2波長板)である。
位相シフトフィルタ 209の傾斜角度 φ = ± 5度〜 ±40度のとき、より好ましくは φ = ± 22. 5度のとき、第 2の偏光フィルタ 204において観察される光弾性効果 (光の色( 波長))から、観察対象の応力とその方向を特定することができる。
これは、次の理由による。
図 2の構成において、観察される光の強さ Iは下記式 1で表現される。
[0037] [数 1]
I =4 c,2c sin2(Re« /2) cos2(Re/2) (1)
+ {cf + c2 4+ 2 c,¾2 2cos (Reex/2) } sin2(Re/2)
+c,cIsin Re {(c,2- c ) sin 20 - c i2 sin ( 2Θ -ReCT/2 )
+ cism (20 +Reai/2)}
c, = sin?> , C2= cos^>
ここに、 Θは応力の方向を示し、 Reは光弾性効果により生じた位相シフトによる遅 延 (Retardation)を示す。なお、この Reは応力強さに対応する。
Φ = 22. 5として、上記式 1に RGBの各波長を代入したとき、観察される光の色 (波 長)は応力の方向と応力の強さとを反映している。換言すれば、観察された光の色か ら応力の方向と応力の強さが特定できる。観察された光と応力方向及び応力強さと の関係は図 3のマップで表される。なお、紙面の都合上、図 3は白黒表記となったが 、実際には、図 3の全領域に渡り色変化が認められ、図 3の縦軸 (応力方向)の任意 の座標と横軸 (応力強さ)の任意の座標とで指定される色 (波長)は実質的に 1つに 特定される。このようなカラーマップは φ = ± 5度〜 ±40度のとき、より鮮明には φ = ± 22. 5度のとき得られる。
他方、 Φ =0度あるいは φ = 90度のときは、図 4Αに示す通り、縦軸の 90度を中心 にして上下対称の色分布のなるので、観察された色から応力方向や応力強さを特定 することは出来ない。また φ = ±45のときは、図 4Βに示す通り、前記位相シフトフィ ルタの効果を得ることができないため、カテーテルの影を観察することが困難である。 また、本発明者らの検討によれば、 φ = ± 22. 5のとき、光源を G (緑色系)の光と すると、図 3のマップにおいて、緑色の明るさ(強さ)が横軸に対応して分布しているこ とがわかった。実際には横軸のほぼ中央で最も明るぐ左右に移行するに従い明るさ が低減する。立体モデルに力かる最高応力はほぼ Re = 265〜400相当程度であり 、それを超えると破損するおそれが強い。従って、緑色の明るさに注目すれば、立体 モデルに力かっている応力の強さを特定することができる。これにより、オペレータは カテーテル手術シミュレーションを行なうときの立体モデルの応力状態を、リアルタイ ムでかつ直感的に把握することができる。
更にこの発明では、光源としてディスプレイ装置を用いることとした。
光源としてディスプレイ装置を用いると、このディスプレイ装置を制御装置で制御す ることにより、その発光色を任意に設定できる。また、発光色の切替えも簡単かつ素 早く行なうことができる。更には、ディスプレイには静止画や動画を任意に映し出せる ので、当該ディスプレイの画像と光弾性効果とを重ね合わせて観察できるようにする ことで、観察者により多くの情報を与えることができる。
ディスプレイ装置としては液晶ディスプレイを用いることが好まし 、。液晶ディスプレ ィは偏光を放出することができるので、第 1の偏光フィルタを省略可能であるからであ る。
勿論、 CRT、プラズマディスプレイ、その他汎用的なディスプレイ装置を採用可能 であるが、偏光を放出できな 、タイプにおいては第 1の偏光フィルタを用 V、てディスプ レイ装置からの光源光を偏光させる必要がある。
このディスプレイ装置は RGB色を全て放出可能なものとすることが好ま 、。発光 色を任意に設定出来るからである。 [0039] ディスプレイ装置には制御装置が付設され、この制御装置によりディスプレイ装置 上に任意の画像を映し出すことができる。画像には、模様、文字、図形、写真などの 静止画像、及び動画が含まれる。より具体的には、立体モデルに掛カつている応力 の強さや方向を示す数値情報やグラフ、あるいは立体モデル上の特定の着目領域 を指し示す図形や模様、あるいはカテーテル手術シミュレーションの臨場感を高める ための体内映像や体内写真、あるいはカテーテル手術トレーニング用のナビゲーシ ヨン映像、あるいはネットワークを介して得られた遠隔地の医師の映像情報、あるいは 特定の光弾性情報を選択的に抽出するための色模様などを映し出すことが可能であ る。
実施例
[0040] (第 1実施例)
立体モデル化の対象とする脳血管及び患部である脳動脈の形状に関する三次元 データを得るため、撮影領域の血管内部へ造影剤を投与しながら、患者の頭部に対 して、 0. 35 X 0. 35 X 0. 5mmの空間分解能を持つヘリカルスキャン方式の X線 CT 装置により撮影を行った。撮影により得られた三次元データは、 3次元 CADソフトへ の受け渡しのため、体軸方向に等間隔に配列された 500枚の 512 X 512の解像度 をもつ 256階調の二次元画像 (断層撮影データ)に再構成した後、各二次元画像に 対応する画像データを撮影方向に一致する順序で前記 X線 CT装置に内蔵されたド ライブにより 5. 25インチ光磁気ディスクへ保存した。
[0041] 次に、パーソナルコンピュータに外部接続した 5. 25インチ光磁気ドライブによって 、前記画像データをコンピュータ内部の記憶装置へ取り込み、この画像データから、 市販の三次元 CADソフトを利用して、積層造形に必要とされる STL形式 (三次元曲 面を三角形パッチの集合体として表現する形式)の三次元形状データを生成した。こ の変換では、入力された二次元画像を撮影間隔に基づいて積層することによって、 濃度値をスカラー量とする三次元のスカラー場を構築し、そのスカラー場上に血管内 表面を与える特定の濃度値を指定することによって、アイソサーフェス (特定スカラー 値の境界面)として血管内腔の三次元形状データを構築した後、構築されたアイソサ 一フェスに対して三角形ポリゴン近似のレンダリングが行われる。 なお、この段階で、三次元形状データに付加データを加え、体腔モデル 12 (図 6参 照)の端部力もガイド部 13を膨出させた(図 5参照)。このガイド部 13は中空柱状の部 材である。中空部 31を備えることにより、積層造形時間の短縮を図っている。このガイ ド部 13の先端は拡径されており、この部分が立体モデル表面に表出して、大径な開 口部 25 (図 6参照)を形成することとなる。
[0042] 生成した STL形式の三次元形状データを、次に溶融榭脂噴出方式の積層造形シ ステムへと転送し、造形システム内でのモデルの配置や積層方向、積層厚さを決定 すると同時にモデルに対してサポートを付加した。
このようにして生成された積層造形用のデータをコンピュータ上で所定の積層造形 厚さ(13 m)にスライスして多数のスライスデータを生成した。そして、このようにして 得られた各スライスデータに基づ 、て、 ρ—トルエンスルホンアミドと ρ—ェチルベンゼ ンスルホンアミドを主成分とした造形材料 (融点:約 100度、アセトンに容易に溶解)を 加熱により溶融して噴出することにより、各スライスデータに一致する形状を有する指 定厚さの榭脂硬化層を一面ずつ積層形成することよって積層造形を行った。最終層 の形成の後にサポートを除去することによって、脳血管内腔領域の積層造形モデル ( 体腔モデル 12)を作成した。
更に、この体腔モデル 12の表面を処理して円滑にする。
[0043] この体腔モデル 12の全表面へシリコーンゴム層 15をほぼ lmmの厚さに形成した( 図 6参照)。このシリコーンゴム層 15は、体腔モデル 12をシリコーンゴム槽ヘディツビ ングし取出した体腔モデルを回転させながら乾燥させることにより得られる。このシリコ ーンゴム層が膜状モデルとなる。
この実施例では、体腔モデル 12の全表面をシリコーンゴム層 15で被覆した力 体 腔モデル 12の所望の部分を部分的にシリコーンゴム層 15で被覆することも可能であ る。
[0044] 体腔モデル 12をシリコーンゴム層 15からなる膜状モデルで被覆してなる中子 11を 直方体のケーシング 24にセットする。このケーシング 24は透明なアクリル板からなる 。ケーシング内に基材 22の材料を注入して、これをゲル化する。
基材 22の材料として、 2液混合型のシリコーンゲルを用いた。このシリコーンゲルは 透明かつ弾性を有しており、かっ血管周囲の軟組織に極めて近い物理特性を有し ている。縮合重合型のシリコーンゲルを用いることもできる。このように基材は、透光 性、弾性を備えるとともに、膜状モデルに対する密着性を備えるものとする。
[0045] 基材 22の材料の物理特性は、膜状モデルの対象である血管等の周囲の組織の物 理特性に適合するように、調整される。
なお、この実施例では針入度、流動性、粘着性、応力緩和性などを指標にして、最 終的にはオペレータの手触り(カテーテルの挿入感覚)によりその物理特性を生体組 織に近づけるようにして 、る。
シリコーンゲルの場合、そのポリマーの骨格を調製することはもとより、シリコーンォ ィルを配合することにより当該物理特性を調整することができる。
[0046] シリコーンゲルの外に、グリセリンゲルを用いることもできる。このグリセリンゲルは次 のようにして得られる。即ち、ゼラチンを水に浸漬して、これにグリセリンと石炭酸をカロ え、加熱溶解する。温度が高い間に濾過し、中子に影響の出ない温度になったらケ 一シング内に注入し、放冷する。
[0047] その後、中子 11内の体腔モデル 12を除去する。除去の方法としてハイブリット法を 採用した。即ち、試料を加熱して開口部 25から体腔モデルの材料を外部へ流出させ
、更に、空洞部へアセトンを注入して体腔モデルの材料を溶解除去する。
その後、試料を 120°Cに設定された恒温層内で約 1時間加熱して、膜状モデル (シ リコーンゴム層 15)の曇りをとつた。
[0048] このようにして得られた立体モデル 21は、図 7及び図 8に示すように、シリコーンゲ ルカゝらなる基材 22中に膜状モデル 15が埋設された構成となる。シリコーンゲルが生 体組織に近い物理特性を有するので、膜状モデル 15は血管と同等の動的挙動を示 こととなる。
[0049] 他の実施形態の立体モデルとして、上記立体モデル 21から膜状モデル 15を省略 したちのを挙げることができる。
この場合、基材として光弾性係数の高 、ゼラチンを用いることが好ま 、。
[0050] 図 9はこの発明の実施例のカテーテル手術シミュレータ 60の構成を示す。
この実施例のカテーテル手術シミュレータ 60は、光源 61、一対の偏光板 62及び 6 3、 1波長板 68、図 7に示した立体モデル 21、受光部 70から大略構成される。
光源 61には白色光源を用いることが好ま 、。太陽光を光源として用いることもで きる。また、単色光源を用いることも可能である。第 1の偏光板 62及び 63は相互に直 交した偏光方向を有する。これにより、立体モデル 21の内部応力に起因する光弾性 効果を第 2の偏光板 63側において観察することができる。 1対の偏光板 62及び 63の 間に 1波長板 68を介在させることにより、波長 530nm近傍の光力バックグランド光と して第 2の偏光板 63を透過するカテーテルのような非透明部材が影として観察される 。なお、 1波長板 68に代表される波長シフトフィルタは第 1の偏光板 62と立体モデル 21との間に介在させてもよい。
立体モデル 21の腔所へカテーテルを挿入したとき、カテーテルと腔所の周壁とが 干渉すると、当該腔所周壁に応力が生じそこに光弾性効果 (干渉縞)が現れる。また 、コイル塞栓時の動脈瘤の変形に伴う当該動脈瘤周囲領域の応力状態も光弾性効 果力 シミュレートすることができる。
[0051] この実施例では光源 61、第 1の偏光板 62、立体モデル 21及び第 2の偏光板 63を 直線上に配置させたが、第 2の偏光板 63を偏移して (即ち、直線上力もずらして)配 置することができる。立体モデル 21の腔所において光が乱反射するので、腔所の形 状においては第 2の偏光板 63を偏移して配置したほうが、光弾性効果をより鮮明に 観察できる場合があるからである。
[0052] 受光部 70は、 CCD等力もなる撮像装置 71と当該撮像装置 71で撮像した光弾性 効果の画像を処理する画像処理装置 70、並びに画像処理部 70の処理結果を出力 するディスプレイ 75及びプリンタ 77を備えてなる。
画像処理装置 73では次のような処理が行われる(図 10参照)。
まず、立体モデル 21へ何ら外力をカ卩えて 、な 、初期状態の画像をバックグラウンド 画像として取り込む (ステップ 1)。立体モデル 21が高 ヽ光弹性係数の材料で形成さ れている場合、自重で光弾性効果を生じる場合がある。従って、光源 61から光を照 射し、更に外力をカ卩えたとき(例えばカテーテルを挿入したとき)の光弾性効果による 干渉縞画像を取り込んだ後 (ステップ 3)、これからバックグランド画像を差分処理する (ステップ 5)。 [0053] 立体モデル 21が高い光弾性係数の材料で形成されている場合、内部応力の如何 によっては細カゝ ヽ干渉縞が繰返しパターンで現れる。画像処理装置 73は単位面積 あたりの当該パターンの数をカウントすることにより、当該内部応力を数値化する (ス テツプ 7)。そして、第 2の偏光板 63を介して得られる立体モデル 21の形状に関する 画像において、内部応力の生じた部分に当該数値に対応した色を与えて外部表示 する (ステップ 9)。
この実施例では受光部 70により光弾性効果による干渉縞を画像処理しているが、 当該干渉縞を観察者が直接若しくは撮像装置 71を介して観察してもよい。
[0054] 図 11に他の実施例のカテーテル手術シミュレータ 80を示す。図 12に示す要素と 同一の要素には同一の符号を付してその説明を省略する。
この実施例では第 1の偏光板 62と立体モデル 21との間に第 1の 1Z4偏光板 82を 介在させ、立体モデル 21と第 2の偏光板 63との間に第 2の 1Z4偏光板 83を介在さ せている。これにより、円偏光に基づき立体モデル 21の光弾性効果を観察可能にな る。円偏光に基づく光弾性効果の観察によれば、干渉縞に応力方向の影響が現れ な!、ので、立体モデルの姿勢制御が容易になる。
[0055] 上記の例では、第 2の偏光板 62に撮像装置 71を対向させて観察を行っていた力 これを目視によりヒトが直接観察することもできる。
図 12には目視観察に適した例が示されている。この例では、メガネ 90が準備され ている。このメガネ 90のレンズ部分は 2層構造とされており、図 12 (B)に示すように、 観察者側に第 2の偏光板 63が配置され、その外側に 1波長板 68が配設されている。 このメガネ 90を掛けずに光源 61をオンの状態とすると、立体モデル 21が第 1の偏 光板 62を通過した光により照明されて、カテーテルの状態やその血管構造など目視 による構造観察が可能になる。他方、メガネ 90を掛けると、基本的に図 9の構成が形 成されるので、カテーテルの状態と当該カテーテルによる立体モデルの応力状態に 対応した光弾性効果とが同時に観察可能となる。
この実施例ではメガネ 90を採用したが、観察者側力ゝら第 2の偏光板と位相シフトフ ィルタとを積層したプレートを準備すればょ 、。
また、 1波長板に代表される位相シフトフィルタを第 1の偏光板 62と立体モデル 21 との間に配置したときには、メガネのレンズ部分を第 2の偏光板のみカゝら形成すれば よい。
[0056] 図 13はこの発明の他の実施例のカテーテル手術シミュレータ 160を示す。なお、図 9と同一の要素には同一の符号を付してその説明を省略する。図 13においてデイス プレイ 175及びプリンタ 177は膜状モデルの応力状態を出力する出力部を構成する 。ランプ装置 178及びスピーカ装置 179はアラームを出力する出力部を構成する。一 対の偏光板 62, 63及び位相シフトフィルタとしての 1波長板により光弾性観察部が 構成される。
次に、図 13に示したカテーテル手術シミュレータ 160の動作を図 14のフローチヤ ートに基づき説明をする。
立体モデル 21に対向する第 2の偏光板 63の部分を撮像装置 71で撮像し、膜状モ デルの状態量を特定する特徴量としてピクセル毎の輝度を画像処理装置のメモリの 所定の領域に保存する (ステップ 11)。ステップ 15では最も高い輝度のピクセルを抽 出し (ステップ 15)、予め準備されているテーブル若しくは関係式を参照して当該最 高輝度に対応する応力を特定する (ステップ 17)。次に、所定のルールに従い特定さ れた応力のレベルを特定する (ステップ 19)。例えば、応力の小さい方から、安全段 階、注意段階、危険段階の 3段階に応力をレベル分けすることができる。
[0057] 特定された応力のレベルはディスプレイ 175に数値、文字、若しくは棒グラフの形 態等で表示することができる (ステップ 21)。勿論、ディスプレイ 175には撮像装置 71 の撮像画面をリアルタイムで表示可能である。
特定された応力のレベルに応じ、スピーカ装置 179を介してその段階を音声案内 することができる。段階が変化したときに当該音声案内をすることが好ましい (ステツ プ 23)。
また、特定されたレベルに応じてランプ装置 178を点灯させることができる (ステップ 25)。例えば、安全段階では緑色のランプを点灯し、注意段階では黄色のランプを 点灯し、危険段階になったとき赤色のランプを点灯する。
このようにアラームを出力することにより、オペレータはカテーテルの挿入作業に集 中することができる。 [0058] 上記において、ピクセル毎にその輝度力も応力を特定し、所定の閾値を超えた応 力をもつピクセルをカウントし、カウント結果に基づき応力レベルを特定することもでき る。また、ピクセル毎に応力変化を演算して当該応力変化が所定の閾値を超えたも のをカウントし、当該カウント結果に基づき応力レベルを特定することができる。
更には、撮像装置で撮影した画像内のピクセルにつ 、て一定の法則に基づ 、て輝 度に重み係数を乗じ、画像の所定領域若しくは全領域につき当該輝度を足しあわせ ること〖こより得られる計算値を特徴量とすることちできる。
上記の説明では、輝度より応力を求めているが、輝度そのものを演算対象、即ち、 輝度の大きさ、その変化率に基づき、何ら応力計算を経ることなぐレベルを決定して アラーム (音声案内やランプ)を動作させることもできる。
[0059] 更には、ピクセル毎に得られた輝度より応力を特定し、当該応力を時系列的に積算 することもできる。これにより、膜状モデルにおいて当該ピクセルに対応する部分に蓄 積した応力(応力履歴)が表示可能となる。また。応力の蓄積量に応じて (例えば応 力の蓄積が所定の閾値をこえたとき)、アラーム出力を動作させることもできる。
上記のような画像処理が可能となったのは、 1波長板を介在させることにより、感度 が向上して画像処理を精度よく行えるようになつたためである。
[0060] 図 15は、カテーテル手術におけるロードマップ作成をシミュレートした実施例を示 す。
ステップ 31では、立体モデル 21の血管部分 (膜状モデル部分)に造影剤を流し込 んで立体モデル 21の画像を撮影する。このとき、偏光板 62, 63の少なくとも一方を 外して、好ましくは、偏光板 62, 63及び 1波長板 68を外して、光源 61からの光が立 体モデル 21を透過するものとする。造影剤が導入された立体モデルは血管部分が 染色された状態で撮影され、その画像が保存される (ステップ 31)。
その後、図 13の状態で立体モデル、特に膜状モデルの光弾性効果を撮影装置 71 で撮影する (ステップ 33)。
撮影された光弾性効果を示す画像を、造影剤導入画像を背景として、これに重ね て表示する (ステップ 35)。これにより、カテーテル手術におけうロードマップ作成の 信頼性を確認することができる。 [0061] 図 16に他の実施例のシミュレータ 300の構成を示す。なお、図 11と同一の要素に は同一の符号を付してその説明を部分的に省略する。
この実施例では、第 2の 1Z4波長板 83と第 2の偏光板 63との間に 2波長板 301を 存在させている。この 2波長板は、前記 1Z4波長板の光学軸に対して 22. 5度傾斜 している。
かかる構成は、既述の図 2の構成と対応している。光源色を白色光としたとき、撮像 装置 71で撮像される光の色 (波長)を図 3に示すカラーマップに対照することにより、 立体モデルにおいて光弾性効果を生じた部分の応力の大きさとその向きが特定され る。
実施例の装置 300では、図 3のカラーマップカ モリ 303に保存されている。また、 図 3の横軸 Reの値力も応力を演算する演算式もメモリ 303に保存されている。
符号 305はマウス等のポインティングディノくイスであって、撮像装置 71の撮像画像 を表示するディスプレイ 75において、所望部分をカーソル 310で指定することができ る(図 17参照)。
画像処理装置 73はカーソル 310で指定された部分の色を認識し、当該色をメモリ 3 03に保存されているカラーマップ(図 3参照)に対照させて、応力の方向とその大きさ を特定する。なお、図 3において特定される遅延 Reをメモリ 303に保存されている関 係式に代入することにより応力を大きさを求めることができる。そして、図 17に示すよ うに、ポップアップウィンドウ 320を開いて、そこにカーソル 310で指定した部分の応 力の大きさを数値表示し、また方向を矢印で表す。
[0062] 図 18はこの発明の実施例のカテーテル手術シミュレータ 460の構成を示す。
この実施例のカテーテル手術シミュレータ 460は、液晶ディスプレイ 461、その制御 装置 462、観察側の偏光板 463、 1波長板 468、図 7に示した立体モデル 21を備え てなる。
液晶ディスプレイ 461は偏光板 463に対して直角の偏光を放出して 、る。制御装置 462は液晶ディスプレイを任意の発光色で発光させることができる。また、液晶ディス プレイ 461に任意の画像を表示させることができる。液晶ディスプレイ 461に表示され た画像は、 1波長板 468の作用により、偏光板 463を介して観察可能である。 この実施例では、制御装置 462が指導用ビデオ画像データを備えており、カテー テル手術の模範的な画像 (カテーテルが立体モデル中へ挿入されて ヽく様子)を映 し出す。これにより、オペレータは自身が立体モデルへ挿入したカテーテルの様子( 影となってみえる)と当該模範的な画像とを目視比較可能となり、トレーニング効果が 向上する。
[0063] 図 19に他の実施例のシミュレータ 470の構成を示す。なお、図 18と同一の要素に は同一の符号を付してその説明を省略する。
この実施例では、位相シフトフィルタとして 2波長板 475を採用し、観察側の 1Z4波 長板 473と偏光板 463との間にこの 2波長板 475を配置した。 2波長板 475は光軸に 垂直な方向に 22. 5度傾斜している。符号 481は撮像装置であり CCDアレイを備え て ヽる。画像処理装置 483は撮像装置 481で撮像した光弾性効果の画像を処理す る。処理の結果はディスプレイ 487やプリンタ 489へ出力される。メモリ 485には画像 処理装置 483の処理プログラムが保存されて!、る。
かかる構成は、既述の図 2の構成と対応している。光源色を白色光としたとき、撮像 装置 8で撮像される光の色 (波長)を図 3に示すカラーマップに対照することにより、立 体モデルにおいて光弾性効果を生じた部分の応力の大きさとその向きが特定される 図 3のカラーマップ力 Sメモリ 485に保存されている。また、図 3の横軸 Reの値カも応 力を演算する演算式もメモリ 485に保存されている。
[0064] 画像処理装置 483は撮像した光弾性効果の色をメモリ 485に保存されて 、るカラ 一マップに対照させ、予め定められた画素毎に、例えばその応力の大きさを特定す る。そして、特定された応力の大きさ力 所定のしきい値を超えるものであったとき、画 像処理装置 483は制御装置 462に信号を送る。制御装置 462は当該信号に基づき 、応力がしきい値を超えた画素に対応する部分へ警告が重ねて表示されるように、液 晶ディスプレイの表示態様 (画像)を制御する。当該警告として、例えば、赤色を強く したり、当該部分を点滅したり、また当該部分へ文字等を表示したりすることができる
[0065] 既述の観察方法では、立体モデルにおいて光弾性効果を生じる部分に厚さがあつ たとき、観察される光弾性効果 (光の色)は、当該部分における応力が重ね合わされ たものなる。従って、立体モデルの内部における応力の分布を把握することが出来な い。
そこでこの実施例では、立体モデル内部の応力の分布状態を特定できる応力検出 装置の提供を目的とする。
[0066] 本発明者らは上記目的を達成すべく鋭意検討を重ねてきたところ、 X線 CTスキャン の技法を応用することにより、立体モデルの断層面における応力の分布を特定可能 なことに気がついた。即ち、この実施例は次のように構成される。
少なくとも体腔を再現した腔所の周囲領域が弾性材料で形成され、カテーテルの 挿入が可能な透光性の立体モデルを通過する光に生じる光弾性効果を検出する応 力検出装置であって、
偏光光源とそれに対応する偏光フィルタと、前記偏光フィルタを透過した光を撮像 する撮像装置と備えてなる光学系と、
前記偏光光源と前記偏光フィルタの間に配置される前記立体モデルを中心にして 、前記光学系の相対位置を少なくとも 180度回転させる回転装置と、
該回転に伴!、撮像される複数の画像を処理して、前記立体モデルの所望の断層 面における応力の強さの分布を演算する演算装置と、
を備えてなる応力検出装置。
[0067] このように構成された応力検出装置によれば、立体モデルを中心として光学系を少 なくとも 180度回転させるので、立体モデルの全域 (全ボタセル)に対して光源からの 光 (偏光されている)を透過させることができる。これにより、所定の回転角度における 撮像装置で撮像された光弾性効果 (光の色)には光源力ゝらの光が透過した複数のボ クセルにおける応力状態が反映されている。従って、光学系の回転に伴い所定の角 度毎に撮像された光弾性効果と光の透過したボタセルの応力との間で連立方程式 が成立する。この連立方程式を解くことにより、各ボタセルの応力が推定される。得ら れた各ボタセルの応力を立体モデルにおける所望の二次元面に対応させて並べるこ とにより、立体モデルの所望の断層面における応力の分布を特定することができる。 また、当該二次元の応力分布を積層することにより、立体モデルの三次元的な応力 分布を特定することができる。
[0068] 図 20はこの発明の実施例の応力検出装置 550の構成を示す。
この実施例の応力検出装置 550は、立体モデル 21、光学系 560及び画像処理装 置 571を備えてなる。光学系 560は光源 561、一対の偏光板 562, 563、 1Z4波長 板 565, 566及び撮像装置 567を備えている。第 2の 1/4波長板 566と第 2の偏光 板 563の間には位相シフトフィルタ 580として 1波長板若しくは 2波長板を介在させる ことが好ましぐこの位相シフトフィルタ 580は該 1Z4波長フィルタの光学軸に対して ± 5度〜 ±40度傾斜 (好ましくは、 ± 22. 5度)されている。これらの要素は回転プレ ート 568に固定されており、回転プレート 568は立体モデル 21を中心に 180度回転 する。
撮像装置 567は CCD等の受光素子を平面的に配列したものが採用されている。 従って、一度の撮影で立体モデル 21の光弾性効果を二次元的に撮影することがで きる。撮像装置 567による撮像は回転プレート 568が所定の角度回転するたびに行 なわれ、撮影された二次元画像はメモリ 573に保存される。
[0069] 画像処理装置 571は撮像装置 567において撮像された画像を処理するためのコン ピュータ装置を含み、これにより立体モデル 21の内部の応力の大きさの分布が特定 される。特定された結果は、モニタ 575に表示されまたプリンタ 577により紙面上に印 刷される。入力デバイス 579は画像処理に必要な各種のパラメータ等を入力するた めのキーボードやポインティングデバイスからなる。
メモリ 573には画像処理装置 571のコンピュータ装置の動作を規定する制御プログ ラムが保存されている。
[0070] 画像処理装置 571の処理を図 21に示すフローチャートに従い説明する。
ステップ 501ではメモリ 573に保存されている二次元画像 (光弾性効果を撮像した もの)を読み出して、ステップ 503で l〜nのスライスに分割する (ステップ 503)。例え ば、図 20の例では紙面の上下方向に l〜nまでスライスを設定し、各二次元画像から スライスに対応する部分を抽出可能とする。
ステップ 505では、立体モデルのスライス mに存在するボタセル(画素単位)と各二 次元画像からスライス mに対応して抽出された光弾性効果との間に連立方程式を設 定し、例えばフーリエ変換の技法を用いて当該連立方程式の解を得る。この解がスラ イス mに含まれるボタセルの応力の強さとなる。
全てのスライスについてそのボタセルの応力の強さが指定されたら(ステップ 507, 509)、応力の強さに応じて各ボタセルに色を与える。例えば、応力がゼロの部分は 無色 (バックグランド色)として応力が大きくなるにつれ赤色、若しくは緑色が強くなる よう〖こすることができる。これにより、各スライスにおける応力の分布が色で表されるこ ととなる(ステップ 511)。
[0071] ステップ 513では、ステップ 511で得られた色表示されたスライスを積層すること〖こ より、全てのボタセルの応力の大きさを色で表示する。
全てのボタセルの応力の大きさが特定されているので、そのボタセルを任意に抽出 することにより、スライス面を変更することができる。例えば、図 20の例において、紙面 に平行なボタセルを選択することにより、紙面に平行な断層上における応力の強さの 分布を得ることができる。
上記の例では光学系 560を回転させた力 立体モデル 21を回転させても同様な効 果が得られる。
[0072] 以下、次の事項を開示する。
(1) 少なくとも体腔を再現した腔所の周囲領域が弾性材料で形成され、カテーテル の挿入が可能な透光性の立体モデルを通過する光に生じる光弾性効果を検出する 応力検出装置であって、
偏光光源とそれに対応する偏光フィルタと、前記偏光フィルタを透過した光を撮像 する撮像装置とを備えてなる光学系と、
前記偏光光源と前記偏光フィルタの間に配置される前記立体モデルを中心にして 、前記光学系の相対位置を少なくとも 180度回転させる回転装置と、
該回転に伴!、撮像される複数の画像を処理して、前記立体モデルの所望の断層 面における応力の分布を演算する演算装置と、
を備えてなる応力検出装置。
(2) 前記断層面における応力の強さの分布を積層することにより、立体モデルの三 次元の応力の分布を演算する第 2の演算装置が更に備えられている、ことを特徴と する(1)に記載の応力検出装置。
(3) 前記応力の分布を出力する出力装置が更に備えられる、ことを特徴とする(1) 又は(2)に記載の応力検出装置。
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものでは ない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々 の変形態様もこの発明に含まれる。

Claims

請求の範囲
[1] 少なくとも体腔を再現した腔所の周囲領域が弾性材料で形成され、カテーテルの 挿入が可能な透光性の立体モデルを通過する光に生じる光弾性効果を検出する立 体モデルの応力観測装置であって、
偏光光源及びそれに対応する観察側偏光フィルタと、
該偏光光源及びそれに対応する観察側偏光フィルタの内側に配置される位相シフ トフィルタであって、前記光源からの光の一部が背景色として前記観察側偏光フィル タを透過可能とする位相シフトフィルタと、を備え、
前記光弾性効果と前記立体モデルへ挿入されたカテーテルの影をともに目視可能 とした、ことを特徴とするカテーテル手術シミュレータ。
[2] 前記位相シフトフィルタは 1波長板又は 2波長板力もなる、ことを特徴とする請求項 1 に記載のカテーテル手術シミュレータ。
[3] 前記偏光光源及び前記観察側偏光フィルタの内側に、円偏向法観察が実現され るように一対の 1Z4波長フィルタが配置され、前記位相シフトフィルタは前記観察側 偏光フィルタとそれに近い前記 1Z4波長フィルタとの間力 あるいは前記偏光光源と それに近い前記 1Z4波長フィルタとの間に配置されて、当該 1Z4波長フィルタの光 学軸に対して ± 5度〜 ±40度傾斜されている、ことを特徴とする請求項 1又は 2に記 載のカテーテル手術シミュレータ。
[4] 前記位相シフトフィルタは前記 1Z4波長フィルタの光学軸に対して ± 22. 5度傾斜さ れて 、る、ことを特徴とする請求項 3に記載のカテーテル手術シミュレータ。
[5] 前記偏光光源及び前記観察側偏光フィルタの内側に、円偏向法観察が実現され るように一対の 1Z4波長フィルタが配置され、前記位相シフトフィルタは前記一対の 1Z4波長フィルタの間に配置されている、ことを特徴とする請求項 1又は 2に記載の カテーテル手術シミュレータ。
[6] 前記観察側偏光フィルタと前記位相シフトフィルタが積層され、メガネの窓の部分 が形成されている、ことを特徴とする請求項 1又は 2に記載のカテーテル手術シミュレ ータ。
[7] 前記膜状モデルと比較して光弾性効果をほとんど生じさせないゲル力もなりかつ前 記膜状モデルに対して密着性のある基材で前記膜状モデルが囲繞されている、こと を特徴する請求項 1〜6のいずれかに記載のカテーテル手術シミュレータ。
[8] 前記基材を収納する透光性のケーシングであって、該ケーシングと前記膜状モデ ルとの間において、前記基材は前記膜状モデルの自由変形を許容するマージンを 有するケーシングが更に備えられる、ことを特徴とする請求項 7に記載のカテーテル 手術シミュレータ。
[9] 前記膜状モデルはウレタン榭脂若しくはウレタンエラストマ一力もなり、前記基材は シリコーンゲル力もなる、ことを特徴とする請求項 7に記載のカテーテル手術シミュレ ータ。
[10] 前記偏光光源は白色光源と偏光フィルタ力もなる、ことを特徴とする請求項 1に記 載のカテーテル手術シミュレータ。
[11] 前記偏光光源からは緑色系の光が放出される、ことを特徴とする請求項 4に記載の カテーテル手術シミュレータ。
[12] 前記偏光光源はディスプレイ装置を含む、ことを特徴とする請求項 1に記載のカテ 一テル手術シミュレータ。
[13] 前記ディスプレイ装置は偏光を放出する液晶ディスプレイ力もなる、ことを特徴とする 請求項 12に記載のカテーテル手術シミュレータ。
[14] 前記光弾性効果を撮像する撮像部が更に備えられ、該撮像部の撮像結果に基づ き前記ディスプレイ装置に所定の表示を行なう、ことを特徴とする請求項 12又は 13 に記載のカテーテル手術シミュレータ。
[15] 少なくとも体腔を再現した腔所の周囲領域が弾性材料で形成された透光性の立体 モテノレへ力テーテノレを揷人し、
偏光光源と及びそれに対応する偏光フィルタの間に前記立体モデルを配置して、 前記カテーテルにより前記周囲領域に生じた応力に対応する光弾性効果を生じさせ 偏光光源と及びそれに対応する偏光フィルタの間に位相シフトフィルタを介在させ ることにより、前記光弾性効果とともに前記立体モデルへ挿入されたカテーテルの影 を観察可能とする、ことを特徴とする立体モデルの応力観測方法。
[16] 少なくとも体腔を再現した腔所の周囲領域が弾性材料で形成された透光性の立体 モデノレへ力テーテノレを揷人し、
偏光光源と及びそれに対応する偏光フィルタの間に前記立体モデルを配置して、 前記カテーテルにより前記周囲領域に生じた応力に対応する光弾性効果を生じさせ 偏光光源に対して前記偏光フィルタを非直交状態とすることにより、前記光弾性効 果とともに前記立体モデルへ挿入されたカテーテルの影を観察可能とする、ことを特 徴とする立体モデルの応力観測方法。
[17] 前記立体モデルの光弾性効果を撮像する撮像部と、
該撮像部により撮像された画像を処理して、前記立体モデルの状態を特定する特 徴量を生成する画像処理部と、
該画像処理装置で生成された特徴量を出力する、又は該特徴量に基づきアラーム を出力する出力部と、が更に備えられていることを特徴とする請求項 1に記載のカテ 一テル手術シミュレータ。
[18] 前記特徴量は、応力値であることを特徴とする、請求項 17に記載のカテーテル手 術シミュレータ。
[19] 前記特徴量は、画素の輝度、あるいは当該画素の輝度に一定の法則に基づいて 重み係数を乗じ、それらをある領域内の画素について足し合わせることにより得られ る計算値であることを特徴とする、請求項 17に記載のカテーテル手術シミュレータ。
[20] 前記画像処理装置で特定された特徴量を積算する手段が更に備えられる、ことを 特徴とする請求項 17〜 19の 、ずれか〖こ記載のカテーテル手術シミュレータ。
[21] 前記膜状モデルへ造影剤を導入した状態の画像を保存する手段が更に備えられ、 前記出力部は前記画像の上に重ねて前記撮像部が撮像した光弾性効果を表示す る、ことを特徴とする請求項 17に記載のカテーテル手術シミュレータ。
[22] 検出した光弾性効果に基づき応力の方向及び Z又は応力の大きさを特定する手 段が更に備えられる、ことを特徴とする請求項 1に記載のカテーテル手術シミュレータ
[23] 前記観察側偏光フィルタを透過した光を撮像する撮像装置と、 前記偏光光源と前記観察側偏光フィルタの間に配置される前記立体モデルを中心 にして、前記光学系の相対位置を少なくとも 180度回転させる回転装置と、 該回転に伴!、撮像される複数の画像を処理して、前記立体モデルの所望の断層 面における応力の分布を演算する演算装置と、を更に備えることを特徴とする請求項
3又は 4に記載のカテーテル手術シミュレータ。
[24] 前記断層面における応力の強さの分布を積層することにより、立体モデルの三次 元の応力の分布を演算する第 2の演算装置が更に備えられている、ことを特徴とする 請求項 23に記載のカテーテル手術シミュレータ。
[25] 前記応力の分布を出力する出力装置が更に備えられる、ことを特徴とする請求項 2
3又は 24に記載のカテーテル手術シミュレータ。
PCT/JP2006/309175 2005-05-06 2006-05-02 カテーテル手術シミュレータ WO2006120982A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/913,301 US7583367B2 (en) 2005-05-06 2006-05-02 Catheter surgery simulation
EP06746025.3A EP1887543B1 (en) 2005-05-06 2006-05-02 Catheter surgery simulation

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2005-134730 2005-05-06
JP2005134730 2005-05-06
JP2005-167421 2005-06-07
JP2005167421 2005-06-07
JP2005315832A JP4997385B2 (ja) 2005-05-06 2005-10-31 カテーテル手術シミュレータ
JP2005-315893 2005-10-31
JP2005-315894 2005-10-31
JP2005315893A JP4883754B2 (ja) 2005-10-31 2005-10-31 カテーテル手術シミュレータ
JP2005315894A JP2007121174A (ja) 2005-10-31 2005-10-31 応力検出装置
JP2005-315832 2005-10-31

Publications (1)

Publication Number Publication Date
WO2006120982A1 true WO2006120982A1 (ja) 2006-11-16

Family

ID=37396492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309175 WO2006120982A1 (ja) 2005-05-06 2006-05-02 カテーテル手術シミュレータ

Country Status (3)

Country Link
US (1) US7583367B2 (ja)
EP (1) EP1887543B1 (ja)
WO (1) WO2006120982A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013125026A1 (ja) * 2012-02-24 2015-07-30 ファインバイオメディカル有限会社 潤滑性調整液
US9283026B2 (en) 2005-12-06 2016-03-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
JP2019082390A (ja) * 2017-10-30 2019-05-30 富士ゼロックス株式会社 表面特性取得装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478437B2 (en) * 2006-06-16 2013-07-02 The Invention Science Fund I, Llc Methods and systems for making a blood vessel sleeve
US8550344B2 (en) * 2006-06-16 2013-10-08 The Invention Science Fund I, Llc Specialty stents with flow control features or the like
US20080172073A1 (en) * 2006-06-16 2008-07-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Active blood vessel sleeve
US20090024152A1 (en) * 2007-07-17 2009-01-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Custom-fitted blood vessel sleeve
US8551155B2 (en) * 2006-06-16 2013-10-08 The Invention Science Fund I, Llc Stent customization system and method
US20080133040A1 (en) * 2006-06-16 2008-06-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for specifying a blood vessel sleeve
JP5140857B2 (ja) * 2008-05-12 2013-02-13 株式会社大野興業 手術シミュレーション用軟質血管モデルの製造方法
FI8206U1 (fi) * 2008-10-20 2009-02-27 Stiftelsen Arcada Kanylointisimulantti
US8811693B2 (en) * 2010-07-13 2014-08-19 Siemens Aktiengesellschaft Method and system for indicating a feeding vessel of a malformation in a medical image
CN101940498B (zh) * 2010-09-10 2012-05-09 中山大学 一种用于虚拟导航评价肿瘤消融安全边界的模型
KR101205970B1 (ko) * 2010-11-18 2012-11-28 주식회사 고영테크놀러지 브리지 연결불량 검출방법
US8577693B2 (en) 2011-07-13 2013-11-05 The Invention Science Fund I, Llc Specialty stents with flow control features or the like
JP5769194B2 (ja) * 2011-07-20 2015-08-26 朝日インテック株式会社 血管狭窄モデル
TWI476391B (zh) * 2011-11-02 2015-03-11 Ind Tech Res Inst 光學量測裝置
WO2016028821A1 (en) * 2014-08-18 2016-02-25 The General Hospital Corporation System and methods for a haptic medical simulation device
WO2016181320A1 (en) 2015-05-12 2016-11-17 Navix International Limited Fiducial marking for image-electromagnetic field registration
RU2017140233A (ru) 2015-05-12 2019-06-13 Навикс Интернэшнл Лимитед Оценка качества контакта посредством анализа диэлектрических свойств
US10881455B2 (en) 2015-05-12 2021-01-05 Navix International Limited Lesion assessment by dielectric property analysis
US10278616B2 (en) 2015-05-12 2019-05-07 Navix International Limited Systems and methods for tracking an intrabody catheter
WO2018011757A1 (en) 2016-07-14 2018-01-18 Navix International Limited Characteristic track catheter navigation
EP3291208B1 (en) 2016-08-31 2020-09-30 Ricoh Company, Ltd. Hydrogel structure, blood vessel, internal organ model, practice tool for medical procedure, and method of manufacturing the hydrogel structure
US10709507B2 (en) 2016-11-16 2020-07-14 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
WO2018092071A1 (en) 2016-11-16 2018-05-24 Navix International Limited Estimators for ablation effectiveness
WO2018092059A1 (en) 2016-11-16 2018-05-24 Navix International Limited Tissue model dynamic visual rendering
WO2018092070A1 (en) 2016-11-16 2018-05-24 Navix International Limited Esophagus position detection by electrical mapping
WO2018092062A1 (en) 2016-11-16 2018-05-24 Navix International Limited Real-time display of tissue deformation by interactions with an intra-body probe
CN108519054B (zh) * 2018-04-24 2019-12-17 长春理工大学 圆弧形红外目标模拟器的标定装置及标定方法
CN111397780A (zh) * 2020-03-30 2020-07-10 中国航发湖南动力机械研究所 一种提高环氧树脂光弹性模型旋转应力条纹级数值的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111726A (ja) * 1989-09-27 1991-05-13 Sumitomo Heavy Ind Ltd 光弾性特性測定方式
JPH07128225A (ja) * 1993-10-29 1995-05-19 Ono Sokki Co Ltd 結晶軸検出装置
JPH10332533A (ja) * 1997-06-03 1998-12-18 Unie Opt:Kk 複屈折評価装置
US6083008A (en) * 1997-09-01 2000-07-04 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Optical phantom of living body and method for producing it
WO2003096308A1 (en) * 2002-05-10 2003-11-20 Nagoya Industrial Science Research Institute Three-dimensional model
JP3670657B1 (ja) * 2003-10-16 2005-07-13 福田 敏男 立体モデル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2347666A1 (fr) * 1976-04-09 1977-11-04 France Etat Photoelasticimetre automatique a deux longueurs d'ondes
JPS6269110A (ja) * 1985-09-21 1987-03-30 Ushio Inc 光学的歪計測方法
DE19503851A1 (de) * 1994-02-07 1995-08-10 Steinbichler Hans Verfahren und Vorrichtung zur Bestimmung der Isochromatenwerte in der Spannungsoptik
US20010041884A1 (en) * 1996-11-25 2001-11-15 Frey Rudolph W. Method for determining and correcting vision

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111726A (ja) * 1989-09-27 1991-05-13 Sumitomo Heavy Ind Ltd 光弾性特性測定方式
JPH07128225A (ja) * 1993-10-29 1995-05-19 Ono Sokki Co Ltd 結晶軸検出装置
JPH10332533A (ja) * 1997-06-03 1998-12-18 Unie Opt:Kk 複屈折評価装置
US6083008A (en) * 1997-09-01 2000-07-04 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Optical phantom of living body and method for producing it
WO2003096308A1 (en) * 2002-05-10 2003-11-20 Nagoya Industrial Science Research Institute Three-dimensional model
JP3670657B1 (ja) * 2003-10-16 2005-07-13 福田 敏男 立体モデル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO SHU XIANG ET AL.: "Nodo Katheter System ni Kansuru Kenkyu Tajiyudo Katheter no Kozo, Jikken Kekka to Dosa Tokusei no Hyoka", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 14, no. 6, 15 September 1996 (1996-09-15), pages 62 - 77, XP003006903 *
See also references of EP1887543A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283026B2 (en) 2005-12-06 2016-03-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
JPWO2013125026A1 (ja) * 2012-02-24 2015-07-30 ファインバイオメディカル有限会社 潤滑性調整液
JP2019082390A (ja) * 2017-10-30 2019-05-30 富士ゼロックス株式会社 表面特性取得装置

Also Published As

Publication number Publication date
EP1887543A1 (en) 2008-02-13
US7583367B2 (en) 2009-09-01
EP1887543A4 (en) 2011-04-20
US20090015818A1 (en) 2009-01-15
EP1887543B1 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
WO2006120982A1 (ja) カテーテル手術シミュレータ
KR100713726B1 (ko) 입체 모델
JP2008070847A (ja) カテーテル手術シミュレータ
CN107452266B (zh) 制造模型的方法和模型
CA2494588C (en) Three-dimensional model
CN105264459B (zh) 用于模拟外科手术的触觉增强和虚拟现实系统
US20040234933A1 (en) Medical procedure training system
WO2002070980A1 (en) Simulation system for image-guided medical procedures
WO2005081205A1 (ja) カテーテル検査シミュレーションシステム
US20190355280A1 (en) Echogenic organ replica and method of manufacture using an additive manufacturing system
JP4997385B2 (ja) カテーテル手術シミュレータ
Ikeda et al. In vitro patient-tailored anatomical model of cerebral artery for evaluating medical robots and systems for intravascular neurosurgery
KR101929656B1 (ko) 대상물의 다감각연계 표현을 위한 방법 및 표현 시스템
JP2007121174A (ja) 応力検出装置
JP6129284B2 (ja) 褥瘡診断訓練用の生体組織モデルおよび人体モデル
JP3670657B1 (ja) 立体モデル
WO2017207361A1 (en) Method of assessing the performance of a human or robot carrying out a medical procedure and assessment tool
JP4883754B2 (ja) カテーテル手術シミュレータ
JP2006113520A (ja) 応力観察装置
US20220084440A1 (en) 3D Physical Replica Of A Cardiac Structure And A Method For Manufacturing The Same
US20230245592A1 (en) Medical training model having at least one blood vessel model
JP2006113532A (ja) 応力観察装置
RU2776983C1 (ru) Способ изготовления фантома для транскраниальных ультразвуковых исследований
WO2023058759A1 (ja) 壁厚み推定方法、コンピュータプログラム、学習方法、模型作製方法、壁厚み推定装置及び壁厚み推定システム
Fukuda et al. Social impact of in-vitro endovascular surgery simulation technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007526096

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11913301

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006746025

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746025

Country of ref document: EP