JP5236103B1 - 臓器モデルの製造方法、臓器モデル製造用の型、及び臓器モデル - Google Patents
臓器モデルの製造方法、臓器モデル製造用の型、及び臓器モデル Download PDFInfo
- Publication number
- JP5236103B1 JP5236103B1 JP2012157201A JP2012157201A JP5236103B1 JP 5236103 B1 JP5236103 B1 JP 5236103B1 JP 2012157201 A JP2012157201 A JP 2012157201A JP 2012157201 A JP2012157201 A JP 2012157201A JP 5236103 B1 JP5236103 B1 JP 5236103B1
- Authority
- JP
- Japan
- Prior art keywords
- organ model
- resin
- shell
- organ
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/30—Anatomical models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- Chemical & Material Sciences (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Instructional Devices (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
【課題】実際の人体の臓器に近い弾力性を有する材料で形成された立体的な臓器モデルを低コストで精度良く製造する。
【解決手段】臓器モデルの製造方法は、人体臓器の撮影データに基づいて、光硬化性の造形樹脂12、及びこの造形樹脂をサポートする光硬化性のサポート樹脂13に硬化光を照射することで、サポート樹脂にサポートされながら造形樹脂を硬化して、空洞部となる領域16、及び臓器モデルの構成壁となる領域17を有する外形体120を形成する外形体形成工程と、外形体120からサポート樹脂13を除去して、臓器モデルの外面を覆う外殻部12A、及び臓器モデルの内面を覆う内殻部12Bを有する殻体型10を形成する殻体型形成工程と、殻体型10の外殻部12Aと内殻部12Bとの間の空間15に、柔軟性を有する注型材料20を充填する充填工程と、注型材料が充填された殻体型10を除去する除去工程を有する。
【選択図】図3
【解決手段】臓器モデルの製造方法は、人体臓器の撮影データに基づいて、光硬化性の造形樹脂12、及びこの造形樹脂をサポートする光硬化性のサポート樹脂13に硬化光を照射することで、サポート樹脂にサポートされながら造形樹脂を硬化して、空洞部となる領域16、及び臓器モデルの構成壁となる領域17を有する外形体120を形成する外形体形成工程と、外形体120からサポート樹脂13を除去して、臓器モデルの外面を覆う外殻部12A、及び臓器モデルの内面を覆う内殻部12Bを有する殻体型10を形成する殻体型形成工程と、殻体型10の外殻部12Aと内殻部12Bとの間の空間15に、柔軟性を有する注型材料20を充填する充填工程と、注型材料が充填された殻体型10を除去する除去工程を有する。
【選択図】図3
Description
本発明は、人体などの生体内部に存在する様々な臓器を立体モデルとした臓器モデルを製造する製造方法、そのような製造方法に用いられる臓器モデル製造用の型、及び、前記した方法や型を用いて製造される臓器モデルに関する。
従来、医療現場では、レントゲン装置やCTスキャン装置、超音波診断装置等が用いられており、医者は、これらの装置から得られるデータ(写真、画像データなどの二次元データ)から患部の状態を把握したり、これらのデータを参照して実際に手術等することが行われている。そして、実際に人体の手術をするに際しては、写真のような二次元データのみならず、対象となる患部を三次元的に把握することが重要である。例えば、心臓をカテーテルによって治療する手術では、具体的に治療する部位(実際にカテーテルが侵入して行く血管、及びステントが設置される部位)が、どのような構造になっているかを予め三次元的に把握しておくことが好ましい。
また、カテーテルを使用した手術では、実際に人体に対して手術をする前段階として、豚などの動物等を対象として実践的な練習も行われているが、人体と動物では、その基本的な生体構造は異なっており、また、両者の臓器についても構造が異なることから、十分なものではない。さらに、そのような動物を対象として練習する際においても、カテーテルを操作する上で、実際の人体の心臓構造との間で、カテーテルがどのような挙動を示すかを視覚的に把握することはできない。
このため、例えば、特許文献1や特許文献2には、CTスキャンによって取り込んだ画像データから、実際に立体的な臓器モデルを作成する技術が開示されている。これらの公知技術は、光学的造形法によって立体的な臓器を製造するものであり、CTスキャナなどによって得られた二次元画像データに基づいて、光硬化性樹脂に対してレーザ光を照射して立体的な臓器モデルを製造する。
しかし、上記のような光学的造形法によって製造される臓器モデルは、光硬化性樹脂で構成されるため、実際の人体の臓器と比較すると、その硬度が極めて高く、また、臓器のような弾力性を備えていないことから、触手した感覚は勿論、上記したようなカテーテルを操作する際の挙動についても異なってしまい、実際の手術をシミュレーションする上では適切なものではない。さらに、実際の人体の臓器と同様な触手感覚が得られ、かつその形状を忠実に再現した臓器モデルを低コストで容易に製造することも難しい。
このため、特許文献3には、光学的造形法を利用して外型と中子を形成し、これらを利用して心臓モデルを製造する方法が開示されている。具体的には、心臓のマスターモデルから外型を作製すると共に、心臓の断層データから心臓の空洞部の輪郭形状の三次元データを作成し、この三次元データから肉厚分をオフセットして中子を作製する。そして、中子を外型内にセットして、両者の間の隙間に軟質樹脂材料を注入した後に脱型し、その後、中子を粉砕、排出することで臓器(心臓)モデルを製造している。
また、本件特許出願人は、先の出願である特許文献4において、光学的造形法を利用して、臓器モデルを作成するための型を形成し、その型を用いて実際の臓器モデルを製造する方法を提案している。この臓器モデルの製造方法では、光学的造形法によって臓器の外形体と内形体を形成しておき、前記外形体を用いて内部空間を有する割り型(基本型)を作成すると共に、前記内形体を用いて中子形成用の割り型(中子型)を作成しておく。そして、前記中子型から実際の中子を形成し、この中子を前記基本型に対して所定の空間を有するように位置決めセットして両者の空間に柔軟性を有する熱可塑性樹脂を注入し、熱可塑性樹脂が硬化した後、中子を溶融、除去することによって、柔軟性を有する臓器モデルを製造している。
しかし、人体の臓器は極めて複雑な形状(特に内部形状は複雑である)となっていることから、上記した外型と中子による臓器モデルの製造方法では、型を抜く方向や割る位置が難しく、忠実なモデルを製造し難いという問題がある。また、最終の型を製造するまでには、臓器の外形体、及び内形体を形成しておき、これらを転写して前記基本型(外型)、及び中子を作成するため、製造工程が複雑で製品コストが高くなると共に、精度も低下してしまう。さらに、患者固有の臓器モデルを再現するケースでは、上記したような型を製造することは、かえって型代が高くなってしまうという問題がある。
本発明は、上記した問題に着目してなされたものであり、第1の目的は、実際の人体の臓器に近い弾力性を有する材料で形成された立体的な臓器モデルを、低コストで精度良く製造することが可能な臓器モデルの製造方法、及びそのような製造方法によって製造される臓器モデルを提供することにある。また、本発明の第2の目的は、そのような臓器モデルの製造を可能にする臓器モデル製造用の型を提供することにある。
上記した目的を達成するために、本発明は、内部に空洞部を有する臓器モデルを製造する方法を提供する。この製造方法は、人体臓器の撮影データに基づいて、光硬化性の造形樹脂、及びこの造形樹脂をサポートする光硬化性のサポート樹脂に硬化光を照射することで、前記サポート樹脂にサポートされながら前記造形樹脂を硬化して、前記空洞部となる領域、及び前記臓器モデルの構成壁となる領域を有する外形体を形成する外形体形成工程と、前記外形体から前記サポート樹脂を除去して、前記臓器モデルの外面を覆う外殻部、及び前記臓器モデルの内面を覆う内殻部を有する殻体型を形成する殻体型形成工程と、前記殻体型の外殻部と内殻部との間の空間に、柔軟性を有する注型材料を充填する充填工程と、前記注型材料が充填された殻体型を除去する除去工程と、を有することを特徴とする。
上記した製造方法では、最初に、人体臓器の撮影データに基づいて、光硬化性の造形樹脂、及びこの造形樹脂をサポートする光硬化性のサポート樹脂に硬化光、例えば、紫外線ランプからの紫外光やレーザ光等を照射することで、前記サポート樹脂にサポートされながら前記造形樹脂を硬化して、臓器モデルの空洞部となる領域、及び構成壁となる領域を有する外形体を形成する。この外形体の外部(表面)は、造形樹脂によって形成されており、外形体の内部は、造形樹脂がサポート樹脂によって、浮遊した状態で所定の形状を維持している。
次に、上記のように形成された外形体からサポート樹脂を除去することで、前記造形樹脂によって、臓器モデルの外面を覆う外殻部、及び前記臓器モデルの内面を覆う内殻部を有する殻体型が形成される。この場合、外殻部の内面側は、臓器モデルの表面形状と一致しており、かつ、内殻部の外面側は、臓器モデルの空洞部に面する表面形状と一致している。
そして、上記のように形成された殻体型に対し、外殻部と内殻部との間の空間に、柔軟性を有する注型材料を充填する。この注型材料は、臓器モデルそのものを形成するものであり、注型材料が固まった状態で、殻体型を除去する(破壊する)ことで、撮影された人体臓器を正確に転写した臓器モデルが得られる。
上記した外形体は、人体臓器の撮影データに基づいて、光造形技術によって、人体臓器の外側形状及び内側形状を正確に再現することができ、サポート樹脂を除去することにより、造形樹脂によって臓器モデル製造用の型(殻体型)が製造される。このように製造される型(殻体型)は、人体臓器の撮影データを正確に転写したものであり、この型内に柔軟性を有する注型材料、特に、実際の人体の臓器に近似した硬度の注型材料を充填することで、人体臓器に近い状態の臓器モデルを得ることが可能となる。
本発明によれば、実際の人体の臓器に近いような弾力性を有する材料で形成された立体的な臓器モデルを低コストで精度良く製造することが可能となる。
以下、本発明に係る臓器モデルの製造方法について、添付図面を参照しながら具体的に説明する。なお、以下に説明する臓器モデルの製造方法では、人体臓器として心臓を取り上げることとする。このため、以下の実施形態において製造される臓器モデルは、心臓モデルとなる。
また、本発明における臓器モデルの製造方法では、最初に光造形技術を用いて、臓器モデル製造用の型(殻体型)を作製する。この型は、最終的に、立体的で内部に空洞部や突出壁等、人体の臓器そのものを再現したモデルを形成するものであり、一般の工業製品を製造する抜き型とは異なって、注型材料(臓器モデルを形成する材料)を充填し、それが硬化した後、破壊されるものである。すなわち、製造する臓器モデル毎に型が作製され、再利用されることはない。
上記した型の作製に際しては、光硬化性の造形樹脂、及びこの造形樹脂をサポートする光硬化性のサポート樹脂に硬化光(本実施形態では、紫外線ランプからの紫外光)を照射することで、前記サポート樹脂にサポートされながら前記造形樹脂を硬化する光造形装置が使用される。この光造形装置は、異なるタイプの光硬化性樹脂(造形樹脂とサポート樹脂)を、物体形成部(作業ステージ)に対し、所定の膜厚で連続的に積層しつつ、順次積層されて行く各光硬化性樹脂に対して紫外線ランプからの紫外光を照射して、所望の立体形状を得るものである。この場合、サポート樹脂は、造形樹脂をサポートしつつ立体形状(外形体)を形成して行く役目を果たし、最終的に、得られた外形体から除去される。このため、サポート樹脂としては、造形樹脂に対して容易に取り除ける材料が用いられ、例えば、造形樹脂との比較で、融点が低い低融点樹脂や、水に溶け易い水溶性樹脂を用いることが可能である。本実施形態では、造形樹脂として、耐水性が高い光硬化性のアクリル樹脂を用い、サポート樹脂として、使用される造形樹脂から容易に除去し易い水溶性の樹脂を用いることが可能な光硬化型三次元プリンタ(例えば、キーエンス社のAGILISTA-3000)を使用して前記型(殻体型)を作製する。
図1に示すように、本実施形態の心臓モデル1は、実際の人体心臓(図示せず)を中実に再現したものであり、外面(表皮部)1Aによって全体形状が特定される。この心臓モデル1は、その内部に、実際の心臓と同様、空洞部となる領域、具体的には、心室部(左心室、右心室)、及び、心房部(左心房、右心房)を有しており、その表面部分には、前記心室部及び心房部と繋がる大動脈2、上大静脈3、下大静脈4、肺動脈5、肺静脈6などの構成組織が形成される。なお、図1では、図示しないが、前記心室部、及び心房部を規定する内面(裏皮部)を符号1Bとする(後述する図3参照)。
図2は、図1で示す心臓モデル1を製造する型(殻体型)10を示している。図に示す殻体型10は、その構造が分かり易いように、右心房側を切断して示しており、前記心臓モデル1の外面1Aを覆う外殻部12A、及び前記心臓モデル1の内面1Bを覆う内殻部12Bを有している。図1に示す心臓モデルは、図2に示す殻体型10の外殻部12Aと内殻部12Bとの間の空間15に柔軟性を有する注型材料を充填し、充填した注型材料が硬化した後、殻体型10を除去することで製造される。
図1に示す心臓モデル1を製造する工程について、図3(a)〜(d)を参照しながら具体的に説明する。なお、実際の心臓の形状は複雑であるため、図3では、分かり易いように、その形状を簡易にして模式的に示してある。
最初に、心臓の撮影データ、例えば、二次元断層像データを取得する。この二次元断層像データ(以下、断層像データ)は、一般的に知られているように、CTスキャンに代表される画像撮影装置によって実際の人体を撮影することで得られ、この断層像データから心臓の外面の形状と内面の形状を特定することが可能となる。なお、内面の内側は、上記した心室や心房等を規定する内部空間(空洞部)となり、内面と外面の間の肉厚部分が実際の心臓の形状を特定する、いわゆる構成壁部分となる。
次に、前記光造形装置を用いて、光硬化性の造形樹脂12及びこの造形樹脂をサポートする光硬化性のサポート樹脂13を、物体形成部(作業ステージ)に対し、所定の膜厚で連続的に積層しつつ、順次積層されて行く造形樹脂12及びサポート樹脂13に対して、前記取得された心臓の断層像データに基づいて紫外線ランプからの紫外光を照射し、心臓に対応する立体形状を形成して行く。この場合、各光硬化性樹脂12,13に対して紫外光を照射することで、硬化するサポート樹脂13にサポートされながら前記造形樹脂12も硬化され、図3(a)に示すように、最終的に、空洞部となる領域16、及び心臓モデルの構成壁となる領域17を有する外形体120が形成される。
次に、外形体120からサポート樹脂13を除去する。上記したように、サポート樹脂13は、水溶性の樹脂材によって構成されており、洗浄水にさらすことで、サポート樹脂自体が吸湿、吸水することで溶解し、容易に除去することができる。この場合、外形体120の外側に、多数の孔を開けておくことが好ましく、これにより、サポート樹脂13に対する洗浄水の接触面積を向上することができ、洗浄効率を上げることができる。このような孔は、直径1mm程度あれば良く、外形体120の造形時に開けたり、外形体120の造形後に開けることができ、サポート樹脂13が除去された後は、接着剤等によって封孔される。
また、洗浄水にアルコール又は界面活性剤を添加することで、サポート樹脂13に対する溶解性が向上し、効率的に造形樹脂12からサポート樹脂13を除去することが可能となる。なお、上記以外にも、マグネットスターラーやウォーターポンプ等によって洗浄水を撹拌する、ヒータ等によって洗浄水の温度を上げておく、マイクロ、ナノバブルによる洗浄、超音波洗浄、圧力チャンバによって高圧にする、等を採用しても良く、さらには、これらを適宜、組み合わせることで、サポート樹脂13を効率的かつ残存することなく、造形樹脂12から除去することが可能となる。
上記したように、サポート樹脂13が除去されると、外形体120は、図3(b)で示すような殻体型10となる。この殻体型10は、図1に示す心臓モデル1の外面1Aを覆う外殻部12A、及び心臓モデル1の内面1Bを覆う内殻部12Bを有している。この殻体型10の外殻部12Aと内殻部12Bとの間の空間15の厚さTは、心臓モデルの肉厚(構成壁の肉厚)に相当しており(2mm〜10mm程度とされる)、この空間15に、柔軟性を有する注型材料20が充填される。
なお、内殻部12Bは、空間15を介して外殻部12Aに保持された状態(浮遊した状態)となるが、内殻部12Bを位置決め保持する保持部は、心臓モデルの構成要素である上大動脈、上大静脈、下大静脈などを利用することが可能である。これらは、心臓モデルの内部の空洞部16から外部に突出する開口部分となっているため、これらの開口部の端面が内殻部12Bを保持する保持部12Cとなり、光造形時において内殻部12Bは外殻部12Aに対して保持された状態となる。また、外殻部12Aの一部には、中型材料20を充填するための充填口20Aが光造形時に形成される。この場合、注型材料20が前記空間15に万遍なく行き渡るように、充填口20Aは、複数形成しておいても良い。
上記したように作製された殻体型10に対し、図3(c)に示すように、外殻部12Aと内殻部12Bとの間の空間15に、前記充填口20Aを介して柔軟性を有する注型材料20が充填される。この場合、注型材料20を充填する前に、殻体型10の空間部15に面する領域に、離型性が良く、表面の凹凸が転写されないように、離型剤やコーティング剤を塗布しておくことが好ましい。また、注型材料20は、最終的に心臓モデルを構成する素材となるため、硬度や触感等、実際の心臓に近い材料が用いられる。例えば、シリコーン(付加タイプ/縮合タイプ)、ウレタン、PVA(ポリビニルアルコール)、などの高分子ゲル材料を用いることが可能である。
また、充填される材料については、最終的に硬化した際、透明になるものや、自由に着色できるものを用いることが好ましい。すなわち、透明系にすることで、カテーテルを操作したりステントを設置する等の施術をする際の挙動(カテーテルの進入経路、ステントの設置位置や設置状態)が目視できるようになることから、効果的なシミュレーションをすることが可能になるためである。一方、有色系の外観の場合、実際の施術に極めて近い状態を再現することができ、実践的なシミュレーションが可能になる。
本実施形態では、透明性、及び弾性の面で優れた特性を有する付加タイプのシリコーンを用いている。この場合、注型時の取扱い性を向上するために、注型材料にシンナーを混入しておくことが好ましい。このようにシンナーを混入することで、注型材料の粘性が低下して、注型作業が容易になる。
なお、前記シンナーは、混入し過ぎると強度等の特性が低下するため、10〜50wt%混入することが好ましい。また、上記した殻体型10の空間部15は、密閉されており、かつ、透明度の高いシリコーンを使用するため、充填時に減圧脱泡処理を行なって気泡を除去することが好ましい。すなわち、注型材料の充填時に減圧脱泡処理を施すことによって、角領域に残り易い気泡が除去されると共に、より透明度の高い心臓モデルを得ることが可能となる。
そして、充填された注型材料20が硬化した後、図3(d)に示すように、殻体型10を破壊(除去)して離型する。この場合、殻体型10は、耐水性が高い光硬化型アクリル樹脂(造形樹脂12)が用いられるが、この材料は、耐熱、耐薬品性が低いことから、以下の手法を用いることで容易に除去することが可能となる。
上記した造形樹脂12は、約50℃を超えると軟化するため、軟化する温度を加えることで形状変化させ(割る)、取り除くことが可能である。この場合、内殻部12Bについては、心臓の構成要素である上大動脈や、上大静脈等の開口部分5から、取り出すことが可能である。或いは、造形樹脂をアセトン等の有機溶剤に浸しておくことで、軟化やクレージング(表面のひび割れ)が生じるため、加熱による軟化と同様、形状変化させることができ、容易に取り除くことが可能である。また、造形樹脂12はクレージング後、温度を常温以下に下げることで脆弱になり、さらに容易に破損させることが可能である。なお、内殻部12Bに、細かいクレージングを起こし細かい破片にすることで、転写した構造(心臓モデル)を破損することを防止することができ、かつ、エアー等の流れによって、心臓モデルの内部空間から、破損した内殻部を容易に除去することが可能となる。
また、透明性を有する材料で形成された心臓モデル1の表面に、同種の材料をコーティングすることで、転写された凹凸を埋めることができ、より透明度を向上することも可能となる。
上記した臓器モデルの製造方法によれば、本実施形態のように、複雑な内部形状を有する心臓のような臓器モデルであっても、造形樹脂12とサポート樹脂13を利用して殻体型10を形成し、最終的に殻体型10を破壊して臓器モデル(心臓モデル)を製造することから、従来のように、外型や中子による臓器モデルの製造方法と比較して、型を抜く方向や割る位置を考慮する必要がなく、忠実なモデルを製造し易くなる。また、殻体型10は、複数の転写工程を経て形成されるものでないことから、製造工程が容易となり、コストを低減できると共に、高精度の臓器モデルを製造することが可能となる。さらに、患者固有の臓器モデルを再現するケースでは、殻体型10そのものが使い捨て構造であるため、型代を安くすることが可能となる。
ここで、実際の人体心臓は、上記したような上大動脈、上大静脈、下大静脈以外にも、心臓本体の表面に、血液を供給する冠状脈が沿うように存在しており、上記した製造方法では、図4に示すように、心臓本体の表面に、複雑に沿った冠状脈7までを正確に再現することは困難である。
このため、図5に示すように、冠状脈のみを、上記した心臓モデルの製造方法と同様な手法で製造することが好ましい。具体的には、上記したような造形樹脂とサポート樹脂を用いて、管状の殻体型30を形成し、空間35に、上記した実施形態と同様な注型材料20を充填し、硬化した後、殻体型30を除去することで、図6に示すような冠状脈7のみを製造することが可能である。そして、このように製造された冠状脈7を、上述した製造方法で得られた心臓モデル1の表面に、接着剤で止着することで、より実際の心臓に近い心臓モデルを製造することが可能となる。
以上、本発明の実施形態について説明したが、本発明は、上記した実施形態の構成に限定されることはなく、種々変形することが可能である。
上記した実施形態では、心臓を例示して説明したが、心臓以外の人体臓器であっても、同様に適用することが可能である。また、造形樹脂やサポート樹脂の構成材料、注型材料、及びサポート樹脂の除去方法や殻体型の除去方法についても、製造する臓器や用途に応じて適宜変形することが可能である。
上記した実施形態では、心臓を例示して説明したが、心臓以外の人体臓器であっても、同様に適用することが可能である。また、造形樹脂やサポート樹脂の構成材料、注型材料、及びサポート樹脂の除去方法や殻体型の除去方法についても、製造する臓器や用途に応じて適宜変形することが可能である。
1 心臓モデル
10 殻体型
12 造形樹脂
12A 外殻部
12B 内殻部
13 サポート樹脂
15 空間
16 空洞部となる領域
17 構成壁となる領域
20 注型材料
120 外形体
10 殻体型
12 造形樹脂
12A 外殻部
12B 内殻部
13 サポート樹脂
15 空間
16 空洞部となる領域
17 構成壁となる領域
20 注型材料
120 外形体
Claims (9)
- 内部に空洞部を有する臓器モデルを製造する方法であって、
人体臓器の撮影データに基づいて、光硬化性の造形樹脂、及びこの造形樹脂をサポートする光硬化性のサポート樹脂に硬化光を照射することで、前記サポート樹脂にサポートされながら前記造形樹脂を硬化して、前記空洞部となる領域、及び前記臓器モデルの構成壁となる領域を有する外形体を形成する外形体形成工程と、
前記外形体から前記サポート樹脂を除去して、前記臓器モデルの外面を覆う外殻部、及び前記臓器モデルの内面を覆う内殻部を有する殻体型を形成する殻体型形成工程と、
前記殻体型の外殻部と内殻部との間の空間に、柔軟性を有する注型材料を充填する充填工程と、
前記注型材料が充填された殻体型を除去する除去工程と、
を有することを特徴とする臓器モデルの製造方法。 - 前記サポート樹脂は水溶性樹脂であり、前記外形体を洗浄水で洗浄することでサポート樹脂を除去し、前記殻体型を形成することを特徴とする請求項1に記載の臓器モデルの製造方法。
- 前記外形体に、多数の孔を形成したことを特徴とする請求項2に記載の臓器モデルの製造方法。
- 前記洗浄水にアルコール又は界面活性剤を添加したことを特徴とする請求項2又は3に記載の臓器モデルの製造方法。
- 前記注型材料は、透明性を有する材料であることを特徴とする請求項1から4のいずれか1項に記載の臓器モデルの製造方法。
- 前記注型材料の充填時に減圧脱泡処理を行ない、気泡を除去することを特徴とする請求項5に記載の臓器モデルの製造方法。
- 前記透明性を有する材料で形成された人体臓器の表面に、同種の材料をコーティングしたことを特徴とする請求項5又は6に記載の臓器モデルの製造方法。
- 前記請求項1から請求項7のいずれか1項に記載の臓器モデルの製造方法によって製造されたことを特徴とする臓器モデル。
- 内部に空洞部を有する臓器モデルを製造する臓器モデル製造用の型であって、
人体臓器の撮影データに基づいて、光硬化性の造形樹脂、及びこの造形樹脂をサポートする光硬化性のサポート樹脂に硬化光を照射することで、前記サポート樹脂にサポートされながら前記造形樹脂を硬化して、前記空洞部となる領域、及び前記臓器モデルの構成壁となる領域を有する外形体を形成し、
前記外形体から前記サポート樹脂を除去して、前記臓器モデルの外面を覆う外殻部、及び前記臓器モデルの内面を覆う内殻部が形成されたことを特徴とする臓器モデル製造用の型。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012157201A JP5236103B1 (ja) | 2012-07-13 | 2012-07-13 | 臓器モデルの製造方法、臓器モデル製造用の型、及び臓器モデル |
PCT/JP2013/068822 WO2014010618A1 (ja) | 2012-07-13 | 2013-07-10 | 臓器モデルの製造方法、臓器モデル製造用の型、及び臓器モデル |
US14/141,155 US20140106329A1 (en) | 2012-07-13 | 2013-12-26 | Method of producing organ model, mold for producing organ model, and organ model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012157201A JP5236103B1 (ja) | 2012-07-13 | 2012-07-13 | 臓器モデルの製造方法、臓器モデル製造用の型、及び臓器モデル |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5236103B1 true JP5236103B1 (ja) | 2013-07-17 |
JP2014021174A JP2014021174A (ja) | 2014-02-03 |
Family
ID=49041700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012157201A Expired - Fee Related JP5236103B1 (ja) | 2012-07-13 | 2012-07-13 | 臓器モデルの製造方法、臓器モデル製造用の型、及び臓器モデル |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140106329A1 (ja) |
JP (1) | JP5236103B1 (ja) |
WO (1) | WO2014010618A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013125026A1 (ja) * | 2012-02-24 | 2015-07-30 | ファインバイオメディカル有限会社 | 潤滑性調整液 |
CN105612572A (zh) * | 2013-07-23 | 2016-05-25 | 玛口外科股份有限公司 | 用于x射线图像生成的方法和系统 |
WO2021182436A1 (ja) | 2020-03-11 | 2021-09-16 | 国立大学法人大阪大学 | カテーテル・シミュレータ、及び、カテーテル・シミュレータ用の心臓モデル |
CN114495669A (zh) * | 2022-02-17 | 2022-05-13 | 北京理工大学 | 一种仿生脏器用复合材料 |
WO2023286755A1 (ja) | 2021-07-15 | 2023-01-19 | 国立大学法人大阪大学 | カテーテル・シミュレータ、及び、カテーテル・シミュレータ用の心臓モデル |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9386960B2 (en) * | 2012-09-07 | 2016-07-12 | University Of Louisville Research Foundation, Inc. | Multimodal cardiac phantom for imaging |
US10733911B2 (en) | 2015-10-14 | 2020-08-04 | Humanetics Innovative Solutions, Inc. | Three-dimensional ribs and method of three-dimensional printing of ribs for crash test dummy |
US10395561B2 (en) | 2015-12-07 | 2019-08-27 | Humanetics Innovative Solutions, Inc. | Three-dimensionally printed internal organs for crash test dummy |
US11776428B1 (en) * | 2015-10-21 | 2023-10-03 | University Of Rochester | Systems, models, and methods for simulating surgery on anatomical organs |
ES2615034B1 (es) * | 2015-11-05 | 2018-08-16 | Dario GARCÍA CALDERÓN | Procedimiento de fabricación de modelos anatómicos y modelos obtenidos |
EP3251811B1 (en) * | 2016-05-30 | 2019-08-28 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Method of producing a phantom and phantom |
JP6533763B2 (ja) | 2016-06-20 | 2019-06-19 | 株式会社ミマキエンジニアリング | 立体物の製造方法 |
WO2018075588A1 (en) * | 2016-10-19 | 2018-04-26 | The Research Foundation For The State University Of New York | Training model for medical applications |
WO2018079711A1 (ja) | 2016-10-28 | 2018-05-03 | 国立大学法人大阪大学 | カテーテル・シミュレーター用臓器モデル |
US10692402B2 (en) * | 2017-05-05 | 2020-06-23 | Synaptive Medical (Barbados) Inc. | Simulated fibrous tissue for surgical training |
KR102183427B1 (ko) * | 2018-04-02 | 2020-11-27 | 애니메디솔루션 주식회사 | 3d 모형용 코팅액 조성물 및 이를 이용한 3d 모형의 제조방법 |
US10410542B1 (en) | 2018-07-18 | 2019-09-10 | Simulated Inanimate Models, LLC | Surgical training apparatus, methods and systems |
JP2024541906A (ja) | 2021-10-23 | 2024-11-13 | シミュレーテッド イナニメイト モデルズ エルエルシー | 手技指導及び訓練装置、方法、及びシステム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11242427A (ja) * | 1998-02-26 | 1999-09-07 | Shoji Yoshimoto | 超音波医学実習用人体モデル |
WO2012001803A1 (ja) * | 2010-07-01 | 2012-01-05 | 株式会社クロスエフェクト | 中空構造体の樹脂成形体の製造方法及び中子 |
JP2012137514A (ja) * | 2010-12-24 | 2012-07-19 | Jmc:Kk | 人工臓器の製造方法、及び人工臓器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5187726A (en) * | 1991-09-30 | 1993-02-16 | Wisconsin Alumni Research Foundation | High resolution X-ray lithography using phase shift masks |
US6375880B1 (en) * | 1997-09-30 | 2002-04-23 | The Board Of Trustees Of The Leland Stanford Junior University | Mold shape deposition manufacturing |
US6800415B2 (en) * | 2001-09-28 | 2004-10-05 | Clariant Finance (Bvi) Ltd | Negative-acting aqueous photoresist composition |
US20050023719A1 (en) * | 2003-07-28 | 2005-02-03 | Nielsen Jeffrey Allen | Separate solidification of build material and support material in solid freeform fabrication system |
US7993140B2 (en) * | 2005-02-03 | 2011-08-09 | Christopher Sakezles | Models and methods of using same for testing medical devices |
US7866983B2 (en) * | 2006-01-13 | 2011-01-11 | East Tennessee State University Research Foundation | Surgical simulator system |
CA2787081C (en) * | 2010-01-29 | 2014-12-09 | Jonathan M. Gurdin | Circulatory heart model |
-
2012
- 2012-07-13 JP JP2012157201A patent/JP5236103B1/ja not_active Expired - Fee Related
-
2013
- 2013-07-10 WO PCT/JP2013/068822 patent/WO2014010618A1/ja active Application Filing
- 2013-12-26 US US14/141,155 patent/US20140106329A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11242427A (ja) * | 1998-02-26 | 1999-09-07 | Shoji Yoshimoto | 超音波医学実習用人体モデル |
WO2012001803A1 (ja) * | 2010-07-01 | 2012-01-05 | 株式会社クロスエフェクト | 中空構造体の樹脂成形体の製造方法及び中子 |
JP2012137514A (ja) * | 2010-12-24 | 2012-07-19 | Jmc:Kk | 人工臓器の製造方法、及び人工臓器 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013125026A1 (ja) * | 2012-02-24 | 2015-07-30 | ファインバイオメディカル有限会社 | 潤滑性調整液 |
CN105612572A (zh) * | 2013-07-23 | 2016-05-25 | 玛口外科股份有限公司 | 用于x射线图像生成的方法和系统 |
US9915864B2 (en) | 2013-07-23 | 2018-03-13 | Mako Surgical Corp. | Method and system for X-ray image generation |
WO2021182436A1 (ja) | 2020-03-11 | 2021-09-16 | 国立大学法人大阪大学 | カテーテル・シミュレータ、及び、カテーテル・シミュレータ用の心臓モデル |
WO2023286755A1 (ja) | 2021-07-15 | 2023-01-19 | 国立大学法人大阪大学 | カテーテル・シミュレータ、及び、カテーテル・シミュレータ用の心臓モデル |
CN114495669A (zh) * | 2022-02-17 | 2022-05-13 | 北京理工大学 | 一种仿生脏器用复合材料 |
Also Published As
Publication number | Publication date |
---|---|
JP2014021174A (ja) | 2014-02-03 |
WO2014010618A1 (ja) | 2014-01-16 |
US20140106329A1 (en) | 2014-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5236103B1 (ja) | 臓器モデルの製造方法、臓器モデル製造用の型、及び臓器モデル | |
JP3613568B2 (ja) | 立体モデル | |
JP2014113695A5 (ja) | ||
JP5135492B2 (ja) | 中空構造体の樹脂成形体の製造方法及び中子並びに中空構造体の樹脂成形体 | |
US20140319734A1 (en) | Real time manufacturing of softening polymers | |
Gharleghi et al. | 3D printing for cardiovascular applications: from end-to-end processes to emerging developments | |
US10350833B1 (en) | Methods and systems for creating anatomical models | |
US10864659B1 (en) | Methods and systems for creating anatomical models | |
JP2010513977A (ja) | 解剖学的及び機能的に正確な軟組織ファントム並びにその製造方法 | |
US20180350266A1 (en) | Method for producing anatomical models and models obtained | |
JP6120504B2 (ja) | 管状モデルの製造方法、血管モデル、血管モデルシミュレータ及び成形型 | |
JP2016001267A (ja) | 模型、製作システム、情報処理装置、製作方法、情報処理方法、プログラム、記録媒体 | |
JP6529950B2 (ja) | 三次元実体モデルおよびその製造方法 | |
JP7437826B2 (ja) | 手術練習用の臓器モデル | |
JP2016139069A (ja) | 臓器モデルおよびその製造方法 | |
JP2006078604A (ja) | 人体患部実体モデル及びその製造方法 | |
CN213339308U (zh) | 一种动脉粥样硬化血管模型 | |
Wei et al. | 3D printing of medical models: a literature review | |
JP5763917B2 (ja) | 人工臓器の製造方法、及び人工臓器 | |
JP6830592B2 (ja) | 中空体モデルの製造方法 | |
JP2018010034A (ja) | 臓器モデルおよびその製造方法 | |
RU2644275C1 (ru) | Способ изготовления индивидуального имплантата для замещения дефектов костей черепа | |
JP2000089663A (ja) | 光学ファントム及びその作製法 | |
JPH10222055A (ja) | 生体の光学ファントム作製法 | |
RU2787293C1 (ru) | Способ изготовления медицинских изделий из пластика методом SLA технологии с градиентной засветкой |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130326 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |