WO2013122227A1 - 赤外線反射基板の製造方法 - Google Patents
赤外線反射基板の製造方法 Download PDFInfo
- Publication number
- WO2013122227A1 WO2013122227A1 PCT/JP2013/053747 JP2013053747W WO2013122227A1 WO 2013122227 A1 WO2013122227 A1 WO 2013122227A1 JP 2013053747 W JP2013053747 W JP 2013053747W WO 2013122227 A1 WO2013122227 A1 WO 2013122227A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protective layer
- layer
- infrared
- reflective
- polymer
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 134
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000011241 protective layer Substances 0.000 claims abstract description 178
- 239000010410 layer Substances 0.000 claims abstract description 164
- 229920000642 polymer Polymers 0.000 claims abstract description 85
- 230000001678 irradiating effect Effects 0.000 claims abstract description 10
- 238000010894 electron beam technology Methods 0.000 claims description 63
- 239000002904 solvent Substances 0.000 claims description 36
- 239000000178 monomer Substances 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 22
- 238000002834 transmittance Methods 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 18
- 238000010030 laminating Methods 0.000 claims description 14
- 238000004132 cross linking Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 5
- 229920000098 polyolefin Polymers 0.000 claims description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 30
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 24
- 239000012790 adhesive layer Substances 0.000 description 17
- -1 polyethylene terephthalate Polymers 0.000 description 17
- 229920000459 Nitrile rubber Polymers 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 16
- 229910044991 metal oxide Inorganic materials 0.000 description 13
- 150000004706 metal oxides Chemical class 0.000 description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 11
- 239000005357 flat glass Substances 0.000 description 11
- 238000010526 radical polymerization reaction Methods 0.000 description 11
- 238000007740 vapor deposition Methods 0.000 description 11
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 9
- 239000005020 polyethylene terephthalate Substances 0.000 description 9
- 239000006087 Silane Coupling Agent Substances 0.000 description 8
- 125000004093 cyano group Chemical group *C#N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000009413 insulation Methods 0.000 description 7
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 150000004678 hydrides Chemical class 0.000 description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229910002668 Pd-Cu Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 238000004383 yellowing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- MFJDFPRQTMQVHI-UHFFFAOYSA-N 3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound O=C1OCOC(=O)C2=CC=C1C=C2 MFJDFPRQTMQVHI-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910017073 AlLi Inorganic materials 0.000 description 1
- 241001136782 Alca Species 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 0 CCCN**(*C)C#N Chemical compound CCCN**(*C)C#N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000012668 chain scission Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- BDVZHDCXCXJPSO-UHFFFAOYSA-N indium(3+) oxygen(2-) titanium(4+) Chemical compound [O-2].[Ti+4].[In+3] BDVZHDCXCXJPSO-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 150000003961 organosilicon compounds Chemical group 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/002—Joining methods not otherwise provided for
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0073—Optical laminates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/26—Reflecting filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/38—Polymers of cycloalkenes, e.g. norbornene or cyclopentene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/40—Additional features of adhesives in the form of films or foils characterized by the presence of essential components
- C09J2301/416—Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2423/00—Presence of polyolefin
- C09J2423/006—Presence of polyolefin in the substrate
Definitions
- the present invention relates to a method for manufacturing an infrared reflective substrate having high transparency in the visible light region and high reflectivity in the infrared light region.
- the infrared reflecting substrate is mainly used for suppressing the thermal effect of the emitted sunlight. For example, by sticking an infrared reflective substrate to the window glass of buildings, automobiles, etc., the infrared rays (particularly near infrared rays) that enter the room through the window glass are shielded, and the temperature rise in the room is thereby suppressed. It is possible to save energy by suppressing power consumption.
- Patent Document 1 discloses using polyacrylonitrile (PAN) as a material for the protective layer.
- PAN polyacrylonitrile
- Polymers such as polyacrylonitrile have a low infrared absorptivity and can shield far-infrared rays emitted from the room through the translucent member. Energy saving can also be achieved by the heat insulation effect.
- the protective layer is prepared by first dissolving the polymer in a solvent to prepare a solution, and then applying this solution on the infrared reflective layer. Is dried (the solvent is volatilized).
- this kind of infrared reflective substrate is stuck on a window glass of a building, an automobile or the like so that the protective layer is on the front side. Therefore, dirt or the like adheres to the surface of the protective layer as time passes.
- the surface of the protective layer may be cleaned, for example, by wiping with a cleaning liquid.
- the cleaning liquid often contains various organic solvents.
- the protective layer is eluted at the time of cleaning and is removed by rubbing such as wiping, resulting in low scratch resistance. There arises a problem that the infrared reflective layer is exposed.
- the protective layer is not soluble in the cleaning liquid, if the protective layer is weak against physical rubbing, the protective layer is removed by wiping or the like, and the infrared ray having low scratch resistance as described above. There arises a problem that the reflective layer is exposed. Thus, when the scratch resistance of the protective layer such as solvent resistance and physical scratch resistance is not sufficient, it is difficult to sufficiently protect the infrared reflective layer.
- an object of the present invention is to provide a method for manufacturing an infrared reflective substrate having excellent heat insulation and scratch resistance.
- the manufacturing method of the infrared reflective substrate according to the present invention is as follows: A method for producing an infrared reflective substrate in which a reflective layer and a protective layer are laminated, Laminating the reflective layer and the protective layer containing a polymer that is crosslinked by being irradiated with an electron beam; Irradiating the protective layer with an electron beam.
- the infrared reflector has the reflective layer, the protective layer, and a base material; Laminating the reflective layer and the protective layer comprises: Forming the reflective layer on one surface of the substrate; Applying a polymer composition solution in which the polymer is dissolved in a solvent on the reflective layer, and then drying the solution to form the protective layer.
- the infrared reflector has the reflective layer, the protective layer, and a base material; Laminating the reflective layer and the protective layer comprises: Forming the reflective layer on one surface of the substrate; Using the film having the polymer as the protective layer, and bonding the protective layer and the reflective layer.
- the far-infrared transmittance per thickness of 15 ⁇ m of the protective layer is 65% or more.
- “far-infrared transmittance” means the average value of the transmittance of infrared light in the wavelength region of 2.5 ⁇ m to 25 ⁇ m when far-infrared rays are irradiated only on the protective layer.
- the polymer exhibits a crosslinking reaction behavior when irradiated with the electron beam.
- a cross-linked polymer in which a cross-linking reaction preferentially occurs and a collapse type (cleavable) high in which main chain scission preferentially occurs. It is classified as a molecule.
- the “crosslinking type reaction behavior” means a reaction behavior in which crosslinking occurs preferentially among the two types of reaction behaviors.
- the polymer is preferably an olefin polymer or a cycloolefin polymer.
- the polymer may include at least any two or more repeating units among the repeating units A, B, and C of the following chemical formula I.
- the protective layer before being irradiated with the electron beam is 1 to 20 parts by weight of radical polymerization with respect to 100 parts by weight of the polymer. It is preferable to further contain a functional monomer.
- the gel fraction of the protective layer after being irradiated with the electron beam can be 70% or more.
- the vertical emissivity of the surface on the protective layer side may be 0.40 or less.
- substrate which concerns on one Embodiment of this invention is shown.
- substrate which concerns on other embodiment of this invention is shown.
- substrate which concerns on other embodiment of this invention is shown.
- substrate which concerns on other embodiment of this invention is shown.
- the method for manufacturing an infrared reflective substrate according to the present embodiment includes a step of laminating a reflective layer and a protective layer, and a step of irradiating the protective layer with an electron beam, the infrared substrate including the protective layer, A step of laminating the reflection layer and the protective layer, the step of forming the reflection layer on one surface of the substrate, and a polymer as a solvent. Applying the dissolved polymer composition solution onto the reflective layer, and then drying the solution to form a protective layer.
- the infrared reflective substrate according to the present embodiment is an infrared reflective substrate having both a heat insulating property (a far-infrared reflective property) and a heat insulating property (a far-infrared reflective property) possessed by a conventional infrared reflective substrate.
- the infrared reflective substrate according to the present embodiment has a reflective layer 2 and a protective layer 3 laminated in this order on one surface 1a of a substrate 1, and an adhesive layer 4 is provided on the other surface 1b. It has a layer structure.
- a polyester substrate is used as the substrate 1.
- a substrate made of polyethylene terephthalate, polyethylene naphthalate, polypropylene terephthalate, polybutylene terephthalate, polycyclohexylene methylene terephthalate, or a mixed resin in which two or more of these are combined is used.
- a polyethylene terephthalate (PET) substrate is preferable, and a biaxially stretched polyethylene terephthalate (PET) substrate is particularly preferable.
- the reflective layer 2 is a vapor deposition layer formed by vapor deposition on the surface (one surface) 1a of the substrate 1.
- Examples of the method for forming the vapor deposition layer include physical vapor deposition (PVD) such as sputtering, vacuum vapor deposition, and ion plating.
- PVD physical vapor deposition
- the reflective layer 2 is formed on the substrate 1 by heating and evaporating the vapor deposition material by a method such as resistance heating, electron beam heating, laser beam heating, or arc discharge in vacuum.
- a vacuum containing an inert gas such as argon cations such as Ar + accelerated by glow discharge are bombarded on the target (vapor deposition material) to vaporize the vapor deposition material.
- the reflective layer 2 is formed on the substrate 1.
- Ion plating is a vapor deposition method that combines vacuum vapor deposition and sputtering. In this method, the evaporation layer released by heating is ionized and accelerated in an electric field in vacuum, and is deposited on the substrate 1 in a high energy state, whereby the reflective layer 2 is formed.
- the reflective layer 2 has a multi-layer structure in which a translucent metal layer 2a is sandwiched between a pair of metal oxide layers 2b and 2c. Surface) 1a, a metal oxide layer 2b is deposited, then a semitransparent metal layer 2a is deposited on the metal oxide layer 2b, and finally a metal oxide layer 2c is deposited on the semitransparent metal layer 2a. Formed.
- the translucent metal layer 2a includes, for example, aluminum (Al), silver (Ag), silver alloy (MgAg, Ag—Pd—Cu alloy (APC), AgCu, AgAuCu, etc.), aluminum alloy (AlLi, AlCa, AlMg, etc.) Alternatively, a metal material in which two or more of these are combined is used.
- the metal oxide layers 2b and 2c are for imparting transparency to the reflective layer 2 and preventing deterioration of the translucent metal layer 2a.
- indium tin oxide (ITO) indium titanium oxide (IT)
- An oxide such as indium zinc oxide (IZO), gallium zinc oxide (GZO), aluminum zinc oxide (AZO), or indium gallium oxide (IGO) is used.
- the protective layer 3 is a layer containing a polymer.
- the polymer may be radicalized or ionized by irradiation with an electron beam to cause crosslinking described later.
- the polymer is preferably a cross-linked polymer that undergoes preferential crosslinking when irradiated with an electron beam.
- crosslinkable polymers include olefin polymers such as polyethylene and polypropylene, cycloolefin polymers such as polynorbornene, polystyrene, polyvinylidene fluoride, polymethyl acrylate, polyvinyl chloride, polybutadiene, natural rubber, and polyvinyl.
- Alcohol, polyamide, acrylonitrile, a copolymer containing a monomer component of these polymers as a constituent unit, or a hydride of the copolymer is preferable.
- the polymer is preferably an olefin polymer or a cycloolefin polymer. Moreover, it is also preferable that it is a hydride of the copolymer.
- Examples of the hydride include those in which a part of the double bond is hydrogenated when the copolymer has a double bond.
- Examples of such a hydride include a polymer containing at least any two or more repeating units among the repeating units A, B and C of the following chemical formula I.
- R1 in Chemical Formula I H or a methyl group can be used.
- R2 to R5 in Chemical Formula I H and an alkyl group or alkenyl group having 1 to 4 carbon atoms can be used.
- hydrogenated nitrile rubber HNBR
- H hydrogenated nitrile rubber
- Examples of monomer components for obtaining these polymers include acrylonitrile (repeating unit D) and derivatives thereof as shown in Chemical Formula II, alkyl having 4 carbon atoms (repeating unit E) and derivatives thereof, and butadiene ( And a copolymer of the repeating unit F1 or F2) and derivatives thereof.
- R6 represents H or a methyl group
- R7 to R18 represent H or an alkyl group having 1 to 4 carbon atoms.
- Each of F1 and F2 represents a repeating unit in which butadiene is polymerized, and F1 is a main repeating unit.
- nitrile rubber or nitrile rubber which is a copolymer of acrylonitrile of formula II (repeating unit D) and derivatives thereof, 1,3-butadiene (repeating unit F1) and derivatives thereof.
- Hydrogenated nitrile rubber in which part or all of the double bond is hydrogenated may be used.
- the butadiene on the left side is bonded to the side to which the cyano group (—CN) of acrylonitrile is bonded, and the butadiene on the right side is formed to the side to which the cyano group (—CN) of acrylonitrile is not bonded.
- one repeating unit A, one repeating unit B, and two repeating units C are included.
- the repeating unit A includes a carbon atom in which the carbon atom on the right side of the butadiene on the left side is bonded to the cyano group (—CN) of acrylonitrile, and the repeating unit B is bonded to the cyano group (—CN) of acrylonitrile.
- the leftmost carbon atom of the left butadiene and the rightmost carbon atom of the right butadiene become part of the repeating unit A or the repeating unit B depending on the type of molecule to be bonded.
- the ratio of the repeating unit A of the formula I contained in the polymer to the whole polymer is 5% by weight or more as a lower limit. Preferably, it is 15% by weight or more. More preferably, it is 25% by weight or more. Moreover, as an upper limit, it is 100 weight% or less. Preferably, it is 60 wt% or less. More preferably, it is 40% by weight or less. If it is the said range, a favorable heat insulation characteristic can be provided to an infrared reflective film.
- the lower limit of the thickness of the protective layer 3 is 1 ⁇ m or more. Preferably, it is 2 ⁇ m or more. Moreover, as an upper limit, it is 20 micrometers or less. Preferably, it is 15 ⁇ m or less. More preferably, it is 10 ⁇ m or less.
- the thickness of the protective layer 3 is small, the infrared reflection characteristics are enhanced, but the scratch resistance is impaired, and the function as the protective layer 3 cannot be sufficiently exhibited. If the thickness of the protective layer 3 is large, the heat insulating property of the infrared reflecting substrate is deteriorated. When the thickness of the protective layer 3 is within the above range, the protective layer 3 that can absorb the infrared rays and can appropriately protect the reflective layer 2 is obtained.
- the spectral reflectance ⁇ n is measured in the wavelength range of 5 to 50 ⁇ m of room temperature thermal radiation.
- the wavelength region of 5 to 50 ⁇ m is the far infrared region, and the vertical emissivity decreases as the reflectance in the far infrared wavelength region increases.
- L: m 5 to 25:60 to 90: 0 to 20 is more preferable
- k: l: m 15 to 25:65 to 85: 0 to 10 is more preferable.
- the protective layer 3 is prepared by dissolving the above-described polymer in a solvent (with a crosslinking agent if necessary) to prepare a polymer composition solution, and applying this solution on the reflective layer 2. It is formed by the procedure of drying (volatilizing the solvent).
- the solvent is a solvent in which the above-described polymer is soluble, and for example, a solvent such as methyl ethyl ketone is used.
- the protective layer 3 preferably has a cross-linked structure between polymers.
- the solvent resistance of the protective layer 3 is improved, so that the protective layer 3 is prevented from eluting even when a solvent soluble in the polymer contacts the protective layer 3. can do.
- the irradiation dose of the electron beam is 30 kGy or more as the lower limit.
- the upper limit is 600 kGy or less.
- it is 400 kGy or less. More preferably, it is 200 kGy or less. If the irradiation dose of the electron beam is within the above range, sufficient crosslinking between the polymers can be obtained.
- the irradiation dose of the electron beam is within the above range, yellowing of the polymer and the base material 1 generated by the electron beam irradiation can be minimized, and an infrared reflecting substrate with less coloring can be obtained. it can.
- These electron beam irradiation conditions are irradiation conditions at an acceleration voltage of 100 kV to 150 kV.
- the polymer contained in the protective layer 3 is a compound other than the above formula I, that is, an olefin polymer such as polyethylene and polypropylene, a cycloolefin polymer such as polynorbornene, polystyrene, polyvinylidene fluoride, polymethyl acrylate.
- the electron beam irradiation dose is The lower limit is 60 kGy or more. More preferably, it is 75 kGy. Moreover, as an upper limit, it is 150 kGy or less. Preferably, it is 125 kGy or less.
- an infrared reflector having good scratch resistance can be obtained.
- These electron beam irradiation conditions are irradiation conditions at an acceleration voltage of 100 kV to 150 kV.
- a crosslinking agent such as a polyfunctional monomer such as a radical polymerization monomer to the polymer composition solution when the polymer is dissolved in the solvent or after the polymer is dissolved in the solvent.
- a polyfunctional monomer such as a radical polymerization monomer
- radical polymerization monomers of (meth) acrylate monomers are preferred.
- the functional group contained in the polyfunctional monomer reacts (bonds) with each polymer chain, so that the polymers are easily cross-linked (via the polyfunctional monomer). Therefore, even when the irradiation dose of the electron beam is lowered (to 70 kGy or less, for example, about 50 kGy), sufficient crosslinking between the polymers can be obtained.
- the irradiation dose of an electron beam can be completed with a low irradiation dose. Moreover, yellowing of the polymer and the substrate 1 can be further suppressed by reducing the electron beam irradiation dose, and productivity can be improved.
- the polymer composition solution preferably contains 5 to 35% by weight of a crosslinking agent with respect to 100% by weight of the polymer (that is, 5 to 35 parts by weight with respect to 100 parts by weight of the polymer). More preferably, it is 1 to 20% by weight with respect to 100% by weight of the polymer (that is, 1 to 20 parts by weight with respect to 100 parts by weight of the polymer).
- the protective layer 3 is preferably configured such that the average value of the far-infrared transmittance in the wavelength region of 2.5 ⁇ m to 25 ⁇ m per 15 ⁇ m thickness is 65% or more.
- the far-infrared transmittance is preferably 68% or more, and more preferably 70% or more.
- the far-infrared transmittance is 65% or more, the far-infrared rays incident on the protective layer 3 from the outside are more easily transmitted to the reflective layer 2. Thereby, the deterioration of the vertical emissivity of the surface of the protective layer 3 side (based on the reflective layer 2) of the infrared reflective substrate can be further suppressed.
- the far-infrared transmittance is a wavelength of 2.5 to 25 ⁇ m when a far-infrared ray is irradiated only on the protective layer 3 using a Fourier transform infrared spectroscopic (FT-IR) photometer (manufactured by JASCO Corporation).
- FT-IR Fourier transform infrared spectroscopic
- the description of the laminated structure of the infrared reflective substrate according to the present embodiment is as described above. Next, a method for manufacturing the infrared reflective substrate according to the present embodiment will be described.
- the method for producing an infrared reflective substrate includes a step of forming a reflective layer 2 on one surface 1a of a substrate 1, and a polymer composition solution in which a polymer as described above is dissolved in a solvent. It is applied on the reflective layer 2, then the solution is dried to form the protective layer 3, and the protective layer 3 is irradiated with an electron beam.
- the polymer composition solution prepared as described above is 1% by weight to 20% by weight (that is, the polymer 100 1 part by weight to 20 parts by weight) of the radically polymerizable monomer.
- a (meth) acrylate monomer is employed as the radical polymerization monomer.
- a DC magnetron sputtering method described later is employed in the step of forming the reflective layer 2 on the one surface 1a of the substrate 1. More specifically, using a DC magnetron sputtering method, a metal oxide layer 2b made of indium tin oxide is formed on one surface 1a of the substrate 1, and a translucent metal made of an Ag—Pd—Cu alloy is formed thereon. A layer 2a is formed, and a metal oxide layer 2c made of indium tin oxide is formed thereon.
- the thickness of the metal oxide layers 2b and 2c depends on the refractive index of the produced layer, but in order to obtain an infrared reflective substrate having high transparency (visible light transmittance) in practical use, the range is 5 to 50 nm. The thickness is more preferably 15 to 40 nm.
- a polymer composition solution in which the above polymer is dissolved in a solvent is formed on the reflective layer 2 formed on one surface 1 a of the substrate 1.
- the protective layer 3 is formed by applying using an applicator or the like and drying the solution (volatilizes the solvent).
- the electron beam is irradiated from the surface side of the protective layer 3 by an electron beam irradiation apparatus described later. In this way, the infrared reflective substrate according to this embodiment is completed.
- the infrared reflective substrate according to the present embodiment manufactured by the above manufacturing method, by reducing the thickness of the layer structure on the reflective layer 2, that is, the thickness of the protective layer 3, (based on the reflective layer 2).
- the vertical emissivity of the surface on the protective layer 3 side is small.
- the protective layer 3 is made of nitrile rubber, hydrogenated nitrile rubber, fully hydrogenated nitrile rubber, polypropylene, or the like that is difficult to absorb and transmit far infrared rays, the vertical emissivity is also reduced. Accordingly, far infrared rays are not easily absorbed by the protective layer 3 even if they are incident on the protective layer 3, reach the reflective layer 2, and as a result, are easily reflected by the reflective layer 2.
- the vertical emissivity of the surface on the protective layer 3 side is set to 0.40 or less for the purpose.
- the vertical emissivity is preferably 0.30 or less, more preferably 0.25 or less, and still more preferably 0.15 or less.
- the translucency of the translucent member is inhibited by increasing the visible light transmittance (see JIS A5759). There is no.
- the visible light transmittance is set to 50% or more for the purpose.
- the infrared reflective substrate according to the present embodiment to a light transmissive member such as a window glass from the room side, near infrared rays that enter the room through the light transmissive member such as a window glass are shielded. As a result, a heat shielding effect in summer can be expected as in the case of a conventional infrared reflective substrate.
- the infrared reflective substrate which concerns on this embodiment produced with the above manufacturing method, favorable abrasion resistance is provided to the protective layer 3 as mentioned above. That is, the solvent resistance of the protective layer 3 is improved by crosslinking the polymers in the protective layer 3 together. Thus, even when a solvent capable of dissolving a polymer comes into contact with the protective layer 3, it is possible to prevent the protective layer 3 from being eluted. It is possible to prevent the performance from deteriorating.
- the gel fraction after the solubility test for methyl ethyl ketone is set to 70% or more. However, it is preferably 75% or more. More preferably, it is 80% or more.
- the protective layer 3 contains a polymer having excellent solvent resistance, it is possible to prevent peeling due to physical rubbing by crosslinking the polymer in the protective layer 3. Therefore, it is possible to prevent the abrasion resistance from being lowered due to the exposure of the infrared reflective layer 2.
- the polymer composition solution prepared as described above has a radical polymerizable property of 1 to 20 parts by weight with respect to 100 parts by weight of the polymer. Since the monomer is further included, the polymers in the protective layer 3 are easily cross-linked through the radical polymerization type monomer, and the polymer can be obtained even when the electron beam irradiation dose is reduced to 70 kGy or less (for example, about 50 kGy). Sufficient cross-linking between each other can be obtained. Therefore, the irradiation dose of an electron beam can be completed with a low irradiation dose.
- the polymer in the protective layer 3 is cross-linked through a radical polymerization monomer, so that the protective layer 3 has improved solvent resistance. Thereby, even if the solvent which melt
- the infrared reflective substrate according to the present embodiment is an infrared reflective substrate having both a heat insulating property (a far-infrared reflective property) and a heat insulating property (a far-infrared reflective property) possessed by a conventional infrared reflective substrate.
- the infrared reflective substrate according to the present embodiment is the first implementation except that the easy adhesion layer 5 is formed on the reflective layer 2 (between the reflective layer 2 and the protective layer 3). Since it is the same structure as the infrared reflective board
- a silane coupling agent may be used as the easy-adhesion layer 5, but is not limited thereto.
- a silane coupling agent is an organosilicon compound composed of an organic substance and silicon, and has different reactive groups in one molecule. More specifically, the silane coupling agent is an organic functional group (for example, a vinyl group, a (meth) acryl group, an isocyanate group, an epoxy group, which can cause a reaction or interaction with an organic substance in one molecule). An amino group, a mercapto group, a styryl group, a sulfide group, etc.) and a hydrolyzable group.
- a silane coupling agent uses this reactive group structure to form a chemical bond with an organic substance via an organic functional group, and to hydrolyze and react a hydrolyzable group to form a chemical bond with an inorganic surface.
- a vinyl-based silane coupling agent is used.
- a vinyl-based silane coupling agent is used, but the silane coupling agent is not limited thereto.
- the easy-adhesion layer 5 is prepared by dissolving the above-described compound in a solvent, applying this solution onto the reflective layer 2, then drying the solution (volatilizing the solvent), and It is formed by the procedure of irradiating an electron beam from the surface side of the protective layer 3.
- the active energy ray is an energy ray that promotes a chemical reaction or a physical change. In the present embodiment, the active energy ray forms a chemical bond between the protective layer 3 and the easy adhesion layer 5. Acts to promote. More specifically, in a state where the solution is applied onto the reflective layer 2 and the solution is dried (the solvent is volatilized), the protective layer 3 is formed thereon, and an active energy ray such as an electron beam is applied.
- substrate which concerns on this embodiment is 1st implementation except providing the step which forms the easily bonding layer 5 on the reflective layer 2 (between the reflective layer 2 and the protective layer 3). Since it is the same as the manufacturing method of the infrared reflective substrate which concerns on a form, detailed description is abbreviate
- the reflective layer 2 is formed on one surface 1 a of the substrate 1, as in the method for producing the infrared reflective substrate according to the first embodiment,
- the easy-adhesion layer 5 is formed by apply
- the protective layer 3 is formed on the easy-adhesion layer 5, and an electron beam is irradiated from the surface side of the protective layer 3 by the electron beam irradiation apparatus described above. In this way, the infrared reflective substrate according to this embodiment is completed.
- the reflective layer 2 (the reflective layer 2 and the protective layer) 3
- the easy adhesion layer 5 is chemically bonded to the protective layer 3 and the reflective layer 2 and the protective layer 3 are easily bonded as described above.
- the adhesiveness between the reflective layer 2 and the protective layer 3 increases. Therefore, even when the protective layer 3 is subjected to external stress, the protective layer 3 is difficult to peel off from the reflective layer 2. Therefore, it is possible to prevent a situation in which the reflective layer 2 having low scratch resistance is exposed due to the peeling of the protective layer 3 and the reflective layer 2 is damaged.
- the infrared reflective substrate according to the present embodiment is the first, second and third except that the protective layer 3 as a film is laminated on the reflective layer 2 via the adhesive layer 6. Since the configuration is the same as that of the infrared reflective substrate according to the embodiment, the same configuration is denoted by the same reference numeral, and detailed description is not repeated.
- the protective layer 3 is prepared by dissolving the above-described polymer in a solvent (along with the above-described cross-linking agent as necessary) to prepare the above-described polymer composition solution.
- the film is formed on a support plate (not shown) instead of the base material 1 and dried, and then peeled off from the support plate.
- the film containing the polymer mentioned above may be stretched by a known method to produce a biaxially stretched film, and the biaxially stretched film may be used.
- Commercially available biaxially stretched films may also be used, and examples of such biaxially stretched films include “Trephan (registered trademark)” manufactured by Toray Industries, Inc.
- the thickness of the protective layer 3 is 5 ⁇ m or more as the lower limit and 30 ⁇ m or less as the upper limit.
- a polyester adhesive is used as the adhesive layer 6.
- a polyester-based adhesive is used as the adhesive layer 6, but is not limited thereto.
- the thickness of the adhesive layer 6 is preferably 0.1 to 1.5 ⁇ m.
- substrate concerning this embodiment uses the film containing the polymer mentioned above as the protective layer 3, and the step which laminates
- the adhesive as described above is applied on one surface 3a of the protective layer 3, and this is laminated on the reflective layer 2 and dried. Then, an electron beam is irradiated from the surface side of the protective layer 3 with the electron beam irradiation apparatus mentioned above. In this way, the infrared reflective substrate according to this embodiment is completed.
- the manufacturing method of this embodiment is equipped with the process of irradiating an electron beam after laminating
- the method for manufacturing an infrared reflector including the step of irradiating the protective layer 3 with an electron beam and then laminating the irradiated protective layer 3 on the reflective layer 2, the infrared ray according to the first embodiment is provided.
- the protective layer 3 irradiated with the electron beam can be obtained without irradiating the base material 1 or the reflective layer 2 with the electron beam. Thereby, it is possible to obtain an infrared reflecting plate in which the occurrence of damage (yellowing, reduction in mechanical strength, etc.) to the base material 1 due to the irradiation of the electron beam is suppressed.
- the infrared reflective substrate according to the present embodiment does not include the base material 1 and is formed by directly laminating the protective layer 3 and the reflective layer 2 (specifically, the protective layer). And the infrared reflective substrate according to the first embodiment, except that the reflective layer is directly formed on the one surface 3a of 3 and the protective layer 3 is the same film as the third embodiment. Since it is the same structure, about the same structure, the same referential mark is attached
- the protective layer 3 the same film as that of the third embodiment is used, and the reflective layer 2 and the protective layer 3 are laminated as one step. Since it is the same as that of the manufacturing method of the infrared reflective board
- the reflective layer 2 is formed on one surface 3a of the same protective layer 3 as that of the third embodiment in the same manner as in the first embodiment.
- the reflective layer 2 is formed on the one surface 3a of the protective layer 3 as a film in the same manner as in the first embodiment.
- an electron beam is irradiated from the surface side of the protective layer 3 with the electron beam irradiation apparatus mentioned above. In this way, the infrared reflective substrate according to this embodiment is completed.
- a reflective layer is formed on one surface 3a of the protective layer 3 irradiated with the electron beam. May be.
- the inventors produced an infrared reflective substrate according to the present embodiment (Example), and also produced a comparative infrared reflective substrate (Comparative Example).
- the production method is as follows.
- a polyethylene terephthalate substrate (trade name “Diafoil T602E50” manufactured by Mitsubishi Plastics, Inc.) having a thickness of 50 ⁇ m was used as the base material 1.
- a reflective layer 2 was formed on one surface 1a of the substrate 1 by DC magnetron sputtering. Specifically, using a DC magnetron sputtering method, a metal oxide layer 2b made of indium tin oxide is formed with a thickness of 35 nm on one surface 1a of the substrate 1, and a translucent made of an Ag—Pd—Cu alloy is formed thereon.
- the metal layer 2a was formed with a thickness of 18 nm, and the metal oxide layer 2c made of indium tin oxide was formed thereon with a thickness of 35 nm.
- a protective layer 3 was formed on the reflective layer 2. The detailed formation conditions of the protective layer 3 will be described in detail in the description of Examples and Comparative Examples.
- a protective layer 3 was formed on the reflective layer 2 produced by the above production method by a coating method. Specifically, a hydrogenated nitrile rubber (trade name “Terban 5065” manufactured by LANXESS [k: 33.3, l: 63, m: 3.7, R1 to R3: H] is formed on the reflective layer 2. A 10% methyl ethyl ketone (MEK) solution was applied using an applicator, placed in an air-circulating drying oven, and dried for 2 minutes at 120 ° C. Thereby, a protective layer 3 having a thickness of 5 ⁇ m was formed.
- a hydrogenated nitrile rubber trade name “Terban 5065” manufactured by LANXESS [k: 33.3, l: 63, m: 3.7, R1 to R3: H] is formed on the reflective layer 2.
- MEK 10% methyl ethyl ketone
- an electron beam was irradiated from the surface side of the protective layer 3 using an electron beam irradiation apparatus (product name “EC250 / 30/20 mA” manufactured by Iwasaki Electric Co., Ltd.), and an infrared reflective substrate according to Example 1 was obtained.
- the electron beam irradiation conditions were a line speed of 3 m / min, an acceleration voltage of 150 kV, and an irradiation dose of 100 kGy.
- Example 2 is the same as Example 1 except that the electron beam irradiation dose is 200 kGy.
- Example 3 Hydrogenated nitrile rubber (trade name “Telvan 5065” manufactured by LANXESS) [k: 33.3, l: 63, m: 3.7, R1 to R3: H] in a 10% methyl ethyl ketone (MEK) solution (meta )
- MEK 10% methyl ethyl ketone
- An acrylate monomer (trade name “Biscoat # 295” manufactured by Osaka Organic Chemical Co., Ltd.) was added at 5 wt% (5 parts by weight) with respect to the solid content of the hydrogenated nitrile rubber, and the electron beam irradiation dose was 50 kGy. Except for this point, the second embodiment is the same as the first embodiment.
- Example 4 Hydrogenated nitrile rubber (trade name “Telvan 5065” manufactured by LANXESS) [k: 33.3, l: 63, m: 3.7, R1 to R3: H] in a 10% methyl ethyl ketone (MEK) solution (meta ) Same as Example 3 except that 10 wt% (10 parts by weight) of an acrylate monomer (trade name “Biscoat # 295” manufactured by Osaka Organic Chemical Co., Ltd.) was added to the solid content of the hydrogenated nitrile rubber. .
- MEK methyl ethyl ketone
- Example 5 The same as Example 3 except that 15 wt% (15 parts by weight) of (meth) acrylate monomer (trade name “Biscoat # 295” manufactured by Osaka Organic Chemical Co., Ltd.) was added to the solid content of the hydrogenated nitrile rubber. It is.
- (meth) acrylate monomer trade name “Biscoat # 295” manufactured by Osaka Organic Chemical Co., Ltd.
- Example 6> The same as Example 3 except that (meth) acrylate monomer (trade name “Biscoat # 295” manufactured by Osaka Organic Chemical Co., Ltd.) was added in an amount of 20% by weight (20 parts by weight) based on the solid content of the hydrogenated nitrile rubber. It is.
- Example 7> As hydrogenated nitrile rubber, instead of the above-mentioned trade name “Telvan 5065”, trade name “Telvan 5005” (manufactured by LANXESS) [k: 33.3, l: 66.7, m: 0, R1 to R3: H The same as Example 1 except that 5005 is used.
- Example 1 is the same as Example 1 except that no electron beam is irradiated.
- the protective layer 3 instead of forming the protective layer 3 on the reflective layer 2 by a coating method, the protective layer 3 made of a biaxially stretched polypropylene (OPP) film having a thickness of 15 ⁇ m (“Torphan” manufactured by Toray Industries, Inc.) And Example 1 except that it is laminated on the reflective layer 2 through a polyester adhesive (adhesive layer 6) of 0.8 ⁇ m, and the acceleration voltage of the electron beam is 100 kV and the irradiation dose is 100 kGy. The same.
- OPP biaxially stretched polypropylene
- Example 8 is the same as Example 8 except that the acceleration voltage of the electron beam is 150 kV and the irradiation dose is 100 kGy.
- Example 8 is the same as Example 8 except that the electron beam is not irradiated.
- ⁇ Comparative Example 3> instead of using “Tervan 5065” as the protective layer 3, a polyethylene terephthalate film having a thickness of 23 ⁇ m (trade name “Diafoil T609E25” manufactured by Mitsubishi Chemical Polyester Co., Ltd.) was used. An infrared reflective film was produced in the same manner as in Example 1 except that the film was attached via a system adhesive (adhesive layer 6) and the film was not irradiated with an electron beam.
- ⁇ Comparative Example 4> instead of using “Telvan 5065” as the protective layer 3, a hard coat layer having a thickness of 4.9 ⁇ m (product name “acrylic-urethane hard coat PC1097” manufactured by DIC was applied and UV-cured) was used. .
- This hard coat layer forming material was applied to the surface of the reflective layer 2 via a 80-nm-thick polyester adhesive (adhesive layer 6) to form a hard coat layer on the reflective layer 2. Further, the hard coat layer was not irradiated with an electron beam. Except for these points, an infrared reflective film was produced in the same manner as in Example 1.
- the measurement method of vertical emissivity is as follows. Using a Fourier transform infrared spectroscopic (FT-IR) device equipped with a variable angle reflection accessory (product name “FTS7000S” manufactured by Varian), the regular reflectance of infrared light having a wavelength of 5 ⁇ m to 25 ⁇ m is measured, and JISR is measured. 3106-2008 (Test method for transmittance, reflectance, emissivity, and solar heat gain of plate glass).
- FT-IR Fourier transform infrared spectroscopic
- the method for measuring the far-infrared transmittance in the infrared reflectors of Examples 1 to 9 and Comparative Examples 1 to 4 is as follows.
- a far infrared ray is irradiated only to the protective layer 3 using a JASCO FT / IR-230 (manufactured by JASCO Corporation), a Fourier transform infrared spectroscopic (FT-IR) photometer 2.
- FT-IR Fourier transform infrared spectroscopic
- the scratch resistance test is as follows. Using a Gakushin Abrasion Tester, using cloth (Kanakin No. 3) as the rubbing means, the sliding means is brought into contact with the specimens (Examples 8 and 9 and Comparative Examples 2 to 4), and a load of 500 g The test which makes 100 reciprocating motions is performed. In this test, a case where scratches are observed on the entire surface of the protective layer 3 by visual inspection is expressed as “x” as a case where good scratch resistance is not shown, and a case where other scratches are shown as good scratch resistance. It expresses.
- the gel fraction in the infrared reflecting substrate is 70% or more and the vertical emissivity is 0.20 or less. Both the gel fraction and the vertical emissivity are Good results were obtained. Further, as shown in Table 2, in the results of Examples 8 and 9, the vertical emissivity was 0.20 or less, and the scratch resistance as the resistance to physical rubbing was good. Therefore, in the infrared reflective substrate according to the present embodiment, it is possible to prevent a situation in which the reflective layer 2 having low scratch resistance is exposed and the reflective layer 2 is damaged.
- the infrared reflective substrate since the vertical emissivity is 0.20 or less, far infrared rays reach the reflective layer 2 from the protective layer 3 side, and as a result, are reflected by the reflective layer 2. It becomes easy. Therefore, by pasting the infrared reflective substrate on a light-transmitting member such as a window glass, it is possible to efficiently shield far infrared rays emitted from the room through the window glass and the like to the outside, and a heat insulation effect can be expected. . And even if it is incident on the base material 1, near infrared rays are not easily absorbed by the base material 1, reach the reflective layer 2, and as a result, are easily reflected by the reflective layer 2.
- the infrared reflective substrate according to the present embodiment to a translucent member such as a window glass, it is possible to shield near infrared rays that enter the room through the translucent member such as a window glass. In addition, the heat shielding effect in summer can be expected. If the thickness of the adhesive layer 6 is about 0.8 ⁇ m, the influence on the vertical emissivity can be reduced even when the adhesive layer 6 is formed between the reflective layer 2 and the protective layer 3. .
- the addition amount of the (meth) acrylate monomer (hereinafter referred to as the radical polymerization monomer) as the radical polymerization monomer added to the protective layer 3 is as follows.
- the vertical emissivity slightly increases (0.11 to 0.18) as it increases, but the added amount is 5 to 20% by weight (5 to 20 parts by weight) based on the solid content of the hydrogenated nitrile rubber. It was found that the vertical emissivity was not affected even when a radical polymerization type monomer was added to the protective layer 3 within the range of.
- the gel fraction of the protective layer 3 after irradiation with the electron beam is 70% or more and the addition amount of the radical polymerizable monomer added to the protective layer 3 is in the range of 5 to 20 parts by weight, An infrared reflective substrate having a good gel fraction and vertical emissivity (infrared reflective performance) can be obtained.
- substrate which concerns on this invention is not limited to said each embodiment, A various change is possible in the range which does not deviate from the summary of this invention.
- a polymer composed of at least any two or more repeating units among the repeating units A, B, and C has been described.
- the polymer composed of the repeating units is not limited to this.
- Other repeating units other than these repeating units can also be included as long as the properties required for the protective layer are not impaired.
- Other repeating units include, for example, styrene, ⁇ -methylstyrene, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, vinyl acetate, (meth) acrylamide Etc.
- the ratio of these to the whole polymer is preferably 10% by weight or less.
- the reflective layer 2 is formed by vapor deposition.
- the present invention is not limited to this.
- the (meth) acrylate monomer is used as the radical polymerization type monomer added to the protective layer 3, but the present invention is not limited to this.
- the infrared reflective substrate according to each of the above embodiments is an infrared reflective substrate having both heat shielding properties and heat insulating properties.
- the present invention is not limited to this. Needless to say, the infrared reflective substrate according to the present invention can also be applied to an infrared reflective substrate having only a conventional heat shielding property.
- the method for forming the protective layer 3 as a film is not limited to this.
- an infrared reflective substrate and method for producing the same for example, reflection in a laminate of a reflective layer and a protective layer formed in the fourth embodiment.
- a substrate as shown in the first embodiment can be further laminated on the layer.
- the base material can be laminated on the reflective layer via the adhesive layer as shown in the third embodiment.
- an adhesive layer as shown in the first embodiment can be further laminated on the reflective layer in the laminate of the reflective layer and the protective layer formed in the fourth embodiment.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Organic Chemistry (AREA)
- Ophthalmology & Optometry (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
- Optical Filters (AREA)
Abstract
Description
また、保護層に含まれる高分子が洗浄液に可溶でない場合であっても、保護層が物理的な擦れに弱いと、拭き取り等によって保護層が除去され、上記同様、耐擦傷性の低い赤外線反射層が露出してしまう、という問題が生じる。
このように、耐溶剤性や物理的な擦れに対する耐性といった保護層の耐擦傷性が十分でない場合には、赤外線反射層を十分に保護することが困難である。
反射層と保護層とを積層した赤外線反射基板の製造方法であって、
前記反射層と、電子線が照射されることによって架橋される高分子を含有する前記保護層とを積層するステップと、
前記保護層に電子線を照射するステップと、を備える。
前記赤外線反射板は、前記反射層と、前記保護層と、さらに基材とを有しており、
前記反射層と前記保護層とを積層するステップが、
前記基材の一方の面に前記反射層を形成するステップと、
前記高分子を溶剤に溶解させた高分子組成物溶液を前記反射層上に塗布し、次いで溶液を乾燥させ前記保護層を形成するステップと、を備えるようにすることができる。
前記赤外線反射板は、前記反射層と、前記保護層と、さらに基材とを有しており、
前記反射層と前記保護層とを積層するステップが、
前記基材の一方の面に前記反射層を形成するステップと、
前記保護層として前記高分子を有するフィルムを用い、該保護層と前記反射層とを貼合するステップと、を備えるようにすることができる。
ここで、「遠赤外線の透過率」は、保護層のみに遠赤外線を照射したときの、該保護層における波長2.5μm~25μm領域での赤外光の透過率の平均値を意味する。
ここで、従来一般的に、電子線が照射されることにより誘起される反応として、架橋反応が優先的に起こる架橋型高分子と、主鎖切断が優先的に起こる崩壊型(切断型)高分子とに分類されている。前記「架橋型の反応挙動」とは、この2種類の反応挙動のうち、架橋が優先的に起こる反応挙動を意味する。
以下、本発明に係る赤外線反射基板の製造方法の第一の実施形態について、説明する。
本実施形態に係る赤外線反射基板の製造方法は、反射層と保護層とを積層するステップと、該保護層に電子線を照射するステップと、を備え、前記赤外線基板が前記保護層と、前記反射層と、さらに基材とを有しており、前記反射層と前記保護層とを積層するステップが、前記基材の一方の面に前記反射層を形成するステップと、高分子を溶剤に溶解させた高分子組成物溶液を該反射層上に塗布し、次いで溶液を乾燥させ保護層を形成するステップとを有している。
また、化学式Iの繰り返し単位AとBとCの比率は、A:B:C=5~50重量%:25~85重量%:0~60重量%(但し、AとBとCの合計は100重量%)となるのが好ましい。より好ましくは、A:B:C=15~40重量%:55~85重量%:0~20重量%(但し、AとBとCの合計は100重量%)である。さらに好ましくは、A:B:C=25~40重量%:55~75重量%:0~10重量%(但し、AとBとCの合計は100重量%)である。
また、保護層3に含まれる高分子が、上記化学式I以外の化合物、すなわち、ポリエチレン、ポリプロピレンなどのオレフィン系高分子、ポリノルボルネン等のシクロオレフィン系高分子、ポリスチレン、ポリフッ化ビニリデン、ポリメチルアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリアミド、アクリロニトリル、これら高分子のモノマー成分を構成単位として含む共重合体、または、該共重合体の水素化物などである場合には、電子線の照射線量は、下限値としては60kGy以上である。より好ましくは、75kGyである。また、上限値としては、150kGy以下である。好ましくは、125kGy以下である。電子線の照射線量が上記範囲内であれば、耐傷擦性が良好な赤外線反射板を得ることができる。なお、これら電子線の照射条件は、加速電圧が100kV~150kVでの照射条件である。
かかる遠赤外線の透過率は、フーリエ変換型赤外分光(FT-IR)光度計(日本分光株式会社製)を用い、保護層3のみに遠赤外線を照射したときの、波長2.5~25μmの領域での赤外光の透過率を測定し、平均値を算出し、得られた数値を、厚み15μmあたりの数値となるように換算する。
また、保護層3が耐溶剤性に優れた高分子を含有している場合には、保護層3における高分子を架橋することで、物理的な擦れに起因する剥がれを防止することができ、そのため、赤外線反射層2が露出することによって耐擦傷性が低下するのを防止することができる。
以下、本発明に係る赤外線反射基板の製造方法の第二の実施形態について、説明する。まず、本実施形態に係る赤外線反射基板の積層構造について、図2を参酌しつつ説明する。なお、本実施形態に係る赤外線反射基板は、従来の赤外線反射基板が持つ遮熱特性(近赤外線の反射特性)に加え、断熱特性(遠赤外線の反射特性)を併せ持つ赤外線反射基板である。
以下、本発明に係る赤外線反射基板の製造方法の第三の実施形態について、説明する。まず、本実施形態に係る赤外線反射基板の積層構造について、図3を参酌しつつ説明する。
また、保護層3としては、上述した高分子を含むフィルムを、公知の方法により延伸させて二軸延伸フィルムを作製し、該二軸延伸フィルムを用いてもよい。また、市販品の二軸延伸フィルムを用いてもよく、かかる二軸延伸フィルムとしては、東レ(株)社製「トレファン(登録商標)」などがある。この場合においても、前述と同様に、保護層3の厚みは、下限値としては、5μm以上であり、また、上限値としては、30μm以下である。
また、保護層3に電子線を照射した後、該照射された保護層3を反射層2に積層する工程を備えた赤外線反射板の製造方法によれば、上記第一の実施形態に係る赤外線反射基板の製造方法と同様の効果に加えて、基材1や反射層2に電子線を照射することなく、電子線が照射された保護層3を得ることができる。これにより、電子線の照射による基材1へのダメージ(黄変・機械強度の低下など)などの発生が抑制された赤外線反射板を得ることができる。
以下、本発明に係る赤外線反射基板の製造方法の第四の実施形態について、説明する。
上記作製方法により作製した反射層2の上に、塗工法により保護層3を形成した。具体的には、反射層2の上に、水素化ニトリルゴム(ランクセス社製 商品名「テルバン5065」〔k:33.3、l:63、m:3.7、R1~R3:H〕の10%メチルエチルケトン(MEK)溶液をアプリケータを用いて塗布し、空気循環式の乾燥オーブンに入れ、120℃で2分間乾燥を行った。これにより、厚さが5μmの保護層3を形成した。その後、電子線照射装置(岩崎電気株式会社製 製品名「EC250/30/20mA」)を用いて保護層3の表面側から電子線を照射し、実施例1に係る赤外線反射基板を得た。電子線の照射条件は、ライン速度を3m/min、加速電圧を150kV、照射線量を100kGyとした。
電子線の照射線量を200kGyとした点以外は、実施例1と同じである。
水素化ニトリルゴム(ランクセス社製 商品名「テルバン5065」)〔k:33.3、l:63、m:3.7、R1~R3:H〕の10%メチルエチルケトン(MEK)溶液に、(メタ)アクリレート系モノマー(大阪有機化学社製 商品名「ビスコート#295」)を水素化ニトリルゴムの固形分に対して5重量%(5重量部)添加した点、及び電子線の照射線量を50kGyとした点以外は、実施例1と同じである。
水素化ニトリルゴム(ランクセス社製 商品名「テルバン5065」)〔k:33.3、l:63、m:3.7、R1~R3:H〕の10%メチルエチルケトン(MEK)溶液に、(メタ)アクリレート系モノマー(大阪有機化学社製 商品名「ビスコート#295」)を水素化ニトリルゴムの固形分に対して10重量%(10重量部)添加した点以外は、実施例3と同じである。
(メタ)アクリレート系モノマー(大阪有機化学社製 商品名「ビスコート#295」)を水素化ニトリルゴムの固形分に対して15重量%(15重量部)添加した点以外は、実施例3と同じである。
(メタ)アクリレート系モノマー(大阪有機化学社製 商品名「ビスコート#295」)を水素化ニトリルゴムの固形分に対して20重量%(20重量部)添加した点以外は、実施例3と同じである。
<実施例7>
水素化ニトリルゴムとして、上記商品名「テルバン5065」に代えて、商品名「テルバン5005」(ランクセス社製)〔k:33.3、l:66.7、m:0、R1~R3:H〕5005を用いた点以外は、実施例1と同様である。
電子線を照射しない点以外は、実施例1と同じである。
反射層2の上に塗工法により保護層3形成することに代えて、厚みが15μmの2軸延伸ポリプロピレン(OPP)フィルム(東レ(株)製「トレファン」)からなる保護層3を、厚みが0.8μmのポリエステル系接着剤(接着層6)を介して反射層2の上に積層した点、及び電子線の加速電圧を100kV、照射線量を100kGyとした点以外は、実施例1と同じである。
電子線の加速電圧を150kV、照射線量を100kGyとした点以外は、実施例8と同じである。
電子線を照射しない点以外は、実施例8と同じである。
保護層3として、「テルバン5065」を用いる代わりに、厚み23μmのポリエチレンテレフタレートフィルム(三菱化学ポリエステル社製 商品名「ダイアホイル T609E25」を用い、このフィルムを反射層2の表面に、厚み80nmのポリエステル系接着剤(接着層6)を介して貼着し、このフィルムに電子線を照射しなかった点以外は、実施例1と同様の方法で、赤外線反射フィルムを作製した。
保護層3として、「テルバン5065」を用いる代わりに、厚み4.9μmのハードコート層(DIC社製 商品名「アクリル-ウレタン系ハードコートPC1097」を塗布し、紫外線硬化させたもの)を用いた。このハードコート層形成用材料を反射層2の表面に、厚み80nmのポリエステル系接着剤(接着層6)を介して塗布して、反射層2上にハードコート層を形成した。また、このハードコート層に電子線を照射しなかった。これらの点以外は、実施例1と同様の方法で、赤外線反射フィルムを作製した。
そして、実施例1~7比較例1のそれぞれについて、上記実施形態に係る赤外線反射基板のゲル分率、及び赤外線反射基板の垂直放射率を以下の方法によって測定した。併せて、保護層における、厚さ15μmあたりの波長2.5μm~25μmの領域での遠赤外線の透過率を、以下の方法によって測定した。
また、実施例8、9、比較例2~4のそれぞれについて、上記実施形態に係る赤外線反射基板の垂直放射率を以下の方法によって測定した。また、これら赤外線反射基板については、保護層3がメチルエチルケトンに溶解しないため、耐溶剤性試験に代えて、以下の方法によって擦傷性試験を行った。併せて、保護層における、厚さ15μmあたりの波長2.5μm~25μmの領域での遠赤外線の透過率の平均値を、以下の方法によって測定した。
これらの結果を表1、表2に示す。
ゲル分率(%) = (溶剤浸漬後の重量(g)/溶剤浸漬前の重量(g))× 100
Claims (10)
- 反射層と保護層とを積層した赤外線反射基板の製造方法であって、
前記反射層と、高分子を含有する前記保護層とを積層するステップと、
前記保護層に電子線を照射するステップと、を備える赤外線反射基板の製造方法。 - 前記赤外線反射板は、前記反射層と、前記保護層と、さらに基材とを有しており、
前記反射層と前記保護層とを積層するステップが、
前記基材の一方の面に前記反射層を形成するステップと、
前記高分子を溶剤に溶解させた高分子組成物溶液を前記反射層上に塗布し、次いで溶液を乾燥させ前記保護層を形成するステップと、を備える、請求項1に記載の赤外線反射基板の製造方法。 - 前記赤外線反射板は、前記反射層と、前記保護層と、さらに基材とを有しており、
前記反射層と前記保護層とを積層するステップが、
前記基材の一方の面に前記反射層を形成するステップと、
前記保護層として前記高分子を有するフィルムを用い、該保護層と前記反射層とを貼合するステップと、を備える、請求項1に記載の赤外線反射基板の製造方法。 - 前記保護層の厚さ15μmあたりの遠赤外線の透過率が65%以上である、請求項1に記載の赤外線反射基板の製造方法。
- 前記高分子は、前記電子線が照射されることにより架橋型の反応挙動を示すものである、請求項1に記載の赤外線反射基板の製造方法。
- 前記高分子は、オレフィン系高分子またはシクロオレフィン系高分子である、請求項1に記載の赤外線反射基板の製造方法。
- 前記電子線を照射される前の保護層が、前記高分子100重量部に対して1重量部~20重量部のラジカル重合性モノマーをさらに含む、請求項7に記載の赤外線反射基板の製造方法。
- 前記電子線を照射された後の前記保護層のゲル分率が70%以上である、請求項1に記載の赤外線反射基板の製造方法。
- 前記保護層側表面の垂直放射率が0.40以下である請求項1に記載の赤外線反射基板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380009741.XA CN104136945A (zh) | 2012-02-16 | 2013-02-15 | 红外线反射基板的制造方法 |
US14/379,248 US20150007935A1 (en) | 2012-02-16 | 2013-02-15 | Method for producing infrared reflective substrate |
EP13749193.2A EP2816381A1 (en) | 2012-02-16 | 2013-02-15 | Method for manufacturing infrared-reflective substrate |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-031749 | 2012-02-16 | ||
JP2012031749 | 2012-02-16 | ||
JP2013025799 | 2013-02-13 | ||
JP2013-025799 | 2013-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013122227A1 true WO2013122227A1 (ja) | 2013-08-22 |
Family
ID=48984336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/053747 WO2013122227A1 (ja) | 2012-02-16 | 2013-02-15 | 赤外線反射基板の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150007935A1 (ja) |
EP (1) | EP2816381A1 (ja) |
JP (1) | JPWO2013122227A1 (ja) |
CN (1) | CN104136945A (ja) |
WO (1) | WO2013122227A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013191285A1 (ja) * | 2012-06-21 | 2013-12-27 | 日東電工株式会社 | 赤外線反射機能付き透光性基板 |
JP2015051591A (ja) * | 2013-09-06 | 2015-03-19 | 旭化成ケミカルズ株式会社 | ハードコート被覆ポリオレフィン系樹脂シート |
JP2017520437A (ja) * | 2014-05-09 | 2017-07-27 | スリーエム イノベイティブ プロパティズ カンパニー | ハードコートを有する物品及び該物品の製造方法 |
JP2021143796A (ja) * | 2020-03-12 | 2021-09-24 | 大阪瓦斯株式会社 | 放射冷却式膜材 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10723102B2 (en) | 2015-04-20 | 2020-07-28 | 3M Innovative Properties Company | Durable low emissivity window film constructions |
WO2017152163A1 (en) * | 2016-03-04 | 2017-09-08 | Xenex Disinfection Services, Llc. | Smoke detectors with light shields and alarm systems including such |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6151762B2 (ja) | 1979-05-10 | 1986-11-10 | Teijin Ltd | |
JPH11236467A (ja) * | 1997-12-02 | 1999-08-31 | Ciba Specialty Chem Holding Inc | 増大した表面耐久性を有するポリオレフィン材料および放射線への暴露によるその製造方法 |
JP2007528916A (ja) * | 2003-11-17 | 2007-10-18 | 住友化学株式会社 | 架橋性置換フルオレン化合物及びそれをベースにした共役オリゴマー又はポリマー |
JP2011104887A (ja) * | 2009-11-18 | 2011-06-02 | Nitto Denko Corp | 赤外線反射基板 |
JP2011207223A (ja) * | 2010-03-12 | 2011-10-20 | Toray Ind Inc | 遠赤外線反射性積層体 |
JP2012018228A (ja) * | 2010-07-06 | 2012-01-26 | Dainippon Printing Co Ltd | 選択波長反射フィルム |
-
2013
- 2013-02-15 CN CN201380009741.XA patent/CN104136945A/zh active Pending
- 2013-02-15 US US14/379,248 patent/US20150007935A1/en not_active Abandoned
- 2013-02-15 EP EP13749193.2A patent/EP2816381A1/en not_active Withdrawn
- 2013-02-15 JP JP2013558759A patent/JPWO2013122227A1/ja active Pending
- 2013-02-15 WO PCT/JP2013/053747 patent/WO2013122227A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6151762B2 (ja) | 1979-05-10 | 1986-11-10 | Teijin Ltd | |
JPH11236467A (ja) * | 1997-12-02 | 1999-08-31 | Ciba Specialty Chem Holding Inc | 増大した表面耐久性を有するポリオレフィン材料および放射線への暴露によるその製造方法 |
JP2007528916A (ja) * | 2003-11-17 | 2007-10-18 | 住友化学株式会社 | 架橋性置換フルオレン化合物及びそれをベースにした共役オリゴマー又はポリマー |
JP2011104887A (ja) * | 2009-11-18 | 2011-06-02 | Nitto Denko Corp | 赤外線反射基板 |
JP2011207223A (ja) * | 2010-03-12 | 2011-10-20 | Toray Ind Inc | 遠赤外線反射性積層体 |
JP2012018228A (ja) * | 2010-07-06 | 2012-01-26 | Dainippon Printing Co Ltd | 選択波長反射フィルム |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013191285A1 (ja) * | 2012-06-21 | 2013-12-27 | 日東電工株式会社 | 赤外線反射機能付き透光性基板 |
US9477023B2 (en) | 2012-06-21 | 2016-10-25 | Nitto Denko Corporation | Visible light-transmissive and infrared-reflective substrate |
JP2015051591A (ja) * | 2013-09-06 | 2015-03-19 | 旭化成ケミカルズ株式会社 | ハードコート被覆ポリオレフィン系樹脂シート |
JP2017520437A (ja) * | 2014-05-09 | 2017-07-27 | スリーエム イノベイティブ プロパティズ カンパニー | ハードコートを有する物品及び該物品の製造方法 |
JP2021143796A (ja) * | 2020-03-12 | 2021-09-24 | 大阪瓦斯株式会社 | 放射冷却式膜材 |
JP7442352B2 (ja) | 2020-03-12 | 2024-03-04 | 大阪瓦斯株式会社 | 放射冷却式膜材 |
Also Published As
Publication number | Publication date |
---|---|
EP2816381A1 (en) | 2014-12-24 |
JPWO2013122227A1 (ja) | 2015-05-18 |
US20150007935A1 (en) | 2015-01-08 |
CN104136945A (zh) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5859476B2 (ja) | 赤外線反射フィルム | |
WO2013122227A1 (ja) | 赤外線反射基板の製造方法 | |
WO2013089185A1 (ja) | 赤外線反射フィルム | |
JP6326368B2 (ja) | 赤外線反射機能付き透光性基板 | |
WO2014119668A1 (ja) | 赤外線反射フィルムの製造方法 | |
JP6163196B2 (ja) | 赤外線反射フィルム | |
JP2001310407A (ja) | 透明積層フィルム | |
WO2013115233A1 (ja) | 赤外線反射フィルム | |
JP2015001625A (ja) | 赤外線反射フィルム | |
WO2013089187A1 (ja) | 赤外線反射フィルム | |
JP2013144426A (ja) | 赤外線反射フィルム | |
KR20180094023A (ko) | 광투과성 적층체 및 광투과성 적층체의 제조 방법 | |
WO2013115237A1 (ja) | 低摩擦基材の製造方法 | |
JP2015001624A (ja) | 赤外線反射フィルム | |
WO2017154276A1 (ja) | 光透過性積層体および光透過性積層体の製造方法 | |
JP2013145357A (ja) | 赤外線反射フィルム | |
JP2020049757A (ja) | 光学用光透過性積層体および光学用光透過性積層体の製造方法 | |
JP2013257391A (ja) | 赤外線反射フィルムの製造方法 | |
JP2017047552A (ja) | 光透過性積層体 | |
JP2018075797A (ja) | 遠赤外線反射基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13749193 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013558759 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14379248 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013749193 Country of ref document: EP |