WO2013122156A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2013122156A1
WO2013122156A1 PCT/JP2013/053551 JP2013053551W WO2013122156A1 WO 2013122156 A1 WO2013122156 A1 WO 2013122156A1 JP 2013053551 W JP2013053551 W JP 2013053551W WO 2013122156 A1 WO2013122156 A1 WO 2013122156A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
crystal display
light guide
prism
Prior art date
Application number
PCT/JP2013/053551
Other languages
English (en)
French (fr)
Inventor
小池 康博
岳仁 淵田
前澤 昌平
武本 博之
村上 奈穗
中村 瑠奈
荒川 文裕
山本 浩
石川 毅
榮三郎 樋口
Original Assignee
学校法人慶應義塾
日東電工株式会社
大日本印刷株式会社
日東樹脂工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾, 日東電工株式会社, 大日本印刷株式会社, 日東樹脂工業株式会社 filed Critical 学校法人慶應義塾
Priority to EP13748842.5A priority Critical patent/EP2816399A4/en
Priority to KR1020147022806A priority patent/KR102050612B1/ko
Priority to US14/377,050 priority patent/US9261731B2/en
Priority to CN201380009458.7A priority patent/CN104204924B/zh
Publication of WO2013122156A1 publication Critical patent/WO2013122156A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention relates to a liquid crystal display device.
  • liquid crystal display devices using surface light source devices as displays.
  • a liquid crystal display device including an edge light type surface light source device light emitted from the light source enters the light guide plate and propagates while repeating total reflection on the light output surface (side surface of the liquid crystal cell) and the back surface of the light guide plate.
  • a part of the light propagating through the light guide plate is changed in the traveling direction by a light scatterer or the like provided on the back surface of the light guide plate and is emitted from the light exit surface to the outside of the light guide plate.
  • Light emitted from the light exit surface of the light guide plate is diffused and collected by various optical sheets such as a diffusion sheet, a prism sheet, and a brightness enhancement film, and then enters a liquid crystal panel in which polarizing plates are arranged on both sides of the liquid crystal cell. .
  • the liquid crystal molecules in the liquid crystal layer of the liquid crystal cell are driven for each pixel to control the transmission and absorption of incident light. As a result, an image is displayed.
  • the prism sheet is typically fitted into the casing of the surface light source device and provided close to the exit surface of the light guide plate.
  • a liquid crystal display device using such a surface light source device the prism sheet and the light guide plate may be rubbed when the prism sheet is installed or in an actual use environment, and the light guide plate may be damaged.
  • Patent Document 1 a technique for integrating a prism sheet with a light source side polarizing plate has been proposed.
  • Patent Document 1 a technique for integrating a prism sheet with a light source side polarizing plate.
  • a liquid crystal display device using a polarizing plate in which such a prism sheet is integrated has a problem that the integrated illuminance and front luminance are insufficient and dark.
  • the present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a liquid crystal display device that has high light utilization efficiency, can display bright images, and is excellent in mechanical strength. There is to do.
  • the liquid crystal display device of the present invention includes a liquid crystal display panel having a liquid crystal cell between a first polarizing plate provided on the observer side and a second polarizing plate provided on the back side, and the liquid crystal display panel on the back side. And a surface light source device that illuminates the light source.
  • the surface light source device includes: a light source unit; light from the light source unit is incident from a light incident surface facing the light source unit, and is substantially parallel to a light guide direction from a light exit surface facing the liquid crystal display panel.
  • a light guide plate that emits polarized light having maximum directivity in a direction that forms a predetermined angle from the normal direction of the light exit surface within the surface.
  • the second polarizing plate includes: a polarizing part including an absorption polarizer; and a prism part arranged on the light guide plate side of the polarizing part, and a plurality of columnar unit prisms that are convex on the light guide plate side.
  • Polarized light emitted from the light guide plate has a polar angle of 50 ° to 80 ° when the normal direction of the light exit surface is a polar angle of 90 ° and the light guide direction of the light guide plate is an azimuth angle of 0 ° -180 °.
  • the second polarizing plate further includes a polarization selective reflection sheet between the polarizing portion and the prism portion.
  • the polarized-light selective reflection sheet includes two types of layers having mutually different refractive indexes in the direction parallel to the transmission axis and different refractive indexes in the direction perpendicular to the transmission axis. It is a multilayer laminate.
  • the transmission axis of the polarizing section is substantially perpendicular to the ridge line direction of the prism.
  • the liquid crystal cell includes a liquid crystal layer including liquid crystal molecules aligned in a homogeneous alignment in the absence of an electric field, or a liquid crystal molecule aligned in a homeotropic alignment in the absence of an electric field. Includes a liquid crystal layer.
  • the second polarizing plate includes a base part that supports the prism part on the polarizing part side of the prism part, and the base part is substantially optically isotropic. Have In one embodiment, in the second polarizing plate, the polarizing part and the prism part are laminated via an adhesive layer containing a diffusion adhesive.
  • the liquid crystal display device further includes an optical compensation film.
  • Another liquid crystal display device of the present invention includes a liquid crystal display panel having a liquid crystal cell between a first polarizing plate provided on the observer side and a second polarizing plate provided on the back side, and the liquid crystal display panel.
  • a surface light source device that illuminates from the back side.
  • the surface light source device includes: a light source unit; light from the light source unit is incident from a light incident surface facing the light source unit, and is substantially parallel to a light guide direction from a light exit surface facing the liquid crystal display panel.
  • a light guide plate that emits light having maximum directivity in a direction that forms a predetermined angle from the normal direction of the light exit surface within the surface.
  • the second polarizing plate includes: a polarizing part including an absorption polarizer; and a prism part arranged on the light guide plate side of the polarizing part, and a plurality of columnar unit prisms that are convex on the light guide plate side.
  • a polar angle of 50 ° to 80 ° when the normal direction of the light exit surface is 90 ° polar angle and the light guide direction of the light guide plate is azimuth angle 0 ° -180 °.
  • the ratio La / Lt of the integrated intensity La of the emitted light and the integrated intensity Lt of all the emitted lights in the range of azimuth angles 135 ° to 225 ° and 0 ° to 45 ° and 315 ° to 360 ° is 0.3 or more. It is.
  • the present invention it is possible to provide a liquid crystal display device that has high light utilization efficiency, can display bright images, is excellent in preventing damage to the light guide plate, and is excellent in mechanical strength.
  • the power consumption of the light source unit can be reduced by reducing the number of light sources and / or reducing the output of the light sources.
  • the unit prism of the prism part of a 2nd polarizing plate It is the schematic which shows other embodiment of a unit prism.
  • the intensity distribution of the luminance of the first directional light L1 emitted from the light guide plate and the luminance of the second directional light L2 guided from the prism portion of the second polarizing plate to the polarizing portion It is a figure explaining intensity distribution.
  • the relationship between the polarization direction of the emitted light from the light guide plate and the prism portion of the second polarizing plate, and the transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate is as follows. FIG.
  • FIG. 1 each figure shown below including FIG. 1 is the figure shown typically, and the dimension, dimension ratio, and shape of each part are exaggerated suitably as needed for easy understanding.
  • the terms “plate”, “sheet”, “film” and the like are used, but these are generally used in the order of thickness, “plate”, “sheet”, “film”. I am using it.
  • the description in the claims is used in the unified description of the sheet. Accordingly, the terms “sheet”, “plate”, and “film” can be appropriately replaced.
  • the prism sheet may be a prism film or a prism plate.
  • numerical values such as dimensions and material names of each member described in the present specification are examples of the embodiment, and the present invention is not limited thereto, and may be appropriately selected and used.
  • FIG. 1 is a diagram illustrating a liquid crystal display device 1 according to an embodiment of the present invention.
  • the liquid crystal display device 1 of this embodiment includes a surface light source device 20 and a liquid crystal display panel 15 that is illuminated from the back by the surface light source device 20.
  • description etc. are abbreviate
  • other apparatuses such as normal wiring, a circuit, and a member required in order to operate
  • the direction perpendicular to the light guide direction of the light of the light guide plate is the X direction, and the light guide of the light guide plate is guided.
  • the direction is the Y direction
  • the normal direction of the observation screen is the Z direction.
  • the observer visually recognizes the display on the screen of the liquid crystal display panel 15 from the Z2 side on the observer side toward the Z1 side on the back side.
  • the Z1 side is the light incident side
  • the Z2 side is the light emitting side.
  • the liquid crystal display panel 15 is a transmissive image display unit, and is disposed on the first polarizing plate 13 disposed on the observer side (exit side, Z2 side) and on the surface light source device 20 side (Z1 side). It has the 2nd polarizing plate 14, and the liquid crystal cell 12 arrange
  • the polarizing plate includes a polarizing part including an absorptive polarizer, and the absorptive polarizer decomposes incident light into two orthogonally polarized components, and converts a polarized component in one direction (a direction parallel to the transmission axis).
  • the transmission axis of the second polarizing plate 14 and the transmission axis of the first polarizing plate 13 are substantially the same as viewed from the front direction of the liquid crystal display panel 15 (front direction of the observation screen of the liquid crystal display device 1). Are orthogonal.
  • the transmission axis of the first polarizing plate 13 is the X direction
  • the transmission axis of the second polarizing plate 14 is the Y direction.
  • the X direction is a direction perpendicular to the light guide direction of the light of the light guide plate as described above, and is the left-right direction of the screen in the illustrated example.
  • the Y direction is the light guide direction of the light of the light guide plate as described above, and is the vertical direction of the screen in the illustrated example.
  • the transmission axis of the second polarizing plate 14 is substantially parallel to the light guide direction of the light guide plate 21 described later.
  • the expressions “substantially orthogonal” and “substantially orthogonal” include the case where the angle between the two directions is 90 ° ⁇ 10 °, and preferably 90 ° ⁇ 7 °. More preferably, it is 90 ° ⁇ 5 °.
  • substantially parallel and “substantially parallel” include the case where the angle between two directions is 0 ° ⁇ 10 °, preferably 0 ° ⁇ 7 °, more preferably 0 ° ⁇ 5 °.
  • orthogonal or “parallel” may include a substantially orthogonal state or a substantially parallel state.
  • the liquid crystal cell 12 of the present embodiment includes a pair of substrates 121 and 121 ', and a liquid crystal layer 122 as a display medium sandwiched between the substrates.
  • one substrate 121 is provided with a color filter and a black matrix
  • the other substrate 121 ′ has a switching element for controlling the electro-optical characteristics of the liquid crystal, and a gate signal is supplied to the switching element.
  • a scanning line to be supplied, a signal line to supply a source signal, a pixel electrode, and a counter electrode are provided.
  • the distance (cell gap) between the substrates 121 and 121 ' can be controlled by a spacer or the like.
  • an alignment film made of polyimide can be provided on the side of the substrates 121 and 121 ′ in contact with the liquid crystal layer 122.
  • the liquid crystal layer 122 includes liquid crystal molecules aligned in a homogeneous alignment in the absence of an electric field.
  • a liquid crystal layer typically has a refractive index of nx, ny, nz in the slow axis direction, the fast axis direction, and the thickness direction of the liquid crystal layer, respectively.
  • Typical examples of drive modes using such a liquid crystal layer having a three-dimensional refractive index include an in-plane switching (IPS) mode and a fringe field switching (FFS) mode.
  • the IPS mode uses voltage-controlled birefringence (ECB: Electrically Controlled Birefringence) effect, and liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field, for example, a counter electrode and a pixel electrode formed of metal
  • EOB Electrically Controlled Birefringence
  • the substrate is caused to respond with an electric field parallel to the substrate generated in step (also referred to as a transverse electric field). More specifically, for example, Techno Times Publishing “Monthly Display July” p. 83-p. 88 (1997 edition) and “Liquid Crystal vol. 2 No.
  • the IPS mode includes a super-in-plane switching (S-IPS) mode and an advanced super-in-plane switching (AS-IPS) mode using a V-shaped electrode or a zigzag electrode.
  • the FFS mode utilizes a voltage-controlled birefringence effect, and a substrate in which liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field are generated by, for example, a counter electrode and a pixel electrode formed of a transparent conductor It responds with an electric field parallel to (also called a transverse electric field).
  • the lateral electric field in the FFS mode is also referred to as a fringe electric field.
  • This fringe electric field can be generated by setting the interval between the counter electrode formed of a transparent conductor and the pixel electrode to be narrower than the cell gap. More specifically, SID (Society for Information Display) 2001 Digest, p. 484-p. As described in 487 and Japanese Patent Application Laid-Open No.
  • the alignment direction of the liquid crystal cell when no electric field is applied is aligned with the absorption axis of the polarizer on one side.
  • the display is completely black with no electric field.
  • the transmittance according to the rotation angle can be obtained by rotating the liquid crystal molecules while keeping them parallel to the substrate.
  • the FFS mode includes an advanced fringe field switching (A-FFS) mode and an ultra fringe field switching (U-FFS) mode employing a V-shaped electrode or a zigzag electrode.
  • a driving mode for example, IPS mode or FFS mode
  • liquid crystal molecules aligned in a homogeneous arrangement in the absence of the electric field has no oblique gradation inversion and has a wide oblique viewing angle, and thus is used in the present invention. Even if a surface light source oriented in the front direction is used, there is an advantage that visibility from an oblique direction is excellent.
  • the liquid crystal layer 122 includes liquid crystal molecules aligned in a homeotropic alignment in the absence of an electric field.
  • a drive mode using liquid crystal molecules aligned in a homeotropic alignment in the absence of an electric field is a vertical alignment (VA) mode.
  • VA mode includes a multi-domain VA (MVA) mode.
  • FIG. 3 is a schematic cross-sectional view for explaining the alignment state of the liquid crystal molecules in the VA mode.
  • the liquid crystal molecules in the VA mode are aligned substantially perpendicular (normal direction) to the surfaces of the substrates 121 and 121 'when no voltage is applied.
  • substantially perpendicular includes the case where the alignment vector of the liquid crystal molecules is tilted with respect to the normal direction, that is, the case where the liquid crystal molecules have a tilt angle.
  • the tilt angle (angle from the normal line) is preferably 10 ° or less, more preferably 5 ° or less, and particularly preferably 1 ° or less. By having a tilt angle in such a range, the contrast can be excellent.
  • Such substantially vertical alignment can be realized, for example, by arranging a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film is formed.
  • linearly polarized light that has passed through the second polarizing plate 14 and is incident on the liquid crystal layer 122 is a major axis of liquid crystal molecules that are substantially vertically aligned. Proceed along the direction of Since substantially no birefringence occurs in the major axis direction of the liquid crystal molecules, incident light travels without changing the polarization direction and is absorbed by the first polarizing plate 13 having a transmission axis orthogonal to the second polarizing plate. .
  • This provides a dark display when no voltage is applied (normally black mode).
  • no voltage normally black mode
  • the major axis of the liquid crystal molecules is aligned parallel to the substrate surface.
  • the liquid crystal molecules in this state exhibit birefringence with respect to linearly polarized light incident on the liquid crystal layer after passing through the second polarizing plate 14, and the polarization state of the incident light changes according to the inclination of the liquid crystal molecules.
  • the light passing through the liquid crystal layer 122 when a predetermined maximum voltage is applied becomes, for example, linearly polarized light whose polarization direction is rotated by 90 °, and thus the light is transmitted through the first polarizing plate 13 and a bright display is obtained. .
  • the display When the voltage is not applied again, the display can be returned to the dark state by the orientation regulating force. Further, gradation display is possible by changing the applied voltage to control the inclination of the liquid crystal molecules to change the transmitted light intensity from the first polarizing plate 13.
  • the halftone transmittance in the oblique direction is higher than the halftone transmittance in the front direction. Therefore, even if the surface light source oriented in the front direction used in the present invention is used, the halftone seen from the oblique direction is used. Has the advantage of being bright and having less blackout.
  • FIG. 4 is a diagram illustrating the configuration of the surface light source device 20 of the present embodiment.
  • 4A shows a cross-sectional view of the surface light source device 20 taken along the line A1-A2 in FIG. 1
  • FIG. 4B shows the surface light source device B1-B2 in FIG.
  • the arrow sectional drawing of the surface light source device 20 along a line is shown.
  • the surface light source device 20 is an illumination device that is disposed on the back side (Z1 side) of the liquid crystal display panel 15 and illuminates the liquid crystal display panel 15 from the back side.
  • the surface light source device 20 is an edge light type surface light source device (backlight) including a light guide plate 21, a light source unit 10, and a reflection sheet 11.
  • backlight edge light type surface light source device
  • the surface light source device 20 may be a one-lamp type surface light source device in which the light source unit 10 is arranged along one side surface (21a or 21b in FIG. 1) of the light guide plate 21, and the light source unit 10 is connected to the light guide plate. It may be a surface light source device called a two-lamp type arranged along two opposing side surfaces (21a and 21b in FIG. 1). As shown in FIG. 4A, in the present embodiment, a two-lamp type surface light source device is illustrated.
  • the light guide plate 21 guides light incident from the light source unit 10 to the end side facing the light source unit 10 side while receiving a reflection action or the like in the light guide plate 21 and gradually emits light in the light guide process. This is a member that emits light from the surface 21d (surface on the second polarizing plate 14 side).
  • the light guide plate 21 includes a base portion 22, a light output side unit optical element portion 23, and a back side unit optical element portion 25.
  • the base 22 is a sheet-like member and has translucency.
  • the light output side unit optical element portion 23 is formed on the surface of the second polarizing plate 14 (Z2 side) of the base portion 22, as shown in FIGS.
  • a plurality of light output side unit optical elements 24 are arranged in parallel.
  • the light output side unit optical element 24 has a columnar shape, maintains the cross-sectional shape appearing in the cross section shown in FIG. 4B, and sets the direction in which light is guided (Y direction) as the longitudinal direction, and is orthogonal to the longitudinal direction.
  • a plurality are arranged in parallel in the direction (X direction).
  • FIG. 5 is a diagram illustrating the shapes of the light exit side unit optical element 24 and the back side unit optical element 26 of the light guide plate 21 of the embodiment.
  • 5A is an enlarged view of a part of the light guide plate 21 having a cross section shown in FIG. 4B
  • FIG. 5B is a part of the light guide plate 21 having a cross section shown in FIG. 4A. Is shown enlarged.
  • the light exit side unit optical element 24 has a cross-sectional shape on one surface of the base 22 in a cross section (XZ cross section) that is parallel to the parallel direction and orthogonal to the thickness direction. It has a convex triangular shape that has a base at the bottom and protrudes from the base 22.
  • the light exit side unit optical element 24 has a parallel pitch Pa, and the width on the base 22 side in the parallel direction (that is, the length of the base of the triangular cross section) is Wa.
  • the height (dimension in the thickness direction) of the light output side unit optical element 24 is Ha
  • the apex angle of the triangular cross section is ⁇ 3
  • the angles other than the apex angle are ⁇ 1 and ⁇ 2.
  • the parallel pitch Pa is equal to the base length Wa.
  • Condition A The angles ⁇ 1 and ⁇ 2 of the base angles located on the base portion 22 having a triangular section that is an angle other than the apex angle ⁇ 3 are 25 ° or more and 45 ° or less.
  • Condition B The ratio of the height Ha to the bottom length Wa (Ha / Wa) is 0.2 or more and 0.5 or less.
  • the light output side unit optical element 24 of the present embodiment is an isosceles triangle in the cross section (cross section along the direction in which the light output side unit optical elements 24 are arranged in parallel) appearing in FIGS. 4B and 5A. Shape, and the angles ⁇ 1 and ⁇ 2 are equal.
  • the luminance in the front direction is effectively increased, and the luminance angular distribution in the plane along the parallel direction (X direction) of the light output side unit optical elements 24 is made symmetrical. Can be granted.
  • triangular shape in the present specification includes not only a triangular shape in a strict sense but also a substantially triangular shape including limitations in manufacturing technology, errors in molding, and the like.
  • terms used in this specification to specify other shapes and geometric conditions for example, terms such as “ellipse” and “circle” are not limited to strict meanings, Interpretation will be made including errors to the extent that functions can be expected.
  • a back side unit optical element portion 25 is formed on the back side (Z1 side) of the light guide plate 21.
  • a plurality of back side unit optical elements 26 are formed in parallel.
  • the back-side unit optical element 26 has a columnar shape, maintains the cross-sectional shape appearing in the cross-sections shown in FIGS. 4A and 5B, and is perpendicular to the light guide direction of light on the light guide plate (X direction).
  • a plurality of light guide plates are arranged in parallel in the light guide direction (Y direction).
  • the arrangement direction of the back-side unit optical elements 26 is substantially parallel to the transmission axis of the second polarizing plate 14 described above. As shown in FIG.
  • the back unit optical element 26 has a cross-sectional shape in a cross section (YZ plane) that is substantially parallel to the parallel direction (Y direction) and orthogonal to the thickness direction (Z direction). Is a convex triangular shape (wedge shape) that has a base on the back side (Z1 side) surface of the base 22 and protrudes from the base 22 to the back side (Z1 side).
  • YZ plane cross section
  • Z1 side convex triangular shape
  • corner it is not restricted to this, For example, it is good also as a curved surface shape from which the top part becomes convex on the back side. .
  • the rear unit optical element 26 has a parallel pitch of Pb, and the width on the base 22 side in the parallel direction (that is, the length of the base of the triangular cross section) is Wb.
  • the height (dimension in the thickness direction) of the back-side unit optical element 26 is Hb
  • the apex angle of the triangular cross section is ⁇ 6, and the angles other than the apex angle are ⁇ 4 and ⁇ 5.
  • the parallel pitch Pb is equal to the base length Wb.
  • the cross-sectional shape of the back-side unit optical element 26 may be a symmetric shape or an asymmetric shape in a cross section parallel to the arrangement direction and parallel to the thickness direction.
  • the cross-sectional shape is preferably a symmetric shape in a cross section parallel to the arrangement direction and parallel to the thickness direction. More specifically, the cross-sectional shape of the back-side unit optical element 26 shown in FIG. 5B is an isosceles triangle, and the base angles ⁇ 4 and ⁇ 5 are equal. On the other hand, when used in a one-lamp type surface light source device, the cross-sectional shape of the back-side unit optical element 26 may be an asymmetrical triangle as shown in FIG.
  • the base angles ⁇ 4 and ⁇ 5 are such that the base angle on the light source unit 10 side in the arrangement direction of the back-side unit optical elements 26 is larger than the other base angle so that light is efficiently guided. This is preferable from the viewpoint of light emission and emission.
  • the light guide plate 21 from the light source unit 10 can be efficiently guided and emitted, and in the parallel direction (Y direction) of the back-side unit optical element 26. It is possible to improve the uniformity of brightness in the plane along the surface. In addition, the diffusion effect received by the light emitted from the light guide plate 21 can be reduced as much as possible.
  • the width Wa of the bottom can be set to 20 ⁇ m to 500 ⁇ m, and the height Ha can be set to 4 ⁇ m to 250 ⁇ m or less. Further, the apex angle ⁇ 3 of the light output side unit optical element 24 can be set to 90 ° to 125 ° or less.
  • the thickness of the base 22 can be 0.25 mm to 10 mm, and the total thickness of the light guide plate 21 can be 0.3 mm to 10 mm.
  • the bottom width Wb can be 20 ⁇ m to 500 ⁇ m, and the height Hb can be 1 ⁇ m to 10 ⁇ m. Further, the apex angle ⁇ 6 of the back side unit optical element 26 can be set to 176.0 ° to 179.6 °.
  • the light guide plate 21 is formed by, for example, extrusion molding or by forming the light-emitting side unit optical element 24 and the back-side unit optical element 26 on the base material to be the base 22 to thereby form the base 22 and the light-emitting side unit optical element.
  • the part 23 and the back side unit optical element part 25 can be manufactured integrally.
  • the light exit side unit optical element portion 23 and the back side unit optical element portion 25 may be made of the same resin material as the base material of the base portion 22, or different materials may be used. May be.
  • Various materials can be used as the base material of the base portion 22 of the light guide plate 21 and the material for forming the light output side unit optical element 24 and the back side unit optical element 26 as long as they transmit light efficiently. can do.
  • an acrylic resin such as polymethylmethacrylate (PMMA)
  • PMMA polymethylmethacrylate
  • Transparent resin mainly composed of one or more of styrene resin, polycarbonate (PC) resin, polyethylene terephthalate (PET) resin, acrylonitrile, epoxy acrylate type or urethane acrylate type reactive resin (ionizing radiation curable resin, etc.), Glass or the like can be used.
  • the light source unit 10 has a longitudinal direction (Y direction) of the light output side unit optical element 24 among two opposing plate-like side surfaces of the base portion 22 of the light guide plate 21. It arrange
  • FIGS. 1 and 4A an example is shown in which the light source unit 10 is provided along the side surfaces 21 a and 21 b at positions facing the two side surfaces 21 a and 21 b of the light guide plate 21. ing.
  • the light source unit 10 is preferably a light emitting source that emits light having high directivity, such as an LED (light emitting diode).
  • the light source unit 10 of the present embodiment is formed by arranging a plurality of point light sources 10a, and this point light source 10a is an LED.
  • the light source unit 10 controls the output of each point light source (LED) 10a by a control device (not shown), that is, turns on and off each point light source 10a, brightness at the time of lighting, and the like independently from outputs of other point light sources. And is adjustable.
  • the reflective sheet 11 is provided on the back side of the light guide plate 21.
  • the reflection sheet 11 has a function of reflecting light emitted from the back side of the light guide plate 21 and returning it to the light guide plate 21.
  • the reflective sheet 11 is, for example, a sheet formed of a material having a high reflectance such as metal (for example, a regular reflective silver foil sheet, a thin metal plate deposited with aluminum or the like), a material having a high reflectance.
  • a sheet containing a thin film (for example, a metal thin film) formed as a surface layer (for example, a silver film deposited on a PET base material) and two or more types of thin films having different refractive indexes are laminated in a multilayer manner to provide specular reflectivity.
  • a diffusely reflecting white foamed PET (polyethylene terephthalate) sheet such as a sheet formed of a material having a high reflectance such as metal, a sheet including a thin film (for example, a metal thin film) formed of a material having a high reflectance as a surface layer, and the like. Is preferable from the viewpoint of improving the light collecting property and the light utilization efficiency. It is estimated that the reflection sheet that enables specular reflection does not lose the directivity of light by specularly reflecting light, and as a result, the polarization direction of outgoing light is maintained. Therefore, the reflective sheet 11 can also contribute to the realization of a desired outgoing light distribution.
  • FIG. 6 is a diagram showing a state of light emitted from the light guide plate 21 and guided from the prism portion 14b of the second polarizing plate 14 described later to the polarizing portion 14a.
  • FIG. 6A is a diagram for explaining the case of the two-lamp type described above
  • FIG. 6B is a diagram for explaining a one-lamp type as a reference.
  • the light guide plate 21 has the above-described configuration, and light emitted from the light exit surface 21d (surface on the second polarizing plate 14 side) has directivity having maximum intensity in a predetermined direction. , Polarized light having a predetermined half width (hereinafter sometimes referred to as first directional light L1).
  • first directional light L1 Polarized light having a predetermined half width
  • the main light guide direction of light from the light source unit 10 is the Y direction.
  • the light guide plate 21 has the above-described configuration, the light propagating through the light guide plate 21 is controlled in the emission direction and the polarization state by the action described later.
  • the light emitted from the light guide plate 21 has a direction (hereinafter referred to as a first direction) that forms an angle ⁇ toward the side surface 21b with respect to the normal direction of the light exit surface 21d in the YZ plane.
  • Polarized light having a maximum intensity (peak).
  • the angle ⁇ in the present embodiment is about 73 ° in the illustrated example.
  • any appropriate angle ⁇ can be realized depending on the purpose.
  • the angle ⁇ can be between 65 ° and 80 °.
  • the control of the emission direction and the polarization state can be satisfactorily realized regardless of the one-lamp type or the two-lamp type.
  • the light guide plate 21 of the present embodiment has a characteristic of emitting polarized light having a high ratio of polarization components that vibrate in a plane parallel to the light guide direction (in the YZ plane). That is, the first directional light is polarized light having a high ratio of polarized components that vibrate in the YZ plane.
  • a polarization component that vibrates in the YZ plane may be referred to as a P component
  • a polarization component that vibrates in a plane (XY plane) parallel to the light guiding direction and perpendicular to the YZ plane may be referred to as an S component.
  • the polarization direction (vibration direction) of the P component is substantially parallel to the transmission axis direction (Y direction) of the second polarizing plate 14.
  • the prism portion 14b of the second polarizing plate 14 supplies the second directional light having the maximum intensity in the second direction (normal direction) while maintaining the polarization state of the first directional light. Since the light is guided to the polarizing portion 14a of the second polarizing plate 14, the second directional light is also polarized light having a high P component ratio. As a result, light absorbed by the second polarizing plate can be reduced, so that a bright liquid crystal display device with high light use efficiency can be obtained.
  • the principle that the light guide plate 21 guides light is that the incident angle ⁇ a reaches ⁇ c of the following equation 1 at the boundary surface of the optically dense (refractive index n1) and sparse (refractive index n2) medium. Utilizing the fact that total reflection occurs, ⁇ c is called a critical angle.
  • sin ⁇ c n2 / n1 (Formula 1)
  • the light guided in the light guide plate 21 is emitted from the light guide plate 21 when the incident angle ⁇ a to the light exit surface 21d becomes smaller than the critical angle ⁇ c due to total reflection at the back-side unit optical element 26. .
  • the refractive index of the light guide plate 21 and the base angles ⁇ 4 and ⁇ 5 of the back unit optical element 26 are provided so that the incident angle ⁇ a to the light exit surface 21d is slightly smaller than the critical angle ⁇ c.
  • emitted from the light-guide plate 21 is radiate
  • the incident angle ⁇ a is set to a specific small area, the emission angle is also limited to a specific small area. That is, polarized light having the maximum intensity in the first direction (the direction of the emission angle ⁇ ) and having a high P component ratio can be emitted from the light exit surface 21d as the first directional light L1.
  • the polarized light (first directional light L1) emitted from the light guide plate 21 may include a P component of preferably 52% or more, more preferably 55% or more. Since the first directional light L1 has such properties, light absorbed by the second polarizing plate can be reduced, and a bright liquid crystal display device with high light use efficiency can be obtained.
  • the upper limit of the ratio of the P component is ideally 100%, 60% in one embodiment, and 57% in another embodiment.
  • the polarized light (first directional light L1) emitted from the light guide plate 21 has a normal direction of the light exit surface of 90 ° polar angle, and the light guide direction of the light guide plate is an azimuth angle of 0 ° -180 ° direction.
  • the integrated intensity La of the emitted light in the range of polar angle 50 ° to 80 ° and azimuth angle 135 ° to 225 °, and 0 ° to 45 ° and 315 ° to 360 °, and the integrated intensity Lt of all the emitted light The ratio La / Lt is 0.3 or more.
  • La / Lt is preferably 0.4 or more, and more preferably 0.7 or more.
  • the emitted light distribution of the first directional light L1 is three-dimensionally controlled so as to have a predetermined illuminance ratio within a predetermined polar angle and azimuth range.
  • the light output side unit optical element of the light guide plate can contribute to the realization of such outgoing light distribution. Since the first directional light L1 has such a specific outgoing light distribution, it is totally reflected by the prism second inclined surface 35 along the YZ plane, is effectively deflected in the front direction, and is emitted from the liquid crystal panel. There is an advantage that the light use efficiency is increased, and as a result, the integrated illuminance and front luminance are increased.
  • La / Lt When La / Lt is less than 0.3, the amount of component light that deviates from the YZ plane and enters the second inclined surface 35 increases, and even if the light is totally reflected by the second inclined surface 35, it is not emitted in the front direction. , Some of the light cannot be emitted from the panel surface (because it is incident at an angle greater than the critical angle, so that it is totally reflected on the surface of the liquid crystal display panel). . That is, in order to increase the integrated illuminance and front luminance of light emitted from the liquid crystal display panel, it is important how much light is incident on the second inclined surface 35 along the YZ plane.
  • the theoretical upper limit of La / Lt is 1.0.
  • the first directional light L1 emitted from the light guide plate 21 may be non-polarized light. If La / Lt satisfies the desired range, the effect of the present invention can be obtained regardless of whether the first directional light L1 is polarized or non-polarized.
  • the second polarizing plate 14 includes a polarizing portion 14a and a prism portion 14b. That is, the second polarizing plate can be provided, for example, as a polarizing plate with a prism sheet in which a prism sheet is integrated. With such a configuration, an air layer between the prism sheet and the polarizing plate can be eliminated, which can contribute to thinning of the liquid crystal display device. Thinning a liquid crystal display device has a large commercial value because it expands the range of design choices. Furthermore, with such a configuration, it is possible to avoid damage to the prism sheet due to rubbing when the prism sheet is attached to the surface light source device (substantially the light guide plate). Can be prevented.
  • the polarizing unit 14b typically includes a polarizer and a protective layer disposed on one or both sides of the polarizer.
  • the polarizer is typically an absorptive polarizer.
  • the absorption polarizer and the protective layer have a normal configuration in the industry. Hereinafter, typical examples of specific characteristics and materials of the polarizer will be described.
  • the transmittance of the absorption polarizer at a wavelength of 589 nm is preferably 41% or more, and more preferably 42% or more. Note that the theoretical upper limit of the single transmittance is 50%.
  • the degree of polarization is preferably 99.5% to 100%, and more preferably 99.9% to 100%. If it is said range, the contrast of a front direction can be made still higher when it uses for a liquid crystal display device.
  • the single transmittance and the degree of polarization can be measured using a spectrophotometer.
  • the parallel transmittance (H 0 ) is a value of the transmittance of a parallel laminated polarizer prepared by superposing two identical polarizers so that their absorption axes are parallel to each other.
  • the orthogonal transmittance (H 90 ) is a value of the transmittance of an orthogonal laminated polarizer produced by superposing two identical polarizers so that their absorption axes are orthogonal to each other. Note that these transmittances are Y values obtained by correcting the visibility with the 2-degree field of view (C light source) of JlS Z 8701-1982.
  • any appropriate polarizer may be adopted as the absorptive polarizer according to the purpose.
  • dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films.
  • a polyene-based oriented film such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product or a polyvinyl chloride dehydrochlorinated product.
  • guest / host type E-type and O-type polarizers in which a liquid crystalline composition containing a dichroic substance and a liquid crystalline compound disclosed in US Pat. No.
  • a polarizer made of a polyvinyl alcohol film containing iodine is preferably used.
  • Polyvinyl alcohol or a derivative thereof is used as a material for the polyvinyl alcohol film applied to the polarizer.
  • Derivatives of polyvinyl alcohol include polyvinyl formal, polyvinyl acetal, and the like, olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, and their alkyl esters and acrylamide. Things.
  • Polyvinyl alcohol having a polymerization degree of about 1000 to 10,000 and a saponification degree of about 80 to 100 mol% is generally used.
  • the polyvinyl alcohol film (unstretched film) is at least subjected to uniaxial stretching treatment and iodine dyeing treatment according to a conventional method. Furthermore, boric acid treatment and iodine ion treatment can be performed. Moreover, the polyvinyl alcohol film (stretched film) subjected to the above treatment is dried according to a conventional method to become a polarizer.
  • the stretching method in the uniaxial stretching process is not particularly limited, and either a wet stretching method or a dry stretching method can be employed.
  • the stretching means of the dry stretching method include an inter-roll stretching method, a heated roll stretching method, and a compression stretching method. Stretching can also be performed in multiple stages.
  • the unstretched film is usually heated. Usually, an unstretched film having a thickness of about 30 ⁇ m to 150 ⁇ m is used.
  • the stretch ratio of the stretched film can be appropriately set according to the purpose, but the stretch ratio (total stretch ratio) is about 2 to 8 times, preferably 3 to 6.5 times, more preferably 3.5 to 6 times. Is double.
  • the thickness of the stretched film is preferably about 5 ⁇ m to 40 ⁇ m.
  • the iodine staining treatment is performed by immersing the polyvinyl alcohol film in an iodine solution containing iodine and potassium iodide.
  • the iodine solution is usually an iodine aqueous solution, and contains iodine and potassium iodide as a dissolution aid.
  • the iodine concentration is preferably about 0.01 wt% to 1 wt%, more preferably 0.02 wt% to 0.5 wt%, and the potassium iodide concentration is preferably 0.01 wt% to 10 wt%. %, More preferably 0.02 to 8% by weight.
  • the temperature of the iodine solution is usually about 20 ° C. to 50 ° C., preferably 25 ° C. to 40 ° C.
  • the immersion time is usually in the range of about 10 seconds to 300 seconds, preferably 20 seconds to 240 seconds.
  • the iodine content and potassium content in the polyvinyl alcohol film are in desired ranges by adjusting the conditions such as the concentration of the iodine solution, the immersion temperature of the polyvinyl alcohol film in the iodine solution, and the immersion time. Adjust so that The iodine dyeing process may be performed at any stage before the uniaxial stretching process, during the uniaxial stretching process, or after the uniaxial stretching process.
  • Boric acid treatment is performed by immersing a polyvinyl alcohol film in an aqueous boric acid solution.
  • the boric acid concentration in the boric acid aqueous solution is about 2 to 15% by weight, preferably 3 to 10% by weight.
  • the aqueous boric acid solution can contain potassium ions and iodine ions with potassium iodide.
  • the concentration of potassium iodide in the boric acid aqueous solution is preferably about 0.5 to 10% by weight, more preferably 1 to 8% by weight.
  • a boric acid aqueous solution containing potassium iodide can provide a lightly colored polarizer, that is, a so-called neutral gray polarizer having a substantially constant absorbance over almost the entire wavelength range of visible light.
  • an aqueous solution containing iodine ions with potassium iodide or the like is used.
  • the potassium iodide concentration is preferably about 0.5 to 10% by weight, more preferably 1 to 8% by weight.
  • the temperature of the aqueous solution is usually about 15 ° C. to 60 ° C., preferably 25 ° C. to 40 ° C.
  • the immersion time is usually in the range of about 1 second to 120 seconds, preferably 3 seconds to 90 seconds.
  • the stage of iodine ion treatment is not particularly limited as long as it is before the drying process. It can also be performed after water washing described later.
  • the polyvinyl alcohol film (stretched film) subjected to the above treatment can be subjected to a water washing step and a drying step according to a conventional method.
  • any appropriate drying method for example, natural drying, blow drying, heat drying, or the like can be adopted for the drying step.
  • the drying temperature is typically 20 ° C. to 80 ° C., preferably 25 ° C. to 70 ° C.
  • the drying time is preferably about 1 minute to 10 minutes.
  • the moisture content of the polarizer after drying is preferably 10% by weight to 30% by weight, more preferably 12% by weight to 28% by weight, and still more preferably 16% by weight to 25% by weight.
  • the degree of polarization tends to decrease with drying of the polarizer when the polarizing plate is dried.
  • the orthogonal transmittance increases in a short wavelength region of 500 nm or less, that is, light of a short wavelength leaks, so that black display tends to be colored blue.
  • the moisture content of the polarizer is excessively small, problems such as local uneven defects (knic defects) are likely to occur.
  • the prism portion 14b is provided on the light guide plate 21 side (Z1 side) surface (light incident surface) of the second polarizing plate 14.
  • the protective layer of the polarizing portion can function as a base material portion that supports the prism portion.
  • the prism portion 14b is configured to apply the polarized light L1 emitted from the light guide plate 21 to the substantially normal direction of the liquid crystal display device (angle in FIG. 6) by total reflection or the like inside the unit prism 33 while maintaining the polarization state.
  • the second directional light L2 that is polarized light having the maximum intensity in the second direction ( ⁇ is approximately 90 °)
  • the light is guided to the polarization unit 14a.
  • the “substantially normal direction” includes a direction within a predetermined angle from the normal direction, for example, a direction within a range of ⁇ 10 ° from the normal direction.
  • a plurality of unit prisms 33 are formed in the prism portion 14b in parallel on the light incident side (Z1 side) surface of the polarizing portion 14a along the sheet surface.
  • the unit prism 33 has a columnar shape, and a direction (X direction) orthogonal to the light guide direction of the light of the light guide plate is defined as a longitudinal direction.
  • the unit prism 33 extends while maintaining a predetermined cross-sectional shape in the longitudinal direction.
  • the sheet surface indicates a surface in the planar direction of the sheet when viewed as the entire sheet in each optical sheet or the like, and is the same in the present specification and claims.
  • the sheet surface of the second polarizing plate 14 is a surface that is the planar direction of the second polarizing plate 14 when viewed as the entire second polarizing plate 14, and is parallel to the light exit surface of the prism portion 14b. In other words, the surface is substantially parallel to the observation surface of the liquid crystal display panel 15.
  • the longitudinal direction (ridge line direction) of the unit prism 33 may be oriented in a direction substantially orthogonal to the transmission axis of the polarizing unit 14a when the liquid crystal display device 1 is viewed from the front direction (Z direction). That is, on the surface parallel to the display surface of the liquid crystal display device 1, the parallel direction of the unit prisms 33 may be arranged in a direction substantially parallel to the transmission axis of the polarizing unit 14a.
  • the longitudinal direction (ridge line direction) of the unit prism 33 is the same as the longitudinal direction (ridge line direction) of the light output side unit optical element 24 of the light guide plate 21 when the liquid crystal display device 1 is viewed from the front direction (Z direction). It is almost orthogonal.
  • the ridge line direction and / or the axial direction of each member in the liquid crystal display device of the present embodiment are typically substantially orthogonal or substantially parallel to each other, but the matrix of the liquid crystal layer, the prism sheet, and the light guide plate Depending on the pitch and arrangement of the unit optical elements, moire may occur due to interference with each other.
  • the ridge line direction of the unit prism 33 and / or the ridge line direction of the light output side unit optical element 24 and / or the back side unit optical element 26 of the light guide plate 21 are determined from the front direction (Z direction) of the liquid crystal display device 1.
  • the range of the oblique arrangement is preferably 20 ° or less, and more preferably 5 ° or less. Exceeding this range may affect the directivity of light, which will be described later.
  • FIG. 8 is a diagram illustrating the prism portion 14b of the present embodiment.
  • FIG. 8 is an enlarged view of a part of the cross section shown in FIG.
  • the unit prism 33 of the present embodiment has a shape protruding from the light guide plate 21 side surface of the polarizing portion 14a toward the light guide plate 21 side (Z1 side), and the sheet of the polarizing portion 14a.
  • the width of the unit prism 33 in the direction parallel to the surface decreases as the distance from the polarizing portion 14a increases along the normal direction (Z direction) of the polarizing portion 14a (liquid crystal display panel).
  • the unit prism 33 of the present embodiment is a so-called triangular prism having a triangular cross section in a cross section parallel to the arrangement direction (Y direction) and parallel to the thickness direction (Z direction). .
  • the unit prism 33 has an unequal triangular shape in which the sectional shape shown in FIG. 8 is such that the first inclined surface 34 on the light source unit 10 side in the arrangement direction of the unit prisms 33 is steeper than the other second inclined surface 35.
  • an angle (incident surface angle) formed by the first inclined surface 34 and the normal line F of the sheet surface of the prism portion 14b is ⁇ 1, and an angle formed by the second inclined surface 35 and the normal line F of the sheet surface of the prism portion 14b.
  • (reflection surface angle) is ⁇ 2, ⁇ 1 ⁇ 2. This is because the first directional light L1 that has a peak in the first direction from the light guide plate 21 is directed in the substantially normal direction (second direction) of the liquid crystal display panel 15.
  • the pitch of the unit prisms 33 is P, and the width on the polarizing portion 14a side is W in the cross-sectional shape.
  • the pitch P in this embodiment is equal to the width W.
  • the height of the unit prism 33 (the dimension from the point that becomes the valley bottom between the unit prisms 33 in the thickness direction to the vertex t) is H.
  • the first directional light L1 emitted from the light guide plate 21 and having the maximum intensity in the first direction travels straight through the air layer (refractive index of about 1.0) and then enters the first slope 34 of the unit prism 33.
  • the light L2 is guided to the polarization unit 14a. At this time, the polarization direction deviation in the first directional light L1 is also maintained in the second directional light L2. Accordingly, it is possible to give the light reflected by the second inclined surface 35 a strong directivity in the normal direction of the sheet surface.
  • the liquid crystal display panel 15 has a high directivity. Absorption by the black matrix is suppressed, and the light utilization efficiency can be improved. Moreover, by giving strong directivity, the polarization direction of the light does not vary. Furthermore, in the present embodiment, as described above, the emission light distribution of the first directional light L1 is three-dimensionally controlled so as to have a predetermined illuminance ratio within a predetermined polar angle and azimuth range. Therefore, the light use efficiency can be further improved. In addition, since the 1st slope 34 and the 2nd slope 35 are comprised by a flat surface, since it becomes easy to ensure the precision of a shape, quality control is easy and mass-productivity can be improved.
  • the inclination angle of the first inclined surface 34 of the unit prism 33 shown in FIG. 8 is appropriately adjusted according to the direction in which the first directional light L1 has the maximum intensity (first direction, emission angle ⁇ ).
  • an angle ⁇ 1 formed by the first slope 34 and the normal F to the light exit surface (sheet surface) of the prism portion is 30 ° to 37 °.
  • the inclination angle of each flat surface of the second inclined surface 35 is such that the first directional light L1 has the maximum intensity in the normal direction of the light exit surface (sheet surface) of the prism portion due to internal reflection of the first directional light L1. It is adjusted to become.
  • An angle ⁇ 2 formed by each flat surface of the second inclined surface 35 and the normal F is appropriately adjusted according to a predetermined direction in which the first directional light L1 has the maximum intensity, and is usually 30 ° to 37 °, and satisfies ⁇ 2> ⁇ 1. It is preferable.
  • the unit prism 33 height H varies depending on the pitch P of the unit prisms 33. When the pitch P is 50 ⁇ m, the height H is normally 30 ⁇ m to 45 ⁇ m.
  • the pitch P of the unit prisms 33 is not particularly limited, but is usually 10 ⁇ m to 100 ⁇ m.
  • the apex t of the unit prism 33 may be a sharp shape as shown in FIG. 8, or may be a curved surface with a chamfered portion near the apex t (not shown), or cut so that the tip is a flat surface. May be.
  • the height H of the unit prism 33 is the height from the point that becomes the valley bottom between the unit prisms 33 in the thickness direction to the flat surface of the tip.
  • FIG. 9 is a diagram showing another embodiment of the unit prism 33.
  • FIG. 9 shows the shape of the unit prism 33 in the same cross section as FIG.
  • the unit prism 33 may be configured such that the second inclined surface 35 has a plurality of flat surfaces 35a and 35b having different inclination angles.
  • Each flat surface 35a, 35b of the second inclined surface 35 is an approximate method of the first directional light L1 (L1a, L1b) incident from the first inclined surface 34 with respect to the light exit surface of the prism portion for each component that has reached each flat surface.
  • the inclination angle is internally reflected so as to be the second directional light L2 (L2a, L2b) having the maximum intensity in the line direction, and the inclination angle can be individually controlled for each flat surface.
  • L2a, L2b the second directional light
  • the inclination angle can be individually controlled for each flat surface.
  • the angle formed by the flat surface 35a on the apex t side (Z1 side) and the normal F (first reflection surface angle) is ⁇ 2
  • the angle (second reflection surface angle) formed by the flat surface 35b on the base material portion 31 side (Z2 side) of the two inclined surfaces 35 and the normal F is ⁇ 3.
  • the first directional light L1 (L1a, L1b) emitted from the light guide plate 21 and having the maximum intensity in the first direction travels straight through the air layer (refractive index of about 1.0), and then the first directional light L1 (L1a, L1b)
  • the second directional light L2 (L2a, L2b) having the maximum intensity in the direction (second direction) orthogonal to the light exit surface (sheet surface) is guided to the polarization unit 14a.
  • the first directional light L1 is blocked by the adjacent unit prisms 33, the flat surface closer to the base material portion 31 side (Z2 side) among the flat surfaces of the second inclined surface 35 is the first directional light L1. Among them, only a component having a small angle with the normal of the sheet surface arrives.
  • the first directional light L ⁇ b> 1 is illustrated as being divided into L ⁇ b> 1 a and L ⁇ b> 1 b for each component that reaches each flat surface included in the second inclined surface 35.
  • the first directional light L1 is light obtained by combining the components of the light emitted from the light guide plate 21 (lights L1a and L1b shown in FIG. 9). Therefore, when the unit prism 33 as shown in FIG. 9 is used, the directivity of the second directional light L2 can be further increased.
  • the unit prism 33 has the form shown in FIG. 9, the light (the light emitted from the light exit surface of the prism portion) obtained by combining the light components reflected from the flat surfaces 35a and 35b is It becomes possible to give strong directivity to the normal direction of the sheet surface, and the polarization direction of the light does not vary. Furthermore, even if it is a form as shown in FIG. 9, since it becomes easy to ensure the precision of a shape by comprising the 1st slope 34 and the 2nd slope 35 by a flat surface, quality control is easy. Therefore, mass productivity can be improved.
  • the inclination angle of each flat surface of the second inclined surface 35 is such that the first directional light L1 has the maximum intensity in the normal direction of the light exit surface (sheet surface) of the prism portion due to internal reflection. Individual adjustments are made for each flat surface so that the bi-directional light L2 is obtained.
  • the inclination angle of each flat surface of the second inclined surface 35 is preferably such that the flat surface closer to the apex t of the unit prism 33 has a larger angle with the normal F to the light exit surface 30a (sheet surface) of the prism sheet 30. That is, in the case of the unit prism 33 shown in FIG. 9, it is preferable that ⁇ 2> ⁇ 3.
  • the peak of the maximum intensity of the second directional light L2 can be made narrower, the directivity of the second directional light L2 can be improved, and the luminance in the front direction can be improved.
  • the angles ⁇ 2 and ⁇ 3 formed by the flat surfaces of the second inclined surface 35 and the normal F are appropriately adjusted according to a predetermined direction in which the first directional light L1 has the maximum intensity, and are usually 30 ° to 37 °.
  • the second inclined surface 35 of the unit prism 33 is composed of two flat surfaces 35a and 35b
  • the positions where the boundary points of the flat surfaces 35a and 35b where the inclination angle of the second inclined surface 35 changes are provided.
  • This boundary point is 20% to 80% in height from the base surface of the unit prism 33 (the surface on which the valley bottom point between the unit prisms 33 is located) when the height H of the unit prism 33 is 100%. It is provided in the position.
  • the 2nd slope 35 consists of several flat surfaces
  • the number of the flat surfaces is not limited to what was illustrated, but the unit prism 33 may consist of three or more flat surfaces.
  • a base material portion (not shown) that supports the prism portion may be provided on the polarizing portion 14a side of the prism portion 14b.
  • a single material may have a single layer structure in which the base material part and the prism part are integrally formed by an extrusion molding method or the like, and the prism part is shaped on the base part film or sheet. Also good.
  • a base material when a base material is provided, a laminate of the base material and the prism is also simply referred to as a prism.
  • a colorless and transparent material having transmission performance in the entire visible light wavelength range is preferable to use as the material constituting the base material.
  • a film formed of TAC (cellulose triacetate), an acrylic resin such as PMMA, or a PC resin is preferable, and an unstretched film is more preferable from the viewpoint of imparting optical isotropy.
  • the thickness of the base material is preferably 25 ⁇ m to 300 ⁇ m from the viewpoint of ease of handling and strength.
  • the ionizing radiation means radiation having an energy quantum capable of crosslinking or polymerizing molecules such as ultraviolet rays and electron beams.
  • the material for forming the prism portion when forming the prism portion on the film or sheet for the base portion and the material for forming the prism portion having a single layer structure by extruding a single material are the same. These materials can be used.
  • the prism portion forming material and the single-layer prism sheet forming material are collectively referred to as a prism material.
  • the prism material can be molded by the 2P method.
  • the prism portion can be molded by curing in a mold.
  • a polyester resin such as PC or PET, an acrylic resin such as PMMA or MS, or a light-transmitting thermoplastic resin such as cyclic polyolefin may be used as a prism material. It can.
  • the resin molecules are oriented and birefringence is generated depending on the molding conditions. Therefore, it is preferable to mold the prism sheets under conditions that prevent the molecules from being oriented.
  • the substrate portion preferably has substantially optical isotropy.
  • substantially optically isotropic means that the retardation value is small enough not to substantially affect the optical characteristics of the liquid crystal display device.
  • the in-plane retardation Re of the base material portion is preferably 20 nm or less, and more preferably 10 nm or less. If the in-plane retardation is in such a range, the polarization state of the first directional light emitted from the light guide plate is not substantially changed (while maintaining the ratio of the P component and in a predetermined region). While maintaining the emitted light distribution), the light can be emitted as second directional light in a predetermined direction.
  • the in-plane retardation Re is an in-plane retardation value measured with light having a wavelength of 590 nm at 23 ° C.
  • nx is the refractive index in the direction in which the refractive index is maximum in the plane of the optical member (that is, the slow axis direction)
  • ny is the direction perpendicular to the slow axis in the plane (that is, the fast phase). (Axial direction)
  • d is the thickness (nm) of the optical member.
  • the base material portion may have an in-plane retardation in another embodiment.
  • the in-plane retardation Re of the base material portion varies greatly depending on its thickness, but is, for example, 100 nm to 10000 nm.
  • the photoelastic coefficient of the base material portion is preferably ⁇ 10 ⁇ 10 ⁇ 12 m 2 / N to 10 ⁇ 10 ⁇ 12 m 2 / N, more preferably ⁇ 5 ⁇ 10 ⁇ 12 m 2 / N to It is 5 ⁇ 10 ⁇ 12 m 2 / N, more preferably ⁇ 3 ⁇ 10 ⁇ 12 m 2 / N to 3 ⁇ 10 ⁇ 12 m 2 / N. If the photoelastic coefficient is in such a range, the volume of the base material portion in the temperature range (0 ° C. to 50 ° C.) and the humidity range (0% to 90%) in which the liquid crystal display device is generally assumed to be used.
  • a conventionally well-known method can be used suitably for the manufacturing method of a prism part.
  • a prism part forming material such as an ultraviolet curable resin is put into a shaping part of a prism part having a desired unit prism shape, a base material part is overlapped there, and a base material is laminated using a laminator or the like.
  • the prism portion may be formed by irradiating ultraviolet rays or the like while being pressed against the prism row forming material to cure the prism portion forming material, and peeling or removing the mold of the prism row (for example, JP 2009-37204 A). (See Fig. 2 of the publication).
  • the prism portion forming material may be cured without overlapping the base material in the method.
  • a prism portion forming material liquid is coated and filled on a rotating roll intaglio plate having concave portions that are reversely concavo-convex with respect to the prism shape, and a member serving as a base material portion is supplied thereto to supply a prism portion forming material liquid on the plate surface
  • the prism portion can be continuously manufactured (for example, see Japanese Patent Application Laid-Open No. 5-169015).
  • the prism portion can also be manufactured by an extrusion molding method using the thermoplastic resin as described above.
  • the above-described prism sheet forming material can be used.
  • the refractive index n1 of the prism portion 14b is 1.50
  • the refractive index n2 of air is 1.0
  • ⁇ c is 41 ° 48′37 ′′
  • the incident angle ⁇ b ⁇ ⁇ c. 7B and 7C in the total reflection region ( ⁇ b ⁇ ⁇ c)
  • the P component light and the S component light have a phase depending on the incident angle ⁇ b.
  • this affects the polarization direction of the polarized light that is emitted, while the polarization direction of the light guided to the polarization unit 14a is controlled by controlling the incident angle ⁇ b.
  • the incident angle ⁇ b is set by controlling the inclination angle and refractive index of the first inclined surface 34 and the second inclined surface 35 of the unit prism 33.
  • the phase difference between the P component and the S component can be reduced to minimize the influence on the polarization direction of the polarized light, and as a result, the polarization state of the first directional light and the outgoing light While substantially maintaining the distribution, the second directional light can be guided to the polarization unit 14a in the second direction (substantially normal direction)
  • the ratio of the P component in the first directional light Therefore, by maintaining the polarization state and the outgoing light distribution, the light absorbed by the second polarizing plate 14 can be reduced, and the liquid crystal display panel 15 can be reduced. It is possible to effectively use the incident light.
  • the polarizing portion 14a and the prism portion 14b are laminated (integrated) via any appropriate pressure-sensitive adhesive layer or adhesive layer.
  • the pressure-sensitive adhesive layer is composed of a diffusion pressure-sensitive adhesive
  • the adhesive layer is composed of a diffusion adhesive.
  • the diffusion adhesive contains light diffusing fine particles dispersed in the adhesive.
  • the second polarizing plate 14 may further include a polarization selective reflection sheet 16 between the polarizing unit 14a and the prism unit 14b.
  • the polarization selective reflection sheet has a function of transmitting polarized light in a specific polarization state (polarization direction) and reflecting light in other polarization states.
  • the polarization selective reflection sheet is disposed so as to transmit light having a polarization direction parallel to the transmission axis of the polarization portion 14 a of the second polarizing plate 14, thereby retransmitting light absorbed by the second polarizing plate 14. It can be utilized, utilization efficiency can be further increased, and luminance can be improved.
  • the polarization selective reflection sheet is typically a multi-layer laminate including at least two types of layers having mutually different refractive indexes in the direction parallel to the transmission axis and different refractive indexes in the direction perpendicular to the transmission axis. Is the body.
  • the polarization selective reflection sheet has a layer A in which the refractive index in the direction parallel to the transmission axis is na, the refractive index in the direction perpendicular to the transmission axis is nb, and the refractive index in the direction parallel to the transmission axis is na.
  • the polarization selective reflection sheet may be a laminate of a film in which cholesteric liquid crystal is fixed and a ⁇ / 4 plate.
  • FIG. 10 illustrates the intensity distribution of the luminance of the first directional light L1 emitted from the light guide plate 21 of the embodiment and the intensity distribution of the luminance of the second directional light L2 guided from the prism portion 14b to the polarizing portion 14a.
  • FIG. 10A is a luminance contour diagram showing an example of an intensity distribution of luminance in the first directional light L1 emitted from the light guide plate 21.
  • FIG. 10B is a luminance contour diagram showing an example of a luminance intensity distribution in the second directional light L2 guided from the prism portion 14b to the polarizing portion 14a.
  • This luminance contour map is obtained by measuring the intensity distribution of the luminance of light emitted from the light guide plate 21 at room temperature and in the atmosphere using a light distribution distribution measuring device such as an AUTRONIC MELCHERS conoscope.
  • most of the first directional light emitted from the light guide plate 21 of the present embodiment has a polar angle of 90 ° in the normal direction of the light exit surface, and the light guide direction of the light guide plate. Is in the range of polar angle 50 ° to 80 °, azimuth angle 135 ° to 225 °, and 0 ° to 45 ° and 315 ° to 360 °.
  • the azimuth angle is not necessarily distributed within the range of 0 ° to 45 ° and 315 ° to 360 °.
  • the first directional light L1 is preferably directed to the majority of light at an angle formed with the normal line in this range, but light outside the range may exist.
  • the first directional light L1 can have a half-value width (half-value width angle) of ⁇ 5 ° or more, usually ⁇ 10 ° to 20 °, and vibrates in the YZ plane. This is polarized light having a high ratio of light (P component) having a polarization direction having a plane.
  • the full width at half maximum means the difference in angle from the angle having the maximum value to the angle at which the luminance intensity is 50% when the maximum value is 100% at the peak of the maximum intensity of luminance. The larger the half-value width, the weaker the directivity.
  • the second directional light L2 guided from the prism portion 14b to the polarizing portion 14a has the maximum intensity in the normal direction of the sheet surface due to the deflection action of the unit prism 33.
  • the half width can be made smaller than the half width of the first directional light L1.
  • the prism portion 14b of the present embodiment can reduce the half-value width angle of light emitted from the light guide plate 21 from the light exit surface to ⁇ 20 ° or less by the optical action of the unit prism 33. By setting it as a suitable form, it can be set as a half-width angle ⁇ 10 ° or less.
  • the light guided from the prism portion 14b to the polarizing portion 14a is half-width angle in the normal direction of the liquid crystal display panel.
  • Light with high directivity such as ⁇ 20 ° or less, or substantially parallel light, and the light can be converted into a direction substantially parallel to the transmission axis of the polarizing portion 14a of the second polarizing plate 14, that is, YZ.
  • It can be set as the light with a high ratio of the light (P component) which has a polarization direction which has a vibration surface in a surface.
  • the light absorbed by the second polarizing plate 14 can be reduced, and the light from the surface light source device can be used effectively.
  • FIG. 11 shows the polarization direction of light from the light guide plate 21 and the prism portion 14b of the present embodiment, the transmission axis of the first polarizing plate 13, and the polarization axis emitted from the light guide plate. It is a figure which shows the relationship with the transmission axis of the polarizing part 14a of the 2nd polarizing plate 14.
  • FIG. 11 As described above, the light emitted from the light guide plate 21 (first directional light) has a high P component ratio, and its main polarization direction is substantially the direction of the arrow D1 (Y direction) as shown in FIG. ).
  • the light emitted from the light guide plate 21 is deflected in the peak direction of the intensity by the prism portion 14b and guided to the polarizing portion 14a.
  • the prism is deflected by total reflection at the interface of the unit prism 33, and the prism portion has no base material portion or a member that does not have birefringence even though it has a base portion.
  • the polarization direction of the light (second directional light) guided from the unit 14b to the polarizing unit 14a is substantially in the direction of arrow D2 (Y direction) as shown in FIG. That is, the light guided from the prism portion 14b of the second polarizing plate 14 to the polarizing portion 14a is mainly polarized light having a polarization direction in the direction of the arrow D2.
  • the transmission axis of the second polarizing plate 14 is substantially in the direction of arrow D3 (Y direction) as shown in FIG.
  • the direction D3 of the transmission axis of the second polarizing plate 14 is a direction (Y direction) substantially parallel to the arrangement direction of the back-side unit optical elements 26 and the arrangement direction of the unit prisms 33.
  • the transmission axis of the first polarizing plate 13 is substantially in the direction of arrow D4 (X direction) as shown in FIG. Accordingly, the main polarization direction D2 of light guided from the prism portion 14b of the second polarizing plate 14 to the polarizing portion 14a and the transmission axis D3 of the second polarizing plate 14 are parallel.
  • the transmission axis D4 of the first polarizing plate 13 is orthogonal to the transmission axis D3 of the second polarizing plate 14, and is in the polarization direction of the light whose 90 ° polarization direction is rotated by the liquid crystal cell 12 to which an electric field is applied. It is almost parallel. Further, the light guided from the prism portion 14b of the second polarizing plate 14 to the polarizing portion 14a has a narrower half-value width than that of the conventional one and has high directivity. Is small. Therefore, the amount of light (polarized light) absorbed by the second polarizing plate 14 can be greatly reduced, and the light utilization efficiency is improved.
  • the emission direction of the first directional light L1 having a high ratio of the P component in the polarized light emitted from the light guide plate 21 and having the maximum intensity in the first direction is determined by the prism unit.
  • the light containing a large amount of light is guided to the polarization unit 14a.
  • the transmission axis of the first polarizing plate 13 is orthogonal to the transmission axis of the second polarizing plate 14 and is substantially parallel to the polarization direction of the light whose 90 ° polarization direction is rotated by the liquid crystal cell 12 to which an electric field is applied. It is. Therefore, the transmittance of the liquid crystal display panel 15 can be maximized, the light use efficiency of the liquid crystal display device 1 can be improved, and a bright image can be displayed. Furthermore, in this embodiment, since the emitted light distribution of the first directional light L1 is three-dimensionally controlled so as to have a predetermined irradiation ratio within a predetermined polar angle and azimuth angle range, Utilization efficiency can be further improved.
  • the unit prisms 33 of the prism portion 14b are limited to a configuration in which the cross-sectional shape of the unit prisms 33 is asymmetric with respect to a straight line passing through the apex and orthogonal to the sheet surface in a cross section parallel to the arrangement direction and parallel to the thickness direction.
  • the cross-sectional shape may be symmetric such as an isosceles triangle.
  • the illuminance distribution (outgoing light distribution) of the outgoing light from the light guide plate 21 should be narrower than the prism portion 14b shown in the embodiment. It is preferable from the viewpoint of enhancing light properties. Furthermore, as shown in FIG.
  • the cross-sectional shape may be a polygonal shape symmetric with respect to a straight line passing through the apex and orthogonal to the sheet surface.
  • a prism portion including the unit prism 33 having a symmetrical cross-sectional shape can be applied to a two-lamp type surface light source device.
  • both the first inclined surface 34C and the second inclined surface 35C have a plurality of flat surfaces, and the cross-sectional shape is symmetrical with respect to a line passing through the apex t and orthogonal to the sheet surface. It has become.
  • the unit prism 33C has a substantially triangular prism shape (polygonal shape) having a first inclined surface 34C composed of two flat surfaces 34a and 34b having different inclination angles and a second inclined surface 35C composed of two flat surfaces 35a and 35b having different inclination angles. ).
  • the unit prism 33C is disposed such that the first slope 34C is on the side surface 21a side and the second slope 35C is on the side surface 21b side.
  • the unit prism 33 ⁇ / b> C illustrated in FIG. 12 light incident from the side surfaces 21 a and 21 b is guided through the light guide plate 21 and is emitted from the light guide plate 21 as first directional light.
  • the first directional light is incident from the flat surfaces 34a and 34b of the first inclined surface 34C and the flat surfaces 35a and 35b of the second inclined surface 35C.
  • the inclination angles of the flat surfaces 34a and 34b of the first inclined surface 34C are angles at which the first directional light from the light guide plate 21 can enter as described above, and from the second inclined surface 35C. It is also an angle at which incident light can be reflected as second directional light having maximum intensity in the normal direction of the sheet surface. Furthermore, the inclination angle of each flat surface 35a, 35b of the second inclined surface 35C is an angle at which the light incident from the first inclined surface 34C can be reflected as second directional light having the maximum intensity in the normal direction of the sheet surface. And an angle at which the first directional light from the light guide plate 21 can enter.
  • the preferable conditions for the inclination angles of the flat surfaces 34a and 34c of the first inclined surface 34C are the same as the preferable conditions for the flat surfaces of the second inclined surface 35 shown in FIG. 6 and FIG.
  • the unit prism 33 is not limited to the shape described above, and the unit prism 33 may be a trapezoid having a short apex at the apex of the triangle, or may be a curved surface with at least one inclined surface convex toward the light guide plate 21 side. There may be.
  • the light guide plate 21 is not limited to the form in which the thickness of the base portion 22 is substantially constant.
  • the light source portion 10 is provided on one side surface side (that is, in the case of a single lamp type), the light source portion 10 is not provided.
  • the tapered side surface 21a side may be the thickest and gradually becomes thinner toward the opposite side surface 21b side. By adopting such a configuration, it is possible to improve the light use efficiency and the uniformity of luminance. Further, in the case of a two-lamp type surface light source device in which the light source unit 10 is disposed on both side surfaces 21a and 21b of the light guide plate 21, the back surface may be an arch-shaped one whose central portion is thin.
  • the light guide plate 21 includes the back side unit optical element 26 and the light output described in JP 2007-220347 A, JP 2011-90832 A, JP 2004-213019 A, JP 2008-262906 A, and the like. It is good also as a form provided with the side unit optical element 24 grade
  • a light diffusing layer may be provided in order to impart a light diffusing function to the extent that polarization is not disturbed.
  • the light diffusion layer for example, a layer in which light diffusing fine particles are dispersed in a translucent resin can be used.
  • the liquid crystal display device may further include any appropriate optical sheet at any appropriate position depending on the purpose.
  • the liquid crystal display device may have a light diffusion sheet, a lens array sheet, or the like between the light guide plate 21 and the second polarizing plate 14. By providing the light diffusion sheet, the viewing angle of the liquid crystal display device can be widened.
  • the liquid crystal display device has any appropriate optical compensation film at any appropriate position depending on the purpose (in this specification, it may also be referred to as an anisotropic optical element, a retardation film, or a compensation plate). May further be included.
  • the arrangement position of the optical compensation film, the number of sheets used, birefringence (refractive index ellipsoid), and the like can be appropriately selected according to the driving mode of the liquid crystal cell, desired characteristics, and the like.
  • the liquid crystal display device when the liquid crystal cell is in the IPS mode, the liquid crystal display device is arranged between the liquid crystal cell 12 and the first polarizing plate 13 or the second polarizing plate 14 nx 1 > ny 1 > nz. And a second anisotropic optical element satisfying the relationship of nz 2 > nx 2 > ny 2 disposed between the first anisotropic optical element and the liquid crystal cell. And an optical element.
  • the slow axis of the first anisotropic optical element and the slow axis of the second anisotropic optical element may be perpendicular or parallel, and are parallel in view of the viewing angle and productivity. Preferably there is. Furthermore, as a preferable phase difference range at this time, 60 nm ⁇ Re 1 ⁇ 140 nm 1.1 ⁇ Nz 1 ⁇ 1.7 10 nm ⁇ Re 2 ⁇ 70 nm ⁇ 120 nm ⁇ Rth 2 ⁇ 40 nm
  • Re is the in-plane retardation of the anisotropic optical element, as defined above.
  • nx and ny are as defined above.
  • nz is the refractive index in the thickness direction of the optical member (here, the first anisotropic optical element or the second anisotropic optical element). Note that the subscripts “1” and “2” represent the first anisotropic optical element and the second anisotropic optical element, respectively.
  • substantially equal is intended to include the case where nx and ny are different within a range that does not have a practical effect on the overall optical characteristics of the liquid crystal display device. Therefore, the negative C plate in this embodiment includes the case of having biaxiality.
  • the second anisotropic optical element may be omitted depending on the purpose and desired characteristics.
  • the liquid crystal display panel When the liquid crystal cell is in the IPS mode, the liquid crystal display panel may be in a so-called O mode or in a so-called E mode.
  • the “O-mode liquid crystal display panel” refers to a panel in which the absorption axis direction of the polarizer disposed on the light source side of the liquid crystal cell and the initial alignment direction of the liquid crystal cell are substantially parallel.
  • the “E mode liquid crystal panel” refers to a liquid crystal panel in which the absorption axis direction of the polarizer disposed on the light source side of the liquid crystal cell is substantially orthogonal to the initial alignment direction of the liquid crystal cell.
  • the “initial alignment direction of the liquid crystal cell” refers to a direction in which the in-plane refractive index of the liquid crystal layer that is a result of alignment of the liquid crystal molecules contained in the liquid crystal layer is maximized in the absence of an electric field.
  • the anisotropic optical element can be disposed between the first polarizing plate and the liquid crystal cell.
  • the anisotropic optical element is formed between the second polarizing plate and the liquid crystal cell. Can be placed between.
  • the liquid crystal display device may use a circularly polarizing plate as the polarizing plate.
  • the first polarizing plate may include an anisotropic optical element functioning as a ⁇ / 4 plate on the liquid crystal cell side of the polarizer
  • the second polarizing plate may be provided on the liquid crystal cell side of the polarizer with ⁇ /
  • An anisotropic optical element that functions as four plates may be provided.
  • the second polarizing plate may include another anisotropic optical element having a refractive index relationship of nz> nx> ny between the anisotropic optical element and the polarizer.
  • the retardation wavelength dispersion value (Recell [450] / Recell [550]) of the liquid crystal cell is ⁇ cell, and the average retardation wavelength dispersion of the anisotropic optical elements of the first polarizing plate and the second polarizing plate.
  • the value (Re ( ⁇ / 4) [450] / Re ( ⁇ / 4) [550]) is ⁇ ( ⁇ / 4)
  • ⁇ ( ⁇ / 4) / ⁇ cell is 0.95 to 1.02.
  • the angle formed between the absorption axis of the polarizer of the first polarizing plate and the slow axis of the anisotropic optical element is substantially 45 ° or substantially 135 °.
  • the Nz coefficient of the anisotropic optical element preferably satisfies the relationship 1.1 ⁇ Nz ⁇ 2.4, and the Nz coefficient of the other anisotropic optical element is ⁇ 2 ⁇ Nz ⁇ ⁇ . It is preferable to satisfy the relationship of 0.1.
  • the liquid crystal display device may also use a linear polarizing plate as the polarizing plate. That is, the first polarizing plate may be provided with an anisotropic optical element other than the ⁇ / 4 plate on the liquid crystal cell side of the polarizer, and the second polarizing plate is provided with ⁇ / 4 on the liquid crystal cell side of the polarizer. An anisotropic optical element other than the plate may be provided. Each of the anisotropic optical elements of the first polarizing plate and the second polarizing plate may be one, or two or more.
  • the anisotropic optical element in such a linear polarizing plate is birefringent in light leakage caused by the birefringence of the liquid crystal cell and the apparent angle of the absorption axis of the polarizer when viewed from an oblique direction.
  • the optical characteristics can be any appropriate one depending on the purpose or the like.
  • the anisotropic optical element preferably satisfies the relationship of nx> ny> nz. More specifically, the in-plane retardation Re of the anisotropic optical element is preferably 20 nm to 200 nm, more preferably 30 nm to 150 nm, and further preferably 40 nm to 100 nm.
  • the thickness direction retardation Rth of the anisotropic optical element is preferably 100 nm to 800 nm, more preferably 100 nm to 500 nm, still more preferably 150 nm to 300 nm.
  • the Nz coefficient of the anisotropic optical element is preferably 1.3 to 8.0.
  • the light guide plate 21 may contain a light scattering material.
  • the base 22 of the light guide plate 21 may include a light scattering material (light diffusing particles: not shown) dispersed substantially uniformly.
  • the light scattering material has a function of changing (diffusing (scattering)) the light traveling in the base portion 22 by changing the path direction of the light by reflection or refraction.
  • the light scattering material may be a particle formed of a material having a refractive index different from that of the base material of the base portion 22 or may be a particle formed of a material having a reflection effect on light.
  • the material, average particle diameter, refractive index, and the like of the light scattering material can be appropriately adjusted according to the directivity required for the outgoing light emitted from the light guide plate 21.
  • the range described in Japanese Patent No. 3874222 can be adopted as the material, average particle diameter, refractive index, and the like of the light scattering material.
  • the description of Japanese Patent No. 3874222 is incorporated herein by reference in its entirety.
  • the material forming the light scattering material include particles made of a transparent substance such as silica (silicon dioxide), alumina (aluminum oxide), acrylic resin, PC resin, and silicone resin.
  • the vertical polarization component is transmitted and the horizontal polarization component is absorbed. It is common to arrange the first polarizing plate.
  • the transmission axis of the first polarizing plate is substantially perpendicular to the transmission axis of the polarized sunglasses. There is.
  • an optical member for example, a ⁇ / 4 plate, a ⁇ / 2 plate, or a high phase difference
  • an optical member that changes or eliminates the polarization state or the polarization axis angle partially or entirely on the viewing side of the first polarizing plate.
  • Films, scattering elements, etc. may be used.
  • the light utilization efficiency may be improved by making the second directional light contain a large amount of P-component polarized light and coincide with the transmission axis of the second polarizing plate. That is, according to the present invention, the liquid crystal display is such that the YZ plane of the light guide is parallel to the transmission axis of the second polarizing plate, and thus the absorption axis of the second polarizing plate is orthogonal to the YZ plane. By arranging the panel, an improvement in light utilization efficiency may be realized. However, as described above, depending on the azimuth angle of the first polarizing plate, there may be a problem as in the case of using polarized sunglasses.
  • a ⁇ / 2 plate can be used to freely set the absorption axis angle of the polarizing plate used in the liquid crystal display panel. Specifically, by arranging a ⁇ / 2 plate between the polarizing portion and the prism portion of the second polarizing plate, the polarization direction can be changed optimally.
  • the ⁇ / 2 plate may be disposed between the polarization selective reflection sheet and the prism portion, or may be disposed between the polarization selective reflection sheet and the polarization portion.
  • the slow axis of the ⁇ / 2 plate is the direction of the transmission axis of the polarization selective reflection sheet and the direction of the YZ plane of the light guide plate. May be arranged in a direction between.
  • the ⁇ / 2 plate is preferably arranged so that its slow axis is an average angle between the angle (direction) of the transmission axis of the polarization selective reflection sheet and the angle (direction) of the YZ plane of the light guide plate. Can be done.
  • the transmission axis of the polarization selective reflection sheet can be disposed so as to be parallel to the YZ plane, and the ⁇ / 2 plate
  • the slow axis may be arranged so as to be a direction between the direction of the transmission axis of the second polarizing plate (substantially, the polarizing portion) and the direction of the transmission axis of the polarization selective reflection sheet.
  • the ⁇ / 2 plate preferably has a slow axis whose angle (direction) is the transmission axis of the second polarizing plate (substantially the polarizing portion) and the angle of the transmission axis of the polarization selective reflection sheet ( (Direction) and an average angle.
  • the front luminance value of the liquid crystal display device was measured with an autotron made by AUTRONIC MELCHERS, with the liquid crystal display device displaying a full screen white, and ⁇ , more than 500 cd / m 2 200 cd / m 2 or more was rated as ⁇ , and less than 200 cd / m 2 was rated as x.
  • the front luminance is 200 cd / m 2 or less, the image when viewed from the front becomes dark and visibility is impaired.
  • the integrated illuminance of the liquid crystal display device is such that the liquid crystal display device displays a full screen white, and brightness in all directions at a polar angle of 0 ° to 80 ° with an AUTRONIC MELCHERS conoscope. Were measured, and these measured values were angularly integrated and calculated. The case where the calculated value was 450 lx or more was rated as ⁇ , the case where it was 350 lx or more was marked as ⁇ , and the case where it was less than 350 lx was marked as x. When the integrated illuminance is 350 lx or less, an image viewed from any angle becomes dark and visibility is impaired.
  • the emission characteristic of the light guide plate was displayed as a half-value width angle of light emitted in a direction parallel to the light source arrangement of the surface light source.
  • the emission distribution from the central portion of the surface light source is measured using the above-described EZ contrast, and the brightness having a value half the peak brightness is obtained. It was displayed as the angular width in the direction parallel to the light source arrangement of the surface light source shown.
  • La and Lt are obtained by taking out the emission distribution measured using the EZ contrast as measured values at polar angle intervals of 1 ° and azimuth angles of 1 °, and correcting the luminance with cos (polar angle).
  • the angle range corresponding to is obtained by integration. In addition, if it integrates in all directions and all polar angle ranges, it is equivalent to illumination intensity.
  • the second optical element (positive biaxial plate) was measured by inclining the film at the center of the fast axis and the rest at the center of the slow axis.
  • the thickness of the film necessary for calculating the three-dimensional refractive index was measured using an Anritsu digital micrometer “KC-351C type”.
  • the refractive index was measured using an Abbe refractometer [manufactured by Atago Co., Ltd., product name “DR-M4”].
  • Example 1 Production of light guide plate Using an acrylic resin containing a light scattering material, the light output side unit optical element and the back side unit optical element are molded on the base sheet, as shown in FIG. 1 and FIG. Such a light guide plate was produced.
  • the back-side unit optical element has a shape suitable for a single-light surface light source device (a cross-sectional shape is asymmetric in a cross section parallel to the arrangement direction and parallel to the thickness direction).
  • a wedge-shaped prism column The ridge line direction of the back side unit optical element was parallel to the arrangement direction (X direction) of the point light sources of the light source unit. As shown in FIG.
  • the cross section of a 140 ° prism is a pentagonal prism shape), and the ridge line direction is a direction (Y direction) orthogonal to the ridge line direction of the back unit optical element.
  • the polarized light emitted from the light guide plate has a polar angle of 50 when the normal direction of the light exit surface of the light guide plate is 90 ° polar angle and the light guide direction of the light guide plate is azimuth angle 0 ° -180 °.
  • the ratio La / Lt between the integrated intensity La of the emitted light and the integrated intensity Lt of all the emitted lights in the range of ° to 80 ° and azimuth angles of 0 ° to 45 °, 135 ° to 225 °, and 315 ° to 360 ° is 0. .82.
  • this light guide plate may be referred to as “double-sided prism A” for convenience.
  • Reflective sheet A silver reflective sheet in which silver was deposited on the surface of a substrate (PET sheet) was used as the reflective sheet.
  • (C) Point light source An LED light source was used as a point light source, and a plurality of these were arranged to form a light source unit.
  • the negative biaxial plate had a front phase difference of 118 nm and an Nz coefficient of 1.16.
  • E-1-2 Production of second anisotropic optical element A pellet-shaped resin of styrene-maleic anhydride copolymer (manufactured by Nova Chemical Japan, product name “Dylark D232”) Extrusion was performed at 270 ° C. using a machine and a T die, and the sheet-like molten resin was cooled with a cooling drum to obtain a film having a thickness of 100 ⁇ m. This film was uniaxially stretched in the transport direction at a temperature of 130 ° C.
  • the obtained film was uniaxially stretched at a fixed end in the width direction so that the film width was 1.2 times the film width after the longitudinal stretching at a temperature of 135 ° C., and the thickness was 50 ⁇ m.
  • a biaxially stretched film was obtained (transverse stretching step).
  • the obtained film was a positive biaxial plate having a fast axis in the transport direction.
  • the positive biaxial plate had a front phase difference Re of 20 nm and a thickness phase difference Rth of ⁇ 80 nm.
  • alumina colloid-containing adhesive was applied to one side of a triacetyl cellulose (TAC) film (manufactured by Konica Minolta, product name “KC4UW”, thickness: 40 ⁇ m).
  • TAC triacetyl cellulose
  • a polymer film mainly composed of polyvinyl alcohol manufactured by Kuraray, trade name “9P75R (thickness: 75 ⁇ m, average polymerization degree: 2,400, saponification degree 99.9%)”
  • 9P75R thickness: 75 ⁇ m, average polymerization degree: 2,400, saponification degree 99.9%
  • the film is stretched 1.2 times in the transporting direction and then immersed in an aqueous solution having an iodine concentration of 0.3% by weight for 1 minute, so that the film is not stretched in the transporting direction while being dyed (original length)
  • the film is stretched 3 times based on the above, dipped in an aqueous solution having a boric acid concentration of 4% by weight and a potassium iodide concentration of 5% by weight.
  • a polarizer was produced by drying.
  • the laminate of the above TAC film / alumina colloid-containing adhesive was laminated on one side of the obtained polarizer by roll-to-roll so that the conveying directions of both were parallel.
  • the first anisotropic optical element coated with the above-mentioned alumina colloid-containing adhesive on one side is laminated on the opposite side of the polarizer by roll-to-roll so that the conveying directions of both are parallel. did. Then, it was made to dry at 55 degreeC for 6 minute (s), and the polarizing plate (1st optically anisotropic element / polarizer / TAC film) whose single transmittance of wavelength 589nm is 43.2% was obtained.
  • a second optically anisotropic element is placed on the surface of the first optically anisotropic element of this polarizing plate via an acrylic adhesive (thickness 5 ⁇ m) so that their transport directions are parallel to each other.
  • E-2 Production of Second Polarizing Plate
  • TAC triacetyl cellulose
  • Fujitack ZRF80S thickness: 80 ⁇ m
  • a prism sheet as shown in FIG. 8 is manufactured by filling a predetermined mold in which the TAC is arranged with an ultraviolet curable urethane acrylate resin as a prism material and curing the prism material by irradiating ultraviolet rays. did.
  • the unit prism is a triangular prism, and the cross-sectional shape parallel to the arrangement direction and parallel to the thickness direction is an unequal triangular shape, and the first slope on the light source side is steeper than the other second slope ( ⁇ 1 ⁇ 2 (See FIG. 8).
  • the polarizing plate with a compensation plate for IPS obtained in (E-1) above is bonded to the prism sheet and the polarization selective reflection sheet, so that the second optical anisotropic element / first optical anisotropy is obtained.
  • the polarizing plate with a prism sheet (2nd polarizing plate) which has the structure of a conductive element / polarizer / TAC film / polarization selective reflection sheet / prism sheet (prism part) was produced.
  • a polarization selective reflection sheet a multilayer laminate (3M company) including two types of layers whose refractive indexes in the direction parallel to the transmission axis are substantially equal to each other and whose refractive indexes in the direction orthogonal to the transmission axis are different from each other.
  • a commercially available polarizing plate (manufactured by Nitto Denko Corporation, product name “CVT1764FCUHC”) was attached to the upper side (viewing side) of the liquid crystal cell as a first polarizing plate. Furthermore, in order to improve the visibility when observing the liquid crystal display device with polarized sunglasses, a ⁇ / 4 plate (trade name “UTZ film # 140” manufactured by Kaneka Corporation) is placed on the first polarizing plate. The film was attached via an acrylic pressure-sensitive adhesive so that its slow axis forms an angle of 45 ° with the absorption axis of the first polarizing plate.
  • the polarizing plate with a prism sheet obtained by said (E) was affixed on the lower side (light source side) of a liquid crystal cell as a 2nd polarizing plate through an acrylic adhesive, and the liquid crystal display panel was obtained.
  • the polarizing plates were pasted so that the transmission axes of the polarizing plates were orthogonal to each other.
  • the surface light source device produced in the above (D) was incorporated into this liquid crystal display panel to produce a liquid crystal display device as shown in FIG.
  • the surface light source device was incorporated so that the ridge line direction of the light output side unit optical element of the light guide plate and the ridge line direction of the unit prism of the prism portion of the second polarizing plate were orthogonal to each other.
  • the obtained liquid crystal display device was subjected to the evaluations (1) to (4) above. The results are shown in Table 1.
  • FIG. 14 shows a full screen white display state of the liquid crystal display device after the vibration test (mechanical strength test) in comparison with Comparative Example 2.
  • Example 2 A liquid crystal display device was produced in the same manner as in Example 1 except that the reflection sheet was a white PET sheet and the La / Lt of the polarized light emitted from the light guide plate was 0.42. The obtained liquid crystal display device was subjected to the evaluations (1) to (4) above. The results are shown in Table 1.
  • a light guide plate was used in which the reflection sheet was a white PET sheet and a dot-like light diffusion layer was formed on the back side.
  • This light guide plate does not have a back side unit optical element and a light output side unit optical element, and the light scattering layer of the light guide plate has a gradation pattern in which the size of the dots increases as the distance from the light source unit increases. It was.
  • a liquid crystal display device was produced in the same manner as in Example 1 except that the La / Lt of the polarized light emitted from this light guide plate was 0.26. The obtained liquid crystal display device was subjected to the evaluations (1) to (4) above. The results are shown in Table 1.
  • a liquid crystal display device was produced in the same manner as in Example 1 except that the prism sheet was provided as a separate member from the second polarizing plate. Specifically, the prism sheet obtained in (E-2) of Example 1 was incorporated in the surface light source device of (D), and obtained as (E-1) of Example 1 as the second polarizing plate. A liquid crystal display device was produced in the same manner as in Example 1 except that the obtained polarizing plate with a compensation plate for IPS was used. The obtained liquid crystal display device was subjected to the evaluations (1) to (4) above. The results are shown in Table 1. Furthermore, the liquid crystal display device after the vibration test (mechanical strength test) is shown in FIG.
  • Example 3> A liquid crystal display device was produced in the same manner as in Example 1 except that the second polarizing plate was produced using a prism sheet as shown in FIG. 9 instead of the prism sheet as shown in FIG. The obtained liquid crystal display device was subjected to the evaluations (1) to (4) above. The results are shown in Table 1.
  • the unit prism of the used prism sheet has an unequal square shape in which the second inclined surface has two flat surfaces with different inclination angles, and the flat surface near the apex of the unit prism on the second inclined surface is the light exit surface of the prism sheet.
  • the angle formed with the normal to (sheet surface) was large ( ⁇ 2> ⁇ 3: see FIG. 9).
  • the polarizing plate with an IPS compensation plate obtained in (E-1) was attached as the first polarizing plate.
  • the TAC film was on the viewing side
  • the second optical compensation film was on the liquid crystal cell side.
  • the 2nd polarizing plate was produced as follows.
  • a biaxially stretched PET film manufactured by Toyobo Co., Ltd., product name “A4300”, thickness: 125 ⁇ m
  • the in-plane retardation Re of this stretched PET film was 6000 nm.
  • the slow axis of the base material part makes an angle of 30 ° with the transmission axis of the polarizing part
  • a commercially available polarizing plate product name “CVT1764FCUHC” manufactured by Nitto Denko Corporation
  • the ridge line direction of the light output side unit optical element of the light guide plate and the ridge line direction of the unit prism of the prism portion of the second polarizing plate are orthogonal to each other.
  • a liquid crystal display device was manufactured in the same manner as in Example 3 except that the surface light source device was incorporated. The obtained liquid crystal display device was subjected to the evaluations (1) to (4) above. The results are shown in Table 1.
  • a light guide plate (hereinafter sometimes referred to as a double-sided prism B) having a different cross-sectional shape of the light-emitting side unit optical element was produced in the same manner as the double-sided prism A of Example 1.
  • a liquid crystal display device was produced in the same manner as in Example 4 except that this double-sided prism B was used as a light guide plate instead of the double-sided prism A.
  • the obtained liquid crystal display device was subjected to the evaluations (1) to (4) above. The results are shown in Table 1.
  • the La / Lt of the polarized light emitted from this light guide plate was 0.78.
  • a light guide plate (hereinafter sometimes referred to as a double-sided prism C) having a different cross-sectional shape of the light-emitting side unit optical element was produced in the same manner as the double-sided prism A of Example 1.
  • a liquid crystal display device was produced in the same manner as in Example 4 except that the double-sided prism C was used as a light guide plate instead of the double-sided prism A.
  • the obtained liquid crystal display device was subjected to the evaluations (1) to (4) above. The results are shown in Table 1.
  • the La / Lt of the polarized light emitted from this light guide plate was 0.86.
  • the shape of the prism has a curved cross section), and the ridge line direction is a direction (Y direction) orthogonal to the ridge line direction of the back-side unit optical element.
  • a liquid crystal display device was produced in the same manner as in Example 4 except that the double-sided prism D was used as a light guide plate instead of the double-sided prism A. The obtained liquid crystal display device was subjected to the evaluations (1) to (4) above. The results are shown in Table 1. The La / Lt of the polarized light emitted from this light guide plate was 0.88.
  • This acrylic resin film was prepared as follows: 100 parts by weight of imidized MS resin and triazine-based ultraviolet absorber (manufactured by Adeka Co., Ltd., products) described in Production Example 1 of JP 2010-284840 A Name: T-712) 0.62 parts by weight were mixed in a twin-screw kneader at 220 ° C. to prepare resin pellets. The obtained resin pellets were dried at 100.5 kPa and 100 ° C. for 12 hours, extruded from a T-die at a die temperature of 270 ° C. with a single screw extruder, and formed into a film (thickness: 160 ⁇ m). Furthermore, the said film was extended
  • Example 9 Instead of the IPS mode liquid crystal display device, the liquid crystal display panel was taken out from the MVA mode liquid crystal display device (trade name “KDL20J3000”, manufactured by SONY), and the same procedure as in Example 3 was used except that the liquid crystal cell of this panel was used. Thus, a liquid crystal display device was produced. The obtained liquid crystal display device was subjected to the evaluations (1) to (4) above. The results are shown in Table 1.
  • the liquid crystal display device according to the embodiment of the present invention can achieve both mechanical strength, integrated illuminance, and front luminance (brightness) at a good level.
  • the liquid crystal display device of Comparative Example 1 in which the emitted light distribution of the polarized light from the light guide plate is different from that of the present invention has insufficient integrated illuminance and front luminance (brightness).
  • the liquid crystal display device of Comparative Example 2 using the second polarizing plate and the prism sheet as separate members was remarkably inferior in appearance after the mechanical strength test.
  • the liquid crystal display device of the present invention includes portable information terminals (PDAs), mobile phones, watches, digital cameras, portable game devices such as portable game machines, OA devices such as personal computer monitors, notebook computers, copy machines, video cameras, liquid crystal televisions, Household electrical equipment such as microwave ovens, back monitors, car navigation system monitors, in-car equipment such as car audio, display equipment such as commercial store information monitors, security equipment such as monitoring monitors, nursing care monitors, medical care It can be used for various applications such as nursing care and medical equipment such as a monitor for medical use.
  • PDAs portable information terminals
  • portable game devices such as portable game machines
  • OA devices such as personal computer monitors, notebook computers, copy machines, video cameras, liquid crystal televisions, Household electrical equipment such as microwave ovens, back monitors, car navigation system monitors, in-car equipment such as car audio, display equipment such as commercial store information monitors, security equipment such as monitoring monitors, nursing care monitors, medical care It can be used for various applications such as nursing care and medical equipment such as a

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

 光の利用効率が高く、明るい映像を表示でき、かつ、画像が濁らない液晶表示装置が提供される。本発明の液晶表示装置は、第1の偏光板と第2の偏光板との間に液晶セルを備える液晶表示パネルと、液晶表示パネルを照明する面光源装置とを備える。面光源装置は、光源部と;光源部からの光を、光の導光方向と略平行な面内において出光面の法線方向から所定の角度をなす第1の方向に最大強度の指向性を有する偏光光を出射する導光板と;を備える。第2の偏光板は、吸収型偏光子を含む偏光部と;偏光部の導光板側に配置され、導光板側に凸となる柱状の単位プリズムが複数配列されたプリズム部と;を備える。導光板から出射される偏光光は、極角50°~80°かつ方位角135°~225°、ならびに0°~45°および315°~360°の範囲における出射光の積分強度Laと、全出射光の積分強度Ltとの比La/Ltが0.3以上である。

Description

液晶表示装置
 本発明は、液晶表示装置に関する。
 近年、ディスプレイとして、面光源装置を用いた液晶表示装置の普及には目覚ましいものがある。例えば、エッジライト型面光源装置を備える液晶表示装置では、光源から出射された光は、導光板に入射し、導光板の出光面(液晶セル側面)と裏面とで全反射を繰り返しながら伝播する。導光板内を伝播する光の一部は、導光板の裏面等に設けられた光散乱体等により進行方向を変えられて出光面から導光板外へ出射する。導光板の出光面から出射した光は、拡散シート、プリズムシート、輝度向上フィルム等の各種光学シートによって拡散・集光された後、液晶セルの両側に偏光板が配置された液晶パネルに入射する。液晶セルの液晶層の液晶分子は画素ごとに駆動され、入射光の透過および吸収を制御する。その結果、画像が表示される。
 上記プリズムシートは、代表的には、面光源装置の筐体に嵌め込まれ、導光板の出射面に近接して設けられる。このような面光源装置を用いた液晶表示装置においては、プリズムシートを設置する際や、実使用環境下において当該プリズムシートと導光板とがこすれ、導光板が傷つく場合がある。このような問題を解決するために、プリズムシートを光源側偏光板に一体化する技術が提案されている(特許文献1)。しかし、このようなプリズムシートが一体化された偏光板を用いた液晶表示装置は、積算照度や正面輝度が不十分で暗いという問題がある。
特開平11-295714号公報
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、光の利用効率が高く、明るい映像を表示でき、かつ、機械的強度に優れる液晶表示装置を提供することにある。
 本発明の液晶表示装置は、観察者側に設けられる第1の偏光板と背面側に設けられる第2の偏光板との間に液晶セルを備える液晶表示パネルと、該液晶表示パネルを背面側から照明する面光源装置と、を備える。面光源装置は、光源部と;該光源部からの光を、該光源部に対向する入光面から入射させ、該液晶表示パネルと対向する出光面から、光の導光方向と略平行な面内において該出光面の法線方向から所定の角度をなす方向に最大強度の指向性を有する偏光光を出射する導光板と;を備える。第2の偏光板は、吸収型偏光子を含む偏光部と;該偏光部の導光板側に配置され、該導光板側に凸となる柱状の単位プリズムが複数配列されたプリズム部と;を備える。導光板から出射される偏光光は、該出光面の法線方向を極角90°、該導光板の導光方向を方位角0°-180°方向としたときに、極角50°~80°かつ方位角135°~225°、ならびに0°~45°および315°~360°の範囲における出射光の積分強度Laと、全出射光の積分強度Ltとの比La/Ltが0.3以上である。
 1つの実施形態においては、上記第2の偏光板は、上記偏光部と上記プリズム部との間に偏光選択反射シートをさらに備える。
 1つの実施形態においては、上記偏光選択反射シートは、透過軸に平行な方向の屈折率が互いに実質的に等しく、かつ、透過軸に直交する方向の屈折率が互いに異なる2種類の層を含む多層積層体である。
 1つの実施形態においては、上記第2の偏光板において、上記偏光部の透過軸は、上記プリズムの稜線方向に実質的に直交である。
 1つの実施形態においては、上記液晶セルは、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む液晶層、または、電界が存在しない状態でホメオトロピック配列に配向させた液晶分子を含む液晶層を含む。
 1つの実施形態においては、上記第2の偏光板は、上記プリズム部の上記偏光部側に該プリズム部を支持する基材部を備え、該基材部は実質的に光学的に等方性を有する。
 1つの実施形態においては、上記第2の偏光板において、上記偏光部と上記プリズム部とは拡散粘着剤を含む粘着剤層を介して積層されている。
 1つの実施形態においては、上記液晶表示装置は、光学補償フィルムをさらに備える。
 本発明の別の液晶表示装置は、観察者側に設けられる第1の偏光板と背面側に設けられる第2の偏光板との間に液晶セルを備える液晶表示パネルと、該液晶表示パネルを背面側から照明する面光源装置と、を備える。面光源装置は、光源部と;該光源部からの光を、該光源部に対向する入光面から入射させ、該液晶表示パネルと対向する出光面から、光の導光方向と略平行な面内において該出光面の法線方向から所定の角度をなす方向に最大強度の指向性を有する光を出射する導光板と;を備える。第2の偏光板は、吸収型偏光子を含む偏光部と;該偏光部の導光板側に配置され、該導光板側に凸となる柱状の単位プリズムが複数配列されたプリズム部と;を備える。導光板から出射される光は、該出光面の法線方向を極角90°、該導光板の導光方向を方位角0°-180°方向としたときに、極角50°~80°かつ方位角135°~225°、ならびに0°~45°および315°~360°の範囲における出射光の積分強度Laと、全出射光の積分強度Ltとの比La/Ltが0.3以上である。
 本発明によれば、光の利用効率が高く、明るい映像を表示でき、かつ、導光板の傷付き防止に優れ、また機械的強度に優れる液晶表示装置を提供できる。その結果、例えば光源の数の削減および/または光源の出力の削減により光源部の消費電力を低減することができる。
本発明の1つの実施形態による液晶表示装置を説明する概略斜視図である。 図1の液晶表示装置に用いられる液晶セルの概略断面図である。 VAモードにおける液晶分子の配向状態を説明する概略断面図である。 図1の液晶表示装置における面光源装置の構成を説明する概略断面図である。 図4の面光源装置の導光板の出光側単位光学要素及び裏面側単位光学要素の形状を説明する概略図である。 導光板及び第2の偏光板のプリズム部からの出射光の様子を示す図である。 入射角とP成分とS成分との各種関係を示す図である。 第2の偏光板のプリズム部の単位プリズムを説明する概略図である。 単位プリズムの他の実施形態を示す概略図である。 本発明の1つの実施形態において、導光板から出射する第1指向性光L1の輝度の強度分布と、第2の偏光板のプリズム部から偏光部へ導かれる第2指向性光L2の輝度の強度分布を説明する図である。 本発明の1つの実施形態において、導光板及び第2の偏光板のプリズム部からの出射光の偏光方向と、第1の偏光板の透過軸及び第2の偏光板の透過軸との関係を示す図である。 単位プリズムの変形形態の形状を示す概略図である。 実施例で用いた導光板の出光側単位光学要素の形状を説明する概略図である。 実施例1および比較例2の液晶表示装置について、振動試験後の全画面白表示の状態を比較して示す画像である。
 以下、図面等を参照して、本発明の1つの実施形態について説明する。
 なお、図1を含め、以下に示す各図は、模式的に示した図であり、必要に応じて各部の寸法、寸法比および形状は、理解を容易にするために、適宜誇張している。
 また、板、シート、フィルム等の言葉を使用しているが、これらは、一般的な使い方として、厚さの厚い順に、板、シート、フィルムの順で使用されており、本明細書中でもそれに倣って使用している。しかし、このような使い分けには、技術的な意味は無いので、特許請求の範囲の記載は、シートという記載で統一して使用した。従って、シート、板、フィルムの文言は、適宜置き換えることができるものとする。例えば、プリズムシートは、プリズムフィルムとしてもよいし、プリズム板としてもよい。
 さらに、本明細書中に記載する各部材の寸法等の数値及び材料名等は、実施形態としての一例であり、これに限定されるものではなく、適宜選択して使用してよい。
 図1は、本発明の1つの実施形態による液晶表示装置1を説明する図である。本実施形態の液晶表示装置1は、面光源装置20と、面光源装置20により背面から照明される液晶表示パネル15とを備える。なお、液晶表示装置1には、説明等は省略するが、この他に、液晶表示装置として動作するために必要とされる通常の配線、回路、部材などの機器が備えられている。
 なお、図中及び以下の説明において、理解を容易にするために、液晶表示装置1の使用状態において、導光板の光の導光方向に垂直な方向をX方向、導光板の光の導光方向をY方向、観察画面の法線方向をZ方向とする。観察者は、観察者側となるZ2側から背面側となるZ1側に向けて、液晶表示パネル15の画面の表示を視認する。また、プリズムシート30や液晶表示パネル15の厚み方向(Z方向)においては、Z1側は、光の入射側であり、Z2側は光の出射側となる。
 液晶表示パネル15は、透過型の映像表示部であり、観察者側(出射側、Z2側)に配置された第1の偏光板13と、面光源装置20側(Z1側)に配置された第2の偏光板14と、第1の偏光板13と第2の偏光板14との間に配置された液晶セル12とを有している。偏光板は、吸収型偏光子を含む偏光部を備え、吸収型偏光子は、入射した光を直交する二つの偏光成分に分解し、一方の方向(透過軸と平行な方向)の偏光成分を透過させ、当該一方の方向に直交する方向(吸収軸と平行な方向)の偏光成分を吸収する機能を有している。本実施形態では、第2の偏光板14の透過軸及び第1の偏光板13の透過軸は、液晶表示パネル15の正面方向(液晶表示装置1の観察画面の正面方向)から見て、実質的に直交している。本実施形態においては、例えば、第1の偏光板13の透過軸はX方向であり、第2の偏光板14の透過軸はY方向である。X方向は、上記のとおり導光板の光の導光方向に垂直な方向であり、図示例においては画面の左右方向である。Y方向は、上記のとおり導光板の光の導光方向であり、図示例においては画面の上下方向である。第2の偏光板14の透過軸は、後述する導光板21の光の導光方向に実質的に平行である。なお、本明細書において、「実質的に直交」および「略直交」という表現は、2つの方向のなす角度が90°±10°である場合を包含し、好ましくは90°±7°であり、さらに好ましくは90°±5°である。「実質的に平行」および「略平行」という表現は、2つの方向のなす角度が0°±10°である場合を包含し、好ましくは0°±7°であり、さらに好ましくは0°±5°である。さらに、本明細書において単に「直交」または「平行」というときは、実質的に直交または実質的に平行な状態を含み得るものとする。
 図2を参照すると、本実施形態の液晶セル12は、一対の基板121、121’と、当該基板間に挟持された表示媒体としての液晶層122とを有する。一般的な構成においては、一方の基板121に、カラーフィルター及びブラックマトリクスが設けられており、他方の基板121’に、液晶の電気光学特性を制御するスイッチング素子と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線と、画素電極及び対向電極とが設けられている。上記基板121、121’の間隔(セルギャップ)は、スペーサー等によって制御できる。上記基板121、121’の液晶層122と接する側には、例えば、ポリイミドからなる配向膜等を設けることができる。
 1つの実施形態においては、液晶層122は、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む。このような液晶層(結果として、液晶セル)は、液晶層の遅相軸方向、進相軸方向、及び厚み方向の屈折率をそれぞれ、nx、ny、nzとした場合、代表的には、nx>ny=nzの3次元屈折率を示す。なお、本明細書において、ny=nzとは、nyとnzが完全に同一である場合だけでなく、nyとnzとが実質的に同一である場合も包含する。
 このような3次元屈折率を示す液晶層を用いる駆動モードの代表例としては、インプレーンスイッチング(IPS)モード、フリンジフィールドスイッチング(FFS)モード等が挙げられる。上記IPSモードは、電圧制御複屈折(ECB:Electrically Controlled Birefringence)効果を利用し、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を、例えば、金属で形成された対向電極と画素電極とで発生させた基板に平行な電界(横電界ともいう)で応答させる。より具体的には、例えば、テクノタイムズ社出版「月刊ディスプレイ7月号」p.83~p.88(1997年版)や、日本液晶学会出版「液晶vol.2No.4」p.303~p.316(1998年版)に記載されているように、ノーマリーブッラクモードでは、液晶セルの電界無印加時の配向方向と一方の側の偏光子の吸収軸とを一致させて、上下の偏光板を直交配置させると、電界のない状態で完全に黒表示になる。電界があるときは、液晶分子が基板に平行を保ちながら回転動作することによって、回転角に応じた透過率を得ることができる。なお、上記のIPSモードは、V字型電極又はジグザグ電極等を採用した、スーパー・インプレーンスイッチング(S-IPS)モードや、アドバンスド・スーパー・インプレーンスイッチング(AS-IPS)モードを包含する。
 上記FFSモードは、電圧制御複屈折効果を利用し、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を、例えば、透明導電体で形成された対向電極と画素電極とで発生させた基板に平行な電界(横電界ともいう)で応答させるものをいう。なお、FFSモードにおける横電界は、フリンジ電界ともいう。このフリンジ電界は、透明導電体で形成された対向電極と画素電極との間隔を、セルギャップより狭く設定することによって発生させることができる。より具体的には、SID(Society for
Information Display)2001 Digest,p.484-p.487や、特開2002-031812号公報に記載されているように、ノーマリーブラックモードでは、液晶セルの電界無印加時の配向方向と、一方の側の偏光子の吸収軸とを一致させて、上下の偏光板を直交配置させると、電界のない状態で完全に黒表示になる。電界があるときは、液晶分子が基板に平行を保ちながら回転動作することによって、回転角に応じた透過率を得ることができる。なお、上記のFFSモードは、V字型電極又はジグザグ電極等を採用した、アドバンスド・フリンジフィールドスイッチング(A-FFS)モードや、ウルトラ・フリンジフィールドスイッチング(U-FFS)モードを包含する。
 上記の電界が存在しない状態でホモジニアス配列に配向させた液晶分子を用いる駆動モード(例えば、IPSモード、FFSモード)は斜めの階調反転がなく、斜め視野角が広いため、本発明に用いられる正面方向に指向した面光源を用いても斜めからの視認性が優れるという利点がある。
 別の実施形態においては、液晶層122は、電界が存在しない状態でホメオトロピック配列に配向させた液晶分子を含む。電界が存在しない状態でホメオトロピック配列に配向させた液晶分子を用いる駆動モードとしては、例えば、バーティカル・アライメント(VA)モードが挙げられる。VAモードは、マルチドメインVA(MVA)モードを包含する。
 図3は、VAモードにおける液晶分子の配向状態を説明する概略断面図である。図3(a)に示すように、VAモードにおける液晶分子は、電圧無印加時には、液晶分子は基板121、121’面に略垂直(法線方向)に配向する。ここで、「略垂直」とは、液晶分子の配向ベクトルが法線方向に対して傾いている場合、すなわち、液晶分子がチルト角を有する場合も包含する。当該チルト角(法線からの角度)は、好ましくは10°以下、さらに好ましくは5°以下、特に好ましくは1°以下である。このような範囲のチルト角を有することにより、コントラストに優れ得る。また、動画表示特性が向上し得る。このような略垂直配向は、例えば、垂直配向膜を形成した基板間に負の誘電率異方性を有するネマチック液晶を配することにより実現され得る。このような状態で一方の基板の面から光を入射させると、第2の偏光板14を通過して液晶層122に入射した直線偏光の光は、略垂直配向している液晶分子の長軸の方向に沿って進む。液晶分子の長軸方向には実質的に複屈折が生じないため入射光は偏光方位を変えずに進み、第2の偏光板と直交する透過軸を有する第1の偏光板13で吸収される。これにより電圧無印加時において暗状態の表示が得られる(ノーマリブラックモード)。電極間に電圧が印加されると、液晶分子の長軸が基板面に平行に配向する。この状態の液晶分子は、第2の偏光板14を通過して液晶層に入射した直線偏光の光に対して複屈折性を示し、入射光の偏光状態は液晶分子の傾きに応じて変化する。所定の最大電圧印加時において液晶層122を通過する光は、例えばその偏光方位が90°回転させられた直線偏光となるので、第1の偏光板13を透過して明状態の表示が得られる。再び電圧無印加状態にすると配向規制力により暗状態の表示に戻すことができる。また、印加電圧を変化させて液晶分子の傾きを制御して第1の偏光板13からの透過光強度を変化させることにより階調表示が可能となる。VAモードの場合には、斜め方向の中間調の透過率が正面方向の中間調の透過率よりも高いため、本発明に用いられる正面方向に指向した面光源を用いても斜めからみた中間調が明るく、黒つぶれが少ないという利点がある。
 図4は、本実施形態の面光源装置20の構成を説明する図である。図4(a)には、図1にA1-A2で示した線に沿った面光源装置20の矢視断面図を示し、図4(b)には、図1にB1-B2で示した線に沿った面光源装置20の矢視断面図を示す。面光源装置20は、図1に示すように、液晶表示パネル15の背面側(Z1側)に配置され、液晶表示パネル15を背面側から照明する照明装置である。面光源装置20は、図1及び図4に示すように、導光板21と、光源部10と、反射シート11とを備えるエッジライト型の面光源装置(バックライト)である。面光源装置20は、光源部10を導光板21の1つの側面(図1の21aまたは21b)に沿って配置した1灯式と呼ばれる面光源装置であってもよく、光源部10を導光板21の対向する2つの側面(図1の21aおよび21b)に沿ってそれぞれ配置した2灯式と呼ばれる面光源装置であってもよい。図4(a)に示すように、本実施形態においては2灯式の面光源装置を例示している。
 導光板21は、光源部10から入射した光を、導光板21内で反射作用等を受けながら光源部10側とは対向する端部側へ導光し、その導光過程で、徐々に出光面21d(第2の偏光板14側の面)から出射する部材である。導光板21は、基部22と、出光側単位光学要素部23と、裏面側単位光学要素部25とを有している。基部22は、シート状の部材であり、透光性を有している。
 出光側単位光学要素部23は、図1及び図4に示すように、基部22の第2の偏光板14(Z2側)の面に形成されている。出光側単位光学要素部23には、複数の出光側単位光学要素24が並列されている。出光側単位光学要素24は、柱状であり、図4(b)に示す断面に現れる断面形状を維持して、光を導光する方向(Y方向)を長手方向とし、この長手方向と直交する方向(X方向)に複数並列されている。
 図5は、実施形態の導光板21の出光側単位光学要素24及び裏面側単位光学要素26の形状を説明する図である。図5(a)は、図4(b)に示す断面の導光板21の一部を拡大して示し、図5(b)は、図4(a)に示す断面の導光板21の一部を拡大して示している。図5(a)に示すように、出光側単位光学要素24は、その並列方向に平行であって厚み方向に直交する断面(XZ断面)において、その断面形状が、基部22の一方の面上に底辺を有し、基部22から突出する凸状の三角形形状である。本実施形態の出光側単位光学要素24では、底辺に対向する頂点が曲線状である例を示しているが、曲線状ではなく、尖った角部を有する形態としてもよく、また底辺が曲線状であってもよい。出光側単位光学要素24は、図5(a)に示すように、その並列ピッチがPaであり、並列方向における基部22側の幅(すわなち、断面三角形形状の底辺の長さ)がWaであり、出光側単位光学要素24の高さ(厚み方向における寸法)がHaであり、断面三角形形状の頂角がθ3、頂角以外の角度がθ1,θ2である。代表的には、並列ピッチPaは、底辺の長さWaに等しい。
 出光側単位光学要素24の図4(b)及び図5(a)に示す断面形状は、次の条件A及び条件Bのうちの少なくとも一方を満たすことが好ましい。
  条件A:頂角θ3以外の角となる断面三角形形状の基部22上に位置する底角の角度θ1、θ2が、25°以上45°以下である。
  条件B:底辺の長さWaに対する、高さHaの比(Ha/Wa)が、0.2以上0.5以下である。
 条件A及び条件Bの少なくとも一方が満たされる場合、導光板21から出光する光のうち、出光側単位光学要素24の並列方向(X方向)に沿った成分について、偏光性を有しつつ導光板21の出光面21dの法線方向への集光作用を高めることができる。結果として、導光板から出射される偏光光(第1指向性光L1:後述)において、所望の出射光分布を得ることができる。
 好ましくは、本実施形態の出光側単位光学要素24は、図4(b),図5(a)に現れる断面(出光側単位光学要素24が並列する方向に沿った断面)において、二等辺三角形形状であり、角度θ1,θ2は等しい。このような形態とすることにより、正面方向輝度を効果的に上昇させること、及び、出光側単位光学要素24の並列方向(X方向)に沿った面内での輝度の角度分布に対称性を付与することができる。
 なお、本願明細書における「三角形形状」とは、厳密な意味での三角形形状のみでなく、製造技術における限界や成型時の誤差等を含む略三角形形状を含む。また同様に、本明細書において用いる、その他の形状や幾何学的条件を特定する用語、例えば、「楕円」、「円」等の用語も、厳密な意味に縛られることなく、同様の光学的機能を期待し得る程度の誤差を含めて解釈することとする。
 図1に示すように、導光板21の裏面側(Z1側)には、裏面側単位光学要素部25が形成されている。裏面側単位光学要素部25には、複数の裏面側単位光学要素26が並列されて形成されている。裏面側単位光学要素26は、柱状であり、図4(a),図5(b)に示す断面に現れる断面形状を維持して、導光板の光の導光方向に垂直な方向(X方向)を長手方向とし、導光板の光の導光方向(Y方向)に複数並列されている。この裏面側単位光学要素26の配列方向は、前述の第2の偏光板14の透過軸に実質的に平行している。図5(b)に示すように、裏面側単位光学要素26は、その並列方向(Y方向)に略平行であって厚み方向(Z方向)に直交する断面(YZ面)において、その断面形状が、基部22の背面側(Z1側)の面上に底辺を有し、基部22から背面側(Z1側)に突出する凸状の三角形形状(楔形状)である。本実施形態の裏面側単位光学要素26は、その頂点が鈍角の角を有している例を示したが、これに限らず、例えば、その頂部が裏面側に凸となる曲面状としてもよい。
 裏面側単位光学要素26は、図5(b)に示すように、その並列ピッチがPbであり、並列方向における基部22側の幅(すわなち、断面三角形形状の底辺の長さ)がWbであり、裏面側単位光学要素26の高さ(厚み方向における寸法)がHbであり、断面三角形形状の頂角がθ6、頂角以外の角度がθ4,θ5である。この並列ピッチPbは、底辺の長さWbに等しい。裏面側単位光学要素26の断面形状は、配列方向に平行かつ厚み方向に平行な断面において、対称な形状であってもよく、非対称な形状であってもよい。図5(b)では、2灯式面光源装置に用いられる裏面側単位光学要素26の断面形状を示している。この場合、当該断面形状は、配列方向に平行かつ厚み方向に平行な断面において、対称な形状であることが好ましい。より具体的には、図5(b)に示す裏面側単位光学要素26の断面形状は、二等辺三角形状であり、底角θ4,θ5が等しくされている。一方、1灯式面光源装置に用いられる場合には、裏面側単位光学要素26の断面形状は、例えば後述の図6(b)に示すように、非対称な三角形状としてもよい。この場合、底角θ4,θ5は、この裏面側単位光学要素26の配列方向において、光源部10側に位置する方の底角が、他方の底角より大きくなることが、効率よく光を導光させ、出射させるという観点から好ましい。このような裏面側単位光学要素26を設けることにより、光源部10からの導光板21内を効率よく導光させ、出射させることができ、裏面側単位光学要素26の並列方向(Y方向)に沿った面内での明るさの均一性等を向上させることができる。また、導光板21から出射する光が受ける拡散作用を極力低減できる。
 導光板21の各部の寸法の一例を以下に示す。
 出光側単位光学要素24に関して、底部の幅Waは、20μm~500μmとすることができ、高さHaは、4μm~250μm以下とすることができる。また、出光側単位光学要素24の頂角θ3は、90°~125°以下とすることができる。
 基部22の厚さは、0.25mm~10mmとすることができ、導光板21全体の厚さは、0.3mm~10mmとすることができる。
 裏面側単位光学要素26に関して、底部の幅Wbは、20μm~500μmとすることができ、高さHbは、1μm~10μmとすることができる。また、裏面側単位光学要素26の頂角θ6は、176.0°~179.6°とすることができる。
 この導光板21は、例えば、押し出し成型により、又は、基部22となる基材上に出光側単位光学要素24及び裏面側単位光学要素26を賦型することにより、基部22と出光側単位光学要素部23及び裏面側単位光学要素部25とを一体に製造可能である。押し出し成型によって導光板21を製造する場合、出光側単位光学要素部23及び裏面側単位光学要素部25が、基部22の母材となる材料と同一の樹脂材料としてもよいし、異なる材料を用いてもよい。
 導光板21の基部22の母材となる材料や、出光側単位光学要素24,裏面側単位光学要素26を形成する材料としては、光を効率よく透過させるものであれば、種々の材料を使用することができる。例えば、光学用途として広く使用され、優れた機械的特性、光学特性、安定性及び加工性等を有するとともに安価に入手可能な材料を用いることができ、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、スチレン樹脂、ポリカーボネート(PC)樹脂、ポリエチレンテレフタレート(PET)樹脂、アクリロニトリル等の一以上を主成分とする透明樹脂や、エポキシアクリレート系やウレタンアクリレート系の反応性樹脂(電離放射線硬化性樹脂等)、ガラス等を用いることができる。
 光源部10は、図1および図4(a)に示すように、導光板21の基部22の板状の対向する2組の側面のうち、出光側単位光学要素24の長手方向(Y方向)両端となる一組の側面21aおよび21bのうち、一方の面又は双方の面に対して対向する位置に、その面に沿って配置される。本実施形態では、図1および図4(a)に示すように、導光板21の2つの側面21aおよび21bに面する位置に、側面21aおよび21bに沿って光源部10が設けられる例を示している。この光源部10は、LED(発光ダイオード)等のように指向性の高い光を出射する発光源が好ましい。本実施形態の光源部10は、複数の点光源10aが配列されて形成されており、この点光源10aは、LEDである。この光源部10は、不図示の制御装置により各点光源(LED)10aの出力、すなわち、各点光源10aの点灯及び消灯や、点灯時の明るさ等を、他の点光源の出力から独立して調節可能となっている。
 導光板21の裏面側には、反射シート11が設けられている。この反射シート11は、導光板21の裏面側等から放出される光を反射して、導光板21内に戻す機能を有している。この反射シート11は、例えば、金属等の高い反射率を有する材料により形成されたシート(例えば、正反射性の銀箔シート、薄い金属板にアルミニウム等を蒸着したもの)、高い反射率を有する材料により形成された薄膜(例えば金属薄膜)を表面層として含んだシート(例えば、PET基材に銀を蒸着したもの)、屈折率の異なる2種類以上の薄膜を多層積層することにより鏡面反射性を有するシート、拡散反射性の白色の発泡PET(ポリエチレンテレフタレート)シート等を用いることができる。金属等の高い反射率を有する材料により形成されたシート、高い反射率を有する材料により形成された薄膜(例えば金属薄膜)を表面層として含んだシート等といった、いわゆる鏡面反射を可能とする反射シートを使用することが、集光性や、光の利用効率を向上させるという観点から好ましい。鏡面反射を可能とする反射シートは、光を鏡面反射させることにより、光の指向性を失わさず、その結果、出射光の偏光方向が維持されると推定される。よって、所望の出射光分布の実現に反射シート11も貢献し得る。
 図6は、導光板21から出射し、後述する第2の偏光板14のプリズム部14bから偏光部14aへと導かれる光の様子を示す図である。図6(a)は、上記で説明してきた2灯式の場合を説明する図であり、図6(b)は、参考としての1灯式を説明する図である。導光板21は、上述のような構成を有しており、その出光面21d(第2の偏光板14側の面)から出射する光は、所定の方向に最大強度を有する指向性を有し、所定の半値幅を有する偏光光(以下、第1指向性光L1と称する場合がある)となる。図6(a)では、導光板21の側面21aおよび21bに光源部10が配置されているので、光源部10からの光の主たる導光方向はY方向となる。ここで、導光板21が上述のような構成を有することにより、導光板21を伝播する光は、後述する作用により出射方向および偏光状態が制御される。その結果、導光板21から出射する光は、図6(a)に示すように、YZ面内において出光面21dの法線方向に対して側面21b側へ角度αをなす方向(以下、第1の方向と称する場合がある)に最大強度(ピーク)を有する偏光光となる。本実施形態の角度αは、図示例では約73°である。導光板を適切に設計することにより、目的に応じて任意の適切な角度αを実現することができる。例えば、角度αは65°~80°であり得る。なお、本発明に用いられる導光板21においては、1灯式であっても2灯式であっても、出射方向および偏光状態の制御が良好に実現され得る。
 さらに、本実施形態の導光板21は、光の導光方向と平行な方向の面内(YZ面内)で振動する偏光成分の比率が高い偏光光を出射する特性を有する。すなわち、第1指向性光は、YZ面内で振動する偏光成分の比率が高い偏光光となる。以下、YZ面内で振動する偏光成分をP成分、光の導光方向と平行かつYZ面に垂直な平面(XY平面)で振動する偏光成分をS成分と称する場合がある。したがって、P成分は、その偏光方向(振動方向)が第2の偏光板14の透過軸方向(Y方向)と略平行となる。後述するように、第2の偏光板14のプリズム部14bは、第1指向性光の偏光状態を維持しつつ第2の方向(法線方向)に最大強度を有する第2指向性光を第2の偏光板14の偏光部14aに導くので、第2指向性光もまたP成分の比率が高い偏光光となる。その結果、第2の偏光板で吸収される光を減らすことができるので、光の利用効率が高く、明るい液晶表示装置を得ることができる。
 なお、導光板21が光を導光する原理は、光が光学的に密(屈折率n1)と疎(屈折率n2)の媒質の境界面において入射角θaが下記式1のθcに達すると全反射を起すことを利用しており、θcを臨界角という。
 sinθc=n2/n1  (式1)
 導光板21内を導光する光は、裏面側単位光学要素26での全反射により出光面21dへの入射角θaが、この臨界角θcよりも小さくなったときに、導光板21から出射する。
 本実施形態では、導光板21の屈折率及び裏面側単位光学要素26の底角θ4,θ5を、出光面21dへの入射角θaが臨界角θcよりも若干小さくなるように設けている。このような形態とすることで、導光板21から出射する光は、P成分の多い偏光光として出射される。しかも、入射角θaが特定の小さい領域にされているので、出射角度も特定の小さい領域に限定される。すなわち、第1の方向(出射角αの方向)に最大強度を有し、かつP成分の比率の高い偏光光を、第1指向性光L1として、出光面21dから出射することができる。
 導光板21から出射される偏光光(第1指向性光L1)は、P成分を好ましくは52%以上、より好ましくは55%以上含んでもよい。第1指向性光L1がこのような性質を有することにより、第2の偏光板で吸収される光を減らすことができ、光の利用効率が高く、明るい液晶表示装置を得ることができる。なお、P成分の比率の上限は、理想的には100%であり、1つの実施形態においては60%であり、別の実施形態においては57%である。
 さらに、導光板21から出射される偏光光(第1指向性光L1)は、出光面の法線方向を極角90°、該導光板の導光方向を方位角0°-180°方向としたときに、極角50°~80°かつ方位角135°~225°、ならびに0°~45°および315°~360°の範囲における出射光の積分強度Laと、全出射光の積分強度Ltとの比La/Ltが0.3以上である。La/Ltは、好ましくは0.4以上であり、より好ましくは0.7以上である。言い換えれば、本実施形態においては、上述のように、第1指向性光L1の出射光分布は、所定の極角および方位角の範囲内で所定の照度比率となるように三次元的に制御されている。このような出射光分布の実現には、導光板の出光側単位光学要素が貢献し得る。第1指向性光L1がこのような特定の出射光分布を有することにより、YZ平面に沿ってプリズム第2斜面35において全反射され、正面方向に効果的に偏向され、液晶パネルから出射される光の利用効率が上がり、結果として積算照度および正面輝度が高まるという利点がある。La/Ltが0.3未満になると、YZ平面から外れて第2斜面35に入射する成分の光が多くなり、これらの光は第2斜面35で全反射されても正面方向に出射されず、一部の光はパネル表面から出射することができず(臨界角以上の角度で入射するため、液晶表示パネルの表面で全反射する)、結果として積算照度および正面輝度が低下する場合がある。すなわち、液晶表示パネルから出射される光の積算照度および正面輝度を上げるには、いかに多くの光をYZ平面に沿って第2斜面35に入射させるかが重要となる。なお、La/Ltの理論的上限は、1.0である。
 1つの実施形態においては、導光板21から出射される第1指向性光L1は、非偏光の光であってもよい。La/Ltが上記所望の範囲を満足すれば、第1指向性光L1が偏光であるか非偏光であるかにかかわらず、本発明の効果が得られ得る。
 本発明においては、第2の偏光板14は、偏光部14aとプリズム部14bとを備える。すなわち、第2の偏光板は、例えば、プリズムシートを一体化したプリズムシート付偏光板として提供され得る。このような構成とすることにより、プリズムシートと偏光板との間の空気層を排除することができるので、液晶表示装置の薄型化に寄与することができる。液晶表示装置の薄型化は、デザインの選択幅を広げるので、商業的な価値が大きい。さらに、このような形態であれば、プリズムシートを面光源装置(実質的には導光板)に取り付ける際のこすれによるプリズムシートの傷つきを回避できるので、そのような傷に起因する表示の濁りを防止することができる。
 偏光部14bは、代表的には、偏光子と、偏光子の片面または両面に配置された保護層とを有する。偏光子は、代表的には吸収型偏光子である。吸収型偏光子および保護層は、当業界における通常の構成が採用される。以下、偏光子の具体的な特性および材料等の代表例を説明する。
 上記吸収型偏光子の波長589nmの透過率(単体透過率ともいう)は、好ましくは41%以上であり、より好ましくは42%以上である。なお、単体透過率の理論的な上限は50%である。また、偏光度は、好ましくは99.5%~100%であり、更に好ましくは99.9%~100%である。上記の範囲であれば、液晶表示装置に用いた際に正面方向のコントラストをより一層高くすることができる。
 上記単体透過率及び偏光度は、分光光度計を用いて測定することができる。上記偏光度の具体的な測定方法としては、上記偏光子の平行透過率(H)及び直交透過率(H90)を測定し、式:偏光度(%)={(H-H90)/(H+H90)}1/2×100より求めることができる。上記平行透過率(H)は、同じ偏光子2枚を互いの吸収軸が平行となるように重ね合わせて作製した平行型積層偏光子の透過率の値である。また、上記直交透過率(H90)は、同じ偏光子2枚を互いの吸収軸が直交するように重ね合わせて作製した直交型積層偏光子の透過率の値である。なお、これらの透過率は、JlS Z 8701-1982の2度視野(C光源)により、視感度補正を行ったY値である。
 上記吸収型偏光子としては、目的に応じて任意の適切な偏光子が採用され得る。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン系配向フィルム等が挙げられる。また、米国特許5,523,863号等に開示されている二色性物質と液晶性化合物とを含む液晶性組成物を一定方向に配向させたゲスト・ホストタイプのE型およびO型偏光子、米国特許6,049,428号等に開示されているリオトロピック液晶を一定方向に配向させたE型およびO型偏光子等も用いることができる。
 このような偏光子の中でも、高い偏光度を有するという観点から、ヨウ素を含有するポリビニルアルコール系フィルムによる偏光子が好適に用いられる。偏光子に適用されるポリビニルアルコール系フィルムの材料には、ポリビニルアルコール又はその誘導体が用いられる。ポリビニルアルコールの誘導体としては、ポリビニルホルマール、ポリビニルアセタール等が挙げられる他、エチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸や、そのアルキルエステル、アクリルアミド等で変性したものが挙げられる。ポリビニルアルコールの重合度は、1000~10000程度、ケン化度は80モル%~100モル%程度のものが一般に用いられる。
 上記ポリビニルアルコール系フィルム(未延伸フィルム)は、常法に従って、一軸延伸処理、ヨウ素染色処理が少なくとも施される。さらには、ホウ酸処理、ヨウ素イオン処理を施すことができる。また、上記処理の施されたポリビニルアルコール系フィルム(延伸フィルム)は、常法に従って乾燥されて偏光子となる。
 一軸延伸処理における延伸方法は特に制限されず、湿潤延伸法と乾式延伸法のいずれも採用できる。乾式延伸法の延伸手段としては、たとえば、ロール間延伸方法、加熱ロール延伸方法、圧縮延伸方法等が挙げられる。延伸は多段で行うこともできる。前記延伸手段において、未延伸フィルムは、通常、加熱状態とされる。通常、未延伸フィルムは30μm~150μm程度のものが用いられる。延伸フィルムの延伸倍率は目的に応じて適宜に設定できるが、延伸倍率(総延伸倍率)は2倍~8倍程度、好ましくは3倍~6.5倍、さらに好ましくは3.5倍~6倍である。延伸フィルムの厚さは5μm~40μm程度が好適である。
 ヨウ素染色処理は、ポリビニルアルコール系フィルムをヨウ素及びヨウ化カリウムを含有するヨウ素溶液に浸漬することにより行われる。ヨウ素溶液は、通常、ヨウ素水溶液であり、ヨウ素及び溶解助剤としてヨウ化カリウムを含有する。ヨウ素濃度は、好ましくは0.01重量%~1重量%程度、より好ましくは0.02重量%~0.5重量%であり、ヨウ化カリウム濃度は、好ましくは0.01重量%~10重量%程度、より好ましくは0.02重量%~8重量%である。
 ヨウ素染色処理にあたり、ヨウ素溶液の温度は、通常20℃~50℃程度、好ましくは25℃~40℃である。浸漬時間は通常10秒間~300秒間程度、好ましくは20秒間~240秒間の範囲である。ヨウ素染色処理にあたっては、ヨウ素溶液の濃度、ポリビニルアルコール系フィルムのヨウ素溶液への浸漬温度、浸漬時間等の条件を調整することにより、ポリビニルアルコール系フィルムにおけるヨウ素含有量及びカリウム含有量が所望の範囲になるように調整する。ヨウ素染色処理は、一軸延伸処理の前、一軸延伸処理中、一軸延伸処理の後の何れの段階で行ってもよい。
 ホウ酸処理は、ホウ酸水溶液へポリビニルアルコール系フィルムを浸漬することにより行う。ホウ酸水溶液中のホウ酸濃度は、2重量%~15重量%程度、好ましくは3重量%~10重量%である。ホウ酸水溶液中には、ヨウ化カリウムによりカリウムイオン及びヨウ素イオンを含有させることができる。ホウ酸水溶液中のヨウ化カリウム濃度は0.5重量%~10重量%程度、さらには1重量%~8重量%とするのが好ましい。ヨウ化カリウムを含有するホウ酸水溶液は、着色の少ない偏光子、即ち可視光のほぼ全波長域に亘って吸光度がほぼ一定のいわゆるニュートラルグレーの偏光子を得ることができる。
 ヨウ素イオン処理には、例えば、ヨウ化カリウム等によりヨウ素イオンを含有させた水溶液を用いる。ヨウ化カリウム濃度は0.5重量%~10重量%程度、さらには1重量%~8重量%とするのが好ましい。ヨウ素イオン含浸処理にあたり、その水溶液の温度は、通常15℃~60℃程度、好ましくは25℃~40℃である。浸漬時間は通常1秒~120秒程度、好ましくは3秒~90秒間の範囲である。ヨウ素イオン処理の段階は、乾燥工程前であれば特に制限はない。後述の水洗浄後に行うこともできる。
 上記処理の施されたポリビニルアルコール系フィルム(延伸フィルム)は、常法に従って、水洗浄工程、乾燥工程に供することができる。
 乾燥工程は、任意の適切な乾燥方法、例えば、自然乾燥、送風乾燥、加熱乾燥等を採用し得る。例えば、加熱乾燥の場合には、乾燥温度は代表的には20℃~80℃、好ましくは25℃~70℃であり、乾燥時間は好ましくは1分~10分間程度である。また、乾燥後の偏光子の水分率は好ましくは10重量%~30重量%であり、より好ましくは12重量%~28重量%であり、さらに好ましくは16重量%~25重量%である。水分率が過度に大きいと、偏光板を乾燥する際に、偏光子の乾燥に伴って偏光度が低下する傾向がある。特に500nm以下の短波長領域における直交透過率が増大する、すなわち、短波長の光が漏れるために、黒表示が青色に着色する傾向がある。逆に、偏光子の水分率が過度に小さいと、局所的な凹凸欠陥(クニック欠陥)が発生しやすい等の問題を生じる場合がある。
 次に、プリズム部14bについて説明する。図1及び図4に示すように、プリズム部14bは、第2の偏光板14の導光板21側(Z1側)の面(入光面)に設けられている。なお、本実施形態においては、プリズムシートを別部材として提供する場合のようにプリズム部を支持する基材部は必ずしも設ける必要はない。この場合、偏光部の保護層がプリズム部を支持する基材部として機能し得る。プリズム部14bは、導光板21から出射された偏光光L1を、その偏光状態を保ったまま、単位プリズム33内部での全反射等によって、液晶表示装置の略法線方向(図6中の角度βが略90°)である第2の方向に最大強度を有する偏光光である第2指向性光L2として、偏光部14aに導く。なお、「略法線方向」とは、法線方向から所定の角度内の方向、例えば、法線方向から±10°の範囲内の方向を包含する。
 プリズム部14bには、図1及び図4に示すように、複数の単位プリズム33が偏光部14aの入光側(Z1側)の面に、そのシート面に沿って複数並列されて形成されている。単位プリズム33は、柱状であり、導光板の光の導光方向に直交する方向(X方向)を長手方向とし、その長手方向に所定の断面形状を維持して延在し、かつ、導光板の光の導光方向(Y方向)に複数並列されている。ここで、シート面とは、各光学シート等において、そのシート全体として見たときにおける、シートの平面方向となる面を示すものであり、本明細書中、及び、特許請求の範囲においても同一の定義として用いている。例えば、第2の偏光板14のシート面は、第2の偏光板14全体として見たときにおける、第2の偏光板14の平面方向となる面であり、プリズム部14bの出光面と平行であり、液晶表示パネル15の観察面と実質的に平行な面である。
 単位プリズム33の長手方向(稜線方向)は、液晶表示装置1を正面方向(Z方向)から見て、偏光部14aの透過軸と略直交方向に向いていてもよい。すなわち、液晶表示装置1の表示面と平行な面上において、単位プリズム33の並列方向は、偏光部14aの透過軸と略平行方向に配列していてもよい。また、このとき、単位プリズム33の長手方向(稜線方向)は、液晶表示装置1を正面方向(Z方向)から見て、導光板21の出光側単位光学要素24の長手方向(稜線方向)と略直交する。
 なお、上述したとおり、本実施形態の液晶表示装置における各部材の稜線方向および/または軸方向は、代表的には互いに略直交または略平行であるが、液晶層のマトリックスならびにプリズムシートおよび導光板の単位光学要素のピッチや配列によっては、互いに干渉してモアレが発生する場合がある。その場合には、単位プリズム33の稜線方向ならびに/あるいは導光板21の出光側単位光学要素24および/または裏面側単位光学要素26の稜線方向を、液晶表示装置1を正面方向(Z方向)から見て、所定の範囲内で斜めに配置することでモアレを回避することが可能である。斜め配置の範囲としては、好ましくは20°以下であり、より好ましくは5°以下である。この範囲を超えると、後述する光の指向性に対して影響を与える場合がある。
 図8は、本実施形態のプリズム部14bを説明する図である。図8では、図4(a)に示す断面の一部を拡大して示した図である。図8に示すように、本実施形態の単位プリズム33は、偏光部14aの導光板21側の面から導光板21側(Z1側)に突出した形状を有しており、偏光部14aのシート面と平行な方向における単位プリズム33の幅は、偏光部14a(液晶表示パネル)の法線方向(Z方向)に沿って偏光部14aから離れるにつれて小さくなっている。
 本実施形態の単位プリズム33は、図8に示すように、配列方向(Y方向)に平行かつ厚み方向(Z方向)に平行な断面における断面形状が三角形状であり、いわゆる、三角柱プリズムである。この単位プリズム33は、図8に示す断面形状が、単位プリズム33の配列方向において光源部10側となる第1斜面34を、他方の第2斜面35よりも急斜面とした不等辺三角形である。このとき、第1斜面34とプリズム部14bのシート面の法線Fとがなす角(入射面角)をφ1とし、第2斜面35とプリズム部14bのシート面の法線Fとがなす角(反射面角)をφ2とすると、φ1<φ2である。これは、導光板21から第1の方向にピークを有して出光する第1指向性光L1を、液晶表示パネル15の略法線方向(第2の方向)へ向けるためである。
 この単位プリズム33のピッチはPであり、断面形状において偏光部14a側の幅がWである。本実施形態のピッチPは、幅Wに等しい。さらに、単位プリズム33の高さ(厚み方向における単位プリズム33間の谷底となる点から頂点tまでの寸法)がHである。
 以下、単位プリズム33に入射する光の挙動について説明する。なお、図8及び後述の図9では、説明の便宜上、光の挙動としては各光の成分に対応した代表光線を矢印で示し、縦横の寸法比及び各層間の寸法比等は適宜、実寸とは変えて誇張して示している。
 導光板21から出射され、第1の方向に最大強度を有する第1指向性光L1は、空気層(屈折率約1.0)を直進した後、単位プリズム33の第1斜面34に入射し、単位プリズム33内を略直進し、第2斜面35で全反射され、単位プリズム33の配列方向においてシート面に対して略直交する方向(第2の方向)に最大強度を有する第2指向性光L2となって偏光部14aに導かれる。このとき、第1指向性光L1での偏光方向の偏りは、第2指向性光L2においても維持されている。従って、第2斜面35で反射された光に、シート面の法線方向に強い指向性を持たせることが可能となり、そのような指向性を持たせなかった場合に比べ、液晶表示パネル15のブラックマトリックスによる吸収が抑えられ、光の利用効率を向上できる。また、強い指向性を持たせることにより、その光の偏光方向がばらつくこともない。さらに、本実施形態においては、上述のように、第1指向性光L1の出射光分布が所定の極角および方位角の範囲内で所定の照度比率となるように三次元的に制御されているので、光の利用効率をさらに向上させることができる。なお、第1斜面34及び第2斜面35は、平坦面によって構成されるので、形状の精度を確保することが容易となるため、品質管理が容易であり、量産性を向上できる。
 図8に示す単位プリズム33の第1斜面34の傾斜角度は、第1指向性光L1が最大強度を有する方向(第1の方向、出射角α)によって適宜調整される。一般的には、第1斜面34とプリズム部の出光面(シート面)に対する法線Fとがなす角φ1は、30°~37°である。また、第2斜面35の各平坦面の傾斜角度は、第1指向性光L1が内部反射によって、プリズム部の出光面(シート面)の法線方向に最大強度を有する第2指向性光L2となるように調整される。第2斜面35の各平坦面が法線Fとなす角φ2は、第1指向性光L1が最大強度を有する所定方向によって適宜調整され、通常30°~37°であり、φ2>φ1を満たすことが好ましい。単位プリズム33高さHは、単位プリズム33のピッチPによっても変わるが、ピッチPが50μmの場合、通常、高さHは、30μm~45μmである。単位プリズム33のピッチPは、特に限定されないが、通常10μm~100μmである。
 単位プリズム33の頂点tは、図8に示すような尖った形状でもよいし、図示しないが頂点t近傍が面取りされた曲面状となっていてもよいし、先端が平坦面となるようにカットされていてもよい。単位プリズム33の頂点tの先端がカットされている場合、単位プリズム33の高さHとは、厚み方向における単位プリズム33間の谷底となる点から先端の平坦面までの高さとする。
 図9は、単位プリズム33の他の実施形態を示す図である。図9では、図8と同様の断面における単位プリズム33の形状を示している。単位プリズム33は、図9に示すように、第2斜面35が傾斜角度の異なる複数の平坦面35a,35bを有している形態としてもよい。第2斜面35の各平坦面35a,35bは、第1斜面34から入射した第1指向性光L1(L1a,L1b)を、各平坦面に到達した成分ごとにプリズム部の出光面に対する略法線方向に最大強度を有する第2指向性光L2(L2a,L2b)となるように内部反射させる傾斜角度を有しており、その傾斜角度は平坦面ごとに個別に制御可能である。図9に示すように、第2斜面35の各平坦面のうち、頂点t側(Z1側)の平坦面35aと法線Fとがなす角(第1反射面角)はφ2であり、第2斜面35の基材部31側(Z2側)の平坦面35bと法線Fとがなす角(第2反射面角)はφ3である。
 導光板21から出射され、第1の方向に最大強度を有する第1指向性光L1(L1a、L1b)は、空気層(屈折率約1.0)を直進した後、単位プリズム33の第1斜面34に入射し、単位プリズム33内を略直進し、第2斜面35の平坦面35a,35bでそれぞれ反射され、個々の平坦面35a,35bに到達した成分ごとに、単位プリズム33の配列方向において出光面(シート面)に対して直交する方向(第2の方向)に最大強度を有する第2指向性光L2(L2a、L2b)となって偏光部14aに導かれる。なお、隣接する単位プリズム33によって第1指向性光L1が遮られるため、第2斜面35の各平坦面のうち基材部31側(Z2側)に近い平坦面ほど、第1指向性光L1のうち、シート面の法線となす角度が小さい成分しか到達しない。図9の実施形態では、第1指向性光L1は、第2斜面35に含まれる個々の平坦面に到達する成分ごとにL1a、L1bと分けて図示している。第1指向性光L1とは、導光板21から出射される各光の成分(図9に示す光L1a、L1b)が合成された光である。従って、図9に示すような単位プリズム33とした場合には、第2指向性光L2の指向性をより強めることができる。
 従って、単位プリズム33が図9に示すような形態である場合にも、各平坦面35a,35bから反射された各光の成分が合成された光(プリズム部の光出面からの出射光)は、シート面の法線方向に強い指向性を持たせることが可能となり、その光の偏光方向がばらつくこともない。さらに、図9に示すような形態であっても、第1斜面34及び第2斜面35は、平坦面によって構成することにより、形状の精度を確保することが容易となるため、品質管理が容易であり、量産性を向上できる。
 図9に示す形態において、第2斜面35の各平坦面の傾斜角度は、第1指向性光L1が内部反射によって、プリズム部の出光面(シート面)の法線方向に最大強度を有する第2指向性光L2となるように、平坦面ごとに個別に調整される。第2斜面35の各平坦面の傾斜角度は、単位プリズム33の頂点tに近い平坦面ほど、プリズムシート30の出光面30a(シート面)に対する法線Fとなす角度が大きいことが好ましい。すなわち、図9に示す単位プリズム33の場合、φ2>φ3であることが好ましい。これにより、第2指向性光L2の最大強度のピークをより狭いものとし、第2指向性光L2の指向性を向上することができ、正面方向における輝度を向上させることができる。さらに、第2斜面35の各平坦面が法線Fとなす角φ2,φ3は、第1指向性光L1が最大強度を有する所定方向によって適宜調整され、通常30°~37°である。
 図9に示すように、単位プリズム33の第2斜面35が2つの平坦面35a,35bからなる場合、第2斜面35の傾斜角度が変化する各平坦面35a,35bの境界点を設ける位置は、第1指向性光の指向方向によって適宜調整される。この境界点は、単位プリズム33の高さHを100%としたとき、単位プリズム33の基底面(単位プリズム33間の谷底となる点が位置する面)からの高さが20%~80%の位置に設けられる。
 なお、単位プリズム33は、第2斜面35が複数の平坦面からなる場合、その平坦面の数は、図示したものに限定されず、3つ以上の平坦面からなるものであってもよい。
 1つの実施形態においては、プリズム部14bの偏光部14a側には、プリズム部を支持する基材部(図示せず)を設けてもよい。基材部を設ける場合、単一材料を押出し成型法等により基材部とプリズム部を一体に形成した単層構成としてもよく、基材部用フィルムまたはシート上にプリズム部を賦形してもよい。なお、便宜上、基材部を設ける場合には、基材部とプリズム部の積層体も単にプリズム部と称する。
 基材部を構成する材料は、可視光線全波長域に透過性能を有する無色透明のものを使用することが好ましい。また、基材部上に電離放射線硬化性樹脂を用いてプリズムを形成する場合には、さらに電離放射線透過性を有するものが好ましい。例えば、TAC(三酢酸セルロース)や、PMMA等のアクリル樹脂、PC樹脂により形成されたフィルムが好ましく、光学的な等方性を付与する観点から未延伸フィルムがより好ましい。また、基材部の厚さは、その扱い易さや強度から25μm~300μmが好ましい。なお、電離放射線とは、紫外線、電子線などの分子を架橋ないし重合しうるエネルギー量子を持つ放射線を意味する。
 基材部用フィルムまたはシート上にプリズム部を賦形する場合のプリズム部形成用材料と、単一材料を押出し成型して単層構成のプリズム部を形成する場合の形成用材料とは、同様の材料を用いることができる。以下、プリズム部形成用材料及び単層構成のプリズムシート形成用材料を総称してプリズム用材料と称する。プリズム用材料は、例えば、エポキシアクリレート系やウレタンアクリレート系の反応性樹脂(電離放射線硬化性樹脂等)を用いる場合には、2P法による成型が可能であり、基材上、又は、材料を単独に金型内で硬化させてプリズム部を成型することができる。単層構成のプリズム部を形成する場合には、プリズム用材料として、PC、PET等のポリエステル樹脂、PMMA、MS等のアクリル系樹脂、環状ポリオレフィン等の光透過性の熱可塑性樹脂を用いることができる。なお、押出し成形によってプリズムシートを成型する場合、その成型条件により樹脂の分子が配向して複屈折が発生する為、分子が配向しないような条件で成型することが好ましい。
 基材部は、好ましくは、実質的に光学的に等方性を有する。本明細書において「実質的に光学的に等方性を有する」とは、位相差値が液晶表示装置の光学特性に実質的に影響を与えない程度に小さいことをいう。例えば、基材部の面内位相差Reは、好ましくは20nm以下であり、より好ましくは10nm以下である。面内位相差がこのような範囲であれば、導光板から出射した第1指向性光の偏光状態を実質的に変化させることなく(P成分の比率を維持したまま、かつ、所定の領域の出射光分布を維持したまま)、所定の方向に第2指向性光として出射することができる。なお、面内位相差Reは、23℃における波長590nmの光で測定した面内の位相差値である。面内位相差Reは、Re=(nx-ny)×dで表される。ここで、nxは光学部材の面内において屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、nyは当該面内で遅相軸に垂直な方向(すなわち、進相軸方向)の屈折率であり、dは光学部材の厚み(nm)である。
 基材部は、別の実施形態においては、面内位相差を有していてもよい。基材部の面内位相差Reは、その厚みによって大きく異なるが、例えば100nm~10000nmである。
 さらに、基材部の光弾性係数は、好ましくは-10×10-12/N~10×10-12/Nであり、より好ましくは-5×10-12/N~5×10-12/Nであり、さらに好ましくは-3×10-12/N~3×10-12/Nである。光弾性係数がこのような範囲であれば、一般に液晶表示装置が使用されると想定される温度範囲(0℃~50℃)および湿度範囲(0%~90%)において、基材部の体積変化による応力が生じても面内位相差がほとんど増加せず、また一般的な方法により基材部を固定・貼り付け等を行うことによる応力が印加されても同様に面内位相差がほとんど増加せず、面光源装置から出射された偏光光の特性に悪影響を与えないので、結果として液晶表示装置の光利用効率を損なわないという利点がある。
 プリズム部の製造方法は、従来公知の方法を適宜用いることができる。例えば、所望の単位プリズム形状を有するプリズム部の賦形型に紫外線硬化性樹脂等のプリズム部形成用材料を入れ、そこに基材部となる基材を重ね、ラミネーター等を用いて基材をプリズム列形成用材料に圧着しながら紫外線等を照射してプリズム部形成用材料を硬化させ、プリズム列の型を剥離又は除去してプリズム部を形成してもよい(例えば、特開2009-37204号公報の図2参照)。基材部を省略する場合には、当該方法において基材を重ねずにプリズム部形成用材料を硬化させればよい。また、プリズム形状に対し逆凹凸形状の凹部を有する回転するロール凹版にプリズム部形成用材料液を塗工充填し、これに基材部となる部材を供給して版面のプリズム部形成用材料液の上からロール凹版に押圧し、押圧した状態で、紫外線照射等によりプリズム部形成用材料液を硬化させた後に、固化したプリズム部形成用材料を基材とともに回転するロール凹版から剥離すれば、プリズム部は連続製造できる(例えば、特開平5-169015号公報参照)。また、プリズム部は、前記のような熱可塑性樹脂を用いて押し出し成型法によっても製造可能である。プリズム部を押し出し成型する際の材料としては、上述のプリズムシート形成材料を使用することができる。
 プリズム部14bにおける偏光方向制御の方法とその効果について述べる。図6に示すように、導光板21から出射された第1の方向に最大強度を有する第1指向性光L1は、プリズム部14bの単位プリズム33の第2斜面35での全反射等によって第2の方向(液晶表示パネル15の法線方向(出射角0°、角度β=90°))に最大強度を有する第2指向性光L2として偏光部14aに導かれる。この時、例えば、プリズム部14bの屈折率n1が1.50の場合、空気の屈折率n2は1.0であるので、θcは、41°48′37″となり、入射角θb≧θcであれば、入射光は全反射する。図7(b)、(c)に示すように、全反射領域(θb≧θc)では、P成分の光とS成分の光とでは、入射角θbにより位相が異なって変化して出射することとなる。このことが出射する偏光光の偏光方向に影響を及ぼす。これに対し、入射角θbを制御することにより、偏光部14aに導かれる光の偏光方向を制御でき、光の利用効率の向上を図ることができる。本実施形態では、単位プリズム33の第1斜面34及び第2斜面35の傾斜角度や屈折率を制御することにより、入射角θbを制御している。これにより、図7(b)、(c)に示すような全反射領域において、P成分とS成分との位相差を小さくして、偏光光の偏光方向に対する影響を最小限とすることができる。その結果、第1指向性光の偏光状態および出射光分布を実質的に維持しつつ、第2の方向(略法線方向)に第2指向性光を偏光部14aに導くことができる。上述の通り、第1指向性光においてはP成分の比率が高くかつ上述の特定の出射光分布を有するので、その偏光状態および出射光分布を維持することにより、第2の偏光板14によって吸収されてしまう光を減らすことができ、液晶表示パネル15への入射光を有効に利用することが可能となる。
 第2の偏光板14においては、偏光部14aとプリズム部14bとは、任意の適切な粘着剤層または接着剤層を介して積層(一体化)されている。好ましくは、粘着剤層は拡散粘着剤で構成され、接着剤層は拡散接着剤で構成されている。拡散粘着剤は、粘着剤中に分散した光拡散性微粒子を含む。
 第2の偏光板14は、1つの実施形態においては、偏光部14aとプリズム部14bとの間に偏光選択反射シート16をさらに備えてもよい。偏光選択反射シートは、特定の偏光状態(偏光方向)の偏光を透過し、それ以外の偏光状態の光を反射する機能を有する。偏光選択反射シートは、第2の偏光板14の偏光部14aの透過軸に平行な偏光方向の光を透過するように配置することにより、第2の偏光板14に吸収されてしまう光を再利用することができ、利用効率をさらに高めることができ、また、輝度も向上できる。偏光選択反射シートは、代表的には、透過軸に平行な方向の屈折率が互いに実質的に等しく、かつ、透過軸に直交する方向の屈折率が互いに異なる少なくとも2種類の層を含む多層積層体である。例えば、偏光選択反射シートは、透過軸に平行な方向の屈折率がnaであり、透過軸に直交する方向の屈折率がnbである層Aと、透過軸に平行な方向の屈折率がnaであり、透過軸に直交する方向の屈折率がncである層Bとの交互積層体であり得る。例えば、このような交互積層体の層の総数は、50~1000であり得る。また、偏光選択反射シートは、コレステリック液晶を固定化したフィルムとλ/4板との積層体であってもよい。
 図10は、実施形態の導光板21から出射する第1指向性光L1の輝度の強度分布と、プリズム部14bから偏光部14aに導かれる第2指向性光L2の輝度の強度分布を説明する図である。図10(a)は、導光板21から出射される第1指向性光L1における輝度の強度分布の一例を表す輝度等高線図である。図10(b)は、プリズム部14bから偏光部14aに導かれる第2指向性光L2における輝度の強度分布の一例を表す輝度等高線図である。この輝度等高線図は、例えば、AUTRONIC MELCHERS社製コノスコープなどの配光分布測定装置を用い、導光板21から出射された光の輝度の強度分布を室温、大気中にて測定して得られる。
 本実施形態の導光板21から出射する第1指向性光は、図10(a)に示すように、その大部分が、出光面の法線方向を極角90°、導光板の導光方向を0°-180°方向としたときに、極角50°~80°、かつ、方位角135°~225°ならびに0°~45°および315°~360°の範囲に分布している。なお、光源配置が2灯式でなく1灯式である場合は、方位角が0°~45°および315°~360°の範囲内には、必ずしも分布している必要はない。なお、第1指向性光L1は、この範囲の法線となす角に大多数の光が指向されていることが好ましいが、その範囲外の光が存在していてもよい。第1指向性光L1は、その強度分布の半値幅となる角度(半値幅角)を±5°以上とすることができ、通常±10°~20°であり、しかも、YZ面内に振動面を有するような偏光方向を有する光(P成分)の比率の高い偏光光である。半値幅とは、輝度の最大強度のピークにおいて、最大値を100%としたときに、この最大値を有する角度から、輝度の強度が50%となるときの角度までの角度の差を意味し、半値幅が大きいほど指向性は弱くなる。
 プリズム部14bから偏光部14aに導かれる第2指向性光L2は、図10(b)に示すように、単位プリズム33の偏向作用により、シート面の法線方向に最大強度を有しており、その半値幅を第1指向性光L1の半値幅よりも小さくすることができる。また、本実施形態のプリズム部14bは、導光板21から出射した光を、その単位プリズム33の光学作用により、出光面からの光の半値幅角を±20°以下とすることができ、より好適な形態とすることにより、半値幅角±10°以下とすることができる。プリズム部14bの出光面からの光は、その半値幅が小さいほど、正面方向における輝度が向上し、かつ、指向性の広がりによる偏光方向のばらつきも小さくなる。上述のように、本実施形態においては、上述の導光板21およびプリズム部14bを備えることにより、プリズム部14bから偏光部14aに導かれる光を、液晶表示パネルの法線方向に、半値幅角±20°以下となるような指向性の高い光、略平行光とすることができ、しかも、その光を、第2の偏光板14の偏光部14aの透過軸に略平行な方向、すなわちYZ面内に振動面を有するような偏光方向を有する光(P成分)の比率の高い光とすることができる。その結果、第2の偏光板14によって吸収されてしまう光を減らすことができ、面光源装置からの光を有効に利用することが可能となる。
 図11は、導光板からの出射される偏光光を利用した構成の場合の、本実施形態の導光板21及びプリズム部14bからの光の偏光方向と、第1の偏光板13の透過軸及び第2の偏光板14の偏光部14aの透過軸との関係を示す図である。上述のように、導光板21から出射する光(第1指向性光)はP成分の比率が高く、その主たる偏光方向は、図11(a)に示すように、ほぼ矢印D1方向(Y方向)である。また、導光板21から出射した光は、プリズム部14bにより、その強度のピーク方向を偏向されて偏光部14aに導かれる。このとき、単位プリズム33の界面での全反射によって偏向され、しかも、プリズム部は基材部を有していないか、有していても複屈折性を有していない部材であるので、プリズム部14bから偏光部14aへ導かれる光(第2指向性光)の偏光方向は、図11(b)に示すように、ほぼ矢印D2方向(Y方向)である。すなわち、第2の偏光板14のプリズム部14bから偏光部14aに導かれる光は、主として矢印D2方向の偏光方向を有する偏光光である。
 第2の偏光板14の透過軸は、図11(c)に示すように、ほぼ矢印D3方向(Y方向)である。この第2の偏光板14の透過軸の方向D3は、裏面側単位光学要素26の配列方向及び単位プリズム33の配列方向に略平行な方向(Y方向)である。また、第1の偏光板13の透過軸は、図11(d)に示すように、ほぼ矢印D4方向(X方向)である。従って、第2の偏光板14のプリズム部14bから偏光部14aに導かれる光の主たる偏光方向D2と、第2の偏光板14の透過軸D3は、平行である。また、第1の偏光板13の透過軸D4は、第2の偏光板14の透過軸D3に直交しており、電界印加された液晶セル12によって90°偏光方向が回転した光の偏光方向に略平行である。さらに、第2の偏光板14のプリズム部14bから偏光部14aに導かれる光は、その半値幅が従来のものに比べて狭く、指向性の高いものとなっているので、偏光方向のばらつき等が小さい。よって、第2の偏光板14で吸収される光(偏光光)の量を大幅に低減でき、光の利用効率が向上する。
 以上のように、本実施形態によれば、導光板21から出射した偏光光におけるP成分の比率が高く、第1の方向に最大強度を有する第1指向性光L1の出射方向を、プリズム部14bにより第2の方向(液晶表示装置1の画面正面方向)に偏向し、かつ、その偏光状態を維持し、第2の偏光板14の偏光部14aの透過軸と平行な偏光方向を有する偏光光を多く含む光として偏光部14aに導く。さらに、第1の偏光板13の透過軸は、第2の偏光板14の透過軸に直交しており、電界印加された液晶セル12によって90°偏光方向が回転した光の偏光方向に略平行である。従って、液晶表示パネル15の透過率を最大とすることができ、液晶表示装置1の光の利用効率を向上でき、明るい映像を表示できる。さらに、本実施形態においては、第1指向性光L1の出射光分布が所定の極角および方位角の範囲内で所定の照射比率となるように三次元的に制御されているので、光の利用効率をさらに向上させることができる。
 ここまで、本発明の特定の実施形態について説明してきたが、本発明の技術的思想から逸脱することなく種々の改変を行い得ることは当業者に明らかである。本発明は、そのような改変をすべて包含する。以下、可能な改変のうちいくつかの代表例を説明する。以下に説明する可能な改変の形態および説明を省略する当業者に自明の改変の形態を適宜組み合わせてもよいことは言うまでもない。
 (1)プリズム部14bの単位プリズム33は、その配列方向に平行かつ厚み方向に平行な断面おいて、その断面形状が、頂点を通りシート面に直交する直線に対して非対称である形態に限らず、上記断面形状が二等辺三角形状のように対称な形態としてもよい。断面形状が二等辺三角形の単位プリズムとする場合、導光板21からの出射光の照度分布(出射光分布)を、実施形態に示したプリズム部14bよりも、より狭い分布とすることが、集光性を高める観点から好ましい。さらに、図12に示すように、断面形状が、頂点を通りシート面に直交する直線に対して対称な多角形形状としてもよい。このような断面形状が対称な形状の単位プリズム33を備えるプリズム部は、2灯式の面光源装置にも適用できる。
 図12に示す単位プリズム33の変形形態について簡単に説明する。この単位プリズム33Cは、第1斜面34C及び第2斜面35Cの両方が複数の平坦面を有しており、その断面形状が、その頂点tを通りシート面に直交する線に対して対称な形状となっている。単位プリズム33Cは、傾斜角度が異なる2つの平坦面34a,34bからなる第1斜面34Cと、傾斜角度が異なる2つの平坦面35a,35bからなる第2斜面35Cを有する略三角柱形状(多角形形状)である。このとき、単位プリズム33Cは、第1斜面34Cが側面21a側、第2斜面35Cが側面21b側となるように配置される。図12に示す単位プリズム33Cに対して、側面21a,21bから入射した光は、導光板21内を導光し、導光板21から第1指向性光として出射される。この第1指向性光は、第1斜面34Cの平坦面34a,34b、第2斜面35Cの平坦面35a,35bから入射する。単位プリズム33Cでは、第1斜面34Cの各平坦面34a,34bの傾斜角度は、上述したように導光板21からの第1指向性光が入射可能な角度であり、かつ、第2斜面35Cから入射した光をシート面の法線方向に最大強度を有する第2指向性光として反射することができる角度でもある。さらに、第2斜面35Cの各平坦面35a,35bの傾斜角度は、第1斜面34Cから入射した光をシート面の法線方向に最大強度を有する第2指向性光として反射することができる角度であり、かつ、導光板21からの第1指向性光が入射可能な角度である。第1斜面34Cの各平坦面34a,34cの傾斜角度の好ましい条件は、上述した図6や図7(a)に示す第2斜面35の各平坦面において好ましい条件と同様である。単位プリズム33をこのような形態とすることにより、2灯式の面光源装置を備える液晶表示装置においても、光の利用効率を向上し、明るい映像を表示できる。なお、上記のような形状に限らず、単位プリズム33は、三角形の頂点部が短い上底となる台形であってもよいし、少なくとも一方の斜面が導光板21側に凸となる曲面状であってもよい。
 (2)導光板21は、基部22の厚さが略一定である形態に限らず、1つの側面側に光源部10を設ける場合(すなわち、1灯式である場合)は、光源部10を設ける側の側面21a側が最も厚く、対向する側面21b側に向かうにつれて徐々に薄くなるテーパ形状であってもよい。このような形態とすることにより、光の利用効率と輝度の均一性を高めることができる。また、光源部10を導光板21の両側面21a,21bに配置した2灯式面光源装置の場合は、裏面側を中央部が薄くなるアーチ状のものとしたもの等であってもよい。さらに、導光板21は、特開2007-220347号公報、特開2011-90832号公報、特開2004-213019号公報、特開2008-262906号公報等に記載の裏面側単位光学要素26や出光側単位光学要素24等を備えた形態としてもよい。
 (3)第2の偏光板14において偏光部14aとプリズム部14bとの積層(一体化)に通常の粘着剤を用いる場合には、必要に応じて、例えばプリズム部と偏光部との間に、偏光を乱さない程度に光拡散機能を付与するために光拡散層を設けてもよい。光拡散層は、例えば、光拡散性微粒子が透光性樹脂に分散した層等を用いることができる。
 (4)液晶表示装置は、目的に応じて、任意の適切な位置に任意の適切な光学シートをさらに有していてもよい。例えば、液晶表示装置は、導光板21と第2の偏光板14との間に、光拡散シート、レンズアレイシート等を有していてもよい。光拡散シートを設けることにより、液晶表示装置の視野角を広げることができる。
 (5)液晶表示装置は、目的に応じて、任意の適切な位置に任意の適切な光学補償フィルム(本明細書において、異方性光学素子、位相差フィルム、補償板とも称する場合がある)をさらに有していてもよい。光学補償フィルムの配置位置、使用枚数、複屈折性(屈折率楕円体)等は、液晶セルの駆動モード、所望の特性等に応じて適切に選択され得る。
 例えば、液晶セルがIPSモードである場合には、液晶表示装置は、液晶セル12と第1の偏光板13または第2の偏光板14との間に配置された、nx>ny>nzを満たす第1の異方性光学素子と、該第1の異方性光学素子と液晶セルとの間に配置された、nz>nx>nyの関係を満たす第2の異方性光学素子と、を備えてもよい。第2の光学異方性素子は、nz>nx=nyを満たす、いわゆるポジティブCプレートであってもよい。該第1の異方性光学素子の遅相軸と該第2の異方性光学素子の遅相軸とは直交しても平行であってもよく、視野角と生産性を考慮すると平行であることが好ましい。さらに、このとき、好ましい位相差範囲としては、
 60nm<Re<140nm
 1.1<Nz<1.7
 10nm<Re<70nm
 ―120nm<Rth<―40nm
ここで、Reは異方性光学素子の面内位相差であり、上記で定義したとおりである。Rthは異方性光学素子の厚み方向の位相差であり、Rth={(nx+ny)/2-nz}×dで表される。NzはNz係数であり、Nz=(nx-nz)/(nx-ny)で表される。ここで、nxおよびnyは、上記で定義したとおりである。nzは、光学部材(ここでは、第1の異方性光学素子または第2の異方性光学素子)の厚み方向の屈折率である。なお、添え字の「1」および「2」は、それぞれ第1の異方性光学素子および第2の異方性光学素子を表す。
 あるいは、第1の異方性光学素子がnx>nz>nyを満たし、かつ第2の異方性光学素子が、nx=ny>nzを満たす、いわゆるネガティブCプレートであってもよい。なお、本明細書においては、例えば「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。本明細書において「実質的に等しい」とは、液晶表示装置の全体的な光学特性に実用上の影響を与えない範囲でnxとnyが異なる場合も包含する趣旨である。したがって、本実施形態におけるネガティブCプレートは、二軸性を有する場合を包含する。
 第2の異方性光学素子は、目的や所望の特性に応じて省略されてもよい。
 液晶セルがIPSモードである場合には、液晶表示パネルは、いわゆるOモードであってもよく、いわゆるEモードであってもよい。「Oモードの液晶表示パネル」とは、液晶セルの光源側に配置された偏光子の吸収軸方向と、液晶セルの初期配向方向とが実質的に平行であるものをいう。「Eモードの液晶パネル」とは、液晶セルの光源側に配置された偏光子の吸収軸方向と、液晶セルの初期配向方向とが実質的に直交するものをいう。「液晶セルの初期配向方向」とは、電界が存在しない状態で、液晶層に含まれる液晶分子が配向した結果生じる液晶層の面内屈折率が最大となる方向をいう。Oモードの場合は、上記異方性光学素子は第1の偏光板と液晶セルの間に配置され得、Eモードの場合は、上記異方性光学素子は第2の偏光板と液晶セルの間に配置され得る。
 また例えば、液晶セルがVAモードである場合には、液晶表示装置は、偏光板として円偏光板を用いてもよい。すなわち、第1の偏光板は、偏光子の液晶セル側にλ/4板として機能する異方性光学素子を備えてもよく、第2の偏光板は、偏光子の液晶セル側にλ/4板として機能する異方性光学素子を備えてもよい。第2の偏光板は、上記異方性光学素子と偏光子との間に、nz>nx>nyの屈折率の関係を有する別の異方性光学素子を備えてもよい。さらに、該液晶セルの位相差波長分散値(Recell[450]/Recell[550])をαcellとし、上記第1の偏光板および第2の偏光板の異方性光学素子の平均位相差波長分散値(Re(λ/4)[450]/Re(λ/4)[550])をα(λ/4)としたときに、α(λ/4)/αcellが0.95~1.02であることが好ましい。さらに、第1の偏光板の偏光子の吸収軸と上記異方性光学素子の遅相軸とのなす角は、実質的に45°または実質的に135°であることが好ましい。加えて、上記異方性光学素子のNz係数は、1.1<Nz≦2.4の関係を満たすことが好ましく、上記別の異方性光学素子のNz係数は、-2≦Nz≦-0.1の関係を満たすことが好ましい。
 液晶セルがVAモードである場合には、液晶表示装置はまた、偏光板として直線偏光板を用いてもよい。すなわち、第1の偏光板は、偏光子の液晶セル側にλ/4板以外の異方性光学素子を備えてもよく、第2の偏光板は、偏光子の液晶セル側にλ/4板以外の異方性光学素子を備えてもよい。上記第1の偏光板および第2の偏光板の異方性光学素子は、それぞれ、1枚であってもよく、2枚以上であってもよい。このような直線偏光板における異方性光学素子は、液晶セルの複屈折や斜め方向から見た場合の偏光子の吸収軸のみかけ上のなす角がずれること等に起因する光漏れを複屈折によって補償するものであり、その光学特性は目的等に応じて任意の適切なものを用いることができる。例えば、上記異方性光学素子は、好ましくはnx>ny>nzの関係を満足し得る。より具体的には、異方性光学素子の面内位相差Reは、好ましくは20nm~200nmであり、より好ましくは30nm~150nmであり、さらに好ましくは40nm~100nmである。異方性光学素子の厚み方向の位相差Rthは、好ましくは100nm~800nmであり、より好ましくは100nm~500nmであり、さらに好ましくは150nm~300nmである。異方性光学素子のNz係数は、好ましくは1.3~8.0である。
 (6)導光板21は、光散乱材を含んでいてもよい。例えば、導光板21の基部22は、略均一に分散された光散乱材(光拡散性粒子:図示せず)を含んでいてもよい。光散乱材は、基部22内を進む光に対し、反射や屈折等によって、その光の進路方向を変化させ、拡散(散乱)させる機能を有している。光散乱材は、基部22の母材とは異なる屈折率を有した材料により形成された粒子としてもよいし、光に対して反射作用を有する材料により形成された粒子を用いてもよい。光散乱材の材質、平均粒径、屈折率等は、導光板21から出射する出射光に要求される指向性の強さに応じて適切に調整することができる。例えば、光散乱材の材質、平均粒径、屈折率等は、特許第3874222号に記載の範囲を採用することができる。特許第3874222号の記載は、その全体が本明細書に参考として援用される。光散乱材を形成する材料としては、例えば、シリカ(二酸化珪素)、アルミナ(酸化アルミニウム)、アクリル樹脂、PC樹脂、シリコーン系樹脂等の透明物質からなる粒子が挙げられる。この形態においては、図1、図4および図5に示すような裏面側単位光学要素26を設けることが好ましい。
 (7)なお、通常の液晶表示装置においては、偏光サングラスをかけたまま液晶表示装置を観察する場合を考慮して、垂直方向の偏光成分を透過し、水平方向の偏光成分を吸収するように第1の偏光板を配置することが一般的である。しかし、本発明では光源装置の偏光成分を利用するように第1の偏光板および第2の偏光板を配置した場合、第1の偏光板の透過軸が偏光サングラスの透過軸と略直交する場合がある。そのため、本発明では第1の偏光板の視認側に、偏光状態もしくは偏光軸角度を部分的もしくは全面的に変化させるもしくは解消させる光学部材(例えば、λ/4板、λ/2板もしくは高位相差フィルム、散乱素子等)を用いてもよい。
 (8)第2指向性光がP成分の偏光を多く含み、第2の偏光板の透過軸と一致させることで、光利用効率を向上させてもよいことを説明してきた。すなわち、本発明によれば、導光体のYZ平面と第2の偏光板の透過軸とが平行になるように、したがって第2の偏光板の吸収軸がYZ平面と直交するように液晶表示パネルを配置することにより、光利用効率の向上を実現してもよい。しかし、上記のとおり、第1の偏光板の方位角によっては、偏光サングラスを用いた場合のように問題が生じる場合があり得る。そこで、液晶表示パネルに用いられる偏光板の吸収軸角度を自由に設定するために、λ/2板を用いることができる。具体的には、第2の偏光板の偏光部とプリズム部との間にλ/2板を配置することにより、偏光方向を最適に変化させて用いることができる。この場合、λ/2板は、偏光選択反射シートとプリズム部との間に配置してもよく、偏光選択反射シートと偏光部との間に配置してもよい。λ/2板が偏光選択反射シートとプリズム部との間に配置される場合には、λ/2板の遅相軸が偏光選択反射シートの透過軸の方向と導光板のYZ平面の方向との間の方向となるように配置され得る。この場合、λ/2板は、好ましくは、その遅相軸が偏光選択反射シートの透過軸の角度(方向)と導光板のYZ平面の角度(方向)との平均の角度となるように配置され得る。λ/2板が偏光選択反射シートと偏光部との間に配置される場合には、偏光選択反射シートの透過軸はYZ平面と平行になるように配置され得、かつ、λ/2板の遅相軸は第2の偏光板(実質的には、偏光部)の透過軸の方向と偏光選択反射シートの透過軸の方向との間の方向になるように配置され得る。この場合、λ/2板は、好ましくは、その遅相軸が第2の偏光板(実質的には、偏光部)の透過軸の角度(方向)と偏光選択反射シートの透過軸の角度(方向)との平均の角度になるように配置され得る。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。実施例における試験および評価方法は以下のとおりである。また、特に明記しない限り、実施例における「部」および「%」は重量基準である。
(1)液晶表示装置の正面輝度
 液晶表示装置の正面輝度値は、液晶表示装置を全画面白表示となるようにし、AUTRONIC MELCHERS社製コノスコープにて測定し、500cd/m以上を◎、200cd/m以上を○、200cd/m未満を×とした。なお、正面輝度が200cd/m以下となると、正面から見た時の画像が暗くなり、視認性が損なわれる。
(2)液晶表示装置の積算照度
液晶表示装置の積算照度は、液晶表示装置を全画面白表示となるようにし、AUTRONIC MELCHERS社製コノスコープにて極角0°~80°における全方位の輝度を測定し、これらの測定値を角度積分し、算出した。算出値が、450lx以上となる場合を◎、350lx以上となる場合を○、350lx未満となる場合を×とした。なお、積算照度が350lx以下となると、あらゆる角度から見た時の画像が暗くなり、視認性が損なわれる。
(3)機械的強度
 実施例および比較例で得られた液晶表示装置の機械的強度を「MIL-STD-810F 514.5Category24」に準じて評価した。具体的には、20Hz~1000Hz:0.04G/Hz、1000Hz~2000Hz:-6dB/オクターブの条件で、上下、前後、左右の軸において各1時間ずつ振動させた。振動試験の後に、液晶表示装置を全画面白表示となるようにして、目視にて観察し、外観欠点(50μm以上)が生じなかったものを◎、1~2個生じたものを○、3個以上生じたものを×とした。
(4)面光源からの出射特性
 導光板の出射特性を面光源の光源配置と平行方向に出射した光の半値幅角で表示した。測定方法としては、実施例および比較例で得られた面光源装置について、前述したEZコントラストを用いて面光源の中央部分からの出射分布を測定し、ピーク輝度の1/2の値の輝度を示す面光源の光源配置と平行方向の角度幅として表示した。
 また、LaおよびLtは、EZコントラストを用いて測定した出射分布を、極角1°おき、方位角1°おきの測定値として取り出し後、輝度をcos(極角)で補正後に、LaおよびLtに対応する角度範囲を積分して求めた。なお、全方位、全極角範囲で積分すると照度に相当する。
(5)位相差値および三次元屈折率
 平行ニコル回転法を原理とする位相差計[王子計測機器(株)製、製品名「KOBRA-WPR」]を用いて、23℃における波長590nmの光で測定した。正面(法線)方向及びフィルムを40°傾けた際の位相差値を測定し、これらの値から、面内屈折率が最大となる方向、それと直交する方向、およびフィルムの厚み方向の屈折率nx、ny、nzを装置付属のプログラムにより算出した。これらの値及び厚み(d)から、面内位相差値:Re=(nx-ny)×d、及び、厚み方向の位相差値:Rth=((nx+ny)/2-nz)×dを求めた。なお、フィルムを40°傾けた際の位相差値測定において、第2の光学素子(ポジティブ二軸プレート)は進相軸中心、その他に関しては遅相軸中心でフィルムを傾斜させて測定した。なお、三次元屈折率の計算に際して必要となるフィルムの厚みは、アンリツ製デジタルマイクロメーター「KC-351C型」を使用して測定した。また、屈折率はアッベ屈折率計[アタゴ(株)製、製品名「DR-M4」]を用いて測定した。
<実施例1>
(A)導光板の作製
 光散乱材を含有したアクリル樹脂を用いて、基部となるシート上に出光側単位光学要素および裏面側単位光学要素を賦型することにより、図1および図4に示すような導光板を作製した。ここで、裏面側単位光学要素は、図4(a)とは異なり、1灯式の面光源装置に適応した形状(断面形状が配列方向に平行かつ厚み方向に平行な断面において非対称な形状を有する楔形状プリズム柱状)であった。裏面側単位光学要素の稜線方向は、光源部の点光源の配列方向(X方向)と平行とした。出光側単位光学要素は、図13に示すように二等辺三角柱形状に類似した形状(底角θ1=θ2=45°;プリズム先端部分を、ピッチを100%とした時に50%の部分を頂角140°のプリズムとした断面が五角形のプリズム形状)であり、その稜線方向は、裏面側単位光学要素の稜線方向に直交する方向(Y方向)とした。この導光板から出射される偏光光は、導光板の出光面の法線方向を極角90°、該導光板の導光方向を方位角0°-180°方向としたときに、極角50°~80°かつ方位角0°~45°、135°~225°および315°~360°の範囲における出射光の積分強度Laと、全出射光の積分強度Ltとの比La/Ltが0.82であった。以下、この導光板を便宜上「両面プリズムA」と称する場合がある。
(B)反射シート
 反射シートとして、基材(PETシート)の表面に銀を蒸着した銀反射シートを用いた。
(C)点光源
 点光源としてLED光源を用い、これを複数配列して光源部とした。
(D)面光源装置の作製
 上記の導光板、反射シートおよび点光源を図1に示すような配置で組み立てて、面光源装置を作製した。なお、本実施例および以下で示す実施例および比較例で用いた面光源装置は、図1および図4に示す面光源装置とは異なり、すべて1灯式である。
(E)第2の偏光板の作製
(E-1)IPS用補償板付偏光板の作製
(E-1-1)第1の異方性光学素子の作製
 環状ポリオレフィン系ポリマーを主成分とする市販の高分子フィルム[オプテス社製、商品名「ゼオノアフィルム ZF14-130(厚み:60μm、ガラス転移温度:136℃)」]を、テンター延伸機を用いて、温度158℃で、フィルム幅が元のフィルム幅の3.0倍となるように幅方向に固定端一軸延伸した(横延伸工程)。得られたフィルムは、搬送方向に進相軸を有するネガティブ二軸プレートであった。このネガティブ二軸プレートの正面位相差は118nm、Nz係数は1.16であった。
(E-1-2)第2の異方性光学素子の作製
 スチレン-無水マレイン酸共重合体(ノヴァ・ケミカル・ジャパン社製、製品名「ダイラーク D232」)のペレット状樹脂を、単軸押出機とTダイを用いて、270℃で押出し、シート状の溶融樹脂を冷却ドラムで冷却して厚み100μmのフィルムを得た。このフィルムを、ロール延伸機を用いて、温度130℃、延伸倍率1.5倍で、搬送方向に自由端一軸延伸して、搬送方向に進相軸を有する位相差フィルムを得た(縦延伸工程)。得られたフィルムを、テンター延伸機を用いて、温度135℃で、フィルム幅が前記縦延伸後のフィルム幅の1.2倍となるように幅方向に固定端一軸延伸して、厚み50μmの二軸延伸フィルムを得た(横延伸工程)。得られたフィルムは、搬送方向に進相軸を有するポジティブ二軸プレートであった。このポジティブ二軸プレートの正面位相差Reは20nm、厚み位相差Rthは-80nmであった。
(E-1-3)IPS用補償板付偏光板の作製
 メチロールメラミン50重量部を純水に溶解し、固形分濃度3.7重量%の水溶液を調製し、この水溶液100重量部に対して、正電荷を有するアルミナコロイド(平均粒子径15nm)を固形分濃度10重量%で含有する水溶液を調製した。アセトアセチル基を有するポリビニルアルコール系樹脂(平均重合度1200、ケン化度98.5%、アセトアセチル化度5モル%)100重量部に対して、この水溶液18重量部を加え、アルミナコロイド含有接着剤を調製した。得られたアルミナコロイド含有接着剤を、トリアセチルセルロース(TAC)フィルム(コニカミノルタ社製、製品名「KC4UW」、厚み:40μm)の片面に塗布した。一方、ポリビニルアルコールを主成分とする高分子フィルム[クラレ製、商品名「9P75R(厚み:75μm、平均重合度:2,400、ケン化度99.9%)」]を水浴中に1分間浸漬させつつ搬送方向に1.2倍に延伸した後、ヨウ素濃度0.3重量%の水溶液中で1分間浸漬することで、染色しながら、搬送方向に、全く延伸していないフィルム(原長)を基準として3倍に延伸し、ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%の水溶液中に浸漬しながら、搬送方向に、原長基準で6倍に延伸し、70℃で2分間乾燥することにより、偏光子を作製した。得られた偏光子の片面に、上記のTACフィルム/アルミナコロイド含有接着剤の積層体を、両者の搬送方向が平行となるようにロール・トゥー・ロールで積層した。続いて、偏光子の反対側の面に、上記アルミナコロイド含有接着剤を片面に塗布した第1の異方性光学素子を、両者の搬送方向が平行となるようにロール・トゥー・ロールで積層した。その後、55℃で6分間乾燥させて、波長589nmの単体透過率が43.2%の偏光板(第1の光学異方性素子/偏光子/TACフィルム)を得た。この偏光板の第1の光学異方性素子表面に、第2の光学異方性素子を、アクリル系粘着剤(厚み5μm)を介して、これらの搬送方向が平行となるようにロール・トゥー・ロールで積層することにより、IPS用補償板付偏光板を得た。
(E-2)第2の偏光板の作製
 基材部としてトリアセチルセルロース(TAC)フィルム(富士写真フイルム社製、製品名「フジタックZRF80S」、厚み:80μm)を用いた。当該TACを配置した所定の金型に、プリズム用材料としての紫外線硬化型ウレタンアクリレート樹脂を充填し、紫外線を照射してプリズム用材料を硬化させることにより、図8に示すようなプリズムシートを作製した。基材部の面内位相差Re=0nmおよび厚み位相差Rth=5nmであり、実質的に光学的に等方性を有していた。単位プリズムは、三角柱プリズムであり、配列方向に平行かつ厚み方向に平行な断面形状が不等辺三角形状であり、光源部側の第1斜面が、他方の第2斜面よりも急斜面(φ1<φ2)であった(図8参照)。
 一方、上記(E-1)で得られたIPS用補償板付偏光板を、上記のプリズムシートおよび偏光選択反射シートと貼り合わせることにより、第2の光学異方性素子/第1の光学異方性素子/偏光子/TACフィルム/偏光選択反射シート/プリズムシート(プリズム部)の構成を有するプリズムシート付偏光板(第2の偏光板)を作製した。なお、偏光選択反射シートとして、透過軸に平行な方向の屈折率が互いに実質的に等しく、かつ、透過軸に直交する方向の屈折率が互いに異なる2種類の層を含む多層積層体(3M社製、製品名「APF-V2」)を用いた。また、プリズム部の単位プリズムの稜線方向と偏光板の透過軸とは直交し、偏光板の透過軸と偏光選択反射シートの透過軸は平行になるように一体化した。
(F)液晶表示装置の作製
 IPSモードの液晶表示装置(Apple社製、商品名「iPad2」)から液晶表示パネルを取り出し、当該液晶表示パネルから偏光板等の光学部材を取り除き、液晶セルを取り出した。液晶セルは、その両表面(それぞれのガラス基板の外側)を洗浄して用いた。この液晶セルの上側(視認側)に市販の偏光板(日東電工社製、製品名「CVT1764FCUHC」)を第1の偏光板として貼り付けた。さらに、偏光サングラスをかけて液晶表示装置を観察した際の視認性を向上させるために、第1の偏光板の上にλ/4板(カネカ社製、商品名「UTZフィルム#140」)を、その遅相軸が第1の偏光板の吸収軸と45°の角度をなすようにアクリル系粘着剤を介して貼り付けた。また、液晶セルの下側(光源側)に上記(E)で得られたプリズムシート付偏光板を第2の偏光板としてアクリル系粘着剤を介して貼り付けて、液晶表示パネルを得た。このとき、それぞれの偏光板の透過軸が互いに直交するように貼り付けた。この液晶表示パネルに上記(D)で作製した面光源装置を組み込み、図1に示すような液晶表示装置を作製した。なお、面光源装置は、導光板の出光側単位光学要素の稜線方向と第2の偏光板のプリズム部の単位プリズムの稜線方向とが直交するようにして組み込んだ。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。さらに、振動試験(機械的強度試験)後の液晶表示装置の全画面白表示の状態を、比較例2と比較して図14に示す。
<実施例2>
 反射シートを白色のPETシートとし、導光板から出射される偏光光のLa/Ltが0.42となるようにしたこと以外は実施例1と同様にして液晶表示装置を作製した。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。
<比較例1>
 反射シートを白色のPETシートとし、かつ、裏面側にドット状の光拡散層が形成された導光板を用いた。この導光板は、裏面側単位光学要素および出光側単位光学要素を有さず、導光板の光散乱層は、光源部から遠ざかるに従って、そのドットの大きさが大きくなるようなグラデーションパターンを有していた。この導光板から出射される偏光光のLa/Ltが0.26であったこと以外は実施例1と同様にして液晶表示装置を作製した。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。
<比較例2>
 プリズムシートを第2の偏光板とは別部材として提供したこと以外は実施例1と同様にして液晶表示装置を作製した。具体的には、実施例1の(E-2)で得られたプリズムシートを(D)の面光源装置に組み込み、かつ、第2の偏光板として実施例1の(E-1)で得られたIPS用補償板付偏光板を用いたこと以外は実施例1と同様にして液晶表示装置を作製した。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。さらに、振動試験(機械的強度試験)後の液晶表示装置を全画面白表示の状態を、比較例2と比較して図14に示す。
<実施例3>
 図8に示すようなプリズムシートの代わりに図9に示すようなプリズムシートを用いて第2の偏光板を作製したこと以外は実施例1と同様にして液晶表示装置を作製した。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。なお、用いたプリズムシートの単位プリズムは、第2斜面が傾斜角度の異なる2つの平坦面を有する不等辺四角形状であり、第2斜面において単位プリズムの頂点に近い平坦面がプリズムシートの出光面(シート面)に対する法線となす角度が大きかった(φ2>φ3:図9参照)。
<実施例4>
 IPS液晶セルの上側(視認側)に、上記(E-1)で得られたIPS用補償板付き偏光板を第1の偏光板として貼りつけた。この際、TACフィルムが視認側に、第2の光学補償フィルムが液晶セル側となるようにした。一方、第2の偏光板を以下のようにして作製した。プリズムシートの基材部として二軸延伸PETフィルム(東洋紡社製、品名「A4300」、厚み:125μm)を用いた。この延伸PETフィルムの面内位相差Reは6000nmであった。このプリズムシートを用い、基材部(延伸PETフィルム)の遅相軸が偏光部の透過軸と30°の角度をなすようにし、市販の偏光板(日東電工社製、製品名「CVT1764FCUHC」)を上記プリズムシートおよび偏光選択反射シートと貼り合せることにより、第2の偏光板を作製した。このような第1および第2の偏光板を用いたこと、および、導光板の出光側単位光学要素の稜線方向と第2の偏光板のプリズム部の単位プリズムの稜線方向とが直交するようにして面光源装置を組み込んだこと以外は実施例3と同様にして液晶表示装置を作製した。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。
<実施例5>
 出光側単位光学要素の断面形状が異なる導光板(以下、両面プリズムBと称する場合がある)を、実施例1の両面プリズムAと同様にして作製した。具体的には、両面プリズムBにおいては、出光側単位光学要素は、断面が直角二等辺三角柱形状(底角θ1=θ2=45°、頂角90°)のプリズム形状であり、その稜線方向は、裏面側単位光学要素の稜線方向に直交する方向(Y方向)とした。この両面プリズムBを両面プリズムAの代わりに導光板として用いたこと以外は実施例4と同様にして液晶表示装置を作製した。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。なお、この導光板から出射される偏光光のLa/Ltは0.78であった。
<実施例6>
 出光側単位光学要素の断面形状が異なる導光板(以下、両面プリズムCと称する場合がある)を、実施例1の両面プリズムAと同様にして作製した。具体的には、両面プリズムCにおいては、出光側単位光学要素は、断面が二等辺三角柱形状(底角θ1=θ2=20°、頂角140°)のプリズム形状であり、その稜線方向は、裏面側単位光学要素の稜線方向に直交する方向(Y方向)とした。この両面プリズムCを両面プリズムAの代わりに導光板として用いたこと以外は実施例4と同様にして液晶表示装置を作製した。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。なお、この導光板から出射される偏光光のLa/Ltは0.86であった。
<実施例7>
 出光側単位光学要素の断面形状が異なる導光板(以下、両面プリズムDと称する場合がある)を、実施例1の両面プリズムAと同様にして作製した。具体的には、両面プリズムDにおいては、出光側単位光学要素は、断面が二等辺三角柱形状に類似した形状(底角θ1=θ2=20°、頂角140°の二等辺三角形の底辺部分が断面曲線状とされた形状)のプリズム形状であり、その稜線方向は、裏面側単位光学要素の稜線方向に直交する方向(Y方向)とした。この両面プリズムDを両面プリズムAの代わりに導光板として用いたこと以外は実施例4と同様にして液晶表示装置を作製した。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。なお、この導光板から出射される偏光光のLa/Ltは0.88であった。
<実施例8>
 プリズムシートの基材部としてTACフィルムの代わりにアクリル系樹脂フィルム(面内位相差Re=3nm、厚み方向位相差Rth=10nm、厚み=40μm)を用いて第2の偏光板を作製したこと以外は実施例3と同様にして液晶表示装置を作製した。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。なお、このアクリル系樹脂フィルムは、以下のようにして作製した:特開2010-284840号公報の製造例1に記載のイミド化MS樹脂100重量部およびトリアジン系紫外線吸収剤(アデカ社製、商品名:T-712)0.62重量部を、2軸混練機にて220℃にて混合し、樹脂ペレットを作製した。得られた樹脂ペレットを、100.5kPa、100℃で12時間乾燥させ、単軸の押出機にてダイス温度270℃でTダイから押出してフィルム状に成形した(厚み160μm)。さらに当該フィルムを、その搬送方向に150℃の雰囲気下に延伸し(厚み80μm)、次いでフィルム搬送方向と直交する方向に150℃の雰囲気下に延伸して、厚み40μmのフィルムを得た。
<実施例9>
 IPSモードの液晶表示装置の代わりにMVAモードの液晶表示装置(SONY社製、商品名「KDL20J3000」)から液晶表示パネルを取り出し、このパネルの液晶セルを用いたこと以外は実施例3と同様にして液晶表示装置を作製した。得られた液晶表示装置を上記(1)~(4)の評価に供した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<評価>
 表1から明らかなように、本発明の実施例の液晶表示装置は、機械的強度と積算照度および正面輝度(明るさ)とを良好なレベルで両立できる。一方、導光板からの偏光光の出射光分布が本発明とは異なる比較例1の液晶表示装置は積算照度および正面輝度(明るさ)が不十分である。さらに、図14からも明らかなように、第2の偏光板とプリズムシートを別部材として用いた比較例2の液晶表示装置は、機械的強度試験後の外観が著しく劣った。
 本発明の液晶表示装置は、携帯情報端末(PDA),携帯電話,時計,デジタルカメラ,携帯ゲーム機などの携帯機器、パソコンモニター,ノートパソコン,コピー機などのOA機器、ビデオカメラ,液晶テレビ,電子レンジなどの家庭用電気機器、バックモニター,カーナビゲーションシステム用モニター,カーオーディオなどの車載用機器、商業店舗用インフォメーション用モニターなどの展示機器、監視用モニターなどの警備機器、介護用モニター,医療用モニターなどの介護・医療機器などの各種用途に用いることができる。
 1   液晶表示装置
 10  光源部
 10a 点光源
 11  反射板
 12  液晶セル
 13  第1の偏光板
 14  第2の偏光板
 14a 偏光部
 14b プリズム部
 15  液晶表示パネル
 20  面光源装置
 21  導光板
 24  出光側単位光学要素
 26  裏面側単位光学要素
 33  単位プリズム
 34  第1斜面
 35  第2斜面

Claims (9)

  1.  観察者側に設けられる第1の偏光板と背面側に設けられる第2の偏光板との間に液晶セルを備える液晶表示パネルと、該液晶表示パネルを背面側から照明する面光源装置と、を備え、
     該面光源装置は、光源部と;該光源部からの光を、該光源部に対向する入光面から入射させ、該液晶表示パネルと対向する出光面から、光の導光方向と略平行な面内において該出光面の法線方向から所定の角度をなす方向に最大強度の指向性を有する偏光光を出射する導光板と;を備え、
     該第2の偏光板は、吸収型偏光子を含む偏光部と;該偏光部の導光板側に配置され、該導光板側に凸となる柱状の単位プリズムが複数配列されたプリズム部と;を備え、
     該導光板から出射される偏光光は、該出光面の法線方向を極角90°、該導光板の導光方向を方位角0°-180°方向としたときに、極角50°~80°かつ方位角135°~225°、ならびに0°~45°および315°~360°の範囲における出射光の積分強度Laと、全出射光の積分強度Ltとの比La/Ltが0.3以上である、
     液晶表示装置。
  2.  前記第2の偏光板が、前記偏光部と前記プリズム部との間に偏光選択反射シートをさらに備える、請求項1に記載の液晶表示装置。
  3.  前記偏光選択反射シートが、透過軸に平行な方向の屈折率が互いに実質的に等しく、かつ、透過軸に直交する方向の屈折率が互いに異なる2種類の層を含む多層積層体である、請求項2に記載の液晶表示装置。
  4.  前記第2の偏光板において、前記偏光部の透過軸が、前記プリズムの稜線方向に実質的に直交である、請求項1から3のいずれかに記載の液晶表示装置。
  5.  前記液晶セルが、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む液晶層、または、電界が存在しない状態でホメオトロピック配列に配向させた液晶分子を含む液晶層を含む、請求項1から4のいずれかに記載の液晶表示装置。
  6.  前記第2の偏光板が、前記プリズム部の前記偏光部側に該プリズム部を支持する基材部を備え、該基材部が実質的に光学的に等方性を有する、請求項1から5のいずれかに記載の液晶表示装置。
  7.  前記第2の偏光板において、前記偏光部と前記プリズム部とが拡散粘着剤層または拡散接着剤層を介して積層されている、請求項1から6のいずれかに記載の液晶表示装置。
  8.  光学補償フィルムをさらに備える、請求項1から7のいずれかに記載の液晶表示装置。
  9.  観察者側に設けられる第1の偏光板と背面側に設けられる第2の偏光板との間に液晶セルを備える液晶表示パネルと、該液晶表示パネルを背面側から照明する面光源装置と、を備え、
     該面光源装置は、光源部と;該光源部からの光を、該光源部に対向する入光面から入射させ、該液晶表示パネルと対向する出光面から、光の導光方向と略平行な面内において該出光面の法線方向から所定の角度をなす方向に最大強度の指向性を有する光を出射する導光板と;を備え、
     該第2の偏光板は、吸収型偏光子を含む偏光部と;該偏光部の導光板側に配置され、該導光板側に凸となる柱状の単位プリズムが複数配列されたプリズム部と;を備え、
     該導光板から出射される光は、該出光面の法線方向を極角90°、該導光板の導光方向を方位角0°-180°方向としたときに、極角50°~80°かつ方位角135°~225°、ならびに0°~45°および315°~360°の範囲における出射光の積分強度Laと、全出射光の積分強度Ltとの比La/Ltが0.3以上である、
     液晶表示装置。
     
     
     
PCT/JP2013/053551 2012-02-17 2013-02-14 液晶表示装置 WO2013122156A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13748842.5A EP2816399A4 (en) 2012-02-17 2013-02-14 LIQUID CRYSTAL DISPLAY DEVICE
KR1020147022806A KR102050612B1 (ko) 2012-02-17 2013-02-14 액정 표시 장치
US14/377,050 US9261731B2 (en) 2012-02-17 2013-02-14 Liquid crystal display apparatus
CN201380009458.7A CN104204924B (zh) 2012-02-17 2013-02-14 液晶显示设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012033286 2012-02-17
JP2012-033286 2012-02-17
JP2013-020336 2013-02-05
JP2013020336A JP6202828B2 (ja) 2012-02-17 2013-02-05 液晶表示装置

Publications (1)

Publication Number Publication Date
WO2013122156A1 true WO2013122156A1 (ja) 2013-08-22

Family

ID=48984265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053551 WO2013122156A1 (ja) 2012-02-17 2013-02-14 液晶表示装置

Country Status (7)

Country Link
US (1) US9261731B2 (ja)
EP (1) EP2816399A4 (ja)
JP (1) JP6202828B2 (ja)
KR (1) KR102050612B1 (ja)
CN (1) CN104204924B (ja)
TW (1) TWI659247B (ja)
WO (1) WO2013122156A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249779B2 (ja) 2016-04-05 2023-03-31 ソニーグループ株式会社 表示装置および電子機器

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942150B2 (ja) * 2011-12-19 2016-06-29 パナソニックIpマネジメント株式会社 画像表示装置
CN105209816B (zh) * 2013-05-10 2018-02-16 株式会社可乐丽 照明装置
JP6277650B2 (ja) * 2013-09-30 2018-02-14 大日本印刷株式会社 導光板、面光源装置、映像源ユニット、及び液晶表示装置
KR102125451B1 (ko) * 2013-11-15 2020-06-22 엘지이노텍 주식회사 조명 장치
KR102264379B1 (ko) * 2014-02-05 2021-06-15 엘지이노텍 주식회사 광학 부재 및 이를 이용하는 조명 장치
JP6454969B2 (ja) * 2014-03-12 2019-01-23 大日本印刷株式会社 バックライト装置、液晶表示装置
US9869809B2 (en) 2014-03-12 2018-01-16 Dai Nippon Printing Co., Ltd. Backlight unit, liquid-crystal display apparatus, and stacked structure
TWI647476B (zh) 2014-07-29 2019-01-11 日商住友化學股份有限公司 偏光板、附有黏著劑之偏光板及液晶顯示裝置
KR102422556B1 (ko) * 2014-09-26 2022-07-18 니폰 제온 가부시키가이샤 원편광판 및 그 제조 방법, 광대역 λ/4판, 유기 일렉트로루미네센스 표시 장치, 그리고 액정 표시 장치
TWI595292B (zh) * 2015-01-21 2017-08-11 友達光電股份有限公司 曲面液晶顯示裝置
KR102521292B1 (ko) * 2015-02-27 2023-04-12 쓰리엠 이노베이티브 프로퍼티즈 컴파니 시준 반사 편광기 및 구조화된 층을 포함하는 광학 필름
CN106352271A (zh) * 2015-07-21 2017-01-25 群创光电股份有限公司 背光模块与显示装置
JP6618289B2 (ja) * 2015-07-23 2019-12-11 スタンレー電気株式会社 面光源装置及びプリズムシート
CN105093674B (zh) * 2015-07-24 2018-12-11 深圳市华星光电技术有限公司 液晶显示装置
WO2017024265A1 (en) * 2015-08-05 2017-02-09 3M Innovative Properties Company Optical diffusing film laminate and method of making
US10948650B2 (en) * 2015-08-13 2021-03-16 3M Innovative Properties Company Display including turning film and diffuser
WO2017047947A1 (ko) * 2015-09-17 2017-03-23 삼성에스디아이 주식회사 광학시트 및 이를 포함하는 광학표시장치
CN105700160A (zh) * 2016-01-19 2016-06-22 陈超平 三维显示装置及适用该三维显示装置的图像处理方法
JP2017139216A (ja) * 2016-01-29 2017-08-10 大日本印刷株式会社 面光源装置、透過型表示装置
TWI589966B (zh) * 2016-05-12 2017-07-01 揚昇照明股份有限公司 光源模組及顯示裝置
CN105759506A (zh) * 2016-05-18 2016-07-13 京东方科技集团股份有限公司 一种背光模组及显示器件
US10215368B2 (en) * 2016-06-03 2019-02-26 Applied Materials, Inc. Energy efficient communication and display device
JP2018018601A (ja) * 2016-07-25 2018-02-01 大日本印刷株式会社 面光源装置および表示装置
TWI594053B (zh) * 2016-08-31 2017-08-01 明基材料股份有限公司 量子棒導光板
JP2018036585A (ja) 2016-09-02 2018-03-08 日東電工株式会社 光学部材
JP2018036586A (ja) 2016-09-02 2018-03-08 日東電工株式会社 光学部材
KR102585534B1 (ko) * 2016-12-20 2023-10-05 엘지디스플레이 주식회사 액정표시장치
JP7185406B2 (ja) * 2017-03-21 2022-12-07 恵和株式会社 液晶表示装置及び液晶表示装置用ターニングフィルム
EP3633420A4 (en) * 2017-05-31 2020-05-13 Sony Corporation OPTICAL ELEMENT, LIGHT-EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE
CN107367849B (zh) * 2017-08-31 2019-10-18 深圳市华星光电技术有限公司 显示装置及偏光太阳眼镜
JP6939372B2 (ja) * 2017-10-05 2021-09-22 大日本印刷株式会社 面光源装置及び表示装置
JP7236801B2 (ja) * 2017-11-09 2023-03-10 恵和株式会社 偏光板用保護シート、偏光板、及び液晶表示装置
WO2019208260A1 (ja) * 2018-04-27 2019-10-31 日東電工株式会社 液晶表示装置
WO2019208261A1 (ja) * 2018-04-27 2019-10-31 日東電工株式会社 調光フィルムおよび液晶表示装置
JP7354097B2 (ja) * 2018-04-27 2023-10-02 日東電工株式会社 液晶表示装置
CN112105866B (zh) * 2018-05-03 2023-02-17 3M创新有限公司 光重定向膜、背光源和显示系统
JP7165875B2 (ja) * 2018-05-25 2022-11-07 パナソニックIpマネジメント株式会社 照明用導光板及び照明装置
JP2021156943A (ja) * 2020-03-25 2021-10-07 株式会社ジャパンディスプレイ 表示装置、車両用表示装置、及び、車両
CN111338128B (zh) * 2020-04-10 2022-11-22 马鞍山晶智科技有限公司 一种用于显示装置的透明光源系统
CN117999434A (zh) * 2021-09-22 2024-05-07 株式会社日本显示器 照明装置
WO2023063115A1 (ja) * 2021-10-11 2023-04-20 株式会社ジャパンディスプレイ 照明装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169015A (ja) 1991-12-25 1993-07-09 Dainippon Printing Co Ltd 光拡散シートの製造方法
US5523863A (en) 1988-10-19 1996-06-04 Fergason; James L. Controlled liquid crystal optical polarizer method and apparatus
JPH11295714A (ja) 1998-04-08 1999-10-29 Enplas Corp 液晶表示パネル、液晶表示装置及びシート部材
US6049428A (en) 1994-11-18 2000-04-11 Optiva, Inc. Dichroic light polarizers
JP2002031812A (ja) 2000-06-01 2002-01-31 Hynix Semiconductor Inc フリンジフィールドスイッチングモード液晶表示装置
JP2004213019A (ja) 2003-01-03 2004-07-29 Samsung Electronics Co Ltd 光ガイド方法及びその装置と、これを有するバックライトアセンブリ及び液晶表示装置
JP2006138975A (ja) * 2004-11-11 2006-06-01 Nec Lcd Technologies Ltd バックライト及び液晶表示装置
JP3874222B2 (ja) 1997-11-19 2007-01-31 株式会社エンプラス 光源装置
WO2007026776A1 (ja) * 2005-08-30 2007-03-08 Mitsubishi Rayon Co., Ltd. 光偏向シートとその製造方法
JP2007220347A (ja) 2006-02-14 2007-08-30 Citizen Electronics Co Ltd 可変プリズム導光板
JP2008262906A (ja) 2007-03-16 2008-10-30 Dtmc:Kk バックライトユニット
JP2008268940A (ja) * 2007-03-27 2008-11-06 Toray Ind Inc 反射型偏光板及びそれを用いた液晶表示装置
JP2009037204A (ja) 2007-03-27 2009-02-19 Dainippon Printing Co Ltd シート状光学部材、光学シート用樹脂組成物、光学シート及びその製造方法
JP2010284840A (ja) 2009-06-10 2010-12-24 Kaneka Corp コーティング層が付与されたフィルム、偏光子保護フィルム、及び、それを用いてなる偏光板
JP2011075964A (ja) * 2009-10-01 2011-04-14 Sekisui Chem Co Ltd 液晶表示装置
JP2011090832A (ja) 2009-10-21 2011-05-06 Mitsubishi Electric Corp 面状光源、液晶表示装置
JP2011171105A (ja) * 2010-02-18 2011-09-01 Dainippon Printing Co Ltd 面光源装置および表示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845212B2 (en) * 1999-10-08 2005-01-18 3M Innovative Properties Company Optical element having programmed optical structures
JP3873835B2 (ja) * 2002-07-22 2007-01-31 セイコーエプソン株式会社 液晶表示装置及び電子機器
US20070153162A1 (en) * 2005-12-30 2007-07-05 Wright Robin E Reinforced reflective polarizer films
EP2042894A4 (en) * 2006-06-28 2012-03-07 Sharp Kk BIREFRINGENT COMPLEX SUPPORT, POLARIZING PLATE, AND LIQUID CRYSTAL DEVICE
US20080037283A1 (en) * 2006-07-17 2008-02-14 Eastman Kodak Company Backlight apparatus with particular light-redirecting film
US8035775B2 (en) * 2006-09-07 2011-10-11 Sharp Kabushiki Kaisha Polarization control system and display device
US7604381B2 (en) * 2007-04-16 2009-10-20 3M Innovative Properties Company Optical article and method of making
US7780330B2 (en) * 2007-05-16 2010-08-24 Rohm And Haas Electronics Materials Llc Elongated illuminators configuration for LCD displays
JP2009140905A (ja) * 2007-11-16 2009-06-25 Hitachi Chem Co Ltd 導光板及びバックライト
JP4902516B2 (ja) * 2007-12-17 2012-03-21 日東電工株式会社 視角制御システムならびに画像表示装置
WO2010001618A1 (ja) * 2008-07-04 2010-01-07 三井化学株式会社 偏光性拡散フィルム、偏光性拡散フィルムの製造方法、および偏光性拡散フィルムを含む液晶表示装置
JP2010286700A (ja) * 2009-06-12 2010-12-24 Sumitomo Chemical Co Ltd 液晶表示装置
JP5343752B2 (ja) * 2009-07-31 2013-11-13 大日本印刷株式会社 導光板、導光板の製造方法、面光源装置および液晶表示装置
JP2011107248A (ja) * 2009-11-13 2011-06-02 Hitachi Displays Ltd 液晶表示装置
JP5529665B2 (ja) * 2009-11-16 2014-06-25 住友化学株式会社 偏光板、ならびにこれを用いた液晶パネルおよび液晶表示装置
JP5686135B2 (ja) * 2010-07-12 2015-03-18 大日本印刷株式会社 表示装置
US8619212B2 (en) 2010-07-16 2013-12-31 Dai Nippon Printing Co., Ltd. Protective film, lower polarizing plate, liquid crystal display panel, display device, and method for producing protective film

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523863A (en) 1988-10-19 1996-06-04 Fergason; James L. Controlled liquid crystal optical polarizer method and apparatus
JPH05169015A (ja) 1991-12-25 1993-07-09 Dainippon Printing Co Ltd 光拡散シートの製造方法
US6049428A (en) 1994-11-18 2000-04-11 Optiva, Inc. Dichroic light polarizers
JP3874222B2 (ja) 1997-11-19 2007-01-31 株式会社エンプラス 光源装置
JPH11295714A (ja) 1998-04-08 1999-10-29 Enplas Corp 液晶表示パネル、液晶表示装置及びシート部材
JP2002031812A (ja) 2000-06-01 2002-01-31 Hynix Semiconductor Inc フリンジフィールドスイッチングモード液晶表示装置
JP2004213019A (ja) 2003-01-03 2004-07-29 Samsung Electronics Co Ltd 光ガイド方法及びその装置と、これを有するバックライトアセンブリ及び液晶表示装置
JP2006138975A (ja) * 2004-11-11 2006-06-01 Nec Lcd Technologies Ltd バックライト及び液晶表示装置
WO2007026776A1 (ja) * 2005-08-30 2007-03-08 Mitsubishi Rayon Co., Ltd. 光偏向シートとその製造方法
JP2007220347A (ja) 2006-02-14 2007-08-30 Citizen Electronics Co Ltd 可変プリズム導光板
JP2008262906A (ja) 2007-03-16 2008-10-30 Dtmc:Kk バックライトユニット
JP2008268940A (ja) * 2007-03-27 2008-11-06 Toray Ind Inc 反射型偏光板及びそれを用いた液晶表示装置
JP2009037204A (ja) 2007-03-27 2009-02-19 Dainippon Printing Co Ltd シート状光学部材、光学シート用樹脂組成物、光学シート及びその製造方法
JP2010284840A (ja) 2009-06-10 2010-12-24 Kaneka Corp コーティング層が付与されたフィルム、偏光子保護フィルム、及び、それを用いてなる偏光板
JP2011075964A (ja) * 2009-10-01 2011-04-14 Sekisui Chem Co Ltd 液晶表示装置
JP2011090832A (ja) 2009-10-21 2011-05-06 Mitsubishi Electric Corp 面状光源、液晶表示装置
JP2011171105A (ja) * 2010-02-18 2011-09-01 Dainippon Printing Co Ltd 面光源装置および表示装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Ekisho", vol. 2, 1998, THE JAPANESE LIQUID CRYSTAL SOCIETY PUBLISHING, pages: 303 - 316
"Monthly Display", July 1997, TECHNO TIMES CO., LTD., pages: 83 - 88
See also references of EP2816399A4
SID (SOCIETY FOR INFORMATION DISPLAY, 2001, pages 484 - 487

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249779B2 (ja) 2016-04-05 2023-03-31 ソニーグループ株式会社 表示装置および電子機器

Also Published As

Publication number Publication date
TW201339704A (zh) 2013-10-01
CN104204924A (zh) 2014-12-10
US20150301384A1 (en) 2015-10-22
EP2816399A1 (en) 2014-12-24
KR20140140539A (ko) 2014-12-09
EP2816399A4 (en) 2015-09-23
JP2013190779A (ja) 2013-09-26
US9261731B2 (en) 2016-02-16
TWI659247B (zh) 2019-05-11
CN104204924B (zh) 2017-03-08
KR102050612B1 (ko) 2019-11-29
JP6202828B2 (ja) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6202828B2 (ja) 液晶表示装置
JP6377887B2 (ja) 液晶表示装置
JP5913689B2 (ja) 光学部材、偏光板のセットおよび液晶表示装置
US20150277012A1 (en) Optical member, polarizing plate set, and liquid crystal display apparatus
KR102292765B1 (ko) 광학 부재, 편광판 세트 및 액정 표시 장치
KR102118231B1 (ko) 광학 부재, 편광판 세트 및 액정 표시 장치
US9638955B2 (en) Liquid crystal display device and polarizing plate with a condensing element
KR102315475B1 (ko) 광학 부재
KR102020837B1 (ko) 백라이트 유닛 및 표시장치
JPWO2019208260A1 (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013748842

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14377050

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147022806

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE