WO2013121819A1 - 感活性光線性又は感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイス - Google Patents

感活性光線性又は感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイス Download PDF

Info

Publication number
WO2013121819A1
WO2013121819A1 PCT/JP2013/050675 JP2013050675W WO2013121819A1 WO 2013121819 A1 WO2013121819 A1 WO 2013121819A1 JP 2013050675 W JP2013050675 W JP 2013050675W WO 2013121819 A1 WO2013121819 A1 WO 2013121819A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sensitive
general formula
radiation
acid
Prior art date
Application number
PCT/JP2013/050675
Other languages
English (en)
French (fr)
Inventor
滝沢 裕雄
土村 智孝
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013121819A1 publication Critical patent/WO2013121819A1/ja
Priority to US14/458,660 priority Critical patent/US9069246B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain

Definitions

  • the present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition whose properties change upon reaction with actinic rays or radiation, a pattern forming method using the composition, a resist film, and an electronic device using these
  • the present invention relates to a manufacturing method and an electronic device. More specifically, the present invention relates to a process for manufacturing a semiconductor such as an IC, a circuit board such as a liquid crystal or a thermal head, a mold structure for imprinting, and other photofabrication processes, a lithographic printing plate, and an acid curable resin.
  • the present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition used in a composition, a pattern formation method and a resist film using the composition, an electronic device manufacturing method and an electronic device using the same.
  • the chemically amplified resist composition generates an acid in the exposed area by irradiation with radiation such as far ultraviolet light, and the acid-catalyzed reaction changes the solubility of the active radiation irradiated area and non-irradiated area in the developer. And a pattern forming material for forming a pattern on a substrate.
  • a resin having a basic skeleton of poly (hydroxystyrene) having a small absorption mainly in the 248 nm region is used as a main component, so that high sensitivity, high resolution, and good A pattern is formed, which is a better system than the conventional naphthoquinone diazide / novolak resin system.
  • a triphenylsulfonium salt is generally known as a photoacid generator that is a main constituent of a chemically amplified resist composition.
  • a photoacid generator that is a main constituent of a chemically amplified resist composition.
  • an electron beam, X-ray, EUV light source or the like when used, exposure is performed under vacuum, so that low-boiling compounds such as solvents and resist materials decomposed by high energy volatilize and contaminate the exposure apparatus.
  • the outgas problem is getting serious.
  • various studies have been made on the reduction of outgas, and various improvements have been proposed for photoacid generators.
  • development of a photosensitive composition having improved sensitivity, resolution, pattern shape, roughness performance and the like by improving the photoacid generator as well as reducing the outgas is desired.
  • Patent Document 1 describes a photoacid generator that is decomposed by an acid from the viewpoint of improving sensitivity, dissolution contrast, exposure latitude, roughness performance, and the like, but further demands on dissolution contrast, developability, and the like. Was demanded.
  • Patent Document 2 discloses a sulfonium salt having a specific betaine structure as a photoacid generator from the viewpoint of achieving an improvement in resolution, roughness performance, exposure margin, etc. while having low sensitivity.
  • sensitivity there is a problem with sensitivity, and there is also a problem with stability of sensitivity over time.
  • An object of the present invention is to provide an actinic ray-sensitive or radiation-sensitive resin composition excellent in sensitivity, resolution, roughness performance and stability over time, and generating less outgas, and a pattern forming method and a resist film using the composition
  • Another object of the present invention is to provide an electronic device manufacturing method and an electronic device using the same.
  • An actinic ray-sensitive or radiation-sensitive resin composition containing a compound that generates an acid upon irradiation with an actinic ray or radiation represented by the following general formula (Z1).
  • L 1 represents —O—, —S—, —OS ( ⁇ O) 2 —, —S ( ⁇ O) 2 O—, —OC ( ⁇ O) —, —C ( ⁇ O) O—, —S ( ⁇ O) —, —S ( ⁇ O) 2 —, —C ( ⁇ O) —, —N (R 7 ) C ( ⁇ O) —, —C ( ⁇ O) N (R 7 ) —, —N (R 7 ) represents S ( ⁇ O) 2 — or —S ( ⁇ O) 2 N (R 7 ) — (the right side is the R 1 side), and R 7 represents a hydrogen atom, an alkyl group or a cycloalkyl group.
  • R 1 represents an alkylene group, a cycloalkylene group, an arylene group or a divalent group formed by a combination thereof, and —O—, —C ( ⁇ O) —, —S ( ⁇ O) 2 — or -S- may be inserted.
  • a 1 is -SO 3 -, -SO 2 N - represents a (SO 2 R 9) 2 - SO 2 R 8 or -SO 2 C.
  • R 8 represents an alkyl group, a cycloalkyl group or an aryl group
  • R 9 represents an alkyl group, a cycloalkyl group or an aryl group
  • two R 9 s may be the same or different.
  • R 2 and R 3 each independently represents an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group or a heterocyclic group.
  • R 4 represents a monovalent substituent
  • n 1 represents an integer of 0 to 4.
  • the plurality of R 4 may be the same or different.
  • R 2 and R 3 , R 2 and R 4 , R 3 and R 4 , R 2 and the benzene ring in the general formula (Z1), R 3 and the benzene ring, and when n 1 is 2 or more R 4 may be connected to each other to form a ring.
  • L 1, R 1, A 1 , R 4, n 1 has the same meaning as L 1, R 1, A 1 , R 4, n 1 in the general formula (Z1).
  • R 5 and R 6 each independently represents a monovalent substituent, and n 2 and n 3 each independently represents an integer of 0 to 5.
  • a plurality of R 4 when n 1 is 2 or more, a plurality of R 5 when n 2 is 2 or more, and a plurality of R 6 when n 3 is 2 or more may be the same or different and are connected to each other To form a ring.
  • R 4 and R 5 , R 5 and R 6 , and R 4 and R 6 may be connected to each other to form a ring.
  • R 4 , R 5 and R 6 may each be a single bond.
  • [10] [1] to [8] A step of forming a film using the actinic ray-sensitive or radiation-sensitive resin composition according to any one of the above, a step of exposing the film, and a step of developing the exposed film A pattern forming method.
  • [13] The electronic device manufactured by the manufacturing method of the electronic device as described in [12].
  • the present invention preferably further has the following configuration.
  • R 1 in the general formula (Z1) or (Z2) is an alkylene group, a partially or fully fluorinated alkylene group, an arylene group, a partially or fully fluorinated arylene group 2.
  • the monovalent substituent R 4 , R 5 or R 6 in the general formula (Z1) or (Z2) is an alkyl group, a cycloalkyl group, an aryl group, a halogen atom, a hydroxyl group, an alkoxy group, an alkoxycarbonyl group or an arylthio group.
  • the actinic ray-sensitive or radiation-sensitive resin composition according to any one of [1] to [8] and [14].
  • an actinic ray-sensitive or radiation-sensitive resin composition excellent in sensitivity, resolution, roughness performance and stability over time and generating less outgas, a pattern forming method using the composition, and a resist film
  • an electronic device manufacturing method and an electronic device using the same it is possible to provide an electronic device manufacturing method and an electronic device using the same.
  • the notation which does not describe substitution and non-substitution includes the thing which has a substituent with the thing which does not have a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • active light or “radiation” means, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams (EB), etc. To do.
  • light means actinic rays or radiation.
  • exposure in the present specification is not limited to exposure to far ultraviolet rays, extreme ultraviolet rays, X-rays, EUV light and the like represented by mercury lamps and excimer lasers, but also electron beams, ion beams, and the like, unless otherwise specified. The exposure with the particle beam is also included in the exposure.
  • the actinic ray-sensitive or radiation-sensitive resin composition of the present invention is a compound that generates an acid upon irradiation with an actinic ray or radiation represented by the following general formula (Z1) as an acid generator (hereinafter simply referred to as “acid generation”).
  • L 1 represents —O—, —S—, —OS ( ⁇ O) 2 —, —S ( ⁇ O) 2 O—, —OC ( ⁇ O) —, —C ( ⁇ O) O—, —S ( ⁇ O) —, —S ( ⁇ O) 2 —, —C ( ⁇ O) —, —N (R 7 ) C ( ⁇ O) —, —C ( ⁇ O) N (R 7 ) —, —N (R 7 ) represents S ( ⁇ O) 2 — or —S ( ⁇ O) 2 N (R 7 ) — (the right side is the R 1 side), and R 7 represents a hydrogen atom, an alkyl group or a cycloalkyl group.
  • R 1 represents an alkylene group, a cycloalkylene group, an arylene group or a divalent group formed by a combination thereof, and —O—, —C ( ⁇ O) —, —S ( ⁇ O) 2 — or -S- may be inserted.
  • a 1 is -SO 3 -, -SO 2 N - represents a (SO 2 R 9) 2 - SO 2 R 8 or -SO 2 C.
  • R 8 represents an alkyl group, a cycloalkyl group or an aryl group
  • R 9 represents an alkyl group, a cycloalkyl group or an aryl group
  • two R 9 s may be the same or different.
  • R 2 and R 3 each independently represents an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group or a heterocyclic group.
  • R 4 represents a monovalent substituent, and n 1 represents an integer of 0 to 4. When n 1 is 2 or more, the plurality of R 4 may be the same or different.
  • R 2 and R 3 , R 2 and R 4 , R 3 and R 4 , R 2 and the benzene ring in the general formula (Z1), R 3 and the benzene ring, and when n 1 is 2 or more R 4 may be connected to each other to form a ring.
  • a resist composition using a photoacid generator having a betaine structure described in Patent Document 2 (a compound described in Japanese Patent Application Laid-Open No. 2011-16746) has poor sensitivity, In particular, there was a problem that the stability with time was inferior, but the reason for this is not clear. This is probably because the decomposition efficiency (acid generation efficiency) of the generator is low.
  • the actinic ray-sensitive or radiation-sensitive resin composition of the present invention containing the compound (A1) that generates an acid upon irradiation with actinic rays or radiation having a specific betaine structure has sensitivity, resolution, The reason why it has excellent roughness performance and stability over time and little outgassing is not clear, but is estimated as follows.
  • a specific betaine in which L 1 is not an oxygen atom when -L 1 -R 1 -A 1 is substituted at the para-position of S + in the compound (A1) represented by the general formula (Z1) of the present invention By making the structure, the decomposition efficiency (acid generation efficiency) at the time of exposure of the compound (A1) can be improved, and the solubility of the compound (A1) in the solvent in the composition can be improved. There is no precipitation of the compound (A1) in the resist composition during storage, it is excellent in stability with time (less sensitivity fluctuation after time), and also has high acid generation efficiency. It is thought that it can be set as LER.
  • the compound (A1) according to the present invention has a betaine structure having an anion portion and a cation portion in the same molecule, the cation portion is decomposed at the time of exposure to reduce the molecular weight. It is considered that high resolution is achieved by improving the solubility in the liquid and improving the dissolution contrast. Further, as described above, the compound (A1) represented by the general formula (Z1) is decomposed by irradiation with actinic rays or radiation to generate an acid. It is estimated that there are few.
  • the actinic ray-sensitive or radiation-sensitive resin composition of the present invention containing the photoacid generator (A1) is a positive-type actinic ray-sensitive or radiation-sensitive resin composition, In an embodiment, it is a negative-type actinic ray-sensitive or radiation-sensitive resin composition.
  • the positive actinic ray-sensitive or radiation-sensitive resin composition (more preferably a positive resist composition) of the present invention is decomposed by the action of a photoacid generator (A1) and an acid in an alkaline developer. It may contain a resin (B) with increased solubility.
  • the negative-type actinic ray-sensitive or radiation-sensitive resin composition (more preferably a negative resist composition) of the present invention comprises a photoacid generator (A1), a resin (C) soluble in an alkali developer, and an acid. It may contain an acid crosslinking agent (D) that crosslinks with a resin soluble in the alkali developer by the above action.
  • a compound that generates an acid upon irradiation with an actinic ray or radiation represented by the general formula (Z1) (photoacid generator (A1))
  • the solubility of the compound (A1) in the solvent in the composition is improved, the temporal stability is improved, and the decomposition efficiency (acid generation efficiency) of the compound (A1) during exposure is improved to achieve high sensitivity and low
  • the decomposition efficiency (acid generation efficiency) of the compound (A1) during exposure is improved to achieve high sensitivity and low
  • L 1 is —O—.
  • the solubility of the compound (A1) in the solvent in the composition improve the stability over time, improve the decomposition efficiency (acid generation efficiency) at the time of exposure of the compound (A1), and achieve high sensitivity and low LER.
  • the benzene ring in the general formula (Z1) to which the -L 1 -R 1 -A 1 is bonded the -L 1 -R 1 -A 1 is meta or ortho to S + Particularly preferred is substitution at the position.
  • R 7 represents a hydrogen atom, an alkyl group or a cycloalkyl group, and is preferably a hydrogen atom or an alkyl group.
  • the alkyl group for R 7 may be linear or branched, may have a substituent, and is preferably an alkyl group having 1 to 20 carbon atoms, such as a methyl group Ethyl group, propyl group, butyl group, i-propyl group, t-butyl group, benzyl group, hydroxyethyl and the like.
  • the cycloalkyl group for R 7 may have a substituent and is preferably a cycloalkyl group having 3 to 20 carbon atoms, such as a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group. , Norbornyl group, adamantyl group and the like.
  • R 1 represents an alkylene group, a cycloalkylene group, an arylene group or a divalent group formed by a combination thereof, and —O—, —C (O) —, —S (O 2 ) —, or —S is present between the groups. - May be inserted.
  • the alkylene group for R 1 may be linear or branched, may have a substituent, and is preferably an alkylene group having 1 to 20 carbon atoms.
  • the cycloalkylene group for R 1 may have a substituent and is preferably a cycloalkylene group having 3 to 20 carbon atoms.
  • Examples of the substituent that the alkylene group and cycloalkylene group for R 1 may have include a halogen atom, an aryl group, and an alkyl group. A halogen atom or an aryl group is preferable, and a fluorine atom is more preferable. .
  • Examples of the alkylene group for R 1 include a methylene group, an ethylene group, a propylene group, a butylene group, a methylethylene group, a benzylidene group, a phenylethylene group, —CF 2 —, — (CF 2 ) 2 —, — (CF 2 ) 3 —, — (CF 2 ) 4 —, —CH 2 CF 2 —, —CH 2 CH 2 CF 2 CF 2 —, —CH (CF 3 ) CF 2 — and the like.
  • Examples of the cycloalkylene group for R 1 include a 1,3-cyclopentylene group, a 1,4-cyclohexylene group, and the like.
  • the arylene group for R 1 may have a substituent, may be condensed, and is preferably an arylene group having 6 to 26 carbon atoms.
  • substituents that the arylene group for R 1 may have include a halogen atom, an alkyl group, a cycloalkyl group, and an aryl group, and a fluorine atom, an isopropyl group, and a cyclohexyl group are preferable.
  • Examples of the arylene group for R 1 include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 2,5-naphthylene group, 9,10- Anthracenylene group, 2,3,5,6-tetrafluoro-1,4-phenylene group, 2,5-dimethyl-1,4-phenylene group, 3-isopropyl-1,4-phenylene group, 2-isopropyl-1 , 4-phenylene group, 3-cyclohexyl-1,4-phenylene group, 2-cyclohexyl-1,4-phenylene group, 3,5-diisopropyl-1,4-phenylene group, 2,6-diisopropyl-1,4 -Phenylene group, 3,5-dicyclohexyl-1,4-phenylene group, 2,6-dicyclohexyl-1,4-phenylene and the like.
  • R 1 is preferably an alkylene group, a partially or fully fluorinated alkylene group, an arylene group, or a partially or fully fluorinated arylene group.
  • a 1 is -SO 3 - It is SO 2 R 8 -, -SO 2 N - SO 2 R 8 or -SO 2 C - (SO 2 R 9) represents a 2, -SO 3 - or -SO 2 N Is preferred, and —SO 3 — is more preferred.
  • R 8 represents an alkyl group, a cycloalkyl group or an aryl group
  • R 9 represents an alkyl group, a cycloalkyl group or an aryl group
  • two R 9 s may be the same or different.
  • the alkyl group for R 8 may be linear or branched, may have a substituent, and is preferably an alkyl group having 1 to 20 carbon atoms.
  • substituents that the alkyl group for R 8 may have include an electron withdrawing group (such as a cyano group), a halogen atom, and an aryl group, and is preferably an electron withdrawing group or a halogen atom. More preferably, it is a fluorine atom.
  • alkyl group for R 8 examples include methyl group, ethyl group, i-propyl group, t-butyl group, benzyl group, cyanomethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, A fluoropropyl group, a perfluorobutyl group, etc. are mentioned.
  • the cycloalkyl group for R 8 may have a substituent and is preferably a cycloalkyl group having 3 to 20 carbon atoms. Examples of the substituent that the cycloalkyl group represented by R 8 may have include an electron withdrawing group and a halogen atom.
  • Examples of the cycloalkyl group for R 8 include a cyclopentyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, and the like.
  • the aryl group for R 8 may have a substituent and is preferably an aryl group having 6 to 26 carbon atoms.
  • Examples of the substituent that the aryl group for R 8 may have include an electron withdrawing group, a halogen atom, an alkyl group, and a hydroxyl group, and is preferably an electron withdrawing group or a halogen atom, and is a fluorine atom. It is more preferable.
  • R 8 examples include a phenyl group, 1-naphthyl group, 2-naphthyl group, pentafluorophenyl group, 4-trifluoromethylphenyl group, 4-cyanophenyl group, 3-hydroxyphenyl group, 2 -A methylphenyl group etc. are mentioned.
  • R 8 is preferably an alkyl group, a partially or fully fluorinated alkyl group, an aryl group, or a partially or fully fluorinated aryl group.
  • R 2 and R 3 each independently represents an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group or a heterocyclic group.
  • the alkyl group for R 2 and R 3 may be linear or branched, may have a substituent, and is preferably an alkyl group having 1 to 20 carbon atoms. . When it has a substituent, it is preferable to have a substituent at the 1-position ( ⁇ -position) of the alkyl group.
  • Examples of the substituent that the alkyl group may have include an acyl group, an alkoxycarbonyl group, a cycloalkoxy group, an alkyl group, an aryl group, an arylcarbonyl group, and the like, and an acyl group or an alkoxycarbonyl group is preferable.
  • Examples of the alkyl group for R 2 and R 3 include a methyl group, an ethyl group, a propyl group, an i-propyl group, an n-butyl group, a t-butyl group, a benzyl group, a benzoylmethyl group, and a 1-benzoylethyl group.
  • the alkenyl group for R 2 and R 3 may have a substituent and is preferably an alkenyl group having 2 to 20 carbon atoms, and examples thereof include a vinyl group and an allyl group.
  • the cycloalkyl group for R 2 and R 3 may have a substituent and is preferably a cycloalkyl group having 3 to 20 carbon atoms. When it has a substituent, it is preferable to have a substituent at the 1-position ( ⁇ -position) of the cycloalkyl group.
  • Examples of the substituent that the cycloalkyl group may have include an acyl group, an alkoxycarbonyl group, and an arylcarbonyl group.
  • Examples of the cycloalkyl group for R 2 and R 3 include a cyclopentyl group, a cyclopropyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, a 1-benzoylcyclohexyl group, a 1-acetylcyclopentyl group, and 1- (methoxycarbonyl) cyclohexyl. Groups and the like.
  • the aryl group for R 2 and R 3 may have a substituent and is preferably an aryl group having 6 to 26 carbon atoms.
  • substituents that the aryl group for R 2 and R 3 may have include an alkyl group, a cycloalkyl group, an aryl group, a heterocyclic group, a nitro group, a cyano group, a halogen atom, a hydroxyl group, an alkoxy group, and an aryloxy group.
  • Examples of the aryl group for R 2 and R 3 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 9-anthranyl group, a phenyl group substituted with the above-described substituents, and the like.
  • the heterocyclic group for R 2 and R 3 may have a substituent, and is preferably a heterocyclic group having 2 to 20 carbon atoms. Specific examples of the substituent heterocyclic group may have about R 2 and R 3, are the same as specific examples described above as the substituent which may have an aryl group for R 2 and R 3 may be mentioned.
  • R 2 and R 3 examples include thienyl group, benzothienyl group, tetrahydrothienyl group, pyrrolyl group, indolyl group, carbazolyl group, furyl group, benzofuryl group, tetrahydrofuryl group, pyrimidyl group, pyrazyl group And a pyridazyl group.
  • R 2 and R 3 are preferably an aryl group, an alkyl group, a 1-acylalkyl group or a 1- (alkoxycarbonyl) alkyl group, and more preferably an aryl group.
  • R 2 and R 3 may be connected to each other to form a ring.
  • the ring may contain an oxygen atom, a sulfur atom, an ester bond, an amide bond, a carbonyl group or the like.
  • a cycloheptane ring, a cyclohexane ring, a cycloheptanone ring, a cyclohexanone ring, or a ring containing S + includes a tetrahydrothiophene ring, a dihydrothiophene ring, a thiophene ring, a benzothiophene ring, a dibenzothiophene ring, a thianthrene Ring, dibenzooxathian ring and the like.
  • R 4 represents a monovalent substituent, an alkyl group, a cycloalkyl group, an aryl group, a heterocyclic group, a nitro group, a cyano group, a halogen atom, a hydroxyl group, an alkoxy group, an aryloxy group, an acyloxy group, a carboxyl group, Alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, acyl group, alkylthio group, arylthio group, alkylsulfonyl group, arylsulfonyl group, alkoxysulfonyl group, aryloxysulfonyl group, sulfamoyl group, etc.
  • alkyl group cycloalkyl It is preferably a group, an aryl group, a halogen atom, a hydroxyl group, an alkoxy group, an alkoxycarbonyl group or an arylthio group.
  • n 1 represents an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 0.
  • the plurality of R 4 may be the same or different, and R 4 may be connected to each other to form a ring.
  • a benzene ring, a cyclohexane ring, a cycloheptane ring and the like are preferable.
  • R 2 and R 4 , R 3 and R 4 , R 2 , the benzene ring in the general formula (Z1), R 3 and the benzene ring may be connected to each other to form a ring.
  • the ring to be formed is preferably the same ring as described above as the ring formed by connecting R 2 and R 3 .
  • the compound which has two or more structures represented by general formula (Z1) may be sufficient.
  • R 2 or R 3 of the compound represented by the general formula (Z1) is bonded to R 2 or R 3 of another compound represented by the general formula (Z1) through a single bond or a linking group.
  • a compound having the above structure may be used.
  • the compound (A1) represented by the general formula (Z1) is preferably a compound represented by the following general formula (Z2).
  • L 1, R 1, A 1 , R 4, n 1 has the same meaning as L 1, R 1, A 1 , R 4, n 1 in the general formula (Z1).
  • solubility of the compound (A1) in the solvent in the composition is improved, the temporal stability is improved, and the decomposition efficiency (acid generation efficiency) at the time of exposure of the compound (A1) is improved.
  • the benzene ring -L 1 -R 1 -A 1 in the general formula (Z2) are attached, -L 1 -R 1 -A 1 is substituted at the para-position of the S + when, never L 1 is -O-, and the benzene ring which -L 1 -R 1 -A 1 in the general formula (Z2) are attached, -L 1 -R 1 -A 1 is S + a
  • L 1 is —S—, —OS ( ⁇ O) 2 —, —S ( ⁇ O) 2 O—, —OC ( ⁇ O) —, —C ( ⁇ O) O.
  • the solubility of the compound (A1) in the solvent in the composition improve the stability over time, improve the decomposition efficiency (acid generation efficiency) at the time of exposure of the compound (A1), and achieve high sensitivity and low LER.
  • the benzene ring in the general formula (Z2) to which the -L 1 -R 1 -A 1 is bonded the -L 1 -R 1 -A 1 is meta or ortho to S + Particularly preferred is substitution at the position.
  • R 5 and R 6 each independently represent a monovalent substituent.
  • Specific examples and preferred examples of the monovalent substituent for R 5 and R 6 include a monovalent group for R 4 in formula (Z1). Specific examples and preferred examples of the substituents are the same.
  • n 2 and n 3 each independently represents an integer of 0 to 5, preferably an integer of 0 to 2, more preferably 0.
  • a plurality of R 4 when n 1 is 2 or more, a plurality of R 5 when n 2 is 2 or more, and a plurality of R 6 when n 3 is 2 or more may be the same or different and are connected to each other To form a ring.
  • Preferred rings that can be formed include a benzene ring, a cyclohexane ring, and a cycloheptane ring.
  • R 4 and R 5 , R 5 and R 6 , and R 4 and R 6 may be connected to each other to form a ring.
  • R 4 , R 5 and R 6 may each be a single bond, and the ring may contain an oxygen atom, a sulfur atom, an ester bond, an amide bond, a carbonyl group or the like.
  • the ring to be formed includes a tetrahydrothiophene ring, a dihydrothiophene ring, a thiophene ring, a benzothiophene ring, a dibenzothiophene ring, a thianthrene ring, a dibenzooxathiane ring and the like as a ring containing S + .
  • the compound which has two or more structures represented by general formula (Z2) may be sufficient.
  • the compound represented by the general formula (Z2) has a structure in which R 5 or R 6 is shared and bonded through R 5 or R 6 with another compound represented by the general formula (Z2). It may be a compound.
  • the method for producing the compound represented by the general formula (Z1) or (Z2) is not particularly limited, but can be produced by the following synthesis methods 1 to 4 or a combination thereof. It can be produced by appropriately changing or selecting the synthesis method depending on the substitution position of -L 1 -R 1 -A 1 or the type of L 1 .
  • the compound represented by the general formula (Z2) will be described below as an example.
  • compounds represented by the general formula (Z1) compounds other than the general formula (Z2) can also be produced by the following synthesis methods 1 to 4 or combinations thereof.
  • the manufacturing method of the compound represented by the said general formula (Z1) or (Z2) is not limited to these.
  • R 1, R 4 ⁇ R 6, n 1 ⁇ n 3, A 1, L 1 is R 1 in the general formula (Z1) or (Z2), R 4 in the scheme for the following synthesis methods 1 to 4 Are the same as ⁇ R 6 , n 1 ⁇ n 3 , A 1 , L 1 .
  • the sulfoxide (1) and the benzene derivative (2) are combined with (CF 3 SO 2 ) 2 O, CH 3 SO 3 in a solventless, acidic solvent, hydrocarbon solvent, halogenated hydrocarbon solvent, or the like.
  • the compound represented by the general formula (Z1) or (Z2) can be produced by dehydration condensation using a Lewis acid catalyst such as HP—O 2 O 5 or AlCl 3 .
  • a Lewis acid catalyst such as HP—O 2 O 5 or AlCl 3 .
  • the halogen compound (3) is reacted with Mg in an ether solvent such as tetrahydrofuran or diethyl ether to prepare a Grignard reagent, which is reacted with the sulfoxide (1) using TMS-Cl (trimethylsilyl chloride) or the like.
  • a Grignard reagent which is reacted with the sulfoxide (1) using TMS-Cl (trimethylsilyl chloride) or the like.
  • TMS-Cl trimethylsilyl chloride
  • Intermediate HL 1 -R that is commercially available or can be synthesized by a known method in an aprotic polar solvent such as N, N-dimethylacedamide, N-ethylpyrrolidone, N, N-dimethylimidazolidinone potassium carbonate 1 -A 1, triethylamine, potassium t- butoxide, by the action of a base such as sodium hydride anion - L 1 -R 1 -A 1 on the preparation of the (synthesis 2) and known methods
  • the compound represented by the general formula (Z1) or (Z2) can be produced by reacting the fluoro form (4) synthesized in (1).
  • L 1 is —O—, —S— or the like
  • L 1 can be applied regardless of the substitution position of —L 1 —R 1 —A 1 .
  • a compound in which L 1 is —S— is then oxidized with hydrogen peroxide-acetic acid or the like to produce a compound in which L 1 is —S ( ⁇ O) —, —S ( ⁇ O) 2 — or the like. can do.
  • -L 1- This is a useful method that can be widely applied regardless of the substitution position of R 1 -A 1 .
  • the triphenylsulfonium (5) can be generally synthesized by (Synthesis Method 1), (Synthesis Method 2) or a known method.
  • Y 2 -R 1 -A 1 is commercially available or can be synthesized by a known method.
  • L 1 is —OS ( ⁇ O) 2 —
  • Y 1 : —OH and Y 2 : FO 2 S—R 1 —A 1 can be synthesized by a condensation reaction by a known method.
  • L 1 is —C ( ⁇ O) O—
  • Y 2 : HO—R 1 —A 1 can be synthesized by a condensation reaction by a known method. it can.
  • the photoacid generator (A1) may be used alone or in combination of two or more.
  • the content of the photoacid generator (A1) is preferably 0.1 to 70% by mass, and preferably 0.5 to 50% by mass based on the total solid content of the actinic ray-sensitive or radiation-sensitive resin composition. %, More preferably 1 to 30% by mass.
  • photoacid generator In the present invention, other acid generators may be used in combination with the photoacid generator (A1).
  • photoacid generator (A2) examples include photoinitiators for photocationic polymerization, initiators for photoradical polymerization, and photoextinction of dyes.
  • a known compound that generates an acid upon irradiation with actinic rays or radiation used for a colorant, a photochromic agent, or a microresist, and a mixture thereof can be appropriately selected and used.
  • Examples thereof include diazonium salts, phosphonium salts, sulfonium salts, iodonium salts, imide sulfonates, oxime sulfonates, diazodisulfones, disulfones, and o-nitrobenzyl sulfonates.
  • the positive-type actinic ray-sensitive or radiation-sensitive resin of the present invention is decomposed by the action of an acid and is dissolved in an alkaline developer.
  • the resin (B) whose solubility increases may be included.
  • the resin (B) typically includes a group that decomposes by the action of an acid to generate an alkali-soluble group (hereinafter also referred to as an acid-decomposable group).
  • This resin may have an acid-decomposable group in one of the main chain and side chain of the resin, or in both of them.
  • This resin preferably has an acid-decomposable group in the side chain.
  • the acid-decomposable group a group in which a hydrogen atom of an alkali-soluble group such as —COOH group and —OH group is substituted with a group capable of leaving by the action of an acid is preferable.
  • a group capable of leaving by the action of an acid an acetal group or a tertiary ester group is particularly preferable.
  • the base resin when these acid-decomposable groups are bonded as side chains include alkali-soluble resins having —OH or —COOH groups in the side chains. Examples of such alkali-soluble resins include those described later.
  • the alkali dissolution rate of these alkali-soluble resins is preferably 17 nm / second or more as measured with a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution (23 ° C.). This speed is particularly preferably 33 nm / second or more.
  • particularly preferable alkali-soluble resins include o-, m- and p-poly (hydroxystyrene) and copolymers thereof, hydrogenated poly (hydroxystyrene), halogen or alkyl-substituted poly (hydroxystyrene).
  • a resin containing a repeating unit having an acid-decomposable group include t-butoxycarbonyloxystyrene, 1-alkoxyethoxystyrene, and (meth) acrylic acid tertiary alkyl ester.
  • 2-alkyl-2-adamantyl (meth) acrylate or dialkyl (1-adamantyl) methyl (meth) acrylate is more preferable.
  • Resins that are decomposed by the action of an acid to increase the solubility in an alkaline developer are disclosed in European Patent No. 254853, JP-A-2-25850, JP-A-3-223860, JP-A-4-251259, and the like.
  • a resin is reacted with a precursor of a group capable of leaving by the action of an acid, or an alkali-soluble resin monomer having a group capable of leaving by the action of an acid is combined with various monomers. It is obtained by polymerizing.
  • this resin preferably has a hydroxystyrene repeating unit.
  • the resin is a copolymer of hydroxystyrene and hydroxystyrene protected with a group capable of leaving by the action of an acid, or a copolymer of hydroxystyrene and a (meth) acrylic acid tertiary alkyl ester. It is. Specific examples of such a resin include a resin having a repeating unit represented by the following general formula (A).
  • R 01 , R 02 and R 03 each independently represent, for example, a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group.
  • Ar 1 represents an alkylene group or an aromatic ring group. Note that R 03 is an alkylene group, and may be bonded to Ar 1 as an aromatic ring group to form a ring together with the —C—C— chain. R 03 and Ar 1 may be an alkylene group, and they may be bonded to each other to form, for example, a 5- or 6-membered ring together with the —C—C— chain.
  • n Y's each independently represent a hydrogen atom or a group capable of leaving by the action of an acid. However, at least one of Y represents a group capable of leaving by the action of an acid.
  • n represents an integer of 1 to 4, preferably 1 to 2, and more preferably 1.
  • the alkyl group as R 01 to R 03 is, for example, an alkyl group having 20 or less carbon atoms, and preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a hexyl group. 2-ethylhexyl group, octyl group or dodecyl group.
  • these alkyl groups are alkyl groups having 8 or less carbon atoms.
  • these alkyl groups may have a substituent.
  • the alkyl group contained in the alkoxycarbonyl group is preferably the same as the alkyl group in R 01 to R 03 described above.
  • the cycloalkyl group may be a monocyclic cycloalkyl group or a polycyclic cycloalkyl group.
  • a monocyclic cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group is exemplified.
  • these cycloalkyl groups may have a substituent.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is more preferable.
  • R 03 or Ar 1 represents an alkylene group
  • the alkylene group preferably includes those having 1 to 8 carbon atoms such as a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group and an octylene group.
  • the aromatic ring group as Ar 1 preferably has 6 to 14 carbon atoms, and examples thereof include a benzene ring, a toluene ring and a naphthalene ring. In addition, these aromatic ring groups may have a substituent.
  • Examples of the group Y leaving by the action of an acid include —C (R 36 ) (R 37 ) (R 38 ), —C ( ⁇ O) —O—C (R 36 ) (R 37 ) (R 38 ). ), —C (R 01 ) (R 02 ) (OR 39 ), —C (R 01 ) (R 02 ) —C ( ⁇ O) —O—C (R 36 ) (R 37 ) (R 38 ) and And a group represented by —CH (R 36 ) (Ar).
  • R 36 to R 39 each independently represents an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may be bonded to each other to form a ring structure.
  • R 01 and R 02 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • Ar represents an aryl group.
  • the alkyl group as R 36 to R 39 , R 01 or R 02 is preferably an alkyl group having 1 to 8 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an n-butyl group, a sec-butyl group. Groups, hexyl groups and octyl groups.
  • the cycloalkyl group as R 36 to R 39 , R 01 , or R 02 may be a monocyclic cycloalkyl group or a polycyclic cycloalkyl group.
  • the monocyclic cycloalkyl group is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • As the polycyclic cycloalkyl group a cycloalkyl group having 6 to 20 carbon atoms is preferable.
  • an adamantyl group, a norbornyl group, an isobornyl group, a camphanyl group, a dicyclopentyl group, an ⁇ -pinel group, a tricyclodecanyl group, A tetracyclododecyl group and an androstanyl group are mentioned.
  • a part of carbon atoms in the cycloalkyl group may be substituted with a hetero atom such as an oxygen atom.
  • the aryl group as R 36 to R 39 , R 01 R 02 or Ar is preferably an aryl group having 6 to 10 carbon atoms, and examples thereof include a phenyl group, a naphthyl group and an anthryl group.
  • the aralkyl group as R 36 to R 39 , R 01 or R 02 is preferably an aralkyl group having 7 to 12 carbon atoms, such as a benzyl group, a phenethyl group and a naphthylmethyl group.
  • the alkenyl group as R 36 to R 39 , R 01 or R 02 is preferably an alkenyl group having 2 to 8 carbon atoms, and examples thereof include a vinyl group, an allyl group, a butenyl group, and a cyclohexenyl group.
  • the ring formed by combining R 36 and R 37 with each other may be monocyclic or polycyclic.
  • the monocyclic type is preferably a cycloalkane structure having 3 to 8 carbon atoms, and examples thereof include a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, a cycloheptane structure, and a cyclooctane structure.
  • the polycyclic type is preferably a cycloalkane structure having 6 to 20 carbon atoms, and examples thereof include an adamantane structure, a norbornane structure, a dicyclopentane structure, a tricyclodecane structure, and a tetracyclododecane structure.
  • the carbon atoms in the ring structure may be substituted with a heteroatom such as an oxygen atom.
  • Each of the above groups may have a substituent.
  • the substituent include an alkyl group, a cycloalkyl group, an aryl group, an amino group, an amide group, a ureido group, a urethane group, a hydroxyl group, a carboxyl group, a halogen atom, an alkoxy group, a thioether group, an acyl group, and an acyloxy group.
  • These substituents preferably have 8 or less carbon atoms.
  • a structure in which a plurality of repeating units represented by the general formula (A) are bonded at the portion of the group Y that is eliminated by the action of an acid may be used.
  • a structure represented by the following general formula (B) is more preferable.
  • L 1 and L 2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group.
  • M represents a single bond or a divalent linking group.
  • Q represents an alkyl group, a cycloalkyl group, a cycloaliphatic group, an aromatic ring group, an amino group, an ammonium group, a mercapto group, a cyano group, or an aldehyde group.
  • these cycloaliphatic groups and aromatic ring groups may contain a hetero atom.
  • at least two of Q, M, and L 1 may be bonded to each other to form a 5-membered or 6-membered ring.
  • the alkyl group as L 1 and L 2 is, for example, an alkyl group having 1 to 8 carbon atoms, and specifically includes a methyl group, an ethyl group, a propyl group, an n-butyl group, a sec-butyl group, a hexyl group, and An octyl group is mentioned.
  • the cycloalkyl group as L 1 and L 2 is, for example, a cycloalkyl group having 3 to 15 carbon atoms, and specific examples include a cyclopentyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group.
  • the aryl group as L 1 and L 2 is, for example, an aryl group having 6 to 15 carbon atoms, and specific examples include a phenyl group, a tolyl group, a naphthyl group, and an anthryl group.
  • the aralkyl group as L 1 and L 2 is, for example, an aralkyl group having 6 to 20 carbon atoms, and specific examples include a benzyl group and a phenethyl group.
  • the divalent linking group as M is, for example, an alkylene group (for example, methylene group, ethylene group, propylene group, butylene group, hexylene group or octylene group), cycloalkylene group (for example, cyclopentylene group or cyclohexylene group). ), Alkenylene group (for example, ethenylene group, propenylene group or butenylene group), arylene group (for example, phenylene group, tolylene group or naphthylene group), -S-, -O-, -CO-, -SO 2 -,- N (R 0 ) — or a combination of two or more thereof.
  • alkylene group for example, methylene group, ethylene group, propylene group, butylene group, hexylene group or octylene group
  • cycloalkylene group for example, cyclopentylene group or cyclohexylene group.
  • R 0 is a hydrogen atom or an alkyl group.
  • the alkyl group as R 0 is, for example, an alkyl group having 1 to 8 carbon atoms, and specifically includes a methyl group, an ethyl group, a propyl group, an n-butyl group, a sec-butyl group, a hexyl group, and an octyl group. Can be mentioned.
  • the alkyl group and cycloalkyl group as Q are the same as the above-described groups as L 1 and L 2 .
  • Examples of the cycloaliphatic group or aromatic ring group as Q include the cycloalkyl group and aryl group as L 1 and L 2 described above. These cycloalkyl group and aryl group are preferably groups having 3 to 15 carbon atoms.
  • Examples of the cycloaliphatic group or aromatic ring group containing a hetero atom as Q include thiirane, cyclothiolane, thiophene, furan, pyrrole, benzothiophene, benzofuran, benzopyrrole, triazine, imidazole, benzimidazole, triazole, thiadiazole, And groups having a heterocyclic structure such as thiazole and pyrrolidone. However, it is not limited to these as long as it is a ring formed of carbon and a heteroatom, or a ring formed of only a heteroatom.
  • Examples of the ring structure that can be formed by bonding at least two of Q, M, and L 1 to each other include a 5-membered or 6-membered ring structure in which these form a propylene group or a butylene group. This 5-membered or 6-membered ring structure contains an oxygen atom.
  • Each group represented by L 1 , L 2 , M and Q in the general formula (2) may have a substituent.
  • substituents examples include an alkyl group, a cycloalkyl group, an aryl group, an amino group, an amide group, a ureido group, a urethane group, a hydroxyl group, a carboxyl group, a halogen atom, an alkoxy group, a thioether group, an acyl group, and an acyloxy group. , Alkoxycarbonyl group, cyano group and nitro group. These substituents preferably have 8 or less carbon atoms.
  • the group represented by — (MQ) is preferably a group having 1 to 30 carbon atoms, and more preferably a group having 5 to 20 carbon atoms.
  • the content of the repeating unit represented by the general formula (A) in the resin (B) is preferably in the range of 10 to 90 mol%, more preferably 10 to 70 mol%, based on all repeating units. And particularly preferably within the range of 20 to 60 mol%.
  • Other preferred resins include resins having a repeating unit represented by the following general formula (X).
  • Xa 1 represents a hydrogen atom, a methyl group, a trifluoromethyl group or a hydroxymethyl group.
  • T represents a single bond or a divalent linking group.
  • Rx 1 to Rx 3 each independently represents a linear or branched alkyl group, or a monocyclic or polycyclic cycloalkyl group. Note that at least two of Rx 1 to Rx 3 may be bonded to each other to form a monocyclic or polycyclic cycloalkyl group.
  • the divalent linking group as T include an alkylene group, a — (COO—Rt) — group, and a — (O—Rt) — group.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T is preferably a single bond or a — (COO—Rt) — group.
  • Rt is preferably an alkylene group having 1 to 5 carbon atoms, more preferably a —CH 2 — group, a — (CH 2 ) 2 — group, or a — (CH 2 ) 3 — group.
  • the alkyl group as Rx 1 to Rx 3 is preferably an alkyl group having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and t-butyl group. It is.
  • the cycloalkyl group as Rx 1 to Rx 3 is preferably a monocyclic cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, or a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group and an adamantyl group.
  • Examples of the cycloalkyl group that can be formed by combining two of Rx 1 to Rx 3 with each other include a monocyclic cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, or a norbornyl group, a tetracyclodecanyl group, and a tetracyclododecanyl group And polycyclic cycloalkyl groups such as an adamantyl group are preferred.
  • a monocyclic cycloalkyl group having 5 to 6 carbon atoms is particularly preferable.
  • Rx 1 is a methyl group or an ethyl group
  • Rx 2 and Rx 3 are bonded to each other to form the above-described cycloalkyl group
  • Each of the above groups may have a substituent.
  • the substituent include an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group (1 to 4 carbon atoms), a carboxyl group, Examples thereof include alkoxycarbonyl groups (having 2 to 6 carbon atoms), and those having 8 or less carbon atoms are preferred.
  • Specific examples of the repeating unit having an acid-decomposable group are shown below, but the present invention is not limited thereto.
  • the content of the repeating unit represented by the general formula (X) in the resin is preferably in the range of 3 to 90 mol%, more preferably in the range of 5 to 80 mol% with respect to all the repeating units. And particularly preferably in the range of 7 to 70 mol%.
  • the content of the group capable of decomposing with an acid is determined by the formula B according to the number of groups (B) capable of decomposing with an acid in the resin and the number of alkali-soluble groups not protected by a group capable of leaving with an acid (S). / (B + S). This content is preferably 0.01 to 0.7, more preferably 0.05 to 0.50, and still more preferably 0.05 to 0.40.
  • the resin When the composition of the present invention is irradiated with ArF excimer laser light, the resin preferably has a monocyclic or polycyclic alicyclic hydrocarbon structure.
  • alicyclic hydrocarbon-based acid-decomposable resin examples include a repeating unit having a partial structure containing an alicyclic hydrocarbon represented by the following general formulas (pI) to (pV), and the following general formula (II- A resin containing at least one selected from the group consisting of repeating units represented by AB) is preferred.
  • R 11 represents a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group or a sec-butyl group
  • Z represents an atom necessary for forming a cycloalkyl group together with a carbon atom.
  • R 12 to R 16 each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms or a cycloalkyl group. However, at least one of R 12 to R 14 represents a cycloalkyl group. Moreover, any of R 15 and R 16 represents a cycloalkyl group.
  • R 17 to R 21 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a cycloalkyl group. However, at least one of R 17 to R 21 represents a cycloalkyl group. Further, any one of R 19 and R 21 represents a linear or branched alkyl group or cycloalkyl group having 1 to 4 carbon atoms.
  • R 22 to R 25 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a cycloalkyl group. However, at least one of R 22 to R 25 represents a cycloalkyl group.
  • R 23 and R 24 may be bonded to each other to form a ring structure.
  • R 11 ′ and R 12 ′ each independently represents a hydrogen atom, a cyano group, a halogen atom or an alkyl group.
  • Z ′ represents an atomic group necessary for forming an alicyclic structure with two bonded carbon atoms (C—C).
  • the general formula (II-AB) is more preferably the following general formula (II-AB1) or general formula (II-AB2).
  • R 13 ′ to R 16 ′ each independently represents a hydrogen atom, a halogen atom, a cyano group, a hydroxyl group, —COOH, —COOR 5 , a group capable of decomposing by the action of an acid, —C ( ⁇ O) —XA ′ —R 17 ′ represents an alkyl group or a cycloalkyl group.
  • R 5 represents an alkyl group, a cycloalkyl group, or a group having a lactone structure.
  • X represents an oxygen atom, a sulfur atom, -NH -, - NHSO 2 - or an -NHSO 2 NH-.
  • a ′ represents a single bond or a divalent linking group.
  • R 17 ′ represents —COOH, —COOR 5 , —CN, a hydroxyl group, an alkoxy group, —CO—NH—R 6 , —CO—NH—SO 2 —R 6 or a group having a lactone structure.
  • R 6 represents an alkyl group or a cycloalkyl group. Note that at least two of R 13 ′ to R 16 ′ may be bonded to each other to form a ring structure.
  • n represents 0 or 1.
  • the alkyl group in R 12 to R 25 is preferably a linear or branched alkyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, or a propyl group. , N-butyl group, sec-butyl group and t-butyl group.
  • the cycloalkyl group in R 12 to R 25 or the cycloalkyl group formed by Z and a carbon atom may be a monocyclic cycloalkyl group or a polycyclic cycloalkyl group. Specific examples include groups having a monocyclo, bicyclo, tricyclo, or tetracyclo structure having 5 or more carbon atoms.
  • the carbon number is preferably 6 to 30, and particularly preferably 7 to 25.
  • Preferred cycloalkyl groups include, for example, adamantyl group, noradamantyl group, decalin residue, tricyclodecanyl group, tetracyclododecanyl group, norbornyl group, cedrol group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group. Group, cyclodecanyl group and cyclododecanyl group.
  • an adamantyl group, a norbornyl group, a cyclohexyl group, a cyclopentyl group, a tetracyclododecanyl group, and a tricyclodecanyl group are exemplified.
  • These alkyl groups and cycloalkyl groups may have a substituent.
  • the substituent include an alkyl group (C1-4), a halogen atom, a hydroxyl group, an alkoxy group (C1-4), a carboxyl group, and an alkoxycarbonyl group (C2-6). These substituents may have further substituents.
  • a hydroxyl group, a halogen atom, and an alkoxy group are mentioned, for example.
  • the structures represented by the general formulas (pI) to (pV) can be used for protecting alkali-soluble groups.
  • the alkali-soluble group include various groups known in this technical field. Specific examples include a structure in which hydrogen atoms such as a carboxylic acid group, a sulfonic acid group, a phenol group, and a thiol group are substituted with structures represented by the general formulas (pI) to (pV).
  • a structure in which a hydrogen atom of a carboxylic acid group or a sulfonic acid group is substituted with a structure represented by general formulas (pI) to (pV) is preferable.
  • a repeating unit having an alkali-soluble group protected by the structure represented by the general formulas (pI) to (pV) a repeating unit represented by the following general formula (pA) is preferable.
  • R represents a hydrogen atom, a halogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • Each of the plurality of Rs may be the same as or different from each other.
  • A is selected from the group consisting of a single bond, an alkylene group, an ether group, a thioether group, a carbonyl group, an ester group, an amide group, a sulfonamide group, a urethane group, a urea group, and combinations of two or more thereof, preferably It is a single bond.
  • Rp 1 is a group represented by any one of the general formulas (pI) to (pV).
  • the repeating unit represented by the general formula (pA) is most preferably a repeating unit of 2-alkyl-2-adamantyl (meth) acrylate or dialkyl (1-adamantyl) methyl (meth) acrylate.
  • Specific examples of the repeating unit represented by the general formula (pA) include those exemplified above as the repeating unit represented by the general formula (X), and are represented by the general formula (pA). Specific examples of other repeating units are shown below.
  • Rx represents H, CH 3 , CF 3 or CH 2 OH
  • Rxa and Rxb each independently represents an alkyl group having 1 to 4 carbon atoms.
  • the halogen atom as R 11 ′ or R 12 ′ in formula (II-AB) is, for example, a chlorine atom, a bromine atom, a fluorine atom or an iodine atom.
  • the alkyl group as R 11 ′ or R 12 ′ is preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a linear group Or a branched butyl group, a pentyl group, a hexyl group, and a heptyl group are mentioned.
  • the atomic group represented by Z ′ is an atomic group that forms a repeating unit of an alicyclic hydrocarbon which may have a substituent in the resin. As this atomic group, those forming a repeating unit of a bridged alicyclic hydrocarbon are preferable.
  • Examples of the skeleton of the alicyclic hydrocarbon formed include those similar to the cycloalkyl groups represented by R 12 to R 25 in the general formulas (pI) to (pVI).
  • the alicyclic hydrocarbon skeleton may have a substituent. Examples of such a substituent include R 13 ′ to R 16 ′ in the above general formulas (II-AB1) and (II-AB2).
  • the group capable of decomposing by the action of an acid is a repeating unit having a partial structure containing an alicyclic hydrocarbon represented by the above general formula (pI) to general formula (pV)
  • it can be contained in at least one of the repeating unit represented by formula (II-AB) and the repeating unit of the copolymerization component described later.
  • Each substituent of R 13 ′ to R 16 ′ in the general formulas (II-AB1) and (II-AB2) is an alicyclic structure or a bridged alicyclic structure in the general formula (II-AB). It can also be a substituent of the atomic group Z ′ to form.
  • Specific examples of the repeating unit represented by the general formula (II-AB1) or (II-AB2) include the following specific examples, but the present invention is not limited to these examples.
  • the resin (B) preferably has a repeating unit containing a lactone group.
  • This lactone group is preferably a group having a 5- to 7-membered ring lactone structure, and in particular, other ring structures are condensed to form a bicyclo structure or a spiro structure in the 5- to 7-membered ring lactone structure. Is preferred.
  • This resin (B) more preferably contains a repeating unit having a group containing a lactone structure represented by any one of the following general formulas (LC1-1) to (LC1-17).
  • the group having a lactone structure may be directly bonded to the main chain.
  • Preferred lactone structures include (LC1-1), (LC1-4), (LC1-5), (LC1-6), (LC1-13), (LC1-14) and (LC1-17). .
  • the lactone structure portion may or may not have a substituent (Rb 2 ).
  • Preferred examples of the substituent (Rb 2 ) include, for example, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, Examples include a carboxyl group, a halogen atom, a hydroxyl group, a cyano group, and an acid-decomposable group.
  • n 2 represents an integer of 0 to 4. When n 2 is an integer of 2 or more, a plurality of Rb 2 may be the same or different from each other.
  • a plurality of Rb 2 may be bonded to each other to form a ring structure.
  • the repeating unit having a group containing a lactone structure represented by any of the general formulas (LC1-1) to (LC1-17) include those in the general formulas (II-AB1) and (II-AB2) above.
  • at least one of R 13 ′ to R 16 ′ has a group represented by the general formulas (LC1-1) to (LC1-17), and a repeating unit represented by the following general formula (AI) Is mentioned.
  • the former include structures in which R 5 of —COOR 5 is a group represented by general formulas (LC1-1) to (LC1-17).
  • Rb 0 represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group as Rb 0 is, for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, a sec-butyl group or a t-butyl group.
  • These alkyl groups may have a substituent. Examples of this substituent include a hydroxyl group and a halogen atom.
  • the halogen atom for Rb 0 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Rb 0 is preferably a hydrogen atom or a methyl group.
  • Ab represents an alkylene group, a divalent linking group having a monocyclic or polycyclic alicyclic hydrocarbon structure, a single bond, an ether group, an ester group, a carbonyl group, or a combination thereof.
  • Ab is preferably a single bond or a linking group represented by —Ab 1 —CO 2 —.
  • Ab 1 is a linear or branched alkylene group or a monocyclic or polycyclic cycloalkylene group, preferably a methylene group, an ethylene group, a cyclohexylene group, an adamantylene group or a norbornylene group.
  • V is a group represented by any one of the general formulas (LC1-1) to (LC1-17).
  • the repeating unit having a lactone structure usually has an optical isomer, but any optical isomer may be used.
  • One optical isomer may be used alone, or a plurality of optical isomers may be mixed and used.
  • the optical purity thereof is preferably 90% ee or more, more preferably 95% ee or more.
  • Particularly preferred repeating units having a lactone group include the following repeating units. By selecting an optimal lactone group, the pattern profile and the density dependency are improved.
  • Rx and R represent H, CH 3 , CH 2 OH or CF 3 .
  • the resin (B) may contain a plurality of repeating units containing a lactone group.
  • a lactone group (1) one in which Ab is a single bond and one in which —Ab 1 —CO 2 — is used in general formula (AI) are used, and (2) in general formula (AI), Ab is —Ab 1 Either one of -CO 2- is used in combination.
  • the repeating unit containing a lactone group is preferably 3 to 70 mol% in the total repeating units of the resin (B) (when there are repeating units containing a plurality of lactone groups, the sum thereof). More preferably, it is ⁇ 60 mol%.
  • the resin (B) preferably has a repeating unit containing an alicyclic hydrocarbon structure substituted with a polar group.
  • a hydroxyl group or a cyano group is preferable.
  • the hydroxyl group as a polar group forms an alcoholic hydroxyl group.
  • Examples of the alicyclic hydrocarbon structure substituted with a polar group include structures represented by the following general formula (VIIa) or (VIIb).
  • R 2 c to R 4 c each independently represents a hydrogen atom, a hydroxyl group, or a cyano group. However, at least one of R 2 c to R 4 c represents a hydroxyl group or a cyano group. Preferably, one or two of R 2 c to R 4 c are a hydroxyl group and the remaining is a hydrogen atom. More preferably, two of R 2 c to R 4 c are hydroxyl groups and the remaining one is a hydrogen atom.
  • the group represented by the general formula (VIIa) is preferably a dihydroxy body or a monohydroxy body, and more preferably a dihydroxy body.
  • the repeating unit having a group represented by the general formula (VIIa) or (VIIb) includes at least one of R 13 ′ to R 16 ′ in the general formula (II-AB1) or (II-AB2). Examples thereof include those having a group represented by the general formula (VIIa) or (VIIb) and repeating units represented by the following general formula (AIIa) or (AIIb). Examples of the former include structures in which R 5 of —COOR 5 is a group represented by the general formula (VIIa) or (VIIb).
  • R 1 c represents a hydrogen atom, a methyl group, a trifluoromethyl group, or a hydroxymethyl group.
  • R 2 c to R 4 c have the same meanings as R 2 c to R 4 c in formula (VIIa).
  • Specific examples of the repeating unit represented by the general formula (AIIa) or (AIIb) are shown below, but the present invention is not limited thereto.
  • the above repeating unit is preferably 3 to 30 mol%, preferably 5 to 25 mol% in the total repeating units of the resin (B) (as a sum of the corresponding repeating units, if any). Is more preferable.
  • the resin of the present invention may have a hydroxyl- or cyano group and a stable repeating unit with respect to an acid. More specific examples of this unit include repeating units having a non-acid-decomposable aryl structure or cycloalkyl structure in the side chain of the acrylic structure, as exemplified below as a general formula. By having this structure, adjustment of contrast, improvement in etching resistance, and the like can be expected.
  • This repeating unit may be introduced into the above-described resin having a hydroxystyrene repeating unit or may be introduced into the alicyclic hydrocarbon-based acid-decomposable resin, but is introduced into the alicyclic hydrocarbon-based acid-decomposable resin. When it is, it is preferable not to contain an aromatic ring structure from the viewpoint of absorption of 193 nm light.
  • R 5 represents a hydrocarbon group.
  • Ra represents a hydrogen atom, an alkyl group (preferably a methyl group), a hydroxyalkyl group (preferably a hydroxymethyl group), or a trifluoromethyl group.
  • the hydrocarbon group for R 5 preferably has a cyclic structure therein. Specific examples in the case of having a cyclic structure include a monocyclic or polycyclic cycloalkyl group (preferably having 3 to 12 carbon atoms, more preferably 3 to 7 carbon atoms), a monocyclic or polycyclic cycloalkenyl group (carbon number).
  • the cycloalkyl group includes a ring assembly hydrocarbon group and a bridged cyclic hydrocarbon group.
  • the bridged cyclic hydrocarbon ring includes a bicyclic hydrocarbon ring, a tricyclic hydrocarbon ring, and a tetracyclic hydrocarbon ring.
  • the bridged cyclic hydrocarbon ring also includes a condensed ring in which a plurality of 5- to 8-membered cycloalkane rings are condensed, for example.
  • Preferred examples of the bridged cyclic hydrocarbon ring include a norbornyl group, an adamantyl group, a bicyclooctanyl group, a tricyclo [5,2,1,0 2,6 ] decanyl group, and the like. More preferable examples of the bridged cyclic hydrocarbon ring include a norbornyl group and an adamantyl group.
  • aryl group examples include a phenyl group, a naphthyl group, and a biphenyl group
  • aralkyl group examples include a phenylmethyl group, a phenylethyl group, and a naphthylmethyl group.
  • hydrocarbon groups may have a substituent, and preferred substituents include a halogen atom, an alkyl group, a hydroxyl group protected with a protecting group, an amino group protected with a protecting group, and the like.
  • Preferred halogen atoms include bromine, chlorine and fluorine atoms
  • preferred alkyl groups include methyl, ethyl, butyl and t-butyl groups.
  • the above alkyl group may further have a substituent, and the substituent which may further have a halogen atom, an alkyl group, a hydroxyl group protected with a protecting group, an amino protected with a protecting group
  • the group can be mentioned.
  • the protecting group include an alkyl group, a cycloalkyl group, an aralkyl group, a substituted methyl group, a substituted ethyl group, an alkoxycarbonyl group, and an aralkyloxycarbonyl group.
  • Preferred alkyl groups include alkyl groups having 1 to 4 carbon atoms
  • preferred substituted methyl groups include methoxymethyl, methoxythiomethyl, benzyloxymethyl, t-butoxymethyl, 2-methoxyethoxymethyl groups, and preferred substituted ethyl groups.
  • 1-ethoxyethyl, 1-methyl-1-methoxyethyl, preferable acyl groups include aliphatic acyl groups having 1 to 6 carbon atoms such as formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl and pivaloyl groups, alkoxycarbonyl Examples of the group include an alkoxycarbonyl group having 1 to 4 carbon atoms.
  • the resin (B) may or may not contain the repeating unit represented by the general formula (III), but when it is contained, the content of the repeating unit represented by the general formula (III) is The content is preferably 1 to 40 mol%, more preferably 1 to 20 mol%, based on all repeating units in the resin (B). Specific examples of the repeating unit represented by the general formula (III) are shown below, but the present invention is not limited thereto.
  • Ra represents H, CH 3 , CH 2 OH, or CF 3 .
  • the resin (B) may or may not contain the above repeating unit. However, when it is contained, the above repeating unit is (as a sum of those when there are a plurality of corresponding repeating units) of the resin.
  • the total repeating unit is preferably 1 to 30 mol%, more preferably 1 to 20 mol%.
  • the resin (B) may have a repeating unit represented by the following general formula (VIII).
  • Z 2 represents —O— or —N (R 41 ) —.
  • R 41 represents a hydrogen atom, a hydroxyl group, an alkyl group, or —OSO 2 —R 42 .
  • R 42 represents an alkyl group, a cycloalkyl group or a camphor residue.
  • the alkyl group as R 41 or R 42 may be substituted with a halogen atom or the like.
  • the halogen atom is preferably a fluorine atom.
  • Examples of the repeating unit represented by formula (VIII) include the following specific examples, but the present invention is not limited thereto.
  • the resin (B) preferably has a repeating unit containing an alkali-soluble group, and more preferably has a repeating unit containing a carboxyl group.
  • the repeating unit containing a carboxyl group any of a repeating unit in which a carboxyl group is directly bonded to the main chain of the resin and a repeating unit in which a carboxyl group is bonded to the main chain of the resin via a linking group preferable.
  • a repeating unit by acrylic acid or methacrylic acid can be mentioned.
  • the linking group in the latter may have a monocyclic or polycyclic cycloalkyl structure.
  • the repeating unit containing a carboxyl group is most preferably a repeating unit of acrylic acid or methacrylic acid.
  • the weight average molecular weight of the resin that decomposes by the action of an acid and increases the solubility in an alkaline developer is preferably in the range of 2,000 to 200,000 as a polystyrene conversion value determined by the GPC method. By setting the weight average molecular weight to 2,000 or more, heat resistance and dry etching resistance can be particularly improved. When the weight average molecular weight is 200,000 or less, the developability can be particularly improved, and the film forming property can also be improved due to the decrease in the viscosity of the composition.
  • a more preferred molecular weight is in the range of 2,500 to 50,000, and even more preferably in the range of 3,000 to 20,000.
  • the weight average molecular weight is most preferably in the range of 3,000 to 10,000.
  • tBu represents a t-butyl group.
  • the blending ratio of the resin (B) in the composition according to the present invention is preferably 5 to 99.9% by mass, more preferably 50 to 95% by mass, and 60 to 93% by mass based on the total solid content. Is more preferable.
  • the negative actinic ray-sensitive or radiation-sensitive resin composition of the present invention may contain an alkali-soluble resin (C) and, if necessary, a crosslinking agent (D).
  • the alkali dissolution rate of the alkali-soluble resin (C) is preferably 2 nm / second or more as measured (23 ° C.) using a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution. Particularly preferably, this rate is 20 nm / second or more.
  • alkali-soluble resins examples include novolak resins, hydrogenated novolak resins, acetone-pyrogallol resins, o-polyhydroxystyrene, m-polyhydroxystyrene, p-polyhydroxystyrene, hydrogenated polyhydroxystyrene, halogen or alkyl-substituted poly.
  • Hydroxystyrene hydroxystyrene-N-substituted maleimide copolymer, o / p- and m / p-hydroxystyrene copolymer, partially O-alkylated product of hydroxyl group of polyhydroxystyrene (for example, 5-30 mol% O-methylated product, O- (1-methoxy) ethylated product, O- (1-ethoxy) ethylated product, O-2-tetrahydropyranylated product or O- (t-butoxycarbonyl) methylated product) or O-acylated product (Eg 5-30 mol% O-acetylated product or -(T-butoxy) carbonylated), styrene-maleic anhydride copolymer, styrene-hydroxystyrene copolymer, ⁇ -methylstyrene-hydroxystyrene copolymer, carboxyl group-containing me
  • Preferred alkali-soluble resins include novolak resins, o-polyhydroxystyrene, m-polyhydroxystyrene, p-polyhydroxystyrene and copolymers thereof, alkyl-substituted polyhydroxystyrene, and partially O-alkylated polyhydroxystyrene. Or an O-acylated product, a styrene-hydroxystyrene copolymer, and an ⁇ -methylstyrene-hydroxystyrene copolymer. In particular, in the present invention, a resin having a hydroxystyrene structure is preferable.
  • the novolak resin is obtained by subjecting a predetermined monomer as a main component to addition condensation with an aldehyde in the presence of an acidic catalyst.
  • the weight average molecular weight of the alkali-soluble resin is preferably 2000 or more, more preferably 5000 to 200000, and further preferably 5000 to 100,000.
  • the weight average molecular weight is defined by a polystyrene conversion value obtained by GPC (gel permeation chromatography).
  • These alkali-soluble resins (C) in the present invention may be used in combination of two or more.
  • the content of the alkali-soluble resin (C) is preferably 40 to 97% by mass, more preferably 60 to 90% by mass, based on the total solid content in the composition.
  • the negative active light-sensitive or radiation-sensitive resin composition of the present invention may further contain an acid cross-linking agent (D).
  • the acid crosslinking agent (D) any compound that crosslinks the alkali-soluble resin (C) by the action of an acid can be used, but the following (1) to (3) are preferable.
  • a compound having an epoxy group The alkoxymethyl group preferably has 6 or less carbon atoms, and the acyloxymethyl group preferably has 6 or less carbon atoms.
  • these crosslinking agents particularly preferred are listed below.
  • L 1 to L 8 each independently represent a hydrogen atom, a hydroxymethyl group, an alkoxymethyl group (preferably a methoxymethyl group or an ethoxymethyl group), or an alkyl group having 1 to 6 carbon atoms.
  • the crosslinking agent is preferably used in an amount of 3 to 70% by mass, more preferably 5 to 50% by mass, based on the total solid content of the actinic ray-sensitive or radiation-sensitive resin composition.
  • Dissolution-inhibiting compound having a molecular weight of 3000 or less, which is decomposed by the action of an acid to increase the solubility in an alkali developer.
  • the positive actinic ray-sensitive or radiation-sensitive resin composition of the present invention further comprises an acid It may contain a dissolution inhibiting compound having a molecular weight of 3000 or less (hereinafter also referred to as “dissolution inhibiting compound”) that decomposes by action to increase the solubility in an alkaline developer.
  • This dissolution inhibiting compound contains an acid-decomposable group such as a cholic acid derivative containing an acid-decomposable group described in Proceeding of SPIE, 2724, 355 (1996) so as not to lower the permeability of 220 nm or less.
  • Preferred are alicyclic or aliphatic compounds.
  • Examples of the acid-decomposable group include the same groups as those described above for the acid-decomposable unit.
  • the dissolution inhibiting compound is a compound containing a structure in which the phenolic hydroxyl group of the phenol compound is substituted with an acid-decomposable group.
  • the phenol compound preferably contains 1 to 9 phenol skeletons, more preferably 2 to 6 phenol skeletons.
  • the addition amount of the dissolution inhibiting compound is preferably 3 to 50% by mass, more preferably 5 to 40% by mass, based on the total solid content of the composition. Specific examples of the dissolution inhibiting compound are shown below, but the present invention is not limited thereto.
  • the positive type or negative type actinic ray-sensitive or radiation-sensitive resin composition according to the present invention comprises a basic compound, an organic solvent, a surfactant, a dye, a plasticizer, a photosensitizer, and a development. It may further contain a compound that promotes dissolution in liquid, a compound having a proton acceptor functional group, and the like.
  • the composition according to the present invention may further contain a basic compound. When a basic compound is further contained, it is possible to further reduce the change in performance over time between exposure and heating (post-bake). This also makes it possible to control the diffusibility of the acid generated by exposure in the film.
  • This basic compound is preferably a nitrogen-containing organic compound.
  • the compound that can be used is not particularly limited, and for example, compounds classified into the following (1) to (5) can be used.
  • Each R independently represents a hydrogen atom or an organic group. However, at least one of the three Rs is an organic group.
  • This organic group is a linear or branched alkyl group, a monocyclic or polycyclic cycloalkyl group, an aryl group or an aralkyl group.
  • the number of carbon atoms of the alkyl group as R is not particularly limited, but is usually 1 to 20, and preferably 1 to 12.
  • the number of carbon atoms of the cycloalkyl group as R is not particularly limited, but is usually 3 to 20, and preferably 5 to 15.
  • the number of carbon atoms of the aryl group as R is not particularly limited, but is usually 6 to 20, and preferably 6 to 10.
  • a phenyl group and a naphthyl group include a phenyl group and a naphthyl group.
  • the number of carbon atoms of the aralkyl group as R is not particularly limited, but is usually 7 to 20, and preferably 7 to 11.
  • Specific examples include a benzyl group.
  • a hydrogen atom may be substituted with a substituent.
  • the substituent include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a hydroxyl group, a carboxy group, an alkoxy group, an aryloxy group, an alkylcarbonyloxy group, and an alkyloxycarbonyl group.
  • at least two of R are preferably organic groups.
  • Specific examples of the compound represented by the general formula (BS-1) include tri-n-butylamine, tri-n-pentylamine, tri-n-octylamine, tri-n-decylamine, triisodecylamine, and dicyclohexyl.
  • preferred basic compounds represented by the general formula (BS-1) include those in which at least one R is an alkyl group substituted with a hydroxyl group. Specific examples include triethanolamine and N, N-dihydroxyethylaniline.
  • the alkyl group as R may have an oxygen atom in the alkyl chain. That is, an oxyalkylene chain may be formed.
  • the oxyalkylene chain —CH 2 CH 2 O— is preferable.
  • tris (methoxyethoxyethyl) amine and compounds exemplified in the 60th and subsequent lines of column 3 of US6040112 can be mentioned.
  • This nitrogen-containing heterocyclic ring may have aromaticity or may not have aromaticity. Moreover, you may have two or more nitrogen atoms. Furthermore, you may contain hetero atoms other than nitrogen. Specifically, for example, compounds having an imidazole structure (2-phenylbenzimidazole, 2,4,5-triphenylimidazole, etc.), compounds having a piperidine structure [N-hydroxyethylpiperidine and bis (1,2,2 , 6,6-pentamethyl-4-piperidyl) sebacate], compounds having a pyridine structure (such as 4-dimethylaminopyridine), and compounds having an antipyrine structure (such as antipyrine and hydroxyantipyrine).
  • a compound having two or more ring structures is also preferably used. Specific examples include 1,5-diazabicyclo [4.3.0] non-5-ene and 1,8-diazabicyclo [5.4.0] -undec-7-ene.
  • An amine compound having a phenoxy group is a compound having a phenoxy group at the terminal opposite to the N atom of the alkyl group contained in the amine compound.
  • the phenoxy group is, for example, a substituent such as an alkyl group, an alkoxy group, a halogen atom, a cyano group, a nitro group, a carboxy group, a carboxylic acid ester group, a sulfonic acid ester group, an aryl group, an aralkyl group, an acyloxy group, and an aryloxy group. You may have.
  • This compound more preferably has at least one oxyalkylene chain between the phenoxy group and the nitrogen atom.
  • the number of oxyalkylene chains in one molecule is preferably 3 to 9, and more preferably 4 to 6.
  • —CH 2 CH 2 O— is particularly preferable.
  • Specific examples include 2- [2- ⁇ 2- (2,2-dimethoxy-phenoxyethoxy) ethyl ⁇ -bis- (2-methoxyethyl)]-amine, and paragraph [0066] of US2007 / 0224539A1. And compounds (C1-1) to (C3-3) exemplified in the above.
  • Ammonium salts can also be used as appropriate.
  • This ammonium salt is preferably a hydroxide or a carboxylate. More specifically, tetraalkylammonium hydroxide such as tetrabutylammonium hydroxide is preferable.
  • compounds that can be used in the positive-type or negative-type actinic ray-sensitive or radiation-sensitive resin composition according to the present invention compounds synthesized in Examples of JP-A No. 2002-363146, and JP-A No. 2007 And the compounds described in paragraph 0108 of JP-A No. 298569.
  • you may use a photosensitive basic compound as a basic compound. Examples of the photosensitive basic compound include Japanese Patent Application Publication No.
  • the molecular weight of the basic compound is preferably 250 to 2000, and more preferably 400 to 1000. These basic compounds are used alone or in combination of two or more.
  • the content of the basic compound is preferably 0.01 to 8.0% by mass, more preferably 0.1 to 5.0% by mass, based on the total solid content of the composition. It is particularly preferably 2 to 4.0% by mass.
  • Compounds having an amine oxide structure Compounds having an amine oxide structure represented by the following general formulas (1) to (3) are preferred, but are not limited to these and have a structure in which a nitrogen atom is oxidized. Any nitrogen-containing organic compound can be used.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, Represents an aralkyl group having 7 to 20 carbon atoms, a hydroxyalkyl group having 2 to 10 carbon atoms, an alkoxyalkyl group having 2 to 10 carbon atoms, an acyloxyalkyl group having 3 to 10 carbon atoms, or an alkylthioalkyl group having 1 to 10 carbon atoms. . Further, any two of R 1 , R 2 and R 3 may be bonded to form a ring structure or an aromatic ring.
  • R 4 represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an alkoxy having 2 to 10 carbon atoms.
  • An alkyl group, a hydroxyalkyl group having 2 to 10 carbon atoms, or an acyloxyalkyl group having 3 to 10 carbon atoms is represented.
  • R 5 represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
  • aryl group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a naphthacenyl group, and a fluorenyl group.
  • cyclic alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, a decyl group, a cyclopentyl group, and a cyclohexyl group.
  • the decahydronaphthalenyl group is an aralkyl group having 7 to 20 carbon atoms, specifically a benzyl group, a phenethyl group, a phenylpropyl group, a naphthylmethyl group, a naphthylethyl group, or an anthracenylmethyl group.
  • Specific examples of the 2-10 hydroxyalkyl group include a hydroxymethyl group, a hydroxyethyl group, and a hydroxy group.
  • the propyl group is an alkoxyalkyl group having 2 to 10 carbon atoms such as a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, an isopropoxymethyl group, a butoxymethyl group, an isobutoxymethyl group, and a t-butoxymethyl group.
  • T-amyloxymethyl group, cyclohexyloxymethyl group, and cyclopentyloxymethyl group as acyloxyalkyl groups having 3 to 10 carbon atoms, specifically, formyloxymethyl group, acetoxymethyl group, propionyloxymethyl group, butyryl
  • an oxymethyl group, pivaloyloxymethyl group, cyclohexanecarbonyloxymethyl group, decanoyloxymethyl group is an alkylthioalkyl group having 1 to 10 carbon atoms, specifically, a methylthiomethyl group, an ethylthiomethyl group, a propylthio group.
  • Methyl group, isop Examples include a pyrthiomethyl group, a butylthiomethyl group, an isobutylthiomethyl group, a t-butylthiomethyl group, a t-amylthiomethyl group, a decylthiomethyl group, and a cyclohexylthiomethyl group, but the present invention is not limited thereto. It is not something.
  • the presence of a functional group substituted by a nitrogen atom enables rapid capture of the generated acid, while the structure in which the nitrogen atom is oxidized It is expected to affect the distribution in the resist film, and as a result, it is considered that high resolution and excellent pattern shape can be achieved in the photoresist to which the compound having the amine oxide structure is added. It is done.
  • the volatility, basicity, acid capture speed, diffusion speed in the resist of the compound having the amine oxide structure Provides a compound additive having an amine oxide structure that can be adjusted appropriately according to the combination of resist polymer and acid generator to be used, and thus the properties of the resist material such as the pattern shape can be optimally adjusted. It is thought to be possible.
  • the amine oxide structure represented by the general formulas (1) to (3) is produced by selecting an optimum method according to the structure of the compound. Examples include a method using an oxidation reaction of a nitrogen-containing compound using an oxidizing agent, or a method using an oxidation reaction of a nitrogen-containing compound in a dilute hydrogen peroxide solution, but the present invention is limited to these. It is not a thing. These compounds having an amine oxide structure are used alone or in combination of two or more.
  • the content of the compound having an amine oxide structure is preferably 0.01 to 8.0% by mass, more preferably 0.1 to 5.0% by mass, based on the total solid content of the composition. The content is preferably 0.2 to 4.0% by mass.
  • the composition according to the present invention may further contain a surfactant.
  • a surfactant fluorine-based and / or silicon-based surfactants are particularly preferable.
  • this surfactant for example, Megafac F176 and Megafac R08 manufactured by DIC Corporation, PF656 and PF6320 manufactured by OMNOVA, Troisol S-366 manufactured by Troy Chemical Co., Ltd., and Sumitomo 3M Co., Ltd. Examples include Fluorad FC430 and polysiloxane polymer KP-341 manufactured by Shin-Etsu Chemical Co., Ltd.
  • surfactants other than fluorine-based and / or silicon-based surfactants can be used.
  • More specific examples include polyoxyethylene alkyl ethers and polyoxyethylene alkyl aryl ethers.
  • known surfactants can be used as appropriate.
  • examples of the surfactant that can be used include surfactants described in [0273] and after in US 2008 / 0248425A1. Surfactant may be used independently and may use 2 or more types together.
  • the amount of the surfactant used is preferably 0 to 2% by mass, more preferably 0.0001 to 2% by mass, and still more preferably 0.001 to 1% by mass, based on the total solid content of the composition. %.
  • solvent The solvent that can be used in preparing the composition is not particularly limited as long as it dissolves each component.
  • alkylene glycol monoalkyl ether carboxylate such as propylene glycol monomethyl ether acetate
  • alkylene glycol monoalkyl ether such as propylene glycol monomethyl ether acetate
  • alkylene glycol monoalkyl ether such as propylene glycol monomethyl ether acetate
  • alkylene glycol monoalkyl ether such as propylene glycol monomethyl ether acetate
  • alkylene glycol monoalkyl ether such as propylene glycol monomethyl ether acetate
  • alkylene glycol monoalkyl ether such as propylene glycol monomethyl ether
  • lactic acid alkyl esters such as ethyl lactate and methyl lactate
  • cyclic lactones such as ⁇ -butyrolactone, preferably 4 to 10 carbon atoms
  • chain or cyclic ketones such as 2-heptanone and cyclohexanone
  • alkylene carbonate such as ethylene carbonate and propylene carbon
  • solvents include, for example, the solvents described in US2008 / 0248425A1 [0244] and thereafter.
  • alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, and ethyl lactate are particularly preferred. These solvents may be used alone or in combination of two or more.
  • the mass ratio of the solvent having a hydroxyl group and the solvent having no hydroxyl group is usually from 1/99 to 99/1, preferably from 10/90 to 90/10, more preferably from 20/80 to 60/40. is there.
  • the solvent having a hydroxyl group is preferably alkylene glycol monoalkyl ether or alkyl lactate ester, and the solvent not having a hydroxyl group is preferably alkylene glycol monoalkyl ether carboxylate.
  • the amount of the solvent used is not particularly limited, but it is prepared so that the total solid concentration of the composition is preferably 0.5 to 30% by mass, more preferably 1.0 to 10% by mass. In particular, when performing electron beam or EUV lithography using the composition of the present invention, it is preferably 2.0 to 6.0% by mass, more preferably 2.0 to 4.5% by mass.
  • the positive-type or negative-type actinic ray-sensitive or radiation-sensitive resin composition according to the present invention is a compound that promotes dissolution in dyes, plasticizers, photosensitizers, light absorbers, and developers as required.
  • a phenol compound having a molecular weight of 1000 or less, or an alicyclic or aliphatic compound having a carboxy group can be further contained.
  • compounds having a proton acceptor functional group described in JP-A-2006-208781 and JP-A-2007-286574 can be suitably used.
  • the positive or negative actinic ray-sensitive or radiation-sensitive resin composition according to the present invention is typically used as follows. That is, the composition according to the present invention is typically applied on a support such as a substrate to form a film. The thickness of this film is preferably 0.02 to 0.1 ⁇ m. As a method of coating on the substrate, spin coating is preferable, and the rotation speed is preferably 1000 to 3000 rpm.
  • the composition can be applied to a substrate (eg, silicon / silicon dioxide coating, silicon nitride and chromium-deposited quartz substrate, etc.) used in the manufacture of precision integrated circuit elements, etc., by appropriate application such as a spinner and a coater. It is applied by the method.
  • a substrate eg, silicon / silicon dioxide coating, silicon nitride and chromium-deposited quartz substrate, etc.
  • an actinic ray-sensitive or radiation-sensitive resist film (hereinafter also referred to as a photosensitive film).
  • a known antireflection film can be applied in advance.
  • the photosensitive film is irradiated with actinic rays or radiation, preferably baked (heated), and then developed. Thereby, a good pattern can be obtained.
  • the baking temperature is preferably 80 ° C. to 150 ° C., more preferably 90 ° C. to 130 ° C. from the viewpoint of sensitivity and stability.
  • the actinic ray or radiation include infrared light, visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light, X-rays, and electron beams.
  • actinic rays or radiation for example, those having a wavelength of 250 nm or less, particularly 220 nm or less are more preferable.
  • actinic rays or radiation include KrF excimer laser (248 nm), ArF excimer laser (193 nm), F 2 excimer laser (157 nm), X-ray, EUV (13 nm), and electron beam (EB).
  • Particularly preferred actinic rays or radiation include ArF excimer laser, F 2 excimer laser, X-ray, EUV (13 nm) and electron beam (EB), and X-ray, electron beam or EUV is most preferable.
  • an immersion liquid hardly soluble film (also referred to as “top coat”) may be provided on the film between the film and the immersion liquid in order to avoid contact between the film and the immersion liquid.
  • a hydrophobic resin HR may be added in advance to the aforementioned composition.
  • This hydrophobic resin (HR) will be specifically described.
  • hydrophobic resin (HR) can be further added as needed.
  • the hydrophobic resin (HR) is unevenly distributed on the surface layer of the film, and when the immersion medium is water, the receding contact angle of the resist film surface with respect to the water when used as a film is improved, and the immersion water followability is improved. Can do.
  • the receding contact angle of the film is preferably 60 ° to 90 °, more preferably 70 ° or more.
  • Hydrophobic resin (HR) is unevenly distributed at the interface as described above, but unlike a surfactant, it does not necessarily have a hydrophilic group in the molecule, and polar / nonpolar substances should be mixed uniformly. It does not have to contribute to
  • the receding contact angle is a contact angle measured when the contact line at the droplet-substrate interface recedes, and is useful for simulating the ease of movement of the droplet in a dynamic state. It is generally known. In simple terms, it can be defined as the contact angle when the droplet interface recedes when the droplet discharged from the needle tip is deposited on the substrate and then sucked into the needle again. It can be measured by using a contact angle measuring method generally called an expansion / contraction method.
  • the hydrophobic resin (HR) preferably contains a fluorine atom or a silicon atom in order to be unevenly distributed on the film surface.
  • the fluorine atom or silicon atom in the hydrophobic resin (HR) may be contained in the main chain of the resin or may be substituted on the side chain.
  • the hydrophobic resin (HR) is preferably a resin having an alkyl group having a fluorine atom, a cycloalkyl group having a fluorine atom, or an aryl group having a fluorine atom as a partial structure having a fluorine atom.
  • the alkyl group having a fluorine atom (preferably having 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms) is a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom, It may have a substituent.
  • the cycloalkyl group having a fluorine atom is a monocyclic or polycyclic cycloalkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and may further have another substituent.
  • the aryl group having a fluorine atom include those in which at least one hydrogen atom of an aryl group such as a phenyl group or a naphthyl group is substituted with a fluorine atom, and the aryl group may further have another substituent.
  • alkyl group having a fluorine atom examples include groups represented by the following general formulas (F2) to (F4).
  • the present invention is not limited to this.
  • R 57 to R 68 each independently represents a hydrogen atom, a fluorine atom or an alkyl group. However, at least one of R 57 to R 61 , R 62 to R 64 and R 65 to R 68 is a fluorine atom or an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom (preferably having a carbon number of 1 To 4). All of R 57 to R 61 and R 65 to R 67 are preferably fluorine atoms.
  • R 62 , R 63 and R 68 are preferably an alkyl group (preferably having 1 to 4 carbon atoms) in which at least one hydrogen atom is substituted with a fluorine atom, and preferably a perfluoroalkyl group having 1 to 4 carbon atoms. Further preferred. R 62 and R 63 may be connected to each other to form a ring. Specific examples of the group represented by the general formula (F2) include a p-fluorophenyl group, a pentafluorophenyl group, and a 3,5-di (trifluoromethyl) phenyl group.
  • Specific examples of the group represented by the general formula (F3) include trifluoromethyl group, pentafluoropropyl group, pentafluoroethyl group, heptafluorobutyl group, hexafluoroisopropyl group, heptafluoroisopropyl group, hexafluoro (2 -Methyl) isopropyl group, nonafluorobutyl group, octafluoroisobutyl group, nonafluorohexyl group, nonafluoro-t-butyl group, perfluoroisopentyl group, perfluorooctyl group, perfluoro (trimethyl) hexyl group, 2,2 , 3,3-tetrafluorocyclobutyl group, perfluorocyclohexyl group and the like.
  • Hexafluoroisopropyl group, heptafluoroisopropyl group, hexafluoro (2-methyl) isopropyl group, octafluoroisobutyl group, nonafluoro-t-butyl group and perfluoroisopentyl group are preferable, and hexafluoroisopropyl group and heptafluoroisopropyl group are preferable. Further preferred.
  • Specific examples of the group represented by the general formula (F4) include, for example, —C (CF 3 ) 2 OH, —C (C 2 F 5 ) 2 OH, —C (CF 3 ) (CH 3 ) OH, —CH (CF 3 ) OH and the like can be mentioned, and —C (CF 3 ) 2 OH is preferable.
  • X 1 represents a hydrogen atom, —CH 3 , —F or —CF 3 .
  • X 2 represents —F or —CF 3 .
  • the hydrophobic resin (HR) contains a silicon atom
  • it is preferably a resin having an alkylsilyl structure (preferably a trialkylsilyl group) or a cyclic siloxane structure as a partial structure having a silicon atom.
  • alkylsilyl structure or the cyclic siloxane structure include groups represented by the following general formulas (CS-1) to (CS-3).
  • R 12 to R 26 each independently represents a linear or branched alkyl group (preferably having 1 to 20 carbon atoms) or a cycloalkyl group (preferably having 3 to 20 carbon atoms).
  • L 3 to L 5 each represents a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group, a phenylene group, an ether group, a thioether group, a carbonyl group, an ester group, an amide group, a urethane group, or a urea group, or a single group of two or more groups. A combination is mentioned.
  • n represents an integer of 1 to 5.
  • n is preferably an integer of 2 to 4.
  • X 1 represents a hydrogen atom, —CH 3 , —F or —CF 3 .
  • the hydrophobic resin (HR) may have at least one group selected from the following groups (x) to (z).
  • Alkali-soluble groups include phenolic hydroxyl groups, carboxylic acid groups, fluorinated alcohol groups, sulfonic acid groups, sulfonamido groups, sulfonylimide groups, (alkylsulfonyl) (alkylcarbonyl) methylene groups, (alkylsulfonyl) ( Alkylcarbonyl) imide group, bis (alkylcarbonyl) methylene group, bis (alkylcarbonyl) imide group, bis (alkylsulfonyl) methylene group, bis (alkylsulfonyl) imide group, tris (alkylcarbonyl) methylene group, tris (alkylsulfonyl) ) Methylene group and the like.
  • Preferred alkali-soluble groups include fluorinated alcohol groups (preferably hexafluoroisopropanol), sulfonimide groups, and bis (carbonyl) methylene groups.
  • the repeating unit having an alkali-soluble group (x) includes a repeating unit in which an alkali-soluble group is directly bonded to the main chain of the resin, such as a repeating unit of acrylic acid or methacrylic acid, or a main group of the resin via a linking group. Examples include repeating units in which an alkali-soluble group is bonded to the chain.
  • a polymerization initiator or a chain transfer agent having an alkali-soluble group can be introduced at the end of the polymer chain at the time of polymerization.
  • the content of the repeating unit having an alkali-soluble group (x) is preferably from 1 to 50 mol%, more preferably from 3 to 35 mol%, still more preferably from 5 to 20 mol%, based on all repeating units in the polymer. Specific examples of the repeating unit having an alkali-soluble group (x) are shown below, but the present invention is not limited thereto.
  • Examples of the group that decomposes by the action of an alkali developer and increases the solubility in the alkali developer include a group having a lactone structure, an acid anhydride group, an acid imide group, and the like, and preferably a lactone A group having a structure.
  • an alkali is added to the main chain of the resin, such as a repeating unit of an acrylate ester or a methacrylate ester.
  • a polymerization initiator having a repeating unit to which a group (y) that decomposes by the action of the developer and increases the solubility in an alkali developer is bonded, or a group (y) that increases the solubility in an alkali developer Or introducing a chain transfer agent at the end of the polymer chain at the time of polymerization is preferred.
  • the content of the repeating unit having a group (y) whose solubility in an alkali developer is increased is preferably 1 to 40 mol%, more preferably 3 to 30 mol%, still more preferably based on all repeating units in the polymer. 5 to 15 mol%.
  • repeating unit having a group (y) that increases the solubility in an alkali developer include the same repeating units as those having a lactone structure exemplified for the resin of the component (B).
  • examples of the repeating unit having a group (z) capable of decomposing by the action of an acid are the same as the repeating unit having an acid-decomposable group exemplified in the resin (B).
  • the content of the repeating unit having a group (z) that is decomposed by the action of an acid is preferably 1 to 80 mol%, more preferably 10 to 10%, based on all repeating units in the polymer. 80 mol%, more preferably 20 to 60 mol%.
  • the hydrophobic resin (HR) may further have a repeating unit represented by the following general formula (III).
  • R c31 represents a hydrogen atom, an alkyl group, an alkyl group optionally substituted with fluorine, a cyano group, or a —CH 2 —O—Rac 2 group.
  • Rac 2 represents a hydrogen atom, an alkyl group or an acyl group.
  • R c31 is preferably a hydrogen atom, a methyl group, a hydroxymethyl group or a trifluoromethyl group, particularly preferably a hydrogen atom or a methyl group.
  • R c32 represents a group having an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group or an aryl group.
  • L c3 represents a single bond or a divalent linking group.
  • the alkyl group represented by R c32 is preferably a linear or branched alkyl group having 3 to 20 carbon atoms.
  • the cycloalkyl group is preferably a cycloalkyl group having 3 to 20 carbon atoms.
  • the alkenyl group is preferably an alkenyl group having 3 to 20 carbon atoms.
  • the cycloalkenyl group is preferably a cycloalkenyl group having 3 to 20 carbon atoms.
  • the aryl group is preferably a phenyl group or naphthyl group having 6 to 20 carbon atoms, and these may have a substituent.
  • R c32 is preferably an unsubstituted alkyl group or an alkyl group substituted with a fluorine atom.
  • the divalent linking group of L c3 is preferably an alkylene group (preferably having a carbon number of 1 to 5), an oxy group, a phenylene group, or an ester bond (a group represented by —COO—).
  • the hydrophobic resin (HR) preferably further has a repeating unit represented by the following general formula (CII-AB).
  • R c11 ′ and R c12 ′ each independently represents a hydrogen atom, a cyano group, a halogen atom or an alkyl group.
  • Zc ′ represents an atomic group for forming an alicyclic structure containing two bonded carbon atoms (C—C).
  • Specific examples of the repeating unit represented by the general formulas (III) and (CII-AB) are shown below, but the present invention is not limited thereto.
  • Ra represents H, CH 3 , CH 2 OH, CF 3 or CN.
  • the fluorine atom content is preferably 5 to 80% by mass with respect to the weight average molecular weight of the hydrophobic resin (HR), and is 10 to 80% by mass. More preferably.
  • the repeating unit containing a fluorine atom is preferably 10 to 100 mol%, more preferably 30 to 100 mol% in the hydrophobic resin (HR).
  • the silicon atom content is preferably 2 to 50% by mass, preferably 2 to 30% by mass, based on the weight average molecular weight of the hydrophobic resin (HR). More preferably.
  • the repeating unit containing a silicon atom is preferably 10 to 100 mol%, more preferably 20 to 100 mol% in the hydrophobic resin (HR).
  • the weight average molecular weight of the hydrophobic resin (HR) in terms of standard polystyrene is preferably 1,000 to 100,000, more preferably 1,000 to 50,000, and still more preferably 2,000 to 15,000. is there.
  • the content of the hydrophobic resin (HR) in the composition is preferably 0.01 to 10% by mass, more preferably 0.05 to 8% by mass, based on the total solid content in the composition of the present invention. More preferably, it is 1 to 5% by mass.
  • the hydrophobic resin (HR) is naturally low in impurities such as metals, and the residual monomer and oligomer components are preferably 0 to 10% by mass, more preferably 0 to 5% by mass and 0 to 1% by mass are even more preferable. Thereby, a resist composition having no change over time such as foreign matter in liquid or sensitivity can be obtained.
  • the molecular weight distribution (Mw / Mn, also referred to as dispersity) is preferably in the range of 1 to 5, more preferably 1 to 3, and still more preferably from the viewpoints of resolution, resist shape, resist pattern sidewall, roughness, and the like. It is in the range of 1-2.
  • hydrophobic resin As the hydrophobic resin (HR), various commercially available products can be used, or they can be synthesized according to a conventional method (for example, radical polymerization).
  • a conventional method for example, radical polymerization
  • a monomer polymerization method in which a monomer species and an initiator are dissolved in a solvent and the polymerization is performed by heating, and a solution of the monomer species and the initiator is dropped into the heating solvent over 1 to 10 hours.
  • the dropping polymerization method is added, and the dropping polymerization method is preferable.
  • reaction solvent examples include ethers such as tetrahydrofuran, 1,4-dioxane and diisopropyl ether, ketones such as methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate, amide solvents such as dimethylformamide and dimethylacetamide, Furthermore, the solvent which melt
  • the polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen or argon.
  • a polymerization initiator a commercially available radical initiator (azo initiator, peroxide, etc.) is used to initiate the polymerization.
  • azo initiator an azo initiator is preferable, and an azo initiator having an ester group, a cyano group, or a carboxyl group is preferable.
  • Preferable initiators include azobisisobutyronitrile, azobisdimethylvaleronitrile, dimethyl 2,2′-azobis (2-methylpropionate) and the like.
  • the concentration of the reaction is 5 to 50% by mass, preferably 30 to 50% by mass.
  • the reaction temperature is usually 10 ° C.
  • Purification can be accomplished by a liquid-liquid extraction method that removes residual monomers and oligomer components by combining water and an appropriate solvent, and a purification method in a solution state such as ultrafiltration that extracts and removes only those having a specific molecular weight or less. , Reprecipitation method that removes residual monomer by coagulating resin in poor solvent by dripping resin solution into poor solvent and purification in solid state such as washing filtered resin slurry with poor solvent A normal method such as a method can be applied.
  • the resin is precipitated as a solid by contacting a solvent (poor solvent) in which the resin is hardly soluble or insoluble in a volume amount of 10 times or less, preferably 10 to 5 times the volume of the reaction solution.
  • the solvent (precipitation or reprecipitation solvent) used in the precipitation or reprecipitation operation from the polymer solution may be a poor solvent for the polymer, and may be a hydrocarbon, halogenated hydrocarbon, nitro, depending on the type of polymer.
  • a compound, ether, ketone, ester, carbonate, alcohol, carboxylic acid, water, a mixed solvent containing these solvents, and the like can be appropriately selected for use.
  • a precipitation or reprecipitation solvent a solvent containing at least an alcohol (particularly methanol or the like) or water is preferable.
  • the amount of the precipitation or reprecipitation solvent used can be appropriately selected in consideration of efficiency, yield, and the like, but generally, 100 to 10,000 parts by mass, preferably 200 to 2000 parts by mass with respect to 100 parts by mass of the polymer solution, More preferably, it is 300 to 1000 parts by mass.
  • the temperature at the time of precipitation or reprecipitation can be appropriately selected in consideration of efficiency and operability, but is usually about 0 to 50 ° C., preferably around room temperature (for example, about 20 to 35 ° C.).
  • the precipitation or reprecipitation operation can be performed by a known method such as a batch method or a continuous method using a conventional mixing vessel such as a stirring tank.
  • the precipitated or re-precipitated polymer is usually subjected to conventional solid-liquid separation such as filtration and centrifugation, and dried before use. Filtration is performed using a solvent-resistant filter medium, preferably under pressure. Drying is performed at a temperature of about 30 to 100 ° C., preferably about 30 to 50 ° C. under normal pressure or reduced pressure (preferably under reduced pressure). In addition, once the resin is precipitated and separated, it may be dissolved again in a solvent, and the resin may be brought into contact with a hardly soluble or insoluble solvent.
  • Step a After completion of the radical polymerization reaction, a solvent in which the polymer is hardly soluble or insoluble is brought into contact, the resin is precipitated (step a), the resin is separated from the solution (step b), and dissolved again in the solvent. (Step c), and then contact the resin solution A with a solvent in which the resin is hardly soluble or insoluble in a volume amount less than 10 times that of the resin solution A (preferably 5 times or less volume).
  • This may be a method including precipitating a resin solid (step d) and separating the precipitated resin (step e).
  • HR hydrophobic resin
  • Table 1 shows the molar ratio of the repeating units in each resin (corresponding to each repeating unit in order from the left), the weight average molecular weight, and the degree of dispersion.
  • the immersion liquid used for the immersion exposure will be described below.
  • the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index temperature coefficient as small as possible so as to minimize distortion of the optical image projected onto the resist film.
  • Is an ArF excimer laser (wavelength; 193 nm) it is preferable to use water from the viewpoints of availability and ease of handling in addition to the above-mentioned viewpoints.
  • a medium having a refractive index of 1.5 or more can be used in that the refractive index can be further improved.
  • This medium may be an aqueous solution or an organic solvent.
  • the additive is preferably an aliphatic alcohol having a refractive index substantially equal to that of water, and specifically includes methyl alcohol, ethyl alcohol, isopropyl alcohol and the like.
  • topcoat An immersion liquid poorly soluble film (hereinafter also referred to as “topcoat”) may be provided between the film of the composition of the present invention and the immersion liquid so that the film does not directly contact the immersion liquid. Good.
  • the functions necessary for the top coat are suitability for application to the upper layer of the resist, transparency to radiation, particularly 193 nm, and poor immersion liquid solubility. It is preferable that the top coat is not mixed with the resist and can be uniformly applied to the upper layer of the resist. From the viewpoint of 193 nm transparency, the top coat is preferably a polymer that does not contain abundant aromatics. Specifically, the polymer contains a hydrocarbon polymer, an acrylate polymer, polymethacrylic acid, polyacrylic acid, polyvinyl ether, and silicon.
  • Examples thereof include a polymer and a fluorine-containing polymer.
  • the aforementioned hydrophobic resin (HR) is also suitable as a top coat. From the viewpoint of contaminating the optical lens when impurities are eluted from the top coat into the immersion liquid, it is preferable that the residual monomer component of the polymer contained in the top coat is small.
  • a developer may be used, or a separate release agent may be used.
  • the release agent a solvent having low penetration into the film is preferable. In terms of being able to perform the peeling process simultaneously with the film development process, it is preferable that the peeling process can be performed with an alkaline developer.
  • the top coat is preferably acidic from the viewpoint of peeling with an alkali developer, but may be neutral or alkaline from the viewpoint of non-intermixability with the film.
  • the resolution is improved when there is no difference in refractive index between the top coat and the immersion liquid.
  • the top coat for ArF immersion exposure is preferably close to the refractive index of the immersion liquid. From the viewpoint of making the refractive index close to the immersion liquid, it is preferable to have fluorine atoms in the topcoat.
  • a thin film is more preferable from the viewpoint of transparency and refractive index.
  • the topcoat is preferably not mixed with the membrane and further not mixed with the immersion liquid.
  • the solvent used for the top coat is preferably a water-insoluble medium that is hardly soluble in the solvent used for the composition of the present invention. Further, when the immersion liquid is an organic solvent, the topcoat may be water-soluble or water-insoluble.
  • an alkaline developer is usually used.
  • alkali developer examples include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate and aqueous ammonia, primary amines such as ethylamine and n-propylamine, diethylamine and Secondary amines such as di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, and fourth amines such as tetramethylammonium hydroxide and tetraethylammonium hydroxide.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate and aqueous ammonia
  • primary amines such as ethylamine and n-propylamine, diethylamine and Secondary amines such as di-n-butylamine, tertiary amine
  • Examples include alkaline aqueous solutions containing a quaternary ammonium salt or cyclic amines such as pyrrole and pihelidine.
  • An appropriate amount of alcohol and / or surfactant may be added to the alkaline developer.
  • the concentration of the alkali developer is usually from 0.1 to 20% by mass.
  • the pH of the alkali developer is usually from 10.0 to 15.0.
  • the present invention also relates to an electronic device manufacturing method including the above-described pattern forming method of the present invention, and an electronic device manufactured by this manufacturing method.
  • the electronic device of the present invention is suitably mounted on electrical and electronic equipment (home appliances, OA / media related equipment, optical equipment, communication equipment, etc.).
  • Example A> [Examples 1A to 19A and Comparative Examples 1A and 2A]
  • Resist preparation> The components shown in Table 2 below were dissolved in a solvent to prepare a solution having a solid concentration of 4.0% by mass, and this was filtered through a polytetrafluoroethylene filter having a pore size of 0.03 ⁇ m to prepare a positive resist solution. .
  • the prepared positive resist composition (resist solution) was evaluated by the following method, and the results are shown in Table 2.
  • ⁇ Resist evaluation> An organic antireflection film ARC29A (Nissan Chemical Co., Ltd.) was applied on a silicon wafer and baked at 205 ° C. for 60 seconds to form an antireflection film having a thickness of 78 nm. A positive resist composition prepared thereon was applied, and baked at 130 ° C. for 60 seconds to form a resist film having a thickness of 120 nm. The obtained resist film was exposed through a 6% halftone mask of 1: 1 line and space pattern with a line width of 75 nm using an ArF excimer laser scanner (PAS5500 / 1100, manufactured by ASML). Thereafter, heating was performed at 130 ° C. for 60 seconds, followed by development with an aqueous tetramethylammonium hydroxide solution (2.38 mass%) for 30 seconds, rinsing with pure water, and spin drying to obtain a resist pattern.
  • PAS5500 / 1100 ArF excimer laser scanner
  • the line edge roughness (nm) is measured using a length-measuring scanning electron microscope (SEM) to observe a line-and-space 1/1 pattern having a line width of 75 nm, and the edge of the line pattern in the longitudinal direction is 2 ⁇ m.
  • SEM scanning electron microscope
  • the distance from the reference line that should have an edge was measured at 50 points with a length measurement SEM (Hitachi, Ltd. S-8840), the standard deviation was obtained, and 3 ⁇ was calculated. A smaller value indicates better performance.
  • the exposure amount when the dissolution rate of the resist film is saturated was taken as sensitivity, and the dissolution contrast ( ⁇ value) was calculated from the gradient of the linear portion of the solubility curve. It is considered that the larger the ⁇ value, the better the dissolution contrast and the better the resolution.
  • the surfactant content (0.1% by mass) is the content relative to the total solid content of the resist composition.
  • Each component used is as follows. [Acid generator]
  • the acid generator (A1) of the present invention is exemplified above.
  • the acid generator (A2) used in combination is the following compound Z.
  • Comparative compounds 1 and 2 are as follows.
  • any of the following (RA-1) to (RA-4) was used.
  • the number on the right side of the repeating unit represents the molar ratio.
  • Mw represents the weight average molecular weight, and Mw / Mn represents the degree of dispersion.
  • W-1 Megafuck F176 (manufactured by DIC Corporation; fluorine-based)
  • W-2 Megafuck R08 (manufactured by DIC; fluorine and silicon)
  • W-3 Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd .; silicon-based)
  • W-4 Troisol S-366 (manufactured by Troy Chemical Co .; fluorine type) ⁇ Solvent>
  • solvents the following A1 to A4 and B1 and B2 were used. In addition, these solvents were used by being appropriately mixed.
  • A1 Propylene glycol monomethyl ether acetate
  • A2 2-heptanone
  • A3 Cyclohexanone
  • A4 ⁇ -butyrolactone
  • B1 Propylene glycol monomethyl ether
  • B2 Ethyl lactate
  • Comparative Compounds 1 and 2 both compounds described in Japanese Patent Application Laid-Open No. 2011-16746) were used as acid generators. It can be seen that Comparative Examples 1A and 2A are inferior in sensitivity, resolution, and LER, have large sensitivity fluctuations with time, and generate a lot of outgas. Although it is not clear why Comparative Examples 1A and 2A are inferior in sensitivity and particularly have large sensitivity fluctuations with time in terms of stability over time, exposure to Comparative Compounds 1 and 2 in a solvent in the composition is low. This is probably because the decomposition efficiency (acid generation efficiency) of Comparative Compounds 1 and 2 was low.
  • an acid generator wherein is represented by the general formula (Z1), and -L 1 -R 1 -A 1 is L 1 is not oxygen atom when is substituted at the para-position of the S + compound (A1 Examples 1A to 19A using) are excellent in sensitivity, resolution, and LER, have small sensitivity fluctuations with time, and generate little outgas.
  • Examples 1A to 19A using the compound (A1) according to the present invention are excellent in sensitivity and LER are not clear, the compound (A1) represented by the general formula (Z1) is represented by -L 1 -R 1
  • the decomposition efficiency (acid generation efficiency) at the time of exposure of the compound (A1) is improved by adopting a specific betaine structure such that L 1 is not an oxygen atom when -A 1 is substituted at the S + para position.
  • the solubility of the compound (A1) in the solvent in the composition can be improved, the compound (A1) does not precipitate in the resist composition during storage, and the stability over time is excellent.
  • the acid generation efficiency is high due to the small sensitivity fluctuation after the lapse of time, a large amount of acid is generated to achieve high sensitivity and low LER.
  • the compound (A1) according to the present invention has a betaine structure having an anion portion and a cation portion in the same molecule, the cation portion is decomposed during exposure to reduce the molecular weight.
  • the alkali developer in the exposed portion It is considered that high resolution is achieved by improving the solubility contrast with respect to the solvent and improving the dissolution contrast.
  • Example B> A resist solution was prepared and coated in the same manner as in Example 1A except that 0.06 g of the following polymer (composition ratio was converted to a molar ratio) was added to the composition of Example 1A to obtain a resist film.
  • XTML 1700i manufactured by ASML, NA1.2
  • pattern exposure was performed on the obtained resist film via immersion liquid (pure water) to form a pattern in the same manner as in Example A1. did.
  • the obtained pattern was evaluated in the same manner as in Example A with respect to sensitivity, resolution, LER, stability with time (sensitivity fluctuation after time), and outgas performance. As a result, it was confirmed that the sensitivity, resolution, and LER were excellent, the sensitivity fluctuation was small after the lapse of time, and the outgas generation was small. The reason is as described in Example A.
  • Example C [Examples 1C to 10C and Comparative Examples 1C and 2C]
  • Resist preparation> The components shown in Table 3 below were dissolved in a solvent and filtered through a polytetrafluoroethylene filter having a pore size of 0.1 ⁇ m to prepare a positive resist composition (resist solution) having a solid content concentration of 8 mass%.
  • the prepared positive resist solution is uniformly coated on a silicon substrate subjected to hexamethyldisilazane treatment using a spin coater, and is heated and dried on a hot plate at 120 ° C. for 90 seconds to obtain a film thickness of 0.4 ⁇ m.
  • the resist film was formed.
  • the line edge roughness (nm) is measured by using a length-measuring scanning electron microscope (SEM) to observe a line-and-space 1/1 pattern having a line width of 0.2 ⁇ m, and the longitudinal edge of the line pattern is 5 ⁇ m.
  • SEM scanning electron microscope
  • the distance from the reference line that should have an edge for the range is measured by the SEM ( 50 points were measured by Hitachi, Ltd. S-8840), the standard deviation was obtained, and 3 ⁇ was calculated. A smaller value indicates better performance.
  • the exposure amount when the dissolution rate of the resist was saturated was regarded as sensitivity, and the dissolution contrast ( ⁇ value) was calculated from the slope of the linear portion of the solubility curve. It is considered that the larger the ⁇ value, the better the dissolution contrast and the better the resolution.
  • the photoacid generators (A1) and (A2), the basic compound, the surfactant, and the solvent were appropriately selected from those shown above.
  • the resin used was appropriately selected from (R-1) to (R-30) exemplified above.
  • Comparative Examples 1C and 2C using Comparative Compounds 1 and 2 as acid generators in KrF exposure are inferior in sensitivity, resolution, and LER, and the sensitivity fluctuation after aging is also observed. It can be seen that there is a lot of outgassing. The reason why Comparative Examples 1C and 2C are inferior in sensitivity and the sensitivity fluctuation with time is particularly large with respect to the stability over time is the same as the reason described above in Example A.
  • Examples 1C to 10C using are excellent in sensitivity, resolution, and LER, have small sensitivity fluctuations over time, and generate less outgas.
  • the reason why Examples 1C to 10C are excellent in sensitivity, resolution, and LER, and that the sensitivity fluctuation after aging is small may be the same reason as described in Example A.
  • Example D (Examples 1D to 26D and Comparative Examples 1D and 2D)
  • Resist preparation> The components shown in Tables 5 and 6 below were dissolved in a solvent and then filtered through a polytetrafluoroethylene filter having a pore size of 0.1 ⁇ m to obtain a positive resist composition (resist solution) having a solid concentration of 4% by mass.
  • a positive resist composition resist solution having a solid concentration of 4% by mass.
  • ⁇ Resist evaluation> The prepared positive resist solution was uniformly applied on a silicon substrate subjected to hexamethyldisilazane treatment using a spin coater, and then heated and dried on a hot plate at 120 ° C. for 60 seconds to obtain 0.12 ⁇ m. A resist film having a film thickness was formed. This resist film was irradiated with an electron beam projection lithography apparatus (acceleration voltage 100 keV) manufactured by Nikon Corporation, and immediately after the irradiation, it was heated on a hot plate at 110 ° C. for 90 seconds. Thereafter, development was performed at 23 ° C. for 60 seconds using a 2.38 mass% tetramethylammonium hydroxide aqueous solution, rinsed with pure water for 30 seconds, and then dried to form a line and space pattern.
  • an electron beam projection lithography apparatus acceleration voltage 100 keV
  • the line edge roughness (nm) is measured by using a length-measuring scanning electron microscope (SEM) to observe a line-and-space 1/1 pattern with a line width of 0.10 ⁇ m, and the line pattern has a longitudinal edge of 2 ⁇ m. Measure the distance from the reference line that should have an edge in the range. 50 points were measured by Hitachi, Ltd. S-8840, the standard deviation was obtained, and 3 ⁇ was calculated. A smaller value indicates better performance.
  • Stability over time sensitivity fluctuation after time
  • the photoacid generators (A1) and (A2), the basic compound, the surfactant, and the solvent were appropriately selected from those shown above.
  • the resins (B) such as (R-18), (R-19), (R-22), (R-27), and (R-29) are also as described above.
  • Comparative Examples 1D and 2D using Comparative Compounds 1 and 2 as acid generators in electron beam exposure (irradiation) are inferior in sensitivity, resolution and LER, It can be seen that the change in post-sensitivity is large and that outgassing occurs frequently. The reason why Comparative Examples 1D and 2D are inferior in sensitivity, and the sensitivity fluctuation with time is particularly large with respect to stability over time is the same as the reason described above in Example A.
  • Examples 1D to 26D using (1) are excellent in sensitivity, resolution and LER, have small sensitivity fluctuations with time, and generate less outgas.
  • the reason why Examples 1D to 26D are excellent in sensitivity, resolution, and LER and the sensitivity fluctuation after aging is small can be the same reason as described above in Example A.
  • Example E> (Examples 1E to 9E and Comparative Examples 1E and 2E) (Resist preparation)
  • the components shown in Table 7 below were dissolved in a solvent, and then filtered through a polytetrafluoroethylene filter having a pore size of 0.1 ⁇ m to prepare a negative resist solution having a solid content concentration of 4% by mass.
  • ⁇ Resist evaluation> The prepared negative resist solution was uniformly applied on a silicon substrate subjected to hexamethyldisilazane treatment using a spin coater, and then heated and dried on a hot plate at 120 ° C. for 60 seconds to obtain 0.12 ⁇ m. A resist film having a film thickness was formed. This resist film was irradiated with an electron beam projection lithography apparatus (acceleration voltage 100 keV) manufactured by Nikon Corporation, and immediately after the irradiation, it was heated on a hot plate at 110 ° C. for 90 seconds. Thereafter, development was performed at 23 ° C. for 60 seconds using an aqueous tetramethylammonium hydroxide solution having a concentration of 2.38 mass%, followed by rinsing with pure water for 30 seconds, followed by drying to form a line and space pattern.
  • an electron beam projection lithography apparatus acceleration voltage 100 keV
  • composition ratio composition ratio (molar ratio)
  • molecular weight and molecular weight distribution of the alkali-soluble resin (C) are shown.
  • Comparative Compounds 1 and 2 are used as acid generators. It can be seen that Comparative Examples 1E and 2E using the described compounds are inferior in sensitivity, resolution and LER, have a large sensitivity fluctuation after time, and generate a lot of outgas. The reason why Comparative Examples 1E and 2E are inferior in sensitivity, and the sensitivity fluctuation with time is particularly great with respect to the stability over time is the same as the reason described above in Example A.
  • the compound (A1) represented by the general formula (Z1) is represented by -L 1 -R 1
  • the decomposition efficiency (acid generation efficiency) at the time of exposure of the compound (A1) is improved by adopting a specific betaine structure such that L 1 is not an oxygen atom when -A 1 is substituted at the S + para position.
  • the solubility of the compound (A1) in the solvent in the composition can be improved, the compound (A1) does not precipitate in the resist composition during storage, and the stability over time is excellent. Further, it is considered that since the acid generation efficiency is high due to the small sensitivity fluctuation after the lapse of time, a large amount of acid is generated to achieve high sensitivity and low LER.
  • Example F (Examples 1F to 8F and Comparative Examples 1F and 2F)
  • Resist preparation> The components shown in Table 8 below were dissolved in a solvent and filtered through a polytetrafluoroethylene filter having a pore size of 0.1 ⁇ m to prepare a positive resist solution having a solid content concentration of 4 mass%.
  • ⁇ Resist evaluation> The prepared positive resist solution was uniformly applied on a silicon substrate subjected to hexamethyldisilazane treatment using a spin coater, and then heated and dried on a hot plate at 120 ° C. for 60 seconds to obtain 0.12 ⁇ m. A resist film having a film thickness was formed.
  • the photoacid generator (A1), the resin (B), the basic compound, the surfactant and the solvent were appropriately selected from those shown above.
  • Comparative Examples 1F and 2F using Comparative Compounds 1 and 2 as acid generators in EUV exposure are inferior in sensitivity, resolution and LER, and the sensitivity fluctuation after aging is also large. It turns out that there is much outgassing.
  • Comparative Examples 1C and 2C are inferior in sensitivity and resolution and in particular have a large sensitivity fluctuation with time in terms of stability over time can be the same reason as described above in Example A.
  • Examples 1F to 8F using are excellent in sensitivity, resolution and LER, have small sensitivity fluctuations with time, and generate less outgas.
  • the reason why Examples 1F to 8F are excellent in sensitivity, resolution and LER and the sensitivity fluctuation after time is small can be the same reason as described above in Example A.
  • Example G (Examples 1G, 2G and Comparative Example 1G) ⁇ Resist preparation>
  • ⁇ Resist evaluation> The prepared negative resist solution was uniformly applied onto a silicon substrate subjected to hexamethyldisilazane treatment using a spin coater, and then heated and dried on a hot plate at 120 ° C. for 60 seconds to obtain a 0.12 ⁇ m A resist film having a film thickness was formed.
  • the photoacid generator (A1), the resin (B), the crosslinking agent, the basic compound, the surfactant, and the solvent were appropriately selected from those shown above.
  • Comparative Example 1G using Comparative Compound 1 as an acid generator in negative EUV exposure is inferior in sensitivity and LER, has a large sensitivity fluctuation after time, and generates outgas. It can be seen that there are many.
  • the reason why Comparative Example 1G is inferior in sensitivity and has a large change in sensitivity after time with respect to stability over time can be the same as the reason described above in Example A.
  • an actinic ray-sensitive or radiation-sensitive resin composition excellent in sensitivity, resolution, roughness performance and stability over time and generating little outgas, a pattern forming method and a resist film using the composition

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】感度、解像性、ラフネス性能及び経時安定性に優れ、アウトガスの発生も少ない感活性光線性又は感放射線性樹脂組成物及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイスを提供する。 【解決手段】一般式(Z1)で表される活性光線又は放射線の照射により酸を発生する化合物を含有する感活性光線性又は感放射線性樹脂組成物。

Description

感活性光線性又は感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイス
 本発明は、活性光線又は放射線の照射により反応して性質が変化する感活性光線性又は感放射線性樹脂組成物及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイスに関する。更に詳しくは、本発明は、IC等の半導体製造工程、液晶、サーマルヘッド等の回路基板の製造、インプリント用モールド構造体の作成、更にその他のフォトファブリケーション工程、平版印刷版、酸硬化性組成物に使用される感活性光線性又は感放射線性樹脂組成物及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイスに関する。
 化学増幅レジスト組成物は、遠紫外光等の放射線の照射により露光部に酸を生成させ、この酸を触媒とする反応によって、活性放射線の照射部と非照射部の現像液に対する溶解性を変化させ、パターンを基板上に形成させるパターン形成材料である。
 KrFエキシマレーザーを露光光源とする場合には、主として248nm領域での吸収の小さい、ポリ(ヒドロキシスチレン)を基本骨格とする樹脂を主成分に使用するため、高感度、高解像度で、かつ良好なパターンを形成し、従来のナフトキノンジアジド/ノボラック樹脂系に比べて良好な系となっている。
 一方、更なる短波長の光源、例えばArFエキシマレーザー(193nm)を露光光源として使用する場合は、芳香族基を有する化合物が本質的に193nm領域に大きな吸収を示すため、上記化学増幅系でも十分ではなかった。
 このため、脂環炭化水素構造を有する樹脂を含有するArFエキシマレーザー用レジスト組成物が開発されてきている。
 化学増幅レジスト組成物の主要構成成分である光酸発生剤については、トリフェニルスルホニウム塩が一般的に知られている。 
 また、電子線やX線、EUVの光源などを用いた場合には真空下で露光を行うため、溶剤などの低沸点化合物や高いエネルギーにより分解したレジスト材料が揮発し、露光装置を汚染するという、アウトガスの問題が深刻となってきている。近年、アウトガスの低減に関しては様々な研究が進められてきており、光酸発生剤に関しても種々の改善が提案されている。更に、アウトガスの低減のみならず、光酸発生剤を改善することにより、感度、解像性、パターン形状及びラフネス性能などを向上した感光性組成物の開発が望まれている。
 例えば、特許文献1には、感度、溶解コントラスト、露光ラチチュード及びラフネス性能などを向上させる観点から、酸により分解する光酸発生剤が記載されているが、溶解コントラスト、現像性等に更なる要求が求められていた。
 特に、ラフネス特性及び解像性は、パターン寸法が小さいほど重大となってくる。そのため、X線、電子線やEUVによるリソグラフィーでは、数10nmの微細なパターン形成を目標としていることから、特に解像性及びラフネス性能に優れることが求められている。
 例えば、特許文献2には、光酸発生剤として、低感度ながら、解像性、ラフネス性能、露光余裕度の向上などを達成する観点から特定ベタイン構造のスルホニウム塩が開示されている。
 しかしながら、感度に課題があり、関連して感度の経時安定性にも課題があった。
 感度に関し、ウェハー処理時間の短縮化のため、高感度化は非常に重要な課題であるが、高感度化を追求しようとすると、パターン形状や、限界解像線幅で表される解像力が低下してしまい、これらの特性を同時に満足するレジスト組成物の開発が強く望まれている。
 高感度と、高解像性、良好なパターン形状はトレードオフの関係にあり、これを如何にして同時に満足させるかが重要な課題となっており、これらの解決が必要である。
日本国特開2007-199692号公報 日本国特開2011-16746号公報
 本発明の目的は、感度、解像性、ラフネス性能及び経時安定性に優れ、アウトガスの発生も少ない感活性光線性又は感放射線性樹脂組成物及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイスを提供することにある。
 上記課題は、下記構成により特定される本発明により解決される。
[1]
 下記一般式(Z1)で表される活性光線又は放射線の照射により酸を発生する化合物を含有する感活性光線性又は感放射線性樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(Z1)中、
 Lは-O-、-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-、-C(=O)O-、-S(=O)-、-S(=O)-、-C(=O)-、-N(R)C(=O)-、-C(=O)N(R)-、-N(R)S(=O)-又は-S(=O)N(R)-(以上右側がR側)を表し、Rは水素原子、アルキル基又はシクロアルキル基を表す。
 Rはアルキレン基、シクロアルキレン基、アリーレン基又はそれらを組み合わせてなる2価の基を表し、該基中の間に-O-、-C(=O)-、-S(=O)-又は-S-が挿入されていても良い。
 Aは-SO 、-SOSO又は-SO(SOを表す。Rはアルキル基、シクロアルキル基又はアリール基を表し、Rはアルキル基、シクロアルキル基又はアリール基を表し、2つのRは同じでも異なっていても良い。
 R及びRは、各々独立に、アルキル基、アルケニル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
 Rは1価の置換基を表し、nは0~4の整数を表す。nが2以上のとき、複数のRは同じでも異なっていても良い。
 また、R及びR、R及びR、R及びR、R及び前記一般式(Z1)中のベンゼン環、R及び前記ベンゼン環、並びにnが2以上のときのR同士は、それぞれ、互いに連結して環を形成しても良い。ただし、前記一般式(Z1)中の前記ベンゼン環について、-L-R-Aがスルホニウム(S)のパラ位に置換しているとき、Lが酸素原子(-O-)であることはない。
[2]
 前記一般式(Z1)で表される化合物が、下記一般式(Z2)で表される化合物である、[1]に記載の感活性光線性又は感放射線性樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(Z2)中、
 L、R、A、R、nは前記一般式(Z1)におけるL、R、A、R、nと同義である。
 R及びRは各々独立に1価の置換基を表し、n及びnは各々独立に0~5の整数を表す。
 nが2以上のときの複数のR、nが2以上のときの複数のR及びnが2以上のときの複数のRはそれぞれ同じでも異なっても良く、互いに連結して環を形成しても良い。R及びR、R及びR、並びにR及びRは、それぞれ、互いに連結して環を形成しても良い。なお、そのときは、R、R及びRはそれぞれ単結合であっても良い。
 ただし、前記一般式(Z2)における-L-R-Aが結合するベンゼン環について、-L-R-AがSのパラ位に置換しているとき、Lが-O-であることはない。
[3]
 前記一般式(Z1)又は(Z2)における-L-R-Aが結合するベンゼン環について、-L-R-AがSのパラ位に置換しているとき、Lが-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-、-C(=O)O-、-S(=O)-、-S(=O)-、-C(=O)-、-N(R)C(=O)-、-C(=O)N(R)-、-N(R)S(=O)-又は-S(=O)N(R)-である、[1]又は[2]に記載の感活性光線性又は感放射線性樹脂組成物。
[4]
 前記一般式(Z1)又は(Z2)における-L-R-Aが結合するベンゼン環について、前記-L-R-AがSに対してパラ位に置換し、かつLが-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-又は-C(=O)O-である、[3]に記載の感活性光線性又は感放射線性樹脂組成物。
[5]
 前記一般式(Z1)又は(Z2)における-L-R-Aが結合するベンゼン環について、前記-L-R-AがSに対してメタ位又はオルト位に置換している、[1]又は[2]に記載の感活性光線性又は感放射線性樹脂組成物。
[6]
 前記一般式(Z1)又は(Z2)におけるAが-SO である、[1]~[5]のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物。
[7]
 更に、酸の作用により分解し、アルカリ現像液中での溶解度が増大する樹脂を含有する、[1]~[6]のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物。
[8]
 更に、アルカリ現像液に可溶な樹脂、及び酸の作用により該アルカリ現像液に可溶な樹脂と架橋する酸架橋剤を含有する、[1]~[6]のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物。
[9]
 [1]~[8]のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物を用いて形成されたレジスト膜。
[10]
 [1]~[8]のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物を用いて膜を形成する工程、該膜を露光する工程、及び露光した膜を現像する工程を有するパターン形成方法。
[11]
 前記露光がX線、電子線又はEUVを用いて行われる、[10]に記載のパターン形成方法。
[12]
 [10]又は[11]に記載のパターン形成方法を含む、電子デバイスの製造方法。
[13]
 [12]に記載の電子デバイスの製造方法により製造された電子デバイス。
 本発明は、更に、下記の構成であることが好ましい。
[14]
 前記一般式(Z1)又は(Z2)におけるRがアルキレン基、一部又は全フッ素化アルキレン基、アリーレン基、一部又は全フッ素化アリーレン基である、[1]~[8]のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物。
[15]
 前記一般式(Z1)又は(Z2)における1価の置換基R、R又はRがアルキル基、シクロアルキル基、アリール基、ハロゲン原子、ヒドロキシル基、アルコキシ基、アルコキシカルボニル基又はアリールチオ基である、[1]~[8]及び[14]のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物。
[16]
 前記酸の作用により分解し、アルカリ現像液中での溶解度が増大する樹脂が酸分解性基を有する繰り返し単位を含有する、[7]に記載の感活性光線性又は感放射線性樹脂組成物。
 本発明によれば、感度、解像性、ラフネス性能及び経時安定性に優れ、アウトガスの発生も少ない感活性光線性又は感放射線性樹脂組成物及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイスを提供することができる。
 以下、本発明について詳細に説明する。 
 本明細書に於ける基(原子団)の表記に於いて、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線(EB)等を意味する。また、本発明において光とは、活性光線又は放射線を意味する。
 また、本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、極紫外線、X線、EUV光などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も露光に含める。
 本発明の感活性光線性又は感放射線性樹脂組成物は、酸発生剤として、下記一般式(Z1)で表される活性光線又は放射線の照射により酸を発生する化合物(以下、単に「酸発生剤(A1)」、「光酸発生剤(A1)」、「化合物(A1)」ともいう)を含有する。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(Z1)中、
 Lは-O-、-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-、-C(=O)O-、-S(=O)-、-S(=O)-、-C(=O)-、-N(R)C(=O)-、-C(=O)N(R)-、-N(R)S(=O)-又は-S(=O)N(R)-(以上右側がR側)を表し、Rは水素原子、アルキル基又はシクロアルキル基を表す。
 ただし、前記一般式(Z1)中の前記ベンゼン環について、-L-R-Aがスルホニウム(S)のパラ位に置換しているとき、Lが酸素原子(-O-)であることはない。
 Rはアルキレン基、シクロアルキレン基、アリーレン基又はそれらを組み合わせてなる2価の基を表し、該基中の間に-O-、-C(=O)-、-S(=O)-又は-S-が挿入されていても良い。
 Aは-SO 、-SOSO又は-SO(SOを表す。Rはアルキル基、シクロアルキル基又はアリール基を表し、Rはアルキル基、シクロアルキル基又はアリール基を表し、2つのRは同じでも異なっていても良い。
 R及びRは、各々独立に、アルキル基、アルケニル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
 Rは1価の置換基を表し、nは0~4の整数を表す。nが2以上のとき、複数のRは同じでも異なっていても良い。
 また、R及びR、R及びR、R及びR、R及び前記一般式(Z1)中のベンゼン環、R及び前記ベンゼン環、並びにnが2以上のときのR同士は、それぞれ、互いに連結して環を形成しても良い。
 従来の光酸発生剤として、特許文献2(日本国特開2011-16746号公報)に記載の化合物)に記載のベタイン構造を有する光酸発生剤を使用したレジスト組成物は、感度に劣り、特に感度についての経時安定性に劣るという課題があったが、この理由は定かではないが、レジスト組成物中の溶剤に対する前記光酸発生剤の溶解性が低いためか、露光時の前記光酸発生剤の分解効率(酸発生効率)が低いためと考えられる。
 これに対し、特定のベタイン構造を有する活性光線又は放射線の照射により酸を発生する化合物(A1)を含有する本発明の感活性光線性又は感放射線性樹脂組成物が、感度、解像性、ラフネス性能及び経時安定性に優れ、アウトガスの発生も少ない理由は定かではないが、以下のように推定される。
 本発明の前記一般式(Z1)で表される化合物(A1)を-L-R-AがSのパラ位に置換しているときにLを酸素原子としない特定のベタイン構造とすることにより、化合物(A1)の露光時の分解効率(酸発生効率)を向上させることができ、また、組成物中の溶剤に対する化合物(A1)の溶解性を向上させることができ、保存中にレジスト組成物中で化合物(A1)の析出がなく、経時安定性に優れ(経時後感度変動が少なく)、その上酸発生効率も高いため、酸が多く発生して高感度、低LERとすることができるものと考えられる。
 また、本発明に係る化合物(A1)はアニオン部とカチオン部とを同一分子内に有するベタイン構造であることにより露光時にカチオン部が分解して分子量が小さくなり、その結果、露光部のアルカリ現像液に対する溶解性が向上して溶解コントラストが向上することにより、高解像性を達成するものと考えられる。
 更に、前記一般式(Z1)で表される化合物(A1)は、上述のように、活性光線又は放射線の照射により分解し酸を発生するが、理由は定かではないが、分解によるアウトガスの発生が少ないものと推定される。
 光酸発生剤(A1)を含有してなる本発明の感活性光線性又は感放射線性樹脂組成物は、一態様において、ポジ型感活性光線性又は感放射線性樹脂組成物であり、他の態様において、ネガ型感活性光線性又は感放射線性樹脂組成物である。
 本発明のポジ型感活性光線性又は感放射線性樹脂組成物(より好ましくはポジ型レジスト組成物)は、光酸発生剤(A1)、及び酸の作用により分解してアルカリ現像液中での溶解度が増大する樹脂(B)を含有し得る。
 本発明のネガ型感活性光線性又は感放射線性樹脂組成物(より好ましくはネガ型レジスト組成物)は、光酸発生剤(A1)、アルカリ現像液に可溶な樹脂(C)及び、酸の作用により該アルカリ現像液に可溶な樹脂と架橋する酸架橋剤(D)を含有し得る。
 〔1〕前記一般式(Z1)で表される活性光線又は放射線の照射により酸を発生する化合物(光酸発生剤(A1))
 前記一般式(Z1)中、Lは-O-、-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-、-C(=O)O-、-S(=O)-、-S(=O)-、-C(=O)-、-N(R)C(=O)-、-C(=O)N(R)-、-N(R)S(=O)-又は-S(=O)N(R)-(以上右側がR側)を表し、-O-、-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-又は-C(=O)O-であることが好ましい。
 ただし、前記組成物中の溶剤に対する化合物(A1)の溶解性を向上させ、経時安定性を向上させ、化合物(A1)の露光時の分解効率(酸発生効率)を向上させて高感度、低LERを達成する観点から、前記一般式(Z1)中の前記ベンゼン環について、-L-R-AがSのパラ位に置換しているとき、Lが-O-であることはなく、前記一般式(Z1)における-L-R-Aが結合するベンゼン環について、-L-R-AがSのパラ位に置換しているとき、Lは-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-、-C(=O)O-、-S(=O)-、-S(=O)-、-C(=O)-、-N(R)C(=O)-、-C(=O)N(R)-、-N(R)S(=O)-又は-S(=O)N(R)-であることが好ましく、-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-又は-C(=O)O-であることがより好ましい。
 前記組成物中の溶剤に対する化合物(A1)の溶解性を向上させ、経時安定性を向上させ、化合物(A1)の露光時の分解効率(酸発生効率)を向上させて高感度、低LERを達成する観点から、前記-L-R-Aが結合する前記一般式(Z1)中のベンゼン環について、前記-L-R-AがSに対してメタ位又はオルト位に置換していることが特に好ましい。
 Rは水素原子、アルキル基又はシクロアルキル基を表し、水素原子又はアルキル基であることが好ましい。
 Rについてのアルキル基としては、直鎖であっても分岐していてもよく、置換基を有していても良く、炭素原子1~20のアルキル基であることが好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基、i-プロピル基、t-ブチル基、ベンジル基、ヒドロキシエチル等が挙げられる。
 Rについてのシクロアルキル基としては、置換基を有していても良く、炭素原子3~20のシクロアルキル基であることが好ましく、シクロプロピル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、ノルボルニル基、アダマンチル基等が挙げられる。
 Rはアルキレン基、シクロアルキレン基、アリーレン基又はそれらを組み合わせてなる2価の基を表し、該基中の間に-O-、-C(O)-、-S(O)-又は-S-が挿入されていても良い。
 Rについてのアルキレン基としては、直鎖状でも分岐鎖状でもよく、置換基を有していても良く、炭素数1~20のアルキレン基であることが好ましい。
 Rについてのシクロアルキレン基としては、置換基を有していても良く、炭素数3~20のシクロアルキレン基であることが好ましい。
 Rについてのアルキレン基及びシクロアルキレン基が有し得る置換基としてはハロゲン原子、アリール基、アルキル基等が挙げられ、ハロゲン原子又はアリール基であることが好ましく、フッ素原子であることがより好ましい。
 Rについてのアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、メチルエチレン基、ベンジリデン基、フェニルエチレン基、-CF-、-(CF-、-(CF-、-(CF-、-CHCF-、-CHCHCFCF-、-CH(CF)CF-等が挙げられる。
 Rについてのシクロアルキレン基としては、例えば、1,3-シクロペンチレン基、1,4-シクロヘキシレン基等が挙げられる。
 Rについてのアリーレン基としては、置換基を有していてもよく、縮環していても良く、炭素数6~26のアリーレン基であることが好ましい。
 Rについてのアリーレン基が有し得る置換基としてはハロゲン原子、アルキル基、シクロアルキル基、アリール基が挙げられ、フッ素原子、イソプロピル基、シクロヘキシル基であることが好ましい。
 Rについてのアリーレン基としては、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、2,5-ナフチレン基、9,10-アントラセニレン基、2,3,5,6-テトラフルオロ-1,4-フェニレン基、2,5-ジメチル-1,4-フェニレン基、3-イソプロピル-1,4-フェニレン基、2-イソプロピル-1,4-フェニレン基、3-シクロヘキシル-1,4-フェニレン基、2-シクロヘキシル-1,4-フェニレン基、3,5-ジイソプロピル-1,4-フェニレン基、2,6-ジイソプロピル-1,4-フェニレン基、3,5-ジシクロヘキシル-1,4-フェニレン基、2,6-ジシクロヘキシル-1,4-フェニレン等が挙げられる。
 Rとしてのアルキレン基、シクロアルキレン基又はアリーレン基を組み合わせてなる2価の基、該基中の間に-O-、-C(=O)-、-S(=O)-又は-S-が挿入される基としては、例えば、-CHCH-、-CH-、-CHCHOCHCH-、-CFCFOCFCF-、-CFCHOCHCF-、-CHCHSCHCF-、-CHC(=O)C-、-CFCFCFS(=O)CFCFCF-、-CHC(=O)OCH(CF)CF-、-CHCHC(=O)OCHCF-等が挙げられる。
 Rとしては、アルキレン基、一部又は全フッ素化アルキレン基、アリーレン基、一部又は全フッ素化アリーレン基であることが好ましい。
 Aは-SO 、-SOSO又は-SO(SOを表し、-SO 又は-SOSOであることが好ましく、-SO であることがより好ましい。
 Rはアルキル基、シクロアルキル基又はアリール基を表し、Rはアルキル基、シクロアルキル基又はアリール基を表し、2つのRは同じでも異なっていても良い。
 Rについてのアルキル基としては、直鎖状であっても分岐状であってもよく、置換基を有していてもよく、炭素数1~20のアルキル基であることが好ましい。Rについてのアルキル基が有し得る置換基としては、電子求引性基(シアノ基など)、ハロゲン原子、アリール基等が挙げられ、電子求引性基又はハロゲン原子であることが好ましく、フッ素原子であることがより好ましい。
 Rについてのアルキル基としては、例えば、メチル基、エチル基、i-プロピル基、t-ブチル基、ベンジル基、シアノメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基等が挙げられる。
 Rについてのシクロアルキル基としては、置換基を有していてもよく、炭素数3~20のシクロアルキル基であることが好ましい。
 Rについてのシクロアルキル基が有し得る置換基としては電子求引性基、ハロゲン原子などが挙げられる。
 Rについてのシクロアルキル基としては、例えば、シクロペンチル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基等が挙げられる。
 Rについてのアリール基としては、置換基を有していても良く、炭素数6~26のアリール基であることが好ましい。Rについてのアリール基が有し得る置換基としては電子求引性基、ハロゲン原子、アルキル基、水酸基等が挙げられ、電子求引性基又はハロゲン原子であることが好ましく、フッ素原子であることがより好ましい。
 Rについてのアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、ペンタフルオロフェニル基、4-トリフルオロメチルフェニル基、4―シアノフェニル基、3-ヒドロキシフェニル基、2-メチルフェニル基等が挙げられる。
 Rとしては、アルキル基、一部又は全フッ素化アルキル基、アリール基、一部又は全フッ素化アリール基であることが好ましい。
 Rについてのアルキル基、シクロアルキル基又はアリール基の具体例、好ましい例としては、Rについてのアルキル基、シクロアルキル基又はアリール基として前述した具体例、好ましい例と同様のものが挙げられる。
 R及びRは、各々独立に、アルキル基、アルケニル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
 R及びRについてのアルキル基としては、直鎖状であっても分岐状であってもよく、置換基を有していてもよく、炭素数1~20のアルキル基であることが好ましい。置換基を有する場合、アルキル基の1位(α位)に置換基を有していることが好ましい。アルキル基の有し得る前記置換基としては、アシル基、アルコキシカルボニル基、シクロアルコキシ基、アルキル基、アリール基、アリールカルボニル基等が挙げら、アシル基又はアルコキシカルボニル基であることが好ましい。
 R及びRについてのアルキル基としては、例えば、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、ベンジル基、ベンゾイルメチル基、1-ベンゾイルエチル基、1-メチル-1-ベンゾイルエチル基、アセチルメチル基、シクロヘキシルオキシメチル基、メトキシカルボニルメチル基、1-(エトキシカルボニル)エチル基等が挙げられる。
 R及びRについてのアルケニル基としては、置換基を有していてもよく、炭素数2~20のアルケニル基であることが好ましく、例えばビニル基、アリル基等が挙げられる。
 R及びRについてのシクロアルキル基としては、置換基を有していてもよく、炭素数3~20のシクロアルキル基であることが好ましい。置換基を有する場合、シクロアルキル基の1位(α位)に置換基を有していることが好ましい。シクロアルキル基の有し得る前記置換基としては、アシル基、アルコキシカルボニル基、アリールカルボニル基等が挙げられる。
 R及びRについてのシクロアルキル基としては、例えば、シクロペンチル基、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基、1-ベンゾイルシクロヘキシル基、1-アセチルシクロペンチル基、1-(メトキシカルボニル)シクロヘキシル基等が挙げられる。
 R及びRについてのアリール基としては、置換基を有していてもよく、炭素数6~26のアリール基であることが好ましい。
 R及びRについてのアリール基が有し得る置換基としては、アルキル基、シクロアルキル基、アリール基、ヘテロ環基、ニトロ基、シアノ基、ハロゲン原子、ヒドロキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、カルボキシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アシル基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アリールスルホニル基、アルコキシスルホニル基、アリールオキシスルホニル基、スルファモイル基等が挙げられる。
 R及びRについてのアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、9-アントラニル基、前述の置換基が置換したフェニル基等が挙げられる。
 R及びRについてのヘテロ環基としては、置換基を有していてもよく、炭素数2~20のヘテロ環基であることが好ましい。R及びRについてのヘテロ環基が有し得る置換基の具体例としては、R及びRについてのアリール基が有し得る置換基として前述した具体例と同様のものがあげられる。
 R及びRについてのヘテロ環基としては、例えば、チエニル基、ベンゾチエニル基、テトラヒドロチエニル基、ピロリル基、インドリル基、カルバゾリル基、フリル基、ベンゾフリル基、テトラヒドロフリル基、ピリミジル基、ピラジル基、ピリダジル基等が挙げられる。
 R及びRとして、アリール基、アルキル基、1-アシルアルキル基又は1-(アルコキシカルボニル)アルキル基であることが好ましく、アリール基であることがより好ましい。
 R及びRは互いに連結して環を形成しても良い。その際、環内に酸素原子、硫黄原子、エステル結合、アミド結合、カルボニル基等を含んでいてもよい。形成する環として、シクロヘプタン環、シクロヘキサン環、シクロヘプタノン環、シクロヘキサノン環、又は、Sを含んだ環として、テトラヒドロチオフェン環、ジヒドロチオフェン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、チアントレン環、ジベンゾオキサチアン環等が挙げられる。
 Rは1価の置換基を表し、アルキル基、シクロアルキル基、アリール基、ヘテロ環基、ニトロ基、シアノ基、ハロゲン原子、ヒドロキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、カルボキシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アシル基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アリールスルホニル基、アルコキシスルホニル基、アリールオキシスルホニル基、スルファモイル基等が挙げられ、アルキル基、シクロアルキル基、アリール基、ハロゲン原子、ヒドロキシル基、アルコキシ基、アルコキシカルボニル基又はアリールチオ基であることが好ましい。nは0~4の整数を表し、好ましくは0~2の整数を表し、より好ましくは0である。nが2以上のときの複数のRは同じでも異なっても良く、R同士互いに連結して環を形成しても良い。形成する環としては好ましくはベンゼン環、シクロヘキサン環、シクロヘプタン環等が挙げられる。
 また、R及びR、R及びR、R及び前記一般式(Z1)中のベンゼン環、R及び前記ベンゼン環等もそれぞれ互いに連結して環を形成しても良い。形成する環として好ましくは、R及びRが連結して形成する環として前述した環と同様のものが挙げられる。
 なお、一般式(Z1)で表される構造を複数有する化合物であってもよい。例えば、一般式(Z1)で表される化合物のR又はRが、一般式(Z1)で表されるもうひとつの化合物のR又はRと、単結合又は連結基を介して結合した構造を有する化合物であってもよい。
 前記一般式(Z1)で表される化合物(A1)は、下記一般式(Z2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(Z2)中、
 L、R、A、R、nは前記一般式(Z1)におけるL、R、A、R、nと同義である。
 ただし、前記組成物中の溶剤に対する化合物(A1)の溶解性を向上させ、経時安定性を向上させ、化合物(A1)の露光時の分解効率(酸発生効率)を向上させて高感度、低LERを達成する観点から、前記一般式(Z2)における-L-R-Aが結合するベンゼン環について、-L-R-AがSのパラ位に置換しているとき、Lが-O-であることはなく、前記一般式(Z2)における-L-R-Aが結合するベンゼン環について、-L-R-AがSのパラ位に置換しているとき、Lは-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-、-C(=O)O-、-S(=O)-、-S(=O)-、-C(=O)-、-N(R)C(=O)-、-C(=O)N(R)-、-N(R)S(=O)-又は-S(=O)N(R)-であることが好ましく、-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-又は-C(=O)O-であることがより好ましい。
 前記組成物中の溶剤に対する化合物(A1)の溶解性を向上させ、経時安定性を向上させ、化合物(A1)の露光時の分解効率(酸発生効率)を向上させて高感度、低LERを達成する観点から、前記-L-R-Aが結合する前記一般式(Z2)中のベンゼン環について、前記-L-R-AがSに対してメタ位又はオルト位に置換していることが特に好ましい。
 R及びRは各々独立に1価の置換基を表し、R及びRについての1価の置換基の具体例、好ましい例としては、一般式(Z1)のRについての1価の置換基の具体例、好ましい例と同様のものが挙げられる。
 n及びnは各々独立に0~5の整数を表し、好ましくは0~2の整数を表し、より好ましくは0である。
 nが2以上のときの複数のR、nが2以上のときの複数のR及びnが2以上のときの複数のRはそれぞれ同じでも異なっても良く、互いに連結して環を形成しても良い。形成し得る環としては好ましくはベンゼン環、シクロヘキサン環、シクロヘプタン環等が挙げられる。
 R及びR、R及びR、並びにR及びRは、それぞれ、互いに連結して環を形成しても良い。なお、そのときは、R、R及びRはそれぞれ単結合であっても良く、環内に酸素原子、硫黄原子、エステル結合、アミド結合、カルボニル基等を含んでいてもよい。形成する環として好ましくは、Sを含んだ環としてテトラヒドロチオフェン環、ジヒドロチオフェン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、チアントレン環、ジベンゾオキサチアン環等が挙げられる。
 一般式(Z2)で表される構造を複数有する化合物であってもよい。例えば、一般式(Z2)で表される化合物が、一般式(Z2)で表されるもうひとつの化合物とR又はRを共有してR又はRを介して結合した構造を有する化合物であってもよい。
 以下、前記一般式(Z1)で表される活性光線又は放射線の照射により酸を発生する化合物(A1)の具体例を挙げるが、本発明は、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 前記一般式(Z1)又は(Z2)で表される化合物の製造方法としては、特に制限はないが、下記合成法1~4ないしはそれらの組み合わせなどにより製造することができる。-L-R-Aの置換位置やLの種類等により適宜合成法を変更ないしは選択して製造することができる。前記一般式(Z2)で表される化合物を例にとり以下説明する。なお、前記一般式(Z1)で表される化合物のうち前記一般式(Z2)以外の化合物についても、下記合成法1~4ないしはそれらの組み合わせなどにより製造することができる。なお前記一般式(Z1)又は(Z2)で表される化合物の製造方法はこれらに限定されるものではない。
 また、下記合成法1~4についてのスキーム中のR、R~R、n~n、A、Lは前記一般式(Z1)又は(Z2)におけるR、R~R、n~n、A、Lと同義である。
(合成法1)脱水縮合法
Figure JPOXMLDOC01-appb-C000011
 前記スルホキシド(1)と前記ベンゼン誘導体(2)とを、無溶媒、酸性溶媒、炭化水素系溶媒、ハロゲン化炭化水素系溶媒等中にて、(CFSOO、CHSOH-P、AlClのようなルイス酸触媒を用い脱水縮合させることで前記一般式(Z1)又は(Z2)で表される化合物を製造することができる。
 -L-R-AがSのパラ位置換のときに、Lが-S-、-N(R)C(=O)-、-N(R)S(=O)-などの場合に特に有用な方法である。
(合成法2)グリニャール法
Figure JPOXMLDOC01-appb-C000012
 前記ハロゲン体(3)を、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒中でMgと反応させてグリニャール試薬を調製し、それをTMS-Cl(トリメチルシリルクロライド)等を用いて前記スルホキシド(1)と反応させることで前記一般式(Z1)又は(Z2)で表される化合物を製造することができる。
 -L-R-Aの置換位置やLの種類に寄らず広く有効な方法である。
(合成法3)求核置換法
Figure JPOXMLDOC01-appb-C000013
 N,N-ジメチルアセドアミド、N-エチルピロリドン、N,N-ジメチルイミダゾリジノン等のアプロティックな極性溶媒中にて、市販若しくは既知の方法により合成可能な中間体H-L-R-Aに炭酸カリウム、トリエチルアミン、カリウムt-ブトキシド、水素化ナトリウムなどの塩基を作用させてアニオン-R-Aを調製した上で、(合成法2)や既知の方法で合成した前記フルオロ体(4)を反応させることで、前記一般式(Z1)又は(Z2)で表される化合物を製造することができる。
 Lが-O-、-S-などのとき、-L-R-Aの置換位置によらず適用することができる。また、Lが-S-の化合物をその後、過酸化水素水-酢酸等で酸化することで、Lが-S(=O)-、-S(=O)-などの化合物も製造することができる。
(合成法4)縮合連結法
Figure JPOXMLDOC01-appb-C000014
 L部分を縮合反応にて連結合成する製造方法である。Lが-OS(=O)-、-S(=O)O-、-OC(=O)-、-C(=O)O-、-N(R)C(=O)-、-C(=O)N(R)-、-N(R)S(=O)-、-S(=O)N(R)-などのときに-L-R-Aの置換位置によらず広く適用することができる有用な方法である。前記トリフェニルスルホニウム(5)は(合成法1)や(合成法2)や既知の方法にて一般に合成することができる。Y-R-Aは市販若しくは既知の方法により合成することができる。例えばLが-OS(=O)-の際には、Y:-OHとY:FOS-R-Aを既知の方法により縮合反応させることで合成することができ、Lが-C(=O)O-のときには、Y:-COOH、-COCl等とY:HO-R-Aを既知の方法により縮合反応させることでそれぞれ合成することができる。
 光酸発生剤(A1)は、単独で使用しても、複数を組み合わせて使用してもよい。 
 光酸発生剤(A1)の含有量は、感活性光線性又は感放射線性樹脂組成物の全固形分を基準として、0.1~70質量%であることが好ましく、0.5~50質量%であることがより好ましく、1~30質量%であることが更に好ましい。
 〔その他の光酸発生剤〕
 本発明においては、光酸発生剤(A1)と共に、他の酸発生剤を併用してもよい。そのような併用可能な光酸発生剤(以下において、「光酸発生剤(A2)」などという。)としては、光カチオン重合の光開始剤、光ラジカル重合の開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている活性光線又は放射線の照射により酸を発生する公知の化合物及びそれらの混合物を適宜に選択して使用することができる。例えば、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネートを挙げることができる。
 〔2〕酸の作用により分解し、アルカリ現像液中での溶解度が増大する樹脂
 本発明のポジ型感活性光線性又は感放射線性樹脂は、酸の作用により分解し、アルカリ現像液中での溶解度が増大する樹脂(B)を含んでいてもよい。この樹脂(B)は、典型的には、酸の作用により分解し、アルカリ可溶性基を生じる基(以下、酸分解性基ともいう)を備えている。この樹脂は、酸分解性基を、樹脂の主鎖及び側鎖の一方に備えていてもよく、これらの両方に備えていてもよい。この樹脂は、酸分解性基を、側鎖に備えていることが好ましい。
 酸分解性基としては、-COOH基及び-OH基等のアルカリ可溶性基の水素原子を、酸の作用により脱離する基で置換した基が好ましい。酸の作用により脱離する基としては、アセタール基又は3級エステル基が特に好ましい。
 これら酸分解性基が側鎖として結合する場合の母体樹脂は、例えば、側鎖に-OH又は-COOH基を有するアルカリ可溶性樹脂が挙げられる。このようなアルカリ可溶性樹脂の例としては、後述するものが挙げられる。
 これらアルカリ可溶性樹脂のアルカリ溶解速度は、2.38質量%テトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液で測定(23℃)して、17nm/秒以上が好ましい。この速度は、特に好ましくは、33nm/秒以上である。
 このような観点から、特に好ましいアルカリ可溶性樹脂としては、o-、m-及びp-ポリ(ヒドロキシスチレン)並びにこれらの共重合体、水素化ポリ(ヒドロキシスチレン)、ハロゲン又はアルキル置換ポリ(ヒドロキシスチレン)、ポリ(ヒドロキシスチレン)の一部O-アルキル化物又はO-アシル化物、スチレン-ヒドロキシスチレン共重合体、α-メチルスチレン-ヒドロキシスチレン共重合体及び水素化ノボラック樹脂等のヒドロキシスチレン構造単位を含んだ樹脂;並びに、(メタ)アクリル酸及びノルボルネンカルボン酸等のカルボキシル基を有する繰り返し単位を含んだ樹脂が挙げられる。
 好ましい酸分解性基を有する繰り返し単位としては、例えば、t-ブトキシカルボニルオキシスチレン、1-アルコキシエトキシスチレン及び(メタ)アクリル酸3級アルキルエステルが挙げられる。この繰り返し単位としては、2-アルキル-2-アダマンチル(メタ)アクリレート又はジアルキル(1-アダマンチル)メチル(メタ)アクリレートがより好ましい。
 酸の作用により分解し、アルカリ現像液中での溶解度が増大する樹脂は、欧州特許254853号明細書、特開平2-25850号公報、同3-223860号公報及び同4-251259号公報等に開示されているように、例えば、樹脂に酸の作用により脱離する基の前駆体を反応させるか、又は、酸の作用により脱離する基の結合したアルカリ可溶性樹脂モノマーを種々のモノマーと共重合させることにより得られる。
 本発明の組成物に、KrFエキシマレーザー光、電子線、X線又は波長50nm以下の高エネルギー光線(例えば、EUV)を照射する場合には、この樹脂は、ヒドロキシスチレン繰り返し単位を有することが好ましい。更に好ましくは、この樹脂は、ヒドロキシスチレンと酸の作用により脱離する基で保護されたヒドロキシスチレンとの共重合体、又は、ヒドロキシスチレンと(メタ)アクリル酸3級アルキルエステルとの共重合体である。
 このような樹脂としては、具体的には、下記一般式(A)で表される繰り返し単位を有する樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 式中、R01、R02及びR03は、各々独立に、例えば、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。Arはアルキレン基又は芳香環基を表す。なお、R03がアルキレン基であり、芳香環基としてのArと結合することにより、-C-C-鎖と共に、環を形成していてもよい。また、R03とArとがアルキレン基であり、両者が互いに結合することにより、-C-C-鎖と共に、例えば5員又は6員環を形成していてもよい。
 n個のYは、各々独立に、水素原子又は酸の作用により脱離する基を表す。但し、Yの少なくとも1つは、酸の作用により脱離する基を表す。 
 nは、1~4の整数を表し、1~2が好ましく、1がより好ましい。
 R01~R03としてのアルキル基は、例えば、炭素数20以下のアルキル基であり、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基又はドデシル基である。より好ましくは、これらアルキル基は、炭素数8以下のアルキル基である。なお、これらアルキル基は、置換基を有していてもよい。
 アルコキシカルボニル基に含まれるアルキル基としては、上記R01~R03におけるアルキル基と同様のものが好ましい。
 シクロアルキル基は、単環のシクロアルキル基であってもよく、多環のシクロアルキル基であってもよい。好ましくは、シクロプロピル基、シクロペンチル基及びシクロヘキシル基等の炭素数3~8の単環のシクロアルキル基が挙げられる。なお、これらシクロアルキル基は、置換基を有していてもよい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子がより好ましい。
 R03又はArがアルキレン基を表す場合、このアルキレン基としては、好ましくは、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基及びオクチレン基等の炭素数1~8のものが挙げられる。
 Arとしての芳香環基は、炭素数6~14のものが好ましく、例えば、ベンゼン環、トルエン環及びナフタレン環が挙げられる。なお、これら芳香環基は、置換基を有していてもよい。
 酸の作用により脱離する基Yとしては、例えば、-C(R36)(R37)(R38)、-C(=O)-O-C(R36)(R37)(R38)、-C(R01)(R02)(OR39)、-C(R01)(R02)-C(=O)-O-C(R36)(R37)(R38)及び-CH(R36)(Ar)により表される基が挙げられる。
 式中、R36~R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して、環構造を形成していてもよい。 
 R01及びR02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。 
 Arは、アリール基を表す。
 R36~R39、R01又はR02としてのアルキル基は、炭素数1~8のアルキル基であることが好ましく、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、へキシル基及びオクチル基が挙げられる。
 R36~R39、R01、又はR02としてのシクロアルキル基は、単環のシクロアルキル基であってもよく、多環のシクロアルキル基であってもよい。単環のシクロアルキル基としては、炭素数3~8のシクロアルキル基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基及びシクロオクチルが挙げられる。多環のシクロアルキル基としては、炭素数6~20のシクロアルキル基が好ましく、例えば、アダマンチル基、ノルボルニル基、イソボロニル基、カンファニル基、ジシクロペンチル基、α-ピネル基、トリシクロデカニル基、テトラシクロドデシル基及びアンドロスタニル基が挙げられる。なお、シクロアルキル基中の炭素原子の一部は、酸素原子等のヘテロ原子によって置換されていてもよい。
 R36~R39、R0102又はArとしてのアリール基は、炭素数6~10のアリール基であることが好ましく、例えば、フェニル基、ナフチル基及びアントリル基が挙げられる。
 R36~R39、R01又はR02としてのアラルキル基は、炭素数7~12のアラルキル基であることが好ましく、例えば、ベンジル基、フェネチル基及びナフチルメチル基が好ましい。
 R36~R39、R01又はR02としてのアルケニル基は、炭素数2~8のアルケニル基であることが好ましく、例えば、ビニル基、アリル基、ブテニル基及びシクロへキセニル基が挙げられる。
 R36とR37とが互いに結合して形成し得る環は、単環型であってもよく、多環型であってもよい。単環型としては、炭素数3~8のシクロアルカン構造が好ましく、例えば、シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロへキサン構造、シクロヘプタン構造及びシクロオクタン構造が挙げられる。多環型としては、炭素数6~20のシクロアルカン構造が好ましく、例えば、アダマンタン構造、ノルボルナン構造、ジシクロペンタン構造、トリシクロデカン構造及びテトラシクロドデカン構造が挙げられる。なお、環構造中の炭素原子の一部は、酸素原子等のヘテロ原子によって置換されていてもよい。
 上記各基は、置換基を有していてもよい。この置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、アミノ基、アミド基、ウレイド基、ウレタン基、ヒドロキシル基、カルボキシル基、ハロゲン原子、アルコキシ基、チオエーテル基、アシル基、アシロキシ基、アルコキシカルボニル基、シアノ基及びニトロ基が挙げられる。これら置換基は、炭素数が8以下であることが好ましい。
 複数の前記一般式(A)により表される繰り返し単位同士が酸の作用により脱離する基Yの部分で結合した構造であってもよい。
 酸の作用により脱離する基Yとしては、下記一般式(B)で表される構造がより好ましい。
Figure JPOXMLDOC01-appb-C000016
 式中、L及びLは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基又はアラルキル基を表す。 
 Mは、単結合又は2価の連結基を表す。 
 Qは、アルキル基、シクロアルキル基、環状脂肪族基、芳香環基、アミノ基、アンモニウム基、メルカプト基、シアノ基又はアルデヒド基を表す。なお、これら環状脂肪族基及び芳香環基は、ヘテロ原子を含んでいてもよい。
 なお、Q、M、Lの少なくとも2つが互いに結合して、5員又は6員環を形成していてもよい。
 L及びLとしてのアルキル基は、例えば炭素数1~8のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、ヘキシル基及びオクチル基が挙げられる。
 L及びLとしてのシクロアルキル基は、例えば炭素数3~15のシクロアルキル基であり、具体的には、シクロペンチル基、シクロヘキシル基、ノルボルニル基及びアダマンチル基が挙げられる。
 L及びLとしてのアリール基は、例えば炭素数6~15のアリール基であり、具体的には、フェニル基、トリル基、ナフチル基及びアントリル基が挙げられる。
 L及びLとしてのアラルキル基は、例えば炭素数6~20のアラルキル基であり、具体的には、ベンジル基及びフェネチル基が挙げられる。
 Mとしての2価の連結基は、例えば、アルキレン基(例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基又はオクチレン基)、シクロアルキレン基(例えば、シクロペンチレン基又はシクロヘキシレン基)、アルケニレン基(例えば、エテニレン基、プロペニレン基又はブテニレン基)、アリーレン基(例えば、フェニレン基、トリレン基又はナフチレン基)、-S-、-O-、-CO-、-SO-、-N(R)-、又は、これらの2以上の組み合わせである。ここで、Rは、水素原子又はアルキル基である。Rとしてのアルキル基は、例えば炭素数1~8のアルキル基であり、具体的には、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、ヘキシル基及びオクチル基が挙げられる。
 Qとしてのアルキル基及びシクロアルキル基は、上述したL及びLとしての各基と同様である。 
 Qとしての環状脂肪族基又は芳香環基としては、例えば、上述したL及びLとしてのシクロアルキル基及びアリール基が挙げられる。これらシクロアルキル基及びアリール基は、好ましくは、炭素数3~15の基である。
 Qとしてのヘテロ原子を含んだ環状脂肪族基又は芳香環基としては、例えば、チイラン、シクロチオラン、チオフェン、フラン、ピロール、ベンゾチオフェン、ベンゾフラン、ベンゾピロール、トリアジン、イミダゾール、ベンゾイミダゾール、トリアゾール、チアジアゾール、チアゾール及びピロリドン等の複素環構造を有した基が挙げられる。但し、炭素とヘテロ原子とで形成される環、又は、ヘテロ原子のみによって形成される環であれば、これらに限定されない。
 Q、M及びLの少なくとも2つが互いに結合して形成し得る環構造としては、例えば、これらがプロピレン基又はブチレン基を形成してなる5員又は6員環構造が挙げられる。なお、この5員又は6員環構造は、酸素原子を含有している。
 一般式(2)におけるL、L、M及びQで表される各基は、置換基を有していてもよい。この置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、アミノ基、アミド基、ウレイド基、ウレタン基、ヒドロキシル基、カルボキシル基、ハロゲン原子、アルコキシ基、チオエーテル基、アシル基、アシロキシ基、アルコキシカルボニル基、シアノ基及びニトロ基が挙げられる。これら置換基は、炭素数が8以下であることが好ましい。
 -(M-Q)で表される基としては、炭素数1~30の基が好ましく、炭素数5~20の基がより好ましい。特に、アウトガス抑制の観点からは、炭素数が6以上の基が好ましい。 
 樹脂(B)中における一般式(A)により表される繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは10~90モル%の範囲内であり、より好ましくは10~70モル%の範囲内であり、特に好ましくは20~60モル%の範囲内である。
 他の好ましい樹脂として、下記一般式(X)で表される繰り返し単位を有する樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 一般式(X)中、
 Xaは、水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基を表す。 Tは、単結合又は2価の連結基を表す。 
 Rx~Rxは、各々独立に、直鎖若しくは分岐のアルキル基、又は、単環若しくは多環のシクロアルキル基が挙げられる。なお、Rx~Rxの少なくとも2つが互いに結合して、単環又は多環のシクロアルキル基を形成していてもよい。
 Tとしての2価の連結基としては、例えば、アルキレン基、-(COO-Rt)-基、及び-(O-Rt)-基が挙げられる。ここで、Rtは、アルキレン基又はシクロアルキレン基を表す。
 Tは、単結合又は-(COO-Rt)-基であることが好ましい。ここで、Rtは、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基又は-(CH-基がより好ましい。
 Rx~Rxとしてのアルキル基は、好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基及びt-ブチル基等の炭素数1~4のアルキル基である。
 Rx~Rxとしてのシクロアルキル基は、好ましくは、シクロペンチル基及びシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基及びアダマンチル基等の多環のシクロアルキル基である。
 Rx~Rxの2つが互いに結合して形成し得るシクロアルキル基としては、シクロペンチル基及びシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基及びアダマンチル基等の多環のシクロアルキル基が好ましい。炭素数5~6の単環のシクロアルキル基が特に好ましい。
 特には、Rxがメチル基又はエチル基であり、RxとRxとが互いに結合して、上述のシクロアルキル基を形成している態様が好ましい。
 上記各基は、置換基を有していてもよく、置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1~4)、カルボキシル基、アルコキシカルボニル基(炭素数2~6)などが挙げられ、炭素数8以下が好ましい。
 酸分解性基を有する繰り返し単位の具体例を以下に示すが、本発明は、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000018
 樹脂中における一般式(X)で表される繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは3~90モル%の範囲内であり、より好ましくは5~80モル%の範囲内であり、特に好ましくは7~70モル%の範囲内である。 
 酸で分解し得る基の含有率は、樹脂中の酸で分解し得る基の数(B)と酸で脱離する基で保護されていないアルカリ可溶性基の数(S)とにより、式B/(B+S)によって計算される。この含有率は、好ましくは0.01~0.7であり、より好ましくは0.05~0.50であり、更に好ましくは0.05~0.40である。
 本発明の組成物にArFエキシマレーザー光を照射する場合には、この樹脂は、単環又は多環の脂環炭化水素構造を有していることが好ましい。なお、以下では、このような樹脂を「脂環炭化水素系酸分解性樹脂」と呼ぶ。
 この脂環炭化水素系酸分解性樹脂としては、下記一般式(pI)~(pV)で表される脂環式炭化水素を含んだ部分構造を有する繰り返し単位、及び、下記一般式(II-AB)で表される繰り返し単位からなる群より選択される少なくとも1種を含んだ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000019
 一般式(pI)~(pV)中、
 R11は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基又はsec-ブチル基を表し、Zは、炭素原子と共にシクロアルキル基を形成するのに必要な原子団を表す。 
 R12~R16は、各々独立に、炭素数1~4の直鎖若しくは分岐のアルキル基、又はシクロアルキル基を表す。但し、R12~R14のうちの少なくとも1つは、シクロアルキル基を表す。また、R15及びR16の何れかは、シクロアルキル基を表す。
 R17~R21は、各々独立に、水素原子、炭素数1~4の直鎖若しくは分岐のアルキル基、又はシクロアルキル基を表す。但し、R17~R21のうちの少なくとも1つは、シクロアルキル基を表す。また、R19及びR21の何れかは、炭素数1~4の直鎖若しくは分岐のアルキル基又はシクロアルキル基を表す。 
 R22~R25は、各々独立に、水素原子、炭素数1~4の直鎖若しくは分岐のアルキル基、又はシクロアルキル基を表す。但し、R22~R25のうちの少なくとも1つは、シクロアルキル基を表す。なお、R23とR24とは、互いに結合して、環構造を形成していてもよい。
Figure JPOXMLDOC01-appb-C000020
 一般式(II-AB)中、
 R11’及びR12’は、各々独立に、水素原子、シアノ基、ハロゲン原子又はアルキル基を表す。 
 Z’は、結合した2つの炭素原子(C-C)と共に脂環式構造を形成するために必要な原子団を表す。 
 また、上記一般式(II-AB)は、下記一般式(II-AB1)又は一般式(II-AB2)であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000021
 一般式(II-AB1)及び(II-AB2)中、
 R13’~R16’は、各々独立に、水素原子、ハロゲン原子、シアノ基、水酸基、-COOH、-COOR、酸の作用により分解する基、-C(=O)-X-A’-R17’、アルキル基又はシクロアルキル基を表す。ここで、Rは、アルキル基、シクロアルキル基又はラクトン構造を有する基を表す。Xは、酸素原子、硫黄原子、-NH-、-NHSO-又は-NHSONH-を表す。A’は、単結合又は2価の連結基を表す。R17’は、-COOH、-COOR、-CN、水酸基、アルコキシ基、-CO-NH-R、-CO-NH-SO-R又はラクトン構造を有する基を表す。ここで、Rは、アルキル基又はシクロアルキル基を表す。なお、R13’~R16’のうち少なくとも2つが互いに結合して、環構造を形成してもよい。 
 nは、0又は1を表す。
 一般式(pI)~(pV)において、R12~R25におけるアルキル基は、炭素数1~4の直鎖若しくは分岐のアルキル基であることが好ましく、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基及びt-ブチル基が挙げられる。
 R12~R25におけるシクロアルキル基、又は、Zと炭素原子とが形成するシクロアルキル基は、単環のシクロアルキル基であってもよく、多環のシクロアルキル基であってもよい。具体的には、炭素数5以上のモノシクロ、ビシクロ、トリシクロ及びテトラシクロ構造を有する基が挙げられる。その炭素数は6~30が好ましく、7~25が特に好ましい。
 好ましいシクロアルキル基としては、例えば、アダマンチル基、ノルアダマンチル基、デカリン残基、トリシクロデカニル基、テトラシクロドデカニル基、ノルボルニル基、セドロール基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデカニル基及びシクロドデカニル基が挙げられる。より好ましくは、アダマンチル基、ノルボルニル基、シクロヘキシル基、シクロペンチル基、テトラシクロドデカニル基及びトリシクロデカニル基が挙げられる。
 これらアルキル基及びシクロアルキル基は、置換基を有していてもよい。この置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1~4)、カルボキシル基及びアルコキシカルボニル基(炭素数2~6)が挙げられる。これら置換基は、更なる置換基を有していてもよい。この更なる置換基としては、例えば、水酸基、ハロゲン原子及びアルコキシ基が挙げられる。
 一般式(pI)~(pV)で表される構造は、アルカリ可溶性基の保護に用いることができる。このアルカリ可溶性基としては、この技術分野において公知の種々の基が挙げられる。
 具体的には、例えば、カルボン酸基、スルホン酸基、フェノール基及びチオール基等の水素原子が一般式(pI)~(pV)で表される構造によって置換された構造が挙げられる。好ましくは、カルボン酸基又はスルホン酸基の水素原子が一般式(pI)~(pV)で表される構造で置換された構造である。
 一般式(pI)~(pV)で表される構造によって保護されたアルカリ可溶性基を有する繰り返し単位としては、下記一般式(pA)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000022
 一般式(pA)中、
 Rは、水素原子、ハロゲン原子、又は炭素数1~4の直鎖若しくは分岐のアルキル基を表す。複数のRの各々は、互いに同一であってもよく、互いに異なっていてもよい。 
 Aは、単結合、アルキレン基、エーテル基、チオエーテル基、カルボニル基、エステル基、アミド基、スルホンアミド基、ウレタン基、ウレア基、及びこれらの2以上の組み合わせからなる群より選択され、好ましくは単結合である。 
 Rpは、上記一般式(pI)~(pV)の何れかにより表される基である。
 一般式(pA)で表される繰り返し単位は、最も好ましくは、2-アルキル-2-アダマンチル(メタ)アクリレート又はジアルキル(1-アダマンチル)メチル(メタ)アクリレートによる繰り返し単位である。 
 一般式(pA)で表される繰り返し単位の具体例としては、一般式(X)で表される繰り返し単位として前記に例示したものと同様なものが挙げられ、一般式(pA)で表される繰り返し単位のその他の具体例として、以下に具体例を示す。
Figure JPOXMLDOC01-appb-C000023
 上記各構造式において、Rxは、H、CH、CF又はCHOHを表し、Rxa及びRxbは、各々独立に、炭素数1~4のアルキル基を表す。 
 一般式(II-AB)におけるR11’又はR12’としてのハロゲン原子は、例えば、塩素原子、臭素原子、フッ素原子又はヨウ素原子である。
 R11’又はR12’としてのアルキル基としては、炭素数1~10の直鎖若しくは分岐のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、並びに、直鎖若しくは分岐のブチル基、ペンチル基、ヘキシル基及びヘプチル基が挙げられる。
 上記Z’で表される原子団は、置換基を有していてもよい脂環式炭化水素の繰り返し単位を、樹脂中に形成する原子団である。この原子団としては、有橋式の脂環式炭化水素の繰り返し単位を形成するものが好ましい。 
 形成される脂環式炭化水素の骨格としては、一般式(pI)~(pVI)におけるR12~R25のシクロアルキル基と同様のものが挙げられる。
 上記脂環式炭化水素の骨格は、置換基を有していてもよい。そのような置換基としては、例えば、上記一般式(II-AB1)及び(II-AB2)におけるR13’~R16’が挙げられる。
 脂環炭化水素系酸分解性樹脂において、酸の作用により分解する基は、上記一般式(pI)~一般式(pV)で表される脂環式炭化水素を含んだ部分構造を有する繰り返し単位、一般式(II-AB)で表される繰り返し単位、及び、後述する共重合成分の繰り返し単位のうちの少なくとも1つに含有させることができる。
 上記一般式(II-AB1)及び(II-AB2)におけるR13’~R16’の各置換基は、上記一般式(II-AB)における脂環式構造又は有橋式脂環式構造を形成するための原子団Z’の置換基ともなり得る。 
 上記一般式(II-AB1)又は一般式(II-AB2)で表される繰り返し単位として、下記具体例を挙げるが、本発明は、これらの例に限定されない。
Figure JPOXMLDOC01-appb-C000024
 樹脂(B)は、ラクトン基を含んだ繰り返し単位を有することが好ましい。このラクトン基は、好ましくは5~7員環ラクトン構造を有する基であり、特には、5~7員環ラクトン構造にビシクロ構造又はスピロ構造を形成する形で他の環構造が縮環しているものが好ましい。
 この樹脂(B)は、より好ましくは、下記一般式(LC1-1)~(LC1-17)の何れかで表されるラクトン構造を含んだ基を有する繰り返し単位を含んでいる。なお、ラクトン構造を有する基は、主鎖に直接結合していてもよい。好ましいラクトン構造としては、(LC1-1)、(LC1-4)、(LC1-5)、(LC1-6)、(LC1-13)、(LC1-14)及び(LC1-17)が挙げられる。特定のラクトン構造を用いることにより、ラインエッジラフネス及び現像欠陥を更に減少させ得る。
Figure JPOXMLDOC01-appb-C000025
 ラクトン構造部分は、置換基(Rb)を有していてもよく、有していなくてもよい。好ましい置換基(Rb)としては、例えば、炭素数1~8のアルキル基、炭素数3~7のシクロアルキル基、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、水酸基、シアノ基及び酸分解性基が挙げられる。
 nは、0~4の整数を表す。nが2以上の整数である場合、複数存在するRbは、互いに同一であってもよく、互いに異なっていてもよい。また、この場合、複数存在するRb同士が互いに結合して、環構造を形成してもよい。
 一般式(LC1-1)~(LC1-17)の何れかで表されるラクトン構造を含んだ基を有する繰り返し単位としては、例えば、上記一般式(II-AB1)及び(II-AB2)中のR13’~R16’のうちの少なくとも1つが一般式(LC1-1)~(LC1-17)で表される基を有するもの、及び、下記一般式(AI)で表される繰り返し単位が挙げられる。なお、前者の例としては、-COORのRが一般式(LC1-1)~(LC1-17)で表される基である構造が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 一般式(AI)中、Rbは、水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を表す。 
 Rbとしてのアルキル基は、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基又はt-ブチル基である。これらアルキル基は、置換基を有していてもよい。この置換基としては、例えば、水酸基及びハロゲン原子が挙げられる。
 Rbのハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 
 Rbは、水素原子又はメチル基であることが好ましい。
 Abは、アルキレン基、単環若しくは多環の脂環炭化水素構造を有する2価の連結基、単結合、エーテル基、エステル基、カルボニル基、又はこれらの組み合わせを表す。Abは、好ましくは、単結合又は-Ab-CO-で表される連結基である。
 Abは、直鎖若しくは分岐アルキレン基、又は、単環若しくは多環のシクロアルキレン基であり、好ましくは、メチレン基、エチレン基、シクロヘキシレン基、アダマンチレン基又はノルボルニレン基である。 
 Vは、一般式(LC1-1)~(LC1-17)の何れかにより表される基である。 
 なお、ラクトン構造を有する繰り返し単位には、通常、光学異性体が存在するが、いずれの光学異性体を用いてもよい。また、1種の光学異性体を単独で用いても、複数の光学異性体を混合して用いてもよい。1種の光学異性体を主に用いる場合、その光学純度が90%ee以上のものが好ましく、95%ee以上のものがより好ましい。
 特に好ましいラクトン基を有する繰り返し単位としては、下記の繰り返し単位が挙げられる。最適なラクトン基を選択することにより、パターンプロファイル、疎密依存性が良好となる。式中、Rx及びRは、H、CH、CHOH又はCFを表す。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 樹脂(B)は、ラクトン基を含んだ繰り返し単位を複数含有していてもよい。この場合、(1)一般式(AI)においてAbが単結合であるものと-Ab-CO-であるものを1種ずつ用いる、(2)一般式(AI)においてAbが-Ab-CO-であるものを2種併用する、のいずれかが好ましい。
 ラクトン基を含んだ繰り返し単位は、(複数のラクトン基を含んだ繰り返し単位がある場合、それらの総和として)樹脂(B)の全繰り返し単位中、3~70モル%であることが好ましく、5~60モル%であることがより好ましい。
 樹脂(B)は、極性基で置換された脂環炭化水素構造を含んだ繰り返し単位を有していることが好ましい。これにより、基板密着性及び現像液親和性を向上させ得る。この極性基としては、水酸基又はシアノ基が好ましい。なお、極性基としての水酸基は、アルコール性水酸基を形成する。 
 極性基で置換された脂環炭化水素構造としては、例えば、下記一般式(VIIa)又は
(VIIb)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 一般式(VIIa)中、Rc~Rcは、各々独立に、水素原子、水酸基又はシアノ基を表す。但し、Rc~Rcのうちの少なくとも1つは、水酸基又はシアノ基を表す。好ましくは、Rc~Rcのうちの1つ又は2つが水酸基であり、残りが水素原子である。更に好ましくは、Rc~Rcのうちの2つが水酸基であり、残りの1つが水素原子である。 
 一般式(VIIa)で表される基は、好ましくはジヒドロキシ体又はモノヒドロキシ体であり、より好ましくはジヒドロキシ体である。
 一般式(VIIa)又は(VIIb)で表される基を有する繰り返し単位としては、上記一般式(II-AB1)又は(II-AB2)中のR13’~R16’のうちの少なくとも1つが上記一般式(VIIa)又は(VIIb)で表される基を有するもの、及び、下記一般式(AIIa)又は(AIIb)で表される繰り返し単位が挙げられる。前者の例としては、-COORのRが一般式(VIIa)又は(VIIb)で表される基である構造が挙げられる。
Figure JPOXMLDOC01-appb-C000031
 一般式(AIIa)、(AIIb)中、
 Rcは、水素原子、メチル基、トリフロロメチル基又はヒドロキシメチル基を表す。
 Rc~Rcは、一般式(VIIa)におけるRc~Rcと同義である。 
 一般式(AIIa)又は(AIIb)で表される繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000032
 上記繰り返し単位は、(該当する複数の繰り返し単位がある場合、それらの総和として)樹脂(B)の全繰り返し単位中、3~30モル%であることが好ましく、5~25モル%であることがより好ましい。
 本発明の樹脂は、上記繰り返し単位の他に、ヒドロキシル基やシアノ基を有さず、酸に対して安定な繰り返し単位を有してもよい。 
 この単位としてより具体的には、一般式として以下に例示されるような、アクリル構造の側鎖に、非酸分解性のアリール構造やシクロアルキル構造を有する繰り返し単位が挙げられる。この構造を有することにより、コントラストの調節、エッチング耐性の向上などが期待できる。
 この繰り返し単位は、前述のヒドロキシスチレン繰り返し単位を有する樹脂に導入されていても、脂環炭化水素系酸分解性樹脂に導入されていてもよいが、脂環炭化水素系酸分解性樹脂に導入される場合は、193nm光の吸収の観点から、芳香環構造を含有しないことが好ましい。
Figure JPOXMLDOC01-appb-C000033
 一般式(III)中、Rは炭化水素基を表す。 
 Raは水素原子、アルキル基(メチル基が好ましい)、ヒドロキシアルキル基(ヒドロキシメチル基が好ましい)、又はトリフルオロメチル基を表す。
 Rの炭化水素基は、その中に環状構造を有することが好ましい。環状構造を有する場合の具体例として、単環又は多環のシクロアルキル基(炭素数3~12が好ましく、より好ましくは炭素数3~7)、単環又は多環のシクロアルケニル基(炭素数3~12が好ましい)、アリール基(好ましくは炭素数6~20、より好ましくは炭素数6~12)、アラルキル基(好ましくは炭素数7~20、より好ましくは炭素数7~12)などが挙げられる。
 シクロアルキル基には環集合炭化水素基、架橋環式炭化水素基が含まれ、架橋環式炭化水素環としては、2環式炭化水素環、3環式炭化水素環、4環式炭化水素環などが挙げられる。また、架橋環式炭化水素環には、例えば5~8員シクロアルカン環が複数個縮合した縮合環も含まれる。
 好ましい架橋環式炭化水素環として、ノルボルニル基、アダマンチル基、ビシクロオクタニル基、トリシクロ[5、2、1、02,6]デカニル基、などが挙げられる。より好ましい架橋環式炭化水素環としてノルボニル基、アダマンチル基が挙げられる。
 アリール基の好ましい例としては、フェニル基、ナフチル基、ビフェニル基などが挙げられ、アラルキル基の好ましい例としては、フェニルメチル基、フェニルエチル基、ナフチルメチル基などが挙げられる。
 これらの炭化水素基は置換基を有していても良く、好ましい置換基としてはハロゲン原子、アルキル基、保護基で保護されたヒドロキシル基、保護基で保護されたアミノ基などが挙げられる。好ましいハロゲン原子としては臭素、塩素、フッ素原子、好ましいアルキル基としてはメチル、エチル、ブチル、t-ブチル基が挙げられる。上記のアルキル基は更に置換基を有していても良く、更に有していてもよい置換基としては、ハロゲン原子、アルキル基、保護基で保護されたヒドロキシル基、保護基で保護されたアミノ基を挙げることができる。
 保護基としては、たとえばアルキル基、シクロアルキル基、アラルキル基、置換メチル基、置換エチル基、アルコキシカルボニル基、アラルキルオキシカルボニル基が挙げられる。好ましいアルキル基としては、炭素数1~4のアルキル基、好ましい置換メチル基としてはメトキシメチル、メトキシチオメチル、ベンジルオキシメチル、t-ブトキシメチル、2-メトキシエトキシメチル基、好ましい置換エチル基としては、1-エトキシエチル、1-メチル-1-メトキシエチル、好ましいアシル基としては、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル基などの炭素数1~6の脂肪族アシル基、アルコキシカルボニル基としては炭素数1~4のアルコキシカルボニル基などが挙げられる。
 樹脂(B)は一般式(III)で表される繰り返し単位を含有していても含有していなくてもよいが、含有する場合、一般式(III)で表される繰り返し単位の含有量は、樹脂(B)中の全繰り返し単位に対し、1~40モル%が好ましく、より好ましくは1~20モル%である。 
 一般式(III)で表される繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。式中、Raは、H、CH、CHOH、又はCFを表す。
Figure JPOXMLDOC01-appb-C000034
 樹脂(B)は上記繰り返し単位を含有していても含有していなくてもよいが、含有する場合、上記繰り返し単位は、(該当する複数の繰り返し単位がある場合、それらの総和として)樹脂の全繰り返し単位中、1~30モル%であることが好ましく、1~20モル%であることがより好ましい。 
 樹脂(B)は、下記一般式(VIII)で表される繰り返し単位を有してもよい。
Figure JPOXMLDOC01-appb-C000035
 一般式(VIII)中、Zは、-O-又は-N(R41)-を表す。R41は、水素原子、水酸基、アルキル基又は-OSO-R42を表す。ここでR42は、アルキル基、シクロアルキル基又は樟脳残基を表す。R41又はR42としてのアルキル基は、ハロゲン原子等により置換されていてもよい。この場合、ハロゲン原子としては、フッ素原子が好ましい。 
 一般式(VIII)で表される繰り返し単位として、以下の具体例が挙げられるが、本発明は、これらに限定されない。
Figure JPOXMLDOC01-appb-C000036
 樹脂(B)は、アルカリ可溶性基を含んだ繰り返し単位を有することが好ましく、カルボキシル基を含んだ繰り返し単位を有することがより好ましい。これにより、コンタクトホール用途での解像度を向上させ得る。
 カルボキシル基を含んだ繰り返し単位としては、樹脂の主鎖に直接カルボキシル基が結合している繰り返し単位、及び、連結基を介して樹脂の主鎖にカルボキシル基が結合している繰り返し単位のいずれも好ましい。
 前者の例としては、アクリル酸又はメタクリル酸による繰り返し単位が挙げられる。また、後者における連結基は、単環又は多環のシクロアルキル構造を有していてもよい。
 カルボキシル基を含んだ繰り返し単位としては、アクリル酸又はメタクリル酸による繰り返し単位が最も好ましい。
 酸の作用により分解し、アルカリ現像液中での溶解度が増大する樹脂の重量平均分子量は、GPC法によって求めたポリスチレン換算値として、好ましくは、2,000~200,000の範囲内である。重量平均分子量を2,000以上とすることにより、耐熱性及びドライエッチング耐性を特に向上させ得る。重量平均分子量を200,000以下とすることにより、現像性を特に向上させ得ると共に、組成物の粘度の低下に起因して、その製膜性をも向上させ得る。
 より好ましい分子量は、2,500~50,000の範囲内であり、更に好ましくは、3,000~20,000の範囲内である。また、電子線、X線、波長50nm以下の高エネルギー線(例えば、EUV)を利用した微細パターン形成では、重量平均分子量を3,000~10,000の範囲内とすることが最も好ましい。分子量を調整することにより、組成物の耐熱性及び解像力の向上並びに現像欠陥の減少等を同時に達成し得る。
 酸の作用により分解し、アルカリ現像液中での溶解度が増大する樹脂の分散度(Mw/Mn)は、1.0~3.0が好ましく、1.2~2.5がより好ましく、1.2~1.6が更に好ましい。この分散度を調整することにより、例えば、ラインエッジラフネス性能を向上させ得る。
 以上において説明した樹脂の具体例を以下に示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 上記具体例において、tBuはt-ブチル基を表す。 
 本発明に係る組成物に占めるこの樹脂(B)の配合率は、全固形分中を基準として、5~99.9質量%が好ましく、50~95質量%がより好ましく、60~93質量%がより好ましい。
 〔3〕アルカリ現像液に可溶な樹脂(以下、「アルカリ可溶性樹脂」ともいう)
 本発明のネガ型感活性光線性又は感放射線性樹脂組成物は、アルカリ可溶性樹脂(C)と更に必要に応じて架橋剤(D)を含んでいてもよい。このアルカリ可溶性樹脂(C)のアルカリ溶解速度は、2.38質量%テトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液を用いて測定(23℃)して、2nm/秒以上が好ましい。特に好ましくは、この速度は、20nm/秒以上である。
 アルカリ可溶性樹脂としては、例えば、ノボラック樹脂、水素化ノボラック樹脂、アセトン-ピロガロール樹脂、o-ポリヒドロキシスチレン、m-ポリヒドロキシスチレン、p-ポリヒドロキシスチレン、水素化ポリヒドロキシスチレン、ハロゲン又はアルキル置換ポリヒドロキシスチレン、ヒドロキシスチレン-N-置換マレイミド共重合体、o/p-及びm/p-ヒドロキシスチレン共重合体、ポリヒドロキシスチレンの水酸基に対する一部O-アルキル化物(例えば、5~30モル%のO-メチル化物、O-(1-メトキシ)エチル化物、O-(1-エトキシ)エチル化物、O-2-テトラヒドロピラニル化物又はO-(t-ブトキシカルボニル)メチル化物)又はO-アシル化物(例えば、5~30モル%のO-アセチル化物又はO-(t-ブトキシ)カルボニル化物)、スチレン-無水マレイン酸共重合体、スチレン-ヒドロキシスチレン共重合体、α-メチルスチレン-ヒドロキシスチレン共重合体、カルボキシル基含有メタクリル系樹脂及びその誘導体、並びに、ポリビニルアルコール誘導体が挙げられるが、これらに限定されるものではない。
 好ましいアルカリ可溶性樹脂としては、ノボラック樹脂、o-ポリヒドロキシスチレン、m-ポリヒドロキシスチレン、p-ポリヒドロキシスチレン及びこれらの共重合体、アルキル置換ポリヒドロキシスチレン、ポリヒドロキシスチレンの一部O-アルキル化又はO-アシル化物、スチレン-ヒドロキシスチレン共重合体、並びにα-メチルスチレン-ヒドロキシスチレン共重合体が挙げられる。
 特に本発明では、ヒドロキシスチレン構造を有する樹脂が好ましい。また、ヒドロキシスチレン構造の中でも、m-ヒドロキシスチレン構造が特に好ましい。
 上記のノボラック樹脂は、所定のモノマーを主成分として、酸性触媒の存在下、アルデヒド類と付加縮合させることにより得られる。
 また、アルカリ可溶性樹脂の重量平均分子量は、2000以上であることが好ましく、5000~200000であることがより好ましく、5000~100000であることが更に好ましい。ここで、重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)により求めたポリスチレン換算値で定義される。
 本発明におけるこれらのアルカリ可溶性樹脂(C)は、2種類以上組み合わせて使用してもよい。 
 アルカリ可溶性樹脂(C)の含有量は、組成物中の全固形分を基準として、40~97質量%であることが好ましく、60~90質量%であることがより好ましい。
 〔4〕酸の作用によりアルカリ可溶性樹脂と架橋する酸架橋剤
 本発明のネガ型感活性光線性又は感放射線性樹脂組成物は、更に、酸架橋剤(D)を含んでいてもよい。 
 酸架橋剤(D)としては、酸の作用により上記アルカリ可溶性樹脂(C)を架橋する化合物であればいずれも用いることができるが、以下の(1)~(3)が好ましい。 
(1)フェノール誘導体のヒドロキシメチル体、アルコキシメチル体、アシルオキシメチル体。 
(2)N-ヒドロキシメチル基、N-アルコキシメチル基、N-アシルオキシメチル基を有する化合物。 
(3)エポキシ基を有する化合物。 
 アルコキシメチル基としては炭素数6個以下、アシルオキシメチル基としては炭素数6個以下が好ましい。 
 これらの架橋剤の内、特に好ましいものを以下に挙げる。
Figure JPOXMLDOC01-appb-C000040
 式中、L~Lは、各々独立に、水素原子、ヒドロキシメチル基、アルコキシメチル基(好ましくはメトキシメチル基、エトキシメチル基)、又は炭素数1~6個のアルキル基を示す。 
 架橋剤は、感活性光線性又は感放射線性樹脂組成物の全固形分中、3~70質量%であることが好ましく、より好ましくは5~50質量%の添加量で用いられる。
 〔5〕酸の作用により分解してアルカリ現像液中での溶解度が増大する、分子量3000以下の溶解阻止化合物
 本発明のポジ型感活性光線性又は感放射線性樹脂組成物は、更に、酸の作用により分解してアルカリ現像液中での溶解度が増大する、分子量3000以下の溶解阻止化合物(以下、「溶解阻止化合物」ともいう)を含有し得る。この溶解阻止化合物としては、220nm以下の透過性を低下させないため、Proceeding of SPIE,2724,355(1996)に記載されている酸分解性基を含むコール酸誘導体等の、酸分解性基を含有する脂環族又は脂肪族化合物が好ましい。この酸分解性基としては、例えば、先に酸分解性単位について説明したのと同様のものが挙げられる。
 なお、本発明に係る組成物をKrFエキシマレーザーで露光するか又は電子線で照射する場合には、溶解阻止化合物としては、フェノール化合物のフェノール性水酸基を酸分解基で置換した構造を含んだ化合物が好ましい。フェノール化合物としては、フェノール骨格を1~9個含有するものが好ましく、2~6個含有するものが更に好ましい。
 溶解阻止化合物の添加量は、組成物の全固形分を基準として、好ましくは3~50質量%であり、より好ましくは5~40質量%である。
 以下に溶解阻止化合物の具体例を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000041
 〔6〕その他の成分
 本発明に係るポジ型又はネガ型感活性光線性又は感放射線性樹脂組成物は、塩基性化合物、有機溶剤、界面活性剤、染料、可塑剤、光増感剤、現像液に対する溶解促進性化合物、及びプロトンアクセプター性官能基を有する化合物等を更に含んでいてもよい。
 (塩基性化合物)
 本発明に係る組成物は、塩基性化合物を更に含んでいてもよい。塩基性化合物を更に含有させると、露光と加熱(ポストベーク)との間における性能の経時変化を更に低減することが可能となる。また、こうすると、露光によって発生した酸の膜中拡散性を制御することが可能となる。
 この塩基性化合物は、含窒素有機化合物であることが好ましい。使用可能な化合物は特に限定されないが、例えば、以下の(1)~(5)に分類される化合物を用いることができる。
(1)下記一般式(BS-1)により表される化合物 
Figure JPOXMLDOC01-appb-C000042
 一般式(BS-1)中、
 Rは、各々独立に、水素原子又は有機基を表す。但し、3つのRのうち少なくとも1つは有機基である。この有機基は、直鎖若しくは分岐鎖のアルキル基、単環若しくは多環のシクロアルキル基、アリール基又はアラルキル基である。 
 Rとしてのアルキル基の炭素数は、特に限定されないが、通常1~20であり、好ましくは1~12である。 
 Rとしてのシクロアルキル基の炭素数は、特に限定されないが、通常3~20であり、好ましくは5~15である。 
 Rとしてのアリール基の炭素数は、特に限定されないが、通常6~20であり、好ましくは6~10である。具体的には、フェニル基及びナフチル基等が挙げられる。 
 Rとしてのアラルキル基の炭素数は、特に限定されないが、通常7~20であり、好ましくは7~11である。具体的には、ベンジル基等が挙げられる。
 Rとしてのアルキル基、シクロアルキル基、アリール基及びアラルキル基は、水素原子が置換基により置換されていてもよい。この置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヒドロキシル基、カルボキシ基、アルコキシ基、アリールオキシ基、アルキルカルボニルオキシ基及びアルキルオキシカルボニル基等が挙げられる。 
 なお、一般式(BS-1)により表される化合物では、Rのうち少なくとも2つが有機基であることが好ましい。
 一般式(BS-1)により表される化合物の具体例としては、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-オクチルアミン、トリ-n-デシルアミン、トリイソデシルアミン、ジシクロヘキシルメチルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ジデシルアミン、メチルオクタデシルアミン、ジメチルウンデシルアミン、N,N-ジメチルドデシルアミン、メチルジオクタデシルアミン、N,N-ジブチルアニリン、N,N-ジヘキシルアニリン、2,6-ジイソプロピルアニリン、及び2,4,6-トリ(t-ブチル)アニリンが挙げられる。
 また、一般式(BS-1)により表される好ましい塩基性化合物として、少なくとも1つのRがヒドロキシル基で置換されたアルキル基であるものが挙げられる。具体的には、例えば、トリエタノールアミン及びN,N-ジヒドロキシエチルアニリンが挙げられる。
 なお、Rとしてのアルキル基は、アルキル鎖中に酸素原子を有していてもよい。即ち、オキシアルキレン鎖が形成されていてもよい。オキシアルキレン鎖としては、-CHCHO-が好ましい。具体的には、例えば、トリス(メトキシエトキシエチル)アミン、及び、US6040112号明細書のカラム3の60行目以降に例示されている化合物が挙げられる。
 (2)含窒素複素環構造を有する化合物
 この含窒素複素環は、芳香族性を有していてもよく、芳香族性を有していなくてもよい。また、窒素原子を複数有していてもよい。更に、窒素以外のヘテロ原子を含有していてもよい。具体的には、例えば、イミダゾール構造を有する化合物(2-フェニルベンゾイミダゾール、2,4,5-トリフェニルイミダゾールなど)、ピペリジン構造を有する化合物〔N-ヒドロキシエチルピペリジン及びビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートなど〕、ピリジン構造を有する化合物(4-ジメチルアミノピリジンなど)、並びにアンチピリン構造を有する化合物(アンチピリン及びヒドロキシアンチピリンなど)が挙げられる。
 また、環構造を2つ以上有する化合物も好適に用いられる。具体的には、例えば、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン及び1,8-ジアザビシクロ〔5.4.0〕-ウンデカ-7-エンが挙げられる。
 (3)フェノキシ基を有するアミン化合物
 フェノキシ基を有するアミン化合物とは、アミン化合物が含んでいるアルキル基のN原子と反対側の末端にフェノキシ基を備えた化合物である。フェノキシ基は、例えば、アルキル基、アルコキシ基、ハロゲン原子、シアノ基、ニトロ基、カルボキシ基、カルボン酸エステル基、スルホン酸エステル基、アリール基、アラルキル基、アシロキシ基及びアリールオキシ基等の置換基を有していてもよい。
 この化合物は、より好ましくは、フェノキシ基と窒素原子との間に、少なくとも1つのオキシアルキレン鎖を有している。1分子中のオキシアルキレン鎖の数は、好ましくは3~9個、更に好ましくは4~6個である。オキシアルキレン鎖の中でも-CHCHO-が特に好ましい。
 具体例としては、2-[2-{2―(2,2―ジメトキシ-フェノキシエトキシ)エチル}-ビス-(2-メトキシエチル)]-アミン、及び、US2007/0224539A1号明細書の段落[0066]に例示されている化合物(C1-1)~(C3-3)が挙げられる。
 (4)アンモニウム塩
 アンモニウム塩も適宜用いることができる。このアンモニウム塩は、好ましくは、ヒドロキシド又はカルボキシレートである。より具体的には、テトラブチルアンモニウムヒドロキシド等のテトラアルキルアンモニウムヒドロキシドが好ましい。
 その他、本発明に係るポジ型又はネガ型感活性光線性又は感放射線性樹脂組成物に使用可能なものとして、特開2002-363146号公報の実施例で合成されている化合物、及び特開2007-298569号公報の段落0108に記載の化合物等が挙げられる。
 また、塩基性化合物として、感光性の塩基性化合物を用いてもよい。感光性の塩基性化合物としては、例えば、特表2003-524799号公報、及びJ.Photopolym.Sci&Tech. Vol.8,P.543-553(1995)等に記載の化合物を用いることができる。 
 塩基性化合物の分子量は、250~2000であることが好ましく、400~1000であることが更に好ましい。
 これらの塩基性化合物は、単独で又は2種以上を組み合わせて用いられる。 
 塩基性化合物の含有量は、組成物の全固形分を基準として、0.01~8.0質量%であることが好ましく、0.1~5.0質量%であることがより好ましく、0.2~4.0質量%であることが特に好ましい。
 (5)アミンオキサイド構造を有する化合物
 下記一般式(1)~(3)で表されるアミンオキサイド構造を有する化合物が好ましいが、これらに限られるものではなく、窒素原子が酸化された構造を有する含窒素有機化合物であれば、いずれのものも使用し得る。
Figure JPOXMLDOC01-appb-C000043
(上記一般式中、R、R及びRは、各々独立に、水素原子、炭素数1~20の直鎖状、分岐状又は環状のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数2~10のヒドロキシアルキル基、炭素数2~10のアルコキシアルキル基、炭素数3~10のアシルオキシアルキル基又は炭素数1~10のアルキルチオアルキル基を表す。
 また、R、R及びRのいずれか2個が結合して環構造若しくは芳香族環を形成していてもよい。
 Rは、水素原子、炭素数1~20の直鎖状、分岐状又は環状のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数2~10のヒドロキシアルキル基又は炭素数3~10のアシルオキシアルキル基を表す。Rは水素原子、炭素数1~20の直鎖状、分岐状又は環状のアルキル基、炭素数6~20のアリール基又は炭素数7~20のアラルキル基を表す。)
 上記の炭素数6~20のアリール基として具体的には、フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、ナフタセニル基、フルオレニル基を、炭素数1~20の直鎖状、分岐状又は環状のアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、デシル基、シクロペンチル基、シクロへキシル基、デカヒドロナフタレニル基を、炭素数7~20のアラルキル基として具体的には、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基、ナフチルエチル基、アントラセニルメチル基を、炭素数2~10のヒドロキシアルキル基としては具体的には、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基を、炭素数2~10のアルコキシアルキル基として具体的には、メトキシメチル基、エトキシメチル基、プロポキシメチル基、イソプロポキシメチル基、ブトキシメチル基、イソブトキシメチル基、t-ブトキシメチル基、t-アミロキシメチル基、シクロヘキシルオキシメチル基、シクロペンチルオキシメチル基を、炭素数3~10のアシルオキシアルキル基として具体的には、ホルミルオキシメチル基、アセトキシメチル基、プロピオニルオキシメチル基、ブチリルオキシメチル基、ピバロイルオキシメチル基、シクロヘキサンカルボニルオキシメチル基、デカノイルオキシメチル基を、炭素数1~10のアルキルチオアルキル基として具体的には、メチルチオメチル基、エチルチオメチル基、プロピルチオメチル基、イソプロピルチオメチル基、ブチルチオメチル基、イソブチルチオメチル基、t-ブチルチオメチル基、t-アミルチオメチル基、デシルチオメチル基、シクロヘキシルチオメチル基を、それぞれ例示できるが、本発明はこれらに限定されるものではない。
 前記一般式(1)で表されるアミンオキサイド構造を有する化合物を以下に具体的に例示するが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000044
 次に、前記一般式(2)、(3)で表されるアミンオキサイド構造を有する化合物を以下に具体的に例示するが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000045
 本発明において、これらの分子内にアミンオキサイド構造を有する含窒素有機化合物において、窒素原子に置換された官能基の存在により発生酸の速やかな捕捉を実現せしめ、一方窒素原子が酸化された構造がレジスト膜中での分布に影響を及ぼしていると予想され、これらの結果として前記アミンオキサイド構造を有する化合物を添加したフォトレジストにおける高解像性と優れたパターン形状を達成可能にするものと考えられる。また、前記アミンオキサイド構造を有する化合物の可能な構造の中から適切なものを選ぶことにより、前記アミンオキサイド構造を有する化合物の揮発性、塩基性度、酸の捕捉速度、レジスト中での拡散速度などを、用いるレジストポリマー及び酸発生剤の組み合わせに応じて適当に調節することができ、ひいてはパターン形状などのレジスト材料の性質を最適に調整することができるアミンオキサイド構造を有する化合物添加剤を提供可能にするものと考えられる。
 上記一般式(1)~(3)で表されるアミンオキサイド構造は、化合物の構造に応じた最適な方法を選択して製造される。例として、窒素含有化合物の酸化剤を使用した酸化反応を用いる方法、あるいは含窒素化合物の過酸化水素水希釈溶液中での酸化反応を用いる方法を例示できるが、本発明はこれらに限定されるものではない。
 これらのアミンオキサイド構造を有する化合物は、単独で又は2種以上を組み合わせて用いられる。 
 アミンオキサイド構造を有する化合物の含有量は、組成物の全固形分を基準として、0.01~8.0質量%であることが好ましく、0.1~5.0質量%であることがより好ましく、0.2~4.0質量%であることが特に好ましい。
 (界面活性剤)
 本発明に係る組成物は、界面活性剤を更に含有してもよい。この界面活性剤としては、フッ素系及び/又はシリコン系界面活性剤が特に好ましい。 
 この界面活性剤としては、例えば、DIC(株)製のメガファックF176及びメガファックR08、OMNOVA社製のPF656及びPF6320、トロイケミカル(株)製のトロイゾルS-366、住友スリーエム(株)製のフロラードFC430、並びに、信越化学工業(株)製のポリシロキサンポリマーKP-341が挙げられる。
 また、フッ素系及び/又はシリコン系界面活性剤以外の界面活性剤を使用することもできる。より具体的には、ポリオキシエチレンアルキルエーテル類及びポリオキシエチレンアルキルアリールエーテル類等が挙げられる。
 その他、公知の界面活性剤が適宜使用可能である。使用可能な界面活性剤としては、例えば、米国特許2008/0248425A1号明細書の[0273]以降に記載の界面活性剤が挙げられる。
 界面活性剤は、単独で使用してもよいし、2種以上を併用してもよい。 
 界面活性剤の使用量は、組成物の全固形分を基準として、好ましくは0~2質量%であり、より好ましくは0.0001~2質量%であり、更に好ましくは0.001~1質量%である。
 (溶剤)
 組成物を調製する際に使用できる溶剤としては、各成分を溶解するものである限り特に限定されないが、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート
(プロピレングリコールモノメチルエーテルアセテートなど)、アルキレングリコールモノアルキルエーテル(プロピレングリコールモノメチルエーテルなど)、乳酸アルキルエステル(乳酸エチル及び乳酸メチルなど)、環状ラクトン(γ-ブチロラクトンなど、好ましくは炭素数4~10)、鎖状又は環状のケトン(2-ヘプタノン及びシクロヘキサノンなど、好ましくは炭素数4~10)、アルキレンカーボネート(エチレンカーボネート及びプロピレンカーボネートなど)、カルボン酸アルキル(酢酸ブチルなどの酢酸アルキルが好ましい)、及びアルコキシ酢酸アルキル(好ましくはエトキシプロピオン酸エチル)などが挙げられる。その他使用可能な溶媒として、例えば、US2008/0248425A1号明細書の[0244]以降に記載されている溶剤などが挙げられる。
 上記の溶剤のうち、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、及び乳酸エチルが特に好ましい。
 これら溶剤は、単独で用いてもよく、2種以上を混合して用いてもよい。2種以上を混合して用いる場合、水酸基を有する溶剤と水酸基を有しない溶剤とを混合することが好ましい。水酸基を有する溶剤と水酸基を有しない溶剤との質量比は、通常1/99~99/1であり、好ましくは10/90~90/10であり、更に好ましくは20/80~60/40である。
 水酸基を有する溶剤としてはアルキレングリコールモノアルキルエーテル又は乳酸アルキルエステルが好ましく、水酸基を有しない溶剤としてはアルキレングリコールモノアルキルエーテルカルボキシレートが好ましい。
 溶剤の使用量は特に限定されないが、組成物の全固形分濃度が、好ましくは0.5~30質量%、より好ましくは1.0~10質量%となるように調製される。特に、本発明の組成物を用いて電子線又はEUVリソグラフィーを行う場合は、好ましくは2.0~6.0質量%、より好ましくは2.0~4.5質量%となるようにする。
 (その他の添加剤)
 本発明に係るポジ型又はネガ型感活性光線性又は感放射線性樹脂組成物は、必要に応じて、染料、可塑剤、光増感剤、光吸収剤、及び現像液に対する溶解を促進させる化合物(例えば、分子量1000以下のフェノール化合物、又は、カルボキシ基を有する脂環族若しくは脂肪族化合物)等を更に含有させることができる。また、特開2006-208781号公報及び特開2007-286574号公報等に記載されているプロトンアクセプター性官能基を備えた化合物も好適に用いることができる。
 〔7〕パターン形成方法
 本発明に係るポジ型又はネガ型感活性光線性又は感放射線性樹脂組成物は、典型的には、以下のようにして用いられる。即ち、本発明に係る組成物は、典型的には、基板等の支持体上に塗布されて、膜を形成する。この膜の厚みは、0.02~0.1μmが好ましい。基板上に塗布する方法としては、スピン塗布が好ましく、その回転数は1000~3000rpmが好ましい。
 例えば、この組成物は、精密集積回路素子の製造等に使用される基板(例:シリコン/二酸化シリコン被覆、窒化シリコン及びクロム蒸着された石英基板など)上に、スピナー及びコーター等の適当な塗布方法により塗布される。その後、これを乾燥して、感活性光線性又は感放射線性のレジスト膜(以下、感光性膜ともいう)を得る。なお、公知の反射防止膜を予め塗設することもできる。
 次いで、感光性膜に活性光線又は放射線を照射し、好ましくはベーク(加熱)を行った後、現像する。これにより良好なパターンを得ることができる。なお、ベーク温度は、感度及び安定性の観点から、80℃~150℃とすることが好ましく、90℃~130℃とすることがより好ましい。
 活性光線又は放射線としては、例えば、赤外光、可視光、紫外光、遠紫外光、極紫外光、X線、及び電子線が挙げられる。これら活性光線又は放射線としては、例えば250nm以下、特には220nm以下の波長を有したものがより好ましい。このような活性光線又は放射線としては、例えば、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(157nm)、X線、EUV(13nm)及び電子ビーム(EB)が挙げられる。特に好ましい活性光線又は放射線としては、ArFエキシマレーザー、Fエキシマレーザー、X線、EUV(13nm)及び電子ビーム(EB)が挙げられ、X線、電子線又はEUVであることが最も好ましい。
 なお、活性光線又は放射線の照射時に、感光性膜とレンズとの間に空気よりも屈折率の高い液体(純水など)を満たしての露光、即ち、液浸露光を行ってもよい。これにより、解像度を高めることができる。この場合、膜と液浸液との間には、膜と液浸液との接触を避けるために、膜の上に液浸液難溶性膜(「トップコート」ともいう)を設けてもよい。また、膜と液浸液との接触を避けるための別の手段として、前述の組成物に予め疎水性樹脂(HR)を添加しておいてもよい。
 この疎水性樹脂(HR)具体的に述べる。 
 本発明の組成物からなる膜を、液浸媒体を介して露光する場合には、必要に応じて更に疎水性樹脂(HR)を添加することができる。これにより、膜表層に疎水性樹脂(HR)が偏在化し、液浸媒体が水の場合、膜とした際の水に対するレジスト膜表面の後退接触角を向上させ、液浸水追随性を向上させることができる。疎水性樹脂(HR)が添加されることにより、表面の後退接触角が向上する。膜の後退接触角は60°~90°が好ましく、更に好ましくは70°以上である。疎水性樹脂(HR)は前述のように界面に偏在するものであるが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性/非極性物質を均一に混合することに寄与しなくても良い。
 後退接触角とは、液滴-基板界面での接触線が後退する際に測定される接触角であり、動的な状態での液滴の移動しやすさをシミュレートする際に有用であることが一般に知られている。簡易的には、針先端から吐出した液滴を基板上に着滴させた後、その液滴を再び針へと吸い込んだときの、液滴の界面が後退するときの接触角として定義でき、一般に拡張収縮法と呼ばれる接触角の測定方法を用いて測定することができる。
 液浸露光工程に於いては、露光ヘッドが高速でウェハ上をスキャンし露光パターンを形成していく動きに追随して、液浸液がウェハ上を動く必要があるので、動的な状態に於けるレジスト膜に対する液浸液の接触角が重要になり、液滴が残存することなく、露光ヘッドの高速なスキャンに追随する性能がレジストには求められる。
 疎水性樹脂(HR)は、膜表面に偏在するために、フッ素原子又は珪素原子を含有することが好ましい。疎水性樹脂(HR)に於けるフッ素原子又は珪素原子は、樹脂の主鎖中に有していても、側鎖に置換していてもよい。
 疎水性樹脂(HR)は、フッ素原子を有する部分構造として、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基又はフッ素原子を有するアリール基を有する樹脂であることが好ましい。
 フッ素原子を有するアルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~4)は、少なくとも1つの水素原子がフッ素原子で置換された直鎖又は分岐アルキル基であり、更に他の置換基を有していてもよい。
 フッ素原子を有するシクロアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された単環又は多環のシクロアルキル基であり、更に他の置換基を有していてもよい。
 フッ素原子を有するアリール基としては、フェニル基、ナフチル基などのアリール基の少なくとも1つの水素原子がフッ素原子で置換されたものが挙げられ、更に他の置換基を有していてもよい。
 フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基又はフッ素原子を有するアリール基として、好ましくは、下記一般式(F2)~(F4)で表される基を挙げることができるが、本発明は、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000046
 一般式(F2)~(F4)中、
 R57~R68は、それぞれ独立に、水素原子、フッ素原子又はアルキル基を表す。但し、R57~R61、R62~R64及びR65~R68の内、少なくとも1つは、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたアルキル基(好ましくは炭素数1~4)を表す。R57~R61及びR65~R67は、全てがフッ素原子であることが好ましい。R62、R63及びR68は、少なくとも1つの水素原子がフッ素原子で置換されたアルキル基(好ましくは炭素数1~4)が好ましく、炭素数1~4のパーフルオロアルキル基であることが更に好ましい。R62とR63は、互いに連結して環を形成してもよい。
 一般式(F2)で表される基の具体例としては、例えば、p-フルオロフェニル基、ペンタフルオロフェニル基、3,5-ジ(トリフルオロメチル)フェニル基等が挙げられる。
 一般式(F3)で表される基の具体例としては、トリフルオロメチル基、ペンタフルオロプロピル基、ペンタフルオロエチル基、ヘプタフルオロブチル基、ヘキサフルオロイソプロピル基、ヘプタフルオロイソプロピル基、ヘキサフルオロ(2-メチル)イソプロピル基、ノナフルオロブチル基、オクタフルオロイソブチル基、ノナフルオロヘキシル基、ノナフルオロ-t-ブチル基、パーフルオロイソペンチル基、パーフルオロオクチル基、パーフルオロ(トリメチル)ヘキシル基、2,2,3,3-テトラフルオロシクロブチル基、パーフルオロシクロヘキシル基などが挙げられる。ヘキサフルオロイソプロピル基、ヘプタフルオロイソプロピル基、ヘキサフルオロ(2-メチル)イソプロピル基、オクタフルオロイソブチル基、ノナフルオロ-t-ブチル基、パーフルオロイソペンチル基が好ましく、ヘキサフルオロイソプロピル基、ヘプタフルオロイソプロピル基が更に好ましい。
 一般式(F4)で表される基の具体例としては、例えば、-C(CFOH、-C(COH、-C(CF)(CH)OH、-CH(CF)OH等が挙げられ、-C(CFOHが好ましい。
 以下、フッ素原子を有する繰り返し単位の具体例を示すが、本発明は、これに限定されるものではない。 
 具体例中、Xは、水素原子、-CH、-F又は-CFを表す。Xは、-F又は-CFを表す。
Figure JPOXMLDOC01-appb-C000047
 疎水性樹脂(HR)が珪素原子を含有する場合、珪素原子を有する部分構造として、アルキルシリル構造(好ましくはトリアルキルシリル基)、又は環状シロキサン構造を有する樹脂であることが好ましい。 
 アルキルシリル構造又は環状シロキサン構造としては、具体的には、下記一般式(CS-1)~(CS-3)で表される基などが挙げられる。
Figure JPOXMLDOC01-appb-C000048
 一般式(CS-1)~(CS-3)に於いて、
 R12~R26は、各々独立に、直鎖若しくは分岐アルキル基(好ましくは炭素数1~20)又はシクロアルキル基(好ましくは炭素数3~20)を表す。
 L~Lは、単結合又は2価の連結基を表す。2価の連結基としては、アルキレン基、フェニレン基、エーテル基、チオエーテル基、カルボニル基、エステル基、アミド基、ウレタン基、又はウレア基よりなる群から選択される単独あるいは2つ以上の基の組み合わせを挙げられる。
 nは、1~5の整数を表す。nは、好ましくは、2~4の整数である。
 以下、一般式(CS-1)~(CS-3)で表される基を有する繰り返し単位の具体例を挙げるが、本発明は、これに限定されるものではない。なお、具体例中、Xは、水素原子、-CH、-F又は-CFを表す。
Figure JPOXMLDOC01-appb-C000049
 更に、疎水性樹脂(HR)は、下記(x)~(z)の群から選ばれる基を少なくとも1つを有していてもよい。
 (x)アルカリ可溶性基、
 (y)アルカリ現像液の作用により分解し、アルカリ現像液中での溶解度が増大する基、
 (z)酸の作用により分解する基。
 (x)アルカリ可溶性基としては、フェノール性水酸基、カルボン酸基、フッ素化アルコール基、スルホン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、トリス(アルキルスルホニル)メチレン基等が挙げられる。
 好ましいアルカリ可溶性基としては、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール)、スルホンイミド基、ビス(カルボニル)メチレン基が挙げられる。
 アルカリ可溶性基(x)を有する繰り返し単位としては、アクリル酸、メタクリル酸による繰り返し単位のような樹脂の主鎖に直接アルカリ可溶性基が結合している繰り返し単位、あるいは連結基を介して樹脂の主鎖にアルカリ可溶性基が結合している繰り返し単位などが挙げられ、更にはアルカリ可溶性基を有する重合開始剤や連鎖移動剤を重合時に用いてポリマー鎖の末端に導入することもでき、いずれの場合も好ましい。
 アルカリ可溶性基(x)を有する繰り返し単位の含有量は、ポリマー中の全繰り返し単位に対し、1~50mol%が好ましく、より好ましくは3~35mol%、更に好ましくは5~20mol%である。 
 アルカリ可溶性基(x)を有する繰り返し単位の具体例を以下に示すが、本発明は、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000050
 (y)アルカリ現像液の作用により分解し、アルカリ現像液中での溶解度が増大する基としては、例えば、ラクトン構造を有する基、酸無水物基、酸イミド基などが挙げられ、好ましくはラクトン構造を有する基である。
 アルカリ現像液の作用により分解し、アルカリ現像液中での溶解度が増大する基(y)を有する繰り返し単位としては、アクリル酸エステル、メタクリル酸エステルによる繰り返し単位のように、樹脂の主鎖にアルカリ現像液の作用により分解し、アルカリ現像液中での溶解度が増大する基(y)が結合している繰り返し単位、あるいはアルカリ現像液中での溶解度が増大する基(y)を有する重合開始剤や連鎖移動剤を重合時に用いてポリマー鎖の末端に導入、のいずれも好ましい。
 アルカリ現像液中での溶解度が増大する基(y)を有する繰り返し単位の含有量は、ポリマー中の全繰り返し単位に対し、1~40mol%が好ましく、より好ましくは3~30mol%、更に好ましくは5~15mol%である。
 アルカリ現像液中での溶解度が増大する基(y)を有する繰り返し単位の具体例としては、(B)成分の樹脂で挙げたラクトン構造を有する繰り返し単位と同様のものを挙げることができる。
 疎水性樹脂(HR)に於ける、酸の作用により分解する基(z)を有する繰り返し単位は、樹脂(B)で挙げた酸分解性基を有する繰り返し単位と同様のものが挙げられる。疎水性樹脂(HR)に於ける、酸の作用により分解する基(z)を有する繰り返し単位の含有量は、ポリマー中の全繰り返し単位に対し、1~80mol%が好ましく、より好ましくは10~80mol%、更に好ましくは20~60mol%である。
 疎水性樹脂(HR)は、更に、下記一般式(III)で表される繰り返し単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000051
 一般式(III)に於いて、
 Rc31は、水素原子、アルキル基、又はフッ素で置換されていても良いアルキル基、シアノ基又は-CH-O-Rac基を表す。式中、Racは、水素原子、アルキル基又はアシル基を表す。Rc31は、水素原子、メチル基、ヒドロキシメチル基、トリフルオロメチル基が好ましく、水素原子、メチル基が特に好ましい。
 Rc32は、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基又はアリール基を有する基を表す。これら基はフッ素原子、珪素原子で置換されていても良い。 
 Lc3は、単結合又は2価の連結基を表す。
 一般式(III)に於ける、Rc32のアルキル基は、炭素数3~20の直鎖若しくは分岐状アルキル基が好ましい。 
 シクロアルキル基は、炭素数3~20のシクロアルキル基が好ましい。 
 アルケニル基は、炭素数3~20のアルケニル基が好ましい。 
 シクロアルケニル基は、炭素数3~20のシクロアルケニル基が好ましい。 
 アリール基は、炭素数6~20のフェニル基、ナフチル基が好ましく、これらは置換基を有していてもよい。
 Rc32は無置換のアルキル基又はフッ素原子で置換されたアルキル基が好ましい。
 Lc3の2価の連結基は、アルキレン基(好ましくは炭素数1~5)、オキシ基、フェニレン基、エステル結合(-COO-で表される基)が好ましい。疎水性樹脂(HR)は、更に、下記一般式(CII-AB)で表される繰り返し単位を有することも好ましい。
Figure JPOXMLDOC01-appb-C000052
 式(CII-AB)中、
 Rc11’及びRc12’は、各々独立に、水素原子、シアノ基、ハロゲン原子又はアルキル基を表す。
 Zc’は、結合した2つの炭素原子(C-C)を含み、脂環式構造を形成するための原子団を表す。
 以下に一般式(III)、(CII-AB)で表される繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。式中、Raは、H、CH、CHOH、CF又はCNを表す。
Figure JPOXMLDOC01-appb-C000053
 疎水性樹脂(HR)がフッ素原子を有する場合、フッ素原子の含有量は、疎水性樹脂(HR)の重量平均分子量に対し、5~80質量%であることが好ましく、10~80質量%であることがより好ましい。また、フッ素原子を含む繰り返し単位が、疎水性樹脂(HR)中10~100モル%であることが好ましく、30~100モル%であることがより好ましい。
 疎水性樹脂(HR)が珪素原子を有する場合、珪素原子の含有量は、疎水性樹脂(HR)の重量平均分子量に対し、2~50質量%であることが好ましく、2~30質量%であることがより好ましい。また、珪素原子を含む繰り返し単位は、疎水性樹脂(HR)中10~100モル%であることが好ましく、20~100モル%であることがより好ましい。
 疎水性樹脂(HR)の標準ポリスチレン換算の重量平均分子量は、好ましくは1,000~100,000で、より好ましくは1,000~50,000、更により好ましくは2,000~15,000である。
 疎水性樹脂(HR)の組成物中の含有率は、本発明の組成物中の全固形分に対し、0.01~10質量%が好ましく、0.05~8質量%がより好ましく、0.1~5質量%が更に好ましい。
 疎水性樹脂(HR)は、樹脂(B)と同様、金属等の不純物が少ないのは当然のことながら、残留単量体やオリゴマー成分が0~10質量%であることが好ましく、より好ましくは0~5質量%、0~1質量%が更により好ましい。それにより、液中異物や感度等の経時変化のないレジスト組成物が得られる。また、解像度、レジスト形状、レジストパターンの側壁、ラフネスなどの点から、分子量分布(Mw/Mn、分散度ともいう)は、1~5の範囲が好ましく、より好ましくは1~3、更に好ましくは1~2の範囲である。
 疎水性樹脂(HR)は、各種市販品を利用することもできるし、常法に従って(例えばラジカル重合)合成することができる。例えば、一般的合成方法としては、モノマー種及び開始剤を溶剤に溶解させ、加熱することにより重合を行う一括重合法、加熱溶剤にモノマー種と開始剤の溶液を1~10時間かけて滴下して加える滴下重合法などが挙げられ、滴下重合法が好ましい。反応溶媒としては、例えばテトラヒドロフラン、1,4-ジオキサン、ジイソプロピルエーテルなどのエーテル類やメチルエチルケトン、メチルイソブチルケトンのようなケトン類、酢酸エチルのようなエステル溶媒、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド溶剤、更には前述のプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノンのような本発明の組成物を溶解する溶媒が挙げられる。より好ましくは本発明のポジ型レジスト組成物に用いられる溶剤と同一の溶剤を用いて重合することが好ましい。これにより保存時のパーティクルの発生が抑制できる。
 重合反応は窒素やアルゴンなど不活性ガス雰囲気下で行われることが好ましい。重合開始剤としては市販のラジカル開始剤(アゾ系開始剤、パーオキサイドなど)を用いて重合を開始させる。ラジカル開始剤としてはアゾ系開始剤が好ましく、エステル基、シアノ基、カルボキシル基を有するアゾ系開始剤が好ましい。好ましい開始剤としては、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、ジメチル2,2’-アゾビス(2-メチルプロピオネート)などが挙げられる。反応の濃度は5~50質量%であり、好ましくは30~50質量%である。反応温度は、通常10℃~150℃であり、好ましくは30℃~120℃、更に好ましくは60~100℃である。
 反応終了後、室温まで放冷し、精製する。精製は、水洗や適切な溶媒を組み合わせることにより残留単量体やオリゴマー成分を除去する液々抽出法、特定の分子量以下のもののみを抽出除去する限外ろ過等の溶液状態での精製方法や、樹脂溶液を貧溶媒へ滴下することで樹脂を貧溶媒中に凝固させることにより残留単量体等を除去する再沈澱法やろ別した樹脂スラリーを貧溶媒で洗浄する等の固体状態での精製方法等の通常の方法を適用できる。たとえば、上記樹脂が難溶あるいは不溶の溶媒(貧溶媒)を、該反応溶液の10倍以下の体積量、好ましくは10~5倍の体積量で、接触させることにより樹脂を固体として析出させる。
 ポリマー溶液からの沈殿又は再沈殿操作の際に用いる溶媒(沈殿又は再沈殿溶媒)としては、該ポリマーの貧溶媒であればよく、ポリマーの種類に応じて、炭化水素、ハロゲン化炭化水素、ニトロ化合物、エーテル、ケトン、エステル、カーボネート、アルコール、カルボン酸、水、これらの溶媒を含む混合溶媒等の中から適宜選択して使用できる。これらの中でも、沈殿又は再沈殿溶媒として、少なくともアルコール(特に、メタノールなど)又は水を含む溶媒が好ましい。
 沈殿又は再沈殿溶媒の使用量は、効率や収率等を考慮して適宜選択できるが、一般には、ポリマー溶液100質量部に対して、100~10000質量部、好ましくは200~2000質量部、更に好ましくは300~1000質量部である。
 沈殿又は再沈殿する際の温度としては、効率や操作性を考慮して適宜選択できるが、通常0~50℃程度、好ましくは室温付近(例えば20~35℃程度)である。沈殿又は再沈殿操作は、攪拌槽などの慣用の混合容器を用い、バッチ式、連続式等の公知の方法により行うことができる。
 沈殿又は再沈殿したポリマーは、通常、濾過、遠心分離等の慣用の固液分離に付し、乾燥して使用に供される。濾過は、耐溶剤性の濾材を用い、好ましくは加圧下で行われる。乾燥は、常圧又は減圧下(好ましくは減圧下)、30~100℃程度、好ましくは30~50℃程度の温度で行われる。
 なお、一度、樹脂を析出させて、分離した後に、再び溶媒に溶解させ、該樹脂が難溶あるいは不溶の溶媒と接触させてもよい。即ち、上記ラジカル重合反応終了後、該ポリマーが難溶あるいは不溶の溶媒を接触させ、樹脂を析出させ(工程a)、樹脂を溶液から分離し(工程b)、改めて溶媒に溶解させ樹脂溶液Aを調製(工程c)、その後、該樹脂溶液Aに、該樹脂が難溶あるいは不溶の溶媒を、樹脂溶液Aの10倍未満の体積量(好ましくは5倍以下の体積量)で、接触させることにより樹脂固体を析出させ(工程d)、析出した樹脂を分離する(工程e)ことを含む方法でもよい。
 以下に疎水性樹脂(HR)の具体例を示す。また、下記表1に、各樹脂における繰り返し単位のモル比(各繰り返し単位と左から順に対応)、重量平均分子量、分散度を示す。
Figure JPOXMLDOC01-appb-C000054

 
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-T000057
 液浸露光する際に使用する液浸液について、以下に説明する。 
 液浸液は、露光波長に対して透明であり、かつレジスト膜上に投影される光学像の歪みを最小限に留めるよう、屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー(波長;193nm)である場合には、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。
 また、更に屈折率が向上できるという点で屈折率1.5以上の媒体を用いることもできる。この媒体は、水溶液でもよく有機溶剤でもよい。
 液浸液として水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させるために、ウェハ上のレジスト膜を溶解させず、かつレンズ素子の下面の光学コートに対する影響が無視できる添加剤(液体)を僅かな割合で添加しても良い。その添加剤としては水とほぼ等しい屈折率を有する脂肪族系のアルコールが好ましく、具体的にはメチルアルコール、エチルアルコール、イソプロピルアルコール等が挙げられる。水とほぼ等しい屈折率を有するアルコールを添加することにより、水中のアルコール成分が蒸発して含有濃度が変化しても、液体全体としての屈折率変化を極めて小さくできるといった利点が得られる。一方で、193nm光に対して不透明な物質や屈折率が水と大きく異なる不純物が混入した場合、レジスト膜上に投影される光学像の歪みを招くため、使用する水としては、蒸留水が好ましい。更にイオン交換フィルター等を通して濾過を行った純水を用いてもよい。
 水の電気抵抗は、18.3MQcm以上であることが望ましく、TOC(有機物濃度)は20ppb以下であることが望ましく、脱気処理をしていることが望ましい。
 また、液浸液の屈折率を高めることにより、リソグラフィー性能を高めることが可能である。このような観点から、屈折率を高めるような添加剤を水に加えたり、水の代わりに重水(DO)を用いてもよい。
 本発明の組成物による膜と液浸液との間には、膜を直接、液浸液に接触させないために、液浸液難溶性膜(以下、「トップコート」ともいう)を設けてもよい。トップコートに必要な機能としては、レジスト上層部への塗布適性、放射線、特に193nmに対する透明性、液浸液難溶性である。トップコートは、レジストと混合せず、更にレジスト上層に均一に塗布できることが好ましい。
 トップコートは、193nm透明性という観点からは、芳香族を豊富に含有しないポリマーが好ましく、具体的には、炭化水素ポリマー、アクリル酸エステルポリマー、ポリメタクリル酸、ポリアクリル酸、ポリビニルエーテル、シリコン含有ポリマー、フッ素含有ポリマーなどが挙げられる。前述の疎水性樹脂(HR)はトップコートとしても好適なものである。トップコートから液浸液へ不純物が溶出すると光学レンズを汚染するという観点からは、トップコートに含まれるポリマーの残留モノマー成分は少ない方が好ましい。
 トップコートを剥離する際は、現像液を使用してもよいし、別途剥離剤を使用してもよい。剥離剤としては、膜への浸透が小さい溶剤が好ましい。剥離工程が膜の現像処理工程と同時にできるという点では、アルカリ現像液により剥離できることが好ましい。アルカリ現像液で剥離するという観点からは、トップコートは酸性が好ましいが、膜との非インターミクス性の観点から、中性であってもアルカリ性であってもよい。
 トップコートと液浸液との間には屈折率の差がない方が、解像力が向上する。ArFエキシマレーザー(波長:193nm)において、液浸液として水を用いる場合には、ArF液浸露光用トップコートは、液浸液の屈折率に近いことが好ましい。屈折率を液浸液に近くするという観点からは、トップコート中にフッ素原子を有することが好ましい。また、透明性・屈折率の観点から薄膜の方が好ましい。
 トップコートは、膜と混合せず、更に液浸液とも混合しないことが好ましい。この観点から、液浸液が水の場合には、トップコートに使用される溶剤は、本発明の組成物に使用される溶媒に難溶で、かつ非水溶性の媒体であることが好ましい。更に、液浸液が有機溶剤である場合には、トップコートは水溶性であっても非水溶性であってもよい。
 次に現像工程について説明する。 
 現像工程では、通常アルカリ現像液を用いる。 
 アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム及びアンモニア水等の無機アルカリ類、エチルアミン及びn-プロピルアミン等の第一アミン類、ジエチルアミン及びジ-n-ブチルアミン等の第二アミン類、トリエチルアミン及びメチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン及びトリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド及びテトラエチルアンモニウムヒドロキシド等の第四級アンモニウム塩、又は、ピロール及びピヘリジン等の環状アミン類を含んだアルカリ性水溶液が挙げられる。
 アルカリ現像液には、アルコール類及び/又は界面活性剤を、適当量添加してもよい。
 アルカリ現像液の濃度は、通常、0.1~20質量%である。アルカリ現像液のpHは、通常、10.0~15.0である。 
 なお、本発明に係る組成物を用いてインプリント用モールドを作成する場合のプロセスの詳細については、例えば、特許第4109085号公報、特開2008-162101号公報、及び「ナノインプリントの基礎と技術開発・応用展開―ナノインプリントの基板技術と最新の技術展開―編集:平井義彦(フロンティア出版)」等を参照されたい。
 また、本発明は、上記した本発明のパターン形成方法を含む、電子デバイスの製造方法、及び、この製造方法により製造された電子デバイスにも関する。
 本発明の電子デバイスは、電気電子機器(家電、OA・メディア関連機器、光学用機器及び通信機器等)に、好適に、搭載されるものである。
 以下、本発明を実施例により更に詳細に説明するが、本発明の内容がこれにより限定されるものではない。 
 <実施例A>
 〔実施例1A~19A及び比較例1A及び2A〕
 <レジスト調製>
 下記表2に示す成分を溶剤に溶解させ固形分濃度4.0質量%の溶液を調製し、これを0.03μmのポアサイズを有するポリテトラフルオロエチレンフィルターでろ過してポジ型レジスト溶液を調製した。調製したポジ型レジスト組成物(レジスト溶液)を下記の方法で評価し、結果を表2に示した。
 <レジスト評価> 
 シリコンウエハー上に有機反射防止膜ARC29A(日産化学社製)を塗布し、205℃で、60秒間ベークを行い、膜厚78nmの反射防止膜を形成した。その上に調製したポジ型レジスト組成物を塗布し、130℃で、60秒間ベークを行い、膜厚120nmのレジスト膜を形成した。得られたレジスト膜に対し、ArFエキシマレーザースキャナー(ASML社製 PAS5500/1100、NA0.75)を用い、線幅75nmの1:1ラインアンドスペースパターンの6%ハーフトーンマスクを通して露光した。その後130℃で、60秒間加熱した後、テトラメチルアンモニウムハイドロオキサイド水溶液(2.38質量%)で30秒間現像し、純水でリンスした後、スピン乾燥してレジストパターンを得た。
 〔LER(ラインエッジラフネス)〕
 ラインエッジラフネス(nm)の測定は測長走査型電子顕微鏡(SEM)を使用して線幅75nmのラインアンドスペース1/1のパターンを観察し、ラインパターンの長手方向のエッジが2μmの範囲についてエッジのあるべき基準線からの距離を測長SEM((株)日立製作所S-8840)により50ポイント測定し、標準偏差を求め、3σを算出した。値が小さいほど良好な性能であることを示す。
 〔感度、解像性(γ値)〕
 露光量を10~40mJ/cmの範囲で0.5mJ/cmずつ変えながら面露光を行い、更に110℃で、90秒間ベークした。その後2.38質量%テトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液を用いて、各露光量での溶解速度を測定し、溶解度曲線を得た。
 この溶解度曲線において、レジスト膜の溶解速度が飽和するときの露光量を感度とし、また溶解度曲線の直線部の勾配から溶解コントラスト(γ値)を算出した。γ値が大きいほど溶解コントラストが良好で解像性に有利と考えられる。
 〔経時安定性(経時後感度変動)〕
 レジスト組成物(レジスト溶液)を5℃で2週間冷蔵保存後、上記と同様の感度測定を行い経時安定性を評価した。経時させてない時の感度との変動が少ないほうが好ましい。
 〔アウトガス性能:露光による膜厚変動率〕
 上記の感度を与える露光量の2.0倍の露光量でArFエキシマレーザーを照射し、露光後かつ後加熱前の膜厚を測定し、以下の式を用いて、未露光時の膜厚からの変動率を求めた。 
 膜厚変動率(%)=[(未露光時の膜厚-露光後の膜厚)/未露光時の膜厚]×100
 これらの測定結果を、下記表2に示す。
Figure JPOXMLDOC01-appb-T000058
 なお、界面活性剤の含有量(0.1質量%)は、レジスト組成物固形分全量に対する含有量である。以下の各表中において同様である。
 使用した各成分は、以下のとおりである。 
 〔酸発生剤〕
 本発明の酸発生剤(A1)は、先に例示したものである。 
 併用した酸発生剤(A2)は、下記の化合物Zである。
Figure JPOXMLDOC01-appb-C000059
 また、比較化合物1、2は下記のものである。
Figure JPOXMLDOC01-appb-C000060
〔樹脂〕
 樹脂としては、下記(RA-1)~(RA-4)の何れかを使用した。なお、下式において、繰り返し単位の右側の数字は、モル比を表している。また、Mwは重量平均分子量を表し、Mw/Mnは分散度を表している。
Figure JPOXMLDOC01-appb-C000061
 <塩基性化合物>
 塩基性化合物としては、下記の化合物C-1~C-3を用いた。 
 C-1:2,4,5-トリフェニルイミダゾール
 C-2:テトラブチルアンモニウムヒドロキシド
 C-3:1,5-ジアザビシクロ[4.3.0]ノナ-5-エン
 <界面活性剤>
 界面活性剤としては、下記のW-1~W-4を用いた。 
 W-1:メガファックF176(DIC(株)製;フッ素系)
 W-2:メガファックR08(DIC(株)製;フッ素及びシリコン系)
 W-3:ポリシロキサンポリマーKP-341(信越化学工業(株)製;シリコン系)
 W-4:トロイゾルS-366(トロイケミカル(株)製;フッ素系)
 <溶剤>
 溶剤としては、下記のA1~A4並びにB1及びB2を用いた。なお、これら溶剤は、適宜混合して用いた。 
 A1:プロピレングリコールモノメチルエーテルアセテート
 A2:2-ヘプタノン
 A3:シクロヘキサノン
 A4:γ-ブチロラクトン
 B1:プロピレングリコールモノメチルエーテル
 B2:乳酸エチル
 表2に示した結果から明らかなように、ArF露光において、酸発生剤として比較化合物1、2(いずれも特許文献2(日本国特開2011-16746号公報)に記載の化合物)を使用した比較例1A、2Aは、感度、解像性及びLERに劣り、経時後感度変動も大きく、アウトガスの発生も多いことがわかる。
 比較例1A、2Aが、感度に劣り、特に経時安定性についての経時後感度変動が大きい理由は定かではないが、組成物中の溶剤に対する比較化合物1、2の溶解性が低いためか、露光時の比較化合物1、2の分解効率(酸発生効率)が低いためと考えられる。
 一方、酸発生剤として、前記一般式(Z1)で表され、かつ-L-R-AがSのパラ位に置換しているときにLが酸素原子ではない化合物(A1)を使用した実施例1A~19Aは、感度、解像性及びLERに優れ、経時後感度変動も小さく、アウトガスの発生も少ないことがわかる。
 本発明に係る化合物(A1)を使用した実施例1A~19Aが感度及びLERに優れる理由は定かではないが、前記一般式(Z1)で表される化合物(A1)を-L-R-AがSのパラ位に置換しているときにLを酸素原子としないなどの特定のベタイン構造とすることにより、化合物(A1)の露光時の分解効率(酸発生効率)を向上させることができ、また、組成物中の溶剤に対する化合物(A1)の溶解性を向上させることができ、保存中にレジスト組成物中で化合物(A1)の析出がなく、経時安定性に優れ(経時後感度変動が少なく)、その上酸発生効率も高いため、酸が多く発生して高感度、低LERとすることができていると考えられる。
 また、本発明に係る化合物(A1)はアニオン部とカチオン部とを同一分子内に有するベタイン構造であるため露光時にカチオン部が分解して分子量が小さくなり、その結果、露光部のアルカリ現像液に対する溶解性が向上して溶解コントラストが向上することにより、高解像性を達成しているものと考えられる。
 <実施例B>
 実施例1Aの組成物に下記ポリマー(組成比はモル比換算)0.06gを加えたこと以外は実施例1Aと同様にしてレジスト溶液を調製し、塗設を行い、レジスト膜を得た。得られたレジスト膜に、ArFエキシマレーザー液浸スキャナー(ASML社製XT1700i、NA1.2)を用いて、液浸液(純水)を介してパターン露光し、実施例A1と同様にパターンを形成した。
 そして、得られたパターンについて、感度、解像性、LER、経時安定性(経時後感度変動)、アウトガス性能について実施例Aと同様に評価した。その結果、感度、解像性及びLERに優れ、経時後感度変動も小さく、アウトガスの発生も少ないことを確認した。
 なおその理由は実施例Aで述べた通りである。
Figure JPOXMLDOC01-appb-C000062
 <実施例C>
 〔実施例1C~10C及び比較例1C、2C〕
 <レジスト調製>
 下記表3に示した成分を溶剤に溶解させ、これをポアサイズ0.1μmのポリテトラフルオロエチレンフィルターによりろ過して固形分濃度8質量%のポジ型レジスト組成物(レジスト溶液)を調製した。
 <レジスト評価>
 調製したポジ型レジスト溶液を、スピンコーターを用いて、ヘキサメチルジシラザン処理を施したシリコン基板上に均一に塗布し、120℃で90秒間ホットプレート上で加熱乾燥を行い、膜厚0.4μmのレジスト膜を形成させた。
 このレジスト膜に対し、KrFエキシマレーザーステッパー(NA=0.63)を用いラインアンドスペース用マスクを使用してパターン露光し、露光後すぐに110℃で90秒間ホットプレート上で加熱した。更に2.38質量%テトラメチルアンモニウムヒドロオキサイド水溶液で23℃において60秒間現像し、30秒間純水にてリンスした後、乾燥し、線幅0.2μmのラインアンドスペース1/1のパターンを形成した。
〔LER(ラインエッジラフネス)〕
 ラインエッジラフネス(nm)の測定は測長走査型電子顕微鏡(SEM)を使用して線幅0.2μmのラインアンドスペース1/1のパターンを観察し、ラインパターンの長手方向のエッジが5μmの範囲についてエッジのあるべき基準線からの距離を測長SEM(
(株)日立製作所S-8840)により50ポイント測定し、標準偏差を求め、3σを算出した。値が小さいほど良好な性能であることを示す。
 〔感度、解像性(γ)〕
 露光量を10~40mJ/cmの範囲で0.5mJ/cmずつ変えながら面露光を行い、更に110℃で、90秒間ベークした。その後2.38質量%テトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液を用いて、各露光量での溶解速度を測定し、溶解度曲線を得た。
 この溶解度曲線において、レジストの溶解速度が飽和するときの露光量を感度とし、また溶解度曲線の直線部の勾配から溶解コントラスト(γ値)を算出した。γ値が大きいほど溶解コントラストが良好で解像性に有利と考えられる。
〔経時安定性(経時後感度変動)〕
 レジスト組成物(レジスト溶液)を5℃で2週間冷蔵保存後、上記と同様の感度測定を行い経時安定性を評価した。経時させてない時の感度との変動が少ないほうが好ましい。
〔アウトガス性能:露光による膜厚変動率〕
 上記の感度を与える露光量の2.0倍の露光量でKrFエキシマレーザーを照射し、露光後かつ後加熱前の膜厚を測定し、以下の式を用いて、未露光時の膜厚からの変動率を求めた。 
 膜厚変動率(%)=[(未露光時の膜厚-露光後の膜厚)/未露光時の膜厚]×100
 これらの評価結果を、下記表3に示す。
Figure JPOXMLDOC01-appb-T000063
 なお、光酸発生剤(A1)及び(A2)、塩基性化合物、界面活性剤及び溶剤については、先に示したものから適宜選択して用いた。 
 樹脂としては、先に例示した(R―1)~(R-30)から適宜選択して用いた。表3及び以下の各表に挙げられている(R-18)、(R-19)、(R-22)、(R-27)、及び(R-29)における各繰り返し単位のモル比及び重量平均分子量は、下記表4に示す通りである。
Figure JPOXMLDOC01-appb-T000064
 表3に示した結果から明らかなように、KrF露光において、酸発生剤として比較化合物1、2を使用した比較例1C、2Cは、感度、解像性及びLERに劣り、経時後感度変動も大きく、アウトガスの発生も多いことがわかる。
 比較例1C、2Cが、感度に劣り、特に経時安定性についての経時後感度変動が大きい理由については、実施例Aにおいて前述した理由と同様な理由が考えられる。
 一方、酸発生剤として、前記一般式(Z1)で表され、かつ-L-R-AがSのパラ位に置換しているときにLが酸素原子ではない化合物(A1)を使用した実施例1C~10Cは、感度、解像性及びLERに優れ、経時後感度変動も小さく、アウトガスの発生も少ないことがわかる。
 実施例1C~10Cが、感度、解像性及びLERに優れ、経時後感度変動も小さい理由については、実施例Aにおいて前述した理由と同様な理由が考えられる。
 <実施例D>
 (実施例1D~26D及び比較例1D、2D)
 <レジスト調製>
 下記表5及び6に示した成分を溶剤に溶解させた後、これをポアサイズ0.1μmのポリテトラフルオロエチレンフィルターによりろ過して、固形分濃度4質量%のポジ型レジスト組成物(レジスト溶液)を調製した。
 <レジスト評価>
 調製したポジ型レジスト溶液を、スピンコーターを用いて、ヘキサメチルジシラザン処理を施したシリコン基板上に均一に塗布し、120℃で60秒間ホットプレート上で加熱乾燥を行って、0.12μmの膜厚を有したレジスト膜を形成させた。 
 このレジスト膜を、ニコン社製電子線プロジェクションリソグラフィー装置(加速電圧100keV)で照射し、照射後直ぐに110℃で90秒間ホットプレート上にて加熱した。その後、濃度2.38質量%のテトラメチルアンモニウムヒドロオキサイド水溶液を用いて、23℃で60秒間現像し、30秒間純水を用いてリンスした後、乾燥させ、ラインアンドスペースパターンを形成した。
 〔感度〕
 得られたパターンを走査型電子顕微鏡(日立社製S-9220)を用いて観察した。線幅0.10μm(ライン:スペース=1:1)を解像するときの電子線照射量を感度(E)とした。 
 〔解像度〕
 上記の感度を示す照射量における1:1ラインスペースの限界解像力(ラインとスペースが分離解像する最小の線幅)を解像度とした。
 〔LER(ラインエッジラフネス)〕
 ラインエッジラフネス(nm)の測定は測長走査型電子顕微鏡(SEM)を使用して線幅0.10μmのラインアンドスペース1/1のパターンを観察し、ラインパターンの長手方向のエッジが2μmの範囲についてエッジのあるべき基準線からの距離を測長SEM
((株)日立製作所S-8840)により50ポイント測定し、標準偏差を求め、3σを算出した。値が小さいほど良好な性能であることを示す。
〔経時安定性(経時後感度変動)〕
 レジスト組成物(レジスト溶液)を5℃で2週間冷蔵保存後、上記と同様の感度測定を行い経時安定性を評価した。経時させてない時の感度との変動が少ないほうが好ましい。
 〔アウトガス性能:露光による膜厚変動率〕
 上記の感度を与える照射量の2.0倍の照射量で電子線を照射し、露光後かつ後加熱前の膜厚を測定し、以下の式を用いて、未露光時の膜厚からの変動率を求めた。 
 膜厚変動率(%)=[(未露光時の膜厚-露光後の膜厚)/未露光時の膜厚]×100
 これらの評価結果を、下記表5及び6に示す。
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
 なお、光酸発生剤(A1)及び(A2)、塩基性化合物、界面活性剤及び溶剤については、先に示したものから適宜選択して用いた。(R-18)、(R-19)、(R-22)、(R-27)、及び(R-29)などの樹脂(B)についても前述の通りである。
 表5及び6に示した結果から明らかなように、電子線露光(照射)において、酸発生剤として比較化合物1、2を使用した比較例1D、2Dは、感度、解像度及びLERに劣り、経時後感度変動も大きく、アウトガスの発生も多いことがわかる。
 比較例1D、2Dが、感度に劣り、特に経時安定性についての経時後感度変動が大きい理由については、実施例Aにおいて前述した理由と同様な理由が考えられる。
 一方、酸発生剤として、前記一般式(Z1)で表され、かつ-L-R-AがSのパラ位に置換しているときにLが酸素原子ではない化合物(A1)を使用した実施例1D~26Dは、感度、解像度及びLERに優れ、経時後感度変動も小さく、アウトガスの発生も少ないことがわかる。
 実施例1D~26Dが、感度、解像度及びLERに優れ、経時後感度変動も小さい理由については、実施例Aにおいて前述した理由と同様な理由が考えられる。
 <実施例E>
 (実施例1E~9E及び比較例1E、2E)
 (レジスト調製)
 下記表7に示す成分を溶剤に溶解させた後、これをポアサイズ0.1μmのポリテトラフルオロエチレンフィルターによりろ過して、固形分濃度4質量%のネガ型レジスト溶液を調製した。
 <レジスト評価>
 調製したネガ型レジスト溶液を、スピンコーターを用いて、ヘキサメチルジシラザン処理を施したシリコン基板上に均一に塗布し、120℃で60秒間ホットプレート上において加熱乾燥を行って、0.12μmの膜厚を有したレジスト膜を形成させた。 
 このレジスト膜を、ニコン社製電子線プロジェクションリソグラフィー装置(加速電圧100keV)で照射し、照射後直ぐに110℃で90秒間ホットプレート上において加熱した。その後、濃度2.38質量%のテトラメチルアンモニウムヒドロオキサイド水溶液を用いて23℃で60秒間現像し、30秒間純水を用いてリンスした後、乾燥させ、ラインアンドスペースパターンを形成した。
 評価は、実施例Dについて説明したのと同様にして行った。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000067
 以下に、アルカリ可溶性樹脂(C)の構造(組成比(モル比))、分子量及び分子量分布、並びに酸架橋剤の構造を示す。
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
 表7に示した結果から明らかなように、ネガ型の電子線露光(照射)において、酸発生剤として比較化合物1、2(いずれも特許文献2(日本国特開2011-16746号公報)に記載の化合物)を使用した比較例1E、2Eは、感度、解像度及びLERに劣り、経時後感度変動も大きく、アウトガスの発生も多いことがわかる。
 比較例1E、2Eが、感度に劣り、特に経時安定性についての経時後感度変動が大きい理由については、実施例Aにおいて前述した理由と同様な理由が考えられる。
 一方、酸発生剤として、前記一般式(Z1)で表され、かつ-L-R-AがSのパラ位に置換しているときにLが酸素原子ではない化合物(A1)を使用した実施例1E~9Eは、感度、解像度及びLERに優れ、経時後感度変動も小さく、アウトガスの発生も少ないことがわかり、ネガ型のレジスト組成物としても好適であることがわかる。
 本発明に係る化合物(A1)を使用した実施例1E~9Eが感度及びLERに優れる理由は定かではないが、前記一般式(Z1)で表される化合物(A1)を-L-R-AがSのパラ位に置換しているときにLを酸素原子としないなどの特定のベタイン構造とすることにより、化合物(A1)の露光時の分解効率(酸発生効率)を向上させることができ、また、組成物中の溶剤に対する化合物(A1)の溶解性を向上させることができ、保存中にレジスト組成物中で化合物(A1)の析出がなく、経時安定性に優れ(経時後感度変動が少なく)、その上酸発生効率も高いため、酸が多く発生して高感度、低LERとすることができていると考えられる。
 <実施例F>
 (実施例1F~8F及び比較例1F、2F)
 <レジスト調製>
 下記表8に示した成分を溶剤に溶解させ、これをポアサイズ0.1μmのポリテトラフルオロエチレンフィルターによりろ過して、固形分濃度4質量%のポジ型レジスト溶液を調した。
 <レジスト評価>
 調製したポジ型レジスト溶液を、スピンコーターを用いて、ヘキサメチルジシラザン処理を施したシリコン基板上に均一に塗布し、120℃で60秒間ホットプレート上で加熱乾燥を行って、0.12μmの膜厚を有するレジスト膜を形成させた。
 レジスト膜を、EUV露光装置(波長13nm)で照射し、照射後直ぐに110℃で90秒間ホットプレート上で加熱した。更に濃度2.38質量%のテトラメチルアンモニウムヒドロオキサイド水溶液を用いて23℃で60秒間現像し、30秒間純水にてリンスした後、乾燥し、線幅50nmのラインアンドスペースパターン(ライン:スペース=1:1)を形成し、得られたパターンを下記方法で評価した。
 〔感度〕
 得られたパターンを走査型電子顕微鏡(日立社製S-9220)を用いて観察した。線幅50nm(ライン:スペース=1:1)を解像するときの電子線照射量を感度(E)とした。
〔解像度〕
 上記の感度を示す照射量における1:1ラインスペースの限界解像力(ラインとスペースが分離解像する最小の線幅)を解像度とした。
 〔LER(ラインエッジラフネス)〕
 上記の感度を示す照射量で、線幅50nmラインパターン(L/S=1/1)を形成した。そして、その長さ方向50μmに含まれる任意の30点について、走査型電子顕微鏡
((株)日立製作所製S-9220)を用いて、エッジがあるべき基準線からの距離を測定した。そして、この距離の標準偏差を求め、3σを算出した。
〔経時安定性(経時後感度変動)〕
 レジスト組成物(レジスト溶液)を5℃で2週間冷蔵保存後、上記と同様の感度測定を行い経時安定性を評価した。経時させてない時の感度との変動が少ないほうが好ましい。
 〔アウトガス性能:露光による膜厚変動率〕
 上記の感度を与える露光量の2.0倍の露光量でEUVを照射し、露光後かつ後加熱前の膜厚を測定し、以下の式を用いて、未露光時の膜厚からの変動率を求めた。 
 膜厚変動率(%)=[(未露光時の膜厚-露光後の膜厚)/未露光時の膜厚]×100
 これらの評価結果を下記表8に示す。
Figure JPOXMLDOC01-appb-T000070
 なお、光酸発生剤(A1)、樹脂(B)、塩基性化合物、界面活性剤及び溶剤については、先に示したものから適宜選択して用いた。
 表8に示した結果から明らかなように、EUV露光において、酸発生剤として比較化合物1、2を使用した比較例1F、2Fは、感度、解像度及びLERに劣り、経時後感度変動も大きく、アウトガスの発生も多いことがわかる。
 比較例1C、2Cが、感度、解像度に劣り、特に経時安定性についての経時後感度変動が大きい理由については、実施例Aにおいて前述した理由と同様な理由が考えられる。
 一方、酸発生剤として、前記一般式(Z1)で表され、かつ-L-R-AがSのパラ位に置換しているときにLが酸素原子ではない化合物(A1)を使用した実施例1F~8Fは、感度、解像度及びLERに優れ、経時後感度変動も小さく、アウトガスの発生も少ないことがわかる。
 実施例1F~8Fが、感度、解像度及びLERに優れ、経時後感度変動も小さい理由については、実施例Aにおいて前述した理由と同様な理由が考えられる。
 <実施例G>
 (実施例1G、2G及び比較例1G)
 <レジスト調製>
 下記表9に示した成分を溶剤に溶解させ、これをポアサイズ0.1μmのポリテトラフルオロエチレンフィルターによりろ過して、固形分濃度4質量%のネガ型レジスト溶液を調製し、下記の通り評価を行った。
 <レジスト評価>
 調製したネガ型レジスト溶液を、スピンコーターを用いて、ヘキサメチルジシラザン処理を施したシリコン基板上に均一に塗布し、120℃で60秒間ホットプレート上で加熱乾燥を行って、0.12μmの膜厚を有したレジスト膜を形成させた。
 このレジスト膜について、実施例Fについて説明したのと同様の評価を行った。その結果を下記表9に示す。
Figure JPOXMLDOC01-appb-T000071
 なお、光酸発生剤(A1)、樹脂(B)、架橋剤、塩基性化合物、界面活性剤及び溶剤については、先に示したものから適宜選択して用いた。
 表9に示した結果から明らかなように、ネガ型のEUV露光において、酸発生剤として比較化合物1を使用した比較例1Gは、感度及びLERに劣り、経時後感度変動も大きく、アウトガスの発生も多いことがわかる。
 比較例1Gが、感度に劣り、特に経時安定性についての経時後感度変動が大きい理由については、実施例Aにおいて前述した理由と同様な理由が考えられる。
 一方、酸発生剤として、前記一般式(Z1)で表され、かつ-L-R-AがSのパラ位に置換しているときにLが酸素原子ではない化合物(A1)を使用した実施例1G、2Gは、感度及びLERに優れ、経時後感度変動も小さく、アウトガスの発生も少ないことがわかり、ネガ型のレジスト組成物としても好適であることがわかる。
 実施例1G、2Gが、感度及びLERに優れ、経時後感度変動も小さい理由については、実施例Eにおいて前述した理由と同様な理由が考えられる。
 本発明によれば、感度、解像性、ラフネス性能及び経時安定性に優れ、アウトガスの発生も少ない感活性光線性又は感放射線性樹脂組成物及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイスを提供することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年2月16日出願の日本特許出願(特願2012-032099)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (13)

  1.  下記一般式(Z1)で表される活性光線又は放射線の照射により酸を発生する化合物を含有する感活性光線性又は感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

     上記一般式(Z1)中、
     Lは-O-、-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-、-C(=O)O-、-S(=O)-、-S(=O)-、-C(=O)-、-N(R)C(=O)-、-C(=O)N(R)-、-N(R)S(=O)-又は-S(=O)N(R)-(以上右側がR側)を表し、Rは水素原子、アルキル基又はシクロアルキル基を表す。
     Rはアルキレン基、シクロアルキレン基、アリーレン基又はそれらを組み合わせてなる2価の基を表し、該基中の間に-O-、-C(=O)-、-S(=O)-又は-S-が挿入されていても良い。
     Aは-SO 、-SOSO又は-SO(SOを表す。Rはアルキル基、シクロアルキル基又はアリール基を表し、Rはアルキル基、シクロアルキル基又はアリール基を表し、2つのRは同じでも異なっていても良い。
     R及びRは、各々独立に、アルキル基、アルケニル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
     Rは1価の置換基を表し、nは0~4の整数を表す。nが2以上のとき、複数のRは同じでも異なっていても良い。
     また、R及びR、R及びR、R及びR、R及び前記一般式(Z1)中のベンゼン環、R及び前記ベンゼン環、並びにnが2以上のときのR同士は、それぞれ、互いに連結して環を形成しても良い。ただし、前記一般式(Z1)中の前記ベンゼン環について、-L-R-Aがスルホニウム(S)のパラ位に置換しているとき、Lが酸素原子(-O-)であることはない。
  2.  前記一般式(Z1)で表される化合物が、下記一般式(Z2)で表される化合物である、請求項1に記載の感活性光線性又は感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

     上記一般式(Z2)中、
     L、R、A、R、nは前記一般式(Z1)におけるL、R、A、R、nと同義である。
     R及びRは各々独立に1価の置換基を表し、n及びnは各々独立に0~5の整数を表す。
     nが2以上のときの複数のR、nが2以上のときの複数のR及びnが2以上のときの複数のRはそれぞれ同じでも異なっても良く、互いに連結して環を形成しても良い。R及びR、R及びR、並びにR及びRは、それぞれ、互いに連結して環を形成しても良い。なお、そのときは、R、R及びRはそれぞれ単結合であっても良い。
     ただし、前記一般式(Z2)における-L-R-Aが結合するベンゼン環について、-L-R-AがSのパラ位に置換しているとき、Lが-O-であることはない。
  3.  前記一般式(Z1)又は(Z2)における-L-R-Aが結合するベンゼン環について、-L-R-AがSのパラ位に置換しているとき、Lが-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-、-C(=O)O-、-S(=O)-、-S(=O)-、-C(=O)-、-N(R)C(=O)-、-C(=O)N(R)-、-N(R)S(=O)-又は-S(=O)N(R)-である、請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物。
  4.  前記一般式(Z1)又は(Z2)における-L-R-Aが結合するベンゼン環について、前記-L-R-AがSに対してパラ位に置換し、かつLが-S-、-OS(=O)-、-S(=O)O-、-OC(=O)-又は-C(=O)O-である、請求項3に記載の感活性光線性又は感放射線性樹脂組成物。
  5.  前記一般式(Z1)又は(Z2)における-L-R-Aが結合するベンゼン環について、前記-L-R-AがSに対してメタ位又はオルト位に置換している、請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物。
  6.  前記一般式(Z1)又は(Z2)におけるAが-SO である、請求項1~5のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物。
  7.  更に、酸の作用により分解し、アルカリ現像液中での溶解度が増大する樹脂を含有する、請求項1~6のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物。
  8.  更に、アルカリ現像液に可溶な樹脂、及び酸の作用により該アルカリ現像液に可溶な樹脂と架橋する酸架橋剤を含有する、請求項1~6のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物。
  9.  請求項1~8のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物を用いて形成されたレジスト膜。
  10.  請求項1~8のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物を用いて膜を形成する工程、該膜を露光する工程、及び露光した膜を現像する工程を有するパターン形成方法。
  11.  前記露光がX線、電子線又はEUVを用いて行われる、請求項10に記載のパターン形成方法。
  12.  請求項10又は11に記載のパターン形成方法を含む、電子デバイスの製造方法。
  13.  請求項12に記載の電子デバイスの製造方法により製造された電子デバイス。
PCT/JP2013/050675 2012-02-16 2013-01-16 感活性光線性又は感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイス WO2013121819A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/458,660 US9069246B2 (en) 2012-02-16 2014-08-13 Actinic ray-sensitive or radiation-sensitive resin composition, pattern forming method and resist film using the composition, and electronic device manufacturing method and electronic device using these

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-032099 2012-02-16
JP2012032099A JP5723802B2 (ja) 2012-02-16 2012-02-16 感活性光線性又は感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/458,660 Continuation US9069246B2 (en) 2012-02-16 2014-08-13 Actinic ray-sensitive or radiation-sensitive resin composition, pattern forming method and resist film using the composition, and electronic device manufacturing method and electronic device using these

Publications (1)

Publication Number Publication Date
WO2013121819A1 true WO2013121819A1 (ja) 2013-08-22

Family

ID=48983945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050675 WO2013121819A1 (ja) 2012-02-16 2013-01-16 感活性光線性又は感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法及び電子デバイス

Country Status (3)

Country Link
US (1) US9069246B2 (ja)
JP (1) JP5723802B2 (ja)
WO (1) WO2013121819A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160018732A1 (en) * 2013-03-29 2016-01-21 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film, resist-coated mask blank, photomask and pattern forming method, and method for producing electronic device using them, and electronic device
CN107793337A (zh) * 2016-08-31 2018-03-13 信越化学工业株式会社 锍化合物、抗蚀剂组合物和图案化方法
CN107935899A (zh) * 2016-10-12 2018-04-20 信越化学工业株式会社 锍化合物、抗蚀剂组合物及图案形成方法
CN109422672A (zh) * 2017-08-24 2019-03-05 信越化学工业株式会社 锍化合物、抗蚀剂组合物和图案化方法
TWI716995B (zh) * 2018-09-05 2021-01-21 日商信越化學工業股份有限公司 鋶化合物、正型光阻組成物、以及光阻圖案形成方法
KR20240026196A (ko) 2021-07-29 2024-02-27 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법
KR20240026506A (ko) 2021-07-29 2024-02-28 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 화합물

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6130109B2 (ja) * 2012-05-30 2017-05-17 東京応化工業株式会社 レジスト組成物、レジストパターン形成方法、化合物
JP6155013B2 (ja) * 2012-11-19 2017-06-28 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
US9164384B2 (en) * 2013-04-26 2015-10-20 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
JP6206311B2 (ja) * 2014-04-22 2017-10-04 信越化学工業株式会社 光酸発生剤、化学増幅型レジスト材料及びパターン形成方法
JP6131910B2 (ja) * 2014-05-28 2017-05-24 信越化学工業株式会社 レジスト組成物及びパターン形成方法
JP6125468B2 (ja) * 2014-07-04 2017-05-10 信越化学工業株式会社 光酸発生剤、化学増幅型レジスト材料及びパターン形成方法
KR101904793B1 (ko) 2014-09-02 2018-10-05 후지필름 가부시키가이샤 패턴 형성 방법, 전자 디바이스의 제조 방법 및 전자 디바이스
TWI683801B (zh) * 2017-11-30 2020-02-01 美商羅門哈斯電子材料有限公司 兩性離子化合物及包括其之光阻
WO2019123895A1 (ja) * 2017-12-22 2019-06-27 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、化合物
JP7056524B2 (ja) * 2018-11-15 2022-04-19 信越化学工業株式会社 新規塩化合物、化学増幅レジスト組成物、及びパターン形成方法
JP7282667B2 (ja) * 2019-01-22 2023-05-29 信越化学工業株式会社 ケイ素含有レジスト下層膜形成用組成物及びパターン形成方法
JP7111047B2 (ja) 2019-04-05 2022-08-02 信越化学工業株式会社 スルホニウム化合物、化学増幅レジスト組成物、及びパターン形成方法
TW202108567A (zh) * 2019-05-17 2021-03-01 日商住友化學股份有限公司 鹽、淬滅劑、抗蝕劑組成物及抗蝕劑圖案的製造方法
JP7147687B2 (ja) 2019-05-27 2022-10-05 信越化学工業株式会社 分子レジスト組成物及びこれを用いるパターン形成方法
WO2021039252A1 (ja) * 2019-08-28 2021-03-04 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、化合物、樹脂
JP2022123839A (ja) * 2021-02-12 2022-08-24 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法
WO2024057701A1 (ja) * 2022-09-13 2024-03-21 Jsr株式会社 感放射線性組成物、レジストパターン形成方法、感放射線性酸発生体及び重合体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016746A (ja) * 2009-07-08 2011-01-27 Shin-Etsu Chemical Co Ltd スルホニウム塩、レジスト材料及びパターン形成方法
JP2011158647A (ja) * 2010-01-29 2011-08-18 Fujifilm Corp 感活性光線性または感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217492B2 (en) * 2002-12-25 2007-05-15 Jsr Corporation Onium salt compound and radiation-sensitive resin composition
US8426101B2 (en) 2005-12-21 2013-04-23 Fujifilm Corporation Photosensitive composition, pattern-forming method using the photosensitve composition and compound in the photosensitive composition
JP4895376B2 (ja) 2005-12-21 2012-03-14 富士フイルム株式会社 感光性組成物、該感光性組成物を用いたパターン形成方法及び該感光性組成物に於ける化合物
JP5589281B2 (ja) * 2008-12-25 2014-09-17 セントラル硝子株式会社 含フッ素化合物、含フッ素高分子化合物、レジスト組成物及びそれを用いたパターン形成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016746A (ja) * 2009-07-08 2011-01-27 Shin-Etsu Chemical Co Ltd スルホニウム塩、レジスト材料及びパターン形成方法
JP2011158647A (ja) * 2010-01-29 2011-08-18 Fujifilm Corp 感活性光線性または感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. VENUGOPALAN ET AL.: "6.5 On the Methyl- Transfer Reation in Crystalline Methyl 2- (Methylthio)benzenesulfonate: a Thermally Induced Non-Topochemical Solid-State Reaction", HELVETICA CHIMICA ACTA, vol. 74, no. 3, 2 May 1991 (1991-05-02), pages 662 - 669 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160018732A1 (en) * 2013-03-29 2016-01-21 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film, resist-coated mask blank, photomask and pattern forming method, and method for producing electronic device using them, and electronic device
US9632410B2 (en) * 2013-03-29 2017-04-25 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film, resist-coated mask blank, photomask and pattern forming method, and method for producing electronic device using them, and electronic device
CN107793337A (zh) * 2016-08-31 2018-03-13 信越化学工业株式会社 锍化合物、抗蚀剂组合物和图案化方法
CN107793337B (zh) * 2016-08-31 2020-09-08 信越化学工业株式会社 锍化合物、抗蚀剂组合物和图案化方法
CN107935899A (zh) * 2016-10-12 2018-04-20 信越化学工业株式会社 锍化合物、抗蚀剂组合物及图案形成方法
CN107935899B (zh) * 2016-10-12 2019-11-12 信越化学工业株式会社 锍化合物、抗蚀剂组合物及图案形成方法
CN109422672A (zh) * 2017-08-24 2019-03-05 信越化学工业株式会社 锍化合物、抗蚀剂组合物和图案化方法
CN109422672B (zh) * 2017-08-24 2021-08-20 信越化学工业株式会社 锍化合物、抗蚀剂组合物和图案化方法
TWI716995B (zh) * 2018-09-05 2021-01-21 日商信越化學工業股份有限公司 鋶化合物、正型光阻組成物、以及光阻圖案形成方法
KR20240026196A (ko) 2021-07-29 2024-02-27 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법
KR20240026506A (ko) 2021-07-29 2024-02-28 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 전자 디바이스의 제조 방법, 및 화합물

Also Published As

Publication number Publication date
US20140349221A1 (en) 2014-11-27
US9069246B2 (en) 2015-06-30
JP5723802B2 (ja) 2015-05-27
JP2013167826A (ja) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5723802B2 (ja) 感活性光線性又は感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法及びレジスト膜、並びにこれらを用いた電子デバイスの製造方法
JP5618557B2 (ja) 感活性光線性または感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法
JP5675125B2 (ja) 感活性光線性または感放射線性樹脂組成物、及び該感光性組成物を用いたパターン形成方法
JP4866606B2 (ja) 感光性組成物及び該感光性組成物を用いたパターン形成方法
JP4792299B2 (ja) 新規なスルホニウム化合物、該化合物を含有する感光性組成物及び該感光性組成物を用いたパターン形成方法
JP5740322B2 (ja) 感活性光線性又は感放射線性樹脂組成物、それを用いた感活性光線性又は感放射線性膜及びパターン形成方法、半導体デバイスの製造方法及び半導体デバイス、並びに、化合物
JP2009053518A (ja) 電子線、x線またはeuv用レジスト組成物及び該レジスト組成物を用いたパターン形成方法
JP2008100988A (ja) 感光性組成物、該感光性組成物に用いる化合物及び該感光性組成物を用いたパターン形成方法
JP5525744B2 (ja) 感活性光線性又は感放射線性樹脂組成物、およびそれを用いたパターン形成方法
JP4742001B2 (ja) 感光性組成物、該感光性組成物に用いる化合物及び該感光性組成物を用いたパターン形成方法
JP4695996B2 (ja) 感光性組成物及び該感光性組成物を用いたパターン形成方法
KR101386463B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 그 조성물을 사용하여 형성된 막 및 그것을 사용한 패턴형성방법
JP5470189B2 (ja) 感活性光線性又は感放射線性樹脂組成物、並びにそれを用いたレジスト膜及びパターン形成方法
JP2009053665A (ja) 感光性組成物及び該感光性組成物を用いたパターン形成方法
JP5514462B2 (ja) 微細パターン形成用レジスト組成物及び該組成物を用いたパターン形成方法
JP5799137B2 (ja) 感活性光線性または感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法
JP5622640B2 (ja) 感活性光線性又は感放射線性樹脂組成物、並びに、この組成物を用いた感活性光線性又は感放射線性樹脂膜及びパターン形成方法
JP5703247B2 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、フォトマスクブランクス、及び、パターン形成方法
JP5723685B2 (ja) 感活性光線性又は感放射線性樹脂組成物、並びに、それを用いたレジスト膜及びパターン形成方法
JP5789705B2 (ja) 感活性光線性または感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法
JP2013041160A (ja) 感活性光線性又は感放射線性樹脂組成物、並びに、この組成物を用いた感活性光線性又は感放射線性樹脂膜及びパターン形成方法
JP5588779B2 (ja) 感活性光線性又は感放射線性樹脂組成物、並びにそれを用いたレジスト膜及びパターン形成方法
JP2011075827A (ja) 感活性光線性または感放射線性樹脂組成物、及び該組成物を用いたパターン形成方法
KR101810520B1 (ko) 감활성 광선성 또는 감방사선성 수지 조성물 및 그것을 사용한 패턴 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749623

Country of ref document: EP

Kind code of ref document: A1