WO2013118729A1 - 太陽電池用封止シート - Google Patents

太陽電池用封止シート Download PDF

Info

Publication number
WO2013118729A1
WO2013118729A1 PCT/JP2013/052622 JP2013052622W WO2013118729A1 WO 2013118729 A1 WO2013118729 A1 WO 2013118729A1 JP 2013052622 W JP2013052622 W JP 2013052622W WO 2013118729 A1 WO2013118729 A1 WO 2013118729A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sheet
resin layer
resin
sealing sheet
Prior art date
Application number
PCT/JP2013/052622
Other languages
English (en)
French (fr)
Inventor
潤 西岡
谷口 浩一郎
陽 宮下
道子 大塚
福田 晋也
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to JP2013557526A priority Critical patent/JP6318619B2/ja
Priority to US14/376,722 priority patent/US10062795B2/en
Priority to PL13746103T priority patent/PL2814067T3/pl
Priority to EP13746103.4A priority patent/EP2814067B1/en
Priority to CN201380008105.5A priority patent/CN104106147B/zh
Priority to KR1020147021847A priority patent/KR102004567B1/ko
Publication of WO2013118729A1 publication Critical patent/WO2013118729A1/ja
Priority to PH12014501759A priority patent/PH12014501759A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2581/00Seals; Sealing equipment; Gaskets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell sealing sheet and a solar cell module including the same.
  • a solar cell module made of a silicon or selenium semiconductor wafer has a solar cell sealing sheet made of a resin such as ethylene-vinyl acetate copolymer or polyethylene laminated on both sides of the solar cell element.
  • An upper protective material is placed on the upper surface, and a lower protective material is placed on the lower surface, deaerated in vacuum and heated to seal the solar cell element with the solar cell sealing sheet, and the solar cell sealing sheet.
  • a solar cell element and an upper and lower protective material are bonded and integrated.
  • the solar cell encapsulating sheet is usually produced in a long shape by extrusion, and is stored and transported in a roll body wound around a roll core until it is used. . In this state, the pressure accompanying winding is applied to the solar cell encapsulating sheet in the inner and outer directions. Therefore, the solar cell encapsulating sheets adjacent to each other in the inner and outer directions are integrated with each other, and a phenomenon in which the solar cell encapsulating sheet cannot be smoothly unwound during use, so-called blocking may occur.
  • Patent Document 1 for the purpose of preventing blocking of the solar cell encapsulating sheet, the solar cell is molded from a molding material containing an ethylene copolymer and an organic peroxide, and has an embossed pattern on both sides.
  • a battery module filling adhesive sheet is disclosed.
  • Patent Document 2 discloses a solar cell in which an emboss pattern having a specific height and shape is formed on one surface of a sheet made of an ethylene-vinyl acetate copolymer (EVA) having a melt flow rate within a specific range.
  • EVA ethylene-vinyl acetate copolymer
  • Patent Document 1 contains a cross-linking agent (organic peroxide), problems such as remaining air are likely to occur in the manufacturing process of the solar cell module.
  • the embossing of Patent Document 2 described above is a convex process having a height of 390 to 480 ⁇ m with respect to the sealing sheet (paragraph 0041, Examples 1 to 4).
  • the embossing with respect to such a soft sealing sheet is too deep, the embossed shape tends to be crushed. Thereby, the contact area between sealing material sheets becomes large, and there exists a possibility that the inhibitory effect of blocking may become inadequate.
  • an object of the present invention is to provide a solar cell encapsulating sheet that is excellent in productivity by preventing roll defects such as blocking, and in which quality defects such as wrinkles and air remaining are eliminated. .
  • the sealing sheet can be smoothly unwound from the roll body of the solar cell sealing sheet by considering the following two points, leading to the present invention. It was.
  • One point is to make it easy to peel off the solar cell sealing sheets adjacent to each other in the inner and outer directions by setting the storage elastic modulus of the resin layer constituting the sealing sheet within a specific range.
  • Another point is that the solar cell encapsulating sheets adjacent to each other in the inner and outer directions are reinforced by devising the surface shape so that the dynamic friction coefficient, static friction coefficient and surface roughness described below are within a specific range. Is to suppress the binding.
  • a solar cell encapsulating sheet having a resin layer (S) comprising a resin composition containing a polyolefin-based resin, wherein the storage elastic modulus at 25 ° C. of the resin layer (S) is 200 MPa or less, and And at least one surface of the resin layer (S) is a sheet surface of the sealing sheet, and the sheet surface satisfies the following conditions (a), (b) and (c): Stop sheet.
  • A The dynamic friction coefficient on the white plate tempered glass is 1.5 or less.
  • the surface roughness Rzjis is 0.1 to 50 ⁇ m.
  • C The static friction coefficient on the white plate tempered glass is 1.5 or less.
  • a solar cell encapsulating sheet roll formed by winding the solar cell encapsulating sheet according to any one of [1] to [8].
  • a solar cell module comprising the solar cell encapsulating sheet according to any one of [1] to [9].
  • the solar cell encapsulating sheet of the present invention is free from defects during roll unwinding such as blocking, and can be efficiently produced with roll-to-roll processing equipment. Moreover, the sealing sheet for solar cells of this invention makes it possible to produce efficiently the solar cell module excellent in quality with few wrinkles and air remaining in the manufacturing process of a solar cell module.
  • the solar cell encapsulating sheet of the present invention is a solar cell encapsulating sheet having a resin layer (S) made of a resin composition containing a polyolefin resin, and the storage elasticity of the resin layer (S) at 25 ° C.
  • the rate is 200 MPa or less
  • at least one surface of the resin layer (S) is the sheet surface of the sealing sheet, and the sheet surface satisfies the following conditions (a), (b), and (c). It is characterized by.
  • (A) The dynamic friction coefficient on the white plate tempered glass is 1.5 or less.
  • the surface roughness Rzjis is 0.1 to 50 ⁇ m.
  • the static friction coefficient on the white plate tempered glass is 1.5 or less.
  • the solar cell encapsulating sheet of the present invention has a storage elastic modulus of the resin layer (S) within a specific range and has a specific sheet surface, thereby improving the sheet handling property and blocking. In addition, wrinkles and remaining air can be prevented in the manufacturing process of the solar cell module, and the productivity and quality are excellent.
  • the sealing sheet for solar cells of this invention has the resin layer (S) whose storage elastic modulus in 25 degreeC is 200 Mpa or less.
  • S resin layer
  • the storage elastic modulus is preferably 100 MPa or less, and more preferably 50 MPa or less, from the viewpoint of preventing blocking and preventing wrinkles, air residue, and cell damage in the solar cell module manufacturing process.
  • it is 5 MPa or more, More preferably, it is 10 MPa or more.
  • the resin contained in the resin composition is not particularly limited as long as it is a polyolefin resin and the storage elastic modulus of the resin layer (S) made of the resin composition can be controlled to 200 MPa or less.
  • the resin contained in the resin composition is preferably a polyolefin resin shown in each of the following (A) to (D).
  • (A) and (B) What is shown is more preferable, and among them, the one shown in (A) is more preferable in that it has excellent low-temperature characteristics.
  • the polyolefin resin (A) is an ethylene- ⁇ -olefin copolymer.
  • the ⁇ -olefin copolymerized with ethylene is preferably an ⁇ -olefin having 3 to 20 carbon atoms.
  • propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 3-methyl-butene-1, 4-methyl-pentene- 1 etc. are illustrated.
  • propylene, 1-butene, 1-hexene, and 1-octene are preferably used as the ⁇ -olefin copolymerized with ethylene from the viewpoints of industrial availability, various characteristics, and economical efficiency. It is done.
  • an ethylene- ⁇ -olefin random copolymer is preferably used from the viewpoint of transparency and flexibility.
  • the ⁇ -olefin copolymerized with ethylene can be used alone or in combination of two or more.
  • the content of ⁇ -olefin copolymerized with ethylene is not particularly limited, but usually 2 mol% or more with respect to all monomer units in the ethylene- ⁇ -olefin copolymer, The amount is preferably 40 mol% or less, more preferably 3 to 30 mol%, still more preferably 5 to 25 mol%. Within such a range, the crystallinity is reduced by the copolymerization component, so that the transparency is improved and problems such as blocking of raw material pellets are less likely to occur.
  • the kind and content of the monomer copolymerized with ethylene can be qualitatively quantitatively analyzed by a well-known method, for example, a nuclear magnetic resonance (NMR) measuring apparatus or other instrumental analyzers.
  • NMR nuclear magnetic resonance
  • the ethylene- ⁇ -olefin copolymer may contain monomer units based on monomers other than ⁇ -olefin.
  • the monomer include cyclic olefins, vinyl aromatic compounds (such as styrene), polyene compounds, and the like.
  • the content of the monomer unit is preferably 20 mol% or less, more preferably 15 mol% or less, based on 100 mol% of all monomer units in the ethylene- ⁇ -olefin copolymer. is there.
  • the steric structure, branching, branching degree distribution, molecular weight distribution and copolymerization form (random, block, etc.) of the ethylene- ⁇ -olefin copolymer are not particularly limited, but have, for example, long chain branching.
  • the copolymer generally has good mechanical properties, and has an advantage that the melt tension (melt tension) at the time of molding the resin layer (S) is increased and the calendar moldability is improved.
  • the melt flow rate (MFR) of the ethylene- ⁇ -olefin copolymer used in the present invention is not particularly limited, but is usually MFR (JIS K7210, temperature: 190 ° C., load: 21.18 N). 0.5 to 100 g / 10 min, preferably 1 to 50 g / 10 min, more preferably 2 to 50 g / 10 min, still more preferably 3 to 30 g / 10 min.
  • the MFR may be selected in consideration of molding processability at the time of molding the resin layer (S), adhesion at the time of sealing the solar cell element (cell), wraparound condition, and the like.
  • the MFR is a relatively low value, specifically 0.5 to 5 g / 10 min due to the handling properties when the resin layer (S) is peeled off from the molding roll.
  • the MFR is preferably 1 to 50 g / 10 min, more preferably 2 to 50 g / 10 min, from the viewpoint of reducing the extrusion load and increasing the extrusion amount. More preferably, it is 3 to 30 g / 10 min.
  • the MFR is preferably 2 to 50 g / 10 min, more preferably 3 to 30 g / 10 min.
  • the production method of the ethylene- ⁇ -olefin copolymer used in the present invention is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst can be employed.
  • a slurry polymerization method, a solution polymerization method, a gas phase polymerization method, etc. using a multi-site catalyst typified by a Ziegler-Natta type catalyst, a single site catalyst typified by a metallocene catalyst or a post metallocene catalyst, etc.
  • a bulk polymerization method using a radical initiator a radical initiator.
  • a polymerization method using a single-site catalyst capable of polymerizing a raw material having a low molecular weight component and a narrow molecular weight distribution is preferable from the viewpoints of easy granulation after pelletization and prevention of blocking of raw material pellets. is there.
  • the heat of crystal fusion measured at a heating rate of 10 ° C./min in the differential scanning calorimetry of the ethylene- ⁇ -olefin copolymer used in the present invention is preferably 0 to 70 J / g. Within this range, flexibility and transparency (total light transmittance) of the resulting resin layer (S) are secured, which is preferable. Further, considering the difficulty of blocking the raw material pellets in a high temperature state such as summer, the heat of crystal melting is preferably 5 to 70 J / g, more preferably 10 to 65 J / g.
  • the heat of crystal fusion can be measured at a heating rate of 10 ° C./min according to JIS K7122 using a differential scanning calorimeter.
  • ethylene- ⁇ -olefin copolymer used in the present invention examples include trade names “Engage”, “Affinity”, and “Infuse” manufactured by Dow Chemical Co., Ltd. ExxonMobil Co., Ltd., trade name “Exact”, Mitsui Chemicals, Inc. trade name “Tuffmer H (TAFMER H)”, “Tuffmer A (TAFMER A)”, “Tuffmer P (TAFMER P) ) ", LG Chemical Co., Ltd. trade name” LUCENE ", Nippon Polyethylene Corporation trade name” Kernel ", and the like.
  • Polyolefin resin (B) The polyolefin resin (B) is a copolymer of propylene and another monomer copolymerizable with the propylene, or a homopolymer of propylene.
  • these copolymerization forms random, block, etc.
  • branching, branching degree distribution and three-dimensional structure are not particularly limited, and can be a polymer having an isotactic, atactic, syndiotactic or mixed structure. .
  • ⁇ -olefins having 4 to 12 carbon atoms such as ethylene, 1-butene, 1-hexene, 4-methyl-pentene-1, 1-octene, and divinylbenzene
  • dienes such as 1,4-cyclohexadiene, dicyclopentadiene, cyclooctadiene, and ethylidene norbornene.
  • ethylene and 1-butene are preferably used as the ⁇ -olefin copolymerized with propylene from the viewpoints of industrial availability, various characteristics, and economical efficiency.
  • a propylene- ⁇ -olefin random copolymer is preferably used from the viewpoint of transparency and flexibility.
  • the monomer copolymerized with propylene can be used alone or in combination of two or more.
  • the content of other monomers copolymerizable with propylene is not particularly limited, but is usually 2 mol% or more with respect to all monomer units in the polyolefin resin (B). , Preferably 40 mol% or less, more preferably 3 to 30 mol%, still more preferably 5 to 25 mol%. Within such a range, the crystallinity is reduced by the copolymerization component, so that the transparency is improved and problems such as blocking of raw material pellets are less likely to occur.
  • the kind and content of the other monomer copolymerizable with propylene can be qualitatively quantitatively analyzed by a known method, for example, a nuclear magnetic resonance (NMR) measuring device or other instrumental analyzer.
  • NMR nuclear magnetic resonance
  • the melt flow rate (MFR) of the polyolefin resin (B) used in the present invention is not particularly limited, but usually MFR (JIS K7210, temperature: 230 ° C., load: 21.18 N) is 0. About 0.5 to 100 g / 10 min, preferably 2 to 50 g / 10 min, more preferably 3 to 30 g / 10 min.
  • the MFR may be selected in consideration of molding processability at the time of molding the resin layer (S), adhesion at the time of sealing the solar cell element (cell), wraparound condition, and the like.
  • the MFR is relatively low, specifically 0.5 to 5 g / 10 min due to the handling properties when the resin layer (S) is peeled off from the molding roll.
  • the MFR is preferably 2 to 50 g / 10 min, more preferably 3 to 30 g / 10 min from the viewpoint of reducing the extrusion load and increasing the extrusion amount. is there.
  • the MFR is preferably 2 to 50 g / 10 min, more preferably 3 to 30 g / 10 min.
  • the production method of the polyolefin resin (B) used in the present invention is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst can be employed.
  • a slurry polymerization method, a solution polymerization method, a gas phase polymerization method, etc. using a multi-site catalyst represented by a Ziegler-Natta type catalyst, a single site catalyst represented by a metallocene catalyst or a post metallocene catalyst, Examples thereof include a bulk polymerization method using a radical initiator.
  • a polymerization method using a single-site catalyst capable of polymerizing a raw material having a low molecular weight component and a narrow molecular weight distribution is preferable from the viewpoints of easy granulation after pelletization and prevention of blocking of raw material pellets. is there.
  • polyolefin resin (B) used in the present invention examples include propylene-butene random copolymer, propylene-ethylene random copolymer, propylene-ethylene-butene-1 copolymer, and the like.
  • Products include “Tuffmer XM”, “NOTIO”, Sumitomo Chemical Co., Ltd. “TAFFCELLEN”, Prime Polymer Co., Ltd.
  • Polyolefin resin (C) is a metal salt of a copolymer comprising an ⁇ -olefin such as ethylene or propylene and an aliphatic unsaturated carboxylic acid (preferred metals are Zn, Na, K, Li, Mg, etc.). is there. Specific products include, for example, trade name “HIMILAN” manufactured by Mitsui Chemicals, Inc. and trade name “AMPLIFY IO” manufactured by Dow Chemical Co., Ltd.
  • the polyolefin resin (D) is an ethylene copolymer composed of ethylene and at least one monomer selected from an aliphatic unsaturated carboxylic acid and an aliphatic unsaturated monocarboxylic acid alkyl ester. Specific examples include an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, an ethylene-acrylic acid ester copolymer, and an ethylene-methacrylic acid ester copolymer.
  • the ester component include alkyl esters having 1 to 8 carbon atoms such as methyl, ethyl, propyl, and butyl.
  • the copolymer is not limited to the above-mentioned two-component copolymer, but a three-component or more multi-component copolymer (for example, ethylene and an aliphatic unsaturated carboxylic acid and an aliphatic unsaturated copolymer) added with a third component. It may be a ternary or higher copolymer or the like appropriately selected from saturated carboxylic acid esters.
  • the content of the monomer copolymerized with ethylene is usually 5 to 35% by mass with respect to all monomer units in the copolymer.
  • the properties generally required for a sealing sheet include flexibility and impact resistance to protect the solar cell element, heat resistance when the solar cell module generates heat, and sunlight efficiently into the solar cell element. Transparency to reach (total light transmittance, etc.), adhesion to various adherends (glass, backsheet, etc.), durability, dimensional stability, flame retardancy, water vapor barrier property, economy, etc. . Above all, importance is attached to the balance between flexibility, heat resistance, transparency and economy.
  • the crystal melting peak temperature (Tm) of the polyolefin resin as the main component of the resin composition constituting the resin layer (S) is preferably less than 100 ° C.
  • an amorphous polymer that does not exhibit a crystal melting peak temperature that is, an amorphous polymer is also applicable (hereinafter referred to as an olefin polymer having a crystal melting peak temperature of less than 100 ° C. including an amorphous polymer).
  • the crystal melting peak temperature is preferably 30 to 95 ° C., more preferably 45 to 80 ° C., and further preferably 60 to 80 ° C.
  • a polyolefin resin having a crystal melting peak temperature (Tm) of 100 ° C. or higher is added to a resin composition containing a polyolefin resin having a crystal melting peak temperature (Tm) of less than 100 ° C. It is preferable to use a mixture.
  • the upper limit of the crystal melting peak temperature (Tm) of the polyolefin-based resin to be mixed is not particularly limited, but 150 is considered in consideration of the thermal deterioration of the solar cell element (cell) and the laminate set temperature at the time of manufacturing the solar cell module. It is about °C.
  • the laminate set temperature when producing the solar cell module can be lowered, and the solar cell element (cell) is less likely to be thermally deteriorated, so that it is preferably 130 ° C. or lower, and more preferably 125 ° C. or lower.
  • crystal melting peak temperature general-purpose high-density polyethylene resin (HDPE) is about 130 to 145 ° C.
  • low-density polyethylene resin (LDPE) is about 100 to 125 ° C.
  • general-purpose homopolypropylene resin is used.
  • about 165 ° C. and general-purpose propylene-ethylene random copolymer is about 130 to 150 ° C.
  • the crystal melting peak temperature can be measured using a differential scanning calorimeter at a heating rate of 10 ° C./min according to JIS K7121.
  • the resin layer (S) of the present invention is preferably composed of a resin composition containing a polyolefin resin having a crystal melting peak temperature of less than 100 ° C. and a polyolefin resin having a crystal melting peak temperature of 100 ° C. or more.
  • the content of both polyolefin resins in the resin composition is not particularly limited, but considering the flexibility, heat resistance, transparency, etc. of the obtained resin layer (S), both polyolefin resins
  • the resin mixing (containing) mass ratio polyolefin resin having a crystal melting peak temperature of less than 100 ° C./polyolefin resin having a crystal melting peak temperature of 100 ° C.
  • the resin composition constituting the resin layer (S) may contain a polyolefin resin as a main component, and may contain other resins in addition to the above-described polyolefin resin. .
  • the “main component” is not intended to limit the specific content, but it is 50% by mass or more, preferably 65% by mass or more, more preferably 65% by mass or more of the total components of the resin composition. It is a component that occupies a range of 80 mass% or more and 100 mass% or less.
  • the polyolefin resin having a crystal melting peak temperature of 100 ° C. or higher to be mixed with the resin layer (S) may be appropriately selected in consideration of desired characteristics.
  • the heat resistance, flexibility, and low temperature are selected.
  • An ethylene- ⁇ -olefin block copolymer can be most suitably used because of its excellent balance of properties and the like.
  • the block structure of the ethylene- ⁇ -olefin block copolymer is not particularly limited, but from the viewpoint of balancing flexibility, heat resistance, transparency, etc., comonomer content, crystallinity, density It is preferably a multiblock structure containing two or more segments or blocks having different crystal melting peak temperatures (Tm) or glass transition temperatures (Tg). Specific examples include a completely symmetric block, an asymmetric block, and a tapered block structure (a structure in which the ratio of the block structure gradually increases in the main chain). Regarding the structure and production method of the copolymer having the multi-block structure, International Publication No.
  • 2005/090425 (WO2005 / 090425), International Publication No. 2005/090426 (WO2005 / 090426), and International Publication No.2005. / 090427 pamphlet (WO2005 / 090427) or the like can be employed.
  • the ethylene- ⁇ -olefin block copolymer having the multi-block structure will be described in detail below.
  • the ethylene- ⁇ -olefin block copolymer having a multiblock structure can be suitably used in the present invention, and an ethylene-octene multiblock copolymer having 1-octene as a copolymerization component as an ⁇ -olefin is preferable.
  • As the block copolymer an almost non-crystalline soft segment copolymerized with a large amount of octene component (about 15 to 20 mol%) with respect to ethylene and a small amount of octene component (about 2 mol% with respect to ethylene).
  • a multiblock copolymer having two or more highly crystalline hard segments each having a copolymerized crystal melting peak temperature of 110 to 145 ° C. is preferred.
  • chain length and ratio of these soft segments and hard segments By controlling the chain length and ratio of these soft segments and hard segments, both flexibility and heat resistance can be achieved.
  • trade name “Infuse” manufactured by Dow Chemical Co., Ltd. may be mentioned.
  • various additives can be added to the resin composition constituting the resin layer (S).
  • the additive include a silane coupling agent, an antioxidant, an ultraviolet absorber, a weathering stabilizer, a light diffusing agent, a nucleating agent, a pigment (for example, a white pigment), a flame retardant, and a discoloration preventing agent.
  • a silane coupling agent for example, an antioxidant, an ultraviolet absorber, and a weathering stabilizer
  • the silane coupling agent is useful for improving the adhesion to a protective material for a sealing sheet (glass, resin front sheet, back sheet, etc.) or a solar cell element.
  • a protective material for a sealing sheet glass, resin front sheet, back sheet, etc.
  • a solar cell element examples thereof include a vinyl group
  • examples thereof include compounds having a hydrolyzable group such as an alkoxy group together with an unsaturated group such as an acryloxy group and a methacryloxy group, an amino group, and an epoxy group.
  • Specific examples of the silane coupling agent include N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, and ⁇ -aminopropyltriethoxy.
  • Examples thereof include silane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
  • ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane are preferably used because of good adhesiveness and little discoloration such as yellowing.
  • These silane coupling agents can be used alone or in combination of two or more.
  • the addition amount of the silane coupling agent is usually about 0.1 to 5 parts by mass, preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the resin composition.
  • a coupling agent such as an organic titanate compound can also be used effectively.
  • antioxidant various commercially available products can be applied, and examples thereof include various types such as monophenol-based, bisphenol-based, high-molecular phenol-based phenol-based, sulfur-based, phosphite-based, and the like.
  • Examples of monophenol antioxidants include 2,6-di-tert-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-tert-butyl-4-ethylphenol, and the like. it can.
  • Examples of bisphenol antioxidants include 2,2′-methylene-bis- (4-methyl-6-tert-butylphenol), 2,2′-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4′-thiobis- (3-methyl-6-tert-butylphenol), 4,4′-butylidene-bis- (3-methyl-6-tert-butylphenol), 3,9-bis [ ⁇ 1,1 -Dimethyl-2- ⁇ - (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ ethyl ⁇ 2,4,9,10-tetraoxaspiro] 5,5-undecane Can do.
  • Polymeric phenolic antioxidants include 1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6 -Tris (3,5-di-tert-butyl-4-bidoxybenzyl) benzene, tetrakis- ⁇ methylene-3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate ⁇ Methane, bis ⁇ (3,3′-bis-4′-hydroxy-3′-tert-butylphenyl) butyric acid ⁇ glycol ester, 1,3,5-tris (3 ′, 5′-di-tert -Butyl-4'-hydroxybenzyl) -s-triazine-2,4,6- (1H, 3H, 5H) trione, tocopherol (vitamin E) and the like.
  • sulfur-based antioxidants examples include dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiopropionate.
  • Phosphite antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phos Phyto, cyclic neopentanetetrayl bis (octadecyl phosphite), tris (mono and / or di) phenyl phosphite, diisodecyl pentaerythritol diphosphite, 9,10-dihydro-9-oxa-10-phosphaphenathrene -10-oxide, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-
  • phenol-based and phosphite-based antioxidants are preferably used in view of the effect of the antioxidant, thermal stability, economy, and the like, and it is more preferable to use both in combination.
  • the addition amount of the antioxidant is usually about 0.1 to 1 part by mass, preferably 0.2 to 0.5 part by mass with respect to 100 parts by mass of the resin composition.
  • ultraviolet absorber various commercially available products can be applied, and various types such as benzophenone-based, benzotriazole-based, triazine-based, and salicylic acid ester-based materials can be exemplified.
  • benzophenone ultraviolet absorbers examples include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n.
  • benzophenone ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n.
  • 2-hydroxy-4-n-octadecyloxybenzophenone 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone, 2 , 4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, etc. It is possible
  • benzotriazole ultraviolet absorber examples include hydroxyphenyl-substituted benzotriazole compounds such as 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-butylphenyl).
  • Benzotriazole 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-t- Butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, etc. be able to.
  • triazine ultraviolet absorbers examples include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- (4 , 6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol and the like.
  • salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate. The said ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
  • the addition amount of the ultraviolet absorber is usually about 0.01 to 2.0 parts by mass, preferably 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the resin composition.
  • Hindered amine light stabilizers are preferably used as the weather stabilizer for imparting weather resistance in addition to the above ultraviolet absorbers.
  • a hindered amine light stabilizer does not absorb ultraviolet rays like an ultraviolet absorber, but exhibits a remarkable synergistic effect when used together with an ultraviolet absorber.
  • there are some which function as a light stabilizer other than the hindered amine they are often colored and are not preferable for the solar cell encapsulating sheet of the present invention.
  • hindered amine light stabilizers include dimethyl-1- (2-hydroxyethyl) succinate-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1 , 3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ 2, 2,6,6-tetramethyl-4-piperidyl ⁇ imino ⁇ ], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2, 6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) separate, 2- (3 , 5-Di-tert-4-H And droxybenzyl)
  • the solar cell encapsulating sheet of the present invention is such that at least one surface of the resin layer (S) is the sheet surface of the encapsulating sheet from the viewpoint of preventing blocking and preventing wrinkles and air remaining in the production process of the solar cell module. It is important that the sheet surface satisfies the following conditions (a), (b) and (c).
  • the dynamic friction coefficient on the white plate tempered glass is 1.5 or less.
  • the surface roughness Rzjis is 0.1 to 50 ⁇ m.
  • C The static friction coefficient on the white plate tempered glass is 1.5 or less. Is
  • the dynamic friction coefficient on the white plate tempered glass of the sheet surface of the encapsulating sheet comprising the resin layer (S) of the encapsulating sheet for solar cell of the present invention (hereinafter sometimes referred to as (S) sheet surface) is 1.5.
  • the dynamic friction coefficient is preferably 1.2 or less, more preferably 1.0 or less.
  • the dynamic friction coefficient is preferably 0.3 or more, more preferably 0.5 or more, from the viewpoint that the sealing sheet itself does not easily shift.
  • the dynamic friction coefficient can be adjusted by (S) the emboss shape and the emboss depth of the sheet surface, and (S) imparting a convex shape to the sheet surface is effective in reducing the dynamic friction coefficient.
  • the solar cell encapsulating sheet of the present invention when the surface roughness Rzjis of the (S) sheet surface of the solar cell encapsulating sheet of the present invention is 0.1 to 50 ⁇ m, the solar cell encapsulating sheet can be easily drawn out from the sheet wound up in a roll shape. In the step of stacking the members at the time of module production, the sealing sheet itself can be easily superimposed at a specified position.
  • the surface roughness Rzjis is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of blocking properties between the sealing sheets.
  • it is 40 micrometers or less, More preferably, it is 35 micrometers or less.
  • the surface roughness Ra of the (S) sheet surface of the solar cell encapsulating sheet of the present invention is not particularly limited, but is preferably 0.5 to 5 ⁇ m for the same reason as described above. More preferably, it is 1 to 4 ⁇ m.
  • the surface roughness Rzjis means ten-point average roughness, and Ra means arithmetic average roughness, and can be specifically measured by the method described in the examples.
  • the surface roughness Rzjis and the surface roughness Ra can be adjusted by making the roll surface at the time of sheet molding into a desired shape, that is, (S) the embossed shape and the embossed depth of the sheet surface.
  • the static friction coefficient on the white sheet tempered glass on the (S) sheet surface of the solar cell encapsulating sheet of the present invention is 1.5 or less, the position adjustment is performed when the encapsulating sheets are overlapped.
  • the static friction coefficient is preferably 1.2 or less, more preferably 1.0 or less.
  • the relationship of “static friction coefficient> dynamic friction coefficient” is satisfied, but when the sealing sheet is a soft material, the above relationship may not be satisfied depending on the shape of the additive and emboss contained therein. is there.
  • the static friction coefficient is preferably 0.3 or more, more preferably 0.5 or more, from the viewpoint that the sealing sheet itself does not easily shift.
  • the static friction coefficient can be adjusted by the emboss shape and the emboss depth of the (S) sheet surface, similarly to the dynamic friction coefficient.
  • the embossed shape is not particularly limited as long as the above conditions (a), (b), and (c) are satisfied.
  • there are fine patterns such as stripes, textures, satin, skin patterns, diamond lattices, synthetic leather-like wrinkles, polygonal cones, cones, planar star shapes, and the like.
  • an embossed shape having no periodicity is preferable because the shape having periodicity is more difficult to slip when the convex portion and the concave portion overlap each other.
  • embssing without periodicity means embossing that is not regularly provided with the same embossing shape (triangular pyramid shape, conical shape, etc.), embossing spacing, embossing depth, etc. To do.
  • the embossing depth is preferably 0.1 to 100 ⁇ m from the viewpoint of ease of sheet processing.
  • S When embossing the sheet surface, when molding the encapsulating sheet, thermocompression using a metal roll with an embossed shape, thermocompression using a sand-filled silicon rubber roll, or both Examples thereof include a molding method used, or a method of transferring emboss by laminating a sheet, paper or the like having an embossed shape on the surface at the same time as sheet molding.
  • the solar cell encapsulating sheet of the present invention only the surface of the (S) sheet may be embossed. However, when it is made into a roll, it is prevented from blocking, wrinkles and air remaining in the production process of the solar cell module. From the viewpoint of prevention, it is preferable to emboss both surfaces of the sealing sheet.
  • the sealing sheet for solar cells of this invention is a single layer sheet
  • resin layer (T) When the solar cell encapsulating sheet of the present invention is composed of a laminate of at least two layers having a resin layer (S) and a resin layer (T), the resin layer (T) is the surface of the (S) sheet.
  • the surfaces satisfying the above conditions (a) to (c), which are the characteristics of the present invention, are made to be the surface of the sheet.
  • the resin constituting the resin layer (T) is not particularly limited as long as it is a resin that can be used as a sealing sheet, and the ease of regeneration addition during the production of the solar cell sealing sheet of the present invention From the viewpoints of improving productivity such as yield, and interlaminar adhesion with the resin layer (S), flexibility, heat resistance, and transparency, specifically, the above-mentioned (A) to (D) It is preferable that the resin is a polyolefin resin shown in each of the above, and it is more preferable to use the same type of resin as the resin layer (S).
  • the “resin of the same type as the resin layer (S)” herein refers to, for example, the resin layer (T) when the resin constituting the resin layer (S) is the polyolefin resin (A).
  • the constituent resin also means a resin classified as the polyolefin-based resin (A).
  • the resin layer (T) has different physical properties from the resin layer (S). That is, the resin layer (T) may not satisfy the above conditions (a) to (c).
  • the layer structure is not particularly limited.
  • a two-layer two-layer structure including a resin layer (S) and a resin layer (T) is used.
  • a two-layer three-layer structure in which a resin layer (S), a resin layer (T), and a resin layer (S) are laminated in this order can be given.
  • the thickness ratio between the resin layer (S) and the resin layer (T) is not particularly limited, but the viewpoints of blocking prevention, wrinkle entry and air remaining prevention in the solar cell module manufacturing process. Therefore, the thickness ratio [resin layer (S) / resin layer (T)] is preferably in the range of 1/1 to 1/9, more preferably in the range of 4/6 to 1/9.
  • the thickness ratio of the resin layer (S) and the resin layer (T) is the thickness of the resin layer (S). The ratio is the ratio between the total and the total thickness of the resin layer (T).
  • the manufacturing method of the sealing sheet for solar cells of this invention is demonstrated.
  • a manufacturing method of the sealing sheet a known method, for example, a single-screw extruder, a multi-screw extruder, a Banbury mixer, a kneader or other melt mixing equipment, an extrusion casting method using a T-die, a calendar method or an inflation method
  • an extrusion casting method using a T die is preferably used from the viewpoints of handling properties, productivity, and the like.
  • a sealing sheet is a laminated body, it can manufacture by coextrusion casting with a multilayer T die using a some extruder.
  • the molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film-forming properties of the resin composition to be used, but is generally 130 to 300 ° C., preferably 150 to 250 ° C. Furthermore, the above-mentioned embossing is performed on the front surface and / or the back surface of the sealing sheet.
  • the thickness of the sealing sheet is not particularly limited, but is usually 0.03 mm or more, preferably 0.05 mm or more, more preferably 0.1 mm or more, and usually 1 mm or less, preferably 0.7 mm or less. More preferably, it is 0.5 mm or less.
  • additives such as silane coupling agents, antioxidants, UV absorbers, and weathering stabilizers may be dry blended with the resin in advance and then supplied to the hopper. It may be supplied after making, or a master batch in which only the additive is previously concentrated in the resin may be made and supplied.
  • various surface treatments such as corona treatment, plasma treatment and primer treatment can be performed on the surface for the purpose of improving adhesion to various adherends.
  • the wet index is preferably 50 mN / m or more, and more preferably 52 mN / m or more.
  • the upper limit of the wetting index is generally about 70 mN / m.
  • the solar cell encapsulating sheet roll of the present invention is a solar cell encapsulating sheet roll formed by winding the solar cell encapsulating sheet.
  • the sealing sheet wound around the sealing sheet roll is not particularly limited, but preferably has a width of 500 to 1700 mm and a length of 50 to 1000 m.
  • the winding method of the sealing sheet roll is not limited. For example, there is a winding method in which the winding tension is 5 kgf or less, preferably 3 kgf or less, more preferably 2 kgf or less with respect to the entire width of the sealing sheet. Further, since it is important that the sealing sheet roll is not misaligned, the winding tension is preferably 0.5 kgf or more, more preferably 1 kgf or more with respect to the entire width of the sealing sheet.
  • the solar cell module produced using the solar cell encapsulating sheet of the present invention has less wrinkles and air remaining and is excellent in quality.
  • Various types of solar cell modules can be exemplified. Specifically, the upper protective material (front sheet) / the sealing sheet of the present invention / solar cell element / the sealing sheet of the present invention / the lower part.
  • a configuration in which the sealing sheet and the lower protective material of the present invention are formed on a solar cell element formed on the inner peripheral surface, for example, an amorphous solar cell element produced by sputtering on a fluororesin-based transparent protective material can be mentioned.
  • the notation A / B / C indicates that layers are stacked in the order of A, B, and C from the top (or from the bottom).
  • Examples of solar cell elements include single crystal silicon type, polycrystalline silicon type, amorphous silicon type, III-V group compounds such as gallium-arsenic, copper-indium-selenium, cadmium-tellurium, and II-VI group compound semiconductor types, Examples include a dye sensitizing type and an organic thin film type.
  • each member which comprises a solar cell module is a single layer or multilayer sheets, such as an inorganic material and various thermoplastic resin films, for example, glass etc. Mention may be made of a single-layer or multilayer protective material made of a thermoplastic resin such as an inorganic material, polyester, inorganic vapor-deposited polyester, fluorine-containing resin or polyolefin.
  • the lower protective material is a single layer or multilayer sheet such as metal, inorganic material and various thermoplastic resin films, for example, metal such as tin, aluminum, stainless steel, inorganic material such as glass, polyester, inorganic vapor deposition polyester, A single layer or multilayer protective material made of a thermoplastic resin such as a fluorine-containing resin or polyolefin may be used.
  • the surface of the upper and / or lower protective material may be subjected to a known surface treatment such as a primer treatment or a corona treatment in order to improve the adhesiveness with the sealing sheet or other members.
  • the solar cell module produced using the sealing sheet of the present invention is like the above-described upper protective material (front sheet) / sealing sheet / solar cell element / sealing sheet / lower protective material (back sheet).
  • the configuration will be described as an example.
  • the front sheet, the sealing sheet of the present invention, the solar cell element, the sealing sheet of the present invention, and the back sheet are laminated in order from the sunlight receiving side, and further, a junction box (from the solar cell element) on the lower surface of the back sheet.
  • a terminal box for connecting wiring for taking out the generated electricity to the outside is bonded.
  • the solar cell elements are connected by wiring in order to conduct the generated current to the outside. The wiring is taken out through a through hole provided in the backsheet and connected to the junction box.
  • the upper protective material, the sealing sheet of the present invention, the solar cell element, the sealing of the present invention There are a step of stacking the stop sheet and the lower protective material in this order, and a step of vacuum-sucking them and thermocompression bonding. Also, batch type manufacturing equipment, roll-to-roll type manufacturing equipment, and the like can be applied.
  • the upper protective material, the encapsulating sheet of the present invention, the solar cell element, the encapsulating sheet of the present invention, and the lower protective material are, according to a conventional method, a vacuum laminator, preferably 130 to 180 ° C.
  • the heat and pressure pressure bonding is performed at a temperature of 130 to 150 ° C., a degassing time of 2 to 15 minutes, a pressing pressure of 0.5 to 1 atm, preferably 8 to 45 minutes, more preferably 10 to 40 minutes. Can be manufactured.
  • the solar cell module produced using the sealing sheet of the present invention is a small solar cell represented by a mobile device, a large solar cell installed on a roof or a roof, etc., depending on the type and module shape of the applied solar cell. It can be applied to various uses regardless of indoors or outdoors.
  • the sample is fixed to a sliding piece (length 63 mm, width 63 mm, total mass 200 g) with a double-sided tape using a measuring device conforming to JIS-K7125, and the mating material is white plate tempered glass, and the dynamic friction coefficient and static friction of the sealing sheet surface. The coefficient was measured.
  • a sealing sheet roll was prepared by winding a sealing sheet for solar cells having a length of 200 m around a roll core having a diameter of 7.5 cm.
  • the state of the sealing sheet when the sealing sheet was unwound from the sealing sheet roll at a speed of 10 m / min was visually observed and evaluated based on the following criteria.
  • B There was resistance when the solar cell encapsulating sheet was unwound by blocking, and shrinkage in the width direction and elongation in the length direction were observed.
  • C It was difficult to unwind the solar cell sealing sheet.
  • a plurality of solar cell silicon semiconductor wafers connected via an interconnector are arranged in a row, and a transparent flat glass is laminated on the upper surface of these solar cell silicon semiconductor wafers via a solar cell sealing sheet, A solar cell back sheet was laminated on the lower surface of the solar cell silicon semiconductor wafer via a solar cell encapsulating sheet to produce a laminate.
  • the laminated body was heat-pressed using a vacuum press to produce a laminated and integrated solar cell module.
  • the solar cell module was evaluated for air entry around the cells and around the interconnector based on the following criteria.
  • C Bubbles with a major axis of 2 mm or more are generated
  • Example 1 95 masses of ethylene-octene random copolymer (manufactured by Dow Chemical Co., Ltd., trade name: Engage 8200, MFR: 5, octene content: 10.1 mol%) which is an ethylene- ⁇ -olefin random copolymer And ethylene-octene block copolymer which is an ethylene- ⁇ -olefin block copolymer (manufactured by Dow Chemical Co., Ltd., trade name: Infuse D9100, MFR: 1, octene content: 12.8 mol%) ) Is mixed at a set temperature of 200 ° C.
  • Example 2 In Example 1, a solar cell encapsulating sheet and a solar cell module were produced in the same manner as in Example 1 except that the rubber roll having a surface roughness Rzjis of 40 ⁇ m was changed to a rubber roll having a surface roughness Rzjis of 15 ⁇ m. And evaluated.
  • Example 3 In Example 1, 90 parts by mass of LLDPE (manufactured by Prime Polymer Co., Ltd., trade name: Evolue P SP9048, MFR: 4) and LLDPE (manufactured by Prime Polymer Co., Ltd., trade name: Neozex 0234N, MFR: A solar cell encapsulating sheet and a solar cell module were prepared and evaluated in the same manner as in Example 1 except that 2) was changed to a resin composition mixed at a ratio of 10 parts by mass.
  • LLDPE manufactured by Prime Polymer Co., Ltd., trade name: Evolue P SP9048, MFR: 4
  • LLDPE manufactured by Prime Polymer Co., Ltd., trade name: Neozex 0234N, MFR:
  • a solar cell encapsulating sheet and a solar cell module were prepared and evaluated in the same manner as in Example 1 except that 2) was changed to a resin composition mixed at a ratio of 10 parts by mass.
  • Example 4 As the resin layer (S), an ethylene-octene random copolymer which is an ethylene- ⁇ -olefin random copolymer (manufactured by Dow Chemical Co., Ltd., trade name: engage 8200, MFR: 5, octene content: 10.
  • the resin composition described in Example 1 was used as the resin layer (T).
  • Example 1 Comparative Example 1 In Example 1, except that the resin composition was changed to an ethylene-vinyl acetate copolymer (Mitsui DuPont Polychemical Co., Ltd., trade name: Everflex EV150, vinyl acetate content: 33 wt%, MFR: 30). Produced a solar cell sealing sheet and a solar cell module in the same manner as in Example 1, and evaluated them.
  • an ethylene-vinyl acetate copolymer Mitsubishi Chemical Co., Ltd., trade name: Everflex EV150, vinyl acetate content: 33 wt%, MFR: 30.
  • Example 2 the resin composition was changed to an ethylene-vinyl acetate copolymer (manufactured by Mitsui DuPont Polychemical Co., Ltd., trade name: EVAFLEX EV250, vinyl acetate content: 28 wt%, MFR: 15), and the surface Except having changed into the rubber roll whose roughness Rzjis is 350 micrometers, the solar cell sealing sheet and solar cell module were produced similarly to Example 1, and evaluated.
  • ethylene-vinyl acetate copolymer manufactured by Mitsui DuPont Polychemical Co., Ltd., trade name: EVAFLEX EV250, vinyl acetate content: 28 wt%, MFR: 15
  • Example 3 the rubber roll having a surface roughness Rzjis of 40 ⁇ m is changed to a rubber roll (triangular pyramid spacing of 100 ⁇ m, depth of 40 ⁇ m) in which triangular pyramid shapes (pyramid shapes) having a surface roughness Rzjis of 40 ⁇ m are regularly arranged. Except having carried out, it carried out similarly to Example 1, and produced the solar cell sealing sheet and the solar cell module, and evaluated.
  • Example 4 the resin composition was changed to an ethylene-methacrylic acid copolymer (manufactured by Mitsui DuPont Polychemical Co., Ltd., trade name: High Milan 1652, MFR: 5.5), and the surface roughness Rzjis was 15 ⁇ m. Except having changed to the rubber roll, it carried out similarly to Example 1, and produced the solar cell sealing sheet and the solar cell module, and evaluated.
  • an ethylene-methacrylic acid copolymer manufactured by Mitsui DuPont Polychemical Co., Ltd., trade name: High Milan 1652, MFR: 5.5
  • the surface roughness Rzjis was 15 ⁇ m. Except having changed to the rubber roll, it carried out similarly to Example 1, and produced the solar cell sealing sheet and the solar cell module, and evaluated.
  • the solar cell encapsulating sheet of the present invention can prevent blocking, and there is little air remaining in the production process of the solar cell module (Examples 1 to 4).
  • the sealing sheet that does not satisfy the requirements of the present invention either a blocking phenomenon or an air remaining phenomenon in the manufacturing process of the solar cell module occurred (Comparative Examples 1 to 4).
  • the solar cell encapsulating sheet of the present invention is free from defects during roll unwinding such as blocking, and can be efficiently produced with roll-to-roll processing equipment. Moreover, the sealing sheet for solar cells of this invention makes it possible to produce efficiently the solar cell module excellent in quality with few wrinkles and air remaining in the manufacturing process of a solar cell module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ポリオレフィン系樹脂を含む樹脂組成物からなる樹脂層(S)を有する太陽電池用封止シートであって、該樹脂層(S)の25℃における貯蔵弾性率が200MPa以下であり、かつ、該樹脂層(S)の少なくとも片面が前記封止シートのシート表面であり、該シート表面が下記条件(a)、(b)及び(c)を満足することを特徴とする太陽電池用封止シート。 (a)白板強化ガラス上での動摩擦係数が1.5以下である (b)表面粗さRzjisが0.1~50μmである (c)白板強化ガラス上での静止摩擦係数が1.5以下である

Description

太陽電池用封止シート
 本発明は、太陽電池用封止シート及びそれを含む太陽電池モジュールに関する。
 シリコンやセレンの半導体ウェハーからなる太陽電池モジュールは、太陽電池素子の両面にエチレン-酢酸ビニル共重合体、ポリエチレンなどの樹脂からなる太陽電池用封止シートを積層し、太陽電池用封止シートの上面に上部保護材を、下面に下部保護材を重ね合わせて真空中で脱気すると共に加熱することにより太陽電池素子を太陽電池用封止シートで封止すると共に、太陽電池用封止シートを介して太陽電池素子と上下保護材とを接着一体化したものである。
 上記太陽電池用封止シートは、通常、押出成形によって長尺状に製造されており、使用されるまでの間、ロール芯にロール状に巻回されたロール体の状態で保管、輸送される。この状態において、太陽電池用封止シートには、その内外方向に巻回に伴う圧力が加わっている。そのため、内外方向に互いに隣接する太陽電池用封止シート同士が一体化してしまい、使用時に太陽電池用封止シートを円滑に巻き出すことができない現象、いわゆるブロッキングが生じることがある。
 特許文献1には、太陽電池用封止シートのブロッキングを防止する目的で、エチレン系共重合体及び有機過酸化物を含有する成形材料から成形され、その両面にエンボス模様が施されている太陽電池モジュール用充填接着材シートが開示されている。また、特許文献2には、メルトフローレイトが特定範囲内にあるエチレン-酢酸ビニル共重合体(EVA)からなるシートの一面に、特定の高さ及び形状のエンボス模様が形成された太陽電池用封止シートが開示されている。
特開昭59-22978号公報 特開2010-232311号公報
 しかしながら、特許文献1に記載のシートに用いられる成形材料は架橋剤(有機過酸化物)を含むため、太陽電池モジュールの作製工程においてエア残りなどの不具合が生じやすい。また、上記特許文献2のエンボス加工は、封止シートに対して、390~480μmもの高さを有する凸加工がなされている(段落0041,実施例1~4)。しかしながら、このような柔らかい封止シートに対するエンボス加工が深すぎる場合、エンボス形状が潰れやすくなる。それにより、封止材シート同士の接触面積が大きくなり、ブロッキングの抑制効果が不十分となるおそれがある。
 近年の環境政策やエネルギー政策における需要から、太陽電池市場はますます重要性が認識されており、太陽電池モジュールにおける生産性の向上は切に望まれている。特に、モジュール作製工程におけるタクトタイム減少や歩留まりの向上が必要とされる中で、ブロッキングのようなロール不具合、モジュール作製工程での品質不具合等は、大きな課題となってきている。
 また、封止シートのブロッキング問題やシート成型時の剥れにくさは、太陽電池モジュールの品質にも影響を与える。太陽電池モジュールを製造する工程においては、ガラス、封止シート、太陽電池素子、封止シート、バックシート等をそれぞれ積層するが、積層時の部材が多様になり、これらを所定の位置に重ねて積層するという作業において、各部材間の滑り、特にガラス/封止シート間、封止シート/バックシート間の滑りが悪いとシワが入ったり、空気が間に挟まって残ったりして(シワ入りやエア残り)、品質面で不具合となる。
 すなわち、本発明の課題は、ブロッキングのようなロール不具合を防止して生産性に優れ、かつ、シワ入りやエア残りといった品質の不具合が解消された太陽電池用封止シートを提供することにある。
 本発明者らは、鋭意研究した結果、次の2点を考慮することにより、太陽電池用封止シートのロール体から該封止シートの巻き出しが円滑となることを見出し、本発明に至った。1点は、該封止シートを構成する樹脂層の貯蔵弾性率を特定範囲内とすることにより、内外方向に互いに隣接する太陽電池用封止シート同士を剥がれやすくすることである。もう1点は、下記に記載する動摩擦係数、静止摩擦係数及び表面粗さが特定範囲内となるよう、表面形状を工夫することにより、内外方向に互いに隣接する太陽電池用封止シート同士の強固な結着を抑制することである。
 すなわち、本発明は、下記[1]~[10]に関する。
[1]ポリオレフィン系樹脂を含む樹脂組成物からなる樹脂層(S)を有する太陽電池用封止シートであって、該樹脂層(S)の25℃における貯蔵弾性率が200MPa以下であり、かつ、該樹脂層(S)の少なくとも片面が前記封止シートのシート表面であり、該シート表面が下記条件(a)、(b)及び(c)を満足することを特徴とする太陽電池用封止シート。
 (a)白板強化ガラス上での動摩擦係数が1.5以下である
 (b)表面粗さRzjisが0.1~50μmである
 (c)白板強化ガラス上での静止摩擦係数が1.5以下である
[2]前記シート表面が更に下記条件(d)を満足することを特徴とする前記[1]に記載の太陽電池用封止シート。
 (d)表面粗さRaが0.5~5μmである
[3]前記樹脂層(S)の25℃における貯蔵弾性率が100MPa以下であることを特徴とする前記[1]又は[2]に記載の太陽電池用封止シート。
[4]前記表面粗さRzjisが5~40μmであることを特徴とする前記[1]~[3]のいずれか1項に記載の太陽電池用封止シート。
[5]前記ポリオレフィン系樹脂が、エチレン-α-オレフィン共重合体であることを特徴とする前記[1]~[4]のいずれか1項に記載の太陽電池用封止シート。
[6]前記樹脂層(S)の25℃における貯蔵弾性率が50MPa以下であることを特徴とする前記[1]~[5]のいずれか1項に記載の太陽電池用封止シート。
[7]前記樹脂層(S)と、該樹脂層(S)以外の樹脂層(T)とを有する少なくとも2層の積層体であることを特徴とする前記[1]~[6]のいずれか1項に記載の太陽電池用封止シート。
[8]前記積層体が、前記樹脂層(S)、前記樹脂層(T)、前記樹脂層(S)の順に積層されてなる2種3層構成であることを特徴とする前記[7]に記載の太陽電池用封止シート。
[9]前記[1]~[8]のいずれか1項に記載の太陽電池用封止シートが巻き取られてなる太陽電池用封止シートロール。
[10]前記[1]~[9]のいずれか1項に記載の太陽電池用封止シートを含む太陽電池モジュール。
 本発明の太陽電池用封止シートは、ブロッキングのようなロール巻き出し時の不具合がなく、ロール・トゥ・ロールの加工設備で効率良く製造することができる。また、本発明の太陽電池用封止シートは、太陽電池モジュールの作製工程においてシワ入りやエア残りが少なく、品質に優れた太陽電池モジュールを効率良く生産することを可能にする。
 以下に本発明について詳細に説明する。
<太陽電池用封止シート>
 本発明の太陽電池用封止シートは、ポリオレフィン系樹脂を含む樹脂組成物からなる樹脂層(S)を有する太陽電池用封止シートであって、該樹脂層(S)の25℃における貯蔵弾性率が200MPa以下であり、かつ、該樹脂層(S)の少なくとも片面が前記封止シートのシート表面であり、該シート表面が下記条件(a)、(b)及び(c)を満足することを特徴とする。
 (a)白板強化ガラス上での動摩擦係数が1.5以下である
 (b)表面粗さRzjisが0.1~50μmである
 (c)白板強化ガラス上での静止摩擦係数が1.5以下である
 本発明の太陽電池用封止シートは、樹脂層(S)の貯蔵弾性率が特定の範囲内にあり、かつ、特定のシート表面を有することによって、シートのハンドリング性を向上させ、ブロッキングを抑えることができ、しかも太陽電池モジュールの作製工程においてシワ入りやエア残りを防止でき、生産性及び品質に優れる。
 本発明の太陽電池用封止シートは、25℃における貯蔵弾性率が200MPa以下である樹脂層(S)を有する。当該貯蔵弾性率を200MPa以下とすることにより、太陽電池モジュールにおける太陽電池素子の保護に有利となる。当該貯蔵弾性率が200MPaを超える場合、太陽電池モジュールの作製工程においてシワ入りやエア残り、セル破損が生じるおそれがある。
 当該貯蔵弾性率は、ブロッキング防止の観点並びに太陽電池モジュールの作製工程におけるシワ入り、エア残り、及びセルの破損防止の観点から、好ましくは100MPa以下、より好ましくは50MPa以下である。また、フレキシブル太陽電池モジュールにおける取り扱い性や耐屈曲性等の観点から、好ましくは5MPa以上、より好ましくは10MPa以上である。
 本発明において、樹脂組成物に含まれる樹脂は、ポリオレフィン系樹脂であり、かつ樹脂組成物からなる樹脂層(S)の貯蔵弾性率を200MPa以下に制御できれば、特に限定されるものではない。本発明においては、樹脂組成物に含まれる樹脂は、下記の(A)~(D)の各々に示されるポリオレフィン系樹脂であることが好ましい。ここで、得られる樹脂層(S)の柔軟性、フィッシュアイ(ゲル)の少なさ、回路の腐食性物質(酢酸など)の少なさ及び経済性などの観点から(A)や(B)に示されるものがより好ましく、中でも低温特性に優れる点で(A)に示されるものがよりさらに好ましい。
ポリオレフィン系樹脂(A)
 ポリオレフィン系樹脂(A)は、エチレン-α-オレフィン共重合体である。ここで、エチレンと共重合するα-オレフィンとしては、炭素数3~20のα-オレフィンが好ましい。具体的にはプロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、3-メチル-ブテン-1、4-メチル-ペンテン-1等が例示される。
 本発明においては、工業的な入手し易さや諸特性、経済性などの観点からエチレンと共重合するα-オレフィンとしては、プロピレン、1-ブテン、1-へキセン、1-オクテンが好適に用いられる。また、透明性や柔軟性などの観点からエチレン-α-オレフィンランダム共重合体が好適に用いられる。エチレンと共重合するα-オレフィンは1種のみを単独でまたは2種以上を組み合わせて用いることができる。
 また、エチレンと共重合するα-オレフィンの含有量は、特に制限されるものではないが、エチレン-α-オレフィン共重合体中の全単量体単位に対して、通常、2モル%以上、好ましくは40モル%以下、より好ましくは3~30モル%、さらに好ましくは5~25モル%である。該範囲内であれば、共重合成分により結晶性が低減されることにより透明性が向上し、また、原料ペレットのブロッキングなどの不具合も起こり難いため好ましい。なお、エチレンと共重合する単量体の種類と含有量は、周知の方法、例えば、核磁気共鳴(NMR)測定装置、その他の機器分析装置で定性定量分析することができる。
 エチレン-α-オレフィン共重合体は、α-オレフィン以外の単量体に基づく単量体単位を含有していてもよい。該単量体としては、例えば、環状オレフィン、ビニル芳香族化合物(スチレンなど)、ポリエン化合物等が挙げられる。該単量体単位の含有量は、エチレン-α-オレフィン共重合体中の全単量体単位を100モル%とした場合、好ましくは20モル%以下であり、より好ましくは15モル%以下である。
 また、エチレン-α-オレフィン共重合体の立体構造、分岐、分岐度分布、分子量分布や共重合形式(ランダム、ブロックなど)は、特に制限されるものではないが、例えば、長鎖分岐を有する共重合体は、一般に機械物性が良好であり、また、樹脂層(S)を成形する際の溶融張力(メルトテンション)が高くなりカレンダー成形性が向上するなどの利点がある。
 本発明に用いられるエチレン-α-オレフィン共重合体のメルトフローレート(MFR)は、特に制限されるものではないが、通常、MFR(JIS K7210、温度:190℃、荷重:21.18N)が、0.5~100g/10min程度、好ましくは1~50g/10min、より好ましくは2~50g/10min、さらに好ましくは3~30g/10minである。
 ここで、MFRは、樹脂層(S)を成形する際の成形加工性や太陽電池素子(セル)を封止する時の密着性、回り込み具合などを考慮して選択すればよい。例えば、樹脂層(S)をカレンダー成形する場合には、樹脂層(S)を成形ロールから引き剥がす際のハンドリング性からMFRは、比較的低い値、具体的には0.5~5g/10min程度が好ましく、また、Tダイを用いて押出成形する場合には、押出負荷を低減させ押出量を増大させる観点からMFRは、1~50g/10minが好ましく、2~50g/10minがより好ましく、さらに好ましくは3~30g/10minである。さらに、太陽電池素子(セル)を封止する時の密着性や回り込み易さの観点からは、MFRは、好ましくは2~50g/10min、より好ましくは3~30g/10minである。
 本発明に用いられるエチレン-α-オレフィン共重合体の製造方法は、特に制限されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法が採用できる。例えば、チーグラー・ナッタ型触媒に代表されるマルチサイト触媒や、メタロセン系触媒やポストメタロセン系触媒に代表されるシングルサイト触媒を用いた、スラリー重合法、溶液重合法、気相重合法等、また、ラジカル開始剤を用いた塊状重合法等が挙げられる。本発明においては、重合後の造粒(ペレタイズ)のし易さや原料ペレットのブロッキング防止などの観点から低分子量成分が少なく分子量分布の狭い原料が重合できるシングルサイト触媒を用いた重合方法が好適である。
 本発明に用いられるエチレン-α-オレフィン共重合体の示差走査熱量測定における加熱速度10℃/分で測定される結晶融解熱量は、0~70J/gであることが好ましい。該範囲内であれば、得られる樹脂層(S)の柔軟性や透明性(全光線透過率)などが確保されるため好ましい。また、夏場など高温状態での原料ペレットのブロッキングの起こり難さを考慮すると、該結晶融解熱量は、5~70J/gであることが好ましく、10~65J/gであることがさらに好ましい。
 上記の結晶融解熱量は、示差走査熱量計を用いて、JIS K7122に準じて加熱速度10℃/分で測定することができる。
 本発明に用いられるエチレン-α-オレフィン共重合体の具体例としては、ダウ・ケミカル(株)製の商品名「エンゲージ(Engage)」、「アフィニティー(Affinity)」、「インフューズ(Infuse)」、エクソンモービル(株)製の商品名「エグザクト(Exact)」、三井化学(株)製の商品名「タフマーH(TAFMER H)」、「タフマーA(TAFMER A)」、「タフマーP(TAFMER P)」、LG化学(株)の商品名「LUCENE」、日本ポリエチレン(株)製の商品名「カーネル(Karnel)」等を例示することができる。
ポリオレフィン系樹脂(B)
 ポリオレフィン系樹脂(B)は、プロピレンと該プロピレンと共重合可能な他の単量体との共重合体あるいは、プロピレンの単独重合体である。但し、これらの共重合形式(ランダム、ブロックなど)、分岐、分岐度分布や立体構造には特に制限がなく、イソタクチック、アタクチック、シンジオタクチックあるいはこれらの混在した構造の重合体とすることができる。
 プロピレンと共重合可能な他の単量体としては、エチレンや1-ブテン、1-ヘキセン、4-メチル-ペンテン-1、1-オクテン等の炭素数4~12のα-オレフィン及びジビニルベンゼン、1,4-シクロヘキサジエン、ジシクロペンタジエン、シクロオクタジエン、エチリデンノルボルネン等のジエン類等が例示される。
 本発明においては、工業的な入手し易さや諸特性、経済性などの観点からプロピレンと共重合するα-オレフィンとしては、エチレンや1-ブテンが好適に用いられる。また、透明性や柔軟性などの観点からプロピレン-α-オレフィンランダム共重合体が好適に用いられる。プロピレンと共重合する単量体は1種のみを単独で又は2種以上を組み合わせて用いることができる。
 また、プロピレンと共重合可能な他の単量体の含有量は、特に制限されるものではないが、ポリオレフィン系樹脂(B)中の全単量体単位に対して、通常、2モル%以上、好ましくは40モル%以下、より好ましくは3~30モル%、さらに好ましくは5~25モル%である。該範囲内であれば、共重合成分により結晶性が低減されることにより透明性が向上し、また、原料ペレットのブロッキングなどの不具合も起こり難いため好ましい。なお、プロピレンと共重合可能な他の単量体の種類と含有量は、周知の方法、例えば、核磁気共鳴(NMR)測定装置、その他の機器分析装置で定性定量分析することができる。
 本発明に用いられるポリオレフィン系樹脂(B)のメルトフローレート(MFR)は、特に制限されるものではないが、通常、MFR(JIS K7210、温度:230℃、荷重:21.18N)が、0.5~100g/10min程度、好ましくは2~50g/10min、より好ましくは3~30g/10minである。
 ここで、MFRは、樹脂層(S)を成形する際の成形加工性や太陽電池素子(セル)を封止する時の密着性、回り込み具合などを考慮して選択すればよい。例えば、樹脂層(S)をカレンダー成形する場合には、樹脂層(S)を成形ロールから引き剥がす際のハンドリング性からMFRは、比較的低い方、具体的には0.5~5g/10min程度が好ましく、また、Tダイを用いて押出成形する場合には、押出負荷を低減させ押出量を増大させる観点からMFRは、好ましくは2~50g/10min、より好ましくは3~30g/10minである。さらに、太陽電池素子(セル)を封止する時の密着性や回り込み易さの観点からは、MFRは、好ましくは2~50g/10min、より好ましくは3~30g/10minである。
 本発明に用いられるポリオレフィン系樹脂(B)の製造方法は、特に制限されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法が採用できる。例えば、チーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒やポストメタロセン系触媒に代表されるシングルサイト触媒を用いた、スラリー重合法、溶液重合法、気相重合法等、また、ラジカル開始剤を用いた塊状重合法等が挙げられる。本発明においては、重合後の造粒(ペレタイズ)のし易さや原料ペレットのブロッキング防止などの観点から低分子量成分が少なく分子量分布の狭い原料が重合できるシングルサイト触媒を用いた重合方法が好適である。
 本発明に用いられるポリオレフィン系樹脂(B)の具体例としては、プロピレン-ブテンランダム共重合体、プロピレン-エチレンランダム共重合体やプロピレン-エチレン-ブテン-1共重合体などが挙げられ、具体的な商品としては、三井化学(株)製の商品名「タフマーXM(TAFMER XM)」、「ノティオ(NOTIO)」、住友化学(株)商品名「タフセレン(TAFFCELLEN)」、(株)プライムポリマー(株)製の商品名「プライムTPO(PRIME TPO)」、ダウ・ケミカル(株)製の商品名「バーシファイ(VERSIFY)」、エクソンモービル(株)製の商品名「ビスタマックス(VISTAMAXX)」等を例示することができる。
ポリオレフィン系樹脂(C)
 ポリオレフィン系樹脂(C)は、エチレン、プロピレン等のα-オレフィンと脂肪族不飽和カルボン酸とからなる共重合体の金属塩(好ましい金属はZn、Na、K、Li、Mg等である)である。
 具体的な商品としては、三井化学(株)製の商品名「ハイミラン(HIMILAN)」、ダウ・ケミカル(株)製の商品名「アンプリファイIO(AMPLIFY IO)」等を例示することができる。
ポリオレフィン系樹脂(D)
 ポリオレフィン系樹脂(D)は、エチレンと、脂肪族不飽和カルボン酸及び脂肪族不飽和モノカルボン酸アルキルエステルより選ばれる少なくとも1つの単量体とからなるエチレン系共重合体である。
 具体的には、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸エステル共重合体等が挙げられる。ここで、該エステル成分としては、メチル、エチル、プロピル、ブチルなどの炭素数1~8のアルキルエステルが挙げられる。本発明においては、上記2成分の共重合体に制限されることなく、さらに第3の成分を加えた3成分以上の多元共重合体(例えば、エチレンと脂肪族不飽和カルボン酸及び脂肪族不飽和カルボン酸エステルより適宜選ばれる3元以上の共重合体等)であってもよい。エチレンと共重合される単量体の含有量は、共重合体中の全単量体単位に対して、通常5~35質量%である。
 封止シートに一般的に要求される特性としては、太陽電池素子を保護するための柔軟性や耐衝撃性、太陽電池モジュールが発熱した際の耐熱性、太陽電池素子へ太陽光が効率的に届くための透明性(全光線透過率など)、各種被着体(ガラスやバックシートなど)への接着性、耐久性、寸法安定性、難燃性、水蒸気バリア性、経済性等が挙げられる。中でも柔軟性と耐熱性及び透明性のバランスと経済性が重要視される。
 ここで、封止シートの柔軟性を重視すると、樹脂層(S)を構成する樹脂組成物の主成分とするポリオレフィン系樹脂の結晶融解ピーク温度(Tm)は、100℃未満であることが好ましいが、結晶融解ピーク温度を発現しない、すなわち非晶性の重合体も適用可能である(以下、非晶性の重合体を含めて、結晶融解ピーク温度が100℃未満のオレフィン系重合体と呼ぶ)。原料ペレットのブロッキングなどを考慮すると、該結晶融解ピーク温度が30~95℃であることが好ましく、45~80℃であることがより好ましく、60~80℃であることがさらに好ましい。
  また、封止シートの耐熱性を重視すると、結晶融解ピーク温度(Tm)が100℃未満のポリオレフィン系樹脂を含有する樹脂組成物に結晶融解ピーク温度(Tm)が100℃以上のポリオレフィン系樹脂を混合して用いることが好ましい。混合するポリオレフィン系樹脂の結晶融解ピーク温度(Tm)の上限値は、特に制限されるものではないが、太陽電池素子(セル)の熱劣化や太陽電池モジュール作製時のラミネート設定温度を考慮すると150℃程度である。太陽電池モジュールを作製する際のラミネート設定温度を低温化でき、太陽電池素子(セル)を熱劣化させにくいことから130℃以下であることが好ましく、125℃以下であることがより好ましい。
 ここで、該結晶融解ピーク温度の参考値としては、汎用の高密度ポリエチレン樹脂(HDPE)が130~145℃程度、低密度ポリエチレン樹脂(LDPE)が100~125℃程度、汎用のホモポリプロピレン樹脂が165℃程度、汎用のプロピレン-エチレンランダム共重合体が130~150℃程度である。上記の結晶融解ピーク温度は、示差走査熱量計を用いて、JIS K7121に準じて加熱速度10℃/分で測定することができる。
 本発明の樹脂層(S)は、上述したように結晶融解ピーク温度が100℃未満のポリオレフィン系樹脂と結晶融解ピーク温度が100℃以上のポリオレフィン系樹脂を含有する樹脂組成物からなることが好ましい。
 ここで、樹脂組成物中における両ポリオレフィン系樹脂の含有量は、特に制限されるものではないが、得られる樹脂層(S)の柔軟性、耐熱性、透明性等を考慮すると、両ポリオレフィン系樹脂の混合(含有)質量比(結晶融解ピーク温度が100℃未満のポリオレフィン系樹脂/結晶融解ピーク温度が100℃以上のポリオレフィン系樹脂)は、好ましくは99~50/1~50、より好ましくは、98~60/2~40、より好ましくは、97~70/3~30、さらに好ましくは、97~80/3~20、よりさらに好ましくは、97~90/3~10である。但し、両ポリオレフィン系樹脂の合計を100質量部とする。ここで、混合(含有)質量比が該範囲内であれば、柔軟性、耐熱性、透明性等のバランスに優れた樹脂層(S)が得られ易いため好ましい。
 なお、本発明において、樹脂層(S)を構成する樹脂組成物中には、ポリオレフィン系樹脂を主成分として含んでいればよく、上記したポリオレフィン系樹脂以外に他の樹脂を含んでいてもよい。
 また、本明細書において、「主成分」とは、具体的な含有率を制限するものではないが、樹脂組成物の構成成分全体の50質量%以上、好ましくは65質量%以上、さらに好ましくは80質量%以上であって100質量%以下の範囲を占める成分である。
 ここで、樹脂層(S)に混合する結晶融解ピーク温度が100℃以上のポリオレフィン系樹脂は、所望の特性を考慮し適宜選択すればよいが、本発明においては、耐熱性、柔軟性及び低温特性などのバランスに優れることからエチレン-α-オレフィンブロック共重合体を最も好適に用いることができる。
<エチレン-α-オレフィンブロック共重合体>
 ここで、エチレン-α-オレフィンブロック共重合体のブロック構造は、特に制限されるものではないが、柔軟性、耐熱性、透明性等のバランス化の観点から、コモノマー含有率、結晶性、密度、結晶融解ピーク温度(Tm)、又はガラス転移温度(Tg)の異なる2つ以上のセグメント又はブロックを含有するマルチブロック構造であることが好ましい。具体的には、完全対称ブロック、非対称ブロック、テ-パ-ドブロック構造(ブロック構造の比率が主鎖内で漸増する構造)などが挙げられる。該マルチブロック構造を有する共重合体の構造や製造方法については、国際公開第2005/090425号パンフレット(WO2005/090425)、国際公開第2005/090426号パンフレット(WO2005/090426)、および国際公開第2005/090427号パンフレット(WO2005/090427)などで詳細に開示されているものを採用することができる。
 次に、前記マルチブロック構造を有するエチレン-α-オレフィンブロック共重合体について、以下、詳細に説明する。
 該マルチブロック構造を有するエチレン-α-オレフィンブロック共重合体は、本発明において好適に使用でき、α-オレフィンとして1-オクテンを共重合成分とするエチレン-オクテンマルチブロック共重合体が好ましい。該ブロック共重合体としては、エチレンに対してオクテン成分が多く(約15~20モル%)共重合されたほぼ非晶性のソフトセグメントと、エチレンに対してオクテン成分が少なく(約2モル%未満)共重合された結晶融解ピーク温度が110~145℃である高結晶性のハードセグメントが、各々2つ以上存在するマルチブロック共重合体が好ましい。これらのソフトセグメントとハードセグメントの連鎖長や比率を制御することにより、柔軟性と耐熱性の両立を達成することができる。
 該マルチブロック構造を有する共重合体の具体例としては、ダウ・ケミカル(株)製の商品名「インフューズ(Infuse)」が挙げられる。
 樹脂層(S)を構成する樹脂組成物には、必要に応じて、種々の添加剤を添加することができる。該添加剤としては、例えば、シランカップリング剤、酸化防止剤、紫外線吸収剤、耐候安定剤、光拡散剤、造核剤、顔料(例えば白色顔料)、難燃剤、変色防止剤等が挙げられる。本発明においては、特に、シランカップリング剤、酸化防止剤、紫外線吸収剤、耐候安定剤から選ばれる少なくとも一種の添加剤が添加されていることが後述する理由等から好ましい。また、本発明においては、該樹脂組成物に架橋剤や架橋助剤を添加する必要はないが、添加することを排除するものではなく、例えば、高度の耐熱性を要求される場合は、エア残りなど不具合にならない程度の添加量の架橋剤及び/又は架橋助剤を配合してもよい。
 シランカップリング剤は、封止シートの保護材(ガラス、樹脂製のフロントシート、バックシート等)や太陽電池素子等に対する接着性を向上させるのに有用であり、その例としては、ビニル基、アクリロキシ基、メタクリロキシ基のような不飽和基、アミノ基、エポキシ基等とともに、アルコキシ基のような加水分解可能な基を有する化合物を挙げることができる。シランカップリング剤の具体例としては、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等を例示することができる。本発明においては、接着性が良好であり、黄変等の変色が少ないこと等からγ-グリシドキシプロピルトリメトキシシランやγ-メタクリロキシプロピルトリメトキシシランが好ましく用いられる。これらシランカップリング剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 該シランカップリング剤の添加量は、該樹脂組成物100質量部に対し、通常、0.1~5質量部程度であり、好ましくは0.2~3質量部である。また、シランカップリング剤と同様に、有機チタネート化合物等のカップリング剤も有効に活用できる。
 酸化防止剤としては、種々の市販品が適用でき、モノフェノール系、ビスフェノール系、高分子型フェノール系等のフェノール系、硫黄系、ホスファイト系等の各種タイプのものを挙げることができる。
 モノフェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-p-クレゾール、ブチル化ヒドロキシアニゾール、2,6-ジ-tert-ブチル-4-エチルフェノール等を挙げることができる。
 ビスフェノール系酸化防止剤としては、2,2’-メチレン-ビス-(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレン-ビス-(4-エチル-6-tert-ブチルフェノール)、4,4’-チオビス-(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-tert-ブチルフェノール)、3,9-ビス〔{1,1-ジメチル-2-{β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル}2,4,9,10-テトラオキサスピロ〕5,5-ウンデカン等を挙げることができる。
 高分子型フェノール系酸化防止剤としては、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ビドロキシベンジル)ベンゼン、テトラキス-{メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキスフェニル)プロピオネート}メタン、ビス{(3,3’-ビス-4’-ヒドロキシ-3’-tert-ブチルフェニル)ブチリックアシッド}グルコールエステル、1,3,5-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェロール(ビタミンE)等を挙げることができる。
 硫黄系酸化防止剤としては、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオプロピオネート等を挙げることができる。
 ホスファイト系酸化防止剤としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニル-ジ-トリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、トリス(モノ及び/又はジ)フェニルホスファイト、ジイソデシルペンタエリスリトールジホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナスレン-10-オキサイド、10-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-tert-ブチルフェニル)オクチルホスファイト等を挙げることができる。
 上記酸化防止剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 本発明においては、酸化防止剤の効果、熱安定性、経済性等からフェノール系及びホスファイト系の酸化防止剤が好ましく用いられ、両者を組み合わせて用いることが更に好ましい。
 酸化防止剤の添加量は、該樹脂組成物100質量部に対し、通常、0.1~1質量部程度であり、好ましくは0.2~0.5質量部である。
 紫外線吸収剤としては、種々の市販品が適用でき、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系等の各種タイプのものを挙げることができる。
 ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-n-オクタデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2-ヒドロキシ-5-クロロベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン等を挙げることができる。
 ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジメチルフェニル)ベンゾトリアゾール、2-(2-メチル-4-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-メチル-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール等を挙げることができる。
 トリアジン系紫外線吸収剤としては、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール等を挙げることができる。
 サリチル酸エステル系としては、フェニルサリチレート、p-オクチルフェニルサリチレート等を挙げることができる。
 上記紫外線吸収剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 紫外線吸収剤の添加量は、該樹脂組成物100質量部に対し、通常、0.01~2.0質量部程度であり、好ましくは0.05~0.5質量部である。
 上記の紫外線吸収剤以外に耐候性を付与する耐候安定剤としては、ヒンダードアミン系光安定化剤が好適に用いられる。ヒンダードアミン系光安定化剤は、紫外線吸収剤のようには紫外線を吸収しないが、紫外線吸収剤と併用することによって著しい相乗効果を示す。ヒンダードアミン系以外にも光安定化剤として機能するものはあるが、着色している場合が多く本発明の太陽電池封止シートには好ましくない。
 ヒンダードアミン系光安定化剤としては、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{{2,2,6,6-テトラメチル-4-ピペリジル}イミノ}]、N,N’-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1,3,5-トリアジン縮合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セパレート、2-(3,5-ジ-tert-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等を挙げることができる。
 ヒンダードアミン系光安定化剤の添加量は、該樹脂組成物100質量部に対し、通常、0.01~0.5質量部程度であり、好ましくは、0.05~0.3質量部である。
 本発明の太陽電池用封止シートは、ブロッキング防止の観点並びに太陽電池モジュールの作製工程におけるシワ入り及びエア残りの防止の観点から、樹脂層(S)の少なくとも片面が前記封止シートのシート表面であり、該シート表面が下記条件(a)、(b)及び(c)を満足することが重要である。
 (a)白板強化ガラス上での動摩擦係数が1.5以下である
 (b)表面粗さRzjisが0.1~50μmである
 (c)白板強化ガラス上での静止摩擦係数が1.5以下である
 太陽電池モジュール作製工程では、封止シートを重ね合わせる際の位置調整をするために封止シート自体を滑らせる作業が必要となる。本発明の太陽電池用封止シートの樹脂層(S)からなる封止シートのシート表面(以下、(S)シート表面と呼ぶことがある)の白板強化ガラス上での動摩擦係数が1.5以下である際に、このような作業を不具合なく行うことができる。当該動摩擦係数は、上記観点から、好ましくは1.2以下、より好ましくは1.0以下である。また、太陽電池モジュール作製における各部材をスタックする工程では、封止シート自体が簡単にずれないという観点から、当該動摩擦係数は、好ましくは0.3以上、より好ましくは0.5以上である。
 当該動摩擦係数は、(S)シート表面のエンボス形状やエンボス深さにより調整することが可能であり、(S)シート表面に凸形状を付与することが動摩擦係数の低減に効果がある。
 また、本発明の太陽電池用封止シートの(S)シート表面の表面粗さRzjisが0.1~50μmである際に、ロール状に巻き取ったシートからの繰り出しが容易であり、太陽電池モジュール作製時の各部材をスタックする工程において、封止シート自体が規定の位置に重ね合わせることが容易にできる。当該表面粗さRzjisは、封止シート同士のブロッキング性の点から、好ましくは5μm以上、より好ましくは10μm以上である。また、封止シートの滑り性の点から、好ましくは40μm以下、より好ましくは35μm以下である。
 また、本発明の太陽電池用封止シートの(S)シート表面の表面粗さRaは、特に限定されるものではないが、上記と同様の理由で、好ましくは、0.5~5μmであり、より好ましくは、1~4μmである。
 なお、表面粗さRzjisは十点平均粗さ、Raは算術平均粗さをそれぞれ意味し、具体的には実施例に記載の方法により測定できる。
 上記表面粗さRzjis及び表面粗さRaは、シート成型時のロール表面を所望の形状にすることにより、すなわち、(S)シート表面のエンボス形状やエンボス深さにより調整することができる。
 また、本発明の太陽電池用封止シートの(S)シート表面の白板強化ガラス上での静止摩擦係数が1.5以下である際に、封止シートを重ね合わせる際の位置調整をするために封止シート自体を滑らせる作業を不具合なく行うことができる。当該静止摩擦係数は、上記観点から、好ましくは1.2以下、より好ましくは1.0以下である。一般的には、「静止摩擦係数>動摩擦係数」の関係を満足するが、封止シートが軟質材料である場合、その中に含まれる添加剤やエンボスの形状により、上記関係を満足しない場合もある。また、太陽電池モジュール作製における各部材をスタックする工程では、封止シート自体が簡単にずれないという観点から、当該静止摩擦係数は、好ましくは0.3以上、より好ましくは0.5以上である。
 当該静止摩擦係数は、前記動摩擦係数と同じく、(S)シート表面のエンボス形状やエンボス深さにより調整することができる。
 エンボス形状としては、前述条件(a)、(b)及び(c)を満たすものであれば、特に限定されるものではない。例えば、縞、布目、梨地、皮紋、ダイヤ格子、合成皮革様しぼ模様等の細かい模様、多角錐、円錐、平面星形状等がある。ただし、周期性のある形状では凸部と凹部が重なった場合により滑りにくくなるために、周期性のないエンボス形状が好ましい。なお、「周期性のないエンボス」とは、エンボス形状(三角錐状、円錐状など)、エンボスの間隔、エンボスの深さなどが同じものが規則的には設けられていないエンボスのことを意味する。また、エンボスの深さは、シート加工性の容易さから、0.1~100μmが好ましい。
 (S)シート表面のエンボスを付与する方法としては、封止シートを成型する際に、エンボス形状を付与した金属ロールを用いた加熱圧着や砂入りシリコンゴムロールを用いた加熱圧着、もしくはその両方を用いた成型方法、又は表面にエンボス形状が付与されたシート、紙等をシート成型と同時にラミネートすることによりエンボスを転写する方法等が挙げられる。
 また、本発明の太陽電池用封止シートにおいては、(S)シート表面のみエンボス加工することでもよいが、ロール状にした場合のブロッキング防止、太陽電池モジュールの作製工程におけるシワ入り及びエア残りの防止の観点から、封止シートの両面ともにエンボス加工を施すことが好ましい。
 また、本発明の太陽電池用封止シートは、ポリオレフィン系樹脂を含む樹脂組成物からなる樹脂層(S)のみからなる単層のシートであっても、樹脂層(S)と、該樹脂層(S)以外の樹脂層(以下、「樹脂層(T)」と呼ぶことがある)とを有する積層体であってもよい。
 本発明の太陽電池用封止シートが、樹脂層(S)と樹脂層(T)とを有する、少なくとも2層の積層体からなる場合には、樹脂層(T)は前記(S)シート表面とは異なる面に積層されて、本発明の特徴である上記条件(a)~(c)を満足する面がシートの表面になるようにする。このことにより、ブロッキング防止、太陽電池モジュールの作製工程におけるシワ入り及びエア残りの防止という本発明の効果を奏し得る。
 また、前記樹脂層(T)を構成する樹脂は、封止シートとして使える樹脂であれば、特に限定されるものではなく、本発明の太陽電池封止シートの製造時における再生添加の容易性や、それによる歩留まり等の生産性の向上、さらに樹脂層(S)との層間接着性や柔軟性、耐熱性、透明性などの観点から、具体的には、前述の(A)~(D)の各々に示されるポリオレフィン系樹脂であることが好ましく、樹脂層(S)と同一種類の樹脂を使用することがさらに好ましい。なお、ここでいう「樹脂層(S)と同一種類の樹脂」とは、例えば、樹脂層(S)を構成する樹脂が前記ポリオレフィン系樹脂(A)である場合に、樹脂層(T)を構成する樹脂も前記ポリオレフィン系樹脂(A)に分類される樹脂であることを意味する。但し、樹脂層(T)は樹脂層(S)とは異なる物性を有するものである。すなわち、樹脂層(T)は上記条件(a)~(c)を満足しなくてもよい。
 本発明の太陽電池用封止シートが積層体の場合において、その層構成としては、特に限定されるものではなく、例えば、樹脂層(S)及び樹脂層(T)からなる2種2層構成や、樹脂層(S)、樹脂層(T)、樹脂層(S)の順に積層されてなる2種3層構成などを挙げることができる。また、本発明においては、ブロッキング防止、太陽電池モジュールの作製工程におけるシワ入り及びエア残りの防止の観点から、樹脂層(S)を両最外層に有する2種3層構成であるのが好ましい。
 積層体の場合において、樹脂層(S)と樹脂層(T)との厚み比は特に限定されるものではないが、ブロッキング防止、太陽電池モジュールの作製工程におけるシワ入り及びエア残りの防止の観点から、厚み比[樹脂層(S)/樹脂層(T)]が1/1~1/9の範囲であることが好ましく、4/6~1/9の範囲であることがさらに好ましい。なお、積層体の樹脂層(S)と樹脂層(T)とが2層以上の場合は、樹脂層(S)と樹脂層(T)との厚み比は、樹脂層(S)の厚みの合計と、樹脂層(T)の厚みの合計との比とする。
 次に、本発明の太陽電池用封止シートの製造方法について説明する。
 封止シートの製造方法としては、公知の方法、例えば単軸押出機、多軸押出機、バンバリーミキサー、ニーダーなどの溶融混合設備を有し、Tダイを用いる押出キャスト法、カレンダー法やインフレーション法等を採用することができ、特に制限されるものではないが、本発明においては、ハンドリング性や生産性等の面からTダイを用いる押出キャスト法が好適に用いられる。また、封止シートが積層体である場合、複数の押出機を用いて多層Tダイにより共押出キャストすることにより製造できる。Tダイを用いる押出キャスト法での成形温度は、用いる樹脂組成物の流動特性や製膜性等によって適宜調整されるが、概ね130~300℃、好ましくは、150~250℃である。さらに、封止シートの表面及び/または裏面には、前述のエンボス加工を行う。
 封止シートの厚みは特に限定されるものではないが、通常0.03mm以上、好ましくは0.05mm以上、より好ましくは0.1mm以上であり、かつ、通常1mm以下、好ましくは0.7mm以下、より好ましくは0.5mm以下である。
 シランカップリング剤、酸化防止剤、紫外線吸収剤、耐候安定剤等の各種添加剤は、予め樹脂とともにドライブレンドしてからホッパーに供給してもよいし、予め全ての材料を溶融混合してペレットを作製してから供給してもよいし、添加剤のみを予め樹脂に濃縮したマスターバッチを作製し供給してもよい。
 また、各種被着体への接着性を向上させる目的で表面にコロナ処理やプラズマ処理及びプライマー処理などの各種表面処理を行うことができる。ここで、表面処理量の目安としては、濡れ指数で50mN/m以上であることが好ましく、52mN/m以上であることがより好ましい。濡れ指数の上限値は一般的に70mN/m程度である。
<太陽電池用封止シートロール>
 本発明の太陽電池用封止シートロールは、前記太陽電池用封止シートが巻き取られてなる太陽電池用封止シートロールである。
 封止シートロールに巻き取られた封止シートとしては、特に限定されないが、幅は500~1700mm、長さ50~1000mであることが好ましい。
 封止シートロールの巻き取り方法は、限定されないが、例えば、巻取張力を封止シート全幅に対して5kgf以下、好ましくは3kgf以下、より好ましくは2kgf以下として巻き取る方法がある。また、封止シートロールとして巻きズレないことが重要であるため、巻取張力は封止シート全幅に対して0.5kgf以上であることが好ましく、より好ましくは1kgf以上である。
<太陽電池モジュール>
 本発明の太陽電池用封止シートを用いて作製された太陽電池モジュールは、シワ入りやエア残りが少なく、品質に優れる。
 太陽電池モジュールとしては、種々のタイプのものを例示することができ、具体的には、上部保護材(フロントシート)/本発明の封止シート/太陽電池素子/本発明の封止シート/下部保護材(バックシート)の構成のもの、下部保護材の内周面上に形成させた太陽電池素子上に本発明の封止シートと上部保護材とを形成した構成のもの、上部保護材の内周面上に形成させた太陽電池素子、例えばフッ素樹脂系透明保護材上にアモルファス太陽電池素子をスパッタリング等で作製したものの上に、本発明の封止シートと下部保護材とを形成した構成のもの等を挙げることができる。
 なお、本明細書において、例えばA/B/Cの表記は、上から(又は下から)A、B、Cの順に積層していることを示す。
 太陽電池素子としては、例えば、単結晶シリコン型、多結晶シリコン型、アモルファスシリコン型、ガリウム-砒素、銅-インジウム-セレン、カドミウム-テルル等のIII-V族やII-VI族化合物半導体型、色素増感型、有機薄膜型等が挙げられる。
 太陽電池モジュールを構成する各部材については、特に限定されるものではないが、上部保護材としては、無機材料や各種熱可塑性樹脂フィルム等の単層もしくは多層のシートであり、例えば、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィン等の熱可塑性樹脂からなる単層もしくは多層の保護材を挙げることができる。下部保護材としては、金属、無機材料や各種熱可塑性樹脂フィルム等の単層もしくは多層のシートであり、例えば、錫、アルミニウム、ステンレス等の金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィン等の熱可塑性樹脂からなる単層もしくは多層の保護材を挙げることができる。上部及び/又は下部の保護材の表面には、封止シートや他の部材との接着性を向上させるためにプライマー処理やコロナ処理等公知の表面処理を施すことができる。
 本発明の封止シートを用いて作製された太陽電池モジュールを、既述した上部保護材(フロントシート)/封止シート/太陽電池素子/封止シート/下部保護材(バックシート)のような構成のものを例として説明する。太陽光受光側から順に、フロントシート、本発明の封止シート、太陽電池素子、本発明の封止シート、バックシートが積層されてなり、更に、バックシートの下面にジャンクションボックス(太陽電池素子から発電した電気を外部へ取り出すための配線を接続する端子ボックス)が接着されてなる。太陽電池素子は、発電電流を外部へ電導するために配線により連結されている。配線は、バックシートに設けられた貫通孔を通じて外部へ取り出され、ジャンクションボックスに接続されている。
 太陽電池モジュールの製造方法としては、公知の製造方法が適用でき、特に限定されるものではないが、一般的には、上部保護材、本発明の封止シート、太陽電池素子、本発明の封止シート、下部保護材の順に積み重ねる工程と、それらを真空吸引し加熱圧着する工程を有する。また、バッチ式の製造設備やロール・トゥ・ロール式の製造設備等も適用することができる。
 本発明の太陽電池モジュールは、上部保護材、本発明の封止シート、太陽電池素子、本発明の封止シート、下部保護材を、常法に従って、真空ラミネーターで、好ましくは130~180℃、より好ましくは130~150℃の温度、脱気時間2~15分、プレス圧力0.5~1atm、好ましくは8~45分、より好ましくは10~40分のプレス時間で加熱加圧圧着することにより製造することができる。
 本発明の封止シートを用いて作製された太陽電池モジュールは、適用される太陽電池のタイプとモジュール形状により、モバイル機器に代表される小型太陽電池、屋根や屋上に設置される大型太陽電池等、屋内、屋外に関わらず各種用途に適用することができる。
 以下に、本発明を実施例により更に詳細に説明するが、これらの実施例及び比較例により本発明は制限を受けるものではない。なお、本明細書中に表示される封止シートについての種々の物性の測定及び評価は次のようにして行った。
[樹脂層(S)の物性の測定]
(25℃における貯蔵弾性率)
 アイティ計測(株)製の動的粘弾性測定機、商品名「粘弾性スペクトロメーターDVA-200」を用いて、試料(縦4mm、横60mm)を振動周波数10Hz、ひずみ0.1%、昇温速度3℃/分、チャック間25mmで横方向について、-150℃から150℃まで測定し、得られたデータから、25℃における貯蔵弾性率(E’)を求めた。
(表面粗さRzjis)
 封止シート表面の十点平均粗さRzjisは、JIS-B0601(2001)に準拠した方法で測定した。
(表面粗さRa)
 封止シート表面の算術平均粗さRaは、JIS-B0601(2001)に準拠した方法で測定した。
(動摩擦係数及び静止摩擦係数)
 JIS-K7125に準拠した測定装置にて、すべり片(縦63mm、横63mm、全質量200g)に試料を両面テープで固定し、相手材を白板強化ガラスとして封止シート表面の動摩擦係数及び静止摩擦係数を測定した。
[評価]
(ブロッキング性)
 長さ200mの太陽電池用封止シートを直径7.5cmのロール芯に巻いて、封止シートロールを作製した。この封止シートロールから封止シートを10m/分の速度で巻き出したときの封止シートの状態を目視観察し、下記基準に基づいて評価した。
 A:太陽電池用封止シートがスムーズに巻き出され、幅方向の収縮及び長さ方向の伸びはなかった。
 B:太陽電池用封止シートがブロッキングにより巻き出す際に抵抗があり、幅方向の収縮及び長さ方向の伸びが見られた。
 C:太陽電池用封止シートを巻き出すことが困難であった。
(プレス時のエア入り)
 インターコネクターを介して接続された複数個の太陽電池用シリコン半導体ウェハーを一列に配置し、これらの太陽電池用シリコン半導体ウェハーの上面に太陽電池用封止シートを介して透明平板ガラスを積層し、太陽電池用シリコン半導体ウェハーの下面に太陽電池用封止シートを介して太陽電池用バックシートを積層させて積層体を作製した。
 この積層体を、真空プレス機を用いて加熱プレスすることにより、積層一体化された太陽電池モジュールを製造した。この太陽電池モジュールのセル周囲やインターコネクター周囲等のエア入りを、下記基準に基づいて評価した。
 A:エア入りなし
 B:長径2mm未満の気泡が10個以下
 C:長径2mm以上の気泡が発生
実施例1
 エチレン-α-オレフィンランダム共重合体であるエチレン-オクテンランダム共重合体(ダウ・ケミカル(株)製、商品名:エンゲージ8200、MFR:5、オクテン含有量:10.1モル%)を95質量部と、エチレン-α-オレフィンブロック共重合体であるエチレン-オクテンブロック共重合体(ダウ・ケミカル(株)製、商品名:インフューズD9100、MFR:1、オクテン含有量:12.8モル%)とを5質量部の割合で混合した樹脂組成物を、Tダイを備えた40mmφ単軸押出機を用いて設定温度200℃で溶融混練し、表面粗さRzjisが40μmであるゴムロールを用いて、20℃のキャストロールとの間にキャストし急冷製膜することにより、厚みが0.5mmの、両面ともにエンボスが付与された封止シートを得た。また、得られた封止シートを用いて前述のとおり太陽電池モジュールを作製した。評価結果を表1に示す。
実施例2
 実施例1において、表面粗さRzjisが40μmであるゴムロールを表面粗さRzjisが15μmであるゴムロールに変更したこと以外は実施例1と同様にして太陽電池用封止シート及び太陽電池モジュールを作製し、評価を行った。
実施例3
 実施例1において、樹脂組成物を、LLDPE(株式会社プライムポリマー製、商品名:エボリューP SP9048、MFR:4)を90質量部とLLDPE(株式会社プライムポリマー製、商品名:ネオゼックス 0234N、MFR:2)を10質量部の割合で混合した樹脂組成物に変更したこと以外は実施例1と同様にして太陽電池用封止シート及び太陽電池モジュールを作製し、評価を行った。
実施例4
 樹脂層(S)として、エチレン-α-オレフィンランダム共重合体であるエチレン-オクテンランダム共重合体(ダウ・ケミカル(株)製、商品名:エンゲージ8200、MFR:5、オクテン含有量:10.1モル%)を、樹脂層(T)として実施例1記載の樹脂組成物を用いた。樹脂層(S)、樹脂層(T)、樹脂層(S)の順に積層されてなる積層体となるように、積層フィードブロックとTダイを備えた同方向二軸押出機を用いて設定温度200℃で溶融混練し、表面粗さRzjisが40μmであるゴムロールを用いて、20℃のキャストロールとの間にキャストし急冷製膜することにより、樹脂層(S)/樹脂層(T)/樹脂層(S)=0.05mm/0.40mm/0,05mmである、両面ともにエンボスが付与された封止シートを得た。また、得られた封止シートを用いて前述のとおり太陽電池モジュールを作製した。評価結果を表1に示す。
比較例1
 実施例1において、樹脂組成物を、エチレン-酢酸ビニル共重合体(三井デュポンポリケミカル株式会社製、商品名:エバフレックスEV150、酢酸ビニル含有量:33wt%、MFR:30)に変更したこと以外は実施例1と同様にして太陽電池用封止シート及び太陽電池モジュールを作製し、評価を行った。
比較例2
 実施例1において、樹脂組成物を、エチレン-酢酸ビニル共重合体(三井デュポンポリケミカル株式会社製、商品名:エバフレックスEV250、酢酸ビニル含有量:28wt%、MFR:15)に変更し、表面粗さRzjisが350μmであるゴムロールに変更したこと以外は実施例1と同様にして太陽電池用封止シート及び太陽電池モジュールを作製し、評価を行った。
比較例3
 実施例1において、表面粗さRzjisが40μmであるゴムロールを、表面粗さRzjisが40μmとなる三角錐形状(ピラミッド形状)を規則正しく配列したゴムロール(三角錐形状の間隔100μm、深さ40μm)に変更したこと以外は実施例1と同様にして太陽電池用封止シート及び太陽電池モジュールを作製し、評価を行った。
比較例4
 実施例1において、樹脂組成物を、エチレン-メタクリル酸共重合体(三井デュポンポリケミカル株式会社製、商品名:ハイミラン1652、MFR:5.5)に変更し、表面粗さRzjisが15μmであるゴムロールに変更したこと以外は実施例1と同様にして太陽電池用封止シート及び太陽電池モジュールを作製し、評価を行った。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、本発明の太陽電池用封止シートは、ブロッキングを防止でき、かつ、太陽電池モジュールの作製工程においてエア残りが少ない(実施例1~4)。また、本発明の要件を満足しない封止シートでは、ブロッキング現象、又は、太陽電池モジュールの作製工程におけるエア残り現象のいずれかが発生した(比較例1~4)。
 本発明の太陽電池用封止シートは、ブロッキングのようなロール巻き出し時の不具合がなく、ロール・トゥ・ロールの加工設備で効率良く製造することができる。また、本発明の太陽電池用封止シートは、太陽電池モジュールの作製工程においてシワ入りやエア残りが少なく、品質に優れた太陽電池モジュールを効率良く生産することを可能にする。

Claims (10)

  1.  ポリオレフィン系樹脂を含む樹脂組成物からなる樹脂層(S)を有する太陽電池用封止シートであって、該樹脂層(S)の25℃における貯蔵弾性率が200MPa以下であり、かつ、該樹脂層(S)の少なくとも片面が前記封止シートのシート表面であり、該シート表面が下記条件(a)、(b)及び(c)を満足することを特徴とする太陽電池用封止シート。
     (a)白板強化ガラス上での動摩擦係数が1.5以下である
     (b)表面粗さRzjisが0.1~50μmである
     (c)白板強化ガラス上での静止摩擦係数が1.5以下である
  2.  前記シート表面が更に下記条件(d)を満足することを特徴とする請求項1に記載の太陽電池用封止シート。
     (d)表面粗さRaが0.5~5μmである
  3.  前記樹脂層(S)の25℃における貯蔵弾性率が100MPa以下であることを特徴とする請求項1又は2に記載の太陽電池用封止シート。
  4.  前記表面粗さRzjisが5~40μmであることを特徴とする請求項1~3のいずれか1項に記載の太陽電池用封止シート。
  5.  前記ポリオレフィン系樹脂が、エチレン-α-オレフィン共重合体であることを特徴とする請求項1~4のいずれか1項に記載の太陽電池用封止シート。
  6.  前記樹脂層(S)の25℃における貯蔵弾性率が50MPa以下であることを特徴とする請求項1~5のいずれか1項に記載の太陽電池用封止シート。
  7.  前記樹脂層(S)と、該樹脂層(S)以外の樹脂層(T)とを有する少なくとも2層の積層体であることを特徴とする請求項1~6のいずれか1項に記載の太陽電池用封止シート。
  8.  前記積層体が、前記樹脂層(S)、前記樹脂層(T)、前記樹脂層(S)の順に積層されてなる2種3層構成であることを特徴とする請求項7に記載の太陽電池用封止シート。
  9.  請求項1~8のいずれか1項に記載の太陽電池用封止シートが巻き取られてなる太陽電池用封止シートロール。
  10.  請求項1~9のいずれか1項に記載の太陽電池用封止シートを含む太陽電池モジュール。
PCT/JP2013/052622 2012-02-06 2013-02-05 太陽電池用封止シート WO2013118729A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013557526A JP6318619B2 (ja) 2012-02-06 2013-02-05 太陽電池用封止シート
US14/376,722 US10062795B2 (en) 2012-02-06 2013-02-05 Sealing sheet for solar cell
PL13746103T PL2814067T3 (pl) 2012-02-06 2013-02-05 Warstwa uszczelniająca dla ogniwa słonecznego
EP13746103.4A EP2814067B1 (en) 2012-02-06 2013-02-05 Sealing sheet for solar cell
CN201380008105.5A CN104106147B (zh) 2012-02-06 2013-02-05 太阳能电池用密封片
KR1020147021847A KR102004567B1 (ko) 2012-02-06 2013-02-05 태양 전지용 봉지 시트
PH12014501759A PH12014501759A1 (en) 2012-02-06 2014-08-05 Sealing sheet for solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012023218 2012-02-06
JP2012-023218 2012-02-06

Publications (1)

Publication Number Publication Date
WO2013118729A1 true WO2013118729A1 (ja) 2013-08-15

Family

ID=48947491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052622 WO2013118729A1 (ja) 2012-02-06 2013-02-05 太陽電池用封止シート

Country Status (9)

Country Link
US (1) US10062795B2 (ja)
EP (1) EP2814067B1 (ja)
JP (1) JP6318619B2 (ja)
KR (1) KR102004567B1 (ja)
CN (1) CN104106147B (ja)
PH (1) PH12014501759A1 (ja)
PL (1) PL2814067T3 (ja)
TW (1) TWI583547B (ja)
WO (1) WO2013118729A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158791A1 (ja) * 2015-03-27 2016-10-06 三菱化学株式会社 有機薄膜太陽電池モジュール
JP2016189466A (ja) * 2015-03-27 2016-11-04 三菱化学株式会社 有機薄膜太陽電池モジュール
WO2018083733A1 (ja) * 2016-11-01 2018-05-11 三菱電機株式会社 太陽電池モジュールの封止材および太陽電池モジュールの製造方法
JP2018090768A (ja) * 2016-12-01 2018-06-14 デクセリアルズ株式会社 フィラー含有フィルム
JP2019099722A (ja) * 2017-12-05 2019-06-24 株式会社ブリヂストン 多元共重合体の製造方法
JP2022097477A (ja) * 2016-12-01 2022-06-30 デクセリアルズ株式会社 フィラー含有フィルム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428967B (zh) * 2015-03-26 2020-10-16 东洋纺株式会社 聚乙烯系薄膜
JP6834942B2 (ja) * 2015-03-26 2021-02-24 東洋紡株式会社 ポリエチレン系フィルム
KR102579772B1 (ko) * 2015-03-26 2023-09-15 니폰 제온 가부시키가이샤 봉지재, 봉지재의 제조 방법 및 발광 장치의 제조 방법
CN107531553A (zh) * 2015-05-12 2018-01-02 旭硝子株式会社 玻璃和玻璃构件
JP2018198236A (ja) * 2017-05-23 2018-12-13 パナソニック株式会社 太陽電池モジュール
DE202017104459U1 (de) 2017-07-26 2018-10-30 Bischof + Klein Se & Co. Kg Verpackungsbehälter und Folienherstellung
MX2020012574A (es) * 2018-06-04 2021-03-31 Sekisui Fuller Co Ltd Pelicula de resina termoplastica, bolsa fundible, y adhesivo de fusion por calor envasado.
WO2021117624A1 (ja) * 2019-12-10 2021-06-17 住友ベークライト株式会社 カバーテープおよび電子部品包装体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922978A (ja) 1982-07-30 1984-02-06 Du Pont Mitsui Polychem Co Ltd 充填接着材シ−トおよびその製造法
WO2005090426A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
WO2005090427A2 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
WO2005090425A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene copolymer formation
JP2010192804A (ja) * 2009-02-20 2010-09-02 Bridgestone Corp 太陽電池用封止膜、及びこれを用いた太陽電池
JP2010232311A (ja) 2009-03-26 2010-10-14 Sekisui Chem Co Ltd 太陽電池用封止シート
JP2011035290A (ja) * 2009-08-05 2011-02-17 Dainippon Printing Co Ltd 太陽電池モジュール用裏面一体化シートの製造方法
WO2012014965A1 (ja) * 2010-07-28 2012-02-02 三菱樹脂株式会社 太陽電池封止材及びそれを用いて作製された太陽電池モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2426730A (en) 1945-02-26 1947-09-02 Vita Alberto De Process for the artificial creation of accumulations of subterranean courses of water
US5246782A (en) * 1990-12-10 1993-09-21 The Dow Chemical Company Laminates of polymers having perfluorocyclobutane rings and polymers containing perfluorocyclobutane rings
JP3575720B2 (ja) * 1996-05-15 2004-10-13 出光石油化学株式会社 ラミネート用多層シーラントフィルム及びそれを用いたラミネートフィルム
US8124869B2 (en) * 2003-01-15 2012-02-28 Nippon Shokubai Co., Ltd. Dye-sensitized type solar cell
US7902452B2 (en) * 2004-06-17 2011-03-08 E. I. Du Pont De Nemours And Company Multilayer ionomer films for use as encapsulant layers for photovoltaic cell modules
US20070267059A1 (en) * 2004-12-28 2007-11-22 Dupont-Mitsui Polychemicals Co., Ltd. Encapsulating Material for Solar Cell
WO2007088892A1 (ja) 2006-02-02 2007-08-09 Mitsui Chemicals, Inc. 太陽電池モジュール用裏面保護基板、並びに、太陽電池モジュール及び発電装置
CN101978511A (zh) * 2008-03-21 2011-02-16 株式会社普利司通 一对密封膜、和使用其的太阳能电池
US8865835B2 (en) * 2009-07-17 2014-10-21 Mitsubishi Plastics, Inc. Solar cell sealing material and solar cell module produced using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922978A (ja) 1982-07-30 1984-02-06 Du Pont Mitsui Polychem Co Ltd 充填接着材シ−トおよびその製造法
WO2005090426A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
WO2005090427A2 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
WO2005090425A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene copolymer formation
JP2010192804A (ja) * 2009-02-20 2010-09-02 Bridgestone Corp 太陽電池用封止膜、及びこれを用いた太陽電池
JP2010232311A (ja) 2009-03-26 2010-10-14 Sekisui Chem Co Ltd 太陽電池用封止シート
JP2011035290A (ja) * 2009-08-05 2011-02-17 Dainippon Printing Co Ltd 太陽電池モジュール用裏面一体化シートの製造方法
WO2012014965A1 (ja) * 2010-07-28 2012-02-02 三菱樹脂株式会社 太陽電池封止材及びそれを用いて作製された太陽電池モジュール

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189466A (ja) * 2015-03-27 2016-11-04 三菱化学株式会社 有機薄膜太陽電池モジュール
US20180019423A1 (en) * 2015-03-27 2018-01-18 Mitsubishi Chemical Corporation Organic thin film solar cell module
WO2016158791A1 (ja) * 2015-03-27 2016-10-06 三菱化学株式会社 有機薄膜太陽電池モジュール
JPWO2018083733A1 (ja) * 2016-11-01 2019-01-17 三菱電機株式会社 太陽電池モジュールの封止材および太陽電池モジュールの製造方法
WO2018083733A1 (ja) * 2016-11-01 2018-05-11 三菱電機株式会社 太陽電池モジュールの封止材および太陽電池モジュールの製造方法
JP7047282B2 (ja) 2016-12-01 2022-04-05 デクセリアルズ株式会社 フィラー含有フィルム
US11135807B2 (en) 2016-12-01 2021-10-05 Dexerials Corporation Filler-containing film
JP2018090768A (ja) * 2016-12-01 2018-06-14 デクセリアルズ株式会社 フィラー含有フィルム
JP2022097477A (ja) * 2016-12-01 2022-06-30 デクセリアルズ株式会社 フィラー含有フィルム
JP7332956B2 (ja) 2016-12-01 2023-08-24 デクセリアルズ株式会社 フィラー含有フィルム
US11772358B2 (en) 2016-12-01 2023-10-03 Dexerials Corporation Filler-containing film
JP2019099722A (ja) * 2017-12-05 2019-06-24 株式会社ブリヂストン 多元共重合体の製造方法
US11286319B2 (en) 2017-12-05 2022-03-29 Bridgestone Corporation Method of producing multicomponent copolymer

Also Published As

Publication number Publication date
PL2814067T3 (pl) 2018-07-31
TW201336680A (zh) 2013-09-16
EP2814067A4 (en) 2015-07-08
EP2814067B1 (en) 2018-04-18
TWI583547B (zh) 2017-05-21
US20140360573A1 (en) 2014-12-11
EP2814067A1 (en) 2014-12-17
KR102004567B1 (ko) 2019-07-26
JPWO2013118729A1 (ja) 2015-05-11
CN104106147B (zh) 2016-09-21
JP6318619B2 (ja) 2018-05-09
CN104106147A (zh) 2014-10-15
KR20140128317A (ko) 2014-11-05
PH12014501759A1 (en) 2014-11-10
US10062795B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
JP6318619B2 (ja) 太陽電池用封止シート
JP5625060B2 (ja) 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
JP4634535B1 (ja) 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
WO2013105616A1 (ja) 外観が良好な太陽電池モジュール及びその製造方法
JP5396556B1 (ja) 太陽電池モジュール及びその製造方法
JP2013165263A (ja) 外観が良好な太陽電池モジュール及びその製造方法
JP5764481B2 (ja) 太陽電池用多層体
JP2014204090A (ja) 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
JP6364811B2 (ja) 太陽電池モジュール
JP6747474B2 (ja) 太陽電池モジュール
JP6314535B2 (ja) 太陽電池モジュール
JP2013187472A (ja) 太陽電池用カバーシート及び太陽電池モジュール
JP6427871B2 (ja) 太陽電池モジュール
WO2012050093A1 (ja) 透明性及び防湿性に優れた樹脂組成物、並びに、それを成形してなるシート
JP2015093974A (ja) 封止材及びそれを用いて作製された太陽電池モジュール
JP6496999B2 (ja) 太陽電池ダミーモジュールの製造方法
JP2016051772A (ja) 太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557526

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147021847

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14376722

Country of ref document: US

Ref document number: 12014501759

Country of ref document: PH

Ref document number: 2013746103

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE