WO2013118704A1 - 結晶性熱可塑ポリイミド樹脂 - Google Patents

結晶性熱可塑ポリイミド樹脂 Download PDF

Info

Publication number
WO2013118704A1
WO2013118704A1 PCT/JP2013/052572 JP2013052572W WO2013118704A1 WO 2013118704 A1 WO2013118704 A1 WO 2013118704A1 JP 2013052572 W JP2013052572 W JP 2013052572W WO 2013118704 A1 WO2013118704 A1 WO 2013118704A1
Authority
WO
WIPO (PCT)
Prior art keywords
independently
polyimide resin
group
thermoplastic polyimide
formula
Prior art date
Application number
PCT/JP2013/052572
Other languages
English (en)
French (fr)
Inventor
勇希 佐藤
三田寺 淳
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to ES13746160.4T priority Critical patent/ES2549149T3/es
Priority to EP13746160.4A priority patent/EP2738199B1/en
Priority to CN201380002610.9A priority patent/CN103732655B/zh
Priority to JP2013527802A priority patent/JP5365762B1/ja
Priority to US14/233,920 priority patent/US8927678B2/en
Priority to KR1020147003738A priority patent/KR101454661B1/ko
Publication of WO2013118704A1 publication Critical patent/WO2013118704A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Definitions

  • the present invention relates to a novel crystalline thermoplastic polyimide resin.
  • Polyimide resin is a useful engineering plastic that has high thermal stability, high strength, and high solvent resistance due to molecular chain rigidity, resonance stabilization, and strong chemical bonding, and is applied in a wide range of fields. Moreover, since the crystalline polyimide can further improve its heat resistance, strength, and chemical resistance, it is expected to be used as a metal substitute.
  • polyimide is excellent in thermal stability.
  • the physical properties have a strong correlation with the glass transition temperature.
  • the mechanical strength should not deteriorate at the holding temperature. Therefore, super engineering plastics containing polyimide are often used especially when high temperatures exceeding 200 ° C. are applied.
  • Resins having a low glass point transition temperature such as nylon are inferior to super engineering plastics in long-term heat resistance (see Non-Patent Document 1).
  • the glass transition temperature is a temperature range where a significant decrease in mechanical strength occurs regardless of whether the resin is an amorphous resin or a crystalline resin.
  • the high heat resistant resin Vespel (registered trademark) does not show a melting point before the decomposition temperature, it must be molded at a high temperature, high pressure, long time, etc., and it must be expensive due to the difficulty of the molding process (see Patent Document 1). ).
  • the polyimide In order to improve the moldability, it is necessary for the polyimide to have thermoplasticity (melting point in the case of a crystalline resin) at a temperature lower than the decomposition temperature.
  • Thermoplastic polyimide can be injection-molded and extruded, has high handleability, and is also recyclable, so it can be a very useful material for production on an industrial scale.
  • the melting point of polyimide is generally not observed before the decomposition temperature, and crystalline thermoplastic polyimide that can be injection-molded or extruded is a rare resin in the market.
  • a polyimide having a very close melting point and glass transition temperature that breaks this relationship (here, a polyimide having a melting point of 360 ° C. or lower and a glass transition temperature of 200 ° C. or higher at the same time is called a polyimide having a low melting point and a high glass transition temperature) )
  • a polyimide having a low melting point and a high glass transition temperature has been reported for wholly aromatic polyimides.
  • Vladimir et al. Have reported that a polyimide having a specific structure has both physical properties of a melting point of 320 ° C. and a glass transition temperature of 204 ° C. (see Non-Patent Document 3).
  • this polyimide does not show reproducible crystallinity unless it is under a special condition of blending carbon nanotubes, and it is difficult to be honestly called a crystalline resin.
  • the copolymer polyimide which has two repeating unit structures of following formula (a) from Mitsui Chemicals changes a value with a composition, melting
  • a crystalline polyimide is obtained from a highly versatile monomer, that is, an easily synthesized and available monomer, is a semi-aromatic polyimide using an aliphatic diamine
  • a semi-aromatic polyimide is (Defined as polyimides obtained from aromatic tetracarboxylic acids and aliphatic diamines).
  • the linear aliphatic diamine moiety becomes a soft segment and the aromatic tetracarboxylic acid moiety becomes a hard segment, resulting in high crystallinity.
  • the glass transition temperature is greatly lowered with the lowering of the melting point, and the characteristic of the high glass transition temperature peculiar to the polyimide is lost. This is due to the result according to the fact that even when considered from the chemical structure, when a flexible structure is introduced, the movement of the molecular chain becomes more free and the molecular movement due to heat becomes active. Therefore, semi-aromatic polyimides having practical thermophysical properties using aliphatic diamines are difficult to characterize compared to other resin groups such as nylon and esters, and are not competitive in the market.
  • JP 2005-28524 A JP-A-62-236858 Japanese Unexamined Patent Publication No. 6-157751 No. 2530919
  • Plastics, 52, p95, 2001 AURUM Technical Document / G-06 Jour. Polym. Sci: Part A: Polym. Chem, 701, 34, 1996. Macromol. Rapid. Commun. , 885, 26, 2005
  • An object of the present invention is to provide a crystalline thermoplastic copolymer polyimide resin that solves the above-described problems in the prior art.
  • thermoplastic polyimide resin obtained by combining specific different polyimide structural units in a specific ratio has a low melting point of 360 ° C. or lower, and 200 It has been found that it has a unique performance having a high glass transition temperature of °C or higher and has reached the present invention.
  • this invention is a thermoplastic polyimide resin containing the repeating structural unit shown by following formula (1), and the repeating structural unit shown by following formula (2), The repeating structural unit of Formula (1) and Formula (2)
  • the thermoplastic polyimide resin in which the content ratio of the repeating structural unit of the formula (1) with respect to the total of repeating structural units of (1) is 40 to 70 mol%
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 12 carbon atoms.
  • X 1 And X 2 each independently represents a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • thermoplastic polyimide having a high glass transition temperature of 200 ° C. or higher while having a low melting point of 360 ° C. or lower.
  • the thermoplastic polyimide resin of the present invention includes a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), and the repeating structural unit of the formula (1) and the repeating structure of the formula (2).
  • the content ratio of the repeating structural unit of the formula (1) with respect to the total of the units is 40 to 70 mol%.
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 12 carbon atoms.
  • X 1 And X 2 each independently represents a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • R 1 is a divalent group having 6 to 22 carbon atoms and containing at least one alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated. It may be a ring or a polycycle.
  • Examples of the alicyclic hydrocarbon structure include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean.
  • a cycloalkane ring is preferable, a cycloalkane ring having 4 to 7 carbon atoms is more preferable, and a cyclohexane ring is more preferable.
  • R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
  • R 1 contains at least one alicyclic hydrocarbon structure, preferably 1 to 3.
  • R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
  • M 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1.
  • m 13 to m 15 are each independently an integer of 0 to 2, preferably 0. Or 1.
  • R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
  • R1-3 the positional relationship between the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans is Any value is acceptable.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a tetracene ring. Among these, a benzene ring and a naphthalene ring are preferable, and a benzene ring is more preferable.
  • X 1 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • X 1 contains at least one aromatic ring, preferably 1 to 3 aromatic rings.
  • X 1 is preferably a tetravalent group represented by any of the following formulas (X-1) to (X-4).
  • R 11 to R 18 are each independently an alkyl group having 1 to 4 carbon atoms.
  • P 11 to p 13 are each independently an integer of 0 to 2, preferably 0.
  • p 14 , P 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0.
  • p 17 is an integer of 0 to 4, preferably 0.
  • L 11 to L 13 independently represents a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring
  • R 12 , R 13 , p 12 and p 13 in the formula (X-2) are represented by the formula (X—
  • the tetravalent group represented by 2) is selected so that the number of carbon atoms falls within the range of 6-22.
  • L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are such that the carbon number of the tetravalent group represented by formula (X-3) is in the range of 6-22.
  • L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are tetravalents represented by formula (X-4) Is selected so that the number of carbons in the group falls within the range of 6-22.
  • X 1 is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
  • R 2 is a divalent chain aliphatic group having 5 to 12 carbon atoms.
  • the chain aliphatic group means a group derived from a chain aliphatic compound, and the chain aliphatic compound may be saturated or unsaturated, Or may be branched, and may contain a heteroatom such as an oxygen atom.
  • R 2 is preferably an alkylene group having 5 to 12 carbon atoms, and more preferably an alkylene group having 6 to 10 carbon atoms.
  • the alkylene group may be a linear alkylene group or a branched alkylene group, but is preferably a linear alkylene group.
  • R 2 is particularly preferably a hexamethylene group.
  • R 2 is a C 5-12 divalent chain aliphatic group containing an ether group.
  • a divalent group represented by the following formula (R2-1) or (R2-2) is preferable.
  • M 21 and m 22 are each independently an integer of 1 to 11, preferably 2 to 6.
  • m 23 to m 25 are each independently an integer of 1 to 10, preferably 2 ⁇ 4)
  • R 2 is a divalent chain aliphatic group having 5 to 12 carbon atoms
  • m 21 and m 22 in formula (R2-1) are divalent groups represented by formula (R2-1).
  • the group carbon number is selected to be in the range of 5-12. That is, m 21 + m 22 is 5 to 12.
  • m 23 to m 25 in formula (R2-2) are selected so that the carbon number of the divalent group represented by formula (R2-2) falls within the range of 5 to 12. That is, m 23 + m 24 + m 25 is 5-12.
  • X 2 is defined in the same manner as X 1 in formula (1), and the preferred embodiment is also the same.
  • the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is 40 to 70 mol%.
  • the semi-crystallization time of the thermoplastic polyimide resin is 60 seconds or less and the crystallization speed is fast, and in a general injection molding cycle (60 seconds or less)
  • the thermoplastic polyimide resin in the present invention can be sufficiently crystallized.
  • the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is preferably 40 to 60 mol%.
  • the total content ratio of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) with respect to all the repeating units constituting the thermoplastic polyimide resin of the present invention is preferably 50 to 100 mol%, more preferably 75 to 100 mol%.
  • the thermoplastic polyimide resin of the present invention may further contain a repeating structural unit of the following formula (3), and in that case, the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2).
  • the content ratio of the repeating structural unit of the formula (3) is 25 mol% or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol%. From the viewpoint of improving heat resistance, the content ratio is preferably 5 mol% or more, more preferably 10 mol% or more, while from the viewpoint of maintaining crystallinity, it is preferably 20 mol% or less. Preferably it is 15 mol% or less.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • X 3 is a C 6-22 tetravalent group containing at least one aromatic ring.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a tetracene ring. Among these, a benzene ring and a naphthalene ring are preferable, and a benzene ring is more preferable.
  • R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • R 3 contains at least one aromatic ring, preferably 1 to 3 aromatic rings.
  • R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
  • M 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1.
  • m 33 and m 34 are each independently an integer of 0 to 2, preferably 0.
  • R 21 , R 22 , and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms.
  • p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0.
  • L 21 is a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Note that since R 3 is a C 6-22 divalent group containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in the formula (R3-1) are represented by the formula (R3- The divalent group represented by 1) is selected so that the number of carbon atoms is in the range of 6-22. Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) are the same as those in which the carbon number of the divalent group represented by formula (R3-2) is It is selected to fall within the range of 6-22.
  • X 3 is defined in the same manner as X 1 in formula (1), and the preferred embodiment is also the same.
  • the content ratio of the repeating structural unit of the formula (3) with respect to all repeating structural units constituting the thermoplastic polyimide resin of the present invention is preferably 25 mol% or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol%.
  • the content ratio is preferably 5 mol% or more, more preferably 10 mol% or more, while from the viewpoint of maintaining crystallinity, it is preferably 20 mol% or less. Preferably it is 15 mol% or less.
  • the thermoplastic polyimide resin of the present invention preferably has a melting point of 360 ° C. or lower and a glass transition temperature of 200 ° C. or higher.
  • the thermoplastic polyimide resin of the present invention has a crystallization exothermic peak calorific value of 5 mJ / mg or more observed when the temperature is lowered at a cooling rate of 10 ° C./min or higher after melting with a differential scanning calorimeter. Is preferred.
  • thermoplastic polyimide resin of the present invention can be produced by reacting a tetracarboxylic acid component with a diamine component, and the tetracarboxylic acid component contains a tetracarboxylic acid containing at least one aromatic ring and / or a derivative thereof.
  • the diamine component contains a diamine containing at least one alicyclic hydrocarbon structure and a chain aliphatic diamine.
  • the tetracarboxylic acid containing at least one aromatic ring is preferably a compound in which four carboxyl groups are directly bonded to the aromatic ring, and may contain an alkyl group in the structure.
  • the tetracarboxylic acid preferably has 6 to 26 carbon atoms.
  • Examples of the tetracarboxylic acid include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, and 3,3 ′, 4,4′-biphenyl. Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and the like are recommended. Among these, pyromellitic acid is particularly preferable.
  • Examples of the derivative of tetracarboxylic acid containing at least one aromatic ring include an anhydride or an alkyl ester of tetracarboxylic acid containing at least one aromatic ring.
  • the tetracarboxylic acid derivative preferably has 6 to 38 carbon atoms.
  • tetracarboxylic acid anhydrides include pyromellitic monoanhydride, pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenyl Sulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,4,5, And 8-naphthalenetetracarboxylic dianhydride.
  • alkyl esters of tetracarboxylic acid examples include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylic acid, 3,3 ′, 4 Dimethyl 4,4'-diphenylsulfonetetracarboxylate, dimethyl 3,3 ', 4,4'-benzophenone tetracarboxylate, dimethyl 3,3', 4,4'-biphenyltetracarboxylate, 1,4,5,8 -Dimethyl naphthalene tetracarboxylate and the like.
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • At least one compound selected from the above may be used alone, or two or more compounds may be used in combination.
  • the diamine containing at least one alicyclic hydrocarbon structure preferably has 6 to 22 carbon atoms, such as 1,2-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,4- Bis (aminomethyl) cyclohexane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-diaminodicyclohexylmethane, 4,4'-methylenebis (2-methylcyclohexylamine) , Carboxylic diamine, limonene diamine, isophorone diamine, norbornane diamine, bis (aminomethyl) tricyclo [5.2.1.02,6] decane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4 , 4'-diaminodicyclohexylpropane, etc
  • a diamine containing an alicyclic hydrocarbon structure generally has a structural isomer, but the cis / trans ratio is not limited.
  • the chain aliphatic diamine may be linear or branched, and preferably has 5 to 12 carbon atoms. Further, when the chain portion has 5 to 12 carbon atoms, an ether bond may be included therebetween.
  • chain aliphatic diamines include 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10 -Decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 2,2 '-(ethylenedioxy) bis (ethyleneamine), etc. are recommended.
  • chain aliphatic diamines having 6 to 10 carbon atoms can be preferably used, and 1,6-hexamethylenediamine can be particularly preferably used.
  • the amount of diamine containing at least one alicyclic hydrocarbon structure relative to the total amount of diamine containing at least one alicyclic hydrocarbon structure and chain aliphatic diamine is preferably 40 to 70 mol%.
  • the diamine component may contain a diamine containing at least one aromatic ring.
  • the number of carbon atoms of the diamine containing at least one aromatic ring is preferably 6 to 22, for example, orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-diethynylbenzenediamine, 1,3-diethynyl.
  • the molar ratio of the charged amount of the diamine containing at least one aromatic ring to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is 25 mol% or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol%.
  • the molar ratio is preferably 5 mol% or more, more preferably 10 mol% or more from the viewpoint of improving heat resistance, and preferably 20 mol% or less from the viewpoint of maintaining crystallinity. Preferably it is 15 mol% or less.
  • the charge ratio of the tetracarboxylic acid component and the diamine component is such that the diamine component is 0.9 to 1.1 mol per 1 mol of the tetracarboxylic acid component. Is preferred.
  • a terminal blocking agent may be mixed in addition to the tetracarboxylic acid component and the diamine component.
  • Monoamines or dicarboxylic acids are preferred as the end-capping agent.
  • the amount of terminal blocking agent introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, per mol of aromatic tetracarboxylic acid and / or derivative thereof. .
  • Examples of monoamine end-capping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like are recommended. Of these, benzylamine and aniline can be preferably used.
  • dicarboxylic acid end-capping agent dicarboxylic acids are preferable, and there is no problem even if a part of them is closed.
  • phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane-1,2 -Dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid and the like are recommended.
  • phthalic acid and phthalic anhydride can be suitably used.
  • a known polymerization method for producing a known polyimide can be applied, and is not particularly limited, but is not limited to solution polymerization, melt polymerization, solid phase polymerization, suspension weight. Lawful. Among these, suspension polymerization under high temperature conditions using an organic solvent can be preferably used. When suspension polymerization is performed under high temperature conditions, the polymerization is preferably performed at 150 ° C. or higher, and particularly preferably performed at 180 ° C. to 250 ° C. The polymerization time is appropriately changed depending on the monomer used, but it is preferably about 2 to 6 hours.
  • solvents used are water, benzene, toluene, xylene, acetone, hexane, heptane, chlorobenzene, methanol, ethanol, n-propanol, isopropanol, methyl glycol, methyl triglycol, hexyl glycol, phenyl glycol, ethylene glycol, ethylene Glycol monomethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monoisobutyl ether, 2- (2-methoxyethoxy) ethanol, methylpropylene glycol, methylpropylene diglycol, propylpropylene glycol, phenylpropylene glycol, 2- (2-methoxyethoxy) ) Ethanol, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetate Amide, N, N-dimethylformamide, N, N-diethyl,
  • thermoforming essentially melts at a temperature of 360 ° C. or lower
  • various types of thermoforming are possible.
  • the thermoforming method include injection molding, extrusion molding, blow molding, hot press molding, vacuum molding, pressure forming, laser molding, welding, welding, etc. Molding is possible.
  • the shape of the molded body include injection molded bodies, extruded molded bodies, films, sheets, strands, pellets, fibers, round bars, square bars, pipes, tubes, and the like.
  • thermoplastic polyimide resin of the present invention can be used as a heat-resistant adhesive by heating and pressing, it can be used for flexible substrates, copper-clad laminates, and the like.
  • thermoplastic polyimide resin of the present invention may be used by mixing other resins depending on the purpose.
  • the resin include polyether ether ketone, polyether imide, polysulfone, polyphenylene sulfide, polyamide, polyamide imide, polyphenylene ether, polyarylate, polyester, polycarbonate, liquid crystal polymer, polyimide other than the present invention, and the like.
  • Logarithmic viscosity ⁇ was obtained by drying the obtained polyimide at 190-200 ° C. for 2 hours, then dissolving 0.100 g of polyimide in 20 mL of concentrated sulfuric acid (96%, Kanto Chemical), and using a Canon Fenceke viscometer 30 Measurements were taken at ° C.
  • the melting point, glass transition temperature, and crystallization temperature of the thermoplastic polyimide resin were measured using a differential scanning calorimeter (DSC-6220) manufactured by SII Nanotechnology. Under a nitrogen atmosphere, a thermal history under the following conditions was imposed on the thermoplastic polyimide resin. The conditions for the thermal history are the first temperature increase (temperature increase rate 10 ° C./min), then cooling (cooling rate 20 ° C./min), and then the second temperature increase (temperature increase rate 10 ° C./min).
  • the melting point of the present invention is determined by reading the peak top value of the endothermic peak observed at the first temperature increase or the second temperature increase.
  • the glass transition temperature is determined by reading the value observed at the first temperature increase or the second temperature increase.
  • the crystallization temperature is determined by reading the peak top value of the exothermic peak observed at the first drop in temperature or the second rise in temperature.
  • the melting point for the first temperature rise is Tm 0
  • the melting point for the second temperature rise is Tm
  • the glass transition temperature for the first temperature rise is Tg 0
  • the glass transition temperature for the second temperature rise is Tg
  • the first crystallization temperature is Tc 0
  • the first crystallization temperature is Tc (however, the crystallization rate is slow, the crystallization temperature is not observed at the first temperature decrease and the crystallization temperature is observed at the second temperature increase)
  • the second crystallization temperature is described as Tc).
  • Semi-crystallization time was evaluated with a differential scanning calorimeter (DSC-6220) manufactured by SII Nanotechnology.
  • the measurement conditions for a semi-crystallization time of 20 seconds or less were held at 420 ° C. for 10 minutes in a nitrogen atmosphere (for those having a melting point exceeding 400 ° C., held for 10 minutes at 460 ° C.), and after completely melting the resin,
  • a rapid cooling operation is performed at a cooling rate of 70 ° C./min
  • the time taken from the appearance of the observed crystallization peak to the peak top is calculated and determined.
  • For those over 20 seconds hold for 10 minutes at 420 ° C. and completely melt the resin, then hold it at a temperature above the glass transition temperature and below the melting point, from the appearance of the observed crystallization peak to the peak top. The time taken is calculated and determined.
  • the 1% decomposition temperature is based on the initial weight when measured at 10 ° C / min in an air atmosphere using a differential thermal and thermogravimetric simultaneous measurement device (TG / DTA-6200) manufactured by SII Nanotechnology. Temperature at which 1% weight loss occurred.
  • the IR measurement was made using JEOL JIR-WINSPEC50.
  • the polyimide resin of this invention can confirm the monomer composition ratio by performing the depolymerization shown below, for example. After weighing 5 mL from 1 M sodium hydroxide solution obtained by mixing 4.0 g of sodium hydroxide, 50 mL of water and 50 mL of methanol, and adding 100 mg of the resulting polyimide solid, 240 ° C. in a pressure vessel, Depolymerization is performed by heating for 1 hour. The resulting solution was extracted with chloroform and water to separate the depolymerized monomer solution.
  • the monomer ratio was separated by gas chromatography (HP6890) manufactured by HEWLETT PACKARD and column (HP-5) manufactured by Agilent Technologies (temperature rising conditions were maintained at 50 ° C for 10 min, then increased to 300 ° C at 10 ° C / min. ), The monomer composition ratio is determined by calculating the area ratio of each monomer.
  • the tetracarboxylic acid component is observed as a methyl ester form.
  • Example 1 In a 3 L autoclave, 1200 g of 2- (2-methoxyethoxy) ethanol (manufactured by Kishida Chemical), 300 g of ion-exchanged water, 83.96 g (0.5902 mol) of 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical), 1,6-hexamethylenediamine (Wako Pure Chemical Industries) 54.86 g (0.4722 mol), 4,4′-diaminodiphenyl ether (Wakayama Seika Kogyo Co., Ltd.) 23.64 g (0.1180 mol), benzylamine (Kanto Chemical) Manufactured) 2.53 g (0.02361 mol) and pyromellitic acid (Mitsubishi Gas Chemical Co., Ltd.) 300.0 g (1.180 mol) were introduced, stirred uniformly, sealed, and then purged with nitrogen.
  • Example 2 In a 20 mL autoclave, 8 g of 2- (2-methoxyethoxy) ethanol (manufactured by Kishida Chemical), 2 g of ion-exchanged water, 0.5037 g (0.003541 mol) of 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical), 1,6-hexamethylenediamine (manufactured by Wako Pure Chemical Industries) 0.2743 g (0.002361 mol), pyromellitic acid (manufactured by Mitsubishi Gas Chemical) 1.50 g (0.005902 mol), benzylamine (manufactured by Kanto Chemical) 0.01264 g (0.0001180 mol) was introduced, stirred uniformly and sealed, and then purged with nitrogen.
  • 2- (2-methoxyethoxy) ethanol manufactured by Kishida Chemical
  • 2 g of ion-exchanged water 0.5037 g (0.003541 mol)
  • Example 3 In a 20 mL autoclave, 8 g of 2- (2-methoxyethoxy) ethanol (manufactured by Kishida Chemical Co., Ltd.), 2 g of ion-exchanged water, 0.588 g (0.004131 mol) of 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical), 1,6-hexamethylenediamine (manufactured by Wako Pure Chemical Industries) 0.206 g (0.00177 mol), pyromellitic acid (manufactured by Mitsubishi Gas Chemical) 1.50 g (0.00590 mol), benzylamine (manufactured by Kanto Chemical) 0.0126 g (0.0001180 mol) was introduced, stirred uniformly and sealed, and then purged with nitrogen.
  • 2- (2-methoxyethoxy) ethanol manufactured by Kishida Chemical Co., Ltd.
  • 2 g of ion-exchanged water 0.588
  • Tg was observed at 209 ° C. and Tm was observed at 337 ° C.
  • Tm was observed at 337 ° C.
  • the half crystallization time was measured, it was determined to be 100 seconds or more and 120 seconds or less. Since the resin was not completely dissolved in concentrated sulfuric acid, the logarithmic viscosity could not be measured. Further, when the IR spectrum was measured, characteristic absorption of the imide ring was observed at ⁇ (C ⁇ O) 1771 and 1699 (cm ⁇ 1 ).
  • Example 4 In a 20 mL autoclave, 8 g of 2- (2-methoxyethoxy) ethanol (manufactured by Kishida Chemical), 2 g of ion-exchanged water, 0.336 g (0.002361 mol) of 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical), 1,6-hexamethylenediamine (Wako Pure Chemical Industries) 0.411 g (0.003541 mol), pyromellitic acid (Mitsubishi Gas Chemical Co.) 1.50 g (0.005902 mol), benzylamine (Kanto Chemical Co., Ltd.) 0.0126 g (0.0001180 mol) was introduced, stirred uniformly and sealed, and then purged with nitrogen.
  • 2- (2-methoxyethoxy) ethanol manufactured by Kishida Chemical
  • 2 g of ion-exchanged water 0.336 g (0.002361 mol) of 1,3-bis (a
  • Example 5 In a 3 L autoclave, 1200 g of 2- (2-methoxyethoxy) ethanol (manufactured by Kishida Chemical), 300 g of ion-exchanged water, 22.39 g (0.1574 mol) of 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical), 1,6-hexamethylenediamine (manufactured by Wako Pure Chemical Industries) 22.87 g (0.1968 mol), Jeffamine EDR-148 (manufactured by Huntsman) 5.83 g (0.03935 mol), pyromellitic acid (manufactured by Mitsubishi Gas Chemical) 100 0.0 g (0.3935 mol) was introduced, stirred uniformly and sealed, and then purged with nitrogen.
  • Example 6 In a 20 mL autoclave, 8 g of 2- (2-methoxyethoxy) ethanol (manufactured by Kishida Chemical), 2 g of ion-exchanged water, 0.5037 g (0.003541 mol) of 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical), 1,12-dodecanediamine (manufactured by Ogura Synthesis) 0.4730 g (0.002361 mol), 1,4,5,8-naphthalenetetracarboxylic acid (manufactured by Kanto Chemical) 1.795 g (0.005902 mol), benzylamine (Kanto) (Chemical) 0.01264 g (0.0001180 mol) was introduced, stirred uniformly and sealed, and then purged with nitrogen.
  • 2- (2-methoxyethoxy) ethanol manufactured by Kishida Chemical
  • 2 g ion-exchanged water
  • Tg was only observed at 238 ° C., Tm and Tc were not observed, and no crystallinity was shown. Moreover, since the resin was not completely dissolved in concentrated sulfuric acid, the logarithmic viscosity could not be measured. Further, when the IR spectrum was measured, characteristic absorption of the imide ring was observed at ⁇ (C ⁇ O) 1771 and 1699 (cm ⁇ 1 ).
  • the logarithmic viscosity was measured and found to be 0.66 dL / g. Further, when the IR spectrum was measured, characteristic absorption of the imide ring was observed at ⁇ (C ⁇ O) 1771 and 1699 (cm ⁇ 1 ).
  • Tg was observed to be 210 ° C. (unclear), and Tm was observed to be 416 ° C.
  • the half crystallization time was measured and determined to be 20 seconds or less.
  • the logarithmic viscosity was measured and found to be 0.96 dL / g. Further, when the IR spectrum was measured, characteristic absorption of the imide ring was observed at ⁇ (C ⁇ O) 1771 and 1697 (cm ⁇ 1 ).
  • Tg was observed at 100 ° C. (unclear), and Tm was observed at 281 ° C.
  • the half crystallization time was measured and determined to be 20 seconds or less.
  • the logarithmic viscosity was measured and found to be 0.15 dL / g. Further, when the IR spectrum was measured, characteristic absorption of the imide ring was observed at ⁇ (C ⁇ O) 1771 and 1698 (cm ⁇ 1 ).
  • Tg was observed to be 135 ° C. (unclear) and Tm was observed to be 290 ° C.
  • the logarithmic viscosity was measured and found to be 0.39 dL / g. Further, when the IR spectrum was measured, characteristic absorption of the imide ring was observed at ⁇ (C ⁇ O) 1703 and 1655 (cm ⁇ 1 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含む熱可塑性ポリイミド樹脂であり、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(1)の繰り返し構成単位の含有比が40~70モル%である熱可塑性ポリイミド樹脂。 (R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R2は炭素数5~12の2価の鎖状脂肪族基である。X1及びX2は、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)

Description

結晶性熱可塑ポリイミド樹脂
 本発明は新規の結晶性熱可塑ポリイミド樹脂に関する。
 ポリイミド樹脂は分子鎖の剛直性、共鳴安定化、強い化学結合によって、高熱安定性、高強度、高耐溶媒性を有する有用なエンジニアリングプラスチックであり、幅広い分野で応用されている。また結晶性を有しているポリイミドはその耐熱性、強度、耐薬品性をさらに向上させることができることから、金属代替等としての利用が期待されている。
 ポリイミドが熱安定性に優れている理由としては、その高いガラス転移温度と高い融点が大きな要因となっている。長期耐熱性を考えると、その物性はガラス転移温度と強い相関を持つ。自動車エンジン周り、高温反応器のパッキンといった高温が長期的にかかる材料では、その保持温度で機械強度の劣化が起こってはならない。そのため、特に200℃を超えるような高温がかかる場合にはポリイミドを含むスーパーエンプラを使用することが多い。ナイロン等の低いガラス点移温度を持つ樹脂は長期耐熱性においてスーパーエンプラに劣る(非特許文献1参照)。また、ガラス転移温度は非晶性樹脂、結晶性樹脂どちらであっても、機械強度の大幅な低下が発生する温度域であり、この温度を超えると、フィラー等で強化された結晶性樹脂であっても、機械強度の低下を避けることはできない。例として結晶化度30%程度の高結晶性樹脂であるポリエーテルエーテルケトンを見てみても、フィラー等で強化された樹脂の荷重たわみ温度はおおよそ融点直下の値であるにもかかわらず、ガラス転移温度の153℃近傍からの機械強度の低下は非常に大きなものとなっている。
 ポリイミドは高いガラス転移温度を持つものの、通常は分解温度より低い温度には融点を示さない。高耐熱樹脂ベスペル(登録商標)は分解温度以前に融点を示さないため、高温、高圧、長時間等で成形を行い、その成形工程の困難さから高価に成らざるを得ない(特許文献1参照)。
 成形性を向上させるためには、ポリイミドに分解温度より低い温度での熱可塑性(結晶性樹脂である場合は融点)を持たせることが必要となる。熱可塑性ポリイミドは射出成型、押出し成形が可能となり、ハンドリング性が高く、またリサイクル性も有るために、工業規模での生産では非常に有用な材料と成り得る。しかしながら、先述したように、ポリイミドの融点は分解温度以前に観測されないのが一般的で、射出成形や押出し成形も可能となる結晶性熱可塑ポリイミドは市場においては希少な樹脂であるといえる。
 市場において、射出成形や押出し成形が可能である結晶性熱可塑ポリイミドとしてはAurum(登録商標)(三井化学)がある(特許文献2参照)。構造中に柔軟なエーテル結合とメタ構造を複数持たせることで、剛直な全芳香族ポリイミドでありながら、通常観測されることは難しい融点を分解温度より低い温度に付与することに成功している。しかしながら柔軟な構造を多数取り入れているものの、その融点はポリイミド特有の高い値(388℃)であり、特に成形の際には400℃を超えるような高温を必要とする(非特許文献2参照)。また、結晶化速度も一般的な射出成型サイクルよりも遥かに遅く、装置上の制約やハンドリング性としてはいまだ難点があると言える。
 成形性の改善のため、ポリイミドの融点を下げる取り組みは幾つかあるが、実際問題としては、融点を低下させるとガラス転移温度も低下し、ポリイミド特有の高ガラス転移温度という特徴は失われることとなる。融点とガラス転移温度は経験則として、ある一定の間隔を持つために(一般的には絶対温度表記で、『ガラス転移温度/融点=2/3』、程度に該当するものが多い)、成形性を上げるために融点を下げると耐熱性の基本要因の一つであるガラス転移温度も低下するのが通常である。
 この関係を打ち破るような非常に近接した融点とガラス転移温度を有するポリイミド(ここで、融点360℃以下、ガラス転移温度200℃以上を同時に有するポリイミドを低融点、高ガラス転移温度を有するポリイミドと呼ぶ)は、全芳香族系ポリイミドにおいて報告されている。例えばVladimirらは、特定の構造を持つポリイミドが融点320℃、ガラス転移温度204℃と、非常に近接した両物性を持つことを報告している(非特許文献3参照)。しかしながら、このポリイミドはカーボンナノチューブの配合という特殊な条件下でなくては再現性のある結晶性を示しておらず、素直に結晶性樹脂と呼ぶには難しい。また、三井化学から下記式(a)の2つの繰り返し単位構造を有する共重合ポリイミドが、組成により値が変動するものの、融点281℃、ガラス転移温度が229℃と、さらに近接した両物性を持つことが報告されている(特許文献3参照)。
Figure JPOXMLDOC01-appb-C000009
 しかし、全芳香族系ポリイミドに分解温度より低い融点を持たせようとすると、汎用性が低く、合成が困難な、特殊性の高いモノマーを使用せざるを得なくなる。特許文献3のモノマーの合成方法は、多くのステップ、長時間、特殊な原料を必要とする結果になっている(特許文献4参照)。本来、剛直な構造を持つポリイミドに、剛直な芳香族構造が酸成分とジアミン成分両方に組み込まれていれば、融点を下げるのが困難であることは必然であり、結果として現実的に市場での大規模な生産を視野に入れることは難しい。事実として、数10tを超えるような大きな市場においては、全芳香族系結晶性熱可塑ポリイミドは、先述したAurum(登録商標)しか知られていない。
 一方で、汎用性の高い、すなわち容易に合成、入手が可能なモノマーから結晶性ポリイミドが得られている例は、脂肪族ジアミンを用いた半芳香族ポリイミド(ここで、半芳香族ポリイミドとは芳香族テトラカルボン酸類と脂肪族ジアミン類から得られるポリイミドと定義する)系で広く確認されている。
 特に直鎖の脂肪族ジアミンと芳香族テトラカルボン酸類を使用し半芳香族ポリイミドを合成すると、直鎖脂肪族ジアミン部位がソフトセグメント、芳香族テトラカルボン酸部位がハードセグメントとなり、結果として高い結晶性を示す場合がある(特許文献3参照)。この系において、成形性を向上させるために融点を低下させるには、ソフトセグメント部位、すなわち直鎖脂肪族部位の鎖長を長くする必要がある。通常、鎖長の長さに反比例して融点は低下する傾向を示す(非特許文献4参照)。
 ところが、半芳香族ポリイミド系においては、先述した一般則に従い、融点の低下とともにガラス転移温度も大きく低下し、ポリイミド特有の高ガラス転移温度という特徴は失われることとなる。これは、化学構造から考えた場合にも、柔軟な構造が導入されると分子鎖の動きがより自由になり、熱による分子運動が活発になる、という事実に従った結果によるものである。そのため、脂肪族ジアミンを用いた実用的な熱物性を持つ半芳香族ポリイミドはナイロン、エステルといったその他樹脂群と比較して特徴付けが難しく、市場での競争力が低い。
特開2005-28524号公報 特開昭62-236858号公報 特開平6-157751号公報 第2530919号公報
プラスチックス,52,p95,2001 AURUM 技術資料/G-06 Jour.Polym.Sci:Part A:Polym.Chem,701,34,1996 Macromol.Rapid.Commun.,885,26,2005
 本発明の目的は、従来技術における上記したような課題を解決する、結晶性熱可塑共重合ポリイミド樹脂を提供することにある。
 本発明者らは、熱可塑性ポリイミド樹脂について鋭意研究を重ねた結果、特定の異なるポリイミド構成単位を、特定の比率で組み合わせてなる熱可塑性ポリイミド樹脂において、360℃以下の低融点でありながら、200℃以上の高ガラス転移温度を有する特異な性能を持つことを見いだし本発明に到達した。
 すなわち、本発明は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含む熱可塑性ポリイミド樹脂であり、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(1)の繰り返し構成単位の含有比が40~70モル%である熱可塑性ポリイミド樹脂を提供する。
Figure JPOXMLDOC01-appb-C000010
(R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R2は炭素数5~12の2価の鎖状脂肪族基である。X1及びX2は、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 本発明によって、360℃以下の低融点でありながら、200℃以上の高ガラス転移温度を同時に有する結晶性の熱可塑ポリイミドを提供することが可能となった。
 本発明の熱可塑性ポリイミド樹脂は下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(1)の繰り返し構成単位の含有比が40~70モル%である。
Figure JPOXMLDOC01-appb-C000011
(R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R2は炭素数5~12の2価の鎖状脂肪族基である。X1及びX2は、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 式(1)の繰り返し構成単位について、以下に詳述する。
 R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。ここで、脂環式炭化水素構造とは、脂環式炭化水素化合物から誘導される環を意味し、該脂環式炭化水素化合物は、飽和であっても不飽和であってもよく、単環であっても多環であってもよい。
 脂環式炭化水素構造としては、シクロヘキサン環等のシクロアルカン環、シクロヘキセン等のシクロアルケン環、ノルボルナン環等のビシクロアルカン環、及びノルボルネン等のビシクロアルケン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはシクロアルカン環、より好ましくは炭素数4~7のシクロアルカン環、さらに好ましくはシクロヘキサン環である。
 R1の炭素数は6~22であり、好ましくは8~17である。
 R1は脂環式炭化水素構造を少なくとも1つ含み、好ましくは1~3個含む。
 R1は、好ましくは下記式(R1-1)又は(R1-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000012
(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m13~m15は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
 R1は、特に好ましくは下記式(R1-3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000013
 なお、上記の式(R1-3)で表される2価の基において、2つのメチレン基のシクロヘキサン環に対する位置関係はシスであってもトランスであってもよく、またシスとトランスの比は如何なる値でもよい。
 X1は少なくとも1つの芳香環を含む炭素数6~22の4価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 X1の炭素数は6~22であり、好ましくは6~18である。
 X1は芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 X1は、好ましくは下記式(X-1)~(X-4)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000014

(R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数であり、好ましくは0である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数であり、好ましくは0である。p17は0~4の整数であり、好ましくは0である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、X1は少なくとも1つの芳香環を含む炭素数6~22の4価の基であるので、式(X-2)におけるR12、R13、p12及びp13は、式(X-2)で表される4価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(X-3)におけるL11、R14、R15、p14及びp15は、式(X-3)で表される4価の基の炭素数が6~22の範囲に入るように選択され、式(X-4)におけるL12、L13、R16、R17、R18、p16、p17及びp18は、式(X-4)で表される4価の基の炭素数が6~22の範囲に入るように選択される。
 X1は、特に好ましくは下記式(X-5)又は(X-6)で表される4価の基である。
Figure JPOXMLDOC01-appb-C000015
 式(2)の繰り返し構成単位について、以下に詳述する。
 R2は炭素数5~12の2価の鎖状脂肪族基である。ここで、鎖状脂肪族基とは、鎖状脂肪族化合物から誘導される基を意味し、該鎖状脂肪族化合物は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよく、酸素原子等のヘテロ原子を含んでいてもよい。
 R2は、好ましくは炭素数5~12のアルキレン基であり、より好ましくは炭素数6~10のアルキレン基である。前記アルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくは直鎖アルキレン基である。
 R2は、特に好ましくはヘキサメチレン基である。
 また、R2の別の好適な様態として、エーテル基を含む炭素数5~12の2価の鎖状脂肪族基が挙げられる。その中でも好ましくは下記式(R2-1)又は(R2-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000016
(m21及びm22は、それぞれ独立に、1~11の整数であり、好ましくは2~6である。m23~m25は、それぞれ独立に、1~10の整数であり、好ましくは2~4である。)
 なお、R2は炭素数5~12の2価の鎖状脂肪族基であるので、式(R2-1)におけるm21及びm22は、式(R2-1)で表される2価の基の炭素数が5~12の範囲に入るように選択される。即ち、m21+m22は5~12である。
 同様に、式(R2-2)におけるm23~m25は、式(R2-2)で表される2価の基の炭素数が5~12の範囲に入るように選択される。即ち、m23+m24+m25は5~12である。
 X2は、式(1)におけるX1と同様に定義され、好ましい様態も同様である。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は40~70モル%である。式(1)の繰り返し構成単位の含有比が上記範囲である場合、熱可塑性ポリイミド樹脂の半結晶化時間は60秒以下と結晶化速度が速く、一般的な射出成型サイクル(60秒以下)においても、本発明における熱可塑性ポリイミド樹脂を十分に結晶化させ得ることが可能となる。式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は、好ましくは40~60モル%である。
 本発明の熱可塑性ポリイミド樹脂を構成する全繰り返し単位に対する、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計の含有比は、好ましくは50~100モル%、より好ましくは75~100モル%である。
 本発明の熱可塑性ポリイミド樹脂は、さらに、下記式(3)の繰り返し構成単位を含有してもよく、その場合、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(3)の繰り返し構成単位の含有比は、25モル%以下である。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
Figure JPOXMLDOC01-appb-C000017
(R3は少なくとも1つの芳香環を含む炭素数6~22の2価の基である。X3は少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 R3は少なくとも1つの芳香環を含む炭素数6~22の2価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 R3の炭素数は6~22であり、好ましくは6~18である。
 R3は芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 R3は、好ましくは下記式(R3-1)又は(R3-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000018
(m31及びm32は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m33及びm34は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数であり、好ましくは0である。L21は、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、R3は少なくとも1つの芳香環を含む炭素数6~22の2価の基であるので、式(R3-1)におけるm31、m32、R21及びp21は、式(R3-1)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(R3-2)におけるL21、m33、m34、R22、R23、p22及びp23は、式(R3-2)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 X3は、式(1)におけるX1と同様に定義され、好ましい様態も同様である。
 本発明の熱可塑性ポリイミド樹脂を構成する全繰り返し構成単位に対する、式(3)の繰り返し構成単位の含有比は、25モル%以下であることが好ましい。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
 本発明の熱可塑性ポリイミド樹脂は、360℃以下の融点を有し、かつ200℃以上のガラス転移温度を有することが好ましい。
 本発明の熱可塑性ポリイミド樹脂は、示差走査型熱量計にて溶融後に10℃/min以上の冷却速度で降温させた際に観測される結晶化発熱ピークの熱量が、5mJ/mg以上であることが好ましい。
 本発明の熱可塑性ポリイミド樹脂は、テトラカルボン酸成分とジアミン成分とを反応させることにより製造することができ、該テトラカルボン酸成分は少なくとも1つの芳香環を含むテトラカルボン酸及び/またはその誘導体を含有し、該ジアミン成分は少なくとも1つの脂環式炭化水素構造を含むジアミン及び鎖状脂肪族ジアミンを含有する。
 少なくとも1つの芳香環を含むテトラカルボン酸は4つのカルボキシル基が直接芳香環に結合した化合物であることが好ましく、構造中にアルキル基を含んでいてもよい。また前記テトラカルボン酸は、炭素数6~26であるものが好ましい。前記テトラカルボン酸としては、ピロメリット酸、2,3,5,6-トルエンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸等が推奨される。これらの中でも特にピロメリット酸が好ましい。
 少なくとも1つの芳香環を含むテトラカルボン酸の誘導体としては、少なくとも1つの芳香環を含むテトラカルボン酸の無水物又はアルキルエステル体が挙げられる。前記テトラカルボン酸誘導体は、炭素数6~38であるものが好ましい。テトラカルボン酸の無水物としては、ピロメリット酸一無水物、ピロメリット酸二無水物、2,3,5,6-トルエンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が挙げられる。テトラカルボン酸のアルキルエステル体としては、ピロメリット酸ジメチル、ピロメリット酸ジエチル、ピロメリット酸ジプロピル、ピロメリット酸ジイソプロピル、2,3,5,6-トルエンテトラカルボン酸ジメチル、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ジメチル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジメチル、3,3’,4,4’-ビフェニルテトラカルボン酸ジメチル、1,4,5,8-ナフタレンテトラカルボン酸ジメチル等、が挙げられる。上記テトラカルボン酸のアルキルエステル体において、アルキル基の炭素数は1~3が好ましい。
 少なくとも1つの芳香環を含むテトラカルボン酸及び/またはその誘導体は、上記から選ばれる少なくとも1つの化合物を単独で用いてもよく、2つ以上の化合物を組み合わせて用いてもよい。
 少なくとも1つの脂環式炭化水素構造を含むジアミンの炭素数は6~22が好ましく、例えば、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、カルボンジアミン、リモネンジアミン、イソフォロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルプロパン等が推奨される。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、1,3-ビス(アミノメチル)シクロヘキサンが好適に使用できる。なお、脂環式炭化水素構造を含むジアミンは一般的には構造異性体を持つが、シス体/トランス体の比率は限定されない。
 鎖状脂肪族ジアミンは、直鎖状であっても分岐状であってもよく、炭素数は5~12が好ましい。また、鎖部分の炭素数が5~12であれば、その間にエーテル結合を含んでいてもよい。鎖状脂肪族ジアミンとして例えば1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、2,2’-(エチレンジオキシ)ビス(エチレンアミン)等が推奨される。
 鎖状脂肪族ジアミンは本発明の範囲内であれば一種類あるいは複数を混合して使用しても問題は無い。これらのうち、炭素数が6~10の鎖状脂肪族ジアミンが好適に使用でき、特に1,6-ヘキサメチレンジアミンが好適に使用できる。
 本発明の熱可塑性ポリイミド樹脂を製造する際、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの脂環式炭化水素構造を含むジアミンの仕込み量のモル比は40~70モル%であることが好ましい。
 また、上記ジアミン成分中に、少なくとも1つの芳香環を含むジアミンを含有してもよい。少なくとも1つの芳香環を含むジアミンの炭素数は6~22が好ましく、例えば、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2-ジエチニルベンゼンジアミン、1,3-ジエチニルベンゼンジアミン、1,4-ジエチニルベンゼンジアミン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、α,α’-ビス(4-アミノフェニル)1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。
 上記において、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの芳香環を含むジアミンの仕込み量のモル比は、25モル%以下であることが好ましい。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記モル比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
 本発明の熱可塑性ポリイミド樹脂を製造する際、前記テトラカルボン酸成分と前記ジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。
 また本発明の熱可塑性ポリイミド樹脂を製造する際、前記テトラカルボン酸成分、前記ジアミン成分の他に、末端封止剤を混合してもよい。末端封止剤としてモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、芳香族テトラカルボン酸及び/またはその誘導体1モルに対して0.0001~0.1モルが好ましく、特に0.001~0.06モルが好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が推奨される。これらのうち、ベンジルアミン、アニリンが好適に使用できる。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していても問題は無い。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロヘキサン-1,2-ジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロへキセン-1,2-ジカルボン酸等が推奨される。これらのうち、フタル酸、無水フタル酸が好適に使用できる。
 本発明の熱可塑性ポリイミド樹脂を製造するための重合方法としては、公知のポリイミドを製造するための公知の重合方法が適用でき、特に限定されないが溶液重合、溶融重合、固相重合、懸濁重合法が挙げられる。この中で特に有機溶媒を用いた高温条件下における懸濁重合が好適に使用できる。高温条件下における懸濁重合を行う際は、150℃以上で重合を行うのが好ましく、180℃~250℃で行うのが特に好ましい。重合時間は使用するモノマーにより適宜変更するが、2~6時間程度行うのが好ましい。用いられる溶媒の例としては水、ベンゼン、トルエン、キシレン、アセトン、ヘキサン、ヘプタン、クロロベンゼン、メタノール、エタノール、n-プロパノール、イソプロパノール、メチルグリコール、メチルトリグリコール、ヘキシルグリコール、フェニルグリコール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノイソブチルエーテル、2-(2-メトキシエトキシ)エタノール、メチルプロピレングリコール、メチルプロピレンジグリコール、プロピルプロピレングリコール、フェニルプロピレングリコール、2-(2-メトキシエトキシ)エタノール、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、o-クレゾール、m-クレゾール、p-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、ジブロモメタン、トリブロモメタン、1,2-ジブロモエタン、1,1,2-トリブロモエタンあるいはこれらのうち二種類以上の混合物による溶媒等が推奨される。これらのうち、2-(2-メトキシエトキシ)エタノールと水の混合溶媒が好適に使用できる。
 本発明の熱可塑性ポリイミド樹脂は本質的に360℃以下の温度で溶融するため、各種熱成形が可能である。熱成形方法としては射出成形、押出し成形、ブロー成形、熱プレス成形、真空成形、圧空成形、レーザー成形、溶接、溶着等が挙げられるが、熱溶融工程を経る成形方法に関しては何れの方法においても成形が可能である。成形体の形状としては、射出成形体、押出し成形体、フィルム、シート、ストランド、ペレット、繊維、丸棒、角棒、パイプ、チューブ等が挙げられる。また、本発明の熱可塑性ポリイミド樹脂は加熱、加圧により耐熱接着剤として使用することができるため、フレキシブル基板、銅張積層板等への利用が可能である。
 本発明の熱可塑性ポリイミド樹脂に対して、目的に応じて他の樹脂を混合して使用してもよい。上記樹脂としては、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリスルホン、ポリフェニレンスルフィド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリアリレート、ポリエステル、ポリカーボネート、液晶ポリマー、本発明以外のポリイミド等が挙げられる。
 次に実施例を挙げて本発明をより詳しく説明するが、本発明はこれに限定されるものではない。また、各実施例における物性の評価は以下に示す方法により測定した。
 対数粘度μは得られたポリイミドを190~200℃で2時間乾燥した後、ポリイミド0.100gを濃硫酸(96%、関東化学品)20mLに溶解し、キャノンフェンスケ粘度計を使用して30℃において測定を行った。対数粘度μは下記式により求めた。
μ=ln(ts/t0)/C
0:溶媒の流れる時間
ts:希薄高分子溶液の流れる時間
C:0.5g/dL
 熱可塑性ポリイミド樹脂の融点、ガラス転移温度、結晶化温度はエスアイアイ・ナノテクノロジー製示差走査熱量計装置(DSC-6220)を用いて測定した。窒素雰囲気下、熱可塑性ポリイミド樹脂に下記条件の熱履歴を課した。熱履歴の条件は、昇温1度目(昇温速度10℃/min)、その後冷却(冷却速度20℃/min)、その後昇温2度目(昇温速度10℃/min)である。本発明の融点は昇温1度目、あるいは昇温2度目で観測された吸熱ピークのピークトップ値を読み取り決定している。ガラス転移温度は昇温1度目、あるいは昇温2度目で観測された値を読み取り決定している。結晶化温度は降温1度目、あるいは昇温2度目で観測された発熱ピークのピークトップ値を読み取り決定している。なお、実施例中では、昇温1度目の融点をTm0、昇温2度目の融点をTm、昇温1度目のガラス転移温度をTg0、昇温2度目のガラス転移温度をTg、昇温1度目の結晶化温度をTc0、降温1度目の結晶化温度をTc(ただし結晶化速度が遅く、降温1度目に結晶化温度が観測されずに昇温2度目に結晶化温度が観測される場合は、昇温2度目の結晶化温度をTc)、として記載している。
 半結晶化時間についてはエスアイアイ・ナノテクノロジー製示差走査熱量計装置(DSC-6220)において評価を行った。半結晶化時間が20秒以下のものの測定条件は窒素雰囲気下、420℃で10minホールドし(融点が400℃を超えるものに関しては、460℃で10minホールド)、樹脂を完全に溶融させたのち、冷却速度70℃/minの急冷操作を行った際に、観測される結晶化ピークの出現時からピークトップまでにかかった時間を計算し、決定している。20秒以上のものは420℃で10minホールドし樹脂を完全に溶融させたのち、ガラス転移温度以上、融点以下の温度でホールドした際に、観測される結晶化ピークの出現時からピークトップまでにかかった時間を計算し、決定している。
 1%分解温度はエスアイアイ・ナノテクノロジー製示差熱・熱重量同時測定装置(TG/DTA-6200)において、空気雰囲気下、昇温10℃/minで測定を行った際に、初期重量に対して1%の重量減少が起こった温度を示している。
 IR測定については、日本電子製JIR-WINSPEC50を用いて測定した。
 本発明のポリイミド樹脂は、例えば以下に示す解重合を行うことで、そのモノマー組成比を確認できる。
 水酸化ナトリウム4.0g、水50mL、メタノール50mLを混合して得られる1M-水酸化ナトリウム溶液から5mLを量りとり、そこに得られたポリイミド固体100mgを加えたのち、耐圧容器中で240℃、1時間加熱することで解重合が行われる。
 得られた溶液に対して、クロロホルムと水による抽出操作を行い、解重合されたモノマーの溶液を分離した。モノマー比は、HEWLETT PACKARD製のガスクロマトグラフィー(HP6890)、アジレントテクノロジー製のカラム(HP-5)により分離し(昇温条件は50℃で10min保持後、10℃/minで300℃まで昇温)、各モノマーの面積比を算出することでモノマー組成比を決定している。なお、テトラカルボン酸成分に関してはメチルエステル体として観測される。
[実施例1]
 3Lオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)1200gとイオン交換水300g、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学製)83.96g(0.5902mol)、1,6-ヘキサメチレンジアミン(和光純薬製)54.86g(0.4722mol)、4,4’-ジアミノジフェニルエーテル(和歌山精化工業製)23.64g(0.1180mol)、ベンジルアミン(関東化学製)2.53g(0.02361mol)、ピロメリット酸(三菱ガス化学製)300.0g(1.180mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。195℃まで昇温し、ゲージ圧0.9MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、339gのポリイミド1を得た。ポリイミド1をDSC測定した結果、昇温1度目にはTm0が338℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが308℃(発熱量12.0mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが229℃、Tmが335℃に観測された。また、半結晶化時間を測定したところ20秒以下と決定された。1%分解温度は413℃、対数粘度は0.56dL/gであった。また、IRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。
 また、解重合を行い、モノマー組成比を算出したところ、ピロメリット酸/1,3-ビス(アミノメチル)シクロヘキサン/1,6-ヘキサメチレンジアミン/4,4’-ジアミノジフェニルエーテル/ベンジルアミン=100/51.9/43.5/9.6/2.0と算出され、モノマー仕込みモル比と相違無い割合でポリイミドが重合されていたことを確認した。
[実施例2]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学製)0.5037g(0.003541mol)、1,6-ヘキサメチレンジアミン(和光純薬製)0.2743g(0.002361mol)、ピロメリット酸(三菱ガス化学製)1.50g(0.005902mol)、ベンジルアミン(関東化学製)0.01264g(0.0001180mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、1.75gのポリイミド2を得た。ポリイミド2をDSC測定した結果、昇温1度目にはTm0が345℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが294℃(発熱量11.3mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが224℃、Tmが344℃に観測された。また、半結晶化時間を測定したところ20秒以下と決定された。また、樹脂は濃硫酸にも完全に溶解することは無かったため、対数粘度は測定できなかった。また、IRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。
[実施例3]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学製)0.588g(0.004131mol)、1,6-ヘキサメチレンジアミン(和光純薬製)0.206g(0.00177mol)、ピロメリット酸(三菱ガス化学製)1.50g(0.00590mol)、ベンジルアミン(関東化学製)0.0126g(0.0001180mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、1.73gのポリイミド3を得た。ポリイミド3をDSC測定した結果、昇温1度目にはTm0が339℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが観測されず、昇温2度目においてTcが278℃に観測された(発熱量9.8mJ/mg)。また、昇温2度目ではTgが209℃、Tmが337℃に観測された。半結晶化時間を測定したところ100秒以上、120秒以下であると決定された。樹脂は濃硫酸にも完全に溶解することは無かったため、対数粘度は測定できなかった。また、IRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。
[実施例4]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学製)0.336g(0.002361mol)、1,6-ヘキサメチレンジアミン(和光純薬製)0.411g(0.003541mol)、ピロメリット酸(三菱ガス化学製)1.50g(0.005902mol)、ベンジルアミン(関東化学製)0.0126g(0.0001180mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、1.71gのポリイミド4を得た。ポリイミド4をDSC測定した結果、昇温1度目にはTm0が358℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが340℃(発熱量18.5mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが215℃、Tmが360℃に観測された。半結晶化時間を測定したところ20秒以下と決定された。また、樹脂は濃硫酸にも完全に溶解することは無かったため、対数粘度は測定できなかった。また、IRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。
[実施例5]
 3Lオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)1200gとイオン交換水300g、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学製)22.39g(0.1574mol)、1,6-ヘキサメチレンジアミン(和光純薬製)22.87g(0.1968mol)、ジェファーミンEDR-148(ハンツマン製)5.83g(0.03935mol)、ピロメリット酸(三菱ガス化学製)100.0g(0.3935mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、116gのポリイミド5を得た。ポリイミド5をDSC測定した結果、昇温1度目にはTm0が333℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが255℃(発熱量12.2mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが207℃、Tmが335℃に観測された。半結晶化時間を測定したところ20秒以下と決定された。また、樹脂は濃硫酸にも完全に溶解することは無かったため、対数粘度は測定できなかった。また、IRスペクトルを測定したところ、ν(C=O)1769、1699(cm-1)にイミド環の特性吸収が認められた。
[実施例6]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学製)0.5037g(0.003541mol)、1,12-ドデカンジアミン(小倉合成製)0.4730g(0.002361mol)、1,4,5,8-ナフタレンテトラカルボン酸(関東化学製)1.795g(0.005902mol)、ベンジルアミン(関東化学製)0.01264g(0.0001180mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、2.14gのポリイミド6を得た。ポリイミド6をDSC測定した結果、昇温1度目にはTm0が355℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが306℃(発熱量6.85mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが203℃、Tmが357℃に観測された。また、半結晶化時間を測定したところ20秒以下と決定された。また、樹脂は濃硫酸にも完全に溶解することは無かったため、対数粘度は測定できなかった。また、IRスペクトルを測定したところ、ν(C=O)1703、1656(cm-1)にイミド環の特性吸収が認められた。
[比較例1]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学製)0.2519g(0.001771mol)、1,6-ヘキサメチレンジアミン(和光純薬製)0.480g(0.004131mol)、ピロメリット酸(三菱ガス化学製)1.50g(0.005902mol)、ベンジルアミン(関東化学製)0.0126g(0.0001180mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、1.64gのポリイミド7を得た。ポリイミド7をDSC測定した結果、昇温1度目にはTm0が386℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが375℃(発熱量20.8mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが212℃、Tmが399℃に観測された。半結晶化時間を測定したところ20秒以下と決定された。また、樹脂は濃硫酸にも完全に溶解することは無かったため、対数粘度は測定できなかった。また、IRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。
[比較例2]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学製)0.672g(0.004722mol)、1,6-ヘキサメチレンジアミン(和光純薬製)0.1372g(0.001180mol)、ピロメリット酸(三菱ガス化学製)1.50g(0.005902mol)、ベンジルアミン(関東化学製)0.0126g(0.0001180mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、1.75gのポリイミド8を得た。ポリイミド8をDSC測定した結果、昇温1度目にはTm0が346℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcは観測されなかった。また、昇温2度目ではTgが238℃に観測されるのみであり、Tm,Tcは観測されず、結晶性を示さなかった。また、樹脂は濃硫酸にも完全に溶解することは無かったため、対数粘度は測定できなかった。また、IRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。
[比較例3]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、1,3-BAC(三菱ガス化学製)0.840g(0.005902mol)、ピロメリット酸(三菱ガス化学製)1.50g(0.005902mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、1.76gのポリイミド9を得た。ポリイミド9をDSC測定した結果、昇温1度目にはTm0が390℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcは観測されなかった。また、昇温2度目ではTgが250℃に観測されるのみであり、Tm,Tcは観測されず、結晶性を示さなかった。また、対数粘度を測定したところ、0.66dL/gであった。また、IRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。
[比較例4]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、1,6-ヘキサメチレンジアミン(和光純薬製)0.686g(0.005902mol)、ピロメリット酸(三菱ガス化学製)1.50g(0.005902mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、1.59gのポリイミド10得た。ポリイミド10をDSC測定した結果、昇温1度目にはTm0が455℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが389℃(発熱量21.5mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが210℃(不鮮明)、Tmが416℃に観測された。半結晶化時間を測定したところ20秒以下と決定された。また、対数粘度を測定したところ、0.96dL/gであった。また、IRスペクトルを測定したところ、ν(C=O)1771、1697(cm-1)にイミド環の特性吸収が認められた。
[比較例5]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、ジェファーミンEDR-148(ハンツマン製)0.875g(0.005902mol)、ピロメリット酸(三菱ガス化学製)1.50g(0.005902mol)を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、1.79gのポリイミド11得た。ポリイミド11をDSC測定した結果、昇温1度目にはTm0が277℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが230℃(発熱量19.6mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが100℃(不鮮明)、Tmが281℃に観測された。半結晶化時間を測定したところ20秒以下と決定された。また、対数粘度を測定したところ、0.15dL/gであった。また、IRスペクトルを測定したところ、ν(C=O)1771、1698(cm-1)にイミド環の特性吸収が認められた。
[比較例6]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、1,3-BAC(三菱ガス化学製)0.840g(0.005902mol)、1,4,5,8-ナフタレンテトラカルボン酸(関東化学製)1.795g(0.005902mol)、を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、1.90gのポリイミド12を得た。ポリイミド12をDSC測定した結果、昇温1度目にTg0が278℃に、昇温2度目にTgが278℃に観測されるのみであり、Tm0、Tm、Tcは観測されなかった。樹脂は濃硫酸にも完全に溶解することは無かったため、対数粘度は測定できなかった。また、IRスペクトルを測定したところ、ν(C=O)1703、1655(cm-1)にイミド環の特性吸収が認められた。
[比較例7]
 20mLオートクレーブ中に2-(2-メトキシエトキシ)エタノール(キシダ化学製)8gとイオン交換水2g、1,12-ドデカンジアミン(小倉合成製)1.183g(0.005902mol)、1,4,5,8-ナフタレンテトラカルボン酸(関東化学製)1.795g(0.005902mol)、を導入し、均一になるように攪拌し、密閉した後に、窒素置換を行った。220℃まで昇温し、ゲージ圧1.3MPaとなったところから2時間反応を行った後、回収、ろ過、粉砕、N-メチル-2-ピロリドン(三菱化学製)とメタノールによる洗浄を行い、さらに乾燥機で190℃、10時間乾燥を行い、2.02gのポリイミド13得た。ポリイミド13をDSC測定した結果、昇温1度目にはTm0が304℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが260℃(発熱量15.2mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが135℃(不鮮明)、Tmが290℃に観測された。また、対数粘度を測定したところ、0.39dL/gであった。また、IRスペクトルを測定したところ、ν(C=O)1703、1655(cm-1)にイミド環の特性吸収が認められた。
Figure JPOXMLDOC01-appb-T000019
 なお、表中の略記の意味は下記のとおりである。
・PMA:ピロメリット酸
・1,3-BAC:1,3-ビス(アミノメチル)シクロヘキサン
・HMDA:1,6-ヘキサメチレンジアミン
・ODA:4,4’-ジアミノジフェニルエーテル
・DODA:1,12-ドデカンジアミン
・EDR-148:ジェファーミンEDR-148(ハンツマン製)
Figure JPOXMLDOC01-appb-T000020
 なお、表中に表記している記号の意味は下記のとおりである。
・結晶化温度表記が『-』:結晶性を示さず、降温時昇温時共に結晶化温度が観測されない
・半結晶化時間表記が『-』:結晶化温度が観測されないため半結晶化時間が求められない

Claims (15)

  1.  下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含む熱可塑性ポリイミド樹脂であり、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(1)の繰り返し構成単位の含有比が40~70モル%である熱可塑性ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R2は炭素数5~12の2価の鎖状脂肪族基である。X1及びX2は、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  2.  R1が下記式(R1-1)又は(R1-2)で表される2価の基である、請求項1に記載の熱可塑性ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (m11及びm12は、それぞれ独立に、0~2の整数である。m13~m15は、それぞれ独立に、0~2の整数である。)
  3.  R1が下記式(R1-3)で表される2価の基である、請求項2に記載の熱可塑性ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000003
  4.  R2が炭素数5~12のアルキレン基である、請求項1~3のいずれかに記載の熱可塑性ポリイミド樹脂。
  5.  R2がヘキサメチレン基である、請求項4に記載の熱可塑性ポリイミド樹脂。
  6.  R2が下記式(R2-1)又は(R2-2)で表される2価の基である、請求項1~3のいずれかに記載の熱可塑性ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (m21及びm22は、それぞれ独立に、1~11の整数である。m23~m25は、それぞれ独立に、1~10の整数である。)
  7.  X1及びX2が、それぞれ独立に、下記式(X-1)~(X-4)のいずれかで表される4価の基である、請求項1~6のいずれかに記載の熱可塑性ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000005

    (R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数である。p17は0~4の整数である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
  8.  さらに下記式(3)で示される繰り返し構成単位を含み、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(3)の繰り返し構成単位の含有比が25モル%以下である、請求項1~7のいずれかに記載の熱可塑性ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000006
    (R3は少なくとも1つの芳香環を含む炭素数6~22の2価の基である。X3は少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  9.  R3が下記式(R3-1)又は(R3-2)で表される2価の基である、請求項8に記載の熱可塑性ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000007
    (m31及びm32は、それぞれ独立に、0~2の整数である。m33及びm34は、それぞれ独立に、0~2の整数である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数である。L21は、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
  10.  X3が、それぞれ独立に、下記式(X-1)~(X-4)のいずれかで表される4価の基である、請求項8又は9に記載の熱可塑性ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000008

    (R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数である。p17は0~4の整数である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
  11.  360℃以下の融点を有し、かつ200℃以上のガラス転移温度を有する、請求項1~10のいずれかに記載の熱可塑性ポリイミド樹脂。
  12.  示差走査型熱量計で、溶融後に10℃/min以上の冷却速度で降温させた際に観測される、結晶化発熱ピークの熱量が5mJ/mg以上である請求項1~11のいずれかに記載の熱可塑性ポリイミド樹脂。
  13.  請求項1~12のいずれかに記載の熱可塑性ポリイミド樹脂を含むフィルム。
  14.  請求項1~12のいずれかに記載の熱可塑性ポリイミド樹脂を含む繊維。
  15.  請求項1~12のいずれかに記載の熱可塑性ポリイミド樹脂を含む耐熱接着剤。
PCT/JP2013/052572 2012-02-08 2013-02-05 結晶性熱可塑ポリイミド樹脂 WO2013118704A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES13746160.4T ES2549149T3 (es) 2012-02-08 2013-02-05 Resina de poliimida termoplástica cristalina
EP13746160.4A EP2738199B1 (en) 2012-02-08 2013-02-05 Crystalline thermoplastic polyimide resin
CN201380002610.9A CN103732655B (zh) 2012-02-08 2013-02-05 结晶性热塑聚酰亚胺树脂
JP2013527802A JP5365762B1 (ja) 2012-02-08 2013-02-05 結晶性熱可塑ポリイミド樹脂
US14/233,920 US8927678B2 (en) 2012-02-08 2013-02-05 Crystalline thermoplastic polyimide resin
KR1020147003738A KR101454661B1 (ko) 2012-02-08 2013-02-05 결정성 열가소 폴리이미드 수지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012025176 2012-02-08
JP2012-025176 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118704A1 true WO2013118704A1 (ja) 2013-08-15

Family

ID=48947467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052572 WO2013118704A1 (ja) 2012-02-08 2013-02-05 結晶性熱可塑ポリイミド樹脂

Country Status (8)

Country Link
US (1) US8927678B2 (ja)
EP (1) EP2738199B1 (ja)
JP (1) JP5365762B1 (ja)
KR (1) KR101454661B1 (ja)
CN (1) CN103732655B (ja)
ES (1) ES2549149T3 (ja)
TW (1) TWI450915B (ja)
WO (1) WO2013118704A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105392842A (zh) * 2013-08-06 2016-03-09 三菱瓦斯化学株式会社 聚酰亚胺树脂组合物和聚酰亚胺树脂-纤维复合材料
WO2016147996A1 (ja) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
KR20170027859A (ko) 2015-03-19 2017-03-10 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지
JP2018531297A (ja) * 2016-07-11 2018-10-25 アルケマ フランス 複合材料のための高ガラス転移温度を有する半結晶性ポリアミド組成物、これの製造方法およびこれの用途
WO2019220969A1 (ja) 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 樹脂成形体
WO2019220966A1 (ja) 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 ポリイミド樹脂組成物
JP2020123613A (ja) * 2019-01-29 2020-08-13 信越ポリマー株式会社 電磁波シールドフィルム、回路基板、及び回路基板の製造方法
KR20210136974A (ko) 2019-03-07 2021-11-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 난연성 폴리이미드 성형재료 및 성형체
KR20220047262A (ko) 2019-08-08 2022-04-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 난연성 폴리이미드 성형재료 및 성형체
KR20220120564A (ko) 2019-12-23 2022-08-30 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지 조성물 및 성형체
KR20230071124A (ko) 2020-09-23 2023-05-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지 조성물 및 성형체
KR20230169151A (ko) 2021-04-15 2023-12-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 열가소성 폴리이미드 수지 조성물 및 성형품

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477469B2 (ja) * 2013-07-05 2019-03-06 三菱瓦斯化学株式会社 ポリイミド樹脂
JP2020007464A (ja) * 2018-07-09 2020-01-16 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法
WO2021065051A1 (ja) 2019-10-03 2021-04-08 三井化学株式会社 ポリイミドフィルム、ポリアミド酸およびこれを含むワニス、ならびにポリイミド積層体およびその製造方法
CN111128021B (zh) * 2019-12-23 2021-02-23 深圳市华星光电半导体显示技术有限公司 柔性基板及其制备方法
JP7115524B2 (ja) * 2020-09-29 2022-08-09 三菱ケミカル株式会社 ポリイミド樹脂組成物
WO2023165940A1 (en) 2022-03-01 2023-09-07 Basf Se Process for the production of a thermoplastic polyimide

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236858A (ja) 1986-04-09 1987-10-16 Mitsui Toatsu Chem Inc ポリイミド樹脂組成物
JPH06157751A (ja) 1992-11-27 1994-06-07 Mitsui Toatsu Chem Inc ポリイミド共重合体およびその製造方法
JP2530919B2 (ja) 1989-11-17 1996-09-04 三井東圧化学株式会社 ポリイミド
JP2002206057A (ja) * 2001-01-09 2002-07-26 Hitachi Cable Ltd ポリイミド樹脂組成物およびその製造方法
JP2004083814A (ja) * 2002-08-29 2004-03-18 Mitsui Chemicals Inc 新規なポリアミド酸およびポリイミド
JP2005028524A (ja) 2003-07-07 2005-02-03 Katsuo Shoji 超砥粒ホイール及びその製造方法
JP2009114439A (ja) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd ポリイミド樹脂
JP2009221392A (ja) * 2008-03-18 2009-10-01 Asahi Kasei E-Materials Corp 全脂肪族ポリイミドの合成法
JP2012193281A (ja) * 2011-03-16 2012-10-11 Teijin Ltd 樹脂組成物およびその成形体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100397959C (zh) * 2003-05-06 2008-06-25 三菱瓦斯化学株式会社 贴金属层合物
TWI341859B (en) * 2003-05-09 2011-05-11 Mitsubishi Gas Chemical Co Adhesive and adhesive film
EP1884345B1 (en) * 2005-04-14 2009-08-12 Mitsubishi Gas Chemical Company, Inc. Process for producing polyimide film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236858A (ja) 1986-04-09 1987-10-16 Mitsui Toatsu Chem Inc ポリイミド樹脂組成物
JP2530919B2 (ja) 1989-11-17 1996-09-04 三井東圧化学株式会社 ポリイミド
JPH06157751A (ja) 1992-11-27 1994-06-07 Mitsui Toatsu Chem Inc ポリイミド共重合体およびその製造方法
JP2002206057A (ja) * 2001-01-09 2002-07-26 Hitachi Cable Ltd ポリイミド樹脂組成物およびその製造方法
JP2004083814A (ja) * 2002-08-29 2004-03-18 Mitsui Chemicals Inc 新規なポリアミド酸およびポリイミド
JP2005028524A (ja) 2003-07-07 2005-02-03 Katsuo Shoji 超砥粒ホイール及びその製造方法
JP2009114439A (ja) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd ポリイミド樹脂
JP2009221392A (ja) * 2008-03-18 2009-10-01 Asahi Kasei E-Materials Corp 全脂肪族ポリイミドの合成法
JP2012193281A (ja) * 2011-03-16 2012-10-11 Teijin Ltd 樹脂組成物およびその成形体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOUR. POLYM. SCI.: PART A: POLYM. CHEM., vol. 701, 1996, pages 34
MACROMOL. RAPID COMMUN., vol. 885, 2005, pages 26
PLASTICS, vol. 52, 2001, pages 95
See also references of EP2738199A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105392842A (zh) * 2013-08-06 2016-03-09 三菱瓦斯化学株式会社 聚酰亚胺树脂组合物和聚酰亚胺树脂-纤维复合材料
US10093789B2 (en) 2013-08-06 2018-10-09 Mitsubishi Gas Chemical Company, Inc. Polyimide resin composition, and (polyimide resin)-fiber composite material
WO2016147996A1 (ja) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
JP6024859B1 (ja) * 2015-03-19 2016-11-16 三菱瓦斯化学株式会社 ポリイミド樹脂
KR20170002690A (ko) 2015-03-19 2017-01-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지
KR20170027859A (ko) 2015-03-19 2017-03-10 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지
US9873767B2 (en) 2015-03-19 2018-01-23 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
US10174167B2 (en) 2015-03-19 2019-01-08 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
JP2018531297A (ja) * 2016-07-11 2018-10-25 アルケマ フランス 複合材料のための高ガラス転移温度を有する半結晶性ポリアミド組成物、これの製造方法およびこれの用途
WO2019220966A1 (ja) 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 ポリイミド樹脂組成物
WO2019220969A1 (ja) 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 樹脂成形体
KR20210010846A (ko) 2018-05-17 2021-01-28 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지 조성물
KR20210013020A (ko) 2018-05-17 2021-02-03 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 수지성형체
JPWO2019220969A1 (ja) * 2018-05-17 2021-06-10 三菱瓦斯化学株式会社 樹脂成形体
JP7347415B2 (ja) 2018-05-17 2023-09-20 三菱瓦斯化学株式会社 樹脂成形体
JP2020123613A (ja) * 2019-01-29 2020-08-13 信越ポリマー株式会社 電磁波シールドフィルム、回路基板、及び回路基板の製造方法
KR20210136974A (ko) 2019-03-07 2021-11-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 난연성 폴리이미드 성형재료 및 성형체
KR20220047262A (ko) 2019-08-08 2022-04-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 난연성 폴리이미드 성형재료 및 성형체
KR20220120564A (ko) 2019-12-23 2022-08-30 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지 조성물 및 성형체
KR20230071124A (ko) 2020-09-23 2023-05-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지 조성물 및 성형체
KR20230169151A (ko) 2021-04-15 2023-12-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 열가소성 폴리이미드 수지 조성물 및 성형품

Also Published As

Publication number Publication date
TWI450915B (zh) 2014-09-01
US20140200325A1 (en) 2014-07-17
ES2549149T3 (es) 2015-10-23
EP2738199A4 (en) 2014-10-08
EP2738199B1 (en) 2015-09-16
TW201336894A (zh) 2013-09-16
JPWO2013118704A1 (ja) 2015-05-11
CN103732655A (zh) 2014-04-16
KR20140026655A (ko) 2014-03-05
US8927678B2 (en) 2015-01-06
CN103732655B (zh) 2015-05-13
JP5365762B1 (ja) 2013-12-11
KR101454661B1 (ko) 2014-10-27
EP2738199A1 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5365762B1 (ja) 結晶性熱可塑ポリイミド樹脂
JP6024859B1 (ja) ポリイミド樹脂
JP6037088B1 (ja) ポリイミド樹脂
KR102208953B1 (ko) 폴리이미드 수지분말의 제조방법 및 열가소성 폴리이미드 수지분말
TWI816790B (zh) 樹脂成形體
JP2019516678A (ja) ジアミン化合物及びその製造方法
KR20130103757A (ko) 가교제
JP2013241553A (ja) カルド型ジアミンを組成とする熱硬化性ポリイミド
Wang et al. Highly soluble polyimides containing di-tert-butylbenzene and dimethyl groups with good gas separation properties and optical transparency
WO2022065063A1 (ja) ポリイミド樹脂組成物及び成形体
JP5545172B2 (ja) 結晶性ポリイミドの製造方法
TW202212471A (zh) 樹脂組成物及成形體
JP2019137788A (ja) ポリアミド化合物、及びポリアミド化合物の製造方法
JP7252510B2 (ja) ポリアミド化合物
JP2013014759A (ja) ポリイミド樹脂成形体及びその製造方法
WO2023105969A1 (ja) ポリイミド樹脂組成物及び成形体
JPWO2018203497A1 (ja) ジアミン化合物、ジアミン化合物の製造方法およびポリイミド
KR20190071316A (ko) 폴리아미드이미드계 블록 공중합체 및 이를 포함하는 폴리아미드이미드계 성형품
KR20190098613A (ko) 폴리아미드이미드계 블록 공중합체 및 이를 포함하는 폴리아미드이미드계 성형품

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013527802

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14233920

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013746160

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147003738

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE