WO2013115162A1 - シタキセンタン誘導体 - Google Patents

シタキセンタン誘導体 Download PDF

Info

Publication number
WO2013115162A1
WO2013115162A1 PCT/JP2013/051857 JP2013051857W WO2013115162A1 WO 2013115162 A1 WO2013115162 A1 WO 2013115162A1 JP 2013051857 W JP2013051857 W JP 2013051857W WO 2013115162 A1 WO2013115162 A1 WO 2013115162A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
acceptable salt
methyl
pharmacologically acceptable
Prior art date
Application number
PCT/JP2013/051857
Other languages
English (en)
French (fr)
Inventor
圭悟 田中
大貴 西岡
Original Assignee
エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2013216122A priority Critical patent/AU2013216122B9/en
Application filed by エーザイ・アール・アンド・ディー・マネジメント株式会社 filed Critical エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority to BR112014016204-2A priority patent/BR112014016204B1/pt
Priority to ES13743422.1T priority patent/ES2651293T3/es
Priority to JP2013556399A priority patent/JP6144631B2/ja
Priority to KR1020147021115A priority patent/KR101933251B1/ko
Priority to IN4945CHN2014 priority patent/IN2014CN04945A/en
Priority to RU2014126427A priority patent/RU2622386C2/ru
Priority to CA2861477A priority patent/CA2861477C/en
Priority to EP13743422.1A priority patent/EP2810943B1/en
Priority to CN201380005150.5A priority patent/CN104039781B/zh
Priority to MX2014007619A priority patent/MX358151B/es
Publication of WO2013115162A1 publication Critical patent/WO2013115162A1/ja
Priority to IL233171A priority patent/IL233171A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/422Oxazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers

Definitions

  • the present invention relates to a compound having a phthalane ring. More particularly, N- (4-chloro-3-methyl-1,2-oxazol-5-yl) -2- [2- (6-methyl-1,3-dihydro-2-benzofuran-5-yl ) Acetyl] thiophene-3-sulfonamide and its analogs.
  • Thienylsulfonamide compounds are known as endothelin receptor antagonists.
  • sitaxsentan ie N- (4-chloro-3-methyl-1,2-oxazol-5-yl) -2- [2- (6-methyl-2H-1,3-benzodioxol-5-yl) Acetyl] thiophene-3-sulfonamide is a compound that has been marketed for indications such as pulmonary arterial hypertension (Patent Document 1).
  • sitaxsentan has a benzodioxole ring in its structure, but compounds having such a benzodioxole ring are generally chemically reactive when metabolized with cytochrome P450 (CYP). It is known that the activity of CYP is irreversibly inhibited by an inactivation action based on a covalent bond with CYP (Non-Patent Documents 1 to 3). Sitaxentan is also known to have CYP inhibitory activity, and several reports have been made so far regarding drug interaction with drugs used in clinical practice.
  • Patent Document 2 Japanese Patent Document 2
  • a compound containing deuterium is more expensive to produce, and a method that does not use deuterium is desired for solving this problem.
  • the problem to be solved by the present invention is to provide a compound having a structure that improves the inhibitory action of CYP and does not contain deuterium while maintaining the main drug effect of sitaxsentan.
  • [1] A compound represented by formula (1-1) or (1-2) or a pharmacologically acceptable salt thereof.
  • R 1 represents a halogen atom, a methyl group, an ethyl group, a trifluoromethyl group, a pentafluoroethyl group, an n-propyl group or a cyclopropyl group
  • R 2 represents a hydrogen atom, a methyl group, an ethyl group, Group, trifluoromethyl group, pentafluoroethyl group, n-propyl group or cyclopropyl group
  • R 3 represents a C 1-6 alkyl group or a C 1-6 alkoxy group
  • M represents
  • R 4 represents a hydrogen atom, a methyl group, or an ethyl group.
  • M is the following formula The compound or its pharmacologically acceptable salt as described in [1] which is group represented by these.
  • M is the following formula The compound or its pharmacologically acceptable salt as described in [1] which is group represented by these.
  • [4] The compound or a pharmaceutically acceptable salt thereof according to any one of [1] to [3], wherein R 1 is a halogen atom.
  • R 1 is a halogen atom.
  • R 1 is a chlorine atom.
  • R 2 is a methyl group.
  • a pharmaceutical composition comprising the compound according to any one of [1] to [10] or a pharmaceutically acceptable salt thereof.
  • the pharmaceutical composition according to [11] which is an endothelin receptor antagonist.
  • a method for antagonizing an endothelin receptor comprising administering the compound according to any one of [1] to [10] or a pharmaceutically acceptable salt thereof to a patient.
  • a method for treating or preventing pulmonary arterial hypertension comprising administering a compound according to any one of [1] to [10] or a pharmacologically acceptable salt thereof to a patient.
  • the compound represented by the formula (1-1) or (1-2) (hereinafter also referred to as the compound (1-1) or (1-2), respectively, and both are also referred to as the compound (1)) is While maintaining the main medicinal properties of sitaxsentan, it has an improved inhibitory effect on CYP compared to sitaxsentan.
  • Example 1 is a graph showing dose-dependent inhibition of Ca 2+ elevation in EDNRA / 293 cells by Example 1 compound.
  • the vertical axis shows the relative Ca 2+ increase when the absence of the compound of Example 1 is taken as 100%
  • the horizontal axis shows the concentration of the compound of Example 1 (nM)
  • the added endothelin concentration (nM) is shown on the right side of the graph. .
  • the present invention is not limited to a specific crystal form, although a crystal polymorph may exist, and a single substance of any crystal form may be a mixture.
  • the present invention includes amorphous forms, and the compounds according to the present invention include anhydrides and hydrates.
  • CYP means cytochrome P450 which is a drug metabolizing enzyme.
  • “improving the inhibitory action of CYP” or “improved inhibitory action of CYP” refers to five CYP molecular species (CYP1A2, 2C9, 2C19, 2D6 and 3A4) which are the main molecular species of CYP. Among them, it means that the degree of inhibitory action on one or more is generally improved as compared with sitaxsentan.
  • “Main drug efficacy” in the present specification means to show in vitro or in vivo pharmacological activity in preclinical studies to the extent that clinical efficacy similar to that of sitaxsentan can be expected in clinical practice.
  • In vitro pharmacological activity is, for example, inhibitory activity against endothelin receptor A.
  • IC 50 means 50% inhibitory concentration or half-inhibitory concentration.
  • benzodioxole ring in the present specification means a ring or a functional group represented by the following structure.
  • phthalane ring means a ring or a functional group represented by the following structure.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • C 1-6 alkyl group means a linear or branched alkyl group having 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, 1 -Propyl group, 2-propyl group, 2-methyl-1-propyl group, 2-methyl-2-propyl group, 1-butyl group, 2-butyl group, 1-pentyl group, 2-pentyl group, 3-pentyl Group, 1-hexyl group, 2-hexyl group, 3-hexyl group and the like.
  • C 1-6 alkoxy group means “C 1-6 alkoxy group” is a group in which an oxygen atom is bonded to the terminal of the above-defined “C 1-6 alkyl group”. Specific examples thereof include, for example, methoxy group, ethoxy group, 1-propyloxy group, 2-propyloxy group, 2-methyl-1-propyloxy group, 2-methyl-2-propyloxy group, 1-butyloxy group 2-butyloxy group, 1-pentyloxy group, 2-pentyloxy group, 3-pentyloxy group, 1-hexyloxy group, 2-hexyloxy group, 3-hexyloxy group and the like.
  • the compound according to the present invention is a compound represented by the formula (1-1) or (1-2), but is preferably a compound represented by the formula (1-1).
  • R 1 in the compound represented by the formula (1-1) or (1-2) means a halogen atom, a methyl group, an ethyl group, a trifluoromethyl group, a pentafluoroethyl group, an n-propyl group or a cyclopropyl group.
  • it is a halogen atom, more preferably a chlorine atom.
  • R 2 in the compound represented by the formula (1-1) or (1-2) represents a hydrogen atom, a methyl group, an ethyl group, a trifluoromethyl group, a pentafluoroethyl group, an n-propyl group or a cyclopropyl group. Meaning, preferably a methyl group.
  • R 3 in the compound represented by the formula (1-1) or (1-2) means a C 1-6 alkyl group or a C 1-6 alkoxy group, preferably a C 1-6 alkyl group. More preferably, it is a methyl group.
  • M in the compound represented by the formula (1-1) or (1-2) is In the formula, R 4 represents a hydrogen atom, a methyl group or an ethyl group. Regarding the direction of bonding of the above groups, the radical on the left side is bonded to the furan ring, and the radical on the right side is bonded to the thiophene ring. M is preferably (Wherein the carbonyl carbon is bonded to the thiophene ring), more preferably, A group represented by (the carbonyl carbon is bonded to the thiophene ring),
  • the “pharmacologically acceptable salt” in the present specification is a salt that forms a salt with the compound represented by the formula (1-1) or (1-2) and is pharmacologically acceptable.
  • examples include inorganic acid salts, organic acid salts, inorganic base salts, organic base salts, acidic or basic amino acid salts, and the like.
  • inorganic acid salts include, for example, hydrochloride, hydrobromide, sulfate, nitrate, phosphate and the like
  • organic acid salts include, for example, acetate, succinate and fumarate.
  • Preferred examples of the inorganic base salt include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, aluminum salt, ammonium salt and the like, and preferred examples of organic base salts Examples thereof include diethylamine salt, diethanolamine salt, meglumine salt, N, N′-dibenzylethylenediamine salt and the like.
  • acidic amino acid salts include aspartate and glutamate
  • basic amino acid salts include arginine salt, lysine salt and ornithine salt.
  • the compound represented by the formula (1-1) or (1-2) can be produced by the method described below, and a person skilled in the art can improve the method described below based on ordinary knowledge. Can also be manufactured. However, the production method of the compound represented by the formula (1-1) or (1-2) is not limited thereto.
  • the solvent to be used is not particularly limited as long as it dissolves the starting materials to some extent and does not inhibit the reaction, and examples thereof include tetrahydrofuran and pyridine.
  • Examples of the base used include sodium hydride and pyridine.
  • the catalyst used can be 4-dimethylaminopyridine or the like.
  • the reaction temperature varies depending on the starting material, the solvent, etc., but is usually 0 ° C. to 120 ° C., preferably 15 ° C. to 100 ° C.
  • reaction time varies depending on the starting material and solvent, but is usually 10 minutes to 5 days, preferably 1 hour to 3 days.
  • Process B M of the compound (1-1) or (1-2) is in the case of the group represented by formula (1), compound (1-1) or (1-2) can be obtained by the following step B.
  • the following scheme is described in the production method of the compound (1-1), the compound (1-2) can be obtained by changing the starting material. [Wherein, R 1 , R 2 and R 3 have the same definitions as above.
  • Q is a halogen atom such as a bromine atom, a chlorine atom and an iodine atom, a C 1-4 alkanesulfonyloxy group such as a methanesulfonyloxy group, and a sulfonyloxy group such as a benzenesulfonyloxy group and a p-toluenesulfonyloxy group.
  • the compound (4) and the compound (6) a known compound or a compound that can be produced from a known compound by a method that is usually performed by those skilled in the art can be used.
  • Process B-1 This step is a step of converting compound (4) to compound (5) using a reducing agent in the presence of a solvent.
  • the solvent to be used is not particularly limited as long as it dissolves the starting material to some extent and does not inhibit the reaction, and examples thereof include tetrahydrofuran.
  • Examples of the reducing agent used include diisobutylaluminum hydride.
  • the reaction temperature varies depending on the starting materials and the solvent, but is usually -78 ° C to 100 ° C, and preferably -78 ° C to room temperature.
  • reaction time varies depending on the starting material and solvent, but is usually 10 minutes to 5 days, preferably 30 minutes to 1 day.
  • Process B-2 In this step, the formyl group of compound (5) is converted to dithiane with 1,3-propanedithiol, an anion is generated in dithiane using a base, and then reacted with compound (6) to give compound (7). It is a process to obtain. In order to obtain good results, a Lewis acid may be added during conversion to dithiane.
  • the solvent used in the conversion reaction to dithian is not particularly limited as long as it dissolves the starting materials to some extent and does not inhibit the reaction, and examples thereof include dichloromethane.
  • Lewis acid used in the conversion reaction to dithian examples include boron trifluoride, diethyl etherate, and the like.
  • the reaction temperature for the conversion reaction to dithiane varies depending on the starting material, solvent, etc., but is usually 0 ° C. to 100 ° C., preferably room temperature.
  • the reaction time for the conversion reaction to dithiane varies depending on the starting materials and the solvent, but is usually 10 minutes to 5 days, preferably 30 minutes to 1 day.
  • the solvent used in the reaction between the formation of an anion and the compound (6) is not particularly limited as long as it dissolves the starting materials to some extent and does not inhibit the reaction. It is done.
  • Examples of the base used for the production of anions and the reaction with the compound (6) include n-butyllithium.
  • the reaction temperature varies depending on the starting materials and the solvent, but is usually -78 ° C to 100 ° C, and preferably -78 ° C to room temperature.
  • reaction time varies depending on the starting material and solvent, but is usually 10 minutes to 5 days, preferably 30 minutes to 1 day.
  • Process B-3 the dithiane ring of compound (7) is converted to a carbonyl group, whereby compound (1-3), that is, M is In this step, compound (1-1) is obtained.
  • This step can be performed by a general deprotection reaction of a dithian ring, for example, a reaction with an oxidizing agent such as silver nitrate.
  • the solvent used in the deprotection reaction of the dithian ring is not particularly limited as long as it dissolves the starting materials to some extent and does not inhibit the reaction, and examples thereof include methanol, water, and tetrahydrofuran.
  • Examples of the oxidizing agent used in the deprotection reaction of the dithian ring include silver nitrate.
  • the reaction temperature of the deprotection reaction of the dithian ring varies depending on the starting material, the solvent, etc., but is usually 0 ° C. to 150 ° C., preferably room temperature to 100 ° C.
  • the reaction time of the deprotection reaction of the dithian ring varies depending on the starting material, solvent, etc., but is usually 30 minutes to 5 days, preferably 1 to 4 days.
  • the target compound in each step can be collected from the reaction mixture according to a conventional method.
  • the reaction mixture is optionally brought to room temperature or ice-cooled, neutralized with acid, alkali, oxidizing agent or reducing agent as appropriate, and mixed with water, such as ethyl acetate.
  • water such as ethyl acetate.
  • the layer containing the target compound is separated.
  • a solvent that is immiscible with the obtained layer and does not react with the target compound is added, the layer containing the target compound is washed, and the layer is separated.
  • the target compound can be collected by drying using a desiccant such as anhydrous magnesium sulfate or anhydrous sodium sulfate and distilling off the solvent. If the layer is an aqueous layer, the target compound can be collected by electrically desalting and then freeze-drying.
  • the target compound is collected only by distilling off substances other than the target compound (eg, solvent, reagent, etc.) under normal pressure or reduced pressure. can do.
  • the target compound is obtained by filtration.
  • the target compound collected by filtration is washed with an appropriate organic or inorganic solvent and dried to treat the mother liquor in the same manner as in the case where the whole reaction mixture is a liquid, thereby further collecting the target compound. it can.
  • the reagent or catalyst exists as a solid, or the reaction mixture as a whole is liquid, and only the reagent or catalyst is precipitated as a solid during the collection process, and the target compound
  • the reagent or catalyst is filtered off by filtration, and the filtered reagent or catalyst is washed with an appropriate organic or inorganic solvent, and the resulting washing solution is combined with the mother liquor, and the resulting mixture is mixed.
  • the target compound can be collected by treating the liquid in the same manner as in the case where the whole reaction mixture is liquid.
  • the target compound when a compound other than the target compound contained in the reaction mixture does not inhibit the reaction in the next step, the target compound can be used in the next step as it is without isolating the target compound.
  • the purity of the target compound can usually be improved by a recrystallization method.
  • a single solvent or a mixed solvent that does not react with the target compound can be used. Specifically, first, the target compound is dissolved in a single or a plurality of solvents that do not react with the target compound at room temperature or under heating. The resulting liquid mixture is cooled with ice water or the like, or stirred or left at room temperature to crystallize the target compound from the liquid mixture.
  • the collected target compound can improve the purity of the target compound by various chromatographic methods.
  • weakly acidic silica gels such as silica gel 60 (70-230 mesh or 340-400 mesh) manufactured by Merck and BW-300 (300 mesh) manufactured by Fuji Silysia Chemical Ltd. can be used. If the target compound is basic and the above silica gels are too adsorbed, propylamine coated silica gel (200-350 mesh) manufactured by Fuji Silysia Chemical Co., Ltd. or disposable medium pressure preparative packing manufactured by Yamazen Co., Ltd.
  • NH silica gels such as a column (high flash amino) can also be used.
  • the target compound when the target compound is bipolar or when elution with a highly polar solvent such as methanol is required, NAM-200H or NAM-300H manufactured by Nam Research Laboratory, or YMC GEL ODS-A manufactured by YMC is used. You can also. Disposable medium pressure preparative packed columns (High Flush) manufactured by Yamazen Co., Ltd., manufactured by Wako Pure Chemical Industries, Ltd., biotage, Inc., or Grace Co., which are preliminarily packed with the above-described fillers can also be used. By appropriately using these silica gels and eluting the target compound with a single or a plurality of solvents that do not react with the target compound and distilling off the solvent, the target compound with improved purity can be obtained.
  • a highly polar solvent such as methanol
  • the purity of the target compound can also be improved by distillation.
  • the target compound can be distilled by reducing the pressure of the target compound at room temperature or under heating.
  • the above is a representative example of the production method of the compound (1-1) or (1-2).
  • the starting compound and various reagents in the production of the compound (1-1) or (1-2) A solvate such as a product may be formed, and any solvate may be formed depending on the starting material, the solvent used and the like, and is not particularly limited as long as the reaction is not inhibited.
  • the solvent to be used is not particularly limited as long as it varies depending on starting materials, reagents and the like, and can dissolve the starting material to some extent without inhibiting the reaction.
  • the salt that may be formed by the compound (1-1) or (1-2) or a solvate thereof is usually used. Can be converted according to the law.
  • compound (1-1) or (1-2) When compound (1-1) or (1-2) is obtained as a salt or solvate, the free form of compound (1-1) or (1-2) can be converted according to a conventional method.
  • various isomers eg, geometric isomer, optical isomer, rotational isomer, stereoisomer, tautomer, etc.
  • separation means such as recrystallization, diastereomeric salt method, enzyme resolution method, various chromatography (eg thin layer chromatography, column chromatography, gas chromatography, etc.). it can.
  • Compound (1-1) or (1-2) or a pharmacologically acceptable salt thereof can be formulated by a conventional method.
  • the dosage form include oral preparations (tablets, granules, powders). , Capsules, syrups, etc.), injections (for intravenous administration, intramuscular administration, subcutaneous administration, intraperitoneal administration), external preparations (transdermal absorption preparations (ointments, patches, etc.), eye drops Nasal drops, suppositories, etc.).
  • solid preparations such as tablets, capsules, granules and powders are usually 0.001 to 99.5% by weight, preferably 0.01 to 90% by weight of the compound (1-1) or (1-2 Or a pharmaceutically acceptable salt thereof.
  • compound (1-1) or (1-2) or a pharmacologically acceptable salt thereof when producing an oral solid preparation, compound (1-1) or (1-2) or a pharmacologically acceptable salt thereof, if necessary, an excipient, a binder, a disintegrant, Lubricants, colorants and the like can be added to form tablets, granules, powders, and capsules by conventional methods. Tablets, granules, powders, capsules and the like may be coated with a film as necessary.
  • excipient examples include lactose, corn starch, crystalline cellulose, and the like.
  • binder examples include hydroxypropylcellulose and hydroxypropylmethylcellulose.
  • disintegrant examples include carboxymethylcellulose calcium and croscarmette. Examples include sodium loose.
  • Examples of the lubricant include magnesium stearate and calcium stearate, and examples of the colorant include titanium oxide.
  • Examples of the film coating agent include hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose and the like.
  • any of the above-mentioned additives is not limited to these.
  • the compound (1-1) or (1-2) or a pharmacologically acceptable product thereof is acceptable. If necessary, add salt adjusters, buffers, suspending agents, solubilizers, antioxidants, preservatives (preservatives), isotonic agents, etc. to the salt, and manufacture according to conventional methods. Can do. Alternatively, it may be freeze-dried to obtain a freeze-dried preparation that is dissolved at the time of use.
  • These injections can be administered intravenously, subcutaneously, intramuscularly and the like.
  • pH adjusting agents and buffering agents include organic acids or inorganic acids and / or salts thereof.
  • suspending agents include methylcellulose, polysorbate 80, sodium carboxymethylcellulose, and the like.
  • glucose, sodium chloride, mannitol and the like can be mentioned, but of course not limited thereto.
  • injection solutions usually contain 0.000001 to 99.5% by weight, preferably 0.00001 to 90% by weight of the compound (1-1) or (1-2) or a pharmaceutically acceptable salt thereof. Can be included.
  • a base material is added to the compound (1-1) or (1-2) or a pharmacologically acceptable salt thereof, and if necessary, the above-described emulsifier, storage
  • a transdermal absorption preparation (ointment, patch, etc.), eye drops, nasal drops, suppositories, etc. can be produced by adding conventional agents, pH adjusters, colorants and the like.
  • various raw materials usually used for pharmaceuticals, quasi drugs, cosmetics and the like can be used.
  • animal and vegetable oils, mineral oils, ester oils, waxes, higher alcohols, purified water And other raw materials can be used.
  • These external preparations usually contain 0.000001 to 99.5% by weight, preferably 0.00001 to 90% by weight of the compound (1-1) or (1-2) or a pharmaceutically acceptable salt thereof. Can be included.
  • the dose of the pharmaceutical agent according to the present invention usually varies depending on symptoms, age, sex, weight, etc., but may be an amount sufficient for producing a desired effect.
  • about 0.1 to 5000 mg (preferably 0.5 to 1000 mg, more preferably 1 to 600 mg) per day is used once or during a day or 2 to 6 per day. Used in divided times.
  • Compound (1-1) or (1-2) can be used as a chemical probe for capturing a target protein of a physiologically active low-molecular compound. That is, compound (1-1) or (1-2) is different from J. Mass Spectrum. Soc. Jpn. Vol. 51, No. 5 2003, p492-498 or WO2007 / 139149 can be converted into affinity chromatography, photoaffinity probe, etc. by introducing a labeling group, a linker or the like by the method described in WO2007 / 139149.
  • Examples of the labeling group and linker used for the chemical probe include groups shown in the following groups (1) to (5).
  • Photoaffinity labeling groups for example, benzoyl group, benzophenone group, azide group, carbonyl azide group, diaziridine group, enone group, diazo group and nitro group
  • chemical affinity groups for example, alpha carbon atom is halogen
  • a protein labeling group such as a ketone group substituted with an atom, a carbamoyl group, an ester group, an alkylthio group, a Michael acceptor such as an ⁇ , ⁇ -unsaturated ketone, an ester, and an oxirane group
  • a cleavable linker such as —SS—, —O—Si—O—, monosaccharide (glucose group, galactose group, etc.) or disaccharide (lactose etc.), and oligopeptide cleavable by enzymatic reaction Link
  • a probe prepared by introducing a labeling group selected from the group consisting of (1) to (5) above into compound (1-1) or (1-2) according to the method described in the above document Can be used as a chemical probe for identifying a labeled protein useful for searching for a new drug discovery target.
  • Compound (1-1) or (1-2) can be produced, for example, by the method described in the following examples, and the effects of compound (1-1) or (1-2) are as follows. This can be confirmed by the method described in the test example. However, these are illustrative, and the present invention is not limited to the following specific examples in any case.
  • Example 1 N- (4-Chloro-3-methyl-1,2-oxazol-5-yl) -2- [2- (6-methyl-1,3-dihydro-2-benzofuran-5-yl Acetyl] thiophene-3-sulfonamide N- (4-Chloro-3-methyl-1,2-oxazol-5-yl) -2- ⁇ 2-[(6-methyl-1,3-dihydro-2-benzofuran) described in Preparation Example 1-7 -5-yl) methyl] -1,3-dithian-2-yl ⁇ thiophene-3-sulfonamide (300 mg, 0.55 mmol), methanol (20 mL), water (2 mL), and silver nitrate (940 mg, 5.5 mmol) The mixture was stirred at 55 ° C.
  • reaction mixture was brought to room temperature, tetrahydrofuran (40 mL) and saturated brine (1 mL) were added at the same temperature, and the mixture was filtered through celite. Ethyl acetate (200 mL), water (100 mL) and saturated aqueous citric acid solution (1 mL) were added to the filtrate for extraction. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure.
  • the reaction mixture was cooled to ⁇ 78 ° C., and 5- (chloromethyl) -6-methyl-1,3-dihydro-2-benzofuran (960 mg, 5.3 mmol) described in Preparation Example 1-6 was added at the same temperature. In addition, the mixture was stirred at 0 ° C. for 1 hour. The reaction mixture was cooled to ⁇ 78 ° C., and a mixture of acetic acid (0.90 mL, 16 mmol) and tetrahydrofuran (7 mL) was added at the same temperature. The reaction mixture was gradually brought to room temperature, water and an aqueous citric acid solution were added at the same temperature, and the mixture was extracted with ethyl acetate.
  • Test example 1 Inhibitory effect of sitaxsentan and the compound of Example 1 on endothelin receptor A (EDNRA)
  • the protein coding part of human-derived EDNRA (gene number NM_001957.2) was introduced into HEK-293 (Human Embryonic Kidney, ATCC number CRL-1573) cells using a mouse leukemia-derived retroviral vector, and an EDNRA stable expression cell line (EDNRA / 293 cells).
  • HEK-293 Human Embryonic Kidney, ATCC number CRL-1573
  • EDNRA stable expression cell line EDNRA stable expression cell line
  • EDNRA / 293 cells were seeded on a 384 well plate so as to be 5000 cells / well.
  • a fluorescent reagent for calcium measurement (Calcium 4, Molecular Device) was dissolved in Hanks equilibration buffer, added to each well, and allowed to stand for about 1 hour.
  • sitaxsentan and the compound of Example 1 (hereinafter referred to as “specimen”) prepared so as to have a predetermined final concentration are added to each well and left for about one hour, and the specimen acts on EDNRA / 293 cells. I let you.
  • the activation (calcium increase) reaction caused by the action of endothelin which is an EDNRA ligand (activator)
  • endothelin which is an EDNRA ligand (activator)
  • FDSS7000 Hamamatsu Photonics
  • FDSS7000 Hamamatsu Photonics
  • a dose-dependent activation response was obtained.
  • the activation reaction was almost saturated at a dose of 1 nM or more. From this, the dose of endothelin was set to 0.03, 0.1 or 0.3 nM in the detection of the following suppression reaction.
  • Test example 2 CYP inhibitory action The CYP inhibitory action of sitaxsentan and the compound of Example 1 was tested by the following two methods.
  • the inhibitory action based on the CYP inactivating action of sitaxsentan can be evaluated by testing the enhancement of the time-dependent inhibitory action by preincubation of a human liver microsomal fraction containing CYP and a solution containing a coenzyme, Examples A time-dependent inhibition test was also carried out as method 1 for one compound. In addition, CYP inhibitory action based on competitive inhibition of unchanged substance was performed as Method 2.
  • Method 1 Sitaxentan and the compound of Example 1 were evaluated for their time-dependent inhibitory ability against five CYP molecular species (CYP1A2, 2C9, 2C19, 2D6 and 3A4).
  • test substance was added to an enzyme solution (containing human liver microsome (0.2 mg / mL), 100 mM Kpi, 0.1 mM EDTA), and preincubated at 37 ° C. for 30 minutes in the presence or absence of a coenzyme.
  • the final concentration of the test substance was 0.1, 0.2, 0.4, 0.5, 1, 2, 10 or 50 ⁇ M.
  • the coenzyme is produced by incubating a NADPH production system (3.6 mM ⁇ -NADP + , 90 mM glucose 6-phosphate, 1 Unit / mL glucose 6-phosphate dehydrogenase in a 60 mM MgCl 2 solution for 5 minutes. The resulting solution was used.
  • the ratio of the model substrate metabolite to the amount in the target experiment was defined as the residual activity.
  • the ratio of the residual activity in the presence of NADPH to the residual activity in the absence of NADPH was evaluated and defined as “+” if it was 80% or less, and “ ⁇ ” if it was greater than 80%. The results are shown in Table 2.
  • Method 2 Sitaxentan and the compound of Example 1 were examined for inhibitory potency based on competitive inhibition against five CYP molecular species (CYP1A2, 2C9, 2C19, 2D6 and 3A4).
  • a test substance is added to an enzyme solution containing a model substrate solution (containing human liver microsomes (0.2 mg / mL), 100 mM Kpi, 0.1 mM EDTA) so that the final concentration is 1 or 10 ⁇ M. Incubated for 10 minutes at 37 ° C. in the presence. The reaction was terminated by adding an equal amount of a mixed solution of acetonitrile and methanol (1: 1, containing 0.05 ⁇ M Dextrophan or 0.05 ⁇ Propronol as an internal standard), and the model substrate metabolite in the reaction solution was subjected to LC-MS. / MS was measured. Table 3 shows the model substrate and model substrate metabolite of each CYP molecular species.
  • the inhibition rate was determined for each test substance concentration from the amount of the model substrate metabolite when the test substance was added and when the test substance was not added, and the IC 50 value was calculated from the inhibition rate (the calculation method is Xenobiotica. 1999, 29 (1) , 53-75). It was defined as “++” if the IC 50 value was 1 ⁇ M or less, “+” if it was in the range of 1 to 10 ⁇ M, and “ ⁇ ” if it was greater than 10 ⁇ M. The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Steroid Compounds (AREA)

Abstract

式(1-1)もしくは(1-2)で表される化合物またはその薬理学的に許容される塩は、シタキセンタンが有する主薬効を保持したまま、改善されたCYPの阻害作用を有する。  [式中、Rは、ハロゲン原子等を意味し、Rは、メチル基等を意味し、Rは、C1-6アルキル基等を意味し、MはAAで表される基等を意味する。]

Description

シタキセンタン誘導体
 本発明はフタラン環を有する化合物に関する。より詳細には、N-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-[2-(6-メチル-1,3-ジヒドロ-2-ベンゾフラン-5-イル)アセチル]チオフェン-3-スルホナミドおよびその類縁体に関する。
 チエニルスルホンアミド化合物は、エンドセリン受容体アンタゴニストとして知られている。例えば、シタキセンタンすなわちN-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-[2-(6-メチル-2H-1,3-ベンゾジオキソール-5-イル)アセチル]チオフェン-3-スルホンアミドは、肺動脈性高血圧症などの適応症で市販に至った化合物である(特許文献1)。
Figure JPOXMLDOC01-appb-C000005
 
 しかしながら、シタキセンタンは、その構造において、ベンゾジオキソール環を有しているが、かかるベンゾジオキソール環を有する化合物は、一般的にcytochrome P450(CYP)で代謝されると化学的に反応性の高い代謝物へと変換され、CYPとの共有結合に基づく不活化作用によりCYPの活性を不可逆的に阻害することが知られている(非特許文献1~3)。シタキセンタンに関してもCYP阻害活性を有することが知られており、臨床で用いられている薬剤との薬物相互作用に関して、これまでいくつかの報告がなされている。その課題解決のため、シタキセンタンのベンゾジオキソリル基のメチレン炭素上にある水素原子を重水素原子に代えた化合物などが知られているが、現在までに市販に至った化合物は存在せず、十分な効果を奏しているとは言いがたい(特許文献2)。さらに、一般的に重水素を含む化合物は製造コストがより必要であることが知られており、本課題解決に関して、重水素を用いない方法も望まれている。
国際公開第96/31492号 国際公開第2008/124803号
Pharmacological reviews 42,85,1990.(Selectivity in the inhibition of Mammalian Cytochrome P-450 by Chemical Agents) Current Drug Metabolism, 6, 413,2005. Drug Metabolism and Disposition, 31, 289, 2003. Burger’s Medicinal Chemistry, Drug Discovery and Development,7th Edition,edited by Abraham and Rotella,August 2010,"STRUCTURAL ALERTS FOR TOXICITY"by Blagg,p301-334 Exp Opin Ther Patents,10,1653-1668,2000
 本発明が解決する課題は、シタキセンタンが有する主薬効を保持したまま、CYPの阻害作用を改善し、かつ、重水素を含まない構造である化合物を提供することである。
 本発明者らは、鋭意努力の結果、本発明を完成した。すなわち、本発明は、以下の[1]~[19]に関する。
[1] 式(1-1)もしくは(1-2)で表される化合物またはその薬理学的に許容される塩。
Figure JPOXMLDOC01-appb-C000006
 
[式中、Rは、ハロゲン原子、メチル基、エチル基、トリフルオロメチル基、ペンタフルオロエチル基、n-プロピル基またはシクロプロピル基を意味し、Rは、水素原子、メチル基、エチル基、トリフルオロメチル基、ペンタフルオロエチル基、n-プロピル基またはシクロプロピル基を意味し、Rは、C1-6アルキル基またはC1-6アルコキシ基を意味し、Mは
Figure JPOXMLDOC01-appb-C000007
 
からなる群から選択される基を意味し、式中、Rは、水素原子、メチル基、またはエチル基を意味する。]
[2] Mが、下式
Figure JPOXMLDOC01-appb-C000008
 
で表される基である、[1]記載の化合物またはその薬理学的に許容される塩。
[3] Mが、下式
Figure JPOXMLDOC01-appb-C000009
 
で表される基である、[1]記載の化合物またはその薬理学的に許容される塩。
[4] Rが、ハロゲン原子である、[1]ないし[3]いずれか記載の化合物またはその薬理学的に許容される塩。
[5] Rが、塩素原子である、[4]記載の化合物またはその薬理学的に許容される塩。
[6] Rが、メチル基である、[1]ないし[5]いずれか記載の化合物またはその薬理学的に許容される塩。
[7] Rが、C1-6アルキル基である、[1]ないし[6]いずれか記載の化合物またはその薬理学的に許容される塩。
[8] Rが、メチル基である、[7]記載の化合物またはその薬理学的に許容される塩。
[9] 式(1-1)で表される化合物である、[1]ないし[8]いずれか記載の化合物またはその薬理学的に許容される塩。
[10] N-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-[2-(6-メチル-1,3-ジヒドロ-2-ベンゾフラン-5-イル)アセチル]チオフェン-3-スルホナミドまたはその薬理学的に許容される塩。
[11] [1]ないし[10]いずれか記載の化合物またはその薬理学的に許容できる塩を含む医薬組成物。
[12] エンドセリン受容体アンタゴニストである、[11]記載の医薬組成物。
[13] 肺動脈性高血圧症治療剤である、[11]記載の医薬組成物。
[14] [1]ないし[10]いずれか記載の化合物またはその薬理学的に許容できる塩を患者に投与する、エンドセリン受容体拮抗方法。
[15] [1]ないし[10]いずれか記載の化合物またはその薬理学的に許容できる塩を患者に投与する、肺動脈性高血圧症の治療または予防方法。
[16] エンドセリン受容体拮抗に使用される、[1]ないし[10]いずれか記載の化合物またはその薬理学的に許容できる塩。
[17] 肺動脈性高血圧症の治療または予防に使用される、[1]ないし[10]いずれか記載の化合物またはその薬理学的に許容できる塩。
[18] エンドセリン受容体アンタゴニストを製造するための、[1]ないし[10]いずれか記載の化合物またはその薬理学的に許容できる塩の使用。
[19] 肺動脈性高血圧症治療・予防剤を製造するための、[1]ないし[10]いずれか記載の化合物またはその薬理学的に許容できる塩の使用。
 式(1-1)または(1-2)で表される化合物(以下、それぞれ、化合物(1-1)または(1-2)ともいい、両者を併せて化合物(1)ともいう)は、シタキセンタンが有する主薬効を保持したまま、シタキセンタンと比較して改善されたCYPの阻害作用を有する。
リガンド(エンドセリン)による用量依存的なEDNRA/293細胞での活性化(Ca2+上昇)を示すグラフである。縦軸は活性化(Ca2+上昇)を示し、横軸はエンドセリン濃度(nM)を示す。 シタキセンタンによる用量依存的なEDNRA/293細胞でのCa2+上昇抑制を示すグラフである。縦軸はシタキセンタン非存在下を100%としたときの相対Ca2+上昇を示し、横軸はシタキセンタン濃度(nM)を示し、加えたエンドセリン濃度(nM)をグラフ右に示す。 実施例1化合物による用量依存的なEDNRA/293細胞でのCa2+上昇抑制を示すグラフである。縦軸は実施例1化合物非存在下を100%としたときの相対Ca2+上昇を示し、横軸は実施例1化合物濃度(nM)を示し、加えたエンドセリン濃度(nM)をグラフ右に示す。
 以下、本発明の内容について詳細に説明する。
 本明細書中においては、本発明は、結晶多形が存在することもあるが、特定の結晶形のみに限定されることはなく、いずれかの結晶形の単一物であっても混合物であってもよく、また、本発明には非晶質体も含まれ、そして、本発明に係る化合物には無水物と水和物とが包含される。
 以下に、本明細書において記載する用語、記号等の意義を説明し、本発明を詳細に説明する。
 本明細書における「CYP」とは、薬物代謝酵素である、チトクロームP450のことを意味する。
 本明細書における「CYPの阻害作用を改善」または「改善されたCYPの阻害作用」とは、主なCYPの分子種である5つのCYP分子種(CYP1A2,2C9,2C19,2D6および3A4)のうち、1または2以上に対する阻害作用の程度が、シタキセンタンよりも総じて改善されることを意味する。
 本明細書における「主薬効を保持」とは、臨床でシタキセンタンと同様の薬効が期待できる程度のin vitroまたはin vivo薬理活性を前臨床試験で示すことを意味する。in vitro薬理活性とは、例えばエンドセリン受容体Aに対する抑制活性である。
 本明細書における「IC50」とは、50%阻害濃度または半数阻害濃度のことを意味する。
 本明細書における「ベンゾジオキソール環」とは、下記構造で示される環または官能基を意味する。
Figure JPOXMLDOC01-appb-C000010
 
 本明細書における「フタラン環」とは、下記構造で示される環または官能基を意味する。
Figure JPOXMLDOC01-appb-C000011
 
 本明細書における「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を意味する。
 本明細書における「C1-6アルキル基」とは、炭素数1~6個の直鎖状または分枝鎖状のアルキル基を意味し、具体例としては、例えばメチル基、エチル基、1-プロピル基、2-プロピル基、2-メチル-1-プロピル基、2-メチル-2-プロピル基、1-ブチル基、2-ブチル基、1-ペンチル基、2-ペンチル基、3-ペンチル基、1-へキシル基、2-へキシル基、3-へキシル基等が挙られる。
 本明細書における「C1-6アルコキシ基」とは、「C1-6アルコキシ基」とは前記定義の「C1-6アルキル基」の末端に酸素原子が結合した基であることを意味し、具体例としては、例えばメトキシ基、エトキシ基、1-プロピルオキシ基、2-プロピルオキシ基、2-メチル-1-プロピルオキシ基、2-メチル-2-プロピルオキシ基、1-ブチルオキシ基、2-ブチルオキシ基、1-ペンチルオキシ基、2-ペンチルオキシ基、3-ペンチルオキシ基、1-へキシルオキシ基、2-へキシルオキシ基、3-へキシルオキシ基等が挙げられる。
 本発明にかかる化合物は、式(1-1)または(1-2)で表される化合物であるが、好ましくは、式(1-1)で表される化合物である。
 式(1-1)または(1-2)表される化合物におけるRは、ハロゲン原子、メチル基、エチル基、トリフルオロメチル基、ペンタフルオロエチル基、n-プロピル基またはシクロプロピル基を意味し、好ましくは、ハロゲン原子であり、より好ましくは、塩素原子である。
 式(1-1)または(1-2)で表される化合物におけるRは、水素原子、メチル基、エチル基、トリフルオロメチル基、ペンタフルオロエチル基、n-プロピル基またはシクロプロピル基を意味し、好ましくは、メチル基である。
 式(1-1)または(1-2)で表される化合物におけるRは、C1-6アルキル基またはC1-6アルコキシ基を意味し、好ましくは、C1-6アルキル基であり、より好ましくは、メチル基である。
 式(1-1)または(1-2)で表される化合物におけるMは、
Figure JPOXMLDOC01-appb-C000012
 
からなる群から選択される基を意味し、式中、Rは、水素原子、メチル基またはエチル基を意味する。上記各基の結合の向きに関して、左側のラジカルはフラタン環に結合しており、右側のラジカルはチオフェン環に結合している。Mは、好ましくは、
Figure JPOXMLDOC01-appb-C000013
 
で表される基であり(カルボニル炭素がチオフェン環に結合している)、より好ましくは、
Figure JPOXMLDOC01-appb-C000014
 
で表される基(カルボニル炭素がチオフェン環に結合している)である、
 本明細書における「薬理学的に許容される塩」とは、式(1-1)または(1-2)で表される化合物と塩を形成し、かつ薬理学的に許容されるものであれば特に限定されず、例えば、無機酸塩、有機酸塩、無機塩基塩、有機塩基塩、酸性または塩基性アミノ酸塩等が挙げられる。
 無機酸塩の好ましい例としては、例えば塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩等が挙げられ、有機酸塩の好ましい例としては、例えば酢酸塩、コハク酸塩、フマル酸塩、マレイン酸塩、酒石酸塩、クエン酸塩、乳酸塩、ステアリン酸塩、安息香酸塩、マンデル酸塩、メタンスルホン酸塩、エタンスルホン酸塩、p-トルエンスルホン酸塩、ベンゼンスルホン酸塩等が挙げられる。
 無機塩基塩の好ましい例としては、例えばナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、アルミニウム塩、アンモニウム塩等が挙げられ、有機塩基塩の好ましい例としては、例えばジエチルアミン塩、ジエタノールアミン塩、メグルミン塩、N,N’-ジベンジルエチレンジアミン塩等が挙げられる。
 酸性アミノ酸塩の好ましい例としては、例えばアスパラギン酸塩、グルタミン酸塩等が挙げられ、塩基性アミノ酸塩の好ましい例としては、例えばアルギニン塩、リジン塩、オルニチン塩等が挙げられる。
 式(1-1)または(1-2)で表される化合物は、以下に記載する方法により製造することができ、また以下に記載の方法を当業者が通常の知識に基づき改良することによっても製造することができる。但し、式(1-1)または(1-2)で表される化合物の製造方法は、これらに限定されるものではない。
工程A
Figure JPOXMLDOC01-appb-C000015
 
[式中、R、R、RおよびMは前記定義と同義である。]
 本工程は、溶媒存在下または非存在下、塩基の存在下、触媒の存在下または非存在下、スルホニルクロライド化合物(3)とアミノイソキサゾール化合物(2-1)または(2-2)との縮合反応により、化合物(1-1)または(1-2)を得る工程である。
 使用する溶媒は、出発原料をある程度溶解するものであり、かつ反応を阻害しないものであれば、特に制限はないが、例えばテトラヒドロフランやピリジンなどが挙げられる。
 使用する塩基は、例えば水素化ナトリウムやピリジンなどが挙げられる。
 使用する触媒は4-ジメチルアミノピリジンなど用いることができる。
 反応温度は、出発原料、溶媒などにより異なるが、通常0℃ないし120℃であり、好適には、15℃ないし100℃である。
 反応時間は、出発原料、溶媒などにより異なるが、通常10分ないし5日であり、好適には1時間ないし3日である。
 スルホニルクロライド化合物(3)およびアミノイソキサゾール化合物(2-1)または(2-2)は、市販のものを利用してもよく、後述する実施例に記載のものを用いてもよく、あるいは、当業者に知られた方法(例えば、米国特許第4659369、4861366、4753672)により合成してもよい。
工程B
 化合物(1-1)または(1-2)のMが
Figure JPOXMLDOC01-appb-C000016
 
で表される基である場合、下記工程Bによって、化合物(1-1)または(1-2)を得ることができる。なお、下記スキームは化合物(1-1)の製造方法で説明しているが、出発物質を変更することで化合物(1-2)が得られる。
Figure JPOXMLDOC01-appb-C000017
 
[式中、R、RおよびRは前記定義と同義である。式中、Qは臭素原子、塩素原子およびヨウ素原子などのハロゲン原子、メタンスルホニルオキシ基などのC1-4アルカンスルホニルオキシ基ならびにベンゼンスルホニルオキシ基およびp-トルエンスルホニルオキシ基などのスルホニルオキシ基などの脱離基を意味する。]
 化合物(4)および化合物(6)は、公知の化合物、あるいは公知の化合物から当業者が通常行う方法により製造することができる化合物等を用いることができる。
工程B-1
 本工程は、溶媒存在下、還元剤を用いて化合物(4)を化合物(5)に変換する工程である。
 使用する溶媒は、出発原料をある程度溶解するものであり、かつ反応を阻害しないものであれば、特に制限はないが、例えばテトラヒドロフランなどが挙げられる。
 使用する還元剤は、例えばジイソブチルアルミニウム ヒドリドなどが挙げられる。
 反応温度は、出発原料、溶媒などにより異なるが、通常―78℃ないし100℃であり、好適には、―78℃ないし室温である。
 反応時間は、出発原料、溶媒などにより異なるが、通常10分ないし5日であり、好適には30分ないし1日である。
工程B-2
 本工程は化合物(5)のホルミル基を1,3-プロパンジチオールでジチアンに変換した後、塩基を用いてジチアンにアニオンを生成させ、次いで化合物(6)と反応させることにより化合物(7)を得る工程である。よい結果を得るためにジチアンへの変換の際にルイス酸を添加してもよい。
 ジチアンへの変換反応で使用する溶媒は、出発原料をある程度溶解するものであり、かつ反応を阻害しないものであれば、特に制限はないが、例えばジクロロメタンなどが挙げられる。
 ジチアンへの変換反応で使用するルイス酸は、例えばボロン トリフルオリド ジエチル エーテレートなどが挙げられる。
 ジチアンへの変換反応の反応温度は、出発原料、溶媒などにより異なるが、通常0℃ないし100℃であり、好適には、室温である。
 ジチアンへの変換反応の反応時間は、出発原料、溶媒などにより異なるが、通常10分ないし5日であり、好適には30分ないし1日である。
 アニオンの生成と化合物(6)との反応の際に使用する溶媒は、出発原料をある程度溶解するものであり、かつ反応を阻害しないものであれば、特に制限はないが、例えばテトラヒドロフランなどが挙げられる。
 アニオンの生成と化合物(6)との反応の際に使用する塩基は、例えばn-ブチルリチウムなどが挙げられる。
 反応温度は、出発原料、溶媒などにより異なるが、通常―78℃ないし100℃であり、好適には、―78℃ないし室温である。
 反応時間は、出発原料、溶媒などにより異なるが、通常10分ないし5日であり、好適には30分ないし1日である。
工程B-3
 本工程は化合物(7)のジチアン環をカルボニル基に変換することで、化合物(1-3)すなわちMが
Figure JPOXMLDOC01-appb-C000018
 
で表される基である化合物(1-1)を得る工程である。一般的なジチアン環の脱保護反応、例えば硝酸銀などの酸化剤との反応、により本工程を行うことができる。
 ジチアン環の脱保護反応で使用する溶媒は、出発原料をある程度溶解するものであり、かつ反応を阻害しないものであれば、特に制限はないが、例えばメタノール、水、テトラヒドロフランなどが挙げられる。
 ジチアン環の脱保護反応で使用する酸化剤は硝酸銀などが挙げられる。
 ジチアン環の脱保護反応の反応温度は、出発原料、溶媒などにより異なるが、通常0℃ないし150℃であり、好適には室温ないし100℃である。
 ジチアン環の脱保護反応の反応時間は、出発原料、溶媒などにより異なるが、通常30分ないし5日であり、好適には1日ないし4日である。
 上記各方法、各工程の反応終了後、各工程の目的化合物は常法に従い、反応混合物から採取することができる。
 例えば、反応混合物全体が液体の場合、反応混合物を所望により室温に戻すか、氷冷し、適宜、酸、アルカリ、酸化剤または還元剤を中和し、水と、酢酸エチルのような混和せずかつ目的化合物と反応しない有機溶媒とを加え、目的化合物を含む層を分離する。次に、得られた層と混和せず目的化合物と反応しない溶媒を加え、目的化合物を含む層を洗浄し、当該層を分離する。加えて、当該層が有機層であれば、無水硫酸マグネシウムまたは無水硫酸ナトリウム等の乾燥剤を用いて乾燥し、溶媒を留去することなどにより、目的化合物を採取することができる。また、当該層が水層であれば、電気的に脱塩した後、凍結乾燥することなどにより、目的化合物を採取することができる。
 また、反応混合物全体が液体であって、かつ、可能な場合には、常圧または減圧下、目的化合物以外のもの(例えば、溶媒、試薬等)を留去することのみにより、目的化合物を採取することができる。
 さらに、目的化合物のみが固体として析出している場合、または、上記反応混合物全体が液体の場合であって、採取の過程で目的化合物のみが固体として析出した場合、まず、ろ過法により目的化合物をろ取し、ろ取した目的化合物を適当な有機または無機溶媒で洗浄し、乾燥することで母液を上記反応混合物全体が液体の場合と同様に処理することにより、さらに目的化合物を採取することができる。
 またさらに、試薬または触媒のみが固体として存在するか、または、上記反応混合物全体が液体の場合であって、採取の過程で試薬または触媒のみが固体として析出した場合であって、かつ、目的化合物が溶液に溶解している場合、まず、ろ過法により試薬または触媒をろ去し、ろ去した試薬または触媒を適当な有機または無機溶媒で洗浄し、得られる洗浄液を母液と合わせ、得られる混合液を上記反応混合物全体が液体の場合と同様に処理することにより、目的化合物を採取することができる。
 特に、反応混合物に含まれる目的化合物以外のものが次工程の反応を阻害しない場合、特に目的化合物を単離することなく、反応混合物のまま、次の工程に使用することもできる。
 上記方法で採取した目的化合物の純度を向上させるため、適宜、再結晶法、各種クロマトグラフィー法、蒸留法を実施することができる。
 採取した目的化合物が固体の場合、通常、再結晶法により目的化合物の純度を向上させることができる。再結晶法においては、目的化合物と反応しない単一溶媒または複数の混合溶媒を用いることができる。具体的には、まず目的化合物を、目的化合物と反応しない単一または複数の溶媒に、室温または加熱下に溶解する。得られる混合液を氷水などで冷却するかまたは室温にて撹拌または放置することにより、その混合液から目的化合物を晶出させることができる。
 採取した目的化合物は、各種クロマトグラフィー法により目的化合物の純度を向上させることができる。一般的には、メルク社製シリカゲル60(70-230meshまたは340-400mesh)、富士シリシア化学株式会社製BW-300(300mesh)などの弱酸性のシリカゲル類を用いることができる。目的化合物が塩基性を有し、上述のシリカゲル類では吸着が激し過ぎる場合などは、富士シリシア化学株式会社製のプロピルアミンコーティングシリカゲル(200-350mesh)や山善株式会社製ディスポーザブル中圧分取充填カラム(ハイフラッシュ・アミノ)などのNHシリカゲル類を用いることもできる。また、目的化合物が双極性を有する場合またはメタノールなどの高極性溶媒での溶出が必要な場合などは、ナム研究所製NAM-200HまたはNAM-300H、あるいはYMC社製YMC GEL ODS-Aを用いることもできる。上記のような充填剤があらかじめ充填されている山善株式会社製、和光純薬工業社製、biotage社製、またはGrace社製のディスポーザブル中圧分取充填カラム(ハイフラッシュ)を用いることもできる。これらのシリカゲルを適宜用いて、目的化合物と反応しない単一または複数の溶媒で目的化合物を溶出させ、溶媒を留去することにより、純度が向上した目的化合物を得ることができる。
 採取した目的化合物が液体の場合、蒸留法によっても目的化合物の純度を向上させることができる。蒸留法においては、目的化合物を室温または加熱下に減圧することにより、目的化合物を留出させることができる。
 以上が化合物(1-1)または(1-2)の製造方法の代表例であるが、化合物(1-1)または(1-2)の製造における原料化合物および各種試薬は、塩や水和物のような溶媒和物を形成していてもよく、いずれも出発原料、使用する溶媒等により異なり、また反応を阻害しない限りにおいて特に限定されない。用いる溶媒についても、出発原料、試薬等により異なり、また反応を阻害せず出発物質をある程度溶解するものであれば特に限定されないことは言うまでもない。化合物(1-1)または(1-2)がフリー体として得られる場合、化合物(1-1)または(1-2)が形成していてもよい塩またはそれらの溶媒和物には、常法に従って変換することができる。
 化合物(1-1)または(1-2)が塩または溶媒和物として得られる場合、化合物(1-1)または(1-2)のフリー体は、常法に従って変換することができる。
 また、化合物(1-1)または(1-2)について得られる種々の異性体(例えば幾何異性体、光学異性体、回転異性体、立体異性体、互変異性体、等)は、通常の分離手段、例えば、再結晶、ジアステレオマー塩法、酵素分割法、種々のクロマトグラフィー(例えば薄層クロマトグラフィー、カラムクロマトグラフィー、ガスクロマトグラフィー等)を用いることにより精製し、単離することができる。
 化合物(1-1)または(1-2)またはその薬理学的に許容し得る塩は、常法により製剤化が可能であり、剤形としては、例えば、経口剤(錠剤、顆粒剤、散剤、カプセル剤、シロップ剤等)、注射剤(静脈内投与用、筋肉内投与用、皮下投与用、腹腔内投与用)、外用剤(経皮吸収製剤(軟膏剤、貼付剤等)、点眼剤、点鼻剤、坐剤等)とすることができる。
 これらの錠剤、カプセル剤、顆粒剤、粉末等の固形製剤は、通常0.001~99.5重量%、好ましくは0.01~90重量%等の化合物(1-1)または(1-2)またはその薬学的に許容し得る塩を含むことができる。
 経口用固形製剤を製造する場合には、化合物(1-1)または(1-2)またはその薬理学的に許容し得る塩に、必要に応じて、賦形剤、結合剤、崩壊剤、滑沢剤、着色剤剤などを添加し、常法により錠剤、顆粒剤、散剤、カプセル剤にすることができる。また、錠剤、顆粒剤、散剤、カプセル剤等は必要に応じて皮膜コーティングを施しても良い。
 賦形剤は、例えば、乳糖、コーンスターチ、結晶セルロース、等などが挙げられ、結合剤としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースなどが、崩壊剤としては、例えば、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム等を挙げることができる。
 滑沢剤としては、例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム等が、着色剤としては、例えば、酸化チタン等を挙げることができる。
 皮膜コーティング剤としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース等が挙げられる。
 上述したいずれの添加剤についても、もちろんこれらに限定される訳ではない。
 注射剤(静脈内投与用、筋肉内投与用、皮下投与用、腹腔内投与用)を製造する場合には、化合物(1-1)または(1-2)またはその薬理学的に許容し得る塩に、必要に応じて、pH調整剤、緩衝剤、懸濁化剤、溶解補助剤、抗酸化剤、保存剤(防腐剤)、等張化剤などを添加し、常法により製造することができる。また、凍結乾燥して、用時溶解型の凍結乾燥製剤としても良い。これらの注射剤は静脈内、皮下、筋肉内等に投与することができる。
 pH調整剤や緩衝剤としては、例えば、有機酸又は無機酸及び/又はその塩等を、懸濁化剤としては、例えば、メチルセルロース、ポリソルベート80、カルボキシメチルセルロースナトリウム、などを、溶解補助剤としては、例えば、ポリソルベート80、ポリオキシエチレンソルビタンモノラウレートなどを、抗酸化剤としては、例えば、α-トコフェロール等を、保存剤としては、例えば、パラオキシ安息香酸メチル、パラオキシ安息香酸エチルなどを、等張化剤としては、ブドウ糖、塩化ナトリウム、マンニトール等を挙げることができるが、もちろんこれらに限定される訳ではない。
 これらの注射液は、通常0.000001~99.5重量%、好ましくは0.00001~90重量%等の化合物(1-1)または(1-2)またはその薬理学的に許容し得る塩を含むことができる。
 外用剤を製造する場合には、化合物(1-1)または(1-2)またはその薬理学的に許容し得る塩に、基剤原料を添加し、必要に応じて、上述した乳化剤、保存剤、pH調整剤、着色剤等を加えて、常法により、経皮吸収製剤(軟膏剤、貼付剤等)、点眼剤、点鼻剤、坐剤等などを製造することができる。
 使用する基剤原料としては、医薬品、医薬部外品、化粧品等に通常使用される各種原料を用いることが可能で、例えば動植物油、鉱物油、エステル油、ワックス類、高級アルコール類、精製水などの原料が挙げられる。
 これらの外用剤は、通常0.000001~99.5重量%、好ましくは0.00001~90重量%等の化合物(1-1)または(1-2)またはその薬理学的に許容し得る塩を含むことができる。
 本発明にかかる医薬の投与量は、通常、症状、年齢、性別、体重等に応じて異なるが、所望の効果を奏するのに十分な量であればよい。例えば、成人の場合、1日あたり約0.1~5000mg(好ましくは0.5~1000mg、より好ましくは1~600mg)が、1日または複数日の間に1回または1日に2~6回に分けて使用される。
 化合物(1-1)または(1-2)は生理活性低分子化合物の標的タンパクを捕捉するためのケミカルプローブとすることができる。すなわち、化合物(1-1)または(1-2)は、当該化合物の活性発現に必須な構造部分とは異なる部分に、J. Mass Spectrum. Soc. Jpn. Vol. 51, No. 5 2003, p492-498またはWO2007/139149等に記載の手法で標識基、リンカー等を導入することでアフィニティークロマトグラフィー、フォトアフィニティープローブ等に変換することができる。
 ケミカルプローブに用いる標識基、リンカー等は、例えば以下の(1)ないし(5)からなる群に示される基が挙げられる。
(1)光親和性標識基(例えば、ベンゾイル基、ベンゾフェノン基、アジド基、カルボニルアジド基、ジアジリジン基、エノン基、ジアゾ基およびニトロ基等)および化学親和性基(例えば、アルファー炭素原子がハロゲン原子で置換されたケトン基、カルバモイル基、エステル基、アルキルチオ基、α、β-不飽和ケトン、エステル等のマイケル受容体、およびオキシラン基等)等のタンパク質標識基、
(2)-S-S-、-O-Si-O-、単糖(グルコース基、ガラクトース基等)または二糖(ラクトース等)等の開裂可能なリンカー、および酵素反応で開裂可能なオリゴペプチドリンカー、
(3)ビオチン、3-(4,4-ジフルオロ-5,7-ジメチル-4H-3a,4a-ジアザ-4-ボラ-s-インダセン-3-イル)プロピオニル基等のフィッシングタグ基、
(4)125I、32P、H、14Cなどの放射性標識基;フルオレセイン、ローダミン、ダンシル、ウンベリフェロン、7-ニトロフラザニル、3-(4,4-ジフルオロ-5,7-ジメチル-4H-3a,4a-ジアザ-4-ボラ-s-インダセン-3-イル)プロピオニル基等の蛍光標識基;ルミフェリン、ルミノール等の化学発光基;ランタノイド金属イオン、ラジウムイオン等の重金属イオン等の検出可能なマーカーまたは
(5)ガラスビーズ、ガラスベット、マイクロタイタープレート、アガロースビーズ、アガロースベッド、ポリスチレンビーズ、ポリスチレンベッド、ナイロンビーズ、ナイロンベッド等の固相担体と結合させる基等。
 上記の(1)ないし(5)からなる群より選択される標識基等を上記文献に記載の方法等に準じて化合物(1-1)または(1-2)に導入して調製されるプローブは、新たな創薬ターゲットの探索等に有用な標識タンパクの同定のためのケミカルプローブとして用いることができる。
 化合物(1-1)または(1-2)は、例えば、以下の実施例に記載した方法により製造することができ、また、化合物(1-1)または(1-2)の効果は、以下の試験例に記載した方法により確認することができる。ただし、これらは例示的なものであって、本発明は、如何なる場合も以下の具体例に制限されるものではない。
[実施例1]N-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-[2-(6-メチル-1,3-ジヒドロ-2-ベンゾフラン-5-イル)アセチル]チオフェン-3-スルホナミド
Figure JPOXMLDOC01-appb-C000019
 
 製造例1-7に記載のN-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-{2-[(6-メチル-1,3-ジヒドロ-2-ベンゾフラン-5-イル)メチル]-1,3-ジチアン-2-イル}チオフェン-3-スルホナミド(300mg、0.55mmol)、メタノール(20mL)、水(2mL)、および硝酸銀(940mg、5.5mmol)の混合物を55℃で3日間攪拌した。反応混合物を室温とし、同温でテトラヒドロフラン(40mL)と飽和食塩水(1mL)を加え、セライトを用いてろ過した。ろ液に酢酸エチル(200mL)、水(100mL)、飽和クエン酸水溶液(1mL)を加え、抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(メタノール:酢酸エチル=1:9)で精製後、さらにシリカゲル薄層クロマトグラフィー(メタノール:酢酸エチル=1:32)で精製し、標記化合物(45mg、18%収率)を得た。
 1H-NMR Spectrum
(DMSO-d6)δ(ppm):1.99(3H, s), 2.13(3H, s), 4.89(2H, s),
4.92(2H, s), 4.95(2H, s), 7.07(1H, s), 7.09(1H, s), 7.42(1H, d, J=5.1 Hz),
7.77(1H, d, J=5.1 Hz).
[製造例1-1]3-[(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)スルファモイル]チオフェン-2-カルボキシリック アシド
Figure JPOXMLDOC01-appb-C000020
 
 水素化ナトリウム(60%、2.1g、52mmol)とテトラヒドロフラン(20mL)の混合物に、0℃で4-クロロ-3-メチル-1,2-オキサゾール-5-アミン(3.0g、23mmol)とテトラヒドロフラン(20mL)の混合物を加え、同温で30分間攪拌した。反応混合物に、同温でメチル 3-(クロロスルホニル)チオフェン-2-カルボキシレート(5.3g、22mmol)を加え、0℃で1時間攪拌し、次いで、室温で4時間攪拌した。反応混合物に、室温でヘキサン(100mL)を加え、析出した固体をろ取した。固体にメタノール(20mL)を加え、次いで、2N水酸化ナトリウム水溶液(20mL)を加え、反応混合物を室温で5時間攪拌した。溶媒を減圧下留去し、残渣に氷水(20mL)を加え、次いで、2N塩酸水溶液(20mL)を加えた。析出した固体をろ取することにより、標記化合物(2.5g、35%収率)を得た。
 1H-NMR Spectrum
(DMSO-d6)δ(ppm): 2.16
(3H, d, J=1.8 Hz), 7.45 (1H, dd, J=1.3, 5.3 Hz), 7.95 (1H, dd, J=0.9, 5.3 Hz).
[製造例1-2]3-[(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)スルファモイル]-N-メトキシ-N-メチルチオフェン-2-カルボキサミド
Figure JPOXMLDOC01-appb-C000021
 
 製造例1-1に記載の3-[(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)スルファモイル]チオフェン-2-カルボキシリック アシド(2.5g、7.8mmol)とテトラヒドロフラン(25mL)の混合物に、室温で1,1’-カルボニルジイミダゾール(2.0g、12mmol)を加え、同温で30分間攪拌した。反応混合物に、室温でイミダゾール(1.1g、16mmol)とN,O-ジメチルヒドロキシルアミン塩酸塩(1.2g、12mmol)を順次加え、同温で5時間攪拌した。反応混合物に1N塩酸水溶液(50mL)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=9:1)で精製し、標記化合物(1.5g、53%収率)を得た。
 1H-NMR Spectrum
(CDCl3)δ(ppm): 2.23
(3H, s), 3.45 (3H, s), 3.74 (3H, s), 7.47 (1H, d, J=5.3 Hz), 7.53 (1H, d, J=5.3
Hz).
[製造例1-3]N-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-ホルミルチオフェン-3-スルホナミド
Figure JPOXMLDOC01-appb-C000022
 
 製造例1-2に記載の3-[(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)スルファモイル]-N-メトキシ-N-メチルチオフェン-2-カルボキサミド(8.0g、22mmol)とテトラヒドロフラン(160mL)の混合物に、-78℃でジイソブチルアルミニウム ヒドリド(46mL、48mmol、1.0M n-ヘキサン溶液)を滴下し、0℃で30分間攪拌した。反応混合物に、0℃で飽和塩化アンモニウム水溶液を滴下し、反応混合物を徐々に室温とし、同温で1時間攪拌した。反応混合物をセライトを用いてろ過し、ろ液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=30:1)で精製し、標記化合物(5.1g、75%収率)を得た。
 1H-NMR Spectrum
(DMSO-d6)δ(ppm): 1.97
(3H, s), 7.35 (1H, d, J=5.1 Hz), 7.97 (1H, d, J=5.1 Hz), 10.52 (1H, d, J=1.1
Hz).
[製造例1-4]5,11-ジオキサトリシクロ[7.3.0.0^{3,7}]ドデカ-1,3(7),8-トリエン
Figure JPOXMLDOC01-appb-C000023
 
 1,2,4,5-テトラキス-(ブロモメチル)-ベンゼン(150g、0.33mol)と1,4-ジオキサン(2L)の混合物に、55%テトラブチルアンモニウム ヒドロキシド水溶液(640mL)を室温で加え、90℃で6時間攪拌した。反応混合物を室温とし、2N塩酸水溶液(2L)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:9)で精製し、標記化合物(35g、63%収率)を得た。
 1H-NMR Spectrum
(CDCl3)δ(ppm): 5.10(8H,
s), 7.08(2H, s).
[製造例1-5](6-メチル-1,3-ジヒドロ-2-ベンゾフラン-5-イル)メタノール
Figure JPOXMLDOC01-appb-C000024
 
 リチウム パウダー(15g、2.1mol)、4,4’-ジ-tert-ブチルビフェニル(5.0g、0.021mol)とテトラヒドロフラン(200mL)の混合物に、製造例1-4に記載の5,11-ジオキサトリシクロ[7.3.0.0^{3,7}]ドデカ-1,3(7),8-トリエン(35g、0.21mol)とテトラヒドロフラン(100mL)の混合物を-78℃で加え、同温で4時間攪拌した。反応混合物に同温で水(10mol)を加え、よく攪拌した。反応混合物を室温とし、2N塩酸水溶液(500mL)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=3:7)で精製し、標記化合物(10g、30%収率)を得た。
 1H-NMR Spectrum
(DMSO-d6)δ(ppm): 2.24(3H,
s), 4.48(2H, d, J=5.3 Hz), 4.96(4H, s), 5.10(1H, t, J=5.3 Hz), 7.07(1H, s), 7.29(1H,
s).
[製造例1-6]5-(クロロメチル)-6-メチル-1,3-ジヒドロ-2-ベンゾフラン
Figure JPOXMLDOC01-appb-C000025
 
 製造例1-5に記載の(6-メチル-1,3-ジヒドロ-2-ベンゾフラン-5-イル)メタノール(1.0g、6.1mmol)およびジクロロメタン(10mL)の混合物に、氷冷下で、トリエチルアミン(1.7mL、12mmol)を加え、ついで同温でメタンスルホニル クロリド(470μL、6.1mmol)を加えた。反応混合物を室温で3時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=1:10)で精製し、標記化合物(680mg、61%収率)を得た。
 1H-NMR Spectrum
(CDCl3)δ(ppm): 2.44
(3H, s), 4.63 (2H, s), 5.08 (4H, s), 7.09 (1H, s), 7.20 (1H, s).
[製造例1-7]N-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-{2-[(6-メチル-1,3-ジヒドロ-2-ベンゾフラン-5-イル)メチル]-1,3-ジチアン-2-イル}チオフェン-3-スルホナミド
Figure JPOXMLDOC01-appb-C000026
 
 製造例1-3に記載のN-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-ホルミルチオフェン-3-スルホナミド(4.9g、16mmol)およびジクロロメタン(100mL)の混合物に、氷冷下で、ボロン トリフルオリド ジエチル エーテレート(8.1mL、64mmol)と1,3-プロパンジチオール(1.9mL、19mmol)を順次加え、室温で90分間攪拌した。反応混合物に氷冷下で水を加え、ジクロロメタンで抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製し、N-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-(1,3-ジチアン-2-イル)チオフェン-3-スルホナミドを粗体として得た。粗体のN-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-(1,3-ジチアン-2-イル)チオフェン-3-スルホナミドとテトラヒドロフラン(50mL)の混合物に、-78℃でn-ブチルリチウム(9.7mL、16mmol、1.6M n-ヘキサン溶液)を滴下し、内温-35℃で20分間攪拌した。反応混合物を-78℃に冷却し、同温で、製造例1-6に記載の5-(クロロメチル)-6-メチル-1,3-ジヒドロ-2-ベンゾフラン(960mg、5.3mmol)を加え、0℃で1時間攪拌した。反応混合物を-78℃に冷却し、同温で、酢酸(0.90mL、16mmol)とテトラヒドロフラン(7mL)の混合物を加えた。反応混合物を徐々に室温とし、同温で、水とクエン酸水溶液を加え、酢酸エチルを用いて抽出した。有機層を飽和食塩水で洗浄し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘプタン=4:1)で精製し、標記化合物(1.6g、54%収率)を得た。
 1H-NMR Spectrum
(DMSO-d6)δ(ppm):
1.68-1.76(1H, m), 2.01-2.05(1H, m), 2.15(3H, s), 2.20(3H, s), 2.80-2.85(4H, m),
3.73(2H, s), 4.79(2H, s), 4.90(2H, s), 6.64(1H, s), 7.02(1H, s), 7.44(1H, d,
J=5.5 Hz), 7.54(1H, d, J=5.5 Hz).
試験例1
 シタキセンタンおよび実施例1化合物のエンドセリン受容体A(EDNRA)に対する抑制効果
 ヒト由来のEDNRA(遺伝子番号NM_001957.2)のタンパクコード部分をマウス白血病由来レトロウイルスベクターによりHEK-293(Human Embryonic Kidney,ATCC番号CRL-1573)細胞に遺伝子導入し、EDNRA安定発現細胞株(EDNRA/293細胞)を作成した。ここでは培養液としてDMEM(Dulbecco‘s Modified Eagle Medium)に10%のウシ胎児血清とペニシリン・ストレプトマイシンを加えたものを用いた。
 測定前日にEDNRA/293細胞を5000細胞/ウェルとなるように384ウェルプレートに播種した。測定日にカルシウム測定用蛍光試薬(Calcium4、Molecular Device社)をHanks平衡緩衝液に溶解し各ウェルに添加し一時間程度放置した。その後一部のウェルには所定の最終濃度となるように調製したシタキセンタンおよび実施例1化合物(以下、検体と呼ぶ)を各ウェルに添加し一時間程度放置して検体をEDNRA/293細胞に作用させた。
 検体処置していないウェルにEDNRAのリガンド(活性化物質)であるエンドセリンを作用させ引き起こされる活性化(カルシウム上昇)反応を測定機器(FDSS7000,浜松ホトニクス)で検出したところ、図1に示すように用量依存的な活性化反応が得られた。ここで1nM以上の用量では活性化反応がほぼ飽和していた。このことから、以下の抑制反応の検出ではエンドセリンの用量を0.03,0.1または0.3nMに設定した。
 検体処置したそれぞれ別のウェルにエンドセリン0.03,0.1または0.3nMを作用させ引き起こされる活性化(カルシウム上昇)反応を測定機器(FDSS7000,浜松ホトニクス)で検出したところ、図2および図3に示すように、シタキセンタンおよび実施例1化合物はともにこの活性化反応を抑制した。
試験例2
CYP阻害作用
 シタキセンタンおよび実施例1化合物のCYP阻害作用は、以下の2通りの方法で試験した。
 シタキセンタンのCYP不活化作用に基づく阻害作用は、CYPを含むヒト肝ミクロゾーム画分と補酵素を含む溶液とのプレインキュベーションにより時間依存的な阻害作用の増強を試験することで評価できるため、実施例1化合物についても時間依存的阻害試験を方法1として実施した。また、未変化体の競合阻害に基づくCYP阻害作用を方法2として実施した。
方法1
 シタキセンタンおよび実施例1化合物について、5つのCYP分子種(CYP1A2,2C9,2C19,2D6および3A4)に対する時間依存的阻害能を評価した。
 酵素液(ヒト肝ミクロゾーム(0.2mg/mL)、100mM Kpi、0.1mM EDTAを含む)に被験物質を添加し、補酵素の存在下
又は非存在下において30分間37℃でプレインキュベーションした。被験物質の最終濃度は、0.1、0.2、0.4、0.5、1、2、10または50μMとした。また、補酵素はNADPH生成系(3.6mM β-NADP+、90mM グルコース 6-リン酸、 1Unit/mL グルコース 6-リン酸脱水素酵素を含む60mM MgCl溶液を5分間インキュベーションすることによりNADPHを生成させた溶液)を用いた。プレインキュベーション後、反応液を一部採取し、モデル基質溶液とNADPH生成系との混合により10倍に希釈した後、10分間37℃でインキュベーションした。アセトニトリルとメタノールの混合溶液(1:1,内標準として0.05μM Dextrophanまたは0.05μM Propranololを含む)を等量添加することにより反応を終了させ、反応液中のモデル基質代謝物をLC-MS/MSで測定した。各CYP分子種のモデル基質およびモデル基質代謝物について表1に示す。対象実験として被験物質非添加時においても同様の実験を行った。対象実験におけるモデル基質代謝物の量に対する比を残存活性とした。NADPH非存在下における残存活性に対するNADPH存在下の残存活性の比を評価し、80%以下であれば“+”、80%より大きければ“-”と定義した。結果を表2に示す。
 シタキセンタンおよび実施例1化合物の比較結果から、ベンゾジオキソール環をフタラン環に変換することで、時間依存的阻害が減弱することが明らかとなった。
Figure JPOXMLDOC01-appb-T000027
 
Figure JPOXMLDOC01-appb-T000028
ヒト肝ミクロソームと被験物質をプレインキュベーションしたときの各CYP活性に及ぼす影響(平均値、n=2)
 
方法2
 シタキセンタンおよび実施例1化合物について、5つのCYP分子種(CYP1A2、2C9、2C19、2D6および3A4)に対する競合阻害に基づく阻害能を調べた。
 モデル基質溶液を含む酵素液(ヒト肝ミクロソーム(0.2mg/mL)、100mM Kpi、0.1mM EDTAを含む)に被験物質を最終濃度が1または10μMとなるように添加し、NADPH生成系の存在下において10分間37℃でインキュベーションした。アセトニトリルとメタノールの混合溶液(1:1,内標準として0.05μM Dextrophanまたは0.05μ Propranololを含む)を等量添加することにより反応を終了させ、反応液中のモデル基質代謝物をLC-MS/MSで測定した。各CYP分子種のモデル基質およびモデル基質代謝物について表3に示す。対象実験として被験物質非添加時においても同様の実験を行った。被験物質添加時および非添加時のモデル基質代謝物の量から、各被験物質濃度に対して阻害率を求め、阻害率からIC50値を算出した(算出方法はXenobiotica. 1999, 29(1), 53-75.に準ずる)。IC50値が1μM以下であれば“++”、1から10μMの範囲であれば“+”、10μMより大きければ“-”と定義した。結果を表4に示す。
 シタキセンタンおよび実施例1化合物の比較結果から、ベンゾジオキソール環をフタラン環に変換することで、阻害能が減弱することが明らかとなった。
Figure JPOXMLDOC01-appb-T000029
各CYP分子種に対するモデル基質およびモデル基質代謝物
 
Figure JPOXMLDOC01-appb-T000030
各CYP分子種に対する被験物質の影響(n=2)
 

Claims (13)

  1.  式(1-1)もしくは(1-2)で表される化合物またはその薬理学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000001
     
    [式中、Rは、ハロゲン原子、メチル基、エチル基、トリフルオロメチル基、ペンタフルオロエチル基、n-プロピル基またはシクロプロピル基を意味し、Rは、水素原子、メチル基、エチル基、トリフルオロメチル基、ペンタフルオロエチル基、n-プロピル基またはシクロプロピル基を意味し、Rは、C1-6アルキル基またはC1-6アルコキシ基を意味し、Mは
    Figure JPOXMLDOC01-appb-C000002
     
    からなる群から選択される基を意味し、式中、Rは、水素原子、メチル基、またはエチル基を意味する。]
  2.  Mが、下式
    Figure JPOXMLDOC01-appb-C000003
     
    で表される基である、請求項1記載の化合物またはその薬理学的に許容される塩。
  3.  Mが、下式
    Figure JPOXMLDOC01-appb-C000004
     
    で表される基である、請求項1記載の化合物またはその薬理学的に許容される塩。
  4.  Rが、ハロゲン原子である、請求項1ないし3いずれか1項記載の化合物またはその薬理学的に許容される塩。
  5.  Rが、塩素原子である、請求項4記載の化合物またはその薬理学的に許容される塩。
  6.  Rが、メチル基である、請求項1ないし5いずれか1項記載の化合物またはその薬理学的に許容される塩。
  7.  Rが、C1-6アルキル基である、請求項1ないし6いずれか1項記載の化合物またはその薬理学的に許容される塩。
  8.  Rが、メチル基である、請求項7記載の化合物またはその薬理学的に許容される塩。
  9.  式(1-1)で表される化合物である、請求項1ないし8いずれか1項記載の化合物またはその薬理学的に許容される塩。
  10.  N-(4-クロロ-3-メチル-1,2-オキサゾール-5-イル)-2-[2-(6-メチル-1,3-ジヒドロ-2-ベンゾフラン-5-イル)アセチル]チオフェン-3-スルホナミドまたはその薬理学的に許容される塩。
  11.  請求項1ないし10いずれか1項記載の化合物またはその薬理学的に許容できる塩を含む医薬組成物。
  12.  エンドセリン受容体アンタゴニストである、請求項11記載の医薬組成物。
  13.  肺動脈性高血圧症治療・予防剤である、請求項11記載の医薬組成物。
     
PCT/JP2013/051857 2012-01-31 2013-01-29 シタキセンタン誘導体 WO2013115162A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
IN4945CHN2014 IN2014CN04945A (ja) 2012-01-31 2013-01-29
BR112014016204-2A BR112014016204B1 (pt) 2012-01-31 2013-01-29 Derivado de sitaxentana
ES13743422.1T ES2651293T3 (es) 2012-01-31 2013-01-29 Derivado de sitaxentán
JP2013556399A JP6144631B2 (ja) 2012-01-31 2013-01-29 シタキセンタン誘導体
KR1020147021115A KR101933251B1 (ko) 2012-01-31 2013-01-29 시탁센탄 유도체
AU2013216122A AU2013216122B9 (en) 2012-01-31 2013-01-29 Sitaxsentan derivative
RU2014126427A RU2622386C2 (ru) 2012-01-31 2013-01-29 Производное ситаксентана
CN201380005150.5A CN104039781B (zh) 2012-01-31 2013-01-29 西他生坦衍生物
EP13743422.1A EP2810943B1 (en) 2012-01-31 2013-01-29 Sitaxentan derivative
CA2861477A CA2861477C (en) 2012-01-31 2013-01-29 Sitaxentan derivative
MX2014007619A MX358151B (es) 2012-01-31 2013-01-29 Derivado de sitaxentan.
IL233171A IL233171A (en) 2012-01-31 2014-06-16 A derivative of Sitaxanthan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261592923P 2012-01-31 2012-01-31
US61/592923 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013115162A1 true WO2013115162A1 (ja) 2013-08-08

Family

ID=48870751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051857 WO2013115162A1 (ja) 2012-01-31 2013-01-29 シタキセンタン誘導体

Country Status (16)

Country Link
US (1) US8592470B2 (ja)
EP (1) EP2810943B1 (ja)
JP (1) JP6144631B2 (ja)
KR (1) KR101933251B1 (ja)
CN (1) CN104039781B (ja)
AR (1) AR089838A1 (ja)
AU (1) AU2013216122B9 (ja)
BR (1) BR112014016204B1 (ja)
CA (1) CA2861477C (ja)
ES (1) ES2651293T3 (ja)
IL (1) IL233171A (ja)
IN (1) IN2014CN04945A (ja)
MX (1) MX358151B (ja)
RU (1) RU2622386C2 (ja)
TW (1) TW201336496A (ja)
WO (1) WO2013115162A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270487A1 (ja) 2021-06-22 2022-12-29 株式会社アークメディスン 化合物、エンドセリンa受容体拮抗剤及び医薬組成物
WO2024101440A1 (ja) * 2022-11-11 2024-05-16 株式会社アークメディスン 化合物、エンドセリンa受容体拮抗剤、アンジオテンシンiiタイプ1受容体拮抗剤及び医薬組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659369A (en) 1984-08-27 1987-04-21 E. I. Du Pont De Nemours And Company Herbicidal acetals and ketals
US4753672A (en) 1985-07-16 1988-06-28 E. I. Du Pont De Nemours And Company Herbicidal acetals and ketals
US4861366A (en) 1984-08-27 1989-08-29 E. I. Du Pont De Nemours And Company Herbicidal acetals and ketals
WO1996031492A1 (en) 1995-04-04 1996-10-10 Texas Biotechnology Corporation Thienyl-, furyl-, pyrrolyl- and biphenylsulfonamides and derivatives thereof that modulate the activity of endothelin
WO2007139149A1 (ja) 2006-05-31 2007-12-06 Eisai R & D Management Co., Ltd. 生物学的試薬用化合物
WO2008124803A1 (en) 2007-04-10 2008-10-16 Auspex Pharmaceuticals, Inc. Substituted deuterium enriched thiophenes for the treatment of hypertension

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW224462B (ja) * 1992-02-24 1994-06-01 Squibb & Sons Inc
PL197782B1 (pl) * 1999-12-31 2008-04-30 Encysive Pharmaceuticals Inc Sulfonoamidy, środek farmaceutyczny i zastosowanie sulfonoamidów
US20060205733A1 (en) * 2004-08-26 2006-09-14 Encysive Pharmaceuticals Endothelin a receptor antagonists in combination with phosphodiesterase 5 inhibitors and uses thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659369A (en) 1984-08-27 1987-04-21 E. I. Du Pont De Nemours And Company Herbicidal acetals and ketals
US4861366A (en) 1984-08-27 1989-08-29 E. I. Du Pont De Nemours And Company Herbicidal acetals and ketals
US4659369B1 (ja) 1984-08-27 1989-10-10
US4753672A (en) 1985-07-16 1988-06-28 E. I. Du Pont De Nemours And Company Herbicidal acetals and ketals
US4753672B1 (ja) 1985-07-16 1990-02-27 Du Pont
WO1996031492A1 (en) 1995-04-04 1996-10-10 Texas Biotechnology Corporation Thienyl-, furyl-, pyrrolyl- and biphenylsulfonamides and derivatives thereof that modulate the activity of endothelin
WO2007139149A1 (ja) 2006-05-31 2007-12-06 Eisai R & D Management Co., Ltd. 生物学的試薬用化合物
WO2008124803A1 (en) 2007-04-10 2008-10-16 Auspex Pharmaceuticals, Inc. Substituted deuterium enriched thiophenes for the treatment of hypertension

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Selectivity in the inhibition of Mammalian Cytochrome P-450 by Chemical Agents", PHARMACOLOGICAL REVIEWS, vol. 42, 1990, pages 85
CURRENT DRUG METABOLISM, vol. 6, 2005, pages 413
DRUG METABOLISM AND DISPOSITION, vol. 31, 2003, pages 289
J. MASS SPECTRUM. SOC. JPN., vol. 51, no. 5, 2003, pages 492 - 498
See also references of EP2810943A4
XENOBIOTICA, vol. 29, no. 1, 1999, pages 53 - 75

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270487A1 (ja) 2021-06-22 2022-12-29 株式会社アークメディスン 化合物、エンドセリンa受容体拮抗剤及び医薬組成物
KR20240022646A (ko) 2021-06-22 2024-02-20 앨커메디신, 인크. 화합물, 엔도텔린 a 수용체 길항제 및 의약 조성물
AU2022297082B2 (en) * 2021-06-22 2024-04-18 Alchemedicine, Inc. Compound, endothelin A receptor antagonist and pharmaceutical composition
JP7531947B2 (ja) 2021-06-22 2024-08-13 株式会社アークメディスン 化合物、エンドセリンa受容体拮抗剤及び医薬組成物
WO2024101440A1 (ja) * 2022-11-11 2024-05-16 株式会社アークメディスン 化合物、エンドセリンa受容体拮抗剤、アンジオテンシンiiタイプ1受容体拮抗剤及び医薬組成物

Also Published As

Publication number Publication date
CA2861477A1 (en) 2013-08-08
CA2861477C (en) 2018-01-02
CN104039781B (zh) 2016-08-17
CN104039781A (zh) 2014-09-10
US8592470B2 (en) 2013-11-26
MX2014007619A (es) 2014-09-15
JPWO2013115162A1 (ja) 2015-05-11
AU2013216122B2 (en) 2016-12-08
US20130197045A1 (en) 2013-08-01
KR101933251B1 (ko) 2018-12-27
KR20140117455A (ko) 2014-10-07
BR112014016204B1 (pt) 2020-09-24
ES2651293T3 (es) 2018-01-25
AR089838A1 (es) 2014-09-17
MX358151B (es) 2018-08-07
JP6144631B2 (ja) 2017-06-07
EP2810943B1 (en) 2017-09-27
BR112014016204A2 (pt) 2017-06-13
EP2810943A4 (en) 2015-09-02
IL233171A0 (en) 2014-07-31
RU2014126427A (ru) 2016-03-20
EP2810943A1 (en) 2014-12-10
AU2013216122A1 (en) 2014-07-24
BR112014016204A8 (pt) 2017-07-04
IL233171A (en) 2017-07-31
RU2622386C2 (ru) 2017-06-15
IN2014CN04945A (ja) 2015-09-18
AU2013216122B9 (en) 2017-02-02
TW201336496A (zh) 2013-09-16

Similar Documents

Publication Publication Date Title
JP7033141B2 (ja) メニン-mll相互作用の縮合二環式阻害剤
RU2684102C2 (ru) Способ получения лекарственных средств
CN103582638A (zh) 杂芳基并嘧啶类衍生物、其制备方法和用途
CN111484504B (zh) Acc抑制剂的光学异构体及其应用
JP6144631B2 (ja) シタキセンタン誘導体
JP6055784B2 (ja) パロキセチン誘導体
WO2013115167A1 (ja) アムバチニブ誘導体
RU2615135C2 (ru) Производное пирролидин-3-илуксусной кислоты
KR20070110102A (ko) 신규 3-아릴-1,2-벤즈이속사졸 유도체, 그를 함유하는조성물 및 그의 용도
JP2016003186A (ja) フタラン環含有アデノシンa2a受容体拮抗薬
TWI855993B (zh) 作為vanin抑制劑之雜芳族化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556399

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 233171

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/007619

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2861477

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013216122

Country of ref document: AU

Date of ref document: 20130129

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013743422

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013743422

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147021115

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014016204

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014126427

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112014016204

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140630