WO2013114967A1 - 酸化亜鉛スパッタリングターゲット及びその製造方法 - Google Patents

酸化亜鉛スパッタリングターゲット及びその製造方法 Download PDF

Info

Publication number
WO2013114967A1
WO2013114967A1 PCT/JP2013/050905 JP2013050905W WO2013114967A1 WO 2013114967 A1 WO2013114967 A1 WO 2013114967A1 JP 2013050905 W JP2013050905 W JP 2013050905W WO 2013114967 A1 WO2013114967 A1 WO 2013114967A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
sputtering target
sputtering
plate
sintered body
Prior art date
Application number
PCT/JP2013/050905
Other languages
English (en)
French (fr)
Inventor
吉川 潤
克宏 今井
浩一 近藤
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2013556307A priority Critical patent/JP6058562B2/ja
Publication of WO2013114967A1 publication Critical patent/WO2013114967A1/ja
Priority to US14/305,267 priority patent/US9318307B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0037Materials containing oriented fillers or elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/081Sputtering sources

Definitions

  • the present invention relates to a zinc oxide sputtering target and a manufacturing method thereof.
  • ITO Indium tin oxide
  • ZnO zinc oxide
  • the production of transparent conductive films is industrially mainstream by sputtering. Since the sputtering target becomes high temperature during sputtering, it is cooled by a backing plate having a water channel inside. For this reason, thermal stress tends to occur inside the target due to a temperature difference between the sputtering surface exposed to high temperature and the backing plate surface cooled with water, and the target may crack.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-215629
  • the value of the linear thermal expansion coefficient in the direction perpendicular to the sputtering surface of the target is increased by 10% or more from the value in the direction parallel to the sputtering surface. It is disclosed that generation can be suppressed.
  • the input power at the time of sputtering is increased in order to increase productivity, the effect of suppressing cracks is not sufficient.
  • Patent Document 2 Patent No. 3128861
  • Patent Document 3 Patent No. 3331755
  • the sputtered film quality can be improved by orienting the (101) plane or the (002) plane of zinc oxide, but it does not deal with crack suppression of the target.
  • JP 2009-215629 A Japanese Patent No. 3128861 Japanese Patent No. 3301755
  • the present inventors have effectively suppressed the generation of cracks and cracks in the target during sputtering by setting the degree of (100) orientation on the sputtering surface to 50% or more.
  • the knowledge that a zinc transparent conductive film can be manufactured with high productivity was acquired.
  • an object of the present invention is to provide a zinc oxide sputtering target that effectively suppresses the generation of cracks and cracks in the target during sputtering and makes it possible to produce a zinc oxide transparent conductive film with high productivity. There is to do.
  • a zinc oxide sputtering target comprising a zinc oxide sintered body comprising zinc oxide crystal particles and having a (100) orientation degree of 50% or more on the sputtering surface.
  • a method for producing a zinc oxide sputtering target comprising: Preparing a plate-like zinc oxide powder having a volume-based D50 average particle size of 0.1 to 1.0 ⁇ m; A step of orienting the plate-like zinc oxide powder by a technique using a shearing force to obtain an oriented molded body; A method for producing a zinc oxide sputtering target, comprising: firing the oriented molded body at a firing temperature of 1000 to 1400 ° C. to obtain a zinc oxide sintered body comprising oriented zinc oxide crystal particles.
  • a zinc oxide transparent conductive film obtained by sputtering using the sputtering target according to the above aspect.
  • FIG. 2 is an SEM image of spherical secondary particles produced by flocculating the primary zinc oxide particles produced in Example 1.
  • FIG. 2 is an SEM image of plate-like primary particles produced in Example 1 after ball milling.
  • 4 is a SEM image after polishing and etching of a cross section of a zinc oxide sintered body taken in Example 2.
  • FIG. 3 is an XRD profile of a zinc oxide sintered body measured in Example 2.
  • the zinc oxide sputtering target according to the present invention comprises a zinc oxide sintered body comprising zinc oxide crystal particles, and the (100) orientation degree on the sputter surface is 50% or more, preferably 75% or more. More preferably, it is 90% or more.
  • the (100) orientation degree on the sputter surface is 50% or more, preferably 75% or more. More preferably, it is 90% or more.
  • the zinc oxide crystal has a hexagonal wurtzite structure, but the coefficient of thermal expansion of the c-axis is 4.5 ⁇ 10 ⁇ 6 / ° C., and the coefficient of thermal expansion of the a-axis is 7.8 ⁇ 10 ⁇ 6 / Below °C. Since the (100) plane is a plane parallel to the c-axis, the c-axis having a lower coefficient of thermal expansion than the a-axis is obtained by increasing the degree of (100) orientation on the sputter surface to 50% or more. It will turn inward.
  • thermal stress is likely to occur inside the target due to the temperature difference between the sputtering surface exposed to high temperature and the backing plate surface cooled with water, and the thermal stress also works in the in-sputter surface direction. This is because the target surface has a high thermal expansion due to the high temperature, whereas the target backing plate side has a low thermal expansion due to the low thermal expansion, resulting in distortion in the sputtering surface direction. Note that such thermal stress does not occur in the thickness direction of the target.
  • the c-axis having a lower coefficient of thermal expansion than the a-axis is directed in the in-sputter plane direction, which is the direction in which thermal stress is generated, Thermal expansion in the target in-plane direction that causes cracks and cracks can be reduced.
  • the zinc oxide sintered body is configured to include zinc oxide crystal particles. That is, the zinc oxide sintered body is a solid in which countless zinc oxide crystal particles are bonded to each other by sintering.
  • Zinc oxide crystal particles are particles composed of zinc oxide, and may contain dopants and inevitable impurities such as 3B group elements such as Al and Ga as other elements, or from zinc oxide and inevitable impurities. It may be. Such other elements may be substituted with hexagonal wurtzite structure Zn sites or O sites, may be included as additive elements that do not constitute a crystal structure, or exist at grain boundaries. It may be a thing.
  • the zinc oxide sintered body may also contain other phases or other elements as described above in addition to the zinc oxide crystal particles, but preferably comprises zinc oxide crystal particles and inevitable impurities.
  • the zinc oxide sintered body in the present invention has a (100) orientation degree of 50% or more on the sputtering surface, preferably 75% or more, more preferably 90% or more.
  • the higher the (100) orientation degree the more effectively the thermal stress in the target in-plane direction that causes cracks and cracks can be reduced more effectively. Therefore, the upper limit of the (100) orientation degree on the sputtering surface should not be particularly limited, and ideally is 100%.
  • the degree of orientation of the (100) plane is determined by irradiating the surface of the disk-shaped zinc oxide sintered body with X-rays using an XRD apparatus (for example, product name “RINT-TTR III” manufactured by Rigaku Corporation). This can be done by measuring the XRD profile.
  • the (100) orientation degree F is calculated by the following formula.
  • the aspect ratio of the zinc oxide crystal particles in the cross section perpendicular to the sputtering surface is preferably 2.0 or less, more preferably 1.5 or less, and even more preferably 1.3 or less.
  • This aspect ratio is a length ratio of (direction parallel to the sputter surface) / (direction perpendicular to the sputter surface), and as this ratio is closer to 1, the anisotropy is reduced and becomes isotropic. When it is oriented, peeling between crystal planes hardly occurs and the strength is improved, thereby contributing to the suppression of cracks and cracks.
  • This aspect ratio can be determined as follows.
  • the visual field range is a visual field range in which straight lines that intersect with 10 to 30 particles can be drawn when straight lines parallel to and perpendicular to the disk surface are drawn.
  • a value obtained by multiplying the average length of the inner line segment of each particle by 1.5 for all particles intersecting the straight line is a 1
  • a value obtained by multiplying the average of the lengths of the inner line segments of each particle by 1.5 for all the particles intersecting with each other is a 2 and a 1 / a 2 is the aspect ratio.
  • the average particle diameter of the zinc oxide crystal particles is preferably 1 to 50 ⁇ m, more preferably 2 to 35 ⁇ m, and further preferably 3 to 20 ⁇ m. Particularly preferred is 3 to 10 ⁇ m.
  • This average particle size can be determined as follows. When the average particle size is such, the aspect ratio of the zinc oxide crystal particles can be sufficiently reduced, the strength of the sintered body can be increased, and cracks and crack suppression can be more effectively realized.
  • This average particle size can be determined as follows. That is, in a cubic sample cut out from a disk-shaped sintered body (sputtering target) and having a side of 5 mm, the surface perpendicular to the disk surface was polished and etched with nitric acid having a concentration of 0.3 M for 10 seconds.
  • the visual field range is a visual field range in which straight lines that intersect with 10 to 30 particles can be drawn when straight lines parallel to and perpendicular to the disk surface are drawn.
  • a value obtained by multiplying the average length of the inner line segment of each particle by 1.5 for all particles intersecting the straight line is a 1
  • a value obtained by multiplying the average of the lengths of the inner line segments of each particle by 1.5 for all the particles intersecting with each other is a 2 and (a 1 + a 2 ) / 2 is the average particle size.
  • the zinc oxide sputtering target according to the present invention as described above can be manufactured as follows.
  • a plate-like zinc oxide powder having a volume-based D50 average particle diameter of 0.1 to 1.0 ⁇ m, preferably 0.3 to 0.8 ⁇ m is prepared.
  • This volume standard D50 average particle diameter can be measured by a laser diffraction particle size distribution measuring apparatus.
  • the production method of the present invention is characterized by using a fine plate-shaped raw material powder at a submicron level.
  • an oriented sintered body has been manufactured by using plate-like raw material powder having a particle diameter of several ⁇ m and arranging plate-like particles by press molding or the like (see, for example, Patent Document 1).
  • an oriented sintered body produced by such a method usually has an increased crystal grain aspect ratio, a reduced in-plane strength, and is susceptible to cracking and cracking due to thermal stress. That is, according to the knowledge of the present inventors, the coarse plate-like raw material powder of several ⁇ m does not change the aspect ratio of the sintered body crystal particles so much even when the grains grow, and the anisotropy tends to remain. .
  • the present invention it is possible to obtain a high degree of sintered body orientation even with a fine material by using the fine plate-like raw material powder of the submicron order and using an orientation method using a shearing force. Become. Furthermore, by growing grains of fine plate-like raw material powder on the order of submicron during sintering (preferably to 3 ⁇ m or more), the aspect ratio of sintered crystal grains is reduced, and anisotropy is significantly reduced. , Cracks and cracks are effectively suppressed.
  • Such a submicron level plate-like zinc oxide powder may be produced by any method.
  • an alkaline aqueous solution is added to an aqueous zinc salt solution and stirred at 60 to 95 ° C. for 2 to 10 hours.
  • a precipitate is deposited, and the precipitate can be obtained by washing and drying, and further pulverizing.
  • the aqueous zinc salt solution may be an aqueous solution containing zinc ions, and is preferably an aqueous solution of a zinc salt such as zinc nitrate, zinc chloride, or zinc acetate.
  • the alkaline aqueous solution is preferably an aqueous solution of sodium hydroxide, potassium hydroxide or the like.
  • the concentration and mixing ratio of the zinc salt aqueous solution and the alkaline aqueous solution are not particularly limited, but it is preferable to mix the zinc salt aqueous solution and the alkaline aqueous solution having the same molar concentration in the same volume ratio. It is preferable to wash the precipitate with ion exchange water a plurality of times.
  • Alkaline aqueous solution is an aqueous solution of nitrogen-containing basic organic compounds such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, guanidine, etc., because it can suppress contamination by impurities of alkali metal elements and alkaline earth metal elements. More preferable.
  • the washed precipitate is preferably dried at 100 to 300 ° C. Since the dried precipitate is a spherical secondary particle in which plate-like zinc oxide primary particles are aggregated, it is preferably subjected to a pulverization step. This pulverization is preferably carried out by adding a solvent such as ethanol to the washed precipitate in a ball mill for 1 to 10 hours. By this pulverization, plate-like zinc oxide powder as primary particles is obtained.
  • a solvent such as ethanol
  • the plate-like zinc oxide powder is oriented by a technique using shearing force to form an oriented molded body.
  • another element or component such as a metal oxide powder for dopant (for example, ⁇ -Al 2 O 3 powder) may be added to the plate-like zinc oxide powder.
  • the technique using shearing force include tape molding, extrusion molding, doctor blade method, and any combination thereof.
  • the orientation method using the shearing force is made into a slurry by appropriately adding additives such as a binder, a plasticizer, a dispersant, and a dispersion medium to the plate-like zinc oxide powder.
  • the slit width of the discharge port is preferably 10 to 400 ⁇ m.
  • the amount of the dispersion medium is preferably such that the slurry viscosity is 5000 to 100,000 cP, more preferably 20000 to 60000 cP.
  • the thickness of the oriented molded body formed into a sheet is preferably 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m. It is preferable to stack a large number of oriented molded bodies formed in this sheet shape to form a precursor laminate having a desired thickness, and press-mold the precursor laminate.
  • This press molding can be preferably performed by isostatic pressing at a pressure of 10 to 2000 kgf / cm 2 in warm water at 50 to 95 ° C. by packaging the precursor laminate with a vacuum pack or the like.
  • the sheet-shaped molded body is integrated and laminated in the mold after passing through a narrow discharge port in the mold due to the design of the flow path in the mold.
  • the molded body may be discharged.
  • the obtained molded body is preferably degreased according to known conditions.
  • the oriented molded body obtained as described above is fired at a firing temperature of 1000 to 1400 ° C., preferably 1100 to 1350 ° C., to form a zinc oxide sintered body comprising oriented zinc oxide crystal particles.
  • the firing time at the above-mentioned firing temperature is not particularly limited, but is preferably 1 to 10 hours, and more preferably 2 to 5 hours.
  • the zinc oxide sintered body thus obtained has a high degree of (100) orientation on the sputter surface, preferably 50% or more, and typically has an aspect ratio of crystal grains of 2 in the cross section perpendicular to the sputter surface. 0.0 or less.
  • Example 1 A raw material powder of zinc oxide was produced by the following method.
  • a zinc (NO 3 ) 2 aqueous solution with a concentration of 0.1 M was prepared using zinc nitrate hexahydrate (manufactured by Kanto Chemical Co., Inc.).
  • a 0.1 M NaOH aqueous solution was prepared using sodium hydroxide (manufactured by Sigma-Aldrich).
  • a Zn (NO 3 ) 2 aqueous solution was mixed with the NaOH aqueous solution at a volume ratio of 1: 1, and the mixture was held at 80 ° C. for 6 hours with stirring to obtain a precipitate.
  • FIG. 1 shows an electron microscope image of the secondary particles obtained.
  • FIG. 2 shows an electron microscope image of the plate-like primary particles obtained.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer DOP: di (2-ethylhexyl) phthalate
  • Kurokin Kasei Co., Ltd. 3 parts by weight of a dispersant (product name: Leodol SP-O30, Kao Corporation) and a dispersion medium (2-ethylhexanol) were mixed.
  • the amount of the dispersion medium was adjusted so that the slurry viscosity was 10,000 cP.
  • the slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 20 ⁇ m.
  • the obtained tape was cut into a circle having a diameter of 140 mm, 500 pieces of cutting tape were stacked, placed on an aluminum plate having a thickness of 10 mm, and then vacuum-packed.
  • This vacuum pack was hydrostatically pressed in warm water at 85 ° C. at a pressure of 100 kgf / cm 2 to produce a disk-shaped molded body.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. for 20 hours.
  • the obtained degreased body was fired in the atmosphere at 1300 ° C. for 5 hours under normal pressure to obtain a disk-shaped zinc oxide sintered body as a sputtering target.
  • the degree of orientation of the (100) plane of the obtained sintered body was measured by XRD. This measurement was performed by measuring the XRD profile when X-rays were irradiated on the surface of the disc-shaped zinc oxide using an XRD apparatus (product name “RINT-TTR III” manufactured by Rigaku Corporation).
  • the (100) orientation degree F was calculated by the following formula. The value of orientation degree F in this example was 0.55.
  • a cubic sample having a side of 5 mm was cut out from the obtained disk-shaped sintered body, and the average coefficient of thermal expansion was measured in the range of 25 ° C to 1000 ° C.
  • the thermal expansion coefficient in the in-plane direction was 6.3 ⁇ 10 ⁇ 6 / ° C.
  • the thermal expansion coefficient in the thickness direction was 7.2 ⁇ 10 ⁇ 6 / ° C.
  • the average particle diameter and aspect ratio of the sintered particles were measured by the following method.
  • the surface perpendicular to the disk surface was polished, etched with nitric acid having a concentration of 0.3 M for 10 seconds, and then an image was taken with a scanning electron microscope.
  • the visual field range was such that a straight line intersecting 10 to 30 particles could be drawn when straight lines parallel and perpendicular to the disk surface were drawn.
  • a value obtained by multiplying the average length of the inner line segment of each particle by 1.5 for all particles intersecting the straight line is a 1
  • a value obtained by multiplying the average of the lengths of the inner line segments of each particle by 1.5 for all the particles intersecting with each other is a 2
  • a 1 / a 2 was the aspect ratio
  • (a 1 + a 2 ) / 2 was the average particle size.
  • sputtering target Another disc-like sintered body (sputtering target) produced under the same conditions was joined to a copper backing plate with indium and placed in an RF magnetron sputtering apparatus.
  • RF magnetron sputtering apparatus sputtering was performed in a pure Ar atmosphere, a pressure of 0.5 Pa, and an input power of 150 W for 30 minutes.
  • cracks did not occur in all the targets.
  • Example 2 A target was prepared and sputtered in the same manner as in Example 1 except that the amount of the dispersion medium was reduced so that the slurry viscosity was 45000 cP. As a result, the degree of orientation was improved to 0.97.
  • FIG. 3 shows an SEM image after polishing and etching of the cross section of the zinc oxide sintered body. As shown in FIG. 3, it can be seen that the zinc oxide particles of the raw material powder that was plate-like have grown into an isotropic crystal particle structure.
  • FIG. 4 shows the XRD profile of the zinc oxide sintered body. As shown in FIG. 4, it can be seen that the diffraction intensity peak in the (100) plane is prominently high, and the (100) plane is highly oriented. No cracks occurred in all five targets.
  • Example 3 A target was prepared and sputtered in the same manner as in Example 2 except that the firing temperature was 1200 ° C. All targets did not crack.
  • Example 4 A target was prepared and sputtered in the same manner as in Example 2 except that the firing temperature was 1350 ° C. All targets did not crack.
  • Example 5 In addition to the composition of Example 1, 2 parts by weight of ⁇ -Al 2 O 3 having an average particle size of 0.4 ⁇ m was added. Other manufacturing conditions are the same as in Example 2. All targets did not crack. In the measurement of the particle size, fine particles (those with a diameter of an inscribed circle of 500 nm or less) estimated as a ZnAl 2 O 4 phase were excluded.
  • Example 6 (Comparison) A commercially available zinc oxide powder (manufactured by Shodo Chemical Co., Ltd., one type of zinc oxide, volume-based D50 average particle size 0.6 ⁇ m) was uniaxially press-formed into a disk shape, and then hydrostatically pressed at 2 tf / cm 2 . As a result of firing at 1300 ° C. ⁇ 5 hr, a sintered body having an orientation degree of 0.02 was obtained. As a result of performing the same sputtering as in Example 1, cracks occurred in all the targets.
  • Example 7 Using the slurry prepared in Example 1, a sheet-like molded body having a thickness of 4 ⁇ m was prepared. Lamination was not performed, and after degreasing at 650 ° C. for 20 hours, firing was performed at 1300 ° C. for 5 hours to produce a zinc oxide sheet-like sintered body. The obtained zinc oxide sheet-like sintered body was roughly pulverized in a mortar and then pulverized to a volume-based D50 average particle size of 20 ⁇ m with a ball mill to produce a plate-like zinc oxide powder.
  • the obtained plate-like zinc oxide powder and the commercially available zinc oxide powder used in Example 6 were mixed at a weight ratio of 1: 1, and then uniaxial press molding was performed at a pressure of 200 kgf / cm 2 .
  • the obtained press-molded body was fired at 1350 ° C. for 5 hours to produce a sintered body.
  • cracks occurred in one of the five targets.

Abstract

 スパッタリング時におけるターゲットの割れやクラックの発生を効果的に抑制して、酸化亜鉛透明導電膜を高い生産性で製造することを可能とする、酸化亜鉛スパッタリングターゲットが提供される。この酸化亜鉛スパッタリングターゲットは、酸化亜鉛結晶粒子を含んで構成される酸化亜鉛焼結体からなり、スパッタ面における(100)配向度が50%以上である。

Description

酸化亜鉛スパッタリングターゲット及びその製造方法 関連出願の相互参照
 この出願は、2012年1月30日に出願された日本国特許出願2012-16456号及び2012年9月25日に出願された日本国特許出願2012-211222号に基づく優先権を主張するものであり、それらの全体の開示内容が参照により本明細書に組み込まれる。
 本発明は、酸化亜鉛スパッタリングターゲット及びその製造方法に関するものである。
 電子デバイス等に用いられる透明導電膜として、インジウム錫酸化物(ITO)等が長年にわたって広く用いられている。しかしながら、近年のインジウム等のレアメタルの価格高騰といった背景もあり、その代替材料が強く望まれている。そこで、近年、より安価な酸化亜鉛(ZnO)を用いて透明導電膜を作製しようとする試みが盛んに検討されているが、抵抗が十分に下がらず望ましい導電性が得られない等の種々の問題があるため、未だ本格的には採用されていない。
 一方、透明導電膜の作製はスパッタリングによって行われるのが工業的に主流となっている。スパッタリングターゲットは、スパッタリング中に高温となるため、内部に水路を配したバッキングプレートにより冷却される。このため、高温にさらされるスパッタ面と水冷されるバッキングプレート面との間の温度差によってターゲット内部に熱応力が発生しやすく、ターゲットにクラックが入ることがある。
 特許文献1(特開2009-215629号公報)には、ターゲットのスパッタ面に垂直な向きにおける線熱膨張率の値を、スパッタ面に平行な向きにおける値より10%以上大きくすることによりクラックの発生を抑制できることが開示されている。しかしながら、生産性を上げるためにスパッタリング時の投入電力を大きくした場合、クラックの抑制効果は十分でなかった。
 特許文献2(特許第3128861号公報)及び特許文献3(特許第3301755号公報)には酸化亜鉛焼結体からなるスパッタリングターゲットが開示されている。これらの文献には酸化亜鉛の(101)面又は(002)面を配向させることによりスパッタ膜質を改善できることが開示されているが、ターゲットのクラック抑制に対処したものではない。
特開2009-215629号公報 特許第3128861号公報 特許第3301755号公報
 本発明者らは、今般、酸化亜鉛スパッタリングターゲットにおいて、スパッタ面における(100)配向度を50%以上とすることにより、スパッタリング時におけるターゲットの割れやクラックの発生を効果的に抑制して、酸化亜鉛透明導電膜を高い生産性で製造することができるとの知見を得た。
 したがって、本発明の目的は、スパッタリング時におけるターゲットの割れやクラックの発生を効果的に抑制して、酸化亜鉛透明導電膜を高い生産性で製造することを可能とする、酸化亜鉛スパッタリングターゲットを提供することにある。
 本発明の一態様によれば、酸化亜鉛結晶粒子を含んで構成される酸化亜鉛焼結体からなり、スパッタ面における(100)配向度が50%以上である、酸化亜鉛スパッタリングターゲットが提供される。
 本発明の他の一態様によれば、酸化亜鉛スパッタリングターゲットの製造方法であって、
 体積基準D50平均粒径が0.1~1.0μmの板状酸化亜鉛粉末を用意する工程と、
 前記板状酸化亜鉛粉末を、せん断力を用いた手法により配向させて配向成形体を得る工程と、
 前記配向成形体を1000~1400℃の焼成温度で焼成して、酸化亜鉛結晶粒子を配向して含んでなる酸化亜鉛焼結体を得る工程と
を含んでなる、酸化亜鉛スパッタリングターゲットの製造方法が提供される。
 本発明の他の一態様によれば、上記態様によるスパッタリングターゲットを用いたスパッタリングによって得られた、酸化亜鉛透明導電膜が提供される。
例1で作製された、板状の酸化亜鉛一次粒子が凝集した球状二次粒子のSEM画像である。 例1で作製された、ボールミル粉砕後の板状一次粒子のSEM画像である。 例2で撮影された酸化亜鉛焼結体断面の研磨及びエッチング後のSEM画像である。 例2で測定された酸化亜鉛焼結体のXRDプロファイルである。
 酸化亜鉛スパッタリングターゲット
 本発明による酸化亜鉛スパッタリングターゲットは、酸化亜鉛結晶粒子を含んで構成される酸化亜鉛焼結体からなり、スパッタ面における(100)配向度が50%以上、好ましくは75%以上、より好ましくは90%以上である。このように、酸化亜鉛結晶の(100)面をスパッタ面に沿って配向させることで、スパッタリング時におけるターゲットの割れやクラックの発生を効果的に抑制して、酸化亜鉛透明導電膜を高い生産性で製造することが可能となる。
 すなわち、酸化亜鉛結晶は六方晶ウルツ鉱型構造を有するが、c軸の熱膨張率は4.5×10-6/℃であり、a軸の熱膨張率の7.8×10-6/℃よりも低い。そして、(100)面はc軸と平行な面であることから、スパッタ面における(100)配向度を50%以上と高くすることで、a軸よりも熱膨張率の低いc軸がスパッタ面内方向を向くことになる。一方、スパッタリングの際には、高温にさらされるスパッタ面と水冷されるバッキングプレート面との間の温度差によってターゲット内部で熱応力が発生しやすく、その熱応力もまたスパッタ面内方向に働く。これは、ターゲットのスパッタ面側は高温のため熱膨張が大きくなる一方、ターゲットのバッキングプレート側が低温のため熱膨張が小さくなるためスパッタ面方向に歪みが生じるからである。なお、ターゲットの厚さ方向にはそのような熱応力は生じない。そこで、酸化亜鉛結晶の(100)面をスパッタ面に沿って配向させることで、a軸よりも熱膨張率の低いc軸を熱応力が発生する方向であるスパッタ面内方向に向かせて、クラックや割れの原因となるターゲット面内方向の熱膨張を低減することができる。
 酸化亜鉛焼結体は酸化亜鉛結晶粒子を含んで構成される。すなわち、酸化亜鉛焼結体は無数の酸化亜鉛結晶粒子が焼結により互いに結合されてなる固体である。酸化亜鉛結晶粒子は酸化亜鉛を含んで構成される粒子であり、他の元素として、Al、Ga等の3B属元素等のドーパント及び不可避不純物を含んでいてもよいし、酸化亜鉛及び不可避不純物からなるものであってもよい。そのような他の元素は六方晶ウルツ鉱型構造のZnサイトやOサイトに置換されていてもよいし、結晶構造を構成しない添加元素として含まれていてもよいし、あるいは粒界に存在するものであってもよい。また、酸化亜鉛焼結体も、酸化亜鉛結晶粒子以外に他の相又は上述したような他の元素を含んでいてもよいが、好ましくは酸化亜鉛結晶粒子及び不可避不純物からなる。
 本発明における酸化亜鉛焼結体はスパッタ面における(100)配向度が50%以上であり、好ましくは75%以上、より好ましくは90%以上である。(100)配向度が高いほど、割れやクラックの原因となるターゲット面内方向の熱応力をより効果的に低減することができる。したがって、スパッタ面における(100)配向度の上限は特に限定されるべきではなく、理想的には100%である。この(100)面の配向度は、XRD装置(例えば、株式会社リガク製 製品名「RINT-TTR III」)を用い、円盤状酸化亜鉛焼結体の表面に対してX線を照射したときのXRDプロファイルを測定することにより行うことができる。(100)配向度Fは以下の式により算出する。
Figure JPOXMLDOC01-appb-M000001
 スパッタ面に垂直な方向の断面における酸化亜鉛結晶粒子のアスペクト比は2.0以下であるのが好ましく、より好ましくは1.5以下であり、さらに好ましくは1.3以下である。このアスペクト比は、(スパッタ面に平行な方向)/(スパッタ面に垂直な方向)の長さ比であり、この比が1に近いほど異方性が低減して等方性に近づくため、配向した際に結晶面間の剥離が生じにくくなり強度が向上することで、割れやクラックの抑制に寄与する。このアスペクト比は次のようにして決定することができる。すなわち、円盤状焼結体(スパッタリングターゲット)から切り出した、1辺が5mmの立方体状の試料において、円盤面と垂直な面を研磨し、濃度0.3Mの硝酸にて10秒間エッチングを行った後、走査電子顕微鏡にて画像を撮影する。視野範囲は、円盤面に平行及び垂直な直線を引いた場合に、いずれの直線も10個から30個の粒子と交わるような直線が引けるような視野範囲とする。円盤面に平行に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をaとし、同様に、円盤面に垂直に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をaとし、a/aをアスペクト比とする。
 酸化亜鉛結晶粒子の平均粒径は1~50μmであるのが好ましく、より好ましくは2~35μmであり、さらに好ましくは3~20μmである。特に好ましくは3~10μmである。この平均粒径は次のようにして決定することができる。このような平均粒径であると、酸化亜鉛結晶粒子のアスペクト比を十分小さくできると共に、焼結体の強度を大きくでき、割れやクラックの抑制をより効果的に実現することができる。この平均粒径は次のようにして決定することができる。すなわち、円盤状焼結体(スパッタリングターゲット)から切り出した、1辺が5mmの立方体状の試料において、円盤面と垂直な面を研磨し、濃度0.3Mの硝酸にて10秒間エッチングを行った後、走査電子顕微鏡にて画像を撮影する。視野範囲は、円盤面に平行及び垂直な直線を引いた場合に、いずれの直線も10個から30個の粒子と交わるような直線が引けるような視野範囲とする。円盤面に平行に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をaとし、同様に、円盤面に垂直に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をaとし、(a+a)/2を平均粒径とする。
 製造方法
 上述したような本発明による酸化亜鉛スパッタリングターゲットは、以下のようにして製造することができる。
 まず、体積基準D50平均粒径が0.1~1.0μm、好ましくは0.3~0.8μmの板状酸化亜鉛粉末を用意する。この体積基準D50平均粒径はレーザー回折式粒度分布測定装置によって測定することができる。このように本発明の製造方法では、サブミクロンレベルの微細な板状原料粉末を用いることを特徴としている。
 従来における配向焼結体の作製は、粒子径が数μmの板状原料粉末を用い、プレス成形等により板状粒子を配列させることにより行われていた(例えば特許文献1参照)。しかし、このような方法により作製される配向焼結体は、通常、結晶粒のアスペクト比が大きくなり、面内の強度が低下し、熱応力による割れやクラックが発生し易くなる。すなわち、本発明者らの知見によれば、数μmの粗大な板状原料粉末であると、粒成長しても焼結体結晶粒子のアスペクト比があまり変化せず、異方性が残りやすい。これに対し、本発明では、上記サブミクロンオーダーの微細な板状原料粉末を用い、せん断力を用いた配向手法を用いることにより、微細な原料でも高い焼結体配向度を得ることが可能となる。更に、サブミクロンオーダーの微細な板状原料粉末を焼結中に(好ましくは3μm以上に)粒成長させることにより、焼結体結晶粒子のアスペクト比は小さくなり、異方性が顕著に低減し、効果的に割れやクラックが抑制される。
 このようなサブミクロンレベルの板状酸化亜鉛粉末は、いかなる方法により製造されたものであってもよいが、好ましくは、亜鉛塩水溶液にアルカリ水溶液を加えて60~95℃で2~10時間攪拌することにより沈殿物を析出させ、この沈殿物を洗浄及び乾燥し、さらに粉砕することにより得ることができる。亜鉛塩水溶液は、亜鉛イオンを含む水溶液であればよく、好ましくは、硝酸亜鉛、塩化亜鉛、酢酸亜鉛等の亜鉛塩の水溶液である。アルカリ水溶液は、水酸化ナトリウム、水酸化カリウム等の水溶液であるのが好ましい。亜鉛塩水溶液及びアルカリ水溶液の濃度及び混合比は特に限定されないが、モル濃度が同じ亜鉛塩水溶液及びアルカリ水溶液を同じ体積比で混合するのが好ましい。沈殿物の洗浄はイオン交換水で複数回行うのが好ましい。アルカリ水溶液は、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、グアニジン等の含窒素塩基性有機化合物の水溶液であるのが、アルカリ金属元素やアルカリ土類金属元素の不純物混入を抑制可能であることから、より好ましい。洗浄された沈殿物の乾燥は100~300℃で行われるのが好ましい。乾燥された沈殿物は板状の酸化亜鉛一次粒子が凝集した球状の二次粒子であるため、粉砕工程に付されるのが好ましい。この粉砕は、洗浄された沈殿物にエタノール等の溶媒を加えてボールミルで1~10時間行うのが好ましい。この粉砕によって、一次粒子としての板状酸化亜鉛粉末が得られる。
 板状酸化亜鉛粉末はせん断力を用いた手法により配向されて配向成形体となる。このとき、板状酸化亜鉛粉末に、ドーパント用の金属酸化物粉末(例えばα-Al粉末)等の他の元素又は成分を添加してもよい。せん断力を用いた手法の好ましい例としては、テープ成形、押出し成形、ドクターブレード法、及びこれらの任意の組合せが挙げられる。せん断力を用いた配向手法は、上記例示したいずれの手法においても、板状酸化亜鉛粉末にバインダー、可塑剤、分散剤、分散媒等の添加物を適宜加えてスラリー化し、このスラリーをスリット状の細い吐出口を通過させることにより、基材上にシート状に吐出及び成形するのが好ましい。吐出口のスリット幅は10~400μmとするのが好ましい。なお、分散媒の量はスラリー粘度が5000~100000cPとなるような量にするのが好ましく、より好ましくは20000~60000cPである。シート状に成形した配向成形体の厚さは5~500μmであるのが好ましく、より好ましくは10~200μmである。このシート状に成形した配向成形体を多数枚積み重ねて、所望の厚さを有する前駆積層体とし、この前駆積層体にプレス成形を施すのが好ましい。このプレス成形は前駆積層体を真空パック等で包装して、50~95℃の温水中で10~2000kgf/cmの圧力で静水圧プレスにより好ましく行うことができる。また、押出し成形を用いる場合には、金型内の流路の設計により、金型内で細い吐出口を通過した後、シート状の成形体が金型内で一体化され、積層された状態で成形体が排出されるようにしても良い。得られた成形体には公知の条件に従い脱脂を施すのが好ましい。
 上記のようにして得られた配向成形体は1000~1400℃、好ましくは1100~1350℃の焼成温度で焼成されて、酸化亜鉛結晶粒子を配向して含んでなる酸化亜鉛焼結体を形成する。上記焼成温度での焼成時間は特に限定されないが、好ましくは1~10時間であり、より好ましくは2~5時間である。こうして得られた酸化亜鉛焼結体は、スパッタ面における(100)配向度が高く、好ましくは50%以上であり、典型的にはスパッタ面に垂直な方向の断面における結晶粒子のアスペクト比が2.0以下である。
 例1
 酸化亜鉛の原料粉末を以下の方法により作製した。硝酸亜鉛六水和物(関東化学株式会社製)を用いて、濃度0.1MのZn(NO水溶液を作製した。また、水酸化ナトリウム(シグマアルドリッチ社製)を用いて、濃度0.1MのNaOH水溶液を作製した。NaOH水溶液に対し、Zn(NO水溶液を体積比1:1で混合し、攪拌しながら80℃で6時間保持して、沈殿物を得た。沈殿物をイオン交換水で3回洗浄した後、乾燥することで、板状の酸化亜鉛一次粒子が凝集した球状の二次粒子を得た。図1に得られた二次粒子の電子顕微鏡画像を示す。続いて、直径2mmのZrO製ボールを用い、エタノールを溶媒として、ボールミル粉砕処理を3時間行うことにより、図1に示される酸化亜鉛二次粒子を体積基準D50平均粒径0.6μmの板状一次粒子へと粉砕した。図2に得られた板状一次粒子の電子顕微鏡画像を示す。
 得られた酸化亜鉛板状一次粒子100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)15重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)6.2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)3重量部と、分散媒(2-エチルヘキサノール)とを混合した。分散媒の量はスラリー粘度が10000cPとなるように調整した。こうして調製されたスラリーを、ドクターブレード法により、PETフィルムの上に、乾燥後の厚さが20μmとなるようにシート状に成形した。得られたテープを直径140mmの円形に切断し、500枚の切断テープ片を積層し、厚さ10mmのアルミニウム板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cmの圧力にて静水圧プレスを行い、円盤状の成形体を作製した。得られた成形体を脱脂炉中に配置し、600℃で20時間の条件で脱脂を行った。得られた脱脂体を大気中、1300℃で5時間の条件で常圧焼成して、円盤状酸化亜鉛焼結体をスパッタリングターゲットとして得た。
 得られた焼結体の(100)面の配向度をXRDにより測定した。この測定は、XRD装置(株式会社リガク製、製品名「RINT-TTR III」)を用い、円盤状酸化亜鉛の表面に対してX線を照射したときのXRDプロファイルを測定することにより行った。(100)配向度Fは、以下の式により算出した。本例における配向度Fの値は0.55であった。
Figure JPOXMLDOC01-appb-M000002
 得られた円盤状焼結体より、1辺が5mmの立方体状の試料を切り出し、25℃~1000℃の範囲で平均熱膨張率を測定した。円盤面内方向の熱膨張率は6.3×10-6/℃、厚さ方向の熱膨張率は7.2×10-6/℃であった。
 焼結体粒子の平均粒径及びアスペクト比を以下の方法により測定した。熱膨張測定用試料と同様の形状の試料において、円盤面と垂直な面を研磨し、濃度0.3Mの硝酸にて10秒間エッチングを行った後、走査電子顕微鏡にて画像を撮影した。視野範囲は、円盤面に平行及び垂直な直線を引いた場合に、いずれの直線も10個から30個の粒子と交わるような直線が引けるような視野範囲とした。円盤面に平行に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をaとし、同様に、円盤面に垂直に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をaとし、a/aをアスペクト比、(a+a)/2を平均粒径とした。
 同様の条件で作製した別の円盤状焼結体(スパッタリングターゲット)を銅製のバッキングプレートにインジウムで接合して、RFマグネトロンスパッタ装置内に配置した。このRFマグネトロンスパッタ装置において、純Ar雰囲気、圧力0.5Pa、投入電力150Wで30分間スパッタリングを行った。5個のターゲットについて実施した結果、全てのターゲットにおいて、割れは発生しなかった。
 例2
 スラリー粘度が45000cPとなるように分散媒の量を少なくしたこと以外は、例1と同様にしてターゲットの作製及びスパッタリングを行った。その結果、配向度は0.97に向上した。図3に酸化亜鉛焼結体断面の研磨及びエッチング後のSEM画像を示す。
図3に示されるように板状であった原料粉末の酸化亜鉛粒子が等方性の結晶粒子構造に成長したことが分かる。図4に酸化亜鉛焼結体のXRDプロファイルを示す。図4に示されるように、(100)面における回折強度ピークが突出して高く、(100)面が高度に配向されていることが分かる。5個全てのターゲットにおいて割れは発生しなかった。
 例3
 焼成温度を1200℃としたこと以外は例2と同様にして、ターゲットの作製及びスパッタリングを行った。全てのターゲットで割れは発生しなかった。
 例4
 焼成温度を1350℃としたこと以外は例2と同様にして、ターゲットの作製及びスパッタリングを行った。全てのターゲットで割れは発生しなかった。
 例5
 例1の組成に加え、平均粒径0.4μmのα-Alを2重量部添加した。その他の作製条件は例2と同様。全てのターゲットで割れは発生しなかった。なお、粒径の測定において、ZnAl相と推定される、微粒(内接する円の直径が500nm以下のもの)は除いた。
 例6(比較)
 市販の酸化亜鉛粉末(正同化学製、酸化亜鉛1種、体積基準D50平均粒径0.6μm)を円盤状に一軸プレス成形した後、2tf/cmで静水圧プレスした。1300℃×5hrで焼成した結果、配向度0.02の焼結体を得た。例1と同様のスパッタリングを行った結果、全てのターゲットで割れが発生した。
 例7
 例1で作製したスラリーを用い、厚さ4μmのシート状成形体を作製した。積層は行わず、650℃で20時間脱脂した後、1300℃で5時間焼成し、酸化亜鉛シート状焼結体を作製した。得られた酸化亜鉛シート状焼結体を乳鉢で粗粉砕後、ボールミルにて体積基準D50平均粒径20μmまで粉砕し、板状酸化亜鉛粉末を作製した。得られた板状酸化亜鉛粉末と例6で用いた市販の酸化亜鉛粉末を重量比1:1で混合した後、200kgf/cmの圧力で一軸プレス成形した。得られたプレス成形体を1350℃で5時間焼成し、焼結体を作製した。得られた焼結体をターゲットとして例1と同様のスパッタリングを行った結果、5個中1個のターゲットに割れが発生した。
 例1~7で得られた結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000003

Claims (12)

  1.  酸化亜鉛結晶粒子を含んで構成される酸化亜鉛焼結体からなり、スパッタ面における(100)配向度が50%以上である、酸化亜鉛スパッタリングターゲット。
  2.  前記配向度が75%以上である、請求項1に記載の酸化亜鉛スパッタリングターゲット。
  3.  前記スパッタ面に垂直な方向の断面における前記結晶粒子のアスペクト比が2.0以下である、請求項1又は2に記載の酸化亜鉛スパッタリングターゲット。
  4.  前記アスペクト比が1.5以下である、請求項3に記載の酸化亜鉛スパッタリングターゲット。
  5.  前記酸化亜鉛結晶粒子の平均粒径が1~50μmである、請求項1~4のいずれか一項に記載の酸化亜鉛スパッタリングターゲット。
  6.  酸化亜鉛スパッタリングターゲットの製造方法であって、
     体積基準D50平均粒径が0.1~1.0μmの板状酸化亜鉛粉末を用意する工程と、
     前記板状酸化亜鉛粉末を、せん断力を用いた手法により配向させて配向成形体を得る工程と、
     前記配向成形体を1000~1400℃の焼成温度で焼成して、酸化亜鉛結晶粒子を配向して含んでなる酸化亜鉛焼結体を得る工程と
    を含んでなる、酸化亜鉛スパッタリングターゲットの製造方法。
  7.  前記せん断力を用いた手法が、テープ成形、押出し成形、及びドクターブレード法からなる群から選択される少なくとも一種である、請求項6に記載の方法。
  8.  前記せん断力を用いた手法が、前記板状亜鉛粉末をスラリー化し、得られたスラリーを吐出口に通して前記配向成形体をシート状に得ることにより行われる、請求項6又は7に記載の方法。
  9.  前記焼成に先立ち、前記シート状の配向成形体を複数枚用意して、該複数枚のシート状配向成形体を積層させて前駆積層体を得て、該前駆積層体にプレス成形を施す工程をさらに含んでなる、請求項8に記載の方法。
  10.  前記板状酸化亜鉛粉末を用意する工程が、亜鉛塩水溶液にアルカリ水溶液を加えて60~95℃で2~10時間攪拌することにより沈殿物を析出させ、該沈殿物を洗浄、乾燥及び粉砕することを含む、請求項6~9のいずれか一項に記載の方法。
  11.  前記粉砕が、ボールミルを用いて1~10時間行われる、請求項10に記載の方法。
  12.  請求項1~5のいずれか一項に記載のスパッタリングターゲット又は請求項6~11のいずれか一項に記載の方法により得られたスパッタリングターゲットを用いたスパッタリングによって得られた、酸化亜鉛透明導電膜。
PCT/JP2013/050905 2012-01-30 2013-01-18 酸化亜鉛スパッタリングターゲット及びその製造方法 WO2013114967A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013556307A JP6058562B2 (ja) 2012-01-30 2013-01-18 酸化亜鉛スパッタリングターゲット及びその製造方法
US14/305,267 US9318307B2 (en) 2012-01-30 2014-06-16 Zinc oxide sputtering target and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-016456 2012-01-30
JP2012016456 2012-01-30
JP2012-211222 2012-09-25
JP2012211222 2012-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/305,267 Continuation US9318307B2 (en) 2012-01-30 2014-06-16 Zinc oxide sputtering target and method for producing same

Publications (1)

Publication Number Publication Date
WO2013114967A1 true WO2013114967A1 (ja) 2013-08-08

Family

ID=48905009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050905 WO2013114967A1 (ja) 2012-01-30 2013-01-18 酸化亜鉛スパッタリングターゲット及びその製造方法

Country Status (3)

Country Link
US (1) US9318307B2 (ja)
JP (1) JP6058562B2 (ja)
WO (1) WO2013114967A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155883A1 (ja) * 2013-03-25 2014-10-02 日本碍子株式会社 酸化亜鉛系スパッタリングターゲット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018515A (zh) * 2019-12-26 2020-04-17 广州市尤特新材料有限公司 靶材的制造方法和靶材

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116318A (ja) * 1974-07-31 1976-02-09 Matsushita Electric Ind Co Ltd
JPH05139704A (ja) * 1991-11-19 1993-06-08 Teika Corp 微粒子状金属酸化物の製造方法
JP2001322866A (ja) * 1999-05-19 2001-11-20 Ngk Spark Plug Co Ltd アルミナ焼結体及びその製造方法並びに焼結アルミナ部材及び発光管
JP2002121067A (ja) * 2000-10-10 2002-04-23 Kyocera Corp 酸化亜鉛質焼結体およびその製造方法
JP2004006847A (ja) * 2002-04-26 2004-01-08 Tokyo Gas Co Ltd 高配向性熱電変換材料の製造方法
JP2006264316A (ja) * 2005-02-25 2006-10-05 Nagaoka Univ Of Technology 精密配向多結晶セラミックス焼結体、その製造方法及び製造装置
WO2007094115A1 (ja) * 2006-02-17 2007-08-23 Murata Manufacturing Co., Ltd. 圧電磁器組成物
JP2009215629A (ja) * 2008-03-12 2009-09-24 Dowa Electronics Materials Co Ltd レーザ蒸着用ターゲットおよびその製造方法
JP2010030855A (ja) * 2008-07-30 2010-02-12 Toto Ltd 結晶配向性構造体およびその製造方法。
JP2011084765A (ja) * 2009-10-14 2011-04-28 Sumitomo Metal Mining Co Ltd 薄膜製造用焼結体ターゲットとその製造方法
JP2011179056A (ja) * 2010-02-26 2011-09-15 Taiheiyo Cement Corp スパッタリングターゲット

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236632A (en) * 1989-08-10 1993-08-17 Tosoh Corporation Zinc oxide sintered body, and preparation process and use thereof
JP3301755B2 (ja) 1990-08-22 2002-07-15 東ソー株式会社 スパッタリングターゲット及びその製法
JP3128861B2 (ja) 1991-06-06 2001-01-29 東ソー株式会社 スパッタリングターゲット及びその製造方法
JP4076265B2 (ja) * 1998-03-31 2008-04-16 三井金属鉱業株式会社 酸化亜鉛焼結体スパッタリングターゲットおよびその製造方法
CA2308933C (en) 1999-05-19 2008-07-22 Ngk Spark Plug Co., Ltd. Translucent polycrystalline ceramic and method for making same
CN101460425B (zh) * 2006-06-08 2012-10-24 住友金属矿山株式会社 氧化物烧结体、靶、用它制得的透明导电膜以及透明导电性基材
JP5909872B2 (ja) * 2010-11-18 2016-04-27 Jfeスチール株式会社 溶接欠陥検出方法及びシステム及び電縫鋼管の製造方法並びに溶接製品の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116318A (ja) * 1974-07-31 1976-02-09 Matsushita Electric Ind Co Ltd
JPH05139704A (ja) * 1991-11-19 1993-06-08 Teika Corp 微粒子状金属酸化物の製造方法
JP2001322866A (ja) * 1999-05-19 2001-11-20 Ngk Spark Plug Co Ltd アルミナ焼結体及びその製造方法並びに焼結アルミナ部材及び発光管
JP2002121067A (ja) * 2000-10-10 2002-04-23 Kyocera Corp 酸化亜鉛質焼結体およびその製造方法
JP2004006847A (ja) * 2002-04-26 2004-01-08 Tokyo Gas Co Ltd 高配向性熱電変換材料の製造方法
JP2006264316A (ja) * 2005-02-25 2006-10-05 Nagaoka Univ Of Technology 精密配向多結晶セラミックス焼結体、その製造方法及び製造装置
WO2007094115A1 (ja) * 2006-02-17 2007-08-23 Murata Manufacturing Co., Ltd. 圧電磁器組成物
JP2009215629A (ja) * 2008-03-12 2009-09-24 Dowa Electronics Materials Co Ltd レーザ蒸着用ターゲットおよびその製造方法
JP2010030855A (ja) * 2008-07-30 2010-02-12 Toto Ltd 結晶配向性構造体およびその製造方法。
JP2011084765A (ja) * 2009-10-14 2011-04-28 Sumitomo Metal Mining Co Ltd 薄膜製造用焼結体ターゲットとその製造方法
JP2011179056A (ja) * 2010-02-26 2011-09-15 Taiheiyo Cement Corp スパッタリングターゲット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155883A1 (ja) * 2013-03-25 2014-10-02 日本碍子株式会社 酸化亜鉛系スパッタリングターゲット
JP6080945B2 (ja) * 2013-03-25 2017-02-15 日本碍子株式会社 酸化亜鉛系スパッタリングターゲット
JPWO2014155883A1 (ja) * 2013-03-25 2017-02-16 日本碍子株式会社 酸化亜鉛系スパッタリングターゲット
US9824869B2 (en) 2013-03-25 2017-11-21 Ngk Insulators, Ltd. Zinc oxide sputtering target

Also Published As

Publication number Publication date
US9318307B2 (en) 2016-04-19
JP6058562B2 (ja) 2017-01-11
US20140328747A1 (en) 2014-11-06
JPWO2013114967A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5686067B2 (ja) Zn−Sn−O系酸化物焼結体とその製造方法
US10717679B2 (en) Zinc oxide sintered body and method for producing same
JP5330469B2 (ja) スパッタリングターゲット、透明導電膜及び透明電極
JP4960244B2 (ja) 酸化物材料、及びスパッタリングターゲット
EP2301904B1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
WO2014007045A1 (ja) 酸化亜鉛粉末及びその製造方法
Chou et al. Preparation and characterization of solid-state sintered aluminum-doped zinc oxide with different alumina contents
US9919931B2 (en) Zinc oxide sputtering target
US10442736B2 (en) Mg-containing zinc oxide sintered body and method for producing same
TW201546018A (zh) 氧化物燒結體及濺鍍靶
JP6058562B2 (ja) 酸化亜鉛スパッタリングターゲット及びその製造方法
TW201943677A (zh) Sn-Zn-O系氧化物燒結體及其製造方法
US9824869B2 (en) Zinc oxide sputtering target
JP6414527B2 (ja) Sn−Zn−O系酸化物焼結体とその製造方法
JP5602820B2 (ja) ZnO焼結体の製造方法
JP5822034B2 (ja) スパッタリングターゲットとその製造方法
JP2010222176A (ja) ZnO焼結体及びその製造方法
JP6092015B2 (ja) 単結晶体の製造方法
JP2015003837A (ja) ドープされた酸化亜鉛単結晶体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743134

Country of ref document: EP

Kind code of ref document: A1