WO2013113250A1 - 一种生物医用多孔植入材料的制备方法 - Google Patents

一种生物医用多孔植入材料的制备方法 Download PDF

Info

Publication number
WO2013113250A1
WO2013113250A1 PCT/CN2012/088150 CN2012088150W WO2013113250A1 WO 2013113250 A1 WO2013113250 A1 WO 2013113250A1 CN 2012088150 W CN2012088150 W CN 2012088150W WO 2013113250 A1 WO2013113250 A1 WO 2013113250A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
vacuum
tantalum powder
porous
polymer resin
Prior art date
Application number
PCT/CN2012/088150
Other languages
English (en)
French (fr)
Inventor
叶雷
Original Assignee
重庆润泽医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆润泽医药有限公司 filed Critical 重庆润泽医药有限公司
Publication of WO2013113250A1 publication Critical patent/WO2013113250A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1146After-treatment maintaining the porosity
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/08Methods for forming porous structures using a negative form which is filled and then removed by pyrolysis or dissolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to the field of forming and manufacturing porous medical metal implant materials, and more particularly to a medical implanted porous metal material for replacing bone tissue of a load bearing portion.
  • Porous medical metal implant materials are used for replacing human related tissues, and have good therapeutic prospects, such as having important and special uses for treating bone tissue wounds and femoral tissue necrosis.
  • the common materials are metal stainless steel and porous.
  • the porosity should be 30 ⁇ 80%, and the pores are preferably all connected and evenly distributed, or the pores are connected and evenly distributed according to the need, so that Consistent with the growth of the human bone tissue, it also reduces the weight of the material itself, suitable for human implant use.
  • the refractory metal ruthenium due to its excellent biocompatibility, is expected to be used as a substitute for the conventional medical metal biomaterials described above. Because metal ruthenium is harmless to the human body, non-toxic, no side effects, and with the rapid development of medicine at home and abroad, the understanding of sputum as a human implant material, the demand for porous metal ruthenium materials for human implants It has become more and more urgent. As a porous medical implant metal crucible, it can be used as a new type of bone tissue replacement material if it can have a uniform distribution of 4 ⁇ high pores and physical and mechanical properties compatible with the human body.
  • the preparation methods of porous tantalum biological materials mainly include powder loose sintering method, foam impregnation sintering method, slurry foaming method, etc., although the porosity of the porous tantalum prepared by these methods can meet the requirements, the pore morphology is not good. How many are closed tiny pores, and the pore distribution is uneven.
  • the biggest characteristic of biological materials is the complex shape and high requirements for minute details, especially the pores of the material should be completely three-dimensionally connected and distributed. Therefore, the molding technology High demands have been made, and conventional molding techniques have not been able to meet the needs due to limitations in the manufacturing process.
  • the object of the present invention is to provide a method for preparing a porous tantalum biomedical implant material which is simple in operation and low in cost and suitable for industrial production.
  • the porous tantalum biomedical implant material prepared by the method has complete three-dimensional pores and pores. The distribution is hooked and the biocompatibility is good.
  • a preparation method of a biomedical porous implant material characterized in that: a pure tantalum powder is mixed with a binder to obtain a tantalum powder slurry; a polymer resin template having a porosity of 20% to 50% and completely three-dimensionally connected
  • the bracket is placed in a steel mold, the prepared tantalum powder slurry is poured into the steel mold and passed over the polymer resin template holder, and then the steel mold is pressed slowly and uniformly to fully and completely fill the steel powder.
  • the applied pressure is increased from OMPa to 8 ⁇ 12Mpa, and the pressure is used for 2 ⁇ 5h.
  • the polymer resin template holder is removed by chemical dissolution to obtain the porous skeleton skeleton.
  • a biomedical porous tantalum implant material is obtained by post-treatment such as degreasing, sintering, and the like.
  • the metal tantalum powder is completely and uniformly filled into the three-dimensional polymer resin stent, and after the three-dimensional stent is removed by chemical method, the porous metal material body which is completely three-dimensionally connected is obtained, and is completely three-dimensional after sintering.
  • the interconnected porous metal implant material provides the porous metal implant material with good biocompatibility.
  • the above porosity is 20% to 50°/.
  • the polymer resin template holder which is completely three-dimensionally connected can be obtained by a conventional method such as a foaming method or a three-dimensional printing method, and all of the polymer resin template holders of 20% to 50% and completely three-dimensionally connected are suitable for the present invention.
  • the powder size of the pure tantalum powder of the present invention is 15 ⁇
  • the binder of the present invention is 3 to 6% of an aqueous solution of polyvinyl alcohol, which may be 2 to 4% aqueous solution of decyl cellulose or 3 to 7% of ethyl cellulose alcohol solution, etc., all based on mass percent, more preferably,
  • the pure tantalum powder and the binder are uniformly mixed at a mass ratio of 3 to 10:1 to obtain a tantalum powder slurry.
  • the above post treatment is performed as follows:
  • the binder is removed from the binder at a rate of 1 ⁇ 5 °C / min, and is kept at room temperature for 400 ⁇ 60min, at a rate of 0.5 ⁇ 1.5 ° C / min from 400 ° C rises to 600 ⁇ 800 °C, keeps 60 ⁇ 120min, vacuum maintains at l (T 3 Pa; the second stage is high temperature vacuum sintering, rises to 1200 ⁇ 1250 at 10 ⁇ 15 °C / min °C, heat preservation for 30 ⁇ 60min, vacuum degree is 10" 4 Pa ⁇ 10" 3 Pa; increase to 1500 °C at 10 ⁇ 20 °C / min, keep warm for 30 ⁇ 60min, vacuum degree is 10 - 4 Pa ⁇ 10— , rising to 2000
  • a method of preparing a biomedical porous implant material is carried out as follows:
  • the powder particles and the particles are closely combined with each other, and the moisture in the powder slurry penetrates into the steel mold during the pressing process; c is placed in the air to naturally dry the remaining moisture in the steel mold, and then from the steel mold Carefully remove the polymer resin template, remove the excess tantalum powder around the polymer resin template to expose the polymer template; finally, remove the polymer resin template by chemical dissolution to obtain a porous skeleton skeleton;
  • the above-mentioned blank is post-treated as follows:
  • the first P-stage is to remove the added binder, and increase from room temperature to 400 ° C at a rate of l ⁇ 5 ° C / min, and keep warm 30 ⁇ 60min, from 400 ° C to 600 ⁇ 800 ° C at a rate of 0.5 ⁇ 1.5 ° C / min, heat preservation 60 ⁇ 120min, the vacuum is maintained at about 10 - 3 Pa;
  • the second stage is high temperature vacuum sintering P section, raised to 1200 ⁇ 1250 °C at a rate of 10 ⁇ 15 °C / min, heat preservation 30 ⁇ 60min, vacuum degree is 10 - 4 Pa ⁇ 10 - 3 Pa; at a rate of 10 ⁇ 20 ° C / min Increase to 1500 ° C, keep warm for 30 - 60min, vacuum degree is 10 - 4 Pa ⁇ 10 - 3 Pa, increase to 2000 - 2200 ° C at 6 - 20 ° C / min, keep warm
  • medical porous metal materials are used as materials to replace human body-bearing structures, and the porosity is required to be large, so that human tissues can easily grow in and biocompatibility is sufficient to fully exert their functions, but The greater the porosity and the larger the pore size, the mechanical properties such as strength and toughness are not guaranteed; on the contrary, the mechanical properties are good and the material density is too large to cause discomfort; the preparation of medical porous tantalum is numerous, but the inventor It is creatively proposed to prepare a medical porous tantalum implant material by the above steps and processes, thereby effectively preventing the problem that the plugging, the impregnation process is difficult to control, and the quality of the produced product is uneven, which is easy to occur by the dipping method; , so that the embryo body becomes a heating element, so that the sintering is more uniform, more thorough, and stronger.
  • the porous tantalum material prepared by the method of the invention has good biocompatibility and biosafety, the density is 5.01 ⁇ 7.50g/cm 3 , the dispersion of pores is high, and the porosity is 50 ⁇ 80°/. , the pores are evenly distributed, the pore size is about 300 ⁇ ; the elastic modulus can reach 2.1 ⁇ 4.7Gpa, the bending strength can reach 75 ⁇ 110Mpa, and the compressive strength can reach 60 ⁇ 70Mpa; in general, its biocompatibility, Excellent toughness and strength, close to human body-bearing bone tissue, the resulting porous tantalum is very suitable for replacing medical implants with weight-bearing bone tissue. Material.
  • the method of the present invention can be used to prepare porous metal materials such as porous tantalum, titanium, stainless steel, and cobalt chromium alloy in addition to the porous tantalum metal material.
  • the method of the invention adopts the method of molding to realize the effect of isostatic pressing, so that the pressing pressure is uniformly and uniformly transmitted in the polymer resin template holder, and the metal powder uniformly and densely fills the entire polymer resin template holder.
  • the prepared porous metal material has small sintering deformation, and the amount of the sintered neck between the particles and the particles is more than 70 ° /. .
  • the sintered neck obtained by the method of the invention means that the powder is heated at high temperature, and the particles are bonded together, which is a sintering phenomenon which is often said.
  • Sintering refers to a process in which metallurgical properties of the particles are combined at high temperature, usually in the process of The main constituents are carried out at the melting point and are realized by atomic migration. From the observation of the microstructure, it can be found that the sintered neck (or contact neck) in contact with the particles grows, and thus causes a change in properties. With the increase of sintering temperature and reasonable control of sintering temperature and sintering time, the sintered neck will gradually increase, the proportion of the sintered neck will increase, and the strength of the sintered body will increase. Through the sintering process, the sintered metal material will be sintered. The amount of the neck is more than 70%, and the mechanical properties of the sintered body are strong.
  • the preparation method of the invention has the advantages of simple and easy control; the whole preparation process is harmless, non-polluting, non-toxic and dusty, has no side effects on the human body, and is preferably used in the preparation process to be completely decomposed during the sintering process, and no residue is left. Adhesives, stents, etc., further facilitate the biocompatibility and biosafety of the implant material.
  • a method for preparing a biomedical porous implant material is carried out as follows: 300 g of pure tantalum powder having a particle size of 8 ⁇ is mixed with 40 ml of a polyvinyl alcohol aqueous solution having a mass concentration of 3%, and thoroughly stirred to form a jelly. .
  • a conventional three-dimensional printing method was used to prepare a 4 cm X 5 cm X 4 cm polymer resin template holder having a porosity of about 30% and completely three-dimensionally connected, and the polymer resin template holder was placed in a steel mold having a length of 6 cm.
  • the prepared gel is poured into the steel mold, and the suspension is not passed through the polymer resin template holder, and the steel mold is placed on the pressurized device, so that the steel mold is slowly and uniformly pressurized around the pressure, pressure Within 3 hours, OMPa rises to 8 MPa, so that the powder is sufficiently and tightly poured into the polymer resin template holder, and the moisture in the gel permeates out during the pressurization process, and then is naturally dried in the air. 10h, carefully remove the steel mold and remove the excess powder around the polymer resin template holder.
  • the polymer tree template scaffold filled with powdered powder is placed in a chemical solution prepared in advance, and the polymer scaffold is dissolved by a dissolution method to obtain a porous crucible body scaffold.
  • porous tantalum body was post-treated: from room temperature to 400 ° C at a rate of 3 ° C / min, held for 50 min, and increased from 400 ° C to 800 ° C at a rate of 1.5 ° C / min. , keep warm for 100 min, maintain the vacuum at 1 10 -3 Pa; increase to 1200 °C at a rate of 10 ⁇ 15 °C / min, keep the temperature 1.
  • the vacuum is 1 X 10 - 4 Pa, at 10 ° C /min speed
  • the rate is raised to 1500 ° C, the temperature is 1.
  • the vacuum is 1 ⁇ 10" 4 Pa - 1 10 - 3 Pa, rise to 2100 ° C at 6 ° C / min, keep warm for 3 h, the vacuum is 1 x 10" 3 Pa is sintered, the degree of vacuum is 1 X 10 - 4 Pa ⁇ 1 10" 3 Pa; cooled to 1250 ° C at a rate of 15 ° C / min, kept at 1 h, cooled at 13 ° C / min to 800 ° C, heat preservation for 1.5 h, and then cooled with the furnace; the inventors according to GB/T5163- 2006, GB/T5249-1985, GB/T6886-2001 and other standards for the porous material, the porous material density, porosity and various The mechanical properties were tested.
  • the porous tantalum implant material was tested to have a density of 5.01 g/cm 3 , a porosity of about 70%, a uniform pore distribution, a pore size of about 300 ⁇ , a compressive strength of 62.5 MPa, and a flexural strength. 75.3MPa, elastic modulus 2. lGpa, the amount of sintered neck is about 80%; and it is three-dimensional fully connected, pore-hook distribution, good biocompatibility, the porous tantalum implant material prepared by this method is very suitable Replace human femur tissue.
  • the degree of vacuum is 103 ⁇ 4 ⁇ 10" 3 Pa; cooling to 1500 ° C at a rate of 20 ° C / min, SL 30min;
  • the degree of vacuum is 103 ⁇ 4 ⁇ 10" 3 Pa; it is cooled to 1550 ° C at a rate of 13 ° C / min, SL 50min;
  • the degree of vacuum is 103 ⁇ 4 ⁇ 10" 3 Pa; cooled to 1520 ° C at a rate of 14 ° C / min, SL 55min;
  • the degree of vacuum is 103 ⁇ 4 ⁇ 10" 3 Pa; it is cooled to 1600 ° C at a rate of 13 ° C / min, SL 35min;
  • the degree of vacuum is 103 ⁇ 4 ⁇ 10" 3 Pa; it is cooled to 1570 ° C at a rate of 17 ° C / min, SL 35min;
  • the product was cooled to 800 ° C at a rate of 15 ° C / min, and then the porous iridium product obtained by the furnace cooling was completely connected in three dimensions, and the pores were uniformly distributed, and the biocompatibility was good.
  • the test results were as follows:
  • a preparation method for a biomedical porous implant material is carried out as follows: a.
  • the particle size is 8 ⁇ 10 ⁇
  • the pure tantalum powder of m is mixed with the ethyl cellulose alcohol solution having a mass concentration of 3 to 5% by mass ratio of 5 to 7:1, and uniformly stirred to prepare a tantalum powder slurry; b.
  • the porosity is 20 % ⁇ 50%
  • completely three-dimensionally connected polymer template support is placed in the steel mold, and then the above prepared powder slurry is poured into the steel mold and passed over the polymer template support, and finally slowly and evenly
  • the pressure is applied around the steel mold so that the powder is fully and completely filled into the polymer template.
  • the applied pressure is increased from 0MPa to 10Mpa, and the pressure is 4 ⁇ 5h, which makes the powder between the particles and the particles.
  • the above-mentioned blank is post-treated as follows:
  • the first P-stage is to remove the added binder, and increase from room temperature to 400 ° C at a rate of l ⁇ 5 ° C / min, and keep warm 30 ⁇ 60min, from 400 ° C to 600 ⁇ 800 ° C at a rate of 0.5 ⁇ 1.5 ° C / min, heat preservation 60 ⁇ 120min, the vacuum is maintained at about 10 - 3 Pa;
  • the second stage is high temperature vacuum sintering P The section is raised to 1200 ⁇ 1250 °C at a rate of 10 ⁇ 15 °C / min, kept for 30 ⁇ 60min, the vacuum is 10" 4 Pa ⁇ 10" 3 Pa; at a rate of 10 ⁇ 20 ° C / min 1500 ° C, insulation 30 - 60min, vacuum degree is 10 - 4 Pa ⁇ 10 - 3 Pa, rise to 2000 - 2200 °C at 6 - 20 °C / min, keep warm for 120 ⁇
  • the degree of vacuum is 10 - 4 Pa ⁇ 10" 3 Pa, and the temperature is raised to 800 ⁇ 900 ° at 15 ° C / min. C.
  • the obtained porous medical implant material has a density of 5.01 ⁇ 5.50g/cm 3 , a porosity of 68 ⁇ 70%, a uniform pore distribution, a pore size of about 230 ⁇ m, an elastic modulus of 4.8 ⁇ 5.3Gpa, and a bending strength.
  • 115 ⁇ 120Mpa, compressive strength of 74 ⁇ 80Mpa, its biocompatibility, strength and toughness are excellent, close to the human body bearing bone tissue, the resulting porous tantalum is very suitable for medical implant materials to replace weight-bearing bone tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mechanical Engineering (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种生物医用多孔植入材料的制备方法,将纯钽粉与粘结剂混合均匀得到钽粉浆料;将孔隙率为 20%~50%、完全三维连通的高分子树脂模板支架放入钢模中,将所述配制好的钽粉浆料灌入钢模中并漫过其中的高分子树脂模板支架,然后缓慢均匀地对钢模四周加压使钽粉充分完全地填充到高分子树脂模板支架中,所施加的压力从 0MPa 匀速增加到 10Mpa、加压过程所用时间为 2~5h,再通过化学溶解脱除高分子树脂模板支架、得到多孔钽的坯体骨架,最后通过脱脂、烧结等后处理得到生物医用多孔钽植入材料。通过上述方法得到的是完全三维连通的多孔金属材料的坯体,烧结后得到完全三维连通的多孔金属植入材料,使该多孔金属植入材料生物相容性好。

Description

一种生物医用多孔植入材料的制备方法 技术领域 本发明涉及多孔医用金属植入材料成型制备领域,特别是涉及一 种替代承重部位骨组织的医用植入多孔金属材料。
背景技术 多孔医用金属植入材料用于替代人体相关组织,有很好的治疗前 景, 如具有治疗骨组织创伤和股骨组织坏死等重要而特殊的用途, 现 常见的这类材料有金属不锈钢、 多孔金属钛、 多孔钽等。 作为骨组织 创伤和股骨组织坏死治疗使用的多孔植入材料, 其孔隙度应达 30 ~ 80%, 而且孔隙最好全部连通与均勾分布, 或根据需要孔隙部分连通 与均匀分布,使之既与人体的骨组织生长相一致, 又减轻了材料本身 的重量, 以适合人体植入使用。
难熔金属钽, 由于它具有优秀的生物相容性, 其多孔材料有望作 为替代前述等传统医用金属生物材料。 由于金属钽对人体的无害、无 毒、 无副作用, 以及随着国内外医学的飞速发展, 对钽作为人体植入 材料认知的进一步深入,人们对人体植入用多孔金属钽材料的需求变 得越来越迫切, 其中作为多孔医用植入金属钽, 如果能具有 4艮高的均 匀分布连通孔隙以及与人体相适应的物理机械性能,则其有望作为一 种新型的骨组织替代材料。
目前多孔钽生物材料的制备方法主要有粉末松装烧结法、泡沫浸 渍烧结法, 浆料发泡法等等, 这些方法制备出的多孔钽虽然孔隙度能 够满足要求, 但是孔隙形貌不好, 多少为闭合的微小孔隙、 孔隙分布 不均匀。 然而生物材料最大特点是形状复杂, 对微小的细节要求高, 特别是材料的孔隙要完全三维连通且分布均勾。 因此, 对成型技术提 出了很高的要求,而传统的成型技术由于受到制备工艺的限制而无法 满足需要。
发明内容
本发明的目的在于提供一种操作筒单、 成本低、适于工业化生产 的多孔钽生物医用植入材料的制备方法,该方法制得的多孔钽生物医 用植入材料孔隙完全三维连通、 且孔隙分布均勾, 生物相容性好。
本发明目的通过如下技术方案实现:
一种生物医用多孔植入材料的制备方法, 其特征在于: 将纯钽粉 与粘结剂混合均匀得到钽粉浆料; 将孔隙率为 20% ~ 50%、 完全三维 连通的高分子树脂模板支架放入钢模中,将所述配制好的钽粉浆料灌 入钢模中并漫过其中的高分子树脂模板支架,然后緩慢均匀地对钢模 四周加压使钽粉充分完全地填充到高分子树脂模板支架中,所施加的 压力从 OMPa匀速增加到 8 ~ 12Mpa、 加压过程所用时间为 2 ~ 5h, 再 通过化学溶解脱除高分子树脂模板支架、得到多孔钽的坯体骨架, 最 后通过脱脂、 烧结等后处理得到生物医用多孔钽植入材料。
通过上述的加压使得金属钽粉完全、均匀地填充到了三维高分子 树脂支架之中, 化学方法脱除三维支架后, 得到的是完全三维连通的 多孔金属材料的坯体, 烧结后得到完全三维连通的多孔金属植入材 料, 使该多孔金属植入材料生物相容性好。 上述孔隙率为 20% ~ 50°/。、 完全三维连通的高分子树脂模板支架可通过发泡法、三维打印法等本 领域常规方法制得, 所有的 20% ~ 50%、 完全三维连通的高分子树脂 模板支架均适用于本发明,根据高分子树脂模板支架的成分采用化学 溶解脱除对本领域技术人员来说是常识; 上述脱脂、 烧结等后处理可 按常规后处理进行。 可通过上述方法,调控相应工艺参数可制备替代 人体承重部位骨组织如股骨、 面股等多孔钽植入材料、也可制备替代 人体非承重骨组织的多孔钽植入材料,或替代人体坚硬骨组织如牙骨 等多孔钽植入材料。
为了使制得的多孔钽植入材料孔隙率在 50 ~ 80%, 以制得替代人 体承重骨组织的多孔钽植入材料,本发明纯钽粉的粉末粒度 15 μηι, 本发明粘结剂为 3 ~ 6%的聚乙烯醇水溶液, 还可以为 2 ~ 4%的曱基纤 维素水溶液或 3 ~ 7%的乙基纤维素酒精溶液等,均以质量百分浓度计, 进一步优选地, 上述纯钽粉与粘结剂按质量比 3 ~ 10: 1均匀混合制 得钽粉浆料。
在制备替代人体承重组织的多孔钽植入材料过程中,为了使制得 的多孔钽植入材料力学性能更接近人体承重骨组织的力学特性,优选 地, 上述后处理按如下步骤进行: 第一 Ρ介段为脱除所加入的粘结剂, 以 1 ~ 5°C/min的速率从室温升至 400°C, 保温 30 ~ 60min, 以 0.5 ~ 1.5°C/min的速率从 400°C升至 600 ~ 800°C,保温 60~120min, 真空 度保持在 l(T3Pa左右; 第二个阶段为高温真空烧结阶段, 以 10 ~ 15 °C/min的速率升至 1200 ~ 1250°C ,保温 30 ~ 60min,真空度为 10"4Pa ~ 10"3Pa; 以 10~20°C/min的速率升至 1500°C, 保温 30~60min, 真空 度为 10— 4Pa ~ 10— , 以 6~20°C/min的速率升至 2000 ~ 2200°C, 保 温 120~ 240min, 真空度为 10— 4Pa ~ 10— 3Pa; 第三个阶段为緩慢冷却热 处理阶段, 真空度为 10— 4Pa ~ 10— 3Pa; 以 10 ~ 20°C/min的速率冷却至 1500 - 1600°C ,保温 30 ~ 60min;以 12~20°C/min的速率冷却至 1200 ~ 1250°C, 保温 60~90min; 以 10 ~ 20°C/min的速率冷却至 800°C , 然 后随炉冷却。
具体地说, 一种生物医用多孔植入材料的制备方法, 按如下步骤 进行:
a. 把纯钽粉(粉末粒度为 8~ 13μηι)与质量百分浓度为 3 ~ 6% 的聚乙烯醇水溶液按质量比 3 ~ 10: 1混合, 充分搅拌均匀, 调制出 钽粉浆料;
b. 将孔隙率为 20% ~ 50%、 完全三维连通的高分子模板支架放入 钢模中,然后把上述调制好的钽粉浆料灌入钢模中并漫过其中的高分 子模板支架,最后把緩慢均匀地对钢模四周施加压力使得钽粉充分完 全地填充到高分子模板之中, 所施加的压力从 OMPa 勾速增加到 10Mpa、 加压过程所用时间为 2~5h, 使得钽粉颗粒与颗粒之间的相 互紧密地结合在一起, 钽粉浆料中的水分在压制过程中渗到钢模外; c 放在空气中自然风干钢模中剩余的水分, 然后从钢模中小心 脱除高分子树脂模板,去除高分子树脂模板周围多余的钽粉使得高分 子模板露出来; 最后, 通过化学溶解脱除其中的高分子树脂模板, 得 到多孔钽的坯体骨架;
d. 将上述的坯体按如下步骤进行后处理: 第一 P介段为脱除所加 入的粘结剂, 以 l ~5°C/min 的速率从室温升至 400°C, 保温 30 ~ 60min, 以 0.5 ~ 1.5°C/min的速率从 400°C升至 600 ~ 800°C, 保温 60~ 120min, 真空度保持在 10— 3Pa左右; 第二个阶段为高温真空烧结 P介段, 以 10~ 15°C/min的速率升至 1200 ~ 1250°C,保温 30~60min, 真空度为 10— 4Pa~10— 3Pa; 以 10 ~ 20°C/min的速率升至 1500°C , 保温 30 - 60min, 真空度为 10— 4Pa ~ 10— 3Pa, 以 6 - 20°C/min 的速率升至 2000 - 2200°C, 保温 120~ 240min, 真空度为 10— 4Pa ~ 10— 3Pa; 第三个 P介段为緩慢冷却热处理阶段, 真空度为 10— 4Pa~ 10— 3Pa; 以 10~20°C /min的速率冷却至 1500 ~ 1600°C,保温 30~60min;以 12 - 20°C/min 的速率冷却至 1200 ~ 1250°C, 保温 60~90min; 以 10 ~ 20°C/min的 速率冷却至 800°C , 然后随炉冷却。
在医用多孔金属材料的研发过程中,医用多孔金属材料作为替代 人体承重组织的材料, 要求其孔隙率较大、 这样人体组织才易长入、 生物相容性好从而充分地发挥其作用, 但孔隙率越大、 孔径越大, 力 学性能如强度、 韧性就得不到保证; 反之, 力学性能好了又易使材料 密度过大引起不舒适感; 医用多孔钽的制备路线众多,但发明人创造 性地提出了采用上述步骤、 工艺制备医用多孔钽植入材料, 有效防止 了采用浸浆法易出现的堵孔、浸浆过程难控制、制得的产品质量不均 匀等问题; 上述烧结处理工艺, 使得胚体成为了发热体, 从而烧结得 更均勾、 透彻、 强度更高。 本发明方法制得的多孔钽材料经过测试其 生物相容性与生物安全性好, 密度在 5.01 ~ 7.50g/cm3, 孔隙的分散 度高、 孔隙度在 50~80°/。, 孔隙的分布均匀, 孔径约为 300 μηι; 弹性 模量可达 2.1 ~4.7Gpa、 弯曲强度可达 75~ 110Mpa、 抗压强度可达 60~70Mpa; 总的来说, 其生物相容性、 强韧性均优异, 接近人体承 重骨组织,所得的多孔钽非常适合用于替代承重骨组织的医用植入材 料。
本发明方法除了用于制备多孔钽金属材料之外,还可以用来制备 多孔铌、 钛、 不锈钢及钴铬合金等多种金属材料。
本发明方法采用模压的方法实现等静压压制的效果,使得压制压 力在高分子树脂模板支架中均匀充分的传导,金属粉末均匀致密地填 充满整个高分子树脂模板支架。 制备出的多孔金属材料烧结变形小, 颗粒与颗粒之间的烧结颈的量大于 70°/。。 本发明方法得到的烧结颈是 指在高温下, 粉末受热, 颗粒之间发生粘结, 就是我们常说的烧结现 象, 烧结是指颗粒在高温下粉末颗粒间发生冶金性质结合的过程, 通 常在主要成分组元的熔点下进行, 并通过原子迁移实现, 通过微观结 构观察, 可以发现颗粒接触的烧结颈 (或称接触颈) 长大, 并因此 导致性能变化。 随着烧结温度的增加, 对烧结温度与烧结时间的合理 控制,烧结颈才会逐渐增大,烧结颈的比例增多,烧结体的强度增加, 通过此烧结工艺, 使得烧结后金属材料中, 烧结颈的量大于 70%, 烧 结体的力学性能较强。 再者, 本发明制备方法工艺筒单、 易控; 整个 制备过程无害、 无污染、 无毒害粉尘, 对人体无副作用, 而且在制备 过程中优先采用在烧结过程中能够全部分解, 没有残留的粘结剂、 支 架等, 进一步有利于保证植入材料的生物相容性和生物安全性。
附图说明
图 1 是本发明所述制备方法制得多孔钽的微观结构的立式显微 镜分析图; 从附图可观察到: 本发明制得的多孔钽孔隙完全三维连 通, 且分布均匀。 具体实施方式 下面通过实施例对本发明进行具体的描述,有必要在此指出的是 以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保 作出一些非本质的改进和调整。
实施例 1
一种生物医用多孔植入材料的制备方法, 按如下步骤进行: 将粒径为 8 μ ηι的纯钽粉末 300g与质量浓度为 3%的聚乙烯醇水 溶液 40ml混合, 充分搅拌配置成胶状物。 常规三维打印的方法制备 出孔隙率为 30%左右、 完全三维连通的 4cm X 5cm X 4cm高分子树脂模 板支架, 把该高分子树脂模板支架放进棱长为 6cm的钢模中。 然后, 将配制的胶状物灌进钢模中,并且使得悬浊液没过高分子树脂模板支 架, 把钢模放在加压的装置上, 使得钢模四周緩慢、 均匀的加压, 压 力在 3h之内有 OMPa上升到 8MPa , 这样使粉末充分、 紧密地灌进高 分子树脂模板支架中, 并且胶状物中的水分在加压过程中渗透出来, 然后放在空气中自然风干 8-10h, 小心脱去钢模, 去掉高分子树脂模 板支架周围多余的钽粉。把充满钽粉的高分子树模板支架放进事先准 备的化学溶液中, 采用溶解的方法是高分子支架溶解,得到多孔钽的 坯体支架。 最后对多孔钽的坯体进行后处理: 以 3 °C /min的速率从室 温升至 400°C , 保温 50min, 以 1. 5 °C /min的速率从 400°C升至 800 °C , 保温 100 min, 真空度维持在 1 10— 3Pa; 以 10 ~ 15 °C /min的速 率升至 1200°C , 保温 1. Oh, 真空度为 1 X 10— 4Pa , 以 10°C /min的速 率升至 1500°C, 保温 1. Oh, 真空度为 1 χ 10"4Pa - 1 10— 3Pa, 以 6°C /min的速率升至 2100°C, 保温 3h, 真空度为 1 x 10"3Pa烧结完毕, 真空度为 1 X 10— 4Pa~ 1 10"3Pa; 以 15°C/min的速率冷却至 1250°C, 保温 lh, 以 13°C/min的速率冷却至 800°C, 保温 1.5h, 然后随炉冷 却; 发明人按 GB/T5163- 2006、 GB/T5249- 1985、 GB/T6886- 2001等标 准对上述多孔钽成品的多孔材料密度、孔隙率及各种力学性能进行检 测, 经测试制得的多孔钽植入材料, 其密度为 5.01g/cm3, 孔隙度约 为 70%, 孔隙分布均匀, 孔径在 300 μηι左右, 抗压强度 62.5MPa, 弯 曲强度 75.3MPa, 弹性模量 2. lGpa, 烧结颈的量为 80%左右; 且其为 三维完全连通、 孔隙均勾分布, 生物相容性好, 该方法制得的多孔钽 植入材料非常适于替代人体股骨组织。
在上述实施例 1给出的方法中,我们还可以对其中的部分条件作 其他选择, 其余同实施例 1, 同样能得到本发明所述的多孔钽。
Figure imgf000010_0001
5 10 μ m 2wt%曱基 3: 1 5小时 从 OMpa匀 纤维素水 速增力口到 溶液 12Mpa
6 15 μ m 7wt%乙基 10: 1 2小时 从 OMpa匀 纤维素酒 速增力口到 精溶液 HMpa
7 12 μ m 3wt%聚乙 8. 5: 1 3. 5小时 从 OMpa匀 烯醇水溶 速增力口到 液 10. 5Mpa
Figure imgf000011_0001
400°C升至 700°C,保 以 20°C/min 的速率升至 2200 °C, 保温 温 120min, 在 10— 3Pa 120min, 真空度为 l(TPa;
下 真空度为 10¾ ~ 10"3Pa; 以 20°C/min的速 率冷却至 1500°C, SL 30min;
以 12°C/min 的速率冷却至 1250°C, 保温
60min;
以 20°C/min的速率冷却至 800°C,然后随炉 冷却
以 3°C/min的速率从 12°C/min的速率从室温升至 1220°C, 室温升至 400°C, 保 30min, 真空度为 l(TPa;
温 30min/ 以 13°C/min 的速率升至 1500 °C, 保温
0.5°C/min的速率从 50min, 真空度为 l(TPa;
以 12°C/min 的速率升至 2100 °C, 保温 400°C升至 780°C,保
200min, 真空度为 10— ;
温 63min, 在 10— 3Pa
真空度为 10¾ ~ 10"3Pa; 以 13°C/min的速 下 率冷却至 1550°C, SL 50min;
以 15°C/min 的速率冷却至 1240°C, 保温
80min;
以 17°C/min的速率冷却至 800°C,然后随炉 冷却
2.5°C/min的速率从 irC/min的速率从室温升至 1240°C, ML 室温升至 400°C, 保 40min, 真空度为 10¾;
温 48min/ 以 16°C/min 的速率升至 1500 °C, 保温
1.2°C/min的速率从 35min;
400°C升至 680°C,保 以 9°C/min 的速率升至 2150 °C, 保温 温 60min, 在 10— 3Pa 140min, 真空度为 10— ;
下 真空度为 10¾ ~ 10"3Pa; 以 14°C/min的速 率冷却至 1520°C, SL 55min;
以 18°C/min 的速率冷却至 1220°C, 保温
80min;
以 14°C/min的速率冷却至 800°C,然后随炉 冷却
4°C/min的速率从室 12°C/min的速率从室温升至 1230°C, 温升至 4oo°c, 50min, 真空度为 l(TPa;
55min/ 以 15°C/min 的速率升至 1500 °C, 保温
0.8°C/min的速率从 55min, 真空度为 l(TPa;
400°C升至 630°C,保 以 irC/min 的速率升至 2160°C, 保温 温 113min, 在 10— 3Pa 180min, 真空度为 10— ;
下 真空度为 10¾ ~ 10"3Pa; 以 13°C/min的速 率冷却至 1600°C, SL 35min;
以 16°C/min 的速率冷却至 1210°C, 保温
76min;
以 13°C/min的速率冷却至 800°C,然后随炉 冷却
7 2.6°C/min的速率从 14°C/min的速率从室温升至 1220°C, ML 室温升至 400°C, 保 55min, 真空度为 l(TPa;
温 44min/ 以 18°C/min 的速率升至 1500 °C, 保温
0.8°C/min的速率从 45min, 真空度为 l(TPa;
400°C升至 750°C,保 以 irC/min 的速率升至 2170°C, 保温 温 75min, 在 10"3Pa 200min, 真空度为 10— ;
下 真空度为 10¾ ~ 10"3Pa; 以 17°C/min的速 率冷却至 1570°C, SL 35min;
以 18°C/min 的速率冷却至 1240°C, 保温
85min;
以 15°C/min的速率冷却至 800°C,然后随炉 冷却 所得多孔钽成品三维完全连通、 孔隙均勾分布, 生物相容性好, 按前述方法检测结果如下:
Figure imgf000013_0001
抗压强度(MPa) 65 63 70 68 60 61 烧结颈量 73 75 90 84 80 77 实施例 8 一种生物医用多孔植入材料的制备方法, 按如下步骤进行: a. 把粒度为 8 ~ 10 μ m的纯钽粉与质量百分浓度为 3 ~ 5%的乙基 纤维素酒精溶液按质量比 5 ~ 7: 1混合, 充分搅拌均匀, 调制出钽粉 浆料; b. 将孔隙率为 20% ~ 50%、 完全三维连通的高分子模板支架放入 钢模中,然后把上述调制好的钽粉浆料灌入钢模中并漫过其中的高分 子模板支架,最后把緩慢均匀地对钢模四周施加压力使得钽粉充分完 全地填充到高分子模板之中, 所施加的压力从 OMPa 勾速增加到 10Mpa、 加压过程所用时间为 4~5h, 使得钽粉颗粒与颗粒之间的相 互紧密地结合在一起, 钽粉浆料中的水分在压制过程中渗到钢模外; c 放在空气中自然风干钢模中剩余的水分, 然后从钢模中小心 脱除高分子树脂模板,去除高分子树脂模板周围多余的钽粉使得高分 子模板露出来; 最后, 通过化学溶解脱除其中的高分子树脂模板, 得 到多孔钽的坯体骨架;
d. 将上述的坯体按如下步骤进行后处理: 第一 P介段为脱除所加 入的粘结剂, 以 l ~5°C/min 的速率从室温升至 400°C, 保温 30 ~ 60min, 以 0.5 ~ 1.5°C/min的速率从 400°C升至 600 ~ 800°C, 保温 60~ 120min, 真空度保持在 10— 3Pa左右; 第二个阶段为高温真空烧结 P介段, 以 10~ 15°C/min的速率升至 1200 ~ 1250°C,保温 30~60min, 真空度为 10"4Pa~10"3Pa; 以 10 ~ 20°C/min的速率升至 1500°C , 保温 30 - 60min, 真空度为 10— 4Pa ~ 10— 3Pa, 以 6 - 20°C/min 的速率升至 2000 - 2200°C, 保温 120~ 240min, 真空度为 10— 4Pa ~ 10— 3Pa; 第三个 P介段为緩慢冷却热处理阶段, 真空度为 10— 4Pa~10— 3Pa; 以 10~20°C /min的速率冷却至 1500 ~ 1600°C,保温 30~60min;以 12 - 20°C/min 的速率冷却至 1200 ~ 1250°C, 保温 60~90min; 以 10 ~ 20°C/min的 速率冷却至 800°C,然后随炉冷却;为了更充分地消除材料的内应力、 使制得的多孔钽材料韧性更好, 还进行第四阶段一退火阶段, 真空度 为 10— 4Pa ~ 10"3Pa,以 15°C/min升温至 800 ~ 900°C、保温 260 ~ 320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min ~ 23°C/min 冷却至室温。
所得多孔钽医用植入材料密度在 5.01 ~ 5.50g/cm3, 孔隙度达 68 ~ 70%, 孔隙分布均匀, 孔径在 230 μ m左右; 弹性模量可达 4.8 ~ 5.3Gpa、 弯曲强度可达 115 ~ 120Mpa、 抗压强度可达 74 ~ 80Mpa, 其 生物相容性、 强韧性均优异, 接近人体承重骨组织, 所得的多孔钽非 常适合用于替代承重骨组织的医用植入材料。

Claims

权 利 要 求
1、 一种生物医用多孔植入材料的制备方法, 其特征在于: 将纯 钽粉与粘结剂混合均匀得到钽粉浆料; 将孔隙率为 20%~50%、 完全 三维连通的高分子树脂模板支架放入钢模中,将所述配制好的钽粉浆 料灌入钢模中并漫过其中的高分子树脂模板支架,然后緩慢均匀地对 钢模四周加压使钽粉充分完全地填充到高分子树脂模板支架中,所施 加的压力从 OMPa匀速增加到 8 ~ 12Mpa、加压过程所用时间为 2 ~ 5h, 再通过化学溶解脱除高分子树脂模板支架、 得到多孔钽的坯体骨架, 最后通过脱脂、 烧结等后处理得到生物医用多孔钽植入材料。
2、 如权利要求 1所述的制备方法, 其特征在于: 所述纯钽粉的 粉末粒度 15 μ m, 所述粘结剂为 3 ~ 6%的聚乙烯醇水溶液、 2 ~ 4%的 曱基纤维素水溶液或 3 ~ 7%的乙基纤维素酒精溶液中的一种, 以质量 百分浓度计。
3、 如权利要求 2所述的制备方法, 其特征在于: 所述纯钽粉与 粘结剂是按质量比约以 3 ~ 10: 1均匀混合制得钽粉浆料。
4、 如权利要求 1、 2或 3所述的制备方法, 其特征在于: 所述后 处理按如下步骤进行: 第一 P介段为脱除所加入的粘结剂, 以 1 ~5°C /min的速率从室温升至 400°C,保温 30~60min, 以 0.5 ~ 1.5°C/min 的速率从 400°C升至 600 ~ 800°C, 保温 60~120min, 真空度保持在 10— 3Pa左右; 第二个阶段为高温真空烧结阶段, 以 10~ 15°C/min的 速率升至 1200 ~ 1250°C, 保温 30~60min, 真空度为 10— 4Pa ~ 10— 3Pa; 以 10~20°C/min 的速率升至 1500°C, 保温 30~60min, 真空度为 10"4Pa ~ 10— 3Pa,以 6 ~ 20°C/min的速率升至 2000 ~ 2200°C ,保温 120 ~ 240min, 真空度为 10— 4Pa ~ 10— 3Pa; 第三个阶段为緩慢冷却热处理阶 段, 真空度为 10"4Pa ~ 10— ; 以 10~ 20°C/min的速率冷却至 1500 ~ 1600°C,保温 30~ 60min;以 12 ~ 20°C/min的速率冷却至 1200 ~ 1250 °C, 保温 60~90min; 以 10 ~ 20°C/min的速率冷却至 800°C , 然后随 炉冷却。
5、 如权利要求 1所述的制备方法, 按如下步骤进行:
a. 把纯钽粉与质量百分浓度为 3 ~ 6%的聚乙烯醇水溶液按质量 比 3~10: 1混合, 充分搅拌均匀, 调制出钽粉浆料;
b. 将高分子模板支架放入钢模中, 然后把上述调制好的钽粉浆 料灌入钢模中并漫过其中的高分子模板支架,最后把緩慢均匀地对钢 模四周施加压力使得钽粉充分完全地填充到高分子模板之中,所施加 的压力从 OMPa匀速增加到 10Mpa、加压过程所用时间为 2 ~ 5h, 使得 钽粉颗粒与颗粒之间的相互紧密地结合在一起,钽粉浆料中的水分在 压制过程中渗到钢模外;
c 放在空气中自然风干钢模中剩余的水分, 然后从钢模中小心 脱除高分子树脂模板,去除高分子树脂模板周围多余的钽粉使得高分 子模板露出来; 最后, 通过化学溶解脱除其中的高分子树脂模板, 得 到多孔钽的坯体骨架;
d. 将上述的坯体按如下步骤进行后处理: 第一 P介段为脱除所加 入的粘结剂, 以 l ~5°C/min 的速率从室温升至 400°C, 保温 30 ~ 60min, 以 Q.5 ~ 1.5°C/min的速率从 400°C升至 600 ~ 800°C, 保温 60~120min, 真空度保持在 10— 3Pa左右; 第二个阶段为高温真空烧结 P介段, 以 10~ 15°C/min的速率升至 1200 ~ 1250°C,保温 30~60min, 真空度为 10"4Pa~10"3Pa; 以 10 ~ 20°C/min的速率升至 1500°C , 保温 30 - 60min, 真空度为 10— 4Pa ~ 10— 3Pa, 以 6 - 20°C/min 的速率升至 2000 - 2200°C, 保温 120~ 240min, 真空度为 10— 4Pa ~ 10— 3Pa; 第三个 P介段为緩慢冷却热处理阶段, 真空度为 10— 4Pa~10— 3Pa; 以 10~20°C /min的速率冷却至 1500 ~ 1600°C,保温 30~60min;以 12 - 20°C/min 的速率冷却至 1200 ~ 1250°C, 保温 60~90min; 以 10 ~ 20°C/min的 速率冷却至 800°C , 然后随炉冷却。
PCT/CN2012/088150 2012-01-31 2012-12-31 一种生物医用多孔植入材料的制备方法 WO2013113250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210021808.9 2012-01-31
CN201210021808.9A CN102796907B (zh) 2012-01-31 2012-01-31 一种生物医用多孔植入材料的制备方法

Publications (1)

Publication Number Publication Date
WO2013113250A1 true WO2013113250A1 (zh) 2013-08-08

Family

ID=47196199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/088150 WO2013113250A1 (zh) 2012-01-31 2012-12-31 一种生物医用多孔植入材料的制备方法

Country Status (2)

Country Link
CN (1) CN102796907B (zh)
WO (1) WO2013113250A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021255195A1 (en) 2020-06-18 2021-12-23 University Of Malta Process for production of metal scaffolds and foams
CN115671380A (zh) * 2022-11-03 2023-02-03 天津理工大学 基于tpms结构的锌合金或其复合材料组织工程支架及制备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796907B (zh) * 2012-01-31 2014-12-10 重庆润泽医药有限公司 一种生物医用多孔植入材料的制备方法
CN106119586B (zh) * 2013-04-12 2018-08-31 重庆润泽医药有限公司 一种多孔金属材料的制备方法
CN103805798A (zh) * 2014-02-20 2014-05-21 中南大学 多孔钽铌合金及其制备方法
CN104783929B (zh) * 2015-04-23 2017-06-27 西安交通大学 一种个性化定制型钽植入物的制造方法
CN104784751B (zh) * 2015-04-23 2017-05-10 宁波创导三维医疗科技有限公司 一种个性化定制型多孔钽植入物及其制备方法
CN106467939B (zh) * 2015-08-19 2020-06-09 重庆润泽医药有限公司 一种多级孔金属制备方法
CN106540335A (zh) * 2015-09-21 2017-03-29 重庆润泽医药有限公司 一种多孔材料的应用
CN106673687A (zh) * 2015-11-06 2017-05-17 重庆润泽医药有限公司 一种多孔材料及制备方法
CN108653820A (zh) * 2018-05-29 2018-10-16 四川维思达医疗器械有限公司 一种多孔金属骨内置物的制备方法
CN110434341A (zh) * 2019-08-30 2019-11-12 西北有色金属研究院 一种全连通高孔隙率镍基合金材料的制备方法
CN111250706A (zh) * 2020-01-14 2020-06-09 北京中科极地抗衰老技术研究院(有限合伙) 一种医用多空孔钽材料和制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.
CN101660076A (zh) * 2009-10-14 2010-03-03 北京师范大学 有机泡沫浸浆烧结法制备宏观网状多孔钽
CN102205144A (zh) * 2010-03-31 2011-10-05 重庆润泽医疗器械有限公司 医用金属植入材料多孔钽及其制备方法
CN102220508A (zh) * 2011-05-18 2011-10-19 宝鸡市力诺有色金属材料有限公司 医用多孔钽的制备方法及用途
CN102796907A (zh) * 2012-01-31 2012-11-28 重庆润泽医药有限公司 一种生物医用多孔植入材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
CN101549175B (zh) * 2009-05-15 2012-07-04 中南大学 一种孔隙非均匀分布仿生骨质材料制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.
CN101660076A (zh) * 2009-10-14 2010-03-03 北京师范大学 有机泡沫浸浆烧结法制备宏观网状多孔钽
CN102205144A (zh) * 2010-03-31 2011-10-05 重庆润泽医疗器械有限公司 医用金属植入材料多孔钽及其制备方法
CN102220508A (zh) * 2011-05-18 2011-10-19 宝鸡市力诺有色金属材料有限公司 医用多孔钽的制备方法及用途
CN102796907A (zh) * 2012-01-31 2012-11-28 重庆润泽医药有限公司 一种生物医用多孔植入材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021255195A1 (en) 2020-06-18 2021-12-23 University Of Malta Process for production of metal scaffolds and foams
CN115671380A (zh) * 2022-11-03 2023-02-03 天津理工大学 基于tpms结构的锌合金或其复合材料组织工程支架及制备

Also Published As

Publication number Publication date
CN102796907A (zh) 2012-11-28
CN102796907B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2013113250A1 (zh) 一种生物医用多孔植入材料的制备方法
CN110508788B (zh) 一种锌或锌合金或其复合材料组织工程支架的制备方法
CN103849792B (zh) 一种适用于替代人体牙骨组织的多孔钽
WO2013113251A1 (zh) 一种多孔钽医用植入材料的制备方法
WO2013044773A1 (zh) 一种牙骨替代医用多孔金属材料的制备方法
CN102796904B (zh) 一种替代承重骨组织的医用多孔金属材料及其制备方法
WO2013044832A1 (zh) 一种制备医用多孔钽植入材料的方法
EP2897657A1 (en) Hard scaffold
WO2013044852A1 (zh) 一种医用多孔金属植入材料的制备方法
CN103740964B (zh) 医用多孔金属植入材料的制备方法
CN102796899B (zh) 一种医用多孔金属植入材料的制备方法
WO2013044767A1 (zh) 一种替代牙骨的医用多孔钽材料及其制备方法
CN103740962A (zh) 牙骨替代医用多孔金属材料的制备方法
WO2013044858A1 (zh) 一种医用多孔金属植入材料的制备方法
CN103691004B (zh) 医用多孔金属植入材料的制备方法
CN103691003B (zh) 多孔钽医用植入材料的制备方法
CN111084903A (zh) 一种多孔Nb-Ta-Ti-Si生物医用材料及其制备方法
WO2013044778A1 (zh) 一种医用多孔金属材料及其制备方法
CN115350323B (zh) 一种生物可降解多孔镁基复合材料支架的精准制备方法
WO2013044779A1 (zh) 一种医用多孔金属材料的制备方法
CN103736147B (zh) 替代承重骨组织的医用多孔金属材料及其制备方法
WO2013044815A1 (zh) 一种医用多孔钽材料的制备方法
WO2013044835A1 (zh) 一种多孔钽医用植入材料的制备方法
WO2013044834A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044809A1 (zh) 一种制备替代承重骨组织的医用多孔金属材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867339

Country of ref document: EP

Kind code of ref document: A1