WO2013113251A1 - 一种多孔钽医用植入材料的制备方法 - Google Patents

一种多孔钽医用植入材料的制备方法 Download PDF

Info

Publication number
WO2013113251A1
WO2013113251A1 PCT/CN2012/088152 CN2012088152W WO2013113251A1 WO 2013113251 A1 WO2013113251 A1 WO 2013113251A1 CN 2012088152 W CN2012088152 W CN 2012088152W WO 2013113251 A1 WO2013113251 A1 WO 2013113251A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
rate
temperature
stage
cool
Prior art date
Application number
PCT/CN2012/088152
Other languages
English (en)
French (fr)
Inventor
叶雷
Original Assignee
重庆润泽医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆润泽医药有限公司 filed Critical 重庆润泽医药有限公司
Publication of WO2013113251A1 publication Critical patent/WO2013113251A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1146After-treatment maintaining the porosity
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to the field of preparation of porous tantalum medical metal implant materials, and more particularly to the formation of a porous tantalum medical metal implant material for replacing bone tissue of a load bearing portion.
  • Porous medical metal implant materials are used for replacing human related tissues, and have good therapeutic prospects, such as having important and special uses for treating bone tissue wounds and femoral tissue necrosis.
  • the common materials are metal stainless steel and porous.
  • the porosity should be 30 ⁇ 80%, and the pores are preferably all connected and evenly distributed, or the pores are connected and evenly distributed according to the need, so that Consistent with the growth of the human bone tissue, it also reduces the weight of the material itself, suitable for human implant use.
  • the refractory metal ruthenium due to its excellent biocompatibility, is expected to be used as a substitute for the conventional medical metal biomaterials described above. Because metal ruthenium is harmless to the human body, non-toxic, no side effects, and with the rapid development of medicine at home and abroad, the understanding of sputum as a human implant material, the demand for porous metal ruthenium materials for human implants It has become more and more urgent. As a porous medical implant metal crucible, it can be used as a new type of bone tissue replacement material if it can have a uniform distribution of 4 ⁇ high pores and physical and mechanical properties compatible with the human body.
  • the preparation methods of porous tantalum biological materials mainly include powder loose sintering method, foam impregnation sintering method, slurry foaming method, etc., although the porosity of the porous tantalum prepared by these methods can meet the requirements, the pore morphology is not good. How many are closed tiny pores, and the pore distribution is uneven.
  • the biggest characteristic of biological materials is the complex shape and high requirements for minute details, especially the pores of the material should be completely three-dimensionally connected and distributed. Therefore, the molding technology High demands have been made, and conventional molding techniques have not been able to meet the needs due to limitations in the manufacturing process.
  • the object of the present invention is to provide a method for preparing a porous tantalum medical implant material suitable for industrial production.
  • the porous tantalum medical implant material prepared by the method has complete three-dimensional pores and a uniform pore distribution, and has good biocompatibility. At the same time, it has good toughness and excellent mechanical properties.
  • the invention discloses a preparation method of a porous ⁇ medical implant material, which is characterized in that: a pure bismuth powder is mixed with a binder to obtain a bismuth powder slurry; a polymer resin template having a porosity of 20% to 50% and completely three-dimensionally connected
  • the bracket is placed in a steel mold, the prepared tantalum powder slurry is poured into the steel mold and passed over the polymer resin template holder, and then the steel mold is pressed slowly and uniformly to fully and completely fill the steel powder.
  • the applied pressure is increased from OMPa to 8 ⁇ 12Mpa, and the pressure is used for 2 ⁇ 5h.
  • a biomedical porous tantalum implant material is obtained by post-treatment such as degreasing, sintering, cooling, etc., wherein the sintering is performed at a vacuum of 10 - 4 Pa to 10 -3 Pa, and the temperature is raised to 1500 ° at 10 to 20 ° C / min.
  • the metal tantalum powder is completely and uniformly filled into the three-dimensional polymer resin stent, and after the chemical method is removed from the three-dimensional stent, the three-dimensional communication is obtained.
  • the porous metal material body is sintered to obtain a porous metal implant material with complete three-dimensional connectivity and uniform pores, so that the porous metal implant material has good biocompatibility.
  • 20% - 50%, fully three-dimensionally connected polymer resin template holders can be obtained by conventional methods such as foaming method, three-dimensional printing method, etc., all 20% ⁇ 50%, completely three-dimensionally connected polymer resin template holders Suitable for use in the present invention, it is common knowledge to those skilled in the art to employ chemical dissolution removal depending on the composition of the polymeric resin template scaffold; the degreasing step described above can be carried out by conventional degreasing in the art.
  • medical porous metal materials as materials for replacing weight-bearing bone structures have high requirements on mechanical properties such as strength and toughness, and generally meet the mechanical properties while biocompatibility is not effectively guaranteed.
  • preparation routes for medical porous tantalum There are many preparation routes for medical porous tantalum. The inventors have creatively proposed to use the above steps and processes to prepare medical porous tantalum implant materials, which effectively prevent the use of the impregnation method, which is easy to be blocked, and the difficult process of the dipping process.
  • the elastic modulus can be tested. Up to 4. 5 ⁇ 5.
  • the pure tantalum powder and the binder are uniformly mixed at a mass ratio of 3 to 10:1 to obtain a tantalum powder slurry.
  • the above-mentioned sintering and cooling are further annealed, and the annealing step is a vacuum degree of 10 - 4 Pa - 10 - 3 Pa, heat up to 800 ⁇ 900 °C at 10 ⁇ 20 °C / min, heat insulation 240 ⁇ 480min, then cool to 400 °C at 2 ⁇ 5 °C / min, keep warm for 120 ⁇ 300min, then cool to room temperature with the furnace .
  • the first P-stage is to remove the added binder, and the temperature is raised from room temperature to 400 ° C at a rate of 1 to 5 ° C/min, and the temperature is maintained for 30 to 60 minutes.
  • the vacuum is maintained at about 10 - 3 Pa;
  • the second stage is high temperature vacuum sintering stage, in vacuum The degree is 10" 4 Pa ⁇ 10" 3 Pa, the temperature is raised to 1500 ⁇ 1800 °C at 10 ⁇ 20 °C / min, the temperature is kept for 120 ⁇ 240min, the furnace is cooled to 200 ⁇ 300 °C, and then 10 ⁇ 20 °C /min heats up to 1500 ⁇ 1800 °C, heats up 180 ⁇ 240min, heats up to 2000 ⁇ 2200 °C at 5 ⁇ 10 °C / min, heat preservation 120 ⁇ 360min; the third stage is slow cooling stage, vacuum is 10" 4 Pa ⁇ 10" 3 Pa, cooled to 1500 ⁇ 1600 °C at 10 ⁇ 20 °C / min, kept for 30 ⁇ 60min, cooled to 1200 ⁇ 12
  • a method for preparing a porous sputum medical implant material is carried out as follows: a. Pure strontium powder (powder size 8 ⁇ 13 ⁇ ) and mass concentration of 3-6 °/. The polyvinyl alcohol aqueous solution is mixed at a mass ratio of 3 to 10:1, and uniformly stirred to prepare a tantalum powder slurry;
  • the powder particles and the particles are closely combined with each other, and the moisture in the powder slurry penetrates into the steel mold during the pressing process; c is placed in the air to naturally dry the remaining moisture in the steel mold, and then from the steel mold Carefully remove the polymer resin template, remove the excess tantalum powder around the polymer resin template to expose the polymer template; finally, remove the polymer resin template by chemical dissolution to obtain a porous skeleton skeleton;
  • the above-mentioned blank is post-treated as follows:
  • the first P-stage is to remove the added binder, and increase from room temperature to 400 ° C at a rate of l ⁇ 5 ° C / min, and keep warm 30 ⁇ 60min, from 400 ° C to 600 ⁇ 800 ° C at a rate of 0.5 ⁇ 1.5 ° C / min, heat preservation 60 ⁇ 120min, the vacuum is maintained at about 10 - 3 Pa;
  • the second stage is high temperature vacuum sintering P In the section, the degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa, the temperature is raised to 1500 - 1800 °C at 10 ⁇ 20 ° C / min, the temperature is kept for 120 ⁇ 240 min, cooled to 200 ⁇ 300 ° C with the furnace, and then 10 ⁇ 20 °C / min heating to 1500 ⁇ 1800 ° C, insulation 180 ⁇ 240min, 5 ⁇ 10 ° C / min to 2000 ⁇ 2200 ° C, insulation 120
  • medical porous metal materials are used as materials to replace human body-bearing structures, and the porosity is required to be large, so that human tissues can easily grow in and biocompatibility is sufficient to fully exert their functions, but The greater the porosity and the larger the pore size, the mechanical properties such as strength and toughness are not guaranteed; on the contrary, the mechanical properties are good and the material density is too large to cause discomfort; the preparation of medical porous tantalum is numerous, but the inventor It is creatively proposed to prepare a medical porous tantalum implant material by the above steps and processes, thereby effectively preventing the problem that the plugging method which is easy to occur by the dipping method, the difficult control of the dipping process, the uneven quality of the obtained product, etc.; The obtained porous tantalum material has been tested to have good biocompatibility and biosafety.
  • the density is 5.00 ⁇ 7.50g/cm 3 , the dispersion of pores is high, the porosity is 50 - 80%, the pores are completely connected in three dimensions and the distribution is hooked.
  • Good biocompatibility, pore size is about 200 ⁇ 300 ⁇ ; elastic modulus can reach 5.5 ⁇ 6.5Gpa, bending strength can reach 125 ⁇ 158Mpa, compressive strength can be Up to 80 ⁇ 90Mpa; in general, its biocompatibility and toughness are excellent, close to the human body-bearing bone tissue, and the resulting porous crucible is very suitable for replacing medical implant materials with load-bearing bone tissue.
  • the method of the invention adopts the method of molding to realize the effect of isostatic pressing, so that the pressing pressure is uniformly and uniformly transmitted in the polymer resin template holder, and the metal powder uniformly and densely fills the entire polymer resin template holder.
  • the prepared porous metal material has small sintering deformation, and the amount of the sintered neck between the particles and the particles is more than 70 ° /. .
  • the sintered neck obtained by the method of the present invention is It means that at high temperatures, the powder is heated and the particles are bonded. This is the sintering phenomenon that we often say. Sintering refers to the process of metallurgical bonding between particles at high temperatures, usually at the melting point of the main component.
  • the sintered neck in contact with the particles grows, and thus causes a change in properties.
  • the sintered neck will gradually increase, the proportion of the sintered neck will increase, and the strength of the sintered body will increase.
  • the sintered metal material will be sintered.
  • the amount of the neck is more than 70%, and the mechanical properties of the sintered body are strong.
  • the preparation method of the invention has the advantages of simple and easy control; the whole preparation process is harmless, non-polluting, non-toxic and dusty, has no side effects on the human body, and is preferably used in the preparation process to be completely decomposed during the sintering process, and no residue is left. Adhesives, stents, etc., further facilitate the biocompatibility and biosafety of the implant material.
  • Fig. 1 is a vertical microscopic analysis of the microstructure of a porous crucible prepared by the preparation method of the present invention; it can be observed from the drawing that the pores of the porous crucible obtained by the present invention are completely three-dimensionally connected and uniformly distributed.
  • a method for preparing a porous sputum medical implant material is carried out as follows: a pure tantalum powder (powder particle size of 8 ⁇ 10 ⁇ m) and a mass percentage of 4% aqueous solution of hydrazine-based cellulose mixed in a mass ratio of 7: 1, fully stirred to prepare a tantalum powder slurry;
  • the moisture in the mash slurry penetrates into the steel mold during the pressing process; c is placed in the air to naturally dry the remaining moisture in the steel mold, and then carefully removed from the steel mold In addition to the polymer resin template, the excess bismuth powder around the polymer resin template is removed to expose the polymer template; finally, the polymer resin template is removed by chemical dissolution to obtain a porous ruthenium skeleton;
  • the above-mentioned blank is post-treated as follows:
  • the first P-stage is to remove the added binder, and raise the temperature from room temperature to 400 ° C at a rate of 1 ⁇ 2 ° C / min for 40 min. , from 400 ° C to 600 ⁇ 800 ° C at a rate of 1.0 ° C / min, holding for 90 min, the vacuum is maintained at about 10 - 3 Pa;
  • the second phase is high temperature vacuum sintering, the vacuum is 10" 4 Pa ⁇ 10" 3 Pa, heat up to 1500 ⁇ 1600 °C at 15 °C / min, heat for 240 min, cool to 200 ⁇ 300 °C with furnace, then heat up to 1700 ⁇ 1800 °C at 10 °C / min, Insulation for 240min, heat up to 2000 ⁇ 2200 °C at 10 °C / min, heat preservation for 120min;
  • the third stage is slow cooling stage, the degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa, at
  • the material had a density of 5.52 g/cm 3 and a porosity of about 60°/. , uniform pore distribution, pore size of about 300 ⁇ m, compressive strength of 65MPa, bending strength of 122MPa, elastic modulus of 4.6Gpa, the amount of sintered neck is about 70%; and it is three-dimensional fully connected, pore-hook distribution, biological phase Good compatibility, the porous tantalum implant material prepared by this method is very suitable for replacing human femur tissue.
  • the porous tantalum medical implant material of the present invention can be obtained.
  • the rate of /min is 10 ⁇ 13 °C / min and the temperature is raised to 1700 ⁇
  • the furnace is cooled to 200 ⁇ 300 ° C, and then 17 ⁇
  • the rate is cooled to 1500 ⁇ 1600 °C, keep °C, keep warm 270 ⁇
  • the vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa, and the rate of vacuum is raised from room to 18 ⁇ 20 °C / min to 1600 ⁇
  • the furnace is cooled to 200 ⁇ 300 °C, and then 12 ⁇
  • the rate is raised from room 16 ⁇ 18 ° C / min to 1550 ⁇
  • the temperature is raised at 14 ° C / min 50 min / 19 ° C / min to 1500 ⁇ 1800 ° C,
  • the rate is from 300 min to 300 min to 320 min; the vacuum is
  • the rate is cooled to 800 ° C, then cooled with the furnace to the chamber after cooling
  • the vacuum degree at 4 °C /min is 10 - 4 Pa ⁇ 10 - 3 Pa, and the temperature is raised from room temperature 16 ° C / min to 1600 ⁇ 1800 ° C at a vacuum rate.
  • the rate is from 200min, from 6 °C /min to 800 ⁇ 900 °C, 400 °C to 2000 ⁇ 2200 °C, and heat preservation for 320min; 680 ° C, the vacancy is 10 - 4 Pa ⁇ 10 - 3 Pa, at 40 ° C for 400 min, then 60 min, at / min rate to 1500 - 1600
  • the vacuum degree is 10 - 4 Pa ⁇ 10 - 3 Pa
  • the temperature is raised from the chamber at 17 ° C / min to 1700 ° C at a vacuum rate.
  • the temperature of the insulation is increased to 8QQ ⁇ 900 from 320min; the degree of vacuum is 10 - 4 Pa ⁇
  • the obtained porous tantalum product has three-dimensional complete connectivity, pore-to-hook distribution, and good biocompatibility.
  • the test results are as follows:
  • the resulting porous enamel is very suitable for replacing medical implant materials with load-bearing bone tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种多孔钽医用植入材料的制备方法,将纯钽粉与粘结剂混合均匀得到钽粉浆料;将孔隙率为 20%~50%、完全三维连通的高分子树脂模板支架放入钢模中,将所述配制好的钽粉浆料灌入钢模中并漫过其中的高分子树脂模板支架,然后缓慢均匀地对钢模四周加压使钽粉充分完全地填充到高分子树脂模板支架中,所施加的压力从 0MPa 匀速增加到 8~12Mpa、加压过程所用时间为 2~5h,再通过化学溶解脱除高分子树脂模板支架、得到多孔钽的坯体骨架,最后通过脱脂、烧结、冷却等后处理得到生物医用多孔钽植入材料。制得的多孔钽植入材料生物相容性好、力学性能优异。

Description

一种多孔钽医用植入材料的制备方法 技术领域 本发明涉及多孔钽医用金属植入材料的制备领域,特别是涉及一 种替代承重部位骨组织的多孔钽医用金属植入材料成型制备。
背景技术 多孔医用金属植入材料用于替代人体相关组织,有很好的治疗前 景, 如具有治疗骨组织创伤和股骨组织坏死等重要而特殊的用途, 现 常见的这类材料有金属不锈钢、 多孔金属钛、 多孔钽等。 作为骨组织 创伤和股骨组织坏死治疗使用的多孔植入材料, 其孔隙度应达 30 ~ 80%, 而且孔隙最好全部连通与均勾分布, 或根据需要孔隙部分连通 与均匀分布,使之既与人体的骨组织生长相一致, 又减轻了材料本身 的重量, 以适合人体植入使用。
难熔金属钽, 由于它具有优秀的生物相容性, 其多孔材料有望作 为替代前述等传统医用金属生物材料。 由于金属钽对人体的无害、无 毒、 无副作用, 以及随着国内外医学的飞速发展, 对钽作为人体植入 材料认知的进一步深入,人们对人体植入用多孔金属钽材料的需求变 得越来越迫切, 其中作为多孔医用植入金属钽, 如果能具有 4艮高的均 匀分布连通孔隙以及与人体相适应的物理机械性能,则其有望作为一 种新型的骨组织替代材料。
目前多孔钽生物材料的制备方法主要有粉末松装烧结法、泡沫浸 渍烧结法, 浆料发泡法等等, 这些方法制备出的多孔钽虽然孔隙度能 够满足要求, 但是孔隙形貌不好, 多少为闭合的微小孔隙、 孔隙分布 不均匀。 然而生物材料最大特点是形状复杂, 对微小的细节要求高, 特别是材料的孔隙要完全三维连通且分布均勾。 因此, 对成型技术提 出了很高的要求,而传统的成型技术由于受到制备工艺的限制而无法 满足需要。
发明内容
本发明的目的在于提供一种适于工业化生产的多孔钽医用植入 材料的制备方法,该方法制得的多孔钽医用植入材料孔隙完全三维连 通、 且孔隙分布均勾, 生物相容性好, 同时其强韧性好、 力学性能优 异。
本发明目的通过如下技术方案实现:
一种多孔钽医用植入材料的制备方法, 其特征在于: 将纯钽粉与 粘结剂混合均匀得到钽粉浆料; 将孔隙率为 20%~50%、 完全三维连 通的高分子树脂模板支架放入钢模中,将所述配制好的钽粉浆料灌入 钢模中并漫过其中的高分子树脂模板支架,然后緩慢均匀地对钢模四 周加压使钽粉充分完全地填充到高分子树脂模板支架中,所施加的压 力从 OMPa匀速增加到 8 ~ 12Mpa、 加压过程所用时间为 2 ~ 5h, 再通 过化学溶解脱除高分子树脂模板支架、得到多孔钽的坯体骨架, 最后 通过脱脂、 烧结、 冷却等后处理得到生物医用多孔钽植入材料, 所述 烧结是在真空度为 10— 4Pa~10— 3Pa, 以 10 ~ 20°C/min升温至 1500 ~ 1800°C、 保温 120~ 240min、 随炉冷至 200 ~ 300°C, 再以 10~20°C /min升温至 1500 ~ 1800°C、 保温 180 ~ 240min, 以 5~ 10°C/min升 温至 2000 ~ 2200°C、 保温 120~ 360min。
通过上述的加压使得金属钽粉完全、均匀地填充到了三维高分子 树脂支架之中, 化学方法脱除三维支架后, 得到的是完全三维连通的 多孔金属材料的坯体, 烧结后得到完全三维连通、 孔隙均匀的多孔金 属植入材料, 使该多孔金属植入材料生物相容性好。 上述孔隙率为
20% - 50%, 完全三维连通的高分子树脂模板支架可通过发泡法、 三维 打印法等本领域常规方法制得, 所有的 20% ~ 50%、 完全三维连通的 高分子树脂模板支架均适用于本发明,根据高分子树脂模板支架的成 分对其采用化学溶解脱除对本领域技术人员来说是常识;上述脱脂步 骤可按本领域常规脱脂进行。
在医用多孔金属材料的研发过程中,医用多孔金属材料作为替代 承重骨组织的材料, 对力学性能如强度、 韧性要求高, 通常在满足了 力学性能的同时生物相容性得不到有效保证。医用多孔钽的制备路线 众多,发明人创造性地提出了采用上述步骤、 工艺制备医用多孔钽植 入材料, 有效防止了采用浸浆法易出现的堵孔、 浸浆过程难控制、 制 得的产品质量不均匀等问题; 特别是采用上述緩慢加压制坯、使制得 的多孔钽材料孔隙完全三维连通且均匀、有效提高了材料的生物相容 性, 上述烧结处理工艺, 使得坯体成为了发热体, 烧结得更均勾、 透 彻, 制得的多孔钽植入材料强韧性好、 非常适合作为替代人体承重部 位骨组织如股骨、 面股等多孔钽植入材料; 经过测试其弹性模量可达 4. 5 ~ 5. 5Gpa、弯曲强度可达 120 ~ 140Mpa、抗压强度可达 65 ~ 75MPa 0 为了使制得的多孔钽植入材料孔隙率在 50 ~ 80%, 使其更适合作 为替代人体承重骨组织的多孔钽植入材料,本发明纯钽粉的粉末粒度 < 15 μ ηι, 本发明粘结剂为 3 ~ 6%的聚乙烯醇水溶液, 还可以为 2 ~ 4% 的曱基纤维素水溶液或 3 ~ 7%的乙基纤维素酒精溶液等, 均以质量百 分浓度计, 进一步优选地, 上述纯钽粉与粘结剂按质量比 3~10: 1 均匀混合制得钽粉浆料。 为了更充分地消除多孔钽植入材料的内应力、 使其组织更均匀, 进一步提高韧性, 上述烧结、 冷却后还进行退火处理, 所述退火处理 步骤是真空度为 10— 4Pa~ 10— 3Pa, 以 10 ~ 20°C/min升温至 800 ~ 900 °C、 保温 240 ~ 480min, 再以 2~5°C/min冷至 400°C、 保温 120 ~ 300min, 然后随炉冷却至室温。
具体地说, 上述后处理按如下步骤进行: 第一 P介段为脱除所加入 的粘结剂,以 1 ~ 5°C/min的速率从室温升至 400°C ,保温 30 ~ 60min, 以 0.5 ~ 1.5°C/min 的速率从 400°C升至 600 ~ 800°C, 保温 60 ~ 120min,真空度保持在 10— 3Pa左右;第二个阶段为高温真空烧结阶段, 在真空度为 10"4Pa~10"3Pa, 以 10 ~ 20°C/min升温至 1500 ~ 1800°C、 保温 120~ 240min、 随炉冷至 200 ~ 300°C , 再以 10 ~ 20°C/min升温 至 1500 ~ 1800°C、保温 180 ~ 240min,以 5 ~ 10°C/min升温至 2000 ~ 2200°C、 保温 120~ 360min; 第三个阶段为緩慢冷却阶段, 真空度为 10"4Pa~10"3Pa, 以 10 ~ 20°C/min的速率冷却至 1500 ~ 1600°C , 保温 30~ 60min,以 12 ~ 20°C/min的速率冷却至 1200 ~ 1250°C ,保温 60 ~ 90min; 以 10~20°C/min的速率冷却至 800°C, 然后随炉冷却; 第四 个阶段为退火阶段, 真空度为 10— 4Pa~10— 3Pa, 以 10 ~ 20°C/min升温 至 800 ~ 900°C、 保温 240 ~ 480min, 再以 2 ~ 5°C/min冷至 400°C、 保温 120 ~ 300min, 然后随炉冷却至室温。 更具体地说, 一种多孔钽医用植入材料的制备方法, 按如下步骤 进行: a. 把纯钽粉(粉末粒度为 8~13μηι)与质量百分浓度为 3 ~ 6°/。 的聚乙烯醇水溶液按质量比 3 ~ 10: 1混合, 充分搅拌均匀, 调制出 钽粉浆料;
b. 将孔隙率为 20% ~ 50%、 完全三维连通的高分子模板支架放入 钢模中,然后把上述调制好的钽粉浆料灌入钢模中并漫过其中的高分 子模板支架,最后把緩慢均匀地对钢模四周施加压力使得钽粉充分完 全地填充到高分子模板之中, 所施加的压力从 OMPa 勾速增加到 10Mpa、 加压过程所用时间为 2~5h, 使得钽粉颗粒与颗粒之间的相 互紧密地结合在一起, 钽粉浆料中的水分在压制过程中渗到钢模外; c 放在空气中自然风干钢模中剩余的水分, 然后从钢模中小心 脱除高分子树脂模板,去除高分子树脂模板周围多余的钽粉使得高分 子模板露出来; 最后, 通过化学溶解脱除其中的高分子树脂模板, 得 到多孔钽的坯体骨架;
d. 将上述的坯体按如下步骤进行后处理: 第一 P介段为脱除所加 入的粘结剂, 以 l ~5°C/min 的速率从室温升至 400°C, 保温 30 ~ 60min, 以 0.5 ~ 1.5°C/min的速率从 400°C升至 600 ~ 800°C, 保温 60~120min, 真空度保持在 10— 3Pa左右; 第二个阶段为高温真空烧结 P介段,在真空度为 10— 4Pa ~ 10— 3Pa,以 10 ~ 20°C/min升温至 1500 - 1800 °C、 保温 120~ 240min、 随炉冷至 200 ~ 300°C, 再以 10~20°C/min 升温至 1500 ~ 1800°C、 保温 180~ 240min, 以 5 ~ 10°C/min升温至 2000 ~ 2200°C、 保温 120~ 360min; 第三个阶段为緩慢冷却阶段, 真 空度为 10— 4Pa ~ 10— 3Pa, 以 10~20°C/min的速率冷却至 1500 - 1600 °C, 保温 30~60min, 以 12 ~ 20°C/min的速率冷却至 1200 ~ 1250°C , 保温 60 ~ 90min; 以 10 ~ 20°C/min的速率冷却至 800°C, 然后随炉冷 却; 第四个阶段为退火阶段, 真空度为 10— 4Pa~ 10— 3Pa, 以 10~20°C /min升温至 800 ~ 900°C、 保温 240 ~ 480min, 再以 2 ~ 5°C/min冷至 400°C、 保温 120~ 300min, 然后随炉冷却至室温。
在医用多孔金属材料的研发过程中,医用多孔金属材料作为替代 人体承重组织的材料, 要求其孔隙率较大、 这样人体组织才易长入、 生物相容性好从而充分地发挥其作用, 但孔隙率越大、 孔径越大, 力 学性能如强度、 韧性就得不到保证; 反之, 力学性能好了又易使材料 密度过大引起不舒适感; 医用多孔钽的制备路线众多,但发明人创造 性地提出了采用上述步骤、 工艺制备医用多孔钽植入材料, 有效防止 了采用浸浆法易出现的堵孔、浸浆过程难控制、制得的产品质量不均 匀等问题;本发明方法制得的多孔钽材料经过测试其生物相容性与生 物安全性好, 密度在 5.00~7.50g/cm3, 孔隙的分散度高、 孔隙度在 50 - 80%, 孔隙完全三维连通且分布均勾、 生物相容性好, 孔径约为 200 μηι~ 300 μηι; 弹性模量可达 5.5 ~ 6.5Gpa, 弯曲强度可达 125~ 158Mpa、 抗压强度可达 80~90Mpa; 总的来说, 其生物相容性、 强韧 性均优异,接近人体承重骨组织, 所得的多孔钽非常适合用于替代承 重骨组织的医用植入材料。
本发明方法采用模压的方法实现等静压压制的效果,使得压制压 力在高分子树脂模板支架中均匀充分的传导,金属粉末均匀致密地填 充满整个高分子树脂模板支架。 制备出的多孔金属材料烧结变形小, 颗粒与颗粒之间的烧结颈的量大于 70°/。。 本发明方法得到的烧结颈是 指在高温下, 粉末受热, 颗粒之间发生粘结, 就是我们常说的烧结现 象, 烧结是指颗粒在高温下粉末颗粒间发生冶金性质结合的过程, 通 常在主要成分组元的熔点下进行, 并通过原子迁移实现, 通过微观结 构观察, 可以发现颗粒接触的烧结颈 (或称接触颈) 长大, 并因此 导致性能变化。 随着烧结温度的增加, 对烧结温度与烧结时间的合理 控制,烧结颈才会逐渐增大,烧结颈的比例增多,烧结体的强度增加, 通过此烧结工艺, 使得烧结后金属材料中, 烧结颈的量大于 70%, 烧 结体的力学性能较强。 再者, 本发明制备方法工艺筒单、 易控; 整个 制备过程无害、 无污染、 无毒害粉尘, 对人体无副作用, 而且在制备 过程中优先采用在烧结过程中能够全部分解, 没有残留的粘结剂、 支 架等, 进一步有利于保证植入材料的生物相容性和生物安全性。
附图说明
图 1 是本发明所述制备方法制得多孔钽的微观结构的立式显微 镜分析图; 从附图可观察到: 本发明制得的多孔钽孔隙完全三维连 通, 且分布均匀。
具体实施方式 下面通过实施例对本发明进行具体的描述,有必要在此指出的是 以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保 作出一些非本质的改进和调整。
实施例 1
一种多孔钽医用植入材料的制备方法, 按如下步骤进行: a. 把纯钽粉 (粉末粒度为 8 ~ 10 μ m )与质量百分浓度为 4%的曱 基纤维素水溶液按质量比 7: 1混合, 充分搅拌均匀, 调制出钽粉浆 料;
b. 将孔隙率为 20% ~ 50%、 完全三维连通的高分子模板支架放入 钢模中,然后把上述调制好的钽粉浆料灌入钢模中并漫过其中的高分 子模板支架,最后把緩慢均匀地对钢模四周施加压力使得钽粉充分完 全地填充到高分子模板之中, 所施加的压力从 OMPa 勾速增加到 10Mpa、 加压过程所用时间为 5h, 使得钽粉颗粒与颗粒之间的相互紧 密地结合在一起, 钽粉浆料中的水分在压制过程中渗到钢模外; c 放在空气中自然风干钢模中剩余的水分, 然后从钢模中小心 脱除高分子树脂模板,去除高分子树脂模板周围多余的钽粉使得高分 子模板露出来; 最后, 通过化学溶解脱除其中的高分子树脂模板, 得 到多孔钽的坯体骨架;
d. 将上述的坯体按如下步骤进行后处理: 第一 P介段为脱除所加 入的粘结剂, 以 1 ~ 2°C/min的速率从室温升至 400°C, 保温 40min, 以 1.0°C/min的速率从 400°C升至 600 ~ 800°C, 保温 90min, 真空度 保持在 10— 3Pa 左右; 第二个阶段为高温真空烧结阶段, 在真空度为 10"4Pa~10"3Pa, 以 15°C/min升温至 1500 ~ 1600°C、 保温 240min、 随 炉冷至 200 ~ 300°C, 再以 10°C/min 升温至 1700 ~ 1800°C、 保温 240min, 以 10°C/min升温至 2000 ~ 2200°C、 保温 120min; 第三个阶 段为緩慢冷却阶段, 真空度为 10— 4Pa~10— 3Pa, 以 15°C/min的速率冷 却至 1500 ~ 1600°C, 保温 50min, 以 12~14°C/min 的速率冷却至 1200 - 1250°C, 保温 60min; 以 17 ~ 20°C/min的速率冷却至 800°C , 然后随炉冷却。 发明人按 GB/T5163-2006 、 GB/T5249-1985 、 GB/T6886-2001等标准对上述多孔钽成品的多孔材料密度、 孔隙率及 各种力学性能进行检测, 经测试制得的多孔钽植入材料, 其密度为 5.52g/cm3, 孔隙度约为 60°/。, 孔隙分布均匀, 孔径在 300 μ m左右, 抗压强度 65MPa, 弯曲强度 122MPa, 弹性模量 4.6Gpa, 烧结颈的量 为 70%左右; 且其为三维完全连通、 孔隙均勾分布, 生物相容性好, 该方法制得的多孔钽植入材料非常适于替代人体股骨组织。
在上述实施例 1给出的方法中,我们还可以对其中的部分条件作 其他选择, 其余同实施例 1, 同样能得到本发明所述的多孔钽医用植 入材料。
实施 纯钽粉粒 粘结剂 纯钽粉与粘 加压时 压力匀速变 例 度 结剂的质量 间 化起始值 份比
2 15 μ m 2wt%曱基 8: 1 3小时 从 OMpa匀 纤维素水 速增力口到 溶液 12Mpa
3 8 μ m 6.5wt% 乙 3: 1 2.5小时 从 OMpa匀 基纤维素 速增力口到 酒精溶液 9Mpa
4 10 μ m 3wt%聚乙 5: 1 5小时 从 OMpa匀 烯醇水溶 速增力口到 液 8Mpa
5 13 μ m 5wt%乙基 9.5: 1 4小时 从 OMpa匀 纤维素酒 速增力口到 精溶液 HMpa
6 9 μ m 3wt%乙基 4: 1 2小时 从 OMpa匀 纤维素酒 速增力口到 精溶液 lOMpa
7 7 μ m 6wt%聚乙 6: 1 3.5小时 从 OMpa匀 烯醇水溶 速增力口到 液 9Mpa
实 脱脂温度 烧结气氛 ( Pa ) /温度 ( °C ) /时间 退火温度( °c ) / 施 ( °C ) /时间 (min ) 时间 (min) 例 (min )
2 以 4 ~ 5 °C 在真空度为 10— 4Pa ~ 10— 3Pa,以 真 空 度 为
/min的速率 10 ~ 13°C/min 升温至 1700 ~
10— 4Pa ~ 10— 3Pa, 从室温升至 1800°C、 保温 120~ 135min、 随
以 10~13°C/min
400°C, 显 炉冷至 200 ~ 300°C, 再以 17 ~
32min; 20°C/min升温至 1500 ~ 1600°C、 升温至 8QQ~ 900
1.5 °C /min 保温 180 ~ 200min, 以 5 ~ 7°C °C、 保温 450 ~ 的速率从 /min升温至 2000 ~ 2200°C、 保
480min,再以 2 ~ 400 °C升至 温 330 ~ 360min; 真空度为
600°C, 显 10"4Pa ~ 10— ,以 10 ~ 12°C/min 3°C/min冷至 400
600min , 在 的速率冷却至 1500 ~ 1600°C,保 °C、 保温 270 ~
10— 下 温 50~60min, 以 17~20°C/min
300min, 然后随 的速率冷却至 1200 ~ 1250°C,保
温 90min;以 10~ 14°C/min的速 炉冷却至室温 率冷却至 800°C , 然后随炉冷却
3 2.0 °C /min 在真空度为 10— 4Pa~10— 3Pa, 真 空 度 为 的速率从室 以 18 ~ 20°C/min升温至 1600 ~
10— 4Pa ~ 10— 3Pa, 温升至 400 1700°C、 保温 180~ 220min、 随
以 18~20°C/min
C , 保温 炉冷至 200 ~ 300°C, 再以 12 ~
60min/ 15°C/min升温至 1600 ~ 1700°C、 升温至 8QQ~ 900 0.5 °C /min 保温 200 ~ 220min, 以 6 ~ 7°C °C、 保温 300 ~ 的速率从 /min升温至 2000 ~ 2200°C、 保
320min, 再以 3 400 °C升至 温 150 ~ 200min; 真空度为
°C/min冷至 400 700°C, 显 10"4Pa ~ 10— 3Pa,以 15 ~ 18°C/min
lOOmin , 在 的速率冷却至 1500 ~ 1600°C,保 °C、 保温 150 ~ 10— 下 温 30~ 35min, 以 13 ~ 15°C/min
170min, 然后随 的速率冷却至 1200 ~ 1250°C,保
炉冷却至室温 温 90min;以 16 ~ 18°C/min的速
率冷却至 800°C , 然后随炉冷却
以 3°C/min 在真空度为 10— 4Pa ~ 10— 3Pa,以
的速率从室 16 ~ 18°C/min 升温至 1550 ~
温升至 400 1600°C、 保温 180~ 200min、 随 10— 4Pa ~ 10" a , °C , 保温 炉冷至 200 ~ 300°C, 再以 17 ~
以 14°C/min升温 50min/ 19°C/min升温至 1500 ~ 1800°C、
0.5 °C /min 保温 180 ~ 190min, 以 8 ~ 9°C 至 800 ~ 900°C、
/min升温至 2000 ~ 2200°C、 保
的速率从 保温 300min, 再 温 300 ~ 320min; 真空度为
400 °C升至
10"4Pa ~ 10— ,以 15 - 17°C/min 以 5°C/min冷至
780°C, L 的速率冷却至 1500 ~ 1600°C,保
80min , 在 温 45 ~ 55min, 以 16 ~ 19°C/min 400 °C 、 保温
10— 下 的速率冷却至 1200 ~ 1250°C,保
200 ~ 300min, 然 温 70~ 75min; 以 12 ~ 14°C/min
的速率冷却至 800°C, 然后随炉 后随炉冷却至室 冷却
Figure imgf000013_0001
4 °C /min 的 在真空度为 10— 4Pa ~ 10— 3Pa,以 真 空 度 为 速率从室温 16°C/min升温至 1600 ~ 1800°C、
升至 400°C, 保温 120 ~ 150min、 随炉冷至 10— 4Pa ~ 10— 3Pa , 48min/ 200 - 300°C, 再以 12°C/min升
以 18°C/min升温 1.2 °C /min 温至 15QQ ~ 1800 °C 、 保温
的速率从 200min , 以 6 °C /min 升温至 至 800 ~ 900°C、 400 °C升至 2000 ~ 2200°C、保温 320min; 真 680°C, 显 空度为 10— 4Pa~10— 3Pa, 以 18°C 保温 400min, 再 60min , 在 /min的速率冷却至 1500 - 1600
10— 下 °C, 保温 30min, 以 14°C/min 以 2°C/min冷至 的速率冷却至 1200 ~ 1250°C,保
400 °C 、 保温 温 70min;以 12°C/min的速率冷
却至 800°C, 然后随炉冷却 150min, 然后随 炉冷却至室温
3.5 °C /min 在真空度为 10— 4Pa ~ 10— 3Pa,以 真 空 度 为 的速率从室 17°C/min升温至 1700°C、 保温
温升至 400 230min、 随炉冷至 200 ~ 300°C , 10— 4Pa ~ 10— 3Pa, C , 保温 再以 14°C/min升温至 1500°C、
以 13°C/min升温 55min/ 保温 180min,以 9 °C /min升温至
0.8 °C /min 2000 ~ 2200°C、保温 330min; 真 至 800 ~ 900°C、 的速率从 空度为 10"4Pa~10"3Pa, 以 15°C
保温 270min, 再 400 °C升至 /min的速率冷却至 1500 - 1600
630°C, 显 °C, 保温 40min, 以 13°C/min 以 3.5°C/min冷 113min , 在 的速率冷却至 1200 ~ 1250°C,保
10— 下 温 70min;以 15°C/min的速率冷 至 4QQ°C、 保温 却至 800°C, 然后随炉冷却
280min, 然后以 18 ~ 20°C/min冷 至 、'曰
/JUL
2.5 °C /min 在真空度为 10— 4Pa~10— 3Pa, 真 空 度 为 的速率从室 以 18°C/min升温至 1700°C、 保
温升至 400 温 170min、 随炉冷至 200 - 300 10— 4Pa ~ 10— 3Pa, C , 保温 °C, 再以 16°C/min升温至 1800 以 10~12°C/min 44min/ °C、 保温 200min, 以 6°C/min
0.8 °C /min 升温至 2QQQ ~ 22QQ°C、 保温 升温至 8QQ~ 900 的速率从 320min; 真空度为 10— 4Pa ~
°C、 保温 240 ~ 400 °C升至 10— 3Pa , λ 13°C/min的速率冷却
750°C, 显 至 1500_1600°C, 保温 45min, 330min,再以 2 ~ 75min, 在 以 13 °C /min 的速率冷却至 3°C/min冷至 400
10— 下 1200 - 1250°C, 保温 75min; 以
18°C/min的速率冷却至 800°C, °C、 保温 170 ~ 然后随炉冷却 190min, 然后随 炉冷却至室温
所得多孔钽成品三维完全连通、 孔隙均勾分布, 生物相容性好, 按前述方法检测结果如下:
Figure imgf000015_0001
其生物相容性、 强韧性均优异, 接近人体承重骨组织, 所得的多 孔钽非常适合用于替代承重骨组织的医用植入材料。

Claims

权 利 要 求
1、 一种多孔钽医用植入材料的制备方法, 其特征在于: 将纯钽 粉与粘结剂混合均匀得到钽粉浆料; 将孔隙率为 20%~50%、 完全三 维连通的高分子树脂模板支架放入钢模中,将所述配制好的钽粉浆料 灌入钢模中并漫过其中的高分子树脂模板支架,然后緩慢均匀地对钢 模四周加压使钽粉充分完全地填充到高分子树脂模板支架中,所施加 的压力从 OMPa匀速增加到 8 ~ 12Mpa、 加压过程所用时间为 2 ~ 5h, 再通过化学溶解脱除高分子树脂模板支架、 得到多孔钽的坯体骨架, 最后通过脱脂、 烧结、 冷却等后处理得到生物医用多孔钽植入材料, 所述烧结是在真空度为 10— 4Pa ~ 10— 3Pa, 以 10 ~ 20°C/min 升温至 1500 ~ 1800°C、保温 120~ 240min、 随炉冷至 200 ~ 300°C,再以 10 ~ 20°C/min升温至 1500 ~ 1800°C、保温 180~ 240min, 以 5~10°C/min 升温至 2000 ~ 2200°C、 保温 120~ 360min。
2、 如权利要求 1所述的制备方法, 其特征在于: 所述纯钽粉的 粉末粒度 15 μ m, 所述粘结剂为 3 ~ 6%的聚乙烯醇水溶液、 2 ~ 4%的 曱基纤维素水溶液或 3 ~ 7%的乙基纤维素酒精溶液中的一种, 均以质 量百分浓度计。
3、 如权利要求 2所述的制备方法, 其特征在于: 所述纯钽粉与 所述粘结剂按质量比 3 ~ 10: 1均匀混合制得钽粉浆料。
4、 如权利要求 1、 2或 3所述的制备方法, 其特征在于: 所述烧 结、 冷却后还进行退火处理, 所述退火处理步骤是真空度为 10— 4Pa~ 10— 3Pa, 以 10~20°C/min升温至 800 ~ 900°C、 保温 240 ~ 480min, 再 以 2 ~ 5°C/min冷至 400°C、保温 120 ~ 300min,然后随炉冷却至室温。 5、 如权利要求 1所述的制备方法, 其特征在于: 所述后处理按 如下步骤进行: 第一 P介段为脱除所加入的粘结剂, 以 l ~5°C/min的 速率从室温升至 400°C,保温 30~60min, 以 0.5 ~ 1.
5°C/min的速率 从 400°C升至 600 ~ 800°C, 保温 60~120min, 真空度保持在 10— 3Pa 左右; 第二个阶段为高温真空烧结阶段, 在真空度为 10— 4Pa~10— 3Pa, 以 10~ 20°C/min升温至 1500 ~ 1800°C、 保温 120 ~ 240min、 随炉冷 至 200 ~ 300°C,再以 10~ 20°C/min升温至 1500 ~ 1800°C、保温 180 ~ 240min, 以 5 ~ 10°C/min升温至 2000 ~ 2200°C、 保温 120 ~ 360min; 第三个阶段为緩慢冷却阶段, 真空度为 10— 4Pa~10— 3Pa, 以 10~20°C /min的速率冷却至 1500 ~ 1600°C,保温 30~60min,以 12~20°C/min 的速率冷却至 1200 ~ 1250°C, 保温 60~90min; 以 10 ~ 20°C/min的 速率冷却至 800°C, 然后随炉冷却; 第四个阶段为退火阶段, 真空度 为 10— 4Pa~10— 3Pa, 以 10 ~ 20°C/min升温至 800 ~ 900°C、 保温 240 ~ 480min, 再以 2 ~ 5°C/min冷至 400°C、 保温 120 ~ 300min, 然后随炉 冷却至室温。
6、 如权利要求 1所述的制备方法, 其特征在于, 按如下步骤进 行:
a. 把粉末粒度为 8 ~ 13 μ m的纯钽粉与质量百分浓度为 3 ~ 6°/。的 聚乙烯醇水溶液按质量比 3 ~ 10: 1混合, 充分搅拌均匀, 调制出钽 粉浆料;
b. 将孔隙率为 20% ~ 50%、 完全三维连通的高分子模板支架放入 钢模中,然后把上述调制好的钽粉浆料灌入钢模中并漫过其中的高分 子模板支架,最后把緩慢均匀地对钢模四周施加压力使得钽粉充分完 全地填充到高分子模板之中, 所施加的压力从 OMPa 勾速增加到 10Mpa、 加压过程所用时间为 2~5h, 使得钽粉颗粒与颗粒之间的相 互紧密地结合在一起, 钽粉浆料中的水分在压制过程中渗到钢模外; c 放在空气中自然风干钢模中剩余的水分, 然后从钢模中小心 脱除高分子树脂模板,去除高分子树脂模板周围多余的钽粉使得高分 子模板露出来; 最后, 通过化学溶解脱除其中的高分子树脂模板, 得 到多孔钽的坯体骨架;
d. 将上述的坯体按如下步骤进行后处理: 第一 P介段为脱除所加 入的粘结剂, 以 l ~5°C/min 的速率从室温升至 400°C, 保温 30 ~ 60min, 以 Q.5 ~ 1.5°C/min的速率从 400°C升至 600 ~ 800°C, 保温 60~120min, 真空度保持在 10— 3Pa左右; 第二个阶段为高温真空烧结 P介段,在真空度为 10— 4Pa ~ 10— 3Pa,以 10 ~ 20°C/min升温至 1500 - 1800 °C、 保温 120~ 240min、 随炉冷至 200 ~ 300°C, 再以 10~20°C/min 升温至 1500 ~ 1800°C、 保温 180~ 240min, 以 5 ~ 10°C/min升温至 2000 ~ 2200°C、 保温 120~ 360min; 第三个阶段为緩慢冷却阶段, 真 空度为 10— 4Pa ~ 10— 3Pa, 以 10~20°C/min的速率冷却至 1500 - 1600 °C, 保温 30~60min, 以 12 ~ 20°C/min的速率冷却至 1200 ~ 1250°C , 保温 60 ~ 90min; 以 10 ~ 20°C/min的速率冷却至 800°C, 然后随炉冷 却; 第四个阶段为退火阶段, 真空度为 10— 4Pa~10— 3Pa, 以 10~20°C /min升温至 800 ~ 900°C、 保温 240 ~ 480min, 再以 2 ~ 5°C/min冷至 400°C、 保温 120~ 300min, 然后随炉冷却至室温。
PCT/CN2012/088152 2012-01-31 2012-12-31 一种多孔钽医用植入材料的制备方法 WO2013113251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210021891.XA CN102796908B (zh) 2012-01-31 2012-01-31 一种多孔钽医用植入材料的制备方法
CN201210021891.X 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013113251A1 true WO2013113251A1 (zh) 2013-08-08

Family

ID=47196200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/088152 WO2013113251A1 (zh) 2012-01-31 2012-12-31 一种多孔钽医用植入材料的制备方法

Country Status (2)

Country Link
CN (1) CN102796908B (zh)
WO (1) WO2013113251A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021255195A1 (en) 2020-06-18 2021-12-23 University Of Malta Process for production of metal scaffolds and foams
CN115261991A (zh) * 2022-07-08 2022-11-01 江苏芯恒惟业电子科技有限公司 一种降低碳化硅单晶内部碳包裹体缺陷密度的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796908B (zh) * 2012-01-31 2014-01-22 重庆润泽医药有限公司 一种多孔钽医用植入材料的制备方法
CN104046822B (zh) * 2014-07-08 2016-01-13 西北有色金属研究院 一种固溶强化制备具有梯度结构的钽基合金的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.
CN101660076A (zh) * 2009-10-14 2010-03-03 北京师范大学 有机泡沫浸浆烧结法制备宏观网状多孔钽
CN102205144A (zh) * 2010-03-31 2011-10-05 重庆润泽医疗器械有限公司 医用金属植入材料多孔钽及其制备方法
CN102220508A (zh) * 2011-05-18 2011-10-19 宝鸡市力诺有色金属材料有限公司 医用多孔钽的制备方法及用途
CN102796908A (zh) * 2012-01-31 2012-11-28 重庆润泽医药有限公司 一种多孔钽医用植入材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
CN101549175B (zh) * 2009-05-15 2012-07-04 中南大学 一种孔隙非均匀分布仿生骨质材料制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.
CN101660076A (zh) * 2009-10-14 2010-03-03 北京师范大学 有机泡沫浸浆烧结法制备宏观网状多孔钽
CN102205144A (zh) * 2010-03-31 2011-10-05 重庆润泽医疗器械有限公司 医用金属植入材料多孔钽及其制备方法
CN102220508A (zh) * 2011-05-18 2011-10-19 宝鸡市力诺有色金属材料有限公司 医用多孔钽的制备方法及用途
CN102796908A (zh) * 2012-01-31 2012-11-28 重庆润泽医药有限公司 一种多孔钽医用植入材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021255195A1 (en) 2020-06-18 2021-12-23 University Of Malta Process for production of metal scaffolds and foams
CN115261991A (zh) * 2022-07-08 2022-11-01 江苏芯恒惟业电子科技有限公司 一种降低碳化硅单晶内部碳包裹体缺陷密度的方法

Also Published As

Publication number Publication date
CN102796908B (zh) 2014-01-22
CN102796908A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2013113250A1 (zh) 一种生物医用多孔植入材料的制备方法
EP2554187B1 (en) Metal porous tantalum used as medical implant material and preparation method thereof
CN110508788B (zh) 一种锌或锌合金或其复合材料组织工程支架的制备方法
WO2013113248A1 (zh) 一种采用三维打印成型制备多孔钽医用植入材料的方法
WO2013113249A1 (zh) 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法
WO2013113251A1 (zh) 一种多孔钽医用植入材料的制备方法
CN103849792B (zh) 一种适用于替代人体牙骨组织的多孔钽
WO2013044773A1 (zh) 一种牙骨替代医用多孔金属材料的制备方法
WO2011147139A1 (zh) 医用金属植入材料多孔铌及其制备方法
CN103740964B (zh) 医用多孔金属植入材料的制备方法
WO2013044832A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044852A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044780A1 (zh) 一种替代承重骨组织的医用多孔金属材料及其制备方法
CN102796899A (zh) 一种医用多孔金属植入材料的制备方法
WO2013044767A1 (zh) 一种替代牙骨的医用多孔钽材料及其制备方法
CN103740962A (zh) 牙骨替代医用多孔金属材料的制备方法
CN103691003B (zh) 多孔钽医用植入材料的制备方法
WO2013044858A1 (zh) 一种医用多孔金属植入材料的制备方法
CN103691004B (zh) 医用多孔金属植入材料的制备方法
CN103768655B (zh) 一种多孔钽骨架的制备方法
WO2013044779A1 (zh) 一种医用多孔金属材料的制备方法
WO2013044778A1 (zh) 一种医用多孔金属材料及其制备方法
CN115350323B (zh) 一种生物可降解多孔镁基复合材料支架的精准制备方法
WO2013044815A1 (zh) 一种医用多孔钽材料的制备方法
CN106904958B (zh) 具有适宜孔隙率和力学强度的ha多孔陶瓷的制备方法及其产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867087

Country of ref document: EP

Kind code of ref document: A1